1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
|
<pre>Internet Engineering Task Force (IETF) Q. Zhao
Request for Comments: 8306 D. Dhody, Ed.
Obsoletes: <a href="./rfc6006">6006</a> R. Palleti
Category: Standards Track Huawei Technologies
ISSN: 2070-1721 D. King
Old Dog Consulting
November 2017
<span class="h1">Extensions to</span>
<span class="h1">the Path Computation Element Communication Protocol (PCEP)</span>
<span class="h1">for Point-to-Multipoint Traffic Engineering Label Switched Paths</span>
Abstract
Point-to-point Multiprotocol Label Switching (MPLS) and Generalized
MPLS (GMPLS) Traffic Engineering Label Switched Paths (TE LSPs) may
be established using signaling techniques, but their paths may first
need to be determined. The Path Computation Element (PCE) has been
identified as an appropriate technology for the determination of the
paths of point-to-multipoint (P2MP) TE LSPs.
This document describes extensions to the PCE Communication Protocol
(PCEP) to handle requests and responses for the computation of paths
for P2MP TE LSPs.
This document obsoletes <a href="./rfc6006">RFC 6006</a>.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8306">https://www.rfc-editor.org/info/rfc8306</a>.
<span class="grey">Zhao, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Terminology ................................................<a href="#page-5">5</a>
<a href="#section-1.2">1.2</a>. Requirements Language ......................................<a href="#page-5">5</a>
<a href="#section-2">2</a>. PCC-PCE Communication Requirements ..............................<a href="#page-5">5</a>
<a href="#section-3">3</a>. Protocol Procedures and Extensions ..............................<a href="#page-6">6</a>
<a href="#section-3.1">3.1</a>. P2MP Capability Advertisement ..............................<a href="#page-7">7</a>
<a href="#section-3.1.1">3.1.1</a>. IGP Extensions for P2MP Capability Advertisement ....<a href="#page-7">7</a>
<a href="#section-3.1.2">3.1.2</a>. Open Message Extension ..............................<a href="#page-7">7</a>
<a href="#section-3.2">3.2</a>. Efficient Presentation of P2MP LSPs ........................<a href="#page-8">8</a>
<a href="#section-3.3">3.3</a>. P2MP Path Computation Request/Reply Message Extensions .....<a href="#page-9">9</a>
<a href="#section-3.3.1">3.3.1</a>. The Extension of the RP Object ......................<a href="#page-9">9</a>
<a href="#section-3.3.2">3.3.2</a>. The P2MP END-POINTS Object .........................<a href="#page-11">11</a>
<a href="#section-3.4">3.4</a>. Request Message Format ....................................<a href="#page-13">13</a>
<a href="#section-3.5">3.5</a>. Reply Message Format ......................................<a href="#page-15">15</a>
<span class="grey">Zhao, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<a href="#section-3.6">3.6</a>. P2MP Objective Functions and Metric Types .................<a href="#page-16">16</a>
<a href="#section-3.6.1">3.6.1</a>. Objective Functions ................................<a href="#page-16">16</a>
<a href="#section-3.6.2">3.6.2</a>. METRIC Object-Type Values ..........................<a href="#page-17">17</a>
<a href="#section-3.7">3.7</a>. Non-Support of P2MP Path Computation ......................<a href="#page-17">17</a>
<a href="#section-3.8">3.8</a>. Non-Support by Back-Level PCE Implementations .............<a href="#page-17">17</a>
<a href="#section-3.9">3.9</a>. P2MP TE Path Reoptimization Request .......................<a href="#page-17">17</a>
<a href="#section-3.10">3.10</a>. Adding and Pruning Leaves to/from the P2MP Tree ..........<a href="#page-18">18</a>
<a href="#section-3.11">3.11</a>. Discovering Branch Nodes .................................<a href="#page-22">22</a>
<a href="#section-3.11.1">3.11.1</a>. Branch Node Object ................................<a href="#page-22">22</a>
<a href="#section-3.12">3.12</a>. Synchronization of P2MP TE Path Computation Requests .....<a href="#page-22">22</a>
<a href="#section-3.13">3.13</a>. Request and Response Fragmentation .......................<a href="#page-23">23</a>
<a href="#section-3.13.1">3.13.1</a>. Request Fragmentation Procedure ...................<a href="#page-24">24</a>
<a href="#section-3.13.2">3.13.2</a>. Response Fragmentation Procedure ..................<a href="#page-24">24</a>
<a href="#section-3.13.3">3.13.3</a>. Fragmentation Example .............................<a href="#page-24">24</a>
<a href="#section-3.14">3.14</a>. UNREACH-DESTINATION Object ...............................<a href="#page-25">25</a>
<a href="#section-3.15">3.15</a>. P2MP PCEP-ERROR Objects and Types ........................<a href="#page-27">27</a>
<a href="#section-3.16">3.16</a>. PCEP NO-PATH Indicator ...................................<a href="#page-28">28</a>
<a href="#section-4">4</a>. Manageability Considerations ...................................<a href="#page-28">28</a>
<a href="#section-4.1">4.1</a>. Control of Function and Policy ............................<a href="#page-28">28</a>
<a href="#section-4.2">4.2</a>. Information and Data Models ...............................<a href="#page-28">28</a>
<a href="#section-4.3">4.3</a>. Liveness Detection and Monitoring .........................<a href="#page-29">29</a>
<a href="#section-4.4">4.4</a>. Verifying Correct Operation ...............................<a href="#page-29">29</a>
4.5. Requirements for Other Protocols and Functional
Components ................................................<a href="#page-29">29</a>
<a href="#section-4.6">4.6</a>. Impact on Network Operation ...............................<a href="#page-29">29</a>
<a href="#section-5">5</a>. Security Considerations ........................................<a href="#page-30">30</a>
<a href="#section-6">6</a>. IANA Considerations ............................................<a href="#page-31">31</a>
<a href="#section-6.1">6.1</a>. PCEP TLV Type Indicators ..................................<a href="#page-31">31</a>
<a href="#section-6.2">6.2</a>. Request Parameter Bit Flags ...............................<a href="#page-31">31</a>
<a href="#section-6.3">6.3</a>. Objective Functions .......................................<a href="#page-31">31</a>
<a href="#section-6.4">6.4</a>. METRIC Object-Type Values .................................<a href="#page-32">32</a>
<a href="#section-6.5">6.5</a>. PCEP Objects ..............................................<a href="#page-32">32</a>
<a href="#section-6.6">6.6</a>. PCEP-ERROR Objects and Types ..............................<a href="#page-34">34</a>
<a href="#section-6.7">6.7</a>. PCEP NO-PATH Indicator ....................................<a href="#page-35">35</a>
<a href="#section-6.8">6.8</a>. SVEC Object Flag ..........................................<a href="#page-35">35</a>
<a href="#section-6.9">6.9</a>. OSPF PCE Capability Flag ..................................<a href="#page-35">35</a>
<a href="#section-7">7</a>. References .....................................................<a href="#page-36">36</a>
<a href="#section-7.1">7.1</a>. Normative References ......................................<a href="#page-36">36</a>
<a href="#section-7.2">7.2</a>. Informative References ....................................<a href="#page-37">37</a>
<a href="#appendix-A">Appendix A</a>. Summary of Changes from <a href="./rfc6006">RFC 6006</a> ......................<a href="#page-39">39</a>
<a href="#appendix-A.1">Appendix A.1</a>. RBNF Changes from <a href="./rfc6006">RFC 6006</a> ..........................<a href="#page-39">39</a>
Acknowledgements ..................................................<a href="#page-41">41</a>
Contributors ......................................................<a href="#page-42">42</a>
Authors' Addresses ................................................<a href="#page-43">43</a>
<span class="grey">Zhao, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The Path Computation Element (PCE) as defined in [<a href="./rfc4655" title=""A Path Computation Element (PCE)-Based Architecture"">RFC4655</a>] is an
entity that is capable of computing a network path or route based on
a network graph and applying computational constraints. A Path
Computation Client (PCC) may make requests to a PCE for paths to be
computed.
[<a id="ref-RFC4875">RFC4875</a>] describes how to set up point-to-multipoint (P2MP) Traffic
Engineering Label Switched Paths (TE LSPs) for use in Multiprotocol
Label Switching (MPLS) and Generalized MPLS (GMPLS) networks.
The PCE has been identified as a suitable application for the
computation of paths for P2MP TE LSPs [<a href="./rfc5671" title=""Applicability of the Path Computation Element (PCE) to Point-to-Multipoint (P2MP) MPLS and GMPLS Traffic Engineering (TE)"">RFC5671</a>].
The PCE Communication Protocol (PCEP) is designed as a communication
protocol between PCCs and PCEs for point-to-point (P2P) path
computations and is defined in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>]. However, that
specification does not provide a mechanism to request path
computation of P2MP TE LSPs.
A P2MP LSP is comprised of multiple source-to-leaf (S2L) sub-LSPs.
These S2L sub-LSPs are set up between ingress and egress Label
Switching Routers (LSRs) and are appropriately overlaid to construct
a P2MP TE LSP. During path computation, the P2MP TE LSP may be
determined as a set of S2L sub-LSPs that are computed separately and
combined to give the path of the P2MP LSP, or the entire P2MP TE LSP
may be determined as a P2MP tree in a single computation.
