1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
|
<pre>Internet Engineering Task Force (IETF) R. Bush
Request for Comments: 8210 Internet Initiative Japan
Updates: <a href="./rfc6810">6810</a> R. Austein
Category: Standards Track Dragon Research Labs
ISSN: 2070-1721 September 2017
<span class="h1">The Resource Public Key Infrastructure (RPKI) to Router Protocol,</span>
<span class="h1">Version 1</span>
Abstract
In order to verifiably validate the origin Autonomous Systems and
Autonomous System Paths of BGP announcements, routers need a simple
but reliable mechanism to receive Resource Public Key Infrastructure
(<a href="./rfc6480">RFC 6480</a>) prefix origin data and router keys from a trusted cache.
This document describes a protocol to deliver them.
This document describes version 1 of the RPKI-Router protocol. <a href="./rfc6810">RFC</a>
<a href="./rfc6810">6810</a> describes version 0. This document updates <a href="./rfc6810">RFC 6810</a>.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8210">https://www.rfc-editor.org/info/rfc8210</a>.
<span class="grey">Bush & Austein Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Bush & Austein Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Requirements Language . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.2">1.2</a>. Changes from <a href="./rfc6810">RFC 6810</a> . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3">3</a>. Deployment Structure . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4">4</a>. Operational Overview . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-5">5</a>. Protocol Data Units (PDUs) . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-5.1">5.1</a>. Fields of a PDU . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-5.2">5.2</a>. Serial Notify . . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5.3">5.3</a>. Serial Query . . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5.4">5.4</a>. Reset Query . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-5.5">5.5</a>. Cache Response . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-5.6">5.6</a>. IPv4 Prefix . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-5.7">5.7</a>. IPv6 Prefix . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-5.8">5.8</a>. End of Data . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-5.9">5.9</a>. Cache Reset . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-5.10">5.10</a>. Router Key . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-5.11">5.11</a>. Error Report . . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-6">6</a>. Protocol Timing Parameters . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-7">7</a>. Protocol Version Negotiation . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-8">8</a>. Protocol Sequences . . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-8.1">8.1</a>. Start or Restart . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-8.2">8.2</a>. Typical Exchange . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-8.3">8.3</a>. No Incremental Update Available . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-8.4">8.4</a>. Cache Has No Data Available . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-9">9</a>. Transport . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-9.1">9.1</a>. SSH Transport . . . . . . . . . . . . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-9.2">9.2</a>. TLS Transport . . . . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-9.3">9.3</a>. TCP MD5 Transport . . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-9.4">9.4</a>. TCP-AO Transport . . . . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-10">10</a>. Router-Cache Setup . . . . . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-11">11</a>. Deployment Scenarios . . . . . . . . . . . . . . . . . . . . <a href="#page-28">28</a>
<a href="#section-12">12</a>. Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-13">13</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#section-14">14</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-31">31</a>
<a href="#section-15">15</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#section-15.1">15.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#section-15.2">15.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-34">34</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-35">35</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-35">35</a>
<span class="grey">Bush & Austein Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
In order to verifiably validate the origin Autonomous Systems (ASes)
and AS paths of BGP announcements, routers need a simple but reliable
mechanism to receive cryptographically validated Resource Public Key
Infrastructure (RPKI) [<a href="./rfc6480" title=""An Infrastructure to Support Secure Internet Routing"">RFC6480</a>] prefix origin data and router keys
from a trusted cache. This document describes a protocol to deliver
them. The design is intentionally constrained to be usable on much
of the current generation of ISP router platforms.
This document updates [<a href="./rfc6810" title=""The Resource Public Key Infrastructure (RPKI) to Router Protocol"">RFC6810</a>].
<a href="#section-3">Section 3</a> describes the deployment structure, and <a href="#section-4">Section 4</a> then
presents an operational overview. The binary payloads of the
protocol are formally described in <a href="#section-5">Section 5</a>, and the expected
Protocol Data Unit (PDU) sequences are described in <a href="#section-8">Section 8</a>. The
transport protocol options are described in <a href="#section-9">Section 9</a>. <a href="#section-10">Section 10</a>
details how routers and caches are configured to connect and
authenticate. <a href="#section-11">Section 11</a> describes likely deployment scenarios. The
traditional security and IANA considerations end the document.
The protocol is extensible in order to support new PDUs with new
semantics, if deployment experience indicates that they are needed.
PDUs are versioned should deployment experience call for change.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Changes from <a href="./rfc6810">RFC 6810</a></span>
This section summarizes the significant changes between [<a href="./rfc6810" title=""The Resource Public Key Infrastructure (RPKI) to Router Protocol"">RFC6810</a>] and
the protocol described in this document.
o New Router Key PDU type (<a href="#section-5.10">Section 5.10</a>) added.
o Explicit timing parameters (<a href="#section-5.8">Section 5.8</a>, <a href="#section-6">Section 6</a>) added.
o Protocol version number incremented from 0 (zero) to 1 (one).
o Protocol version number negotiation (<a href="#section-7">Section 7</a>) added.
<span class="grey">Bush & Austein Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Glossary</span>
The following terms are used with special meaning.
Global RPKI: The authoritative data of the RPKI are published in a
distributed set of servers at the IANA, Regional Internet
Registries (RIRs), National Internet Registries (NIRs), and ISPs;
see [<a href="./rfc6481" title=""A Profile for Resource Certificate Repository Structure"">RFC6481</a>].
Cache: A cache is a coalesced copy of the published Global RPKI
data, periodically fetched or refreshed, directly or indirectly,
using the rsync protocol [<a href="./rfc5781" title=""The rsync URI Scheme"">RFC5781</a>] or some successor. Relying
Party software is used to gather and validate the distributed data
of the RPKI into a cache. Trusting this cache further is a matter
between the provider of the cache and a Relying Party.
Serial Number: "Serial Number" is a 32-bit strictly increasing
unsigned integer which wraps from 2^32-1 to 0. It denotes the
logical version of a cache. A cache increments the value when it
successfully updates its data from a parent cache or from primary
RPKI data. While a cache is receiving updates, new incoming data
and implicit deletes are associated with the new serial but MUST
NOT be sent until the fetch is complete. A Serial Number is not
commensurate between different caches or different protocol
versions, nor need it be maintained across resets of the cache
server. See [<a href="./rfc1982" title=""Serial Number Arithmetic"">RFC1982</a>] on DNS Serial Number Arithmetic for too
much detail on the topic.
Session ID: When a cache server is started, it generates a
Session ID to uniquely identify the instance of the cache and to
bind it to the sequence of Serial Numbers that cache instance will
generate. This allows the router to restart a failed session
knowing that the Serial Number it is using is commensurate with
that of the cache.
Payload PDU: A payload PDU is a protocol message which contains data
for use by the router, as opposed to a PDU which conveys the
control mechanisms of this protocol. Prefixes and Router Keys are
examples of payload PDUs.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Deployment Structure</span>
Deployment of the RPKI to reach routers has a three-level structure
as follows:
Global RPKI: The authoritative data of the RPKI are published in a
distributed set of servers at the IANA, RIRs, NIRs, and ISPs (see
[<a href="./rfc6481" title=""A Profile for Resource Certificate Repository Structure"">RFC6481</a>]).
<span class="grey">Bush & Austein Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
Local Caches: Local caches are a local set of one or more collected
and verified caches of RPKI data. A Relying Party, e.g., router
or other client, MUST have a trust relationship with, and a
trusted transport channel to, any cache(s) it uses.
Routers: A router fetches data from a local cache using the protocol
described in this document. It is said to be a client of the
cache. There MAY be mechanisms for the router to assure itself of
the authenticity of the cache and to authenticate itself to the
cache (see <a href="#section-9">Section 9</a>).
