1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
|
<pre>Internet Engineering Task Force (IETF) E. Oki
Request for Comments: 8282 Kyoto University
Category: Standards Track T. Takeda
ISSN: 2070-1721 NTT
A. Farrel
Juniper Networks
F. Zhang
Huawei Technologies Co., Ltd.
December 2017
Extensions to the Path Computation Element Communication Protocol (PCEP)
for Inter-Layer MPLS and GMPLS Traffic Engineering
Abstract
The Path Computation Element (PCE) provides path computation
functions in support of traffic engineering in Multiprotocol Label
Switching (MPLS) and Generalized MPLS (GMPLS) networks.
MPLS and GMPLS networks may be constructed from layered service
networks. It is advantageous for overall network efficiency to
provide end-to-end traffic engineering across multiple network layers
through a process called inter-layer traffic engineering. PCE is a
candidate solution for such requirements.
The PCE Communication Protocol (PCEP) is designed as a communication
protocol between Path Computation Clients (PCCs) and PCEs. This
document presents PCEP extensions for inter-layer traffic
engineering.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8282">https://www.rfc-editor.org/info/rfc8282</a>.
<span class="grey">Oki, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Requirements Language . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. Overview of PCE-Based Inter-Layer Path Computation . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. Protocol Extensions . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3.1">3.1</a>. INTER-LAYER Object . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. SWITCH-LAYER Object . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.3">3.3</a>. REQ-ADAP-CAP Object . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.4">3.4</a>. New Metric Types . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.5">3.5</a>. SERVER-INDICATION Object . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4">4</a>. Procedures . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.1">4.1</a>. Path Computation Request . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.2">4.2</a>. Path Computation Reply . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-4.3">4.3</a>. Stateful PCE and PCE Initiated LSPs . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-5">5</a>. Updated Format of PCEP Messages . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-6">6</a>. Manageability Considerations . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-7">7</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-7.1">7.1</a>. New PCEP Objects . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-7.2">7.2</a>. New Registry for INTER-LAYER Object Flags . . . . . . . . <a href="#page-17">17</a>
<a href="#section-7.3">7.3</a>. New Metric Types . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-8">8</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-9">9</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-9.1">9.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-9.2">9.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<span class="grey">Oki, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The Path Computation Element (PCE) defined in [<a href="./rfc4655" title=""A Path Computation Element (PCE)-Based Architecture"">RFC4655</a>] is an entity
that is capable of computing a network path or route based on a
network graph and applying computational constraints. A Path
Computation Client (PCC) may make requests to a PCE for paths to be
computed, and a PCE may initiate or modify services in a network by
supplying new paths [<a href="./rfc8231" title=""Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"">RFC8231</a>] [<a href="./rfc8281" title=""Path Computation Element Communication Protocol (PCEP) Extensions for PCE-initiated LSP Setup in a Stateful PCE Model"">RFC8281</a>].
A network may comprise multiple layers. These layers may represent
separation of technologies (e.g., packet switch capable (PSC), time
division multiplex (TDM), and lambda switch capable (LSC)) [<a href="./rfc3945" title=""Generalized Multi-Protocol Label Switching (GMPLS) Architecture"">RFC3945</a>];
separation of data-plane switching granularity levels (e.g., Virtual
Circuit 4 (VC4) and VC12) [<a href="./rfc5212" title=""Requirements for GMPLS-Based Multi- Region and Multi-Layer Networks (MRN/MLN)"">RFC5212</a>]; or a distinction between client
and server networking roles (e.g., commercial or administrative
separation of client and server networks). In this multi-layer
network, Label Switched Paths (LSPs) in lower layers are used to
carry higher-layer LSPs. The network topology formed by lower-layer
LSPs and advertised as traffic engineering links (TE links) in the
higher layer is called a Virtual Network Topology (VNT) [<a href="./rfc5212" title=""Requirements for GMPLS-Based Multi- Region and Multi-Layer Networks (MRN/MLN)"">RFC5212</a>].
Discussion of other ways that network layering can be supported such
that connectivity in a higher-layer network can be provided by LSPs
in a lower-layer network is provided in [<a href="./rfc7926" title=""Problem Statement and Architecture for Information Exchange between Interconnected Traffic-Engineered Networks"">RFC7926</a>].
It is important to optimize network resource utilization globally,
i.e., taking into account all layers, rather than optimizing resource
utilization at each layer independently. This allows better network
efficiency to be achieved. This is what we call inter-layer traffic
engineering. This includes mechanisms allowing the computation of
end-to-end paths across layers (known as inter-layer path
computation) and mechanisms for control and management of the VNT by
setting up and releasing LSPs in the lower layers [<a href="./rfc5212" title=""Requirements for GMPLS-Based Multi- Region and Multi-Layer Networks (MRN/MLN)"">RFC5212</a>].
PCE can provide a suitable mechanism for resolving inter-layer path
computation issues. The framework for applying the PCE-based path
computation architecture to inter-layer traffic engineering is
described in [<a href="./rfc5623" title=""Framework for PCE-Based Inter-Layer MPLS and GMPLS Traffic Engineering"">RFC5623</a>].
The PCE communication protocol (PCEP) is designed as a communication
protocol between PCCs and PCEs and is defined in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>]. A set of
requirements for PCEP extensions to support inter-layer traffic
engineering is described in [<a href="./rfc6457" title=""PCC-PCE Communication and PCE Discovery Requirements for Inter-Layer Traffic Engineering"">RFC6457</a>].