This document relies on the mechanisms of PCEP to request path
computation for P2MP TE LSPs. One Path Computation Request message
from a PCC may request the computation of the whole P2MP TE LSP, or
the request may be limited to a subset of the S2L sub-LSPs. In the
extreme case, the PCC may request the S2L sub-LSPs to be computed
individually; the PCC is responsible for deciding whether to signal
individual S2L sub-LSPs or combine the computation results to signal
the entire P2MP TE LSP. Hence, the PCC may use one Path Computation
Request message or may split the request across multiple path
computation messages.
This document obsoletes [<a href="./rfc6006" title=""Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths"">RFC6006</a>] and incorporates the following
errata:
o Erratum IDs 3819, 3830, 3836, 4867, and 4868 for [<a href="./rfc6006" title=""Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths"">RFC6006</a>]
o Erratum ID 4956 for [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>]
All changes from [<a href="./rfc6006" title=""Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths"">RFC6006</a>] are listed in <a href="#appendix-A">Appendix A</a>.
<span class="grey">Zhao, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Terminology</span>
Terminology used in this document:
TE LSP: Traffic Engineering Label Switched Path.
LSR: Label Switching Router.
OF: Objective Function. A set of one or more optimization criteria
used for the computation of a single path (e.g., path cost
minimization) or for the synchronized computation of a set of
paths (e.g., aggregate bandwidth consumption minimization).
P2MP: Point-to-Multipoint.
P2P: Point-to-Point.
This document also uses the terminology defined in [<a href="./rfc4655" title=""A Path Computation Element (PCE)-Based Architecture"">RFC4655</a>],
[<a href="./rfc4875" title=""Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs)"">RFC4875</a>], and [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>].
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. PCC-PCE Communication Requirements</span>
This section summarizes the PCC-PCE communication requirements as met
by the protocol extension specified in this document for P2MP MPLS-TE
LSPs. The numbering system in the list below corresponds to the
requirement numbers (e.g., R1, R2) used in [<a href="./rfc5862" title=""Path Computation Clients (PCC) - Path Computation Element (PCE) Requirements for Point-to-Multipoint MPLS-TE"">RFC5862</a>].
1. The PCC MUST be able to specify that the request is a P2MP path
computation request.
2. The PCC MUST be able to specify that objective functions are to
be applied to the P2MP path computation request.
3. The PCE MUST have the capability to reject a P2MP path
computation request and indicate non-support of P2MP path
computation.
4. The PCE MUST provide an indication of non-support of P2MP path
computation by back-level PCE implementations.
<span class="grey">Zhao, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
5. A P2MP path computation request MUST be able to list multiple
destinations.
6. A P2MP path computation response MUST be able to carry the path
of a P2MP LSP.
7. By default, the path returned by the PCE SHOULD use the
compressed format.
8. It MUST be possible for a single P2MP path computation request or
response to be conveyed by a sequence of messages.
9. It MUST NOT be possible for a single P2MP path computation
request to specify a set of different constraints, traffic
parameters, or quality-of-service requirements for different
destinations of a P2MP LSP.
10. P2MP path modification and P2MP path diversity MUST be supported.
11. It MUST be possible to reoptimize existing P2MP TE LSPs.
12. It MUST be possible to add and remove P2MP destinations from
existing paths.
13. It MUST be possible to specify a list of applicable branch nodes
to use when computing the P2MP path.
14. It MUST be possible for a PCC to discover P2MP path computation
capability.
15. The PCC MUST be able to request diverse paths when requesting a
P2MP path.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Protocol Procedures and Extensions</span>
The following section describes the protocol extensions required to
satisfy the requirements specified in <a href="#section-2">Section 2</a> ("PCC-PCE
Communication Requirements") of this document.
<span class="grey">Zhao, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. P2MP Capability Advertisement</span>
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. IGP Extensions for P2MP Capability Advertisement</span>
[<a id="ref-RFC5088">RFC5088</a>] defines a PCE Discovery (PCED) TLV carried in an OSPF
Router Information Link State Advertisement (LSA) as defined in
[<a href="./rfc7770" title=""Extensions to OSPF for Advertising Optional Router Capabilities"">RFC7770</a>] to facilitate PCE discovery using OSPF. [<a href="./rfc5088" title=""OSPF Protocol Extensions for Path Computation Element (PCE) Discovery"">RFC5088</a>]
specifies that no new sub-TLVs may be added to the PCED TLV. This
document defines a flag in the OSPF PCE Capability Flags to indicate
the capability of P2MP computation.
Similarly, [<a href="./rfc5089" title=""IS-IS Protocol Extensions for Path Computation Element (PCE) Discovery"">RFC5089</a>] defines the PCED sub-TLV for use in PCE
discovery using IS-IS. This document will use the same flag for the
OSPF PCE Capability Flags sub-TLV to allow IS-IS to indicate the
capability of P2MP computation.
The IANA assignment for a shared OSPF and IS-IS P2MP Capability Flag
is documented in <a href="#section-6.9">Section 6.9</a> ("OSPF PCE Capability Flag") of this
document.
PCEs wishing to advertise that they support P2MP path computation
would set the bit (10) accordingly. PCCs that do not understand this
bit will ignore it (per [<a href="./rfc5088" title=""OSPF Protocol Extensions for Path Computation Element (PCE) Discovery"">RFC5088</a>] and [<a href="./rfc5089" title=""IS-IS Protocol Extensions for Path Computation Element (PCE) Discovery"">RFC5089</a>]). PCEs that do not
support P2MP will leave the bit clear (per the default behavior
defined in [<a href="./rfc5088" title=""OSPF Protocol Extensions for Path Computation Element (PCE) Discovery"">RFC5088</a>] and [<a href="./rfc5089" title=""IS-IS Protocol Extensions for Path Computation Element (PCE) Discovery"">RFC5089</a>]).
PCEs that set the bit to indicate support of P2MP path computation
MUST follow the procedures in <a href="#section-3.3.2">Section 3.3.2</a> ("The P2MP END-POINTS
Object") to further qualify the level of support.
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Open Message Extension</span>
Based on the Capabilities Exchange requirement described in
[<a href="./rfc5862" title=""Path Computation Clients (PCC) - Path Computation Element (PCE) Requirements for Point-to-Multipoint MPLS-TE"">RFC5862</a>], if a PCE does not advertise its P2MP capability during
discovery, PCEP should be used to allow a PCC to discover, during the
Open Message Exchange, which PCEs are capable of supporting P2MP path
computation.
To satisfy this requirement, we extend the PCEP OPEN object by
defining an optional TLV to indicate the PCE's capability to perform
P2MP path computations.
IANA has allocated value 6 from the "PCEP TLV Type Indicators"
subregistry, as documented in <a href="#section-6.1">Section 6.1</a> ("PCEP TLV Type
Indicators"). The description is "P2MP capable", and the length
value is 2 bytes. The value field is set to default value 0.
<span class="grey">Zhao, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
The inclusion of this TLV in an OPEN object indicates that the sender
can perform P2MP path computations.
The capability TLV is meaningful only for a PCE, so it will typically
appear only in one of the two Open messages during PCE session
establishment. However, in the case of PCE cooperation (e.g.,
inter-domain), when a PCE behaving as a PCC initiates a PCE session
it SHOULD also indicate its path computation capabilities.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Efficient Presentation of P2MP LSPs</span>
When specifying additional leaves or when optimizing existing P2MP TE
LSPs as specified in [<a href="./rfc5862" title=""Path Computation Clients (PCC) - Path Computation Element (PCE) Requirements for Point-to-Multipoint MPLS-TE"">RFC5862</a>], it may be necessary to pass existing
P2MP LSP route information between the PCC and PCE in the request and
reply messages. In each of these scenarios, we need path objects for
efficiently passing the existing P2MP LSP between the PCE and PCC.
We specify the use of the Resource Reservation Protocol Traffic
Engineering (RSVP-TE) extensions Explicit Route Object (ERO) to
encode the explicit route of a TE LSP through the network. PCEP ERO
sub-object types correspond to RSVP-TE ERO sub-object types. The
format and content of the ERO are defined in [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>] and [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>].
The Secondary Explicit Route Object (SERO) is used to specify the
explicit route of an S2L sub-LSP. The path of each subsequent S2L
sub-LSP is encoded in a P2MP_SECONDARY_EXPLICIT_ROUTE object SERO.
The format of the SERO is the same as the format of an ERO as defined
in [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>] and [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>].
The Secondary Record Route Object (SRRO) is used to record the
explicit route of the S2L sub-LSP. The class of the P2MP SRRO is the
same as the class of the SRRO as defined in [<a href="./rfc4873" title=""GMPLS Segment Recovery"">RFC4873</a>].
The SERO and SRRO are used to report the route of an existing TE LSP
for which a reoptimization is desired. The format and content of the
SERO and SRRO are defined in [<a href="./rfc4875" title=""Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs)"">RFC4875</a>].
<span class="grey">Zhao, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
PCEP Object-Class and Object-Type values for the SERO and SRRO have
been assigned:
Object-Class Value 29
Name SERO
Object-Type 0: Reserved
1: SERO
2-15: Unassigned
Reference <a href="./rfc8306">RFC 8306</a>
Object-Class Value 30
Name SRRO
Object-Type 0: Reserved
1: SRRO
2-15: Unassigned
Reference <a href="./rfc8306">RFC 8306</a>
The IANA assignments are documented in <a href="#section-6.5">Section 6.5</a> ("PCEP Objects").
