1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
  
     | 
    
      <pre>Internet Engineering Task Force (IETF)                            J. Xia
Request for Comments: 8286                                       R. Even
Category: Standards Track                                       R. Huang
ISSN: 2070-1721                                                   Huawei
                                                                 L. Deng
                                                            China Mobile
                                                            October 2017
            <span class="h1">RTP/RTCP Extension for RTP Splicing Notification</span>
Abstract
   Content splicing is a process that replaces the content of a main
   multimedia stream with other multimedia content and that delivers the
   substitutive multimedia content to the receivers for a period of
   time.  The splicer is designed to handle RTP splicing and needs to
   know when to start and end the splicing.
   This memo defines two RTP/RTCP extensions to indicate the splicing-
   related information to the splicer: an RTP header extension that
   conveys the information "in band" and an RTP Control Protocol (RTCP)
   packet that conveys the information out of band.
Status of This Memo
   This is an Internet Standards Track document.
   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   <a href="https://www.rfc-editor.org/info/rfc8286">https://www.rfc-editor.org/info/rfc8286</a>.
<span class="grey">Xia, et al.                  Standards Track                    [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
Copyright Notice
   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.
   This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
Table of Contents
   <a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
      <a href="#section-1.1">1.1</a>. Terminology ................................................<a href="#page-3">3</a>
   <a href="#section-2">2</a>. Overview ........................................................<a href="#page-4">4</a>
      <a href="#section-2.1">2.1</a>. Overview of RTP Splicing ...................................<a href="#page-4">4</a>
      <a href="#section-2.2">2.2</a>. Overview of Splicing Interval ..............................<a href="#page-5">5</a>
   <a href="#section-3">3</a>. Conveying Splicing Interval in RTP/RTCP Extensions ..............<a href="#page-7">7</a>
      <a href="#section-3.1">3.1</a>. RTP Header Extension .......................................<a href="#page-7">7</a>
      <a href="#section-3.2">3.2</a>. RTCP Splicing Notification Message .........................<a href="#page-8">8</a>
   <a href="#section-4">4</a>. Reducing Splicing Latency ......................................<a href="#page-10">10</a>
   <a href="#section-5">5</a>. Failure Cases ..................................................<a href="#page-11">11</a>
   <a href="#section-6">6</a>. Session Description Protocol (SDP) Signaling ...................<a href="#page-12">12</a>
      <a href="#section-6.1">6.1</a>. Declarative SDP ...........................................<a href="#page-12">12</a>
      <a href="#section-6.2">6.2</a>. Offer/Answer without BUNDLE ...............................<a href="#page-13">13</a>
      <a href="#section-6.3">6.3</a>. Offer/Answer with BUNDLE: All Media Are Spliced ...........<a href="#page-14">14</a>
      <a href="#section-6.4">6.4</a>. Offer/Answer with BUNDLE: A Subset of Media Are Spliced ...<a href="#page-16">16</a>
   <a href="#section-7">7</a>. Security Considerations ........................................<a href="#page-18">18</a>
   <a href="#section-8">8</a>. IANA Considerations ............................................<a href="#page-19">19</a>
      <a href="#section-8.1">8.1</a>. RTCP Control Packet Types .................................<a href="#page-19">19</a>
      <a href="#section-8.2">8.2</a>. RTP Compact Header Extensions .............................<a href="#page-20">20</a>
      <a href="#section-8.3">8.3</a>. SDP Grouping Semantic Extension ...........................<a href="#page-20">20</a>
   <a href="#section-9">9</a>. References .....................................................<a href="#page-20">20</a>
      <a href="#section-9.1">9.1</a>. Normative References ......................................<a href="#page-20">20</a>
      <a href="#section-9.2">9.2</a>. Informative References ....................................<a href="#page-21">21</a>
   Acknowledgements ..................................................<a href="#page-22">22</a>
   Authors' Addresses ................................................<a href="#page-22">22</a>
<span class="grey">Xia, et al.                  Standards Track                    [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>.  Introduction</span>
   Splicing is a process that replaces some multimedia content with
   other multimedia content and delivers the substitutive multimedia
   content to the receivers for a period of time.  In some predictable
   splicing cases, e.g., advertisement insertion, the splicing duration
   needs to be inside of the specific pre-designated time slot.  Certain
   timing information about when to start and end the splicing must be
   first acquired by the splicer in order to start the splicing.  This
   document refers to this information as the "Splicing Interval".
   [<a id="ref-SCTE35">SCTE35</a>] provides a method that encapsulates the Splicing Interval
   inside the MPEG2-TS (MPEG2 transport stream) layer in cable TV
   systems.  When transported in RTP, a middlebox designed as the
   splicer to decode the RTP packets and search for the Splicing
   Interval inside the payloads is required.  The need for such
   processing increases the workload of the middlebox and limits the
   number of RTP sessions the middlebox can support.
   This document defines an RTP header extension [<a href="./rfc8285" title=""A General Mechanism for RTP Header Extensions"">RFC8285</a>] used by the
   main RTP sender to provide the Splicing Interval by including it in
   the RTP packets.
   However, the Splicing Interval conveyed in the RTP header extension
   might not reach the splicer successfully.  Any splicing-unaware
   middlebox on the path between the RTP sender and the splicer might
   strip this RTP header extension.
   To increase robustness against such a case, this document also
   defines a new RTP Control Protocol (RTCP) packet type to carry the
   same Splicing Interval to the splicer.  Since RTCP is also unreliable
   and may not be as "immediate" as the in-band technique, it's only
   considered to be a complement to the RTP header extension.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>.  Terminology</span>
   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
   capitals, as shown here.