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Operational Overview</span>
A router establishes and keeps open a connection to one or more
caches with which it has client/server relationships. It is
configured with a semi-ordered list of caches and establishes a
connection to the most preferred cache, or set of caches, which
accept the connections.
The router MUST choose the most preferred, by configuration, cache or
set of caches so that the operator may control load on their caches
and the Global RPKI.
Periodically, the router sends to the cache the most recent Serial
Number for which it has received data from that cache, i.e., the
router's current Serial Number, in the form of a Serial Query. When
a router establishes a new session with a cache or wishes to reset a
current relationship, it sends a Reset Query.
The cache responds to the Serial Query with all data changes which
took place since the given Serial Number. This may be the null set,
in which case the End of Data PDU (<a href="#section-5.8">Section 5.8</a>) is still sent. Note
that the Serial Number comparison used to determine "since the given
Serial Number" MUST take wrap-around into account; see [<a href="./rfc1982" title=""Serial Number Arithmetic"">RFC1982</a>].
When the router has received all data records from the cache, it sets
its current Serial Number to that of the Serial Number in the
received End of Data PDU.
When the cache updates its database, it sends a Notify PDU to every
currently connected router. This is a hint that now would be a good
time for the router to poll for an update, but it is only a hint.
The protocol requires the router to poll for updates periodically in
any case.
Strictly speaking, a router could track a cache simply by asking for
a complete data set every time it updates, but this would be very
inefficient. The Serial-Number-based incremental update mechanism
<span class="grey">Bush & Austein Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
allows an efficient transfer of just the data records which have
changed since the last update. As with any update protocol based on
incremental transfers, the router must be prepared to fall back to a
full transfer if for any reason the cache is unable to provide the
necessary incremental data. Unlike some incremental transfer
protocols, this protocol requires the router to make an explicit
request to start the fallback process; this is deliberate, as the
cache has no way of knowing whether the router has also established
sessions with other caches that may be able to provide better
service.
As a cache server must evaluate certificates and ROAs (Route Origin
Authorizations; see [<a href="./rfc6480" title=""An Infrastructure to Support Secure Internet Routing"">RFC6480</a>]), which are time dependent, servers'
clocks MUST be correct to a tolerance of approximately an hour.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Protocol Data Units (PDUs)</span>
The exchanges between the cache and the router are sequences of
exchanges of the following PDUs according to the rules described in
<a href="#section-8">Section 8</a>.
Reserved fields (marked "zero" in PDU diagrams) MUST be zero on
transmission and MUST be ignored on receipt.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Fields of a PDU</span>
PDUs contain the following data elements:
Protocol Version: An 8-bit unsigned integer, currently 1, denoting
the version of this protocol.
PDU Type: An 8-bit unsigned integer, denoting the type of the PDU,
e.g., IPv4 Prefix.
Serial Number: The Serial Number of the RPKI cache when this set of
PDUs was received from an upstream cache server or gathered from
the Global RPKI. A cache increments its Serial Number when
completing a rigorously validated update from a parent cache or
the Global RPKI.
Session ID: A 16-bit unsigned integer. When a cache server is
started, it generates a Session ID to identify the instance of the
cache and to bind it to the sequence of Serial Numbers that cache
instance will generate. This allows the router to restart a
failed session knowing that the Serial Number it is using is
commensurate with that of the cache. If, at any time after the
protocol version has been negotiated (<a href="#section-7">Section 7</a>), either the
router or the cache finds that the value of the Session ID is not
<span class="grey">Bush & Austein Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
the same as the other's, the party which detects the mismatch MUST
immediately terminate the session with an Error Report PDU with
code 0 ("Corrupt Data"), and the router MUST flush all data
learned from that cache.
Note that sessions are specific to a particular protocol version.
That is, if a cache server supports multiple versions of this
protocol, happens to use the same Session ID value for multiple
protocol versions, and further happens to use the same Serial
Number values for two or more sessions using the same Session ID
but different Protocol Version values, the Serial Numbers are not
commensurate. The full test for whether Serial Numbers are
commensurate requires comparing Protocol Version, Session ID, and
Serial Number. To reduce the risk of confusion, cache servers
SHOULD NOT use the same Session ID across multiple protocol
versions, but even if they do, routers MUST treat sessions with
different Protocol Version fields as separate sessions even if
they do happen to have the same Session ID.
Should a cache erroneously reuse a Session ID so that a router
does not realize that the session has changed (old Session ID and
new Session ID have the same numeric value), the router may become
confused as to the content of the cache. The time it takes the
router to discover that it is confused will depend on whether the
Serial Numbers are also reused. If the Serial Numbers in the old
and new sessions are different enough, the cache will respond to
the router's Serial Query with a Cache Reset, which will solve the
problem. If, however, the Serial Numbers are close, the cache may
respond with a Cache Response, which may not be enough to bring
the router into sync. In such cases, it's likely but not certain
that the router will detect some discrepancy between the state
that the cache expects and its own state. For example, the Cache
Response may tell the router to drop a record which the router
does not hold or may tell the router to add a record which the
router already has. In such cases, a router will detect the error
and reset the session. The one case in which the router may stay
out of sync is when nothing in the Cache Response contradicts any
data currently held by the router.
Using persistent storage for the Session ID or a clock-based
scheme for generating Session IDs should avoid the risk of
Session ID collisions.
The Session ID might be a pseudorandom value, a strictly
increasing value if the cache has reliable storage, et cetera. A
seconds-since-epoch timestamp value such as the POSIX time()
function makes a good Session ID value.
<span class="grey">Bush & Austein Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
Length: A 32-bit unsigned integer which has as its value the count
of the bytes in the entire PDU, including the 8 bytes of header
which includes the length field.
Flags: The lowest-order bit of the Flags field is 1 for an
announcement and 0 for a withdrawal. For a Prefix PDU (IPv4 or
IPv6), the flag indicates whether this PDU announces a new right
to announce the prefix or withdraws a previously announced right;
a withdraw effectively deletes one previously announced Prefix PDU
with the exact same Prefix, Length, Max-Len, and Autonomous System
Number (ASN). Similarly, for a Router Key PDU, the flag indicates
whether this PDU announces a new Router Key or deletes one
previously announced Router Key PDU with the exact same AS Number,
subjectKeyIdentifier, and subjectPublicKeyInfo.
The remaining bits in the Flags field are reserved for future use.
In protocol version 1, they MUST be zero on transmission and MUST
be ignored on receipt.
Prefix Length: An 8-bit unsigned integer denoting the shortest
prefix allowed by the Prefix element.
Max Length: An 8-bit unsigned integer denoting the longest prefix
allowed by the Prefix element. This MUST NOT be less than the
Prefix Length element.
Prefix: The IPv4 or IPv6 prefix of the ROA.
Autonomous System Number: A 32-bit unsigned integer representing an
ASN allowed to announce a prefix or associated with a router key.
Subject Key Identifier: 20-octet Subject Key Identifier (SKI) value
of a router key, as described in [<a href="./rfc6487" title=""A Profile for X.509 PKIX Resource Certificates"">RFC6487</a>].
Subject Public Key Info: A router key's subjectPublicKeyInfo value,
as described in [<a href="./rfc8208" title=""BGPsec Algorithms, Key Formats, and Signature Formats"">RFC8208</a>]. This is the full ASN.1 DER encoding of
the subjectPublicKeyInfo, including the ASN.1 tag and length
values of the subjectPublicKeyInfo SEQUENCE.
Refresh Interval: Interval between normal cache polls. See
<a href="#section-6">Section 6</a>.
Retry Interval: Interval between cache poll retries after a failed
cache poll. See <a href="#section-6">Section 6</a>.