This document presents PCEP extensions for inter-layer traffic
engineering that satisfy the requirements described in [<a href="./rfc6457" title=""PCC-PCE Communication and PCE Discovery Requirements for Inter-Layer Traffic Engineering"">RFC6457</a>].
<span class="grey">Oki, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Overview of PCE-Based Inter-Layer Path Computation</span>
[<a id="ref-RFC4206">RFC4206</a>] defines a way to signal a higher-layer LSP, which has an
explicit route that includes hops traversed by LSPs in lower layers.
The computation of end-to-end paths across layers is called inter-
layer path computation.
A Label Switching Router (LSR) in the higher layer might not have
information on the lower-layer topology, particularly in an overlay
or augmented model [<a href="./rfc3945" title=""Generalized Multi-Protocol Label Switching (GMPLS) Architecture"">RFC3945</a>]; hence, it may not be able to compute an
end-to-end path across layers.
PCE-based inter-layer path computation consists of using one or more
PCEs to compute an end-to-end path across layers. This could be
achieved by relying on a single PCE that has topology information
about multiple layers and can directly compute an end-to-end path
across layers considering the topology of all of the layers.
Alternatively, the inter-layer path computation could be performed
using multiple cooperating PCEs where each PCE has information about
the topology of one or more layers (but not all layers) and where the
PCEs collaborate to compute an end-to-end path.
As described in [<a href="./rfc5339" title=""Evaluation of Existing GMPLS Protocols against Multi-Layer and Multi- Region Networks (MLN/MRN)"">RFC5339</a>], a hybrid node may advertise a single TE
link with multiple switching capabilities. Normally, those TE links
exist at the layer/region boarder. In this case, a PCE needs to be
capable of specifying the server-layer path information when the
server-layer path information is required to be returned to the PCC.
[<a id="ref-RFC5623">RFC5623</a>] describes models for inter-layer path computation in more
detail. It introduces the Virtual Network Topology Manager (VNTM), a
functional element that controls the VNT, and sets out three distinct
models (and a fourth hybrid model) for inter-layer control involving
a PCE, triggered signaling, and a Network Management System (NMS).
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Protocol Extensions</span>
This section describes PCEP extensions for inter-layer path
computation. Four new objects are defined: the INTER-LAYER object,
the SWITCH-LAYER object, the REQ-ADAP-CAP object, and the SERVER-
INDICATION object. Also, two new metric types are defined.
<span class="grey">Oki, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. INTER-LAYER Object</span>
The INTER-LAYER object is optional and can be used in Path
Computation Request (PCReq) and Path Computation Reply (PCRep)
messages, and also in Path Computation State Report (PCRpt), Path
Computation Update Request (PCUpd), and Path Computation LSP Initiate
Request (PCInitiate) messages.
In a PCReq message, the INTER-LAYER object indicates whether inter-
layer path computation is allowed, the type of path to be computed,
and whether triggered signaling (hierarchical LSPs per [<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>] or
stitched LSPs per [<a href="./rfc5150" title=""Label Switched Path Stitching with Generalized Multiprotocol Label Switching Traffic Engineering (GMPLS TE)"">RFC5150</a>] depending on physical network
technologies) is allowed. When the INTER-LAYER object is absent from
a PCReq message, the receiving PCE MUST process as though inter-layer
path computation had been explicitly disallowed (I-bit set to zero --
see below).
In a PCRep message, the INTER-LAYER object indicates whether
inter-layer path computation has been performed, the type of path
that has been computed, and whether triggered signaling is used.
When a PCReq message includes more than one request, an INTER-LAYER
object is used per request. When a PCRep message includes more than
one path per request that is responded to, an INTER-LAYER object is
used per path.
The applicability of this object to PCRpt and PCUpd messages is the
same as for other objects on those messages as described in
[<a href="./rfc8231" title=""Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"">RFC8231</a>]. The applicability of this object to the PCInitiate
message is the same as for other objects on those messages as
described in [<a href="./rfc8281" title=""Path Computation Element Communication Protocol (PCEP) Extensions for PCE-initiated LSP Setup in a Stateful PCE Model"">RFC8281</a>]. These messages use the <attribute-list> as
defined in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>] and extended by further PCEP extensions, so the
<attribute-list> as extended in <a href="#section-5">Section 5</a> can be used to include the
INTER-LAYER object on these messages.
INTER-LAYER Object-Class is 36.
Inter-layer Object-Type is 1.
The format of the INTER-LAYER object body is shown in Figure 1.
<span class="grey">Oki, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |T|M|I|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: The INTER-LAYER Object
I flag (1 bit): The I flag is used by a PCC in a PCReq message to
indicate to a PCE whether an inter-layer path is allowed. When the I
flag is set (one), the PCE MAY perform inter-layer path computation
and return an inter-layer path. When the flag is clear (zero), the
path that is returned MUST NOT be an inter-layer path.
The I flag is used by a PCE in a PCRep message to indicate to a PCC
whether the path returned is an inter-layer path. When the I flag is
set (one), the path is an inter-layer path. When it is clear (zero),
the path is contained within a single layer because either inter-
layer path computation was not performed or a mono-layer path
(without any virtual TE link and without any loose hop that spans the
lower-layer network) was found notwithstanding the use of inter-layer
path computation.