<span class="grey">Xia, et al.                  Standards Track                    [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   In addition, we define the following terms:
   Main RTP Sender:
      The sender of RTP packets carrying the main RTP stream.
   Splicer:
      An intermediary node that inserts substitutive content into a main
      RTP stream.  The splicer sends substitutive content to the RTP
      receiver instead of the main content during splicing.  It is also
      responsible for processing RTCP traffic between the RTP sender and
      the RTP receiver.
   Splicing-In Point:
      A virtual point in the RTP stream, suitable for substitutive
      content entry, typically in the boundary between two independently
      decodable frames.
   Splicing-Out Point:
      A virtual point in the RTP stream, suitable for substitutive
      content exit, typically in the boundary between two independently
      decodable frames.
   Splicing Interval:
      The NTP timestamps, representing the main RTP sender wallclock
      time, for the splicing-in point and splicing-out point per
      [<a href="./rfc6828" title=""Content Splicing for RTP Sessions"">RFC6828</a>], allowing the splicer to know when to start and end the
      RTP splicing.
   Substitutive RTP Sender:
      The sender of RTP packets carrying the RTP stream that will
      replace the content in the main RTP stream.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>.  Overview</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>.  Overview of RTP Splicing</span>
   RTP splicing is intended to replace some multimedia content with
   certain substitutive multimedia content and then forward it to the
   receivers for a period of time.  This process is authorized by the
   main RTP sender that offers a specific time window for inserting the
   substitutive multimedia content in the main content.  A typical usage
<span class="grey">Xia, et al.                  Standards Track                    [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   scenario is where an IPTV service provider uses its own regional
   advertising content to replace national advertising content, the time
   window of which is explicitly indicated by the IPTV service provider.
   The splicer is a middlebox handling RTP splicing.  It receives the
   main content and substitutive content simultaneously but only chooses
   to send one of them to the receiver at any point in time.  When RTP
   splicing begins, the splicer sends the substitutive content to the
   receivers instead of the main content.  When RTP splicing ends, the
   splicer switches back to sending the main content to the receivers.
   This implies that the receiver is explicitly configured to receive
   the traffic via the splicer and will return any RTCP feedback to it
   in the presence of the splicer.
   The middlebox working as the splicer can be implemented as either an
   RTP mixer or an RTP translator.  If implemented as an RTP mixer, the
   splicer will use its own synchronization source (SSRC), sequence
   number space, and timing model when generating the output stream to
   receivers, using the contributing source (CSRC) list to indicate
   whether the original content or substitutive content is being
   delivered.  The splicer, on behalf of the content provider, can omit
   the CSRC list from the RTP packets it generates.  This simplifies the
   design of the receivers, since they don't need to parse the CSRC
   list, but makes it harder to determine when the splicing is taking
   place (it requires inspection of the RTP payload data, rather than
   just the RTP headers).  A splicer working as an RTP mixer splits the
   flow between the sender and receiver into two, and it requires
   separate control loops for RTCP and congestion control.  [<a href="./rfc6828" title=""Content Splicing for RTP Sessions"">RFC6828</a>]
   provides an example of an RTP mixer approach.
   A splicer implemented as an RTP translator [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] will forward the
   RTP packets from the original and substitutive senders with their
   SSRCs intact but will need to rewrite RTCP Sender Report (SR) packets
   to account for the splicing.  In this case, the congestion control
   loops run between the original sender and receiver and between the
   substitutive sender and receiver.  The splicer needs to ensure that
   the RTCP feedback messages from the receiver are passed to the right
   sender to let the congestion control work.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>.  Overview of Splicing Interval</span>
   To handle splicing on the RTP layer at the reserved time slots set by
   the main RTP sender, the splicer must first know the Splicing
   Interval from the main RTP sender before it can start splicing.
   When a new splicing is forthcoming, the main RTP sender needs to send
   the Splicing Interval to the splicer.  The Splicing Interval SHOULD
   be sent by the RTP header extension or RTCP extension message more
<span class="grey">Xia, et al.                  Standards Track                    [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   than once to mitigate possible packet loss.  To enable the splicer to
   get the substitutive content before the splicing starts, the main RTP
   sender MUST send the Splicing Interval well in advance.  For example,
   the main RTP sender can estimate when to send the Splicing Interval
   based on the round-trip time (RTT), following the mechanisms
   described in <a href="./rfc3550#section-6.4.1">Section 6.4.1 of [RFC3550]</a> when the splicer sends an
   RTCP Receiver Report (RR) to the main sender.
   The substitutive sender also needs to learn the Splicing Interval
   from the main RTP sender in advance and estimate when to transfer the
   substitutive content to the splicer.  The Splicing Interval could be
   transmitted from the main RTP sender to the substitutive content
   using some out-of-band mechanisms -- for example, a proprietary
   mechanism to exchange the Splicing Interval -- or the substitutive
   sender is implemented together with the main RTP sender inside a
   single device.  To ensure that the Splicing Interval is valid for
   both the main RTP sender and the substitutive RTP sender, the two
   senders MUST share a common reference clock so that the splicer can
   achieve accurate splicing.  The requirements for the common reference
   clock (e.g., resolution, skew) depend on the codec used by the media
   content.
   In this document, the main RTP sender uses a pair of NTP timestamps
   to indicate when to start and end the splicing to the splicer: the
   timestamp of the first substitutive RTP packet at the splicing-in
   point and the timestamp of the first main RTP packet at the
   splicing-out point.