Since the explicit path is available for immediate signaling by the
MPLS or GMPLS control plane, the meanings of all of the sub-objects
and fields in this object are identical to those defined for the ERO.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. P2MP Path Computation Request/Reply Message Extensions</span>
This document extends the existing P2P RP (Request Parameters) object
so that a PCC can signal a P2MP path computation request to the PCE
receiving the PCEP request. The END-POINTS object is also extended
to improve the efficiency of the message exchange between the PCC and
PCE in the case of P2MP path computation.
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. The Extension of the RP Object</span>
The PCE path computation request and reply messages will need the
following additional parameters to indicate to the receiving PCE
(1) that the request and reply messages have been fragmented across
multiple messages, (2) that they have been requested for a P2MP path,
and (3) whether the route is represented in the compressed or
uncompressed format.
<span class="grey">Zhao, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
This document adds the following flags to the RP object:
The F-bit is added to the flag bits of the RP object to indicate to
the receiver that the request is part of a fragmented request or
is not a fragmented request.
o F (RP fragmentation bit - 1 bit):
0: This indicates that the RP is not fragmented or it is the last
piece of the fragmented RP.
1: This indicates that the RP is fragmented and this is not the
last piece of the fragmented RP. The receiver needs to wait
for additional fragments until it receives an RP with the same
RP-ID and with the F-bit set to 0.
The N-bit is added in the flag bits field of the RP object to signal
the receiver of the message that the request/reply is for P2MP or
is not for P2MP.
o N (P2MP bit - 1 bit):
0: This indicates that this is not a Path Computation Request
(PCReq) or Path Computation Reply (PCRep) message for P2MP.
1: This indicates that this is a PCReq or PCRep message for P2MP.
The E-bit is added in the flag bits field of the RP object to signal
the receiver of the message that the route is in the compressed
format or is not in the compressed format. By default, the path
returned by the PCE SHOULD use the compressed format.
o E (ERO-compression bit - 1 bit):
0: This indicates that the route is not in the compressed format.
1: This indicates that the route is in the compressed format.
The IANA assignments are documented in <a href="#section-6.2">Section 6.2</a> ("Request
Parameter Bit Flags") of this document.
<span class="grey">Zhao, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h4"><a class="selflink" id="section-3.3.2" href="#section-3.3.2">3.3.2</a>. The P2MP END-POINTS Object</span>
The END-POINTS object is used in a PCReq message to specify the
source IP address and the destination IP address of the path for
which a path computation is requested. To represent the end points
for a P2MP path efficiently, we define two types of END-POINTS
objects for the P2MP path:
o Old leaves whose path can be modified/reoptimized.
o Old leaves whose path must be left unchanged.
With the P2MP END-POINTS object, the PCE Path Computation Request
message is expanded in a way that allows a single request message to
list multiple destinations.
In total, there are now four possible types of leaves in a
P2MP request:
o New leaves to add (leaf type = 1)
o Old leaves to remove (leaf type = 2)
o Old leaves whose path can be modified/reoptimized (leaf type = 3)
o Old leaves whose path must be left unchanged (leaf type = 4)
A given END-POINTS object gathers the leaves of a given type. The
type of leaf in a given END-POINTS object is identified by the
END-POINTS object leaf type field.
Using the P2MP END-POINTS object, the END-POINTS portion of a request
message for the multiple destinations can be reduced by up to 50% for
a P2MP path where a single source address has a very large number of
destinations.
Note that a P2MP path computation request can mix the different types
of leaves by including several END-POINTS objects per RP object as
shown in the PCReq Routing Backus-Naur Form (RBNF) [<a href="./rfc5511" title=""Routing Backus-Naur Form (RBNF): A Syntax Used to Form Encoding Rules in Various Routing Protocol Specifications"">RFC5511</a>] format
in <a href="#section-3.4">Section 3.4</a> ("Request Message Format").
<span class="grey">Zhao, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
The format of the P2MP END-POINTS object body for IPv4
(Object-Type 3) is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Leaf type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source IPv4 address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination IPv4 address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ... ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination IPv4 address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: The P2MP END-POINTS Object Body Format for IPv4
The format of the END-POINTS object body for IPv6 (Object-Type 4) is
as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Leaf type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Source IPv6 address (16 bytes) |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Destination IPv6 address (16 bytes) |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ... ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Destination IPv6 address (16 bytes) |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: The P2MP END-POINTS Object Body Format for IPv6
<span class="grey">Zhao, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
The END-POINTS object body has a variable length. These are
o multiples of 4 bytes for IPv4
o multiples of 16 bytes, plus 4 bytes, for IPv6
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Request Message Format</span>
As per [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>], a Path Computation Request message (also referred
to as a PCReq message) is a PCEP message sent by a PCC to a PCE to
request a path computation. A PCReq message may carry more than one
path computation request.
As per [<a href="./rfc5541" title=""Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"">RFC5541</a>], the OF object MAY be carried within a PCReq
message. If an objective function is to be applied to a set of
synchronized path computation requests, the OF object MUST be carried
just after the corresponding SVEC (Synchronization Vector) object and
MUST NOT be repeated for each elementary request.
The PCReq message is encoded as follows using RBNF as defined in
[<a href="./rfc5511" title=""Routing Backus-Naur Form (RBNF): A Syntax Used to Form Encoding Rules in Various Routing Protocol Specifications"">RFC5511</a>].
<span class="grey">Zhao, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
Below is the message format for the request message:
<PCReq Message> ::= <Common Header>
[<svec-list>]
<request-list>
where:
<svec-list> ::= <SVEC>
[<OF>]
[<metric-list>]
[<svec-list>]
<request-list> ::= <request>[<request-list>]
<request> ::= <RP>
<end-point-rro-pair-list>
[<OF>]
[<LSPA>]
[<BANDWIDTH>]
[<metric-list>]
[<IRO>|<BNC>]
[<LOAD-BALANCING>]
where:
<end-point-rro-pair-list> ::=
<END-POINTS>[<RRO-List>[<BANDWIDTH>]]
[<end-point-rro-pair-list>]
<RRO-List> ::= (<RRO>|<SRRO>)[<RRO-List>]
<metric-list> ::= <METRIC>[<metric-list>]
Figure 3: The Message Format for the Request Message
Note that we preserve compatibility with the definition of <request>
provided in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>]. At least one instance of <END-POINTS> MUST be
present in this message.
We have documented the IANA assignment of additional END-POINTS
Object-Type values in <a href="#section-6.5">Section 6.5</a> ("PCEP Objects") of this document.
<span class="grey">Zhao, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Reply Message Format</span>
The PCEP Path Computation Reply message (also referred to as a
PCRep message) is a PCEP message sent by a PCE to a requesting PCC in
response to a previously received PCReq message. PCEP supports the
bundling of multiple replies to a set of path computation requests
within a single PCRep message.
The PCRep message is encoded as follows using RBNF as defined in
[<a href="./rfc5511" title=""Routing Backus-Naur Form (RBNF): A Syntax Used to Form Encoding Rules in Various Routing Protocol Specifications"">RFC5511</a>].
Below is the message format for the reply message:
<PCRep Message> ::= <Common Header>
<response-list>
where:
<response-list> ::= <response>[<response-list>]
<response> ::= <RP>
[<end-point-path-pair-list>]
[<NO-PATH>]
[<UNREACH-DESTINATION>]
[<attribute-list>]
<end-point-path-pair-list> ::=
[<END-POINTS>]<path>
[<end-point-path-pair-list>]
<path> ::= (<ERO>|<SERO>) [<path>]
where:
<attribute-list> ::= [<OF>]
[<LSPA>]
[<BANDWIDTH>]
[<metric-list>]
[<IRO>]
Figure 4: The Message Format for the Reply Message
The optional END-POINTS object in the reply message is used to
specify which paths are removed, changed, not changed, or added for
the request. The path is only needed for the end points that are
added or changed.
<span class="grey">Zhao, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
If the E-bit (ERO-Compress bit) was set to 1 in the request, then the
path will be formed by an ERO followed by a list of SEROs.
Note that we preserve compatibility with the definition of <response>
provided in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>] and with the optional
<end-point-path-pair-list> and <path>.
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. P2MP Objective Functions and Metric Types</span>
<span class="h4"><a class="selflink" id="section-3.6.1" href="#section-3.6.1">3.6.1</a>. Objective Functions</span>
Six objective functions have been defined in [<a href="./rfc5541" title=""Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"">RFC5541</a>] for P2P path
computation.
This document defines two additional objective functions -- namely,
SPT (Shortest-Path Tree) and MCT (Minimum-Cost Tree) -- that apply to
P2MP path computation. Hence, two objective function codes are
defined as follows:
Objective Function Code: 7
Name: Shortest-Path Tree (SPT)
Description: Minimize the maximum source-to-leaf cost with respect
to a specific metric or to the TE metric used as the default
metric when the metric is not specified (e.g., TE or IGP metric).
Objective Function Code: 8
Name: Minimum-Cost Tree (MCT)
Description: Minimize the total cost of the tree (i.e., the sum of
the costs of tree links) with respect to a specific metric or to
the TE metric used as the default metric when the metric is not
specified.
Processing these two objective functions is subject to the rules
defined in [<a href="./rfc5541" title=""Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"">RFC5541</a>].