M flag (1 bit): The M flag is used by a PCC in a PCReq message to
indicate to a PCE whether a mono-layer path or multi-layer path is
requested. When the M flag is set (one), a multi-layer path is
requested. When it is clear (zero), a mono-layer path is requested.
The M flag is used by a PCE in a PCRep message to indicate to a PCC
whether a mono-layer path or multi-layer path is returned. When the
M flag is set (one), a multi-layer path is returned. When the M flag
is clear (zero), a mono-layer path is returned.
If the I flag is clear (zero), the M flag has no meaning and MUST be
ignored.
[<a id="ref-RFC6457">RFC6457</a>] describes two sub-options for mono-layer path.
o A mono-layer path that is specified by strict hops. The path may
include virtual TE links.
o A mono-layer path that includes loose hops that span the lower-
layer network.
The choice of this sub-option can be specified by the use of the O
flag in the Request Parameter (RP) object specified in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>].
<span class="grey">Oki, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
T flag (1 bit): The T flag is used by a PCC in a PCReq message to
indicate to a PCE whether triggered signaling is allowed. When the T
flag is set (one), triggered signaling is allowed. When it is clear
(zero), triggered signaling is not allowed.
The T flag is used by a PCE in a PCRep message to indicate to a PCC
whether triggered signaling is required to support the returned path.
When the T flag is set (one), triggered signaling is required. When
it is clear (zero), triggered signaling is not required.
Note that triggered signaling is used to support hierarchical
[<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>] or stitched [<a href="./rfc5150" title=""Label Switched Path Stitching with Generalized Multiprotocol Label Switching Traffic Engineering (GMPLS TE)"">RFC5150</a>] LSPs according to the physical
attributes of the network layers.
If the I flag is clear (zero), the T flag has no meaning and MUST be
ignored.
Note that the I and M flags differ in the following ways. When the I
flag is clear (zero), virtual TE links must not be used in path
computation. In addition, loose hops that span the lower-layer
network must not be specified. Only regular TE links from the same
layer may be used.
o When the I flag is set (one), the M flag is clear (zero), and the
T flag is set (one), virtual TE links are allowed in path
computation. In addition, when the O flag of the RP object is
set, loose hops that span the lower-layer network may be
specified. This will initiate lower-layer LSP setup; thus, the
inter-layer path is set up even though the path computation result
from a PCE to a PCC includes hops from the same layer only.
o However, when the I flag is set (one), the M flag is clear (zero),
and the T flag is clear (zero), since triggered signaling is not
allowed, virtual TE links that have not been pre-signaled MUST NOT
be used in path computation. In addition, loose hops that span
the lower-layer network MUST NOT be specified. Therefore, this is
equivalent to the I flag being clear (zero).
Reserved bits of the INTER-LAYER object sent between a PCC and PCE in
the same domain MUST be transmitted as zero and SHOULD be ignored on
receipt. A PCE that forwards a path computation request to other
PCEs MUST preserve the settings of reserved bits in the PCReq
messages it sends and in the PCRep messages it forwards to PCCs.
Note that the flags in the PCRpt message indicate the state of an
LSP, whereas the flags in the PCUpd and the PCInitiate messages
indicate the intended/desired state as determined by the PCE.
<span class="grey">Oki, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. SWITCH-LAYER Object</span>
The SWITCH-LAYER object is optional on a PCReq message and specifies
switching layers in which a path MUST, or MUST NOT, be established.
A switching layer is expressed as a switching type and encoding type.
When a SWITCH-LAYER object is used on a PCReq, it is interpreted in
the context of the INTER-LAYER object on the same message. If no
INTER-LAYER object is present, the PCE MUST process the SWITCH-LAYER
object as though inter-layer path computation had been explicitly
disallowed. In such a case, the SWITCH-LAYER object MUST NOT have
more than one LSP Encoding Type and Switching Type with the I flag
set.
The SWITCH-LAYER object is optional on a PCRep message, where it is
used with the NO-PATH object in the case of unsuccessful path
computation to indicate the set of constraints that could not be
satisfied.
The SWITCH-LAYER object may be used on a PCRpt message consistent
with how properties of existing LSPs are reported on that message
[<a href="./rfc8231" title=""Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"">RFC8231</a>]. The PCRpt message uses the <attribute-list> as defined in
[<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>] and extended by further PCEP extensions. This message can
use the <attribute-list> as extended in <a href="#section-5">Section 5</a> to carry the
SWITCH-LAYER object. The SWITCH-LAYER object is not used on a PCUpd
or PCInitiate messages.
SWITCH-LAYER Object-Class is 37.
Switch-layer Object-Type is 1.
The format of the SWITCH-LAYER object body is shown in Figure 2.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LSP Enc. Type |Switching Type | Reserved |I|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . |
// . //
| . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LSP Enc. Type |Switching Type | Reserved |I|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: The SWITCH-LAYER Object
<span class="grey">Oki, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
Each row indicates a switching type and encoding type that must or
must not be used for a specified layer(s) in the computed path.
The format is based on [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] and has equivalent semantics.
LSP Encoding Type (8 bits): see [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of
parameters.
Switching Type (8 bits): see [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of
parameters.
I flag (1 bit): the I flag indicates whether a layer with the
specified switching type and encoding type must or must not be used
by the computed path. When the I flag is set (one), the computed
path MUST traverse a layer with the specified switching type and
encoding type. When the I flag is clear (zero), the computed path
MUST NOT enter or traverse any layer with the specified switching
type and encoding type.