   When the substitutive RTP sender gets the Splicing Interval, it must
   prepare the substitutive stream.  The main content provider and the
   substitutive content provider MUST ensure that the RTP timestamp of
   the first substitutive RTP packet that would be presented to the
   receivers corresponds to the same time instant as the former
   NTP timestamp in the Splicing Interval.  To enable the splicer to
   know the first substitutive RTP packet it needs to send, the
   substitutive RTP sender MUST send the substitutive RTP packet ahead
   of the splicing-in point, allowing the splicer to find out the
   timestamp of this first RTP packet in the substitutive RTP stream,
   e.g., using a prior RTCP SR message.
   When it is time for the splicing to end, the main content provider
   and the substitutive content provider MUST ensure that the RTP
   timestamp of the first main RTP packet that would be presented on the
   receivers corresponds to the same time instant as the latter
   NTP timestamp in the Splicing Interval.
<span class="grey">Xia, et al.                  Standards Track                    [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>.  Conveying Splicing Interval in RTP/RTCP Extensions</span>
   This memo defines two backward-compatible RTP extensions to convey
   the Splicing Interval to the splicer: an RTP header extension and an
   RTCP splicing notification message.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>.  RTP Header Extension</span>
   The RTP header extension mechanism defined in [<a href="./rfc8285" title=""A General Mechanism for RTP Header Extensions"">RFC8285</a>] can be
   adapted to carry the Splicing Interval, which consists of a pair of
   NTP timestamps.
   This RTP header extension carries the 7 octets of the splicing-out
   NTP timestamp (lower 24-bit part of the "Seconds" of an NTP timestamp
   and the 32 bits of the "Fraction" of an NTP timestamp as defined in
   [<a href="./rfc5905" title=""Network Time Protocol Version 4: Protocol and Algorithms Specification"">RFC5905</a>]), followed by the 8 octets of the splicing-in NTP timestamp
   (64-bit NTP timestamp as defined in [<a href="./rfc5905" title=""Network Time Protocol Version 4: Protocol and Algorithms Specification"">RFC5905</a>]).  The top 8 bits of
   the splicing-out NTP timestamp are inferred from the top 8 bits of
   the splicing-in NTP timestamp, assuming that (1) the splicing-out
   time is after the splicing-in time and (2) the Splicing Interval is
   less than 2^25 seconds.  Therefore, if the value of the 7 octets of
   the splicing-out NTP timestamp is smaller than the value of the
   7 lower octets of the splicing-in NTP timestamp, it implies a wrap of
   the 56-bit splicing-out NTP timestamp, which means that the top 8-bit
   value of the 64-bit splicing-out NTP timestamp is equal to the top
   8-bit value of the splicing-in NTP timestamp plus 0x01.  Otherwise,
   the top 8 bits of the splicing-out NTP timestamp are equal to the top
   8 bits of the splicing-in NTP timestamp.
   This RTP header extension can be encoded using either the one-byte or
   two-byte header defined in [<a href="./rfc8285" title=""A General Mechanism for RTP Header Extensions"">RFC8285</a>].  Figures 1 and 2 show the
   Splicing Interval header extension with each of the two header
   formats.
<span class="grey">Xia, et al.                  Standards Track                    [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+E
   |   ID  | L=14  |    OUT NTP timestamp - Seconds (bit 8-31)     |x
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+t
   |          OUT NTP timestamp - Fraction (bit 0-31)              |e
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+n
   |           IN NTP timestamp - Seconds (bit 0-31)               |s
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+i
   |           IN NTP timestamp - Fraction (bit 0-31)              |o
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+n
       Figure 1: Splicing Interval Using the One-Byte Header Format
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+E
   |   ID          |    L=15       |  OUT NTP timestamp - Seconds  |x
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+t
   |OUT Secds(cont)|         OUT NTP timestamp - Fraction          |e
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+n
   |OUT Fract(cont)|          IN NTP timestamp - Seconds           |s
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+i
   | IN Secds(cont)|          IN NTP timestamp - Fraction          |o
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+n
   | IN Fract(cont)| 0 (pad)       |              ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       Figure 2: Splicing Interval Using the Two-Byte Header Format
   Since the inclusion of an RTP header extension will reduce the
   efficiency of RTP header compression, it is RECOMMENDED that the main
   sender insert the RTP header extensions into a number of RTP packets,
   instead of all of the RTP packets, prior to the splicing-in.
   After the splicer obtains the RTP header extension and derives the
   Splicing Interval, it generates its own stream and is not allowed to
   include the RTP header extension in outgoing packets; this reduces
   header overhead.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>.  RTCP Splicing Notification Message</span>
   In addition to including the RTP header extension, the main RTP
   sender includes the Splicing Interval in an RTCP splicing
   notification message.  Whether or not the timestamps are included in
   the RTP header extension, the main RTP sender MUST send the RTCP
   splicing notification message.  This provides robustness in the case
   where a middlebox strips RTP header extensions.  The main RTP sender
<span class="grey">Xia, et al.                  Standards Track                    [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   MUST make sure that the splicing information contained in the RTCP
   splicing notification message is consistent with the information
   included in the RTP header extensions.