<span class="grey">Zhao, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h4"><a class="selflink" id="section-3.6.2" href="#section-3.6.2">3.6.2</a>. METRIC Object-Type Values</span>
There are three types defined for the METRIC object in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>] --
namely, the IGP metric, the TE metric, and Hop Counts. This document
defines three additional types for the METRIC object: the P2MP IGP
metric, the P2MP TE metric, and the P2MP hop count metric. They
encode the sum of the metrics of all links of the tree. The
following values for these metric types have been assigned; see
<a href="#section-6.4">Section 6.4</a>.
o P2MP IGP metric: T=8
o P2MP TE metric: T=9
o P2MP hop count metric: T=10
<span class="h3"><a class="selflink" id="section-3.7" href="#section-3.7">3.7</a>. Non-Support of P2MP Path Computation</span>
o If a PCE receives a P2MP path computation request and it
understands the P2MP flag in the RP object, but the PCE is not
capable of P2MP computation, the PCE MUST send a PCErr message
with a PCEP-ERROR object and corresponding Error-value. The
request MUST then be cancelled at the PCC. The Error-Types and
Error-values have been assigned; see <a href="#section-6">Section 6</a> ("IANA
Considerations") of this document.
o If the PCE does not understand the P2MP flag in the RP object,
then the PCE would send a PCErr message with Error-Type=2
(Capability not supported) as per [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>].
<span class="h3"><a class="selflink" id="section-3.8" href="#section-3.8">3.8</a>. Non-Support by Back-Level PCE Implementations</span>
If a PCE receives a P2MP request and the PCE does not understand the
P2MP flag in the RP object, and therefore the PCEP P2MP extensions,
then the PCE SHOULD reject the request.
<span class="h3"><a class="selflink" id="section-3.9" href="#section-3.9">3.9</a>. P2MP TE Path Reoptimization Request</span>
A reoptimization request for a P2MP TE path is specified by the use
of the R-bit within the RP object as defined in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>] and is
similar to the reoptimization request for a P2P TE path. The only
difference is that the PCC MUST insert the list of Record Route
Objects (RROs) and SRROs after each instance of the END-POINTS object
in the PCReq message, as described in <a href="#section-3.4">Section 3.4</a> ("Request Message
Format") of this document.
<span class="grey">Zhao, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
An example of a reoptimization request and subsequent PCReq message
is described below:
Common Header
RP with P2MP flag/R-bit set
END-POINTS for leaf type 3
RRO list
OF (optional)
Figure 5: PCReq Message Example 1 for Optimization
In this example, we request reoptimization of the path to all leaves
without adding or pruning leaves. The reoptimization request would
use an END-POINTS object with leaf type 3. The RRO list would
represent the P2MP LSP before the optimization, and the modifiable
path leaves would be indicated in the END-POINTS object.
It is also possible to specify distinct leaves whose path cannot be
modified. An example of the PCReq message in this scenario would be:
Common Header
RP with P2MP flag/R-bit set
END-POINTS for leaf type 3
RRO list
END-POINTS for leaf type 4
RRO list
OF (optional)
Figure 6: PCReq Message Example 2 for Optimization
<span class="h3"><a class="selflink" id="section-3.10" href="#section-3.10">3.10</a>. Adding and Pruning Leaves to/from the P2MP Tree</span>
When adding new leaves to or removing old leaves from the existing
P2MP tree, by supplying a list of existing leaves, it is possible to
optimize the existing P2MP tree. This section explains the methods
for adding new leaves to or removing old leaves from the existing
P2MP tree.
To add new leaves, the PCC MUST build a P2MP request using END-POINTS
with leaf type 1.
To remove old leaves, the PCC MUST build a P2MP request using
END-POINTS with leaf type 2. If no type-2 END-POINTS exist, then the
PCE MUST send Error-Type 17, Error-value 1: the PCE cannot satisfy
the request due to no END-POINTS with leaf type 2.
<span class="grey">Zhao, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
When adding new leaves to or removing old leaves from the existing
P2MP tree, the PCC MUST also provide the list of old leaves, if any,
including END-POINTS with leaf type 3, leaf type 4, or both.
Specific PCEP-ERROR objects and types are used when certain
conditions are not satisfied (i.e., when there are no END-POINTS with
leaf type 3 or 4, or in the presence of END-POINTS with leaf type 1
or 2). A generic "Inconsistent END-POINTS" error will be used if a
PCC receives a request that has an inconsistent END-POINTS setting
(i.e., if a leaf specified as type 1 already exists). These IANA
assignments are documented in <a href="#section-6.6">Section 6.6</a> ("PCEP-ERROR Objects and
Types") of this document.
For old leaves, the PCC MUST provide the old path as a list of RROs
that immediately follows each END-POINTS object. This document
specifies Error-values when specific conditions are not satisfied.
The following examples demonstrate full and partial reoptimization of
existing P2MP LSPs:
Case 1: Adding leaves with full reoptimization of existing paths
Common Header
RP with P2MP flag/R-bit set
END-POINTS for leaf type 1
RRO list
END-POINTS for leaf type 3
RRO list
OF (optional)
Case 2: Adding leaves with partial reoptimization of existing paths
Common Header
RP with P2MP flag/R-bit set
END-POINTS for leaf type 1
END-POINTS for leaf type 3
RRO list
END-POINTS for leaf type 4
RRO list
OF (optional)
<span class="grey">Zhao, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
Case 3: Adding leaves without reoptimization of existing paths
Common Header
RP with P2MP flag/R-bit set
END-POINTS for leaf type 1
RRO list
END-POINTS for leaf type 4
RRO list
OF (optional)
Case 4: Pruning leaves with full reoptimization of existing paths
Common Header
RP with P2MP flag/R-bit set
END-POINTS for leaf type 2
RRO list
END-POINTS for leaf type 3
RRO list
OF (optional)
Case 5: Pruning leaves with partial reoptimization of existing paths
Common Header
RP with P2MP flag/R-bit set
END-POINTS for leaf type 2
RRO list
END-POINTS for leaf type 3
RRO list
END-POINTS for leaf type 4
RRO list
OF (optional)
Case 6: Pruning leaves without reoptimization of existing paths
Common Header
RP with P2MP flag/R-bit set
END-POINTS for leaf type 2
RRO list
END-POINTS for leaf type 4
RRO list
OF (optional)
<span class="grey">Zhao, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
Case 7: Adding and pruning leaves with full reoptimization of
existing paths
Common Header
RP with P2MP flag/R-bit set
END-POINTS for leaf type 1
END-POINTS for leaf type 2
RRO list
END-POINTS for leaf type 3
RRO list
OF (optional)
Case 8: Adding and pruning leaves with partial reoptimization of
existing paths
Common Header
RP with P2MP flag/R-bit set
END-POINTS for leaf type 1
END-POINTS for leaf type 2
RRO list
END-POINTS for leaf type 3
RRO list
END-POINTS for leaf type 4
RRO list
OF (optional)
Case 9: Adding and pruning leaves without reoptimization of existing
paths
Common Header
RP with P2MP flag/R-bit set
END-POINTS for leaf type 1
END-POINTS for leaf type 2
RRO list
END-POINTS for leaf type 4
RRO list
OF (optional)
<span class="grey">Zhao, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h3"><a class="selflink" id="section-3.11" href="#section-3.11">3.11</a>. Discovering Branch Nodes</span>
Before computing the P2MP path, a PCE may need to be provided means
to know which nodes in the network are capable of acting as branch
LSRs. A PCE can discover such capabilities by using the mechanisms
defined in [<a href="./rfc5073" title=""IGP Routing Protocol Extensions for Discovery of Traffic Engineering Node Capabilities"">RFC5073</a>].
<span class="h4"><a class="selflink" id="section-3.11.1" href="#section-3.11.1">3.11.1</a>. Branch Node Object</span>
The PCC can specify a list of nodes that can be used as branch nodes
or a list of nodes that cannot be used as branch nodes by using the
Branch Node Capability (BNC) object. The BNC object has the same
format as the Include Route Object (IRO) as defined in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>],
except that it only supports IPv4 and IPv6 prefix sub-objects. Two
Object-Type parameters are also defined:
o Branch node list: List of nodes that can be used as branch nodes.
o Non-branch node list: List of nodes that cannot be used as branch
nodes.
The object can only be carried in a PCReq message. A path
computation request may carry at most one Branch Node object.
The Object-Class and Object-Type values have been allocated by IANA.
The IANA assignments are documented in <a href="#section-6.5">Section 6.5</a> ("PCEP Objects").
<span class="h3"><a class="selflink" id="section-3.12" href="#section-3.12">3.12</a>. Synchronization of P2MP TE Path Computation Requests</span>
There are cases when multiple P2MP LSPs' computations need to be
synchronized. For example, one P2MP LSP is the designated backup of
another P2MP LSP. In this case, path diversity for these dependent
LSPs may need to be considered during the path computation.
The synchronization can be done by using the existing SVEC
functionality as defined in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>].
<span class="grey">Zhao, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
An example of synchronizing two P2MP LSPs, each having two leaves for
Path Computation Request messages, is illustrated below:
Common Header
SVEC for sync of LSP1 and LSP2
OF (optional)
RP for LSP1
END-POINTS1 for LSP1
RRO1 list
RP for LSP2
END-POINTS2 for LSP2
RRO2 list
Figure 7: PCReq Message Example for Synchronization
This specification also defines two flags for the SVEC Object Flag
Field for P2MP path-dependent computation requests. The first flag
allows the PCC to request that the PCE should compute a secondary
P2MP path tree with partial path diversity for specific leaves or a
specific S2L sub-path to the primary P2MP path tree. The second flag
allows the PCC to request that partial paths should be
link direction diverse.