When a combination of switching type and encoding type is not
included in the SWITCH-LAYER object, the computed path MAY traverse a
layer with that combination of switching type and encoding type.
A PCC may want to specify only a Switching Type and not an LSP
Encoding Type. In this case, the LSP Encoding Type is set to zero.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. REQ-ADAP-CAP Object</span>
The REQ-ADAP-CAP object is optional and is used to specify a
requested adaptation capability for both ends of the lower-layer LSP.
The REQ-ADAP-CAP object is used in a PCReq message for inter-PCE
communication, where the PCE that is responsible for computing
higher-layer paths acts as a PCC to request a path computation from a
PCE that is responsible for computing lower-layer paths.
The REQ-ADAP-CAP object is used in a PCRep message in case of
unsuccessful path computation (in this case, the PCRep message also
contains a NO-PATH object, and the REQ-ADAP-CAP object is used to
indicate the set of constraints that could not be satisfied).
The REQ-ADAP-CAP object MAY be used in a PCReq message in a mono-
layer network to specify a requested adaptation capability for both
ends of the LSP. In this case, it MAY be carried without an INTER-
LAYER object.
The applicability of this object to PCRpt and PCUpd messages is the
same as for other objects on those messages as described in
[<a href="./rfc8231" title=""Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"">RFC8231</a>]. The applicability of this object to the PCInitiate
<span class="grey">Oki, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
message is the same as for other objects on those messages as
described in [<a href="./rfc8281" title=""Path Computation Element Communication Protocol (PCEP) Extensions for PCE-initiated LSP Setup in a Stateful PCE Model"">RFC8281</a>]. These messages use the <attribute-list> as
defined in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>] and extended by further PCEP extensions. These
messages can use the <attribute-list> as extended in <a href="#section-5">Section 5</a> to
carry the REQ-ADAP-CAP object.
REQ-ADAP-CAP Object-Class is 38.
Req-Adap-Cap Object-Type is 1.
The format of the REQ-ADAP-CAP object body is shown in Figure 3.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Switching Cap | Encoding | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: The REQ-ADAP-CAP Object
The format is based on [<a href="./rfc6001" title=""Generalized MPLS (GMPLS) Protocol Extensions for Multi-Layer and Multi-Region Networks (MLN/ MRN)"">RFC6001</a>] and has equivalent semantics as the
Interface Adjustment Capability Descriptor (IACD) Upper Switching
Capability and Lower Switching Capability fields.
Switching Capability (8 bits): see [<a href="./rfc4203" title=""OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4203</a>] for a description of
parameters.
Encoding (8 bits): see [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of parameters.
A PCC may want to specify a Switching Capability, but not an
Encoding. In this case, the Encoding MUST be set to zero.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. New Metric Types</span>
This document defines two new metric types for use in the PCEP METRIC
object.
IANA has assigned the value 18 to indicate the metric "Number of
adaptations on a path".
IANA has assigned the value 19 to indicate the metric "Number of
layers on a path".
See Sections <a href="#section-4.1">4.1</a>, <a href="#section-4.2">4.2</a>, and <a href="#section-4.3">4.3</a> for a description of how these metrics
are applied.
<span class="grey">Oki, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. SERVER-INDICATION Object</span>
The SERVER-INDICATION is optional and is used to indicate that path
information included in the Explicit Route Object (ERO) is server-
layer information, and it specifies the characteristics of the server
layer, e.g., the switching capability and encoding of the server-
layer path.
The format of the SERVER-INDICATION object body is shown in Figure 4.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Switching Cap | Encoding | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Optional TLVs ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: The SERVER-INDICATION Object
SERVER-INDICATION Object-Class is 39.
Server-indication Object-Type is 1.
Switching Capability (8 bits): see [<a href="./rfc4203" title=""OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4203</a>] for a description of
parameters.
Encoding (8 bits): see [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of parameters.
Optional TLVs: Optional TLVs MAY be included within the object to
specify more specific server-layer path information (e.g., traffic
parameters). Such TLVs will be defined by other documents.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Procedures</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Path Computation Request</span>
A PCC requests or allows inter-layer path computation in a PCReq
message by including the INTER-LAYER object with the I flag set. The
INTER-LAYER object indicates whether inter-layer path computation is
allowed, which path type is requested, and whether triggered
signaling is allowed.
The SWITCH-LAYER object, which MUST NOT be present unless the INTER-
LAYER object is also present, is optionally used to specify the
switching types and encoding types that define layers that must, or
must not, be used in the computed path. When the SWITCH-LAYER object
is used with the INTER-LAYER object I flag clear (zero), inter-layer
<span class="grey">Oki, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
path computation is not allowed, but constraints specified in the
SWITCH-LAYER object apply. Example usage includes path computation
in a single-layer GMPLS network.
The REQ-ADAP-CAP object is optionally used to specify the interface
switching capability of both ends of the lower-layer LSP. The
REQ-ADAP-CAP object is used in inter-PCE communication, where the PCE
that is responsible for computing higher-layer paths makes a request
as a PCC to a PCE that is responsible for computing lower-layer
paths. Alternatively, the REQ-ADAP-CAP object may be used in the
NMS-VNTM model, where the VNTM makes a request as a PCC to a PCE that
is responsible for computing lower-layer paths.