   The RTCP splicing notification message is a new RTCP packet type.  It
   has a fixed header followed by a pair of NTP timestamps:
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |V=2|P|reserved |    PT=213   |              length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           SSRC                                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             IN NTP timestamp (most significant word)          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             IN NTP timestamp (least significant word)         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             OUT NTP timestamp (most significant word)         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             OUT NTP timestamp (least significant word)        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               Figure 3: RTCP Splicing Notification Message
   The RTCP splicing notification message includes the following fields:
   Length: 16 bits
      As defined in [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>], the length of the RTCP packet in 32-bit
      words minus one, including the header and any padding.
   SSRC: 32 bits
      The SSRC of the main RTP sender.
   Timestamp: 64 bits
      Indicates the wallclock time when this splicing starts and ends.
      The full-resolution NTP timestamp is used, which is a 64-bit
      unsigned fixed-point number with the integer part in the first
      32 bits and the fractional part in the last 32 bits.  This format
      is the same as the NTP timestamp field in the RTCP SR
      (<a href="./rfc3550#section-6.4.1">Section 6.4.1 of [RFC3550]</a>).
<span class="grey">Xia, et al.                  Standards Track                    [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   The RTCP splicing notification message can be included in the RTCP
   compound packet together with the RTCP SR generated at the main RTP
   sender; hence, it follows the compound RTCP rules defined in
   <a href="./rfc3550#section-6.1">Section 6.1 in [RFC3550]</a>.
   If the use of non-compound RTCP [<a href="./rfc5506" title=""Support for Reduced-Size Real-Time Transport Control Protocol (RTCP): Opportunities and Consequences"">RFC5506</a>] was previously negotiated
   between the sender and the splicer, the RTCP splicing notification
   messages may be sent as non-compound RTCP packets.  In some cases
   where the mapping from the RTP timestamp to the NTP timestamp
   changes, e.g., clock drift happens before the splicing event, sending
   an RTCP SR or even updated Splicing Interval information in a timely
   manner might be required in order to update the timestamp mapping for
   accurate splicing.
   Since the RTCP splicing notification message is intentionally sent by
   the main RTP sender to the splicer, the splicer is not allowed to
   forward this message to the receivers, so as to avoid useless
   processing and additional RTCP bandwidth consumption in the
   downstream receivers.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>.  Reducing Splicing Latency</span>
   When splicing starts or ends, the splicer outputs the multimedia
   content from another sender to the receivers.  Given that the
   receivers must first acquire certain information ([<a href="./rfc6285" title=""Unicast-Based Rapid Acquisition of Multicast RTP Sessions"">RFC6285</a>] refers to
   this information as "Reference Information") to start processing the
   multimedia data, either the main RTP sender or the substitutive
   sender SHOULD provide the Reference Information together with its
   multimedia content to reduce the delay caused by acquiring the
   Reference Information.  The methods by which the Reference
   Information is distributed to the receivers are out of scope for
   this memo.
   Another latency element is delay caused by synchronization.  The
   receivers must receive enough synchronization metadata prior to
   synchronizing the separate components of the multimedia streams when
   splicing starts or ends.  Either the main RTP sender or the
   substitutive sender SHOULD send the synchronization metadata early
   enough so that the receivers can play out the multimedia in a
   synchronized fashion.  The main RTP sender or the substitutive sender
   can estimate when to send the synchronization metadata based on, for
   example, the RTT, following the mechanisms described in <a href="./rfc3550#section-6.4.1">Section 6.4.1
   of [RFC3550]</a> when the splicer sends an RTCP RR to the main sender or
   the substitutive sender.  The main RTP sender and the substitutive
   sender can also be coordinated by some proprietary out-of-band
   mechanisms to decide when, and to whom, the metadata is to be sent.
   If both send the information, the splicer SHOULD pick one based on
   the current situation, e.g., choosing either (1) the main RTP sender
<span class="grey">Xia, et al.                  Standards Track                   [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   when synchronizing the main media content or (2) the information from
   the substitutive sender when synchronizing the spliced content.  To
   reduce possible synchronization delay, it is RECOMMENDED that the
   mechanisms defined in [<a href="./rfc6051" title=""Rapid Synchronisation of RTP Flows"">RFC6051</a>] be adopted.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>.  Failure Cases</span>
   This section examines the implications of losing RTCP splicing
   notification messages, e.g., the RTP header extension is stripped on
   the path.
   Given that there may be a splicing-unaware middlebox on the path
   between the main RTP sender and the splicer, the main and
   substitutive RTP senders can use one heuristic to verify whether or
   not the Splicing Interval reaches the splicer.
   The splicer can be implemented to have its own SSRC and send RTCP
   reception reports to the senders of the main and substitutive RTP
   streams.  This allows the senders to detect problems on the path to
   the splicer.  Alternatively, it is possible to implement the splicer
   such that it has no SSRC and does not send RTCP reports; this
   prevents the senders from being able to monitor the quality of the
   path to the splicer.
   If the splicer has an SSRC and sends its own RTCP reports, it can
   choose not to pass RTCP reports it receives from the receivers to the
   senders.  This will prevent the senders from being able to monitor
   the quality of the paths from the splicer to the receivers.
   A splicer that has an SSRC can choose to pass RTCP reception reports
   from the receivers back to the senders, after modifications to
   account for the splicing.  This will allow the senders to monitor the
   quality of the paths from the splicer to the receivers.  A splicer
   that does not have its own SSRC has to forward and translate RTCP
   reports from the receiver; otherwise, the senders will not see any
   receivers in the RTP session.
   If the splicer is implemented as a mixer, it will have its own SSRC,
   send its own RTCP reports, and forward translated RTCP reports from
   the receivers.