The following flags are added to the SVEC object body in this
document:
o P (Partial Path Diverse bit - 1 bit):
When set, this would indicate a request for path diversity for a
specific leaf, a set of leaves, or all leaves.
o D (Link Direction Diverse bit - 1 bit):
When set, this would indicate a request that a partial path or
paths should be link direction diverse.
The IANA assignments are referenced in <a href="#section-6.8">Section 6.8</a> of this document.
<span class="h3"><a class="selflink" id="section-3.13" href="#section-3.13">3.13</a>. Request and Response Fragmentation</span>
The total PCEP message length, including the common header, is
16 bytes. In certain scenarios, the P2MP computation request may not
fit into a single request or response message. For example, if a
tree has many hundreds or thousands of leaves, then the request or
response may need to be fragmented into multiple messages.
<span class="grey">Zhao, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
The F-bit is outlined in <a href="#section-3.3.1">Section 3.3.1</a> ("The Extension of the RP
Object") of this document. The F-bit is used in the RP object to
signal that the initial request or response was too large to fit into
a single message and will be fragmented into multiple messages. In
order to identify the single request or response, each message will
use the same request ID.
<span class="h4"><a class="selflink" id="section-3.13.1" href="#section-3.13.1">3.13.1</a>. Request Fragmentation Procedure</span>
If the initial request is too large to fit into a single request
message, the PCC will split the request over multiple messages. Each
message sent to the PCE, except the last one, will have the F-bit set
in the RP object to signify that the request has been fragmented into
multiple messages. In order to identify that a series of request
messages represents a single request, each message will use the same
request ID.
The assumption is that request messages are reliably delivered and in
sequence, since PCEP relies on TCP.
<span class="h4"><a class="selflink" id="section-3.13.2" href="#section-3.13.2">3.13.2</a>. Response Fragmentation Procedure</span>
Once the PCE computes a path based on the initial request, a response
is sent back to the PCC. If the response is too large to fit into a
single response message, the PCE will split the response over
multiple messages. Each message sent by the PCE, except the last
one, will have the F-bit set in the RP object to signify that the
response has been fragmented into multiple messages. In order to
identify that a series of response messages represents a single
response, each message will use the same response ID.
Again, the assumption is that response messages are reliably
delivered and in sequence, since PCEP relies on TCP.
<span class="h4"><a class="selflink" id="section-3.13.3" href="#section-3.13.3">3.13.3</a>. Fragmentation Example</span>
The following example illustrates the PCC sending a request message
with Req-ID1 to the PCE, in order to add one leaf to an existing tree
with 1200 leaves. The assumption used for this example is that one
request message can hold up to 800 leaves. In this scenario, the
original single message needs to be fragmented and sent using two
smaller messages, which have Req-ID1 specified in the RP object, and
with the F-bit set on the first message and the F-bit cleared on the
second message.
<span class="grey">Zhao, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
Common Header
RP1 with Req-ID1 and P2MP=1 and F-bit=1
OF (optional)
END-POINTS1 for P2MP
RRO1 list
Common Header
RP2 with Req-ID1 and P2MP=1 and F-bit=0
OF (optional)
END-POINTS1 for P2MP
RRO1 list
Figure 8: PCReq Message Fragmentation Example
To handle a scenario where the last fragmented message piece is lost,
the receiver side of the fragmented message may start a timer once it
receives the first piece of the fragmented message. If the timer
expires and it still has not received the last piece of the
fragmented message, it should send an error message to the sender to
signal that it has received an incomplete message. The relevant
error message is documented in <a href="#section-3.15">Section 3.15</a> ("P2MP PCEP-ERROR Objects
and Types").
<span class="h3"><a class="selflink" id="section-3.14" href="#section-3.14">3.14</a>. UNREACH-DESTINATION Object</span>
The PCE path computation request may fail because all or a subset of
the destinations are unreachable.
In such a case, the UNREACH-DESTINATION object allows the PCE to
optionally specify the list of unreachable destinations.
This object can be present in PCRep messages. There can be up to one
such object per RP.
<span class="grey">Zhao, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
The following UNREACH-DESTINATION objects (for IPv4 and IPv6) are
defined:
UNREACH-DESTINATION Object-Class is 28.
UNREACH-DESTINATION Object-Type for IPv4 is 1.
UNREACH-DESTINATION Object-Type for IPv6 is 2.
The format of the UNREACH-DESTINATION object body for IPv4
(Object-Type=1) is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination IPv4 address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ... ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination IPv4 address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: UNREACH-DESTINATION Object Body for IPv4
The format of the UNREACH-DESTINATION object body for IPv6
(Object-Type=2) is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Destination IPv6 address (16 bytes) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ... ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Destination IPv6 address (16 bytes) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: UNREACH-DESTINATION Object Body for IPv6
<span class="grey">Zhao, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h3"><a class="selflink" id="section-3.15" href="#section-3.15">3.15</a>. P2MP PCEP-ERROR Objects and Types</span>
To indicate an error associated with a policy violation, the
Error-value "P2MP Path computation is not allowed" has been added to
the existing error code for Error-Type 5 ("Policy violation") as
defined in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>] (see also <a href="#section-6.6">Section 6.6</a> of this document):
Error-Type=5; Error-value=7: if a PCE receives a P2MP path
computation request that is not compliant with administrative
privileges (i.e., "The PCE policy does not support P2MP path
computation"), the PCE MUST send a PCErr message with a PCEP-ERROR
object (Error-Type=5) and an Error-value of 7. The corresponding
P2MP path computation request MUST also be cancelled.
To indicate capability errors associated with the P2MP path
computation request, Error-Type (16) and subsequent Error-values are
defined as follows for inclusion in the PCEP-ERROR object:
Error-Type=16; Error-value=1: if a PCE receives a P2MP path
computation request and the PCE is not capable of satisfying the
request due to insufficient memory, the PCE MUST send a PCErr
message with a PCEP-ERROR object (Error-Type=16) and an
Error-value of 1. The corresponding P2MP path computation request
MUST also be cancelled.
Error-Type=16; Error-value=2: if a PCE receives a P2MP path
computation request and the PCE is not capable of P2MP
computation, the PCE MUST send a PCErr message with a PCEP-ERROR
object (Error-Type=16) and an Error-value of 2. The corresponding
P2MP path computation request MUST also be cancelled.
To indicate P2MP message fragmentation errors associated with a P2MP
path computation request, Error-Type (18) and subsequent Error-values
are defined as follows for inclusion in the PCEP-ERROR object:
Error-Type=18; Error-value=1: if a PCE has not received the last
piece of the fragmented message, it should send an error message
to the sender to signal that it has received an incomplete message
(i.e., "Fragmented request failure"). The PCE MUST send a PCErr
message with a PCEP-ERROR object (Error-Type=18) and an
Error-value of 1.
<span class="grey">Zhao, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h3"><a class="selflink" id="section-3.16" href="#section-3.16">3.16</a>. PCEP NO-PATH Indicator</span>
To communicate the reasons for not being able to find a P2MP path
computation, the NO-PATH object can be used in the PCRep message.
One bit is defined in the NO-PATH-VECTOR TLV carried in the NO-PATH
object:
bit 24: when set, the PCE indicates that there is a reachability
problem with all or a subset of the P2MP destinations.
Optionally, the PCE can specify the destination or list of
destinations that are not reachable using the UNREACH-DESTINATION
object defined in <a href="#section-3.14">Section 3.14</a>.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Manageability Considerations</span>
[<a id="ref-RFC5862">RFC5862</a>] describes various manageability requirements in support of
P2MP path computation when applying PCEP. This section describes how
manageability requirements mentioned in [<a href="./rfc5862" title=""Path Computation Clients (PCC) - Path Computation Element (PCE) Requirements for Point-to-Multipoint MPLS-TE"">RFC5862</a>] are supported in
the context of PCEP extensions specified in this document.
Note that [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>] describes various manageability considerations
for PCEP, and most of the manageability requirements mentioned in
[<a href="./rfc5862" title=""Path Computation Clients (PCC) - Path Computation Element (PCE) Requirements for Point-to-Multipoint MPLS-TE"">RFC5862</a>] are already covered there.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Control of Function and Policy</span>
In addition to PCE configuration parameters listed in [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>], the
following additional parameters might be required:
o The PCE may be configured to enable or disable P2MP path
computations.
o The PCE may be configured to enable or disable the advertisement
of its P2MP path computation capability. A PCE can advertise its
P2MP capability via the IGP discovery mechanism discussed in
<a href="#section-3.1.1">Section 3.1.1</a> ("IGP Extensions for P2MP Capability Advertisement")
or during the Open Message Exchange discussed in <a href="#section-3.1.2">Section 3.1.2</a>
("Open Message Extension").