Expire Interval: Interval during which data fetched from a cache
remains valid in the absence of a successful subsequent cache
poll. See <a href="#section-6">Section 6</a>.
<span class="grey">Bush & Austein Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Serial Notify</span>
The cache notifies the router that the cache has new data.
The Session ID reassures the router that the Serial Numbers are
commensurate, i.e., the cache session has not been changed.
Upon receipt of a Serial Notify PDU, the router MAY issue an
immediate Serial Query (<a href="#section-5.3">Section 5.3</a>) or Reset Query (<a href="#section-5.4">Section 5.4</a>)
without waiting for the Refresh Interval timer (see <a href="#section-6">Section 6</a>) to
expire.
Serial Notify is the only message that the cache can send that is not
in response to a message from the router.
If the router receives a Serial Notify PDU during the initial startup
period where the router and cache are still negotiating to agree on a
protocol version, the router MUST simply ignore the Serial Notify
PDU, even if the Serial Notify PDU is for an unexpected protocol
version. See <a href="#section-7">Section 7</a> for details.
0 8 16 24 31
.-------------------------------------------.
| Protocol | PDU | |
| Version | Type | Session ID |
| 1 | 0 | |
+-------------------------------------------+
| |
| Length=12 |
| |
+-------------------------------------------+
| |
| Serial Number |
| |
`-------------------------------------------'
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Serial Query</span>
The router sends a Serial Query to ask the cache for all
announcements and withdrawals which have occurred since the Serial
Number specified in the Serial Query.
The cache replies to this query with a Cache Response PDU
(<a href="#section-5.5">Section 5.5</a>) if the cache has a (possibly null) record of the
changes since the Serial Number specified by the router, followed by
zero or more payload PDUs and an End Of Data PDU (<a href="#section-5.8">Section 5.8</a>).
<span class="grey">Bush & Austein Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
When replying to a Serial Query, the cache MUST return the minimum
set of changes needed to bring the router into sync with the cache.
That is, if a particular prefix or router key underwent multiple
changes between the Serial Number specified by the router and the
cache's current Serial Number, the cache MUST merge those changes to
present the simplest possible view of those changes to the router.
In general, this means that, for any particular prefix or router key,
the data stream will include at most one withdrawal followed by at
most one announcement, and if all of the changes cancel out, the data
stream will not mention the prefix or router key at all.
The rationale for this approach is that the entire purpose of the
RPKI-Router protocol is to offload work from the router to the cache,
and it should therefore be the cache's job to simplify the change
set, thus reducing work for the router.
If the cache does not have the data needed to update the router,
perhaps because its records do not go back to the Serial Number in
the Serial Query, then it responds with a Cache Reset PDU
(<a href="#section-5.9">Section 5.9</a>).
The Session ID tells the cache what instance the router expects to
ensure that the Serial Numbers are commensurate, i.e., the cache
session has not been changed.
0 8 16 24 31
.-------------------------------------------.
| Protocol | PDU | |
| Version | Type | Session ID |
| 1 | 1 | |
+-------------------------------------------+
| |
| Length=12 |
| |
+-------------------------------------------+
| |
| Serial Number |
| |
`-------------------------------------------'
<span class="grey">Bush & Austein Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Reset Query</span>
The router tells the cache that it wants to receive the total active,
current, non-withdrawn database. The cache responds with a Cache
Response PDU (<a href="#section-5.5">Section 5.5</a>), followed by zero or more payload PDUs and
an End of Data PDU (<a href="#section-5.8">Section 5.8</a>).
0 8 16 24 31
.-------------------------------------------.
| Protocol | PDU | |
| Version | Type | zero |
| 1 | 2 | |
+-------------------------------------------+
| |
| Length=8 |
| |
`-------------------------------------------'
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Cache Response</span>
The cache responds to queries with zero or more payload PDUs. When
replying to a Serial Query (<a href="#section-5.3">Section 5.3</a>), the cache sends the set of
announcements and withdrawals that have occurred since the Serial
Number sent by the client router. When replying to a Reset Query
(<a href="#section-5.4">Section 5.4</a>), the cache sends the set of all data records it has; in
this case, the withdraw/announce field in the payload PDUs MUST have
the value 1 (announce).
In response to a Reset Query, the new value of the Session ID tells
the router the instance of the cache session for future confirmation.
In response to a Serial Query, the Session ID being the same
reassures the router that the Serial Numbers are commensurate, i.e.,
the cache session has not been changed.
0 8 16 24 31
.-------------------------------------------.
| Protocol | PDU | |
| Version | Type | Session ID |
| 1 | 3 | |
+-------------------------------------------+
| |
| Length=8 |
| |
`-------------------------------------------'
<span class="grey">Bush & Austein Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. IPv4 Prefix</span>
0 8 16 24 31
.-------------------------------------------.
| Protocol | PDU | |
| Version | Type | zero |
| 1 | 4 | |
+-------------------------------------------+
| |
| Length=20 |
| |
+-------------------------------------------+
| | Prefix | Max | |
| Flags | Length | Length | zero |
| | 0..32 | 0..32 | |
+-------------------------------------------+
| |
| IPv4 Prefix |
| |
+-------------------------------------------+
| |
| Autonomous System Number |
| |
`-------------------------------------------'
The lowest-order bit of the Flags field is 1 for an announcement and
0 for a withdrawal.
In the RPKI, nothing prevents a signing certificate from issuing two
identical ROAs. In this case, there would be no semantic difference
between the objects, merely a process redundancy.
In the RPKI, there is also an actual need for what might appear to a
router as identical IPvX PDUs. This can occur when an upstream
certificate is being reissued or there is an address ownership
transfer up the validation chain. The ROA would be identical in the
router sense, i.e., have the same {Prefix, Len, Max-Len, ASN}, but it
would have a different validation path in the RPKI. This is
important to the RPKI but not to the router.
The cache server MUST ensure that it has told the router client to
have one and only one IPvX PDU for a unique {Prefix, Len, Max-Len,
ASN} at any one point in time. Should the router client receive an
IPvX PDU with a {Prefix, Len, Max-Len, ASN} identical to one it
already has active, it SHOULD raise a Duplicate Announcement Received
error.
<span class="grey">Bush & Austein Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. IPv6 Prefix</span>
0 8 16 24 31
.-------------------------------------------.
| Protocol | PDU | |
| Version | Type | zero |
| 1 | 6 | |
+-------------------------------------------+
| |
| Length=32 |
| |
+-------------------------------------------+
| | Prefix | Max | |
| Flags | Length | Length | zero |
| | 0..128 | 0..128 | |
+-------------------------------------------+
| |
+--- ---+
| |
+--- IPv6 Prefix ---+
| |
+--- ---+
| |
+-------------------------------------------+
| |
| Autonomous System Number |
| |
`-------------------------------------------'
Analogous to the IPv4 Prefix PDU, it has 96 more bits and no magic.
<span class="grey">Bush & Austein Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. End of Data</span>
The cache tells the router it has no more data for the request.
The Session ID and Protocol Version MUST be the same as that of the
corresponding Cache Response which began the (possibly null) sequence
of payload PDUs.
0 8 16 24 31
.-------------------------------------------.
| Protocol | PDU | |
| Version | Type | Session ID |
| 1 | 7 | |
+-------------------------------------------+
| |
| Length=24 |
| |
+-------------------------------------------+
| |
| Serial Number |
| |
+-------------------------------------------+
| |
| Refresh Interval |
| |
+-------------------------------------------+
| |
| Retry Interval |
| |
+-------------------------------------------+
| |
| Expire Interval |
| |
`-------------------------------------------'
The Refresh Interval, Retry Interval, and Expire Interval are all
32-bit elapsed times measured in seconds. They express the timing
parameters which the cache expects the router to use in deciding when
to send subsequent Serial Query or Reset Query PDUs to the cache.