The METRIC object is optionally used to specify metric types to be
optimized or bounded. When metric type 18 is used, it indicates that
path computation MUST minimize or bound the number of adaptations on
a path. When metric type 19 is used, it indicates that path
computation MUST minimize or bound the number of layers to be
involved on a path.
Furthermore, in order to allow different Objective Functions (OFs) to
be applied within different network layers, multiple OF objects
[<a href="./rfc5541" title=""Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"">RFC5541</a>] MAY be present. In such a case, the first OF object
specifies an objective function for the higher-layer network, and
subsequent OF objects specify objection functions of the subsequent
lower-layer networks.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Path Computation Reply</span>
In the case of successful path computation, the requested PCE replies
to the requesting PCC for the inter-layer path computation result in
a PCRep message that MAY include the INTER-LAYER object. When the
INTER-LAYER object is included in a PCRep message, the I, M, and T
flags indicate semantics of the path as described in <a href="#section-3.1">Section 3.1</a>.
Furthermore, when the C flag of the METRIC object in a PCReq is set,
the METRIC object MUST be included in the PCRep to provide the
computed metric value, as specified in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>].
The PCE MAY specify the server-layer path information in the ERO. In
this case, the requested PCE replies with a PCRep message that
includes at least two sets of ERO information in the path-list: one
is for the client-layer path information, and another one is the
server-layer path information. When SERVER-INDICATION is included in
a PCRep message, it indicates that the path in the ERO is the server-
layer path information. The server-layer path specified in the ERO
could be loose or strict. On receiving the replied path, the PCC
(e.g., NMS and ingress node) can trigger the signaling to set up the
LSPs according to the computed paths.
<span class="grey">Oki, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
In the case of unsuccessful path computation, the PCRep message also
contains a NO-PATH object, and the SWITCH-TYPE object and/or
REQ-ADAP-CAP MAY be used to indicate the set of constraints that
could not be satisfied.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Stateful PCE and PCE Initiated LSPs</span>
Processing for stateful PCEs is described in [<a href="./rfc8231" title=""Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"">RFC8231</a>]. That
document defines the PCRpt message to allow a PCC to report to a PCE
that an LSP already exists in the network and to delegate control of
that LSP to the PCE.
When the LSP is a multi-layer LSP (or a mono-layer LSP for which
specific adaptations exist), the message objects defined in this
document are used on the PCRpt to describe an LSP that is delegated
to the PCE so that the PCE may process the LSP.
Furthermore, [<a href="./rfc8231" title=""Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"">RFC8231</a>] defines the PCUpd message to allow a PCE to
modify an LSP that has been delegated to it. When the LSP is a
multi-layer LSP (or a mono-layer LSP for which specific adaptations
exist), the message objects defined in this document are used on the
PCUpd to describe the new attributes of the modified LSP.
Processing for PCE-initiated LSPs is described in [<a href="./rfc8281" title=""Path Computation Element Communication Protocol (PCEP) Extensions for PCE-initiated LSP Setup in a Stateful PCE Model"">RFC8281</a>]. That
document defines the PCInitiate message that is used by a PCE to
request a PCC to set up a new LSP. When the LSP is a multi-layer LSP
(or a mono-layer LSP for which specific adaptations exist), the
message objects defined in this document are used on the PCInitiate
to describe the attributes of the new LSP.
The new metric types defined in this document can also be used with
the stateful PCE extensions. The format of PCEP messages described
in [<a href="./rfc8231" title=""Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"">RFC8231</a>] and [<a href="./rfc8281" title=""Path Computation Element Communication Protocol (PCEP) Extensions for PCE-initiated LSP Setup in a Stateful PCE Model"">RFC8281</a>] uses <attribute-list> (which is extended
in <a href="#section-5">Section 5</a> for the purpose of including the new metrics).
The stateful PCE implementation MAY use the extension of PCReq and
PCRep messages as defined in <a href="#section-5">Section 5</a> to also enable the use of
inter-layer parameters during passive stateful operations, using the
LSP object.
<span class="grey">Oki, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Updated Format of PCEP Messages</span>
Message formats in this section, as those in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>], are presented
using Routing Backus-Naur Format (RBNF) as specified in [<a href="./rfc5511" title=""Routing Backus-Naur Form (RBNF): A Syntax Used to Form Encoding Rules in Various Routing Protocol Specifications"">RFC5511</a>].
The format of the PCReq message is updated as shown in Figure 5.
<PCReq Message>::= <Common Header>
[<svec-list>]
<request-list>
where:
<svec-list>::=<SVEC>
[<svec-list>]
<request-list>::=<request>[<request-list>]
<request>::= <RP>
<END-POINTS>
[<LSP>]
[<LSPA>]
[<BANDWIDTH>]
[<metric-list>]
[<of-list>]
[<RRO>[<BANDWIDTH>]]
[<IRO>]
[<LOAD-BALANCING>]
[<INTER-LAYER> [<SWITCH-LAYER>]]
[<REQ-ADAP-CAP>]
where:
<of-list>::=<OF>[<of-list>]
<metric-list>::=<METRIC>[<metric-list>]
Figure 5: The Updated PCReq Message
The format of the PCRep message is updated as shown in Figure 6.