   Upon the detection of a failure, the splicer can communicate with the
   main sender and the substitutive sender via some out-of-band
   signaling technique and fall back to the payload-specific mechanisms
   it supports, e.g., the MPEG2-TS splicing solution defined in
   [<a href="#ref-SCTE35" title=""Digital Program Insertion Cueing Message for Cable"">SCTE35</a>], or just abandon the splicing.
<span class="grey">Xia, et al.                  Standards Track                   [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>.  Session Description Protocol (SDP) Signaling</span>
   This document defines the URI for declaring this header extension in
   an "extmap" attribute to be
   "urn:ietf:params:rtp-hdrext:splicing-interval".
   This document extends the standard semantics defined in "The Session
   Description Protocol (SDP) Grouping Framework" [<a href="./rfc5888" title=""The Session Description Protocol (SDP) Grouping Framework"">RFC5888</a>] with a new
   semantic, called "SPLICE", to represent the relationship between the
   main RTP stream and the substitutive RTP stream.  Only two "m=" lines
   are allowed in the SPLICE group.  The main RTP stream is the one with
   the extended "extmap" attribute, and the other one is the
   substitutive stream.  A single "m=" line MUST NOT be included in
   different SPLICE groups at the same time.  The main RTP sender
   provides the information about both main and substitutive sources.
   The extended SDP attribute specified in this document is applicable
   for offer/answer content [<a href="./rfc3264" title=""An Offer/Answer Model with Session Description Protocol (SDP)"">RFC3264</a>] and does not affect any rules when
   negotiating offers and answers.  When used with multiple "m=" lines,
   substitutive RTP MUST be applied only to the RTP packets whose SDP
   "m=" line is in the same group with the substitutive stream using
   SPLICE and has the extended splicing "extmap" attribute.  This
   semantic is also applicable for BUNDLE cases.
   The following examples show how SDP signaling could be used for
   splicing in different cases.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>.  Declarative SDP</span>
      v=0
      o=xia 1122334455 1122334466 IN IP4 splicing.example.com
      s=RTP Splicing Example
      t=0 0
      a=group:SPLICE 1 2
      m=video 30000 RTP/AVP 100
      i=Main RTP Stream
      c=IN IP4 233.252.0.1/127
      a=rtpmap:100 MP2T/90000
      a=extmap:1 urn:ietf:params:rtp-hdrext:splicing-interval
      a=mid:1
      m=video 30002 RTP/AVP 100
      i=Substitutive RTP Stream
      c=IN IP4 233.252.0.2/127
      a=sendonly
      a=rtpmap:100 MP2T/90000
      a=mid:2
       Figure 4: Example SDP for a Single-Channel Splicing Scenario
<span class="grey">Xia, et al.                  Standards Track                   [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   The splicer receiving the SDP message above receives one MPEG2-TS
   stream (payload 100) from the main RTP sender (with a multicast
   destination address of 233.252.0.1) on port 30000 and/or receives
   another MPEG2-TS stream from the substitutive RTP sender (with a
   multicast destination address of 233.252.0.2) on port 30002.  But at
   a particular point in time, the splicer only selects one stream and
   outputs the content from the chosen stream to the downstream
   receivers.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>.  Offer/Answer without BUNDLE</span>
   SDP Offer - from the main RTP sender:
      v=0
      o=xia 1122334455 1122334466 IN IP4 splicing.example.com
      s=RTP Splicing Example
      t=0 0
      a=group:SPLICE 1 2
      m=video 30000 RTP/AVP 31 100
      i=Main RTP Stream
      c=IN IP4 splicing.example.com
      a=rtpmap:31 H261/90000
      a=rtpmap:100 MP2T/90000
      a=extmap:1 urn:ietf:params:rtp-hdrext:splicing-interval
      a=sendonly
      a=mid:1
      m=video 40000 RTP/AVP 31 100
      i=Substitutive RTP Stream
      c=IN IP4 substitutive.example.com
      a=rtpmap:31 H261/90000
      a=rtpmap:100 MP2T/90000
      a=sendonly
      a=mid:2
<span class="grey">Xia, et al.                  Standards Track                   [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   SDP Answer - from the splicer:
      v=0
      o=xia 1122334455 1122334466 IN IP4 splicer.example.com
      s=RTP Splicing Example
      t=0 0
      a=group:SPLICE 1 2
      m=video 30000 RTP/AVP 100
      i=Main RTP Stream
      c=IN IP4 splicer.example.com
      a=rtpmap:100 MP2T/90000
      a=extmap:1 urn:ietf:params:rtp-hdrext:splicing-interval
      a=recvonly
      a=mid:1
      m=video 40000 RTP/AVP 100
      i=Substitutive RTP Stream
      c=IN IP4 splicer.example.com
      a=rtpmap:100 MP2T/90000
      a=recvonly
      a=mid:2
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>.  Offer/Answer with BUNDLE: All Media Are Spliced</span>
   In this example, the bundled audio and video media have their own
   substitutive media for splicing:
   1. An offer, in which the offerer assigns a unique address and a
      substitutive media to each bundled "m=" line for splicing within
      the BUNDLE group.
   2. An answer, in which the answerer selects its own BUNDLE address
      and leaves the substitutive media untouched.