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Information and Data Models</span>
A number of MIB objects have been defined in [<a href="./rfc7420" title=""Path Computation Element Communication Protocol (PCEP) Management Information Base (MIB) Module"">RFC7420</a>] for general
PCEP control and monitoring of P2P computations. [<a href="./rfc5862" title=""Path Computation Clients (PCC) - Path Computation Element (PCE) Requirements for Point-to-Multipoint MPLS-TE"">RFC5862</a>] specifies
that MIB objects will be required to support the control and
monitoring of the protocol extensions defined in this document. A
new document will be required to define MIB objects for PCEP control
and monitoring of P2MP computations.
<span class="grey">Zhao, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
The "ietf-pcep" PCEP YANG module is specified in [<a href="#ref-PCEP-YANG">PCEP-YANG</a>]. The
P2MP capability of a PCEP entity or a configured peer can be set
using this YANG module. Also, support for P2MP path computation can
be learned using this module. The statistics are maintained in the
"ietf-pcep-stats" YANG module as specified in [<a href="#ref-PCEP-YANG">PCEP-YANG</a>]. This YANG
module will be required to be augmented to also include the
P2MP-related statistics.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Liveness Detection and Monitoring</span>
There are no additional considerations beyond those expressed in
[<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>], since [<a href="./rfc5862" title=""Path Computation Clients (PCC) - Path Computation Element (PCE) Requirements for Point-to-Multipoint MPLS-TE"">RFC5862</a>] does not address any additional
requirements.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Verifying Correct Operation</span>
There are no additional requirements beyond those expressed in
[<a href="./rfc4657" title=""Path Computation Element (PCE) Communication Protocol Generic Requirements"">RFC4657</a>] for verifying the correct operation of the PCEP sessions.
It is expected that future MIB objects will facilitate verification
of correct operation and reporting of P2MP PCEP requests, responses,
and errors.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Requirements for Other Protocols and Functional Components</span>
The method for the PCE to obtain information about a PCE capable of
P2MP path computations via OSPF and IS-IS is discussed in
<a href="#section-3.1.1">Section 3.1.1</a> ("IGP Extensions for P2MP Capability Advertisement") of
this document.
The relevant IANA assignment is documented in <a href="#section-6.9">Section 6.9</a> ("OSPF PCE
Capability Flag") of this document.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Impact on Network Operation</span>
It is expected that the use of PCEP extensions specified in this
document will not significantly increase the level of operational
traffic. However, computing a P2MP tree may require more PCE state
compared to a P2P computation. In the event of a major network
failure and multiple recovery P2MP tree computation requests being
sent to the PCE, the load on the PCE may also be significantly
increased.
<span class="grey">Zhao, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
As described in [<a href="./rfc5862" title=""Path Computation Clients (PCC) - Path Computation Element (PCE) Requirements for Point-to-Multipoint MPLS-TE"">RFC5862</a>], P2MP path computation requests are more
CPU-intensive and also utilize more link bandwidth. In the event of
an unauthorized P2MP path computation request or a denial-of-service
attack, the subsequent PCEP requests and processing may be disruptive
to the network. Consequently, it is important that implementations
conform to the relevant security requirements that specifically help
to minimize or negate unauthorized P2MP path computation requests and
denial-of-service attacks. These mechanisms include the following:
o Securing the PCEP session requests and responses is RECOMMENDED
using TCP security techniques such as the TCP Authentication
Option (TCP-AO) [<a href="./rfc5925" title=""The TCP Authentication Option"">RFC5925</a>] or using Transport Layer Security (TLS)
[<a href="./rfc8253" title=""PCEPS: Usage of TLS to Provide a Secure Transport for the Path Computation Element Communication Protocol (PCEP)"">RFC8253</a>], as per the recommendations and best current practices
in [<a href="./rfc7525" title=""Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"">RFC7525</a>].
o Authenticating the PCEP requests and responses to ensure that the
message is intact and sent from an authorized node using the
TCP-AO or TLS is RECOMMENDED.
o Policy control could be provided by explicitly defining which PCCs
are allowed to send P2MP path computation requests to the PCE via
IP access lists.
PCEP operates over TCP, so it is also important to secure the PCE and
PCC against TCP denial-of-service attacks.
As stated in [<a href="./rfc6952" title=""Analysis of BGP, LDP, PCEP, and MSDP Issues According to the Keying and Authentication for Routing Protocols (KARP) Design Guide"">RFC6952</a>], PCEP implementations SHOULD support the
TCP-AO [<a href="./rfc5925" title=""The TCP Authentication Option"">RFC5925</a>] and not use TCP MD5 because of TCP MD5's known
vulnerabilities and weakness.
<span class="grey">Zhao, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. IANA Considerations</span>
IANA maintains a registry of PCEP parameters. A number of IANA
considerations have been highlighted in previous sections of this
document. IANA made the allocations as per [<a href="./rfc6006" title=""Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths"">RFC6006</a>].
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. PCEP TLV Type Indicators</span>
As described in <a href="#section-3.1.2">Section 3.1.2</a>, the P2MP capability TLV allows the PCE
to advertise its P2MP path computation capability.
IANA had previously made an allocation from the "PCEP TLV Type
Indicators" subregistry, where <a href="./rfc6006">RFC 6006</a> was the reference. IANA has
updated the reference as follows to point to this document.
Value Description Reference
6 P2MP capable <a href="./rfc8306">RFC 8306</a>
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Request Parameter Bit Flags</span>
As described in <a href="#section-3.3.1">Section 3.3.1</a>, three RP Object Flags have been
defined.
IANA had previously made allocations from the PCEP "RP Object Flag
Field" subregistry, where <a href="./rfc6006">RFC 6006</a> was the reference. IANA has
updated the reference as follows to point to this document.
Bit Description Reference
18 Fragmentation (F-bit) <a href="./rfc8306">RFC 8306</a>
19 P2MP (N-bit) <a href="./rfc8306">RFC 8306</a>
20 ERO-compression (E-bit) <a href="./rfc8306">RFC 8306</a>
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Objective Functions</span>
As described in <a href="#section-3.6.1">Section 3.6.1</a>, this document defines two objective
functions.
IANA had previously made allocations from the PCEP "Objective
Function" subregistry, where <a href="./rfc6006">RFC 6006</a> was the reference. IANA has
updated the reference as follows to point to this document.
Code Point Name Reference
7 SPT <a href="./rfc8306">RFC 8306</a>
8 MCT <a href="./rfc8306">RFC 8306</a>
<span class="grey">Zhao, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. METRIC Object-Type Values</span>
As described in <a href="#section-3.6.2">Section 3.6.2</a>, three METRIC object T fields have been
defined.
IANA had previously made allocations from the PCEP "METRIC Object
T Field" subregistry, where <a href="./rfc6006">RFC 6006</a> was the reference. IANA has
updated the reference as follows to point to this document.
Value Description Reference
8 P2MP IGP metric <a href="./rfc8306">RFC 8306</a>
9 P2MP TE metric <a href="./rfc8306">RFC 8306</a>
10 P2MP hop count metric <a href="./rfc8306">RFC 8306</a>
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. PCEP Objects</span>
As discussed in <a href="#section-3.3.2">Section 3.3.2</a>, two END-POINTS Object-Type values are
defined.
IANA had previously made the Object-Type allocations from the "PCEP
Objects" subregistry, where <a href="./rfc6006">RFC 6006</a> was the reference. IANA has
updated the reference as follows to point to this document.
Object-Class Value 4
Name END-POINTS
Object-Type 3: IPv4
4: IPv6
5-15: Unassigned
Reference <a href="./rfc8306">RFC 8306</a>
As described in Sections <a href="#section-3.2">3.2</a>, <a href="#section-3.11.1">3.11.1</a>, and <a href="#section-3.14">3.14</a>, four PCEP
Object-Class values and six PCEP Object-Type values have been
defined.
IANA had previously made allocations from the "PCEP Objects"
subregistry, where <a href="./rfc6006">RFC 6006</a> was the reference. IANA has updated the
reference to point to this document.
<span class="grey">Zhao, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
Also, for the following four PCEP objects, codepoint 0 for the
Object-Type field is marked "Reserved", as per Erratum ID 4956 for
<a href="./rfc5440">RFC 5440</a>. IANA has updated the reference to point to this document.
Object-Class Value 28
Name UNREACH-DESTINATION
Object-Type 0: Reserved
1: IPv4
2: IPv6
3-15: Unassigned
Reference <a href="./rfc8306">RFC 8306</a>
Object-Class Value 29
Name SERO
Object-Type 0: Reserved
1: SERO
2-15: Unassigned
Reference <a href="./rfc8306">RFC 8306</a>
Object-Class Value 30
Name SRRO
Object-Type 0: Reserved
1: SRRO
2-15: Unassigned
Reference <a href="./rfc8306">RFC 8306</a>
Object-Class Value 31
Name BNC
Object-Type 0: Reserved
1: Branch node list
2: Non-branch node list
3-15: Unassigned
Reference <a href="./rfc8306">RFC 8306</a>
<span class="grey">Zhao, et al. Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h3"><a class="selflink" id="section-6.6" href="#section-6.6">6.6</a>. PCEP-ERROR Objects and Types</span>
As described in <a href="#section-3.15">Section 3.15</a>, a number of PCEP-ERROR Object
Error-Types and Error-values have been defined.
IANA had previously made allocations from the PCEP "PCEP-ERROR Object
Error Types and Values" subregistry, where <a href="./rfc6006">RFC 6006</a> was the
reference. IANA has updated the reference as follows to point to
this document.