<span class="grey">Oki, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
<PCRep Message> ::= <Common Header>
<response-list>
where:
<response-list>::=<response>[<response-list>]
<response>::=<RP>
[<LSP>]
[<NO-PATH>]
[<attribute-list>]
[<path-list>]
<path-list>::=<path>[<path-list>]
<path>::= <ERO><attribute-list>
where:
<attribute-list>::=[<of-list>]
[<LSPA>]
[<BANDWIDTH>]
[<metric-list>]
[<IRO>]
[<INTER-LAYER>]
[<SWITCH-LAYER>]
[<REQ-ADAP-CAP>]
[<SERVER-INDICATION>]
<of-list>::=<OF>[<of-list>]
<metric-list>::=<METRIC>[<metric-list>]
Figure 6: The Updated PCRep Message
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Manageability Considerations</span>
Implementations of this specification should provide a mechanism to
configure any optional features (such as whether a PCE supports
inter-layer computation and which metrics are supported).
A Management Information Base (MIB) module for modeling PCEP is
described in [<a href="./rfc7420" title=""Path Computation Element Communication Protocol (PCEP) Management Information Base (MIB) Module"">RFC7420</a>]. Systems that already use a MIB module to
manage their PCEP implementations might want to augment that module
to provide controls and indicators for support of inter-layer
features defined in this document and to add counters of messages
sent and received containing the objects defined here.
<span class="grey">Oki, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
However, the preferred mechanism for configuration is through a YANG
model. Work has started on a YANG model for PCEP [<a href="#ref-PCEP-YANG">PCEP-YANG</a>], and
this could be enhanced as described for the MIB module, above.
Additional policy configuration might be provided to allow a PCE to
discriminate between the computation services offered to different
PCCs.
A set of monitoring tools for the PCE-based architecture are provided
in [<a href="./rfc5886" title=""A Set of Monitoring Tools for Path Computation Element (PCE)-Based Architecture"">RFC5886</a>]. Systems implementing this specification and PCE
monitoring should consider defining extensions to the mechanisms
defined in [<a href="./rfc5886" title=""A Set of Monitoring Tools for Path Computation Element (PCE)-Based Architecture"">RFC5886</a>] to help monitor inter-layer path computation
requests.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. IANA Considerations</span>
IANA maintains a registry called "Path Computation Element Protocol
(PCEP) Numbers". Per this document, IANA has carried out actions on
subregistries of that registry.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. New PCEP Objects</span>
IANA has made the following assignments in the "PCEP Objects"
subregistry.
Object-Class Value | Name | Object-Type | Reference
-------------------+-------+-----------------------+-----------
INTER-LAYER | 36 | 0: Reserved | <a href="./rfc8282">RFC 8282</a>
| | 1: Inter-layer |
| | 2-15: Unassigned |
| | |
SWITCH-LAYER | 37 | 0: Reserved | <a href="./rfc8282">RFC 8282</a>
| | 1: Switch-layer |
| | 2-15: Unassigned |
| | |
REQ-ADAP-CAP | 38 | 0: Reserved | <a href="./rfc8282">RFC 8282</a>
| | 1: Req-Adap-Cap |
| | 2-15: Unassigned |
| | |
SERVER-INDICATION | 39 | 0: Reserved | <a href="./rfc8282">RFC 8282</a>
| | 1: Server-indication |
Figure 7: New PCEP Objects
<span class="grey">Oki, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. New Registry for INTER-LAYER Object Flags</span>
IANA has created a new subregistry to manage the Flag field of the
INTER-LAYER object called the "Inter-Layer Object Path Property Bits"
registry.
New bit numbers may be allocated only by "IETF Review" [<a href="./rfc8126" title="">RFC8126</a>].
Each bit should be tracked with the following qualities:
o Bit number (counting from bit 0 as the most significant bit up to
a maximum of bit 31)
o Capability Description
o Defining RFC
IANA has populated the registry as follows:
Bit | Flag | Multi-Layer Path Property | Reference
----+------+-------------------------------+------------
0-28| | Unassigned |
29 | T | Triggered Signaling Allowed | <a href="./rfc8282">RFC 8282</a>
30 | M | Multi-Layer Requested | <a href="./rfc8282">RFC 8282</a>
31 | I | Inter-Layer Allowed | <a href="./rfc8282">RFC 8282</a>
Figure 8: New Registry for INTER-LAYER Object Flags
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. New Metric Types</span>
Two new metric types are defined in this document for the METRIC
object (specified in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>]). IANA has made the following
allocations from the "Metric Object T Field" registry.
Value | Description | Reference
------+---------------------------------+------------
18 | Number of adaptations on a path | <a href="./rfc8282">RFC 8282</a>
19 | Number of layers on a path | <a href="./rfc8282">RFC 8282</a>
Figure 9: New Metric Types
IANA has updated the registry to show the registration procedure of
"IETF Review" as already documented in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>].
<span class="grey">Oki, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
Inter-layer traffic engineering with PCE may raise new security
issues when PCE-PCE communication is done between different layer
networks for inter-layer path computation. Security issues may also
exist when a single PCE is granted full visibility of TE information
that applies to multiple layers.
The Path-Key-based mechanism defined in [<a href="./rfc5520" title=""Preserving Topology Confidentiality in Inter-Domain Path Computation Using a Path-Key-Based Mechanism"">RFC5520</a>] MAY be applied to
address the topology confidentiality between different layers.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC3471">RFC3471</a>] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Functional Description",
<a href="./rfc3471">RFC 3471</a>, DOI 10.17487/RFC3471, January 2003,
<<a href="https://www.rfc-editor.org/info/rfc3471">https://www.rfc-editor.org/info/rfc3471</a>>.