See <a href="#section-6">Section 6</a> for an explanation of the use and the range of allowed
values for these parameters.
<span class="grey">Bush & Austein Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
<span class="h3"><a class="selflink" id="section-5.9" href="#section-5.9">5.9</a>. Cache Reset</span>
The cache may respond to a Serial Query informing the router that the
cache cannot provide an incremental update starting from the Serial
Number specified by the router. The router must decide whether to
issue a Reset Query or switch to a different cache.
0 8 16 24 31
.-------------------------------------------.
| Protocol | PDU | |
| Version | Type | zero |
| 1 | 8 | |
+-------------------------------------------+
| |
| Length=8 |
| |
`-------------------------------------------'
<span class="h3"><a class="selflink" id="section-5.10" href="#section-5.10">5.10</a>. Router Key</span>
0 8 16 24 31
.-------------------------------------------.
| Protocol | PDU | | |
| Version | Type | Flags | zero |
| 1 | 9 | | |
+-------------------------------------------+
| |
| Length |
| |
+-------------------------------------------+
| |
+--- ---+
| Subject Key Identifier |
+--- ---+
| |
+--- ---+
| (20 octets) |
+--- ---+
| |
+-------------------------------------------+
| |
| AS Number |
| |
+-------------------------------------------+
| |
| Subject Public Key Info |
| |
`-------------------------------------------'
<span class="grey">Bush & Austein Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
The lowest-order bit of the Flags field is 1 for an announcement and
0 for a withdrawal.
The cache server MUST ensure that it has told the router client to
have one and only one Router Key PDU for a unique {SKI, ASN, Subject
Public Key} at any one point in time. Should the router client
receive a Router Key PDU with a {SKI, ASN, Subject Public Key}
identical to one it already has active, it SHOULD raise a Duplicate
Announcement Received error.
Note that a particular ASN may appear in multiple Router Key PDUs
with different Subject Public Key values, while a particular Subject
Public Key value may appear in multiple Router Key PDUs with
different ASNs. In the interest of keeping the announcement and
withdrawal semantics as simple as possible for the router, this
protocol makes no attempt to compress either of these cases.
Also note that it is possible, albeit very unlikely, for multiple
distinct Subject Public Key values to hash to the same SKI. For this
reason, implementations MUST compare Subject Public Key values as
well as SKIs when detecting duplicate PDUs.
<span class="h3"><a class="selflink" id="section-5.11" href="#section-5.11">5.11</a>. Error Report</span>
This PDU is used by either party to report an error to the other.
Error reports are only sent as responses to other PDUs, not to report
errors in Error Report PDUs.
Error codes are described in <a href="#section-12">Section 12</a>.
If the error is generic (e.g., "Internal Error") and not associated
with the PDU to which it is responding, the Erroneous PDU field MUST
be empty and the Length of Encapsulated PDU field MUST be zero.
An Error Report PDU MUST NOT be sent for an Error Report PDU. If an
erroneous Error Report PDU is received, the session SHOULD be
dropped.
If the error is associated with a PDU of excessive length, i.e., too
long to be any legal PDU other than another Error Report, or a
possibly corrupt length, the Erroneous PDU field MAY be truncated.
The diagnostic text is optional; if not present, the Length of Error
Text field MUST be zero. If error text is present, it MUST be a
string in UTF-8 encoding (see [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>]).
<span class="grey">Bush & Austein Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
0 8 16 24 31
.-------------------------------------------.
| Protocol | PDU | |
| Version | Type | Error Code |
| 1 | 10 | |
+-------------------------------------------+
| |
| Length |
| |
+-------------------------------------------+
| |
| Length of Encapsulated PDU |
| |
+-------------------------------------------+
| |
~ Erroneous PDU ~
| |
+-------------------------------------------+
| |
| Length of Error Text |
| |
+-------------------------------------------+
| |
| Arbitrary Text |
| of |
~ Error Diagnostic Message ~
| |
`-------------------------------------------'
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Protocol Timing Parameters</span>
Since the data the cache distributes via the RPKI-Router protocol are
retrieved from the Global RPKI system at intervals which are only
known to the cache, only the cache can really know how frequently it
makes sense for the router to poll the cache, or how long the data
are likely to remain valid (or, at least, unchanged). For this
reason, as well as to allow the cache some control over the load
placed on it by its client routers, the End Of Data PDU includes
three values that allow the cache to communicate timing parameters to
the router:
Refresh Interval: This parameter tells the router how long to wait
before next attempting to poll the cache and between subsequent
attempts, using a Serial Query or Reset Query PDU. The router
SHOULD NOT poll the cache sooner than indicated by this parameter.
Note that receipt of a Serial Notify PDU overrides this interval
<span class="grey">Bush & Austein Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
and suggests that the router issue an immediate query without
waiting for the Refresh Interval to expire. Countdown for this
timer starts upon receipt of the containing End Of Data PDU.
Minimum allowed value: 1 second.
Maximum allowed value: 86400 seconds (1 day).
Recommended default: 3600 seconds (1 hour).
Retry Interval: This parameter tells the router how long to wait
before retrying a failed Serial Query or Reset Query. The router
SHOULD NOT retry sooner than indicated by this parameter. Note
that a protocol version mismatch overrides this interval: if the
router needs to downgrade to a lower protocol version number, it
MAY send the first Serial Query or Reset Query immediately.
Countdown for this timer starts upon failure of the query and
restarts after each subsequent failure until a query succeeds.
Minimum allowed value: 1 second.
Maximum allowed value: 7200 seconds (2 hours).
Recommended default: 600 seconds (10 minutes).
Expire Interval: This parameter tells the router how long it can
continue to use the current version of the data while unable to
perform a successful subsequent query. The router MUST NOT retain
the data past the time indicated by this parameter. Countdown for
this timer starts upon receipt of the containing End Of Data PDU.
Minimum allowed value: 600 seconds (10 minutes).
Maximum allowed value: 172800 seconds (2 days).
Recommended default: 7200 seconds (2 hours).
If the router has never issued a successful query against a
particular cache, it SHOULD retry periodically using the default
Retry Interval, above.
Caches MUST set Expire Interval to a value larger than either Refresh
Interval or Retry Interval.
<span class="grey">Bush & Austein Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Protocol Version Negotiation</span>
A router MUST start each transport connection by issuing either a
Reset Query or a Serial Query. This query will tell the cache which
version of this protocol the router implements.
If a cache which supports version 1 receives a query from a router
which specifies version 0, the cache MUST downgrade to protocol
version 0 [<a href="./rfc6810" title=""The Resource Public Key Infrastructure (RPKI) to Router Protocol"">RFC6810</a>] or send a version 1 Error Report PDU with Error
Code 4 ("Unsupported Protocol Version") and terminate the connection.
If a router which supports version 1 sends a query to a cache which
only supports version 0, one of two things will happen:
1. The cache may terminate the connection, perhaps with a version 0
Error Report PDU. In this case, the router MAY retry the
connection using protocol version 0.
2. The cache may reply with a version 0 response. In this case, the
router MUST either downgrade to version 0 or terminate the
connection.
In any of the downgraded combinations above, the new features of
version 1 will not be available, and all PDUs will have 0 in their
version fields.
If either party receives a PDU containing an unrecognized Protocol
Version (neither 0 nor 1) during this negotiation, it MUST either
downgrade to a known version or terminate the connection, with an
Error Report PDU unless the received PDU is itself an Error
Report PDU.
The router MUST ignore any Serial Notify PDUs it might receive from
the cache during this initial startup period, regardless of the
Protocol Version field in the Serial Notify PDU. Since Session ID
and Serial Number values are specific to a particular protocol
version, the values in the notification are not useful to the router.