Error
Type Meaning Reference
5 Policy violation
Error-value=7: <a href="./rfc8306">RFC 8306</a>
P2MP Path computation is not allowed
16 P2MP Capability Error
Error-value=0: Unassigned <a href="./rfc8306">RFC 8306</a>
Error-value=1: <a href="./rfc8306">RFC 8306</a>
The PCE cannot satisfy the request
due to insufficient memory
Error-value=2: <a href="./rfc8306">RFC 8306</a>
The PCE is not capable of P2MP computation
17 P2MP END-POINTS Error
Error-value=0: Unassigned <a href="./rfc8306">RFC 8306</a>
Error-value=1: <a href="./rfc8306">RFC 8306</a>
The PCE cannot satisfy the request
due to no END-POINTS with leaf type 2
Error-value=2: <a href="./rfc8306">RFC 8306</a>
The PCE cannot satisfy the request
due to no END-POINTS with leaf type 3
Error-value=3: <a href="./rfc8306">RFC 8306</a>
The PCE cannot satisfy the request
due to no END-POINTS with leaf type 4
Error-value=4: <a href="./rfc8306">RFC 8306</a>
The PCE cannot satisfy the request
due to inconsistent END-POINTS
18 P2MP Fragmentation Error
Error-value=0: Unassigned <a href="./rfc8306">RFC 8306</a>
Error-value=1: <a href="./rfc8306">RFC 8306</a>
Fragmented request failure
<span class="grey">Zhao, et al. Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h3"><a class="selflink" id="section-6.7" href="#section-6.7">6.7</a>. PCEP NO-PATH Indicator</span>
As discussed in <a href="#section-3.16">Section 3.16</a>, the NO-PATH-VECTOR TLV Flag Field has
been defined.
IANA had previously made an allocation from the PCEP "NO-PATH-VECTOR
TLV Flag Field" subregistry, where <a href="./rfc6006">RFC 6006</a> was the reference. IANA
has updated the reference as follows to point to this document.
Bit Description Reference
24 P2MP Reachability Problem <a href="./rfc8306">RFC 8306</a>
<span class="h3"><a class="selflink" id="section-6.8" href="#section-6.8">6.8</a>. SVEC Object Flag</span>
As discussed in <a href="#section-3.12">Section 3.12</a>, two SVEC Object Flags are defined.
IANA had previously made allocations from the PCEP "SVEC Object Flag
Field" subregistry, where <a href="./rfc6006">RFC 6006</a> was the reference. IANA has
updated the reference as follows to point to this document.
Bit Description Reference
19 Partial Path Diverse <a href="./rfc8306">RFC 8306</a>
20 Link Direction Diverse <a href="./rfc8306">RFC 8306</a>
<span class="h3"><a class="selflink" id="section-6.9" href="#section-6.9">6.9</a>. OSPF PCE Capability Flag</span>
As discussed in <a href="#section-3.1.1">Section 3.1.1</a>, the OSPF Capability Flag is defined to
indicate P2MP path computation capability.
IANA had previously made an assignment from the OSPF Parameters "Path
Computation Element (PCE) Capability Flags" registry, where <a href="./rfc6006">RFC 6006</a>
was the reference. IANA has updated the reference as follows to
point to this document.
Bit Description Reference
10 P2MP path computation <a href="./rfc8306">RFC 8306</a>
<span class="grey">Zhao, et al. Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. References</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC3209">RFC3209</a>] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", <a href="./rfc3209">RFC 3209</a>, DOI 10.17487/RFC3209, December 2001,
<<a href="https://www.rfc-editor.org/info/rfc3209">https://www.rfc-editor.org/info/rfc3209</a>>.
[<a id="ref-RFC3473">RFC3473</a>] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Resource ReserVation
Protocol-Traffic Engineering (RSVP-TE) Extensions",
<a href="./rfc3473">RFC 3473</a>, DOI 10.17487/RFC3473, January 2003,
<<a href="https://www.rfc-editor.org/info/rfc3473">https://www.rfc-editor.org/info/rfc3473</a>>.
[<a id="ref-RFC4873">RFC4873</a>] Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel,
"GMPLS Segment Recovery", <a href="./rfc4873">RFC 4873</a>, DOI 10.17487/RFC4873,
May 2007, <<a href="https://www.rfc-editor.org/info/rfc4873">https://www.rfc-editor.org/info/rfc4873</a>>.
[<a id="ref-RFC4875">RFC4875</a>] Aggarwal, R., Ed., Papadimitriou, D., Ed., and S.
Yasukawa, Ed., "Extensions to Resource Reservation
Protocol - Traffic Engineering (RSVP-TE) for
Point-to-Multipoint TE Label Switched Paths (LSPs)",
<a href="./rfc4875">RFC 4875</a>, DOI 10.17487/RFC4875, May 2007,
<<a href="https://www.rfc-editor.org/info/rfc4875">https://www.rfc-editor.org/info/rfc4875</a>>.
[<a id="ref-RFC5073">RFC5073</a>] Vasseur, J., Ed., and J. Le Roux, Ed., "IGP Routing
Protocol Extensions for Discovery of Traffic Engineering
Node Capabilities", <a href="./rfc5073">RFC 5073</a>, DOI 10.17487/RFC5073,
December 2007, <<a href="https://www.rfc-editor.org/info/rfc5073">https://www.rfc-editor.org/info/rfc5073</a>>.
[<a id="ref-RFC5088">RFC5088</a>] Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R.
Zhang, "OSPF Protocol Extensions for Path Computation
Element (PCE) Discovery", <a href="./rfc5088">RFC 5088</a>, DOI 10.17487/RFC5088,
January 2008, <<a href="https://www.rfc-editor.org/info/rfc5088">https://www.rfc-editor.org/info/rfc5088</a>>.
[<a id="ref-RFC5089">RFC5089</a>] Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R.
Zhang, "IS-IS Protocol Extensions for Path Computation
Element (PCE) Discovery", <a href="./rfc5089">RFC 5089</a>, DOI 10.17487/RFC5089,
January 2008, <<a href="https://www.rfc-editor.org/info/rfc5089">https://www.rfc-editor.org/info/rfc5089</a>>.
<span class="grey">Zhao, et al. Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
[<a id="ref-RFC5440">RFC5440</a>] Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path Computation
Element (PCE) Communication Protocol (PCEP)", <a href="./rfc5440">RFC 5440</a>,
DOI 10.17487/RFC5440, March 2009,
<<a href="https://www.rfc-editor.org/info/rfc5440">https://www.rfc-editor.org/info/rfc5440</a>>.
[<a id="ref-RFC5511">RFC5511</a>] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
Used to Form Encoding Rules in Various Routing Protocol
Specifications", <a href="./rfc5511">RFC 5511</a>, DOI 10.17487/RFC5511,
April 2009, <<a href="https://www.rfc-editor.org/info/rfc5511">https://www.rfc-editor.org/info/rfc5511</a>>.
[<a id="ref-RFC5541">RFC5541</a>] Le Roux, JL., Vasseur, JP., and Y. Lee, "Encoding of
Objective Functions in the Path Computation Element
Communication Protocol (PCEP)", <a href="./rfc5541">RFC 5541</a>,
DOI 10.17487/RFC5541, June 2009,
<<a href="https://www.rfc-editor.org/info/rfc5541">https://www.rfc-editor.org/info/rfc5541</a>>.
[<a id="ref-RFC7770">RFC7770</a>] Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R., and
S. Shaffer, "Extensions to OSPF for Advertising Optional
Router Capabilities", <a href="./rfc7770">RFC 7770</a>, DOI 10.17487/RFC7770,
February 2016, <<a href="https://www.rfc-editor.org/info/rfc7770">https://www.rfc-editor.org/info/rfc7770</a>>.
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in
<a href="./rfc2119">RFC 2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>,
DOI 10.17487/RFC8174, May 2017,
<<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Informative References</span>
[<a id="ref-PCEP-YANG">PCEP-YANG</a>]
Dhody, D., Ed., Hardwick, J., Beeram, V., and J. Tantsura,
"A YANG Data Model for Path Computation Element
Communications Protocol (PCEP)", Work in Progress,
<a href="./draft-ietf-pce-pcep-yang-05">draft-ietf-pce-pcep-yang-05</a>, July 2017.
[<a id="ref-RFC4655">RFC4655</a>] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
Computation Element (PCE)-Based Architecture", <a href="./rfc4655">RFC 4655</a>,
DOI 10.17487/RFC4655, August 2006,
<<a href="https://www.rfc-editor.org/info/rfc4655">https://www.rfc-editor.org/info/rfc4655</a>>.
[<a id="ref-RFC4657">RFC4657</a>] Ash, J., Ed., and J. Le Roux, Ed., "Path Computation
Element (PCE) Communication Protocol Generic
Requirements", <a href="./rfc4657">RFC 4657</a>, DOI 10.17487/RFC4657,
September 2006, <<a href="https://www.rfc-editor.org/info/rfc4657">https://www.rfc-editor.org/info/rfc4657</a>>.
<span class="grey">Zhao, et al. Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
[<a id="ref-RFC5671">RFC5671</a>] Yasukawa, S. and A. Farrel, Ed., "Applicability of the
Path Computation Element (PCE) to Point-to-Multipoint
(P2MP) MPLS and GMPLS Traffic Engineering (TE)", <a href="./rfc5671">RFC 5671</a>,
DOI 10.17487/RFC5671, October 2009,
<<a href="https://www.rfc-editor.org/info/rfc5671">https://www.rfc-editor.org/info/rfc5671</a>>.