[<a id="ref-RFC3945">RFC3945</a>] Mannie, E., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Architecture", <a href="./rfc3945">RFC 3945</a>,
DOI 10.17487/RFC3945, October 2004,
<<a href="https://www.rfc-editor.org/info/rfc3945">https://www.rfc-editor.org/info/rfc3945</a>>.
[<a id="ref-RFC4203">RFC4203</a>] Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in
Support of Generalized Multi-Protocol Label Switching
(GMPLS)", <a href="./rfc4203">RFC 4203</a>, DOI 10.17487/RFC4203, October 2005,
<<a href="https://www.rfc-editor.org/info/rfc4203">https://www.rfc-editor.org/info/rfc4203</a>>.
[<a id="ref-RFC4206">RFC4206</a>] Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP)
Hierarchy with Generalized Multi-Protocol Label Switching
(GMPLS) Traffic Engineering (TE)", <a href="./rfc4206">RFC 4206</a>,
DOI 10.17487/RFC4206, October 2005,
<<a href="https://www.rfc-editor.org/info/rfc4206">https://www.rfc-editor.org/info/rfc4206</a>>.
[<a id="ref-RFC5440">RFC5440</a>] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
Element (PCE) Communication Protocol (PCEP)", <a href="./rfc5440">RFC 5440</a>,
DOI 10.17487/RFC5440, March 2009,
<<a href="https://www.rfc-editor.org/info/rfc5440">https://www.rfc-editor.org/info/rfc5440</a>>.
<span class="grey">Oki, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
[<a id="ref-RFC5520">RFC5520</a>] Bradford, R., Ed., Vasseur, JP., and A. Farrel,
"Preserving Topology Confidentiality in Inter-Domain Path
Computation Using a Path-Key-Based Mechanism", <a href="./rfc5520">RFC 5520</a>,
DOI 10.17487/RFC5520, April 2009,
<<a href="https://www.rfc-editor.org/info/rfc5520">https://www.rfc-editor.org/info/rfc5520</a>>.
[<a id="ref-RFC8126">RFC8126</a>] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>,
<a href="./rfc8126">RFC 8126</a>, DOI 10.17487/RFC8126, June 2017,
<<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>>.
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in <a href="./rfc2119">RFC</a>
<a href="./rfc2119">2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>, DOI 10.17487/RFC8174,
May 2017, <<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
[<a id="ref-RFC8231">RFC8231</a>] Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path
Computation Element Communication Protocol (PCEP)
Extensions for Stateful PCE", <a href="./rfc8231">RFC 8231</a>,
DOI 10.17487/RFC8231, September 2017,
<<a href="https://www.rfc-editor.org/info/rfc8231">https://www.rfc-editor.org/info/rfc8231</a>>.
[<a id="ref-RFC8281">RFC8281</a>] Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "Path
Computation Element Communication Protocol (PCEP)
Extensions for PCE-initiated LSP Setup in a Stateful PCE
Model", <a href="./rfc8281">RFC 8281</a>, DOI 10.17487/RFC8281, December 2017,
<<a href="http://www.rfc-editor.org/info/rfc20">http://www.rfc-editor.org/info/rfc20</a>>.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-PCEP-YANG">PCEP-YANG</a>]
Dhody, D., Hardwick, J., Beeram, V., and j.
jefftant@gmail.com, "A YANG Data Model for Path
Computation Element Communications Protocol (PCEP)", Work
in Progress, <a href="./draft-ietf-pce-pcep-yang-05">draft-ietf-pce-pcep-yang-05</a>, June 2017.
[<a id="ref-RFC4655">RFC4655</a>] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
Element (PCE)-Based Architecture", <a href="./rfc4655">RFC 4655</a>,
DOI 10.17487/RFC4655, August 2006,
<<a href="https://www.rfc-editor.org/info/rfc4655">https://www.rfc-editor.org/info/rfc4655</a>>.
[<a id="ref-RFC5150">RFC5150</a>] Ayyangar, A., Kompella, K., Vasseur, JP., and A. Farrel,
"Label Switched Path Stitching with Generalized
Multiprotocol Label Switching Traffic Engineering (GMPLS
TE)", <a href="./rfc5150">RFC 5150</a>, DOI 10.17487/RFC5150, February 2008,
<<a href="https://www.rfc-editor.org/info/rfc5150">https://www.rfc-editor.org/info/rfc5150</a>>.
<span class="grey">Oki, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
[<a id="ref-RFC5212">RFC5212</a>] Shiomoto, K., Papadimitriou, D., Le Roux, JL., Vigoureux,
M., and D. Brungard, "Requirements for GMPLS-Based Multi-
Region and Multi-Layer Networks (MRN/MLN)", <a href="./rfc5212">RFC 5212</a>,
DOI 10.17487/RFC5212, July 2008,
<<a href="https://www.rfc-editor.org/info/rfc5212">https://www.rfc-editor.org/info/rfc5212</a>>.