Even if these values were meaningful, the only effect that processing
the notification would have would be to trigger exactly the same
Reset Query or Serial Query that the router has already sent as part
of the not-yet-complete version negotiation process, so there is
nothing to be gained by processing notifications until version
negotiation completes.
Caches SHOULD NOT send Serial Notify PDUs before version negotiation
completes. Routers, however, MUST handle such notifications (by
ignoring them) for backwards compatibility with caches serving
protocol version 0.
<span class="grey">Bush & Austein Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
Once the cache and router have agreed upon a Protocol Version via the
negotiation process above, that version is stable for the life of the
session. See <a href="#section-5.1">Section 5.1</a> for a discussion of the interaction between
Protocol Version and Session ID.
If either party receives a PDU for a different Protocol Version once
the above negotiation completes, that party MUST drop the session;
unless the PDU containing the unexpected Protocol Version was itself
an Error Report PDU, the party dropping the session SHOULD send an
Error Report with an error code of 8 ("Unexpected Protocol Version").
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Protocol Sequences</span>
The sequences of PDU transmissions fall into four conversations as
follows:
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Start or Restart</span>
Cache Router
~ ~
| <----- Reset Query -------- | R requests data (or Serial Query)
| |
| ----- Cache Response -----> | C confirms request
| ------- Payload PDU ------> | C sends zero or more
| ------- Payload PDU ------> | IPv4 Prefix, IPv6 Prefix,
| ------- Payload PDU ------> | or Router Key PDUs
| ------- End of Data ------> | C sends End of Data
| | and sends new serial
~ ~
When a transport connection is first established, the router MUST
send either a Reset Query or a Serial Query. A Serial Query would be
appropriate if the router has significant unexpired data from a
broken session with the same cache and remembers the Session ID of
that session, in which case a Serial Query containing the Session ID
from the previous session will allow the router to bring itself up to
date while ensuring that the Serial Numbers are commensurate and that
the router and cache are speaking compatible versions of the
protocol. In all other cases, the router lacks the necessary data
for fast resynchronization and therefore MUST fall back to a Reset
Query.
The Reset Query sequence is also used when the router receives a
Cache Reset, chooses a new cache, or fears that it has otherwise lost
its way.
See <a href="#section-7">Section 7</a> for details on version negotiation.
<span class="grey">Bush & Austein Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
To limit the length of time a cache must keep the data necessary to
generate incremental updates, a router MUST send either a Serial
Query or a Reset Query periodically. This also acts as a keep-alive
at the application layer. See <a href="#section-6">Section 6</a> for details on the required
polling frequency.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Typical Exchange</span>
Cache Router
~ ~
| -------- Notify ----------> | (optional)
| |
| <----- Serial Query ------- | R requests data
| |
| ----- Cache Response -----> | C confirms request
| ------- Payload PDU ------> | C sends zero or more
| ------- Payload PDU ------> | IPv4 Prefix, IPv6 Prefix,
| ------- Payload PDU ------> | or Router Key PDUs
| ------- End of Data ------> | C sends End of Data
| | and sends new serial
~ ~
The cache server SHOULD send a Notify PDU with its current Serial
Number when the cache's serial changes, with the expectation that the
router MAY then issue a Serial Query earlier than it otherwise might.
This is analogous to DNS NOTIFY in [<a href="./rfc1996" title=""A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)"">RFC1996</a>]. The cache MUST
rate-limit Serial Notifies to no more frequently than one per minute.
When the transport layer is up and either a timer has gone off in the
router or the cache has sent a Notify PDU, the router queries for new
data by sending a Serial Query, and the cache sends all data newer
than the serial in the Serial Query.
To limit the length of time a cache must keep old withdraws, a router
MUST send either a Serial Query or a Reset Query periodically. See
<a href="#section-6">Section 6</a> for details on the required polling frequency.
<span class="grey">Bush & Austein Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. No Incremental Update Available</span>
Cache Router
~ ~
| <------ Serial Query ------ | R requests data
| ------- Cache Reset ------> | C cannot supply update
| | from specified serial
| <------ Reset Query ------- | R requests new data
| ----- Cache Response -----> | C confirms request
| ------- Payload PDU ------> | C sends zero or more
| ------- Payload PDU ------> | IPv4 Prefix, IPv6 Prefix,
| ------- Payload PDU ------> | or Router Key PDUs
| ------- End of Data ------> | C sends End of Data
| | and sends new serial
~ ~
The cache may respond to a Serial Query with a Cache Reset, informing
the router that the cache cannot supply an incremental update from
the Serial Number specified by the router. This might be because the
cache has lost state, or because the router has waited too long
between polls and the cache has cleaned up old data that it no longer
believes it needs, or because the cache has run out of storage space
and had to expire some old data early. Regardless of how this state
arose, the cache replies with a Cache Reset to tell the router that
it cannot honor the request. When a router receives this, the router
SHOULD attempt to connect to any more-preferred caches in its cache
list. If there are no more-preferred caches, it MUST issue a Reset
Query and get an entire new load from the cache.
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. Cache Has No Data Available</span>
Cache Router
~ ~
| <------ Serial Query ------ | R requests data
| ---- Error Report PDU ----> | C No Data Available
~ ~
Cache Router
~ ~
| <------ Reset Query ------- | R requests data
| ---- Error Report PDU ----> | C No Data Available
~ ~
The cache may respond to either a Serial Query or a Reset Query
informing the router that the cache cannot supply any update at all.
The most likely cause is that the cache has lost state, perhaps due
to a restart, and has not yet recovered. While it is possible that a
cache might go into such a state without dropping any of its active
<span class="grey">Bush & Austein Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
sessions, a router is more likely to see this behavior when it
initially connects and issues a Reset Query while the cache is still
rebuilding its database.
When a router receives this kind of error, the router SHOULD attempt
to connect to any other caches in its cache list, in preference
order. If no other caches are available, the router MUST issue
periodic Reset Queries until it gets a new usable load from the
cache.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Transport</span>
The transport-layer session between a router and a cache carries the
binary PDUs in a persistent session.
To prevent cache spoofing and DoS attacks by illegitimate routers, it
is highly desirable that the router and the cache be authenticated to
each other. Integrity protection for payloads is also desirable to
protect against monkey-in-the-middle (MITM) attacks. Unfortunately,
there is no protocol to do so on all currently used platforms.
Therefore, as of the writing of this document, there is no mandatory-
to-implement transport which provides authentication and integrity
protection.
To reduce exposure to dropped but non-terminated sessions, both
caches and routers SHOULD enable keep-alives when available in the
chosen transport protocol.
It is expected that, when the TCP Authentication Option (TCP-AO)
[<a href="./rfc5925" title=""The TCP Authentication Option"">RFC5925</a>] is available on all platforms deployed by operators, it
will become the mandatory-to-implement transport.
Caches and routers MUST implement unprotected transport over TCP
using a port, rpki-rtr (323); see <a href="#section-14">Section 14</a>. Operators SHOULD use
procedural means, e.g., access control lists (ACLs), to reduce the
exposure to authentication issues.
If unprotected TCP is the transport, the cache and routers MUST be on
the same trusted and controlled network.
If available to the operator, caches and routers MUST use one of the
following more protected protocols:
o Caches and routers SHOULD use TCP-AO transport [<a href="./rfc5925" title=""The TCP Authentication Option"">RFC5925</a>] over the
rpki-rtr port.