[<a id="ref-RFC5862">RFC5862</a>] Yasukawa, S. and A. Farrel, "Path Computation Clients
(PCC) - Path Computation Element (PCE) Requirements for
Point-to-Multipoint MPLS-TE", <a href="./rfc5862">RFC 5862</a>,
DOI 10.17487/RFC5862, June 2010,
<<a href="https://www.rfc-editor.org/info/rfc5862">https://www.rfc-editor.org/info/rfc5862</a>>.
[<a id="ref-RFC5925">RFC5925</a>] Touch, J., Mankin, A., and R. Bonica, "The TCP
Authentication Option", <a href="./rfc5925">RFC 5925</a>, DOI 10.17487/RFC5925,
June 2010, <<a href="https://www.rfc-editor.org/info/rfc5925">https://www.rfc-editor.org/info/rfc5925</a>>.
[<a id="ref-RFC6006">RFC6006</a>] Zhao, Q., Ed., King, D., Ed., Verhaeghe, F., Takeda, T.,
Ali, Z., and J. Meuric, "Extensions to the Path
Computation Element Communication Protocol (PCEP) for
Point-to-Multipoint Traffic Engineering Label Switched
Paths", <a href="./rfc6006">RFC 6006</a>, DOI 10.17487/RFC6006, September 2010,
<<a href="https://www.rfc-editor.org/info/rfc6006">https://www.rfc-editor.org/info/rfc6006</a>>.
[<a id="ref-RFC6952">RFC6952</a>] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
BGP, LDP, PCEP, and MSDP Issues According to the Keying
and Authentication for Routing Protocols (KARP) Design
Guide", <a href="./rfc6952">RFC 6952</a>, DOI 10.17487/RFC6952, May 2013,
<<a href="https://www.rfc-editor.org/info/rfc6952">https://www.rfc-editor.org/info/rfc6952</a>>.
[<a id="ref-RFC7420">RFC7420</a>] Koushik, A., Stephan, E., Zhao, Q., King, D., and J.
Hardwick, "Path Computation Element Communication Protocol
(PCEP) Management Information Base (MIB) Module",
<a href="./rfc7420">RFC 7420</a>, DOI 10.17487/RFC7420, December 2014,
<<a href="https://www.rfc-editor.org/info/rfc7420">https://www.rfc-editor.org/info/rfc7420</a>>.
[<a id="ref-RFC7525">RFC7525</a>] Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", <a href="https://www.rfc-editor.org/bcp/bcp195">BCP 195</a>, <a href="./rfc7525">RFC 7525</a>, DOI 10.17487/RFC7525,
May 2015, <<a href="https://www.rfc-editor.org/info/rfc7525">https://www.rfc-editor.org/info/rfc7525</a>>.
[<a id="ref-RFC8253">RFC8253</a>] Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
"PCEPS: Usage of TLS to Provide a Secure Transport for the
Path Computation Element Communication Protocol (PCEP)",
<a href="./rfc8253">RFC 8253</a>, DOI 10.17487/RFC8253, October 2017,
<<a href="https://www.rfc-editor.org/info/rfc8253">https://www.rfc-editor.org/info/rfc8253</a>>.
<span class="grey">Zhao, et al. Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Summary of Changes from <a href="./rfc6006">RFC 6006</a></span>
o Updated the text to use the term "PCC" instead of "user" while
describing the encoding rules in <a href="#section-3.10">Section 3.10</a>.
o Updated the example in Figure 7 to explicitly include the
RP object.
o Corrected the description of the F-bit in the RP object in
<a href="#section-3.13">Section 3.13</a>, as per Erratum ID 3836.
o Corrected the description of the fragmentation procedure for the
response in <a href="#section-3.13.2">Section 3.13.2</a>, as per Erratum ID 3819.
o Corrected the Error-Type for fragmentation in <a href="#section-3.15">Section 3.15</a>, as per
Erratum ID 3830.
o Updated the references for the OSPF Router Information Link State
Advertisement (LSA) [<a href="./rfc7770" title=""Extensions to OSPF for Advertising Optional Router Capabilities"">RFC7770</a>] and the PCEP MIB [<a href="./rfc7420" title=""Path Computation Element Communication Protocol (PCEP) Management Information Base (MIB) Module"">RFC7420</a>].
o Added current information and references for PCEP YANG [<a href="#ref-PCEP-YANG">PCEP-YANG</a>]
and PCEPS [<a href="./rfc8253" title=""PCEPS: Usage of TLS to Provide a Secure Transport for the Path Computation Element Communication Protocol (PCEP)"">RFC8253</a>].
o Updated the Security Considerations section to include the TCP-AO
and TLS.
o Updated the IANA Considerations section (<a href="#section-6.5">Section 6.5</a>) to mark
codepoint 0 as "Reserved" for the Object-Type defined in this
document, as per Erratum ID 4956 for [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>]. IANA references
have also been updated to point to this document.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">Appendix A.1</a>. RBNF Changes from <a href="./rfc6006">RFC 6006</a></span>
o Updates to the RBNF for the request message format, per
Erratum ID 4867:
* Updated the request message to allow for the bundling of
multiple path computation requests within a single PCReq
message.
* Added <svec-list> in PCReq messages. This object was missed in
[<a href="./rfc6006" title=""Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths"">RFC6006</a>].
* Added the BNC object in PCReq messages. This object is
required to support P2MP. The BNC object shares the same
format as the IRO, but it only supports IPv4 and IPv6 prefix
sub-objects.
<span class="grey">Zhao, et al. Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
* Updated the <RRO-List> format to also allow the SRRO. This
object was missed in [<a href="./rfc6006" title=""Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths"">RFC6006</a>].
* Removed the BANDWIDTH object followed by the RRO from
<RRO-List>. The BANDWIDTH object was included twice in
<a href="./rfc6006">RFC 6006</a> -- once as part of <end-point-path-pair-list> and also
as part of <RRO-List>. The latter has been removed, and the
RBNF is backward compatible with [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>].
* Updated the <end-point-rro-pair-list> to allow an optional
BANDWIDTH object only if <RRO-List> is included.
o Updates to the RBNF for the reply message format, per
Erratum ID 4868:
* Updated the reply message to allow for bundling of multiple
path computation replies within a single PCRep message.
* Added the UNREACH-DESTINATION object in PCRep messages. This
object was missed in [<a href="./rfc6006" title=""Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths"">RFC6006</a>].
<span class="grey">Zhao, et al. Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
Acknowledgements
The authors would like to thank Adrian Farrel, Young Lee, Dan Tappan,
Autumn Liu, Huaimo Chen, Eiji Oki, Nic Neate, Suresh Babu K, Gaurav
Agrawal, Vishwas Manral, Dan Romascanu, Tim Polk, Stewart Bryant,
David Harrington, and Sean Turner for their valuable comments and
input on this document.
Thanks to Deborah Brungard for handling related errata for <a href="./rfc6006">RFC 6006</a>.
The authors would like to thank Jonathan Hardwick and Adrian Farrel
for providing review comments with suggested text for this document.
Thanks to Jonathan Hardwick for being the document shepherd and for
providing comments and guidance.
Thanks to Ben Niven-Jenkins for RTGDIR reviews.
Thanks to Roni Even for GENART reviews.
Thanks to Fred Baker for the OPSDIR review.
Thanks to Deborah Brungard for being the responsible AD and guiding
the authors.
Thanks to Mirja Kuehlewind, Alvaro Retana, Ben Campbell, Adam Roach,
Benoit Claise, Suresh Krishnan, and Eric Rescorla for their IESG
review and comments.
<span class="grey">Zhao, et al. Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
Contributors
Fabien Verhaeghe
Thales Communication France
160 boulevard Valmy
92700 Colombes
France
Email: fabien.verhaeghe@gmail.com
Tomonori Takeda
NTT Corporation
3-9-11, Midori-Cho
Musashino-Shi, Tokyo 180-8585
Japan
Email: tomonori.takeda@ntt.com
Zafar Ali
Cisco Systems, Inc.
2000 Innovation Drive
Kanata, Ontario K2K 3E8
Canada
Email: zali@cisco.com
Julien Meuric
Orange
2, Avenue Pierre Marzin
22307 Lannion Cedex
France
Email: julien.meuric@orange.com
Jean-Louis Le Roux
Orange
2, Avenue Pierre Marzin
22307 Lannion Cedex
France
Email: jeanlouis.leroux@orange.com
Mohamad Chaitou
France
Email: mohamad.chaitou@gmail.com
Udayasree Palle
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India
Email: udayasreereddy@gmail.com
<span class="grey">Zhao, et al. Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc8306">RFC 8306</a> Extensions to PCEP for P2MP TE LSPs November 2017</span>
Authors' Addresses
Quintin Zhao
Huawei Technologies
125 Nagog Technology Park
Acton, MA 01719
United States of America
Email: quintin.zhao@huawei.com
Dhruv Dhody (editor)
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India
Email: dhruv.ietf@gmail.com
Ramanjaneya Reddy Palleti
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India
Email: ramanjaneya.palleti@huawei.com
Daniel King
Old Dog Consulting
United Kingdom
Email: daniel@olddog.co.uk
Zhao, et al. Standards Track [Page 43]
</pre>
|