[<a id="ref-RFC5339">RFC5339</a>] Le Roux, JL., Ed. and D. Papadimitriou, Ed., "Evaluation
of Existing GMPLS Protocols against Multi-Layer and Multi-
Region Networks (MLN/MRN)", <a href="./rfc5339">RFC 5339</a>,
DOI 10.17487/RFC5339, September 2008,
<<a href="https://www.rfc-editor.org/info/rfc5339">https://www.rfc-editor.org/info/rfc5339</a>>.
[<a id="ref-RFC5511">RFC5511</a>] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
Used to Form Encoding Rules in Various Routing Protocol
Specifications", <a href="./rfc5511">RFC 5511</a>, DOI 10.17487/RFC5511, April
2009, <<a href="https://www.rfc-editor.org/info/rfc5511">https://www.rfc-editor.org/info/rfc5511</a>>.
[<a id="ref-RFC5541">RFC5541</a>] Le Roux, JL., Vasseur, JP., and Y. Lee, "Encoding of
Objective Functions in the Path Computation Element
Communication Protocol (PCEP)", <a href="./rfc5541">RFC 5541</a>,
DOI 10.17487/RFC5541, June 2009,
<<a href="https://www.rfc-editor.org/info/rfc5541">https://www.rfc-editor.org/info/rfc5541</a>>.
[<a id="ref-RFC5623">RFC5623</a>] Oki, E., Takeda, T., Le Roux, JL., and A. Farrel,
"Framework for PCE-Based Inter-Layer MPLS and GMPLS
Traffic Engineering", <a href="./rfc5623">RFC 5623</a>, DOI 10.17487/RFC5623,
September 2009, <<a href="https://www.rfc-editor.org/info/rfc5623">https://www.rfc-editor.org/info/rfc5623</a>>.
[<a id="ref-RFC5886">RFC5886</a>] Vasseur, JP., Ed., Le Roux, JL., and Y. Ikejiri, "A Set of
Monitoring Tools for Path Computation Element (PCE)-Based
Architecture", <a href="./rfc5886">RFC 5886</a>, DOI 10.17487/RFC5886, June 2010,
<<a href="https://www.rfc-editor.org/info/rfc5886">https://www.rfc-editor.org/info/rfc5886</a>>.
[<a id="ref-RFC6001">RFC6001</a>] Papadimitriou, D., Vigoureux, M., Shiomoto, K., Brungard,
D., and JL. Le Roux, "Generalized MPLS (GMPLS) Protocol
Extensions for Multi-Layer and Multi-Region Networks (MLN/
MRN)", <a href="./rfc6001">RFC 6001</a>, DOI 10.17487/RFC6001, October 2010,
<<a href="https://www.rfc-editor.org/info/rfc6001">https://www.rfc-editor.org/info/rfc6001</a>>.
[<a id="ref-RFC6457">RFC6457</a>] Takeda, T., Ed. and A. Farrel, "PCC-PCE Communication and
PCE Discovery Requirements for Inter-Layer Traffic
Engineering", <a href="./rfc6457">RFC 6457</a>, DOI 10.17487/RFC6457, December
2011, <<a href="https://www.rfc-editor.org/info/rfc6457">https://www.rfc-editor.org/info/rfc6457</a>>.
<span class="grey">Oki, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
[<a id="ref-RFC7420">RFC7420</a>] Koushik, A., Stephan, E., Zhao, Q., King, D., and J.
Hardwick, "Path Computation Element Communication Protocol
(PCEP) Management Information Base (MIB) Module",
<a href="./rfc7420">RFC 7420</a>, DOI 10.17487/RFC7420, December 2014,
<<a href="https://www.rfc-editor.org/info/rfc7420">https://www.rfc-editor.org/info/rfc7420</a>>.
[<a id="ref-RFC7926">RFC7926</a>] Farrel, A., Ed., Drake, J., Bitar, N., Swallow, G.,
Ceccarelli, D., and X. Zhang, "Problem Statement and
Architecture for Information Exchange between
Interconnected Traffic-Engineered Networks", <a href="https://www.rfc-editor.org/bcp/bcp206">BCP 206</a>,
<a href="./rfc7926">RFC 7926</a>, DOI 10.17487/RFC7926, July 2016,
<<a href="https://www.rfc-editor.org/info/rfc7926">https://www.rfc-editor.org/info/rfc7926</a>>.
Acknowledgments
The authors would like to thank Cyril Margaria for his valuable
comments. Helpful comments and suggested text were offered by Dhruv
Dhody, who also fixed the RBNF. Jonathan Hardwick provided a helpful
review as document shepherd.
Contributors
Jean-Louis Le Roux
France Telecom R&D
Av Pierre Marzin
Lannion 22300
France
Email: jeanlouis.leroux@orange.com
<span class="grey">Oki, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8282">RFC 8282</a> Inter-Layer PCEP December 2017</span>
Authors' Addresses
Eiji Oki
Kyoto University
Yoshida-honmachi, Sakyo-ku, Kyoto
Japan
Email: oki@i.kyoto-u.ac.jp
Tomonori Takeda
NTT
3-9-11 Midori-cho
Musashino-shi, Tokyo
Japan
Email: tomonori.takeda@ntt.com
Adrian Farrel
Juniper Networks
Email: afarrel@juniper.net
Fatai Zhang
Huawei Technologies Co., Ltd.
F3-5-B R&D Center, Huawei Base
Bantian, Longgang District, Shenzhen 518129
China
Phone: +86-755-28972912
Email: zhangfatai@huawei.com
Oki, et al. Standards Track [Page 22]
</pre>
|