<span class="grey">Bush & Austein Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
o Caches and routers MAY use Secure Shell version 2 (SSHv2)
transport [<a href="./rfc4252" title=""The Secure Shell (SSH) Authentication Protocol"">RFC4252</a>] using the normal SSH port. For an example,
see <a href="#section-9.1">Section 9.1</a>.
o Caches and routers MAY use TCP MD5 transport [<a href="./rfc2385" title=""Protection of BGP Sessions via the TCP MD5 Signature Option"">RFC2385</a>] using the
rpki-rtr port. Note that TCP MD5 has been obsoleted by TCP-AO
[<a href="./rfc5925" title=""The TCP Authentication Option"">RFC5925</a>].
o Caches and routers MAY use TCP over IPsec transport [<a href="./rfc4301" title=""Security Architecture for the Internet Protocol"">RFC4301</a>]
using the rpki-rtr port.
o Caches and routers MAY use Transport Layer Security (TLS)
transport [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] using port rpki-rtr-tls (324); see <a href="#section-14">Section 14</a>.
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. SSH Transport</span>
To run over SSH, the client router first establishes an SSH transport
connection using the SSHv2 transport protocol, and the client and
server exchange keys for message integrity and encryption. The
client then invokes the "ssh-userauth" service to authenticate the
application, as described in the SSH authentication protocol
[<a href="./rfc4252" title=""The Secure Shell (SSH) Authentication Protocol"">RFC4252</a>]. Once the application has been successfully authenticated,
the client invokes the "ssh-connection" service, also known as the
SSH connection protocol.
After the ssh-connection service is established, the client opens a
channel of type "session", which results in an SSH session.
Once the SSH session has been established, the application invokes
the application transport as an SSH subsystem called "rpki-rtr".
Subsystem support is a feature of SSHv2 and is not included in SSHv1.
Running this protocol as an SSH subsystem avoids the need for the
application to recognize shell prompts or skip over extraneous
information, such as a system message that is sent at shell startup.
It is assumed that the router and cache have exchanged keys out of
band by some reasonably secured means.
Cache servers supporting SSH transport MUST accept RSA authentication
and SHOULD accept Elliptic Curve Digital Signature Algorithm (ECDSA)
authentication. User authentication MUST be supported; host
authentication MAY be supported. Implementations MAY support
password authentication. Client routers SHOULD verify the public key
of the cache to avoid MITM attacks.
<span class="grey">Bush & Austein Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. TLS Transport</span>
Client routers using TLS transport MUST present client-side
certificates to authenticate themselves to the cache in order to
allow the cache to manage the load by rejecting connections from
unauthorized routers. In principle, any type of certificate and
Certification Authority (CA) may be used; however, in general, cache
operators will wish to create their own small-scale CA and issue
certificates to each authorized router. This simplifies credential
rollover; any unrevoked, unexpired certificate from the proper CA may
be used.
Certificates used to authenticate client routers in this protocol
MUST include a subjectAltName extension [<a href="./rfc5280" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC5280</a>] containing one or
more iPAddress identities; when authenticating the router's
certificate, the cache MUST check the IP address of the TLS
connection against these iPAddress identities and SHOULD reject the
connection if none of the iPAddress identities match the connection.
Routers MUST also verify the cache's TLS server certificate, using
subjectAltName dNSName identities as described in [<a href="./rfc6125" title=""Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)"">RFC6125</a>], to avoid
MITM attacks. The rules and guidelines defined in [<a href="./rfc6125" title=""Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)"">RFC6125</a>] apply
here, with the following considerations:
o Support for the DNS-ID identifier type (that is, the dNSName
identity in the subjectAltName extension) is REQUIRED in rpki-rtr
server and client implementations which use TLS. Certification
authorities which issue rpki-rtr server certificates MUST support
the DNS-ID identifier type, and the DNS-ID identifier type MUST be
present in rpki-rtr server certificates.
o DNS names in rpki-rtr server certificates SHOULD NOT contain the
wildcard character "*".
o rpki-rtr implementations which use TLS MUST NOT use Common Name
(CN-ID) identifiers; a CN field may be present in the server
certificate's subject name but MUST NOT be used for authentication
within the rules described in [<a href="./rfc6125" title=""Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)"">RFC6125</a>].
o The client router MUST set its "reference identifier" to the DNS
name of the rpki-rtr cache.
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. TCP MD5 Transport</span>
If TCP MD5 is used, implementations MUST support key lengths of at
least 80 printable ASCII bytes, per <a href="./rfc2385#section-4.5">Section 4.5 of [RFC2385]</a>.
Implementations MUST also support hexadecimal sequences of at least
32 characters, i.e., 128 bits.
<span class="grey">Bush & Austein Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
Key rollover with TCP MD5 is problematic. Cache servers SHOULD
support [<a href="./rfc4808" title=""Key Change Strategies for TCP-MD5"">RFC4808</a>].
<span class="h3"><a class="selflink" id="section-9.4" href="#section-9.4">9.4</a>. TCP-AO Transport</span>
Implementations MUST support key lengths of at least 80 printable
ASCII bytes. Implementations MUST also support hexadecimal sequences
of at least 32 characters, i.e., 128 bits. Message Authentication
Code (MAC) lengths of at least 96 bits MUST be supported, per
<a href="./rfc5925#section-5.1">Section 5.1 of [RFC5925]</a>.
The cryptographic algorithms and associated parameters described in
[<a href="./rfc5926" title=""Cryptographic Algorithms for the TCP Authentication Option (TCP-AO)"">RFC5926</a>] MUST be supported.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Router-Cache Setup</span>
A cache has the public authentication data for each router it is
configured to support.
A router may be configured to peer with a selection of caches, and a
cache may be configured to support a selection of routers. Each must
have the name of, and authentication data for, each peer. In
addition, in a router, this list has a non-unique preference value
for each server. This preference merely denotes proximity, not
trust, preferred belief, et cetera. The client router attempts to
establish a session with each potential serving cache in preference
order and then starts to load data from the most preferred cache to
which it can connect and authenticate. The router's list of caches
has the following elements:
Preference: An unsigned integer denoting the router's preference to
connect to that cache; the lower the value, the more preferred.
Name: The IP address or fully qualified domain name of the cache.
Cache Credential(s): Any credential (such as a public key) needed to
authenticate the cache's identity to the router.
Router Credential(s): Any credential (such as a private key or
certificate) needed to authenticate the router's identity to the
cache.
Due to the distributed nature of the RPKI, caches simply cannot be
rigorously synchronous. A client may hold data from multiple caches
but MUST keep the data marked as to source, as later updates MUST
affect the correct data.
<span class="grey">Bush & Austein Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
Just as there may be more than one covering ROA from a single cache,
there may be multiple covering ROAs from multiple caches. The
results are as described in [<a href="./rfc6811" title=""BGP Prefix Origin Validation"">RFC6811</a>].
If data from multiple caches are held, implementations MUST NOT
distinguish between data sources when performing validation of BGP
announcements.
When a more-preferred cache becomes available, if resources allow, it
would be prudent for the client to start fetching from that cache.
The client SHOULD attempt to maintain at least one set of data,
regardless of whether it has chosen a different cache or established
a new connection to the previous cache.
A client MAY drop the data from a particular cache when it is fully
in sync with one or more other caches.
See <a href="#section-6">Section 6</a> for details on what to do when the client is not able
to refresh from a particular cache.
If a client loses connectivity to a cache it is using or otherwise
decides to switch to a new cache, it SHOULD retain the data from the
previous cache until it has a full set of data from one or more other
caches. Note that this may already be true at the point of
connection loss if the client has connections to more than one cache.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Deployment Scenarios</span>
For illustration, we present three likely deployment scenarios:
Small End Site: The small multihomed end site may wish to outsource
the RPKI cache to one or more of their upstream ISPs. They would
exchange authentication material with the ISP using some out-of-
band mechanism, and their router(s) would connect to the cache(s)
of one or more upstream ISPs. The ISPs would likely deploy caches
intended for customer use separately from the caches with which
their own BGP speakers peer.