<span class="grey">Xia, et al.                  Standards Track                   [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   SDP Offer - from the main RTP sender:
      v=0
      o=alice 1122334455 1122334466 IN IP4 splicing.example.com
      s=RTP Splicing Example
      c=IN IP4 splicing.example.com
      t=0 0
      a=group:SPLICE foo 1
      a=group:SPLICE bar 2
      a=group:BUNDLE foo bar
      m=audio 10000 RTP/AVP 0 8 97
      a=mid:foo
      b=AS:200
      a=rtpmap:0 PCMU/8000
      a=rtpmap:8 PCMA/8000
      a=rtpmap:97 iLBC/8000
      a=extmap:1 urn:ietf:params:rtp-hdrext:splicing-interval
      a=sendonly
      m=video 10002 RTP/AVP 31 32
      a=mid:bar
      b=AS:1000
      a=rtpmap:31 H261/90000
      a=rtpmap:32 MPV/90000
      a=extmap:2 urn:ietf:params:rtp-hdrext:splicing-interval
      a=sendonly
      m=audio 20000 RTP/AVP 0 8 97
      i=Substitutive audio RTP Stream
      c=IN IP4 substitutive.example.com
      a=rtpmap:0 PCMU/8000
      a=rtpmap:8 PCMA/8000
      a=rtpmap:97 iLBC/8000
      a=sendonly
      a=mid:1
      m=video 20002 RTP/AVP 31 32
      i=Substitutive video RTP Stream
      c=IN IP4 substitutive.example.com
      a=rtpmap:31 H261/90000
      a=rtpmap:32 MPV/90000
      a=mid:2
      a=sendonly
<span class="grey">Xia, et al.                  Standards Track                   [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   SDP Answer - from the splicer:
      v=0
      o=bob 2808844564 2808844564 IN IP4 splicer.example.com
      s=RTP Splicing Example
      c=IN IP4 splicer.example.com
      t=0 0
      a=group:SPLICE foo 1
      a=group:SPLICE bar 2
      a=group:BUNDLE foo bar
      m=audio 30000 RTP/AVP 0
      a=mid:foo
      b=AS:200
      a=rtpmap:0 PCMU/8000
      a=extmap:1 urn:ietf:params:rtp-hdrext:splicing-interval
      a=recvonly
      m=video 30000 RTP/AVP 32
      a=mid:bar
      b=AS:1000
      a=rtpmap:32 MPV/90000
      a=extmap:2 urn:ietf:params:rtp-hdrext:splicing-interval
      a=recvonly
      m=audio 30002 RTP/AVP 0
      i=Substitutive audio RTP Stream
      c=IN IP4 splicer.example.com
      a=rtpmap:0 PCMU/8000
      a=recvonly
      a=mid:1
      m=video 30004 RTP/AVP 32
      i=Substitutive video RTP Stream
      c=IN IP4 splicer.example.com
      a=rtpmap:32 MPV/90000
      a=mid:2
      a=recvonly
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>.  Offer/Answer with BUNDLE: A Subset of Media Are Spliced</span>
   In this example, the substitutive media only applies for video when
   splicing:
   1. An offer, in which the offerer assigns a unique address to each
      bundled "m=" line within the BUNDLE group and assigns a
      substitutive media to the bundled video "m=" line for splicing.
   2. An answer, in which the answerer selects its own BUNDLE address
      and leaves the substitutive media untouched.
<span class="grey">Xia, et al.                  Standards Track                   [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   SDP Offer - from the main RTP sender:
      v=0
      o=alice 1122334455 1122334466 IN IP4 splicing.example.com
      s=RTP Splicing Example
      c=IN IP4 splicing.example.com
      t=0 0
      a=group:SPLICE bar 2
      a=group:BUNDLE foo bar
      m=audio 10000 RTP/AVP 0 8 97
      a=mid:foo
      b=AS:200
      a=rtpmap:0 PCMU/8000
      a=rtpmap:8 PCMA/8000
      a=rtpmap:97 iLBC/8000
      a=sendonly
      m=video 10002 RTP/AVP 31 32
      a=mid:bar
      b=AS:1000
      a=rtpmap:31 H261/90000
      a=rtpmap:32 MPV/90000
      a=extmap:2 urn:ietf:params:rtp-hdrext:splicing-interval
      a=sendonly
      m=video 20000 RTP/AVP 31 32
      i=Substitutive video RTP Stream
      c=IN IP4 substitutive.example.com
      a=rtpmap:31 H261/90000
      a=rtpmap:32 MPV/90000
      a=mid:2
      a=sendonly
<span class="grey">Xia, et al.                  Standards Track                   [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   SDP Answer - from the splicer:
      v=0
      o=bob 2808844564 2808844564 IN IP4 splicer.example.com
      s=RTP Splicing Example
      c=IN IP4 splicer.example.com
      t=0 0
      a=group:SPLICE bar 2
      a=group:BUNDLE foo bar
      m=audio 30000 RTP/AVP 0
      a=mid:foo
      b=AS:200
      a=rtpmap:0 PCMU/8000
      a=recvonly
      m=video 30000 RTP/AVP 32
      a=mid:bar
      b=AS:1000
      a=rtpmap:32 MPV/90000
      a=extmap:2 urn:ietf:params:rtp-hdrext:splicing-interval
      a=recvonly
      m=video 30004 RTP/AVP 32
      i=Substitutive video RTP Stream
      c=IN IP4 splicer.example.com
      a=rtpmap:32 MPV/90000
      a=mid:2
      a=recvonly
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>.  Security Considerations</span>
   The security considerations of the RTP specification [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] and
   the general mechanism for RTP header extensions [<a href="./rfc8285" title=""A General Mechanism for RTP Header Extensions"">RFC8285</a>] apply.  The
   splicer can be either a mixer or a translator, and all the security
   considerations of topologies [<a href="./rfc7667" title=""RTP Topologies"">RFC7667</a>] [<a href="./rfc7201" title=""Options for Securing RTP Sessions"">RFC7201</a>] for these two types
   of RTP intermediaries are applicable for the splicer.
