1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
|
<pre>Internet Engineering Task Force (IETF) C. Bormann
Request for Comments: 8323 Universitaet Bremen TZI
Updates: <a href="./rfc7641">7641</a>, <a href="./rfc7959">7959</a> S. Lemay
Category: Standards Track Zebra Technologies
ISSN: 2070-1721 H. Tschofenig
ARM Ltd.
K. Hartke
Universitaet Bremen TZI
B. Silverajan
Tampere University of Technology
B. Raymor, Ed.
February 2018
<span class="h1">CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets</span>
Abstract
The Constrained Application Protocol (CoAP), although inspired by
HTTP, was designed to use UDP instead of TCP. The message layer of
CoAP over UDP includes support for reliable delivery, simple
congestion control, and flow control.
Some environments benefit from the availability of CoAP carried over
reliable transports such as TCP or Transport Layer Security (TLS).
This document outlines the changes required to use CoAP over TCP,
TLS, and WebSockets transports. It also formally updates <a href="./rfc7641">RFC 7641</a>
for use with these transports and <a href="./rfc7959">RFC 7959</a> to enable the use of
larger messages over a reliable transport.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8323">https://www.rfc-editor.org/info/rfc8323</a>.
<span class="grey">