Large End Site: A larger multihomed end site might run one or more
caches, arranging them in a hierarchy of client caches, each
fetching from a serving cache which is closer to the Global RPKI.
They might configure fallback peerings to upstream ISP caches.
ISP Backbone: A large ISP would likely have one or more redundant
caches in each major point of presence (PoP), and these caches
would fetch from each other in an ISP-dependent topology so as not
to place undue load on the Global RPKI.
<span class="grey">Bush & Austein Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
Experience with large DNS cache deployments has shown that complex
topologies are ill-advised, as it is easy to make errors in the
graph, e.g., not maintain a loop-free condition.
Of course, these are illustrations, and there are other possible
deployment strategies. It is expected that minimizing load on the
Global RPKI servers will be a major consideration.
To keep load on Global RPKI services from unnecessary peaks, it is
recommended that primary caches which load from the distributed
Global RPKI not do so all at the same times, e.g., on the hour.
Choose a random time, perhaps the ISP's AS number modulo 60, and
jitter the inter-fetch timing.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Error Codes</span>
This section contains a preliminary list of error codes. The authors
expect additions to the list during development of the initial
implementations. There is an IANA registry where valid error codes
are listed; see <a href="#section-14">Section 14</a>. Errors which are considered fatal MUST
cause the session to be dropped.
0: Corrupt Data (fatal): The receiver believes the received PDU to
be corrupt in a manner not specified by another error code.
1: Internal Error (fatal): The party reporting the error experienced
some kind of internal error unrelated to protocol operation (ran
out of memory, a coding assertion failed, et cetera).
2: No Data Available: The cache believes itself to be in good
working order but is unable to answer either a Serial Query or a
Reset Query because it has no useful data available at this time.
This is likely to be a temporary error and most likely indicates
that the cache has not yet completed pulling down an initial
current data set from the Global RPKI system after some kind of
event that invalidated whatever data it might have previously held
(reboot, network partition, et cetera).
3: Invalid Request (fatal): The cache server believes the client's
request to be invalid.
4: Unsupported Protocol Version (fatal): The Protocol Version is not
known by the receiver of the PDU.
5: Unsupported PDU Type (fatal): The PDU Type is not known by the
receiver of the PDU.
<span class="grey">Bush & Austein Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
6: Withdrawal of Unknown Record (fatal): The received PDU has
Flag=0, but a matching record ({Prefix, Len, Max-Len, ASN} tuple
for an IPvX PDU or {SKI, ASN, Subject Public Key} tuple for a
Router Key PDU) does not exist in the receiver's database.
7: Duplicate Announcement Received (fatal): The received PDU has
Flag=1, but a matching record ({Prefix, Len, Max-Len, ASN} tuple
for an IPvX PDU or {SKI, ASN, Subject Public Key} tuple for a
Router Key PDU) is already active in the router.
8: Unexpected Protocol Version (fatal): The received PDU has a
Protocol Version field that differs from the protocol version
negotiated in <a href="#section-7">Section 7</a>.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. Security Considerations</span>
As this document describes a security protocol, many aspects of
security interest are described in the relevant sections. This
section points out issues which may not be obvious in other sections.
Cache Validation: In order for a collection of caches as described
in <a href="#section-11">Section 11</a> to guarantee a consistent view, they need to be
given consistent trust anchors to use in their internal validation
process. Distribution of a consistent trust anchor is assumed to
be out of band.
Cache Peer Identification: The router initiates a transport
connection to a cache, which it identifies by either IP address or
fully qualified domain name. Be aware that a DNS or address
spoofing attack could make the correct cache unreachable. No
session would be established, as the authorization keys would not
match.
Transport Security: The RPKI relies on object, not server or
transport, trust. That is, the IANA root trust anchor is
distributed to all caches through some out-of-band means and can
then be used by each cache to validate certificates and ROAs all
the way down the tree. The inter-cache relationships are based on
this object security model; hence, the inter-cache transport can
be lightly protected.
However, this protocol document assumes that the routers cannot do
the validation cryptography. Hence, the last link, from cache to
router, is secured by server authentication and transport-level
security. This is dangerous, as server authentication and
transport have very different threat models than object security.
<span class="grey">Bush & Austein Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
So the strength of the trust relationship and the transport
between the router(s) and the cache(s) are critical. You're
betting your routing on this.
While we cannot say the cache must be on the same LAN, if only due
to the issue of an enterprise wanting to offload the cache task to
their upstream ISP(s), locality, trust, and control are very
critical issues here. The cache(s) really SHOULD be as close, in
the sense of controlled and protected (against DDoS, MITM)
transport, to the router(s) as possible. It also SHOULD be
topologically close so that a minimum of validated routing data
are needed to bootstrap a router's access to a cache.
The identity of the cache server SHOULD be verified and
authenticated by the router client, and vice versa, before any
data are exchanged.
Transports which cannot provide the necessary authentication and
integrity (see <a href="#section-9">Section 9</a>) must rely on network design and
operational controls to provide protection against spoofing/
corruption attacks. As pointed out in <a href="#section-9">Section 9</a>, TCP-AO is the
long-term plan. Protocols which provide integrity and
authenticity SHOULD be used, and if they cannot, i.e., TCP is used
as the transport, the router and cache MUST be on the same
trusted, controlled network.
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. IANA Considerations</span>
This section only discusses updates required in the existing IANA
protocol registries to accommodate version 1 of this protocol. See
[<a href="./rfc6810" title=""The Resource Public Key Infrastructure (RPKI) to Router Protocol"">RFC6810</a>] for IANA considerations from the original (version 0)
protocol.
All existing entries in the IANA "rpki-rtr-pdu" registry remain valid
for protocol version 0. All of the PDU types allowed in protocol
version 0 are also allowed in protocol version 1, with the addition
of the new Router Key PDU. To reduce the likelihood of confusion,
the PDU number used by the Router Key PDU in protocol version 1 is
hereby registered as reserved (and unused) in protocol version 0.
The policy for adding to the registry is RFC Required per [<a href="./rfc8126" title="">RFC8126</a>];
the document must be either Standards Track or Experimental.
<span class="grey">Bush & Austein Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
The "rpki-rtr-pdu" registry has been updated as follows:
Protocol PDU
Version Type Description
-------- ---- ---------------
0-1 0 Serial Notify
0-1 1 Serial Query
0-1 2 Reset Query
0-1 3 Cache Response
0-1 4 IPv4 Prefix
0-1 6 IPv6 Prefix
0-1 7 End of Data
0-1 8 Cache Reset
0 9 Reserved
1 9 Router Key
0-1 10 Error Report
0-1 255 Reserved
All existing entries in the IANA "rpki-rtr-error" registry remain
valid for all protocol versions. Protocol version 1 adds one new
error code:
Error
Code Description
----- ---------------------------
8 Unexpected Protocol Version
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a>. References</span>
<span class="h3"><a class="selflink" id="section-15.1" href="#section-15.1">15.1</a>. Normative References</span>
[<a id="ref-RFC1982">RFC1982</a>] Elz, R. and R. Bush, "Serial Number Arithmetic", <a href="./rfc1982">RFC 1982</a>,
DOI 10.17487/RFC1982, August 1996,
<<a href="https://www.rfc-editor.org/info/rfc1982">https://www.rfc-editor.org/info/rfc1982</a>>.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2385">RFC2385</a>] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
Signature Option", <a href="./rfc2385">RFC 2385</a>, DOI 10.17487/RFC2385, August
1998, <<a href="https://www.rfc-editor.org/info/rfc2385">https://www.rfc-editor.org/info/rfc2385</a>>.