   The splicer replaces some content with other content in RTP packets,
   thus breaking any RTP-level end-to-end security, such as source
   authentication and integrity protection.  End-to-end source
   authentication is not possible with any known existing splicing
   solution.  A new solution can theoretically be developed that enables
   identification of the participating entities and what each provides,
   i.e., the different media sources -- main and substitutive -- and the
   splicer, which provides the RTP-level integration of the media
   payloads in a common timeline and synchronization context.
   Since the splicer breaks RTP-level end-to-end security, it needs to
   be part of the signaling context and the necessary security
   associations (e.g., Secure Real-time Transport Protocol (SRTP)
<span class="grey">Xia, et al.                  Standards Track                   [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   [<a id="ref-RFC3711">RFC3711</a>] crypto contexts) established for the RTP session
   participants.  When using SRTP, the splicer would have to be
   provisioned with the same security association as the main RTP
   sender.
   If there are concerns about the confidentiality of the splicing time
   information, the header extension defined in this document MUST also
   be protected; for example, header extension encryption [<a href="./rfc6904" title=""Encryption of Header Extensions in the Secure Real-time Transport Protocol (SRTP)"">RFC6904</a>] can
   be used in this case.  However, the malicious endpoint may get the
   splicing time information by other means, e.g., inferring it from the
   communication between the main and substitutive content sources.  To
   avoid the insertion of invalid substitutive content, the splicer MUST
   have some mechanisms to authenticate the substitutive stream source.
   For cases where the splicing time information is changed by a
   malicious endpoint, the splicing, for example, may fail, since it
   will not be available at the right time for the substitutive media to
   arrive.  Another case is one where an attacker may prevent the
   receivers from receiving the content from the main sender by
   inserting extra splicing time information.  To avoid the above
   scenarios, the authentication of the RTP header extension for
   splicing time information SHOULD be considered.
   When a splicer implemented as a mixer sends the stream to the
   receivers, the CSRC list, which can be used to detect RTP-level
   forwarding loops as defined in <a href="./rfc3550#section-8.2">Section 8.2 of [RFC3550]</a>, may be
   removed for simplifying the receivers that cannot handle multiple
   sources in the RTP stream.  Hence, loops may occur, causing packets
   to loop back to a point upstream of the splicer and possibly forming
   a serious denial-of-service threat.  In such a case, non-RTP means,
   e.g., signaling among all the participants, MUST be used to detect
   and resolve loops.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>.  IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>.  RTCP Control Packet Types</span>
   Based on the guidelines suggested in [<a href="./rfc8126" title="">RFC8126</a>], a new RTCP packet
   format has been registered in the "RTCP Control Packet types (PT)"
   registry:
      Name: SNM
      Long name: Splicing Notification Message
      Value: 213
      Reference: This document
<span class="grey">Xia, et al.                  Standards Track                   [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>.  RTP Compact Header Extensions</span>
   IANA has registered a new RTP Compact Header Extension [<a href="./rfc8285" title=""A General Mechanism for RTP Header Extensions"">RFC8285</a>],
   according to the following:
      Extension URI: urn:ietf:params:rtp-hdrext:splicing-interval
      Description: Splicing Interval
      Contact: Jinwei Xia <xiajinwei@huawei.com>
      Reference: This document
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>.  SDP Grouping Semantic Extension</span>
   IANA has registered the new SDP grouping semantic extension called
   "SPLICE" in the "Semantics for the 'group' SDP Attribute" subregistry
   of the "Session Description Protocol (SDP) Parameters" registry:
      Semantics: Splice
      Token: SPLICE
      Reference: This document
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>.  References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>.  Normative References</span>
   [<a id="ref-RFC2119">RFC2119</a>]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
              DOI 10.17487/RFC2119, March 1997,
              <<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
   [<a id="ref-RFC3264">RFC3264</a>]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
              with Session Description Protocol (SDP)", <a href="./rfc3264">RFC 3264</a>,
              DOI 10.17487/RFC3264, June 2002,
              <<a href="https://www.rfc-editor.org/info/rfc3264">https://www.rfc-editor.org/info/rfc3264</a>>.
   [<a id="ref-RFC3550">RFC3550</a>]  Schulzrinne, H., Casner, S., Frederick, R., and V.
              Jacobson, "RTP: A Transport Protocol for Real-Time
              Applications", STD 64, <a href="./rfc3550">RFC 3550</a>, DOI 10.17487/RFC3550,
              July 2003, <<a href="https://www.rfc-editor.org/info/rfc3550">https://www.rfc-editor.org/info/rfc3550</a>>.
   [<a id="ref-RFC5888">RFC5888</a>]  Camarillo, G. and H. Schulzrinne, "The Session Description
              Protocol (SDP) Grouping Framework", <a href="./rfc5888">RFC 5888</a>,
              DOI 10.17487/RFC5888, June 2010,
              <<a href="https://www.rfc-editor.org/info/rfc5888">https://www.rfc-editor.org/info/rfc5888</a>>.
<span class="grey">Xia, et al.                  Standards Track                   [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   [<a id="ref-RFC5905">RFC5905</a>]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", <a href="./rfc5905">RFC 5905</a>, DOI 10.17487/RFC5905, June 2010,
              <<a href="https://www.rfc-editor.org/info/rfc5905">https://www.rfc-editor.org/info/rfc5905</a>>.