[<a id="ref-RFC3629">RFC3629</a>] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, <a href="./rfc3629">RFC 3629</a>, DOI 10.17487/RFC3629, November
2003, <<a href="https://www.rfc-editor.org/info/rfc3629">https://www.rfc-editor.org/info/rfc3629</a>>.
<span class="grey">Bush & Austein Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
[<a id="ref-RFC4252">RFC4252</a>] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
Authentication Protocol", <a href="./rfc4252">RFC 4252</a>, DOI 10.17487/RFC4252,
January 2006, <<a href="https://www.rfc-editor.org/info/rfc4252">https://www.rfc-editor.org/info/rfc4252</a>>.
[<a id="ref-RFC4301">RFC4301</a>] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", <a href="./rfc4301">RFC 4301</a>, DOI 10.17487/RFC4301,
December 2005, <<a href="https://www.rfc-editor.org/info/rfc4301">https://www.rfc-editor.org/info/rfc4301</a>>.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>,
DOI 10.17487/RFC5246, August 2008,
<<a href="https://www.rfc-editor.org/info/rfc5246">https://www.rfc-editor.org/info/rfc5246</a>>.
[<a id="ref-RFC5280">RFC5280</a>] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", <a href="./rfc5280">RFC 5280</a>, DOI 10.17487/RFC5280, May 2008,
<<a href="https://www.rfc-editor.org/info/rfc5280">https://www.rfc-editor.org/info/rfc5280</a>>.
[<a id="ref-RFC5925">RFC5925</a>] Touch, J., Mankin, A., and R. Bonica, "The TCP
Authentication Option", <a href="./rfc5925">RFC 5925</a>, DOI 10.17487/RFC5925,
June 2010, <<a href="https://www.rfc-editor.org/info/rfc5925">https://www.rfc-editor.org/info/rfc5925</a>>.
[<a id="ref-RFC5926">RFC5926</a>] Lebovitz, G. and E. Rescorla, "Cryptographic Algorithms
for the TCP Authentication Option (TCP-AO)", <a href="./rfc5926">RFC 5926</a>,
DOI 10.17487/RFC5926, June 2010,
<<a href="https://www.rfc-editor.org/info/rfc5926">https://www.rfc-editor.org/info/rfc5926</a>>.
[<a id="ref-RFC6125">RFC6125</a>] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", <a href="./rfc6125">RFC 6125</a>, DOI 10.17487/RFC6125, March
2011, <<a href="https://www.rfc-editor.org/info/rfc6125">https://www.rfc-editor.org/info/rfc6125</a>>.
[<a id="ref-RFC6487">RFC6487</a>] Huston, G., Michaelson, G., and R. Loomans, "A Profile for
X.509 PKIX Resource Certificates", <a href="./rfc6487">RFC 6487</a>,
DOI 10.17487/RFC6487, February 2012,
<<a href="https://www.rfc-editor.org/info/rfc6487">https://www.rfc-editor.org/info/rfc6487</a>>.
[<a id="ref-RFC6810">RFC6810</a>] Bush, R. and R. Austein, "The Resource Public Key
Infrastructure (RPKI) to Router Protocol", <a href="./rfc6810">RFC 6810</a>,
DOI 10.17487/RFC6810, January 2013,
<<a href="https://www.rfc-editor.org/info/rfc6810">https://www.rfc-editor.org/info/rfc6810</a>>.
<span class="grey">Bush & Austein Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
[<a id="ref-RFC6811">RFC6811</a>] Mohapatra, P., Scudder, J., Ward, D., Bush, R., and R.
Austein, "BGP Prefix Origin Validation", <a href="./rfc6811">RFC 6811</a>,
DOI 10.17487/RFC6811, January 2013,
<<a href="https://www.rfc-editor.org/info/rfc6811">https://www.rfc-editor.org/info/rfc6811</a>>.
[<a id="ref-RFC8126">RFC8126</a>] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>,
<a href="./rfc8126">RFC 8126</a>, DOI 10.17487/RFC8126, June 2017,
<<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>>.
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in <a href="./rfc2119">RFC</a>
<a href="./rfc2119">2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>, DOI 10.17487/RFC8174,
May 2017, <<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
[<a id="ref-RFC8208">RFC8208</a>] Turner, S. and O. Borchert, "BGPsec Algorithms, Key
Formats, and Signature Formats", <a href="./rfc8208">RFC 8208</a>,
DOI 10.17487/RFC8208, September 2017,
<<a href="http://www.rfc-editor.org/info/rfc8208">http://www.rfc-editor.org/info/rfc8208</a>>.
<span class="h3"><a class="selflink" id="section-15.2" href="#section-15.2">15.2</a>. Informative References</span>
[<a id="ref-RFC1996">RFC1996</a>] Vixie, P., "A Mechanism for Prompt Notification of Zone
Changes (DNS NOTIFY)", <a href="./rfc1996">RFC 1996</a>, DOI 10.17487/RFC1996,
August 1996, <<a href="https://www.rfc-editor.org/info/rfc1996">https://www.rfc-editor.org/info/rfc1996</a>>.
[<a id="ref-RFC4808">RFC4808</a>] Bellovin, S., "Key Change Strategies for TCP-MD5",
<a href="./rfc4808">RFC 4808</a>, DOI 10.17487/RFC4808, March 2007,
<<a href="https://www.rfc-editor.org/info/rfc4808">https://www.rfc-editor.org/info/rfc4808</a>>.
[<a id="ref-RFC5781">RFC5781</a>] Weiler, S., Ward, D., and R. Housley, "The rsync URI
Scheme", <a href="./rfc5781">RFC 5781</a>, DOI 10.17487/RFC5781, February 2010,
<<a href="https://www.rfc-editor.org/info/rfc5781">https://www.rfc-editor.org/info/rfc5781</a>>.
[<a id="ref-RFC6480">RFC6480</a>] Lepinski, M. and S. Kent, "An Infrastructure to Support
Secure Internet Routing", <a href="./rfc6480">RFC 6480</a>, DOI 10.17487/RFC6480,
February 2012, <<a href="https://www.rfc-editor.org/info/rfc6480">https://www.rfc-editor.org/info/rfc6480</a>>.
[<a id="ref-RFC6481">RFC6481</a>] Huston, G., Loomans, R., and G. Michaelson, "A Profile for
Resource Certificate Repository Structure", <a href="./rfc6481">RFC 6481</a>,
DOI 10.17487/RFC6481, February 2012,
<<a href="https://www.rfc-editor.org/info/rfc6481">https://www.rfc-editor.org/info/rfc6481</a>>.
<span class="grey">Bush & Austein Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc8210">RFC 8210</a> RPKI-Router Protocol September 2017</span>
Acknowledgements
The authors wish to thank Nils Bars, Steve Bellovin, Tim Bruijnzeels,
Rex Fernando, Richard Hansen, Paul Hoffman, Fabian Holler, Russ
Housley, Pradosh Mohapatra, Keyur Patel, David Mandelberg, Sandy
Murphy, Robert Raszuk, Andreas Reuter, Thomas C. Schmidt, John
Scudder, Ruediger Volk, Matthias Waehlisch, and David Ward.
Particular thanks go to Hannes Gredler for showing us the dangers of
unnecessary fields.
No doubt this list is incomplete. We apologize to any contributor
whose name we missed.
Authors' Addresses
Randy Bush
Internet Initiative Japan
5147 Crystal Springs
Bainbridge Island, Washington 98110
United States of America
Email: randy@psg.com
Rob Austein
Dragon Research Labs
Email: sra@hactrn.net
Bush & Austein Standards Track [Page 35]
</pre>
|