   [<a id="ref-RFC6051">RFC6051</a>]  Perkins, C. and T. Schierl, "Rapid Synchronisation of RTP
              Flows", <a href="./rfc6051">RFC 6051</a>, DOI 10.17487/RFC6051, November 2010,
              <<a href="https://www.rfc-editor.org/info/rfc6051">https://www.rfc-editor.org/info/rfc6051</a>>.
   [<a id="ref-RFC7201">RFC7201</a>]  Westerlund, M. and C. Perkins, "Options for Securing RTP
              Sessions", <a href="./rfc7201">RFC 7201</a>, DOI 10.17487/RFC7201, April 2014,
              <<a href="https://www.rfc-editor.org/info/rfc7201">https://www.rfc-editor.org/info/rfc7201</a>>.
   [<a id="ref-RFC7667">RFC7667</a>]  Westerlund, M. and S. Wenger, "RTP Topologies", <a href="./rfc7667">RFC 7667</a>,
              DOI 10.17487/RFC7667, November 2015,
              <<a href="https://www.rfc-editor.org/info/rfc7667">https://www.rfc-editor.org/info/rfc7667</a>>.
   [<a id="ref-RFC8174">RFC8174</a>]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in
              <a href="./rfc2119">RFC 2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>,
              DOI 10.17487/RFC8174, May 2017,
              <<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
   [<a id="ref-RFC8285">RFC8285</a>]  Singer, D., Desineni, H., and R. Even, Ed., "A General
              Mechanism for RTP Header Extensions", <a href="./rfc8285">RFC 8285</a>,
              DOI 10.17487/RFC8285, October 2017,
              <<a href="https://www.rfc-editor.org/info/rfc8285">https://www.rfc-editor.org/info/rfc8285</a>>.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>.  Informative References</span>
   [<a id="ref-RFC3711">RFC3711</a>]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
              Norrman, "The Secure Real-time Transport Protocol (SRTP)",
              <a href="./rfc3711">RFC 3711</a>, DOI 10.17487/RFC3711, March 2004,
              <<a href="https://www.rfc-editor.org/info/rfc3711">https://www.rfc-editor.org/info/rfc3711</a>>.
   [<a id="ref-RFC5506">RFC5506</a>]  Johansson, I. and M. Westerlund, "Support for Reduced-Size
              Real-Time Transport Control Protocol (RTCP): Opportunities
              and Consequences", <a href="./rfc5506">RFC 5506</a>, DOI 10.17487/RFC5506,
              April 2009, <<a href="https://www.rfc-editor.org/info/rfc5506">https://www.rfc-editor.org/info/rfc5506</a>>.
   [<a id="ref-RFC6285">RFC6285</a>]  Ver Steeg, B., Begen, A., Van Caenegem, T., and Z. Vax,
              "Unicast-Based Rapid Acquisition of Multicast RTP
              Sessions", <a href="./rfc6285">RFC 6285</a>, DOI 10.17487/RFC6285, June 2011,
              <<a href="https://www.rfc-editor.org/info/rfc6285">https://www.rfc-editor.org/info/rfc6285</a>>.
   [<a id="ref-RFC6828">RFC6828</a>]  Xia, J., "Content Splicing for RTP Sessions", <a href="./rfc6828">RFC 6828</a>,
              DOI 10.17487/RFC6828, January 2013,
              <<a href="https://www.rfc-editor.org/info/rfc6828">https://www.rfc-editor.org/info/rfc6828</a>>.
<span class="grey">Xia, et al.                  Standards Track                   [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8286">RFC 8286</a>                RTP Splicing Notification           October 2017</span>
   [<a id="ref-RFC6904">RFC6904</a>]  Lennox, J., "Encryption of Header Extensions in the Secure
              Real-time Transport Protocol (SRTP)", <a href="./rfc6904">RFC 6904</a>,
              DOI 10.17487/RFC6904, April 2013,
              <<a href="https://www.rfc-editor.org/info/rfc6904">https://www.rfc-editor.org/info/rfc6904</a>>.
   [<a id="ref-RFC8126">RFC8126</a>]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>,
              <a href="./rfc8126">RFC 8126</a>, DOI 10.17487/RFC8126, June 2017,
              <<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>>.
   [<a id="ref-SCTE35">SCTE35</a>]   Society of Cable Telecommunications Engineers (SCTE),
              "Digital Program Insertion Cueing Message for Cable",
              2016, <<a href="http://www.scte.org/SCTEDocs/Standards/SCTE%2035%202016.pdf">http://www.scte.org/SCTEDocs/Standards/</a>
              <a href="http://www.scte.org/SCTEDocs/Standards/SCTE%2035%202016.pdf">SCTE%2035%202016.pdf</a>>.
Acknowledgements
   The authors would like to thank the following individuals who helped
   to review this document and provided very valuable comments: Colin
   Perkins, Bo Burman, Stephen Botzko, and Ben Campbell.
Authors' Addresses
   Jinwei Xia
   Huawei
   Email: xiajinwei@huawei.com
   Roni Even
   Huawei
   Email: roni.even@huawei.com
   Rachel Huang
   Huawei
   Email: rachel.huang@huawei.com
   Lingli Deng
   China Mobile
   Email: denglingli@chinamobile.com
Xia, et al.                  Standards Track                   [Page 22]
</pre>
 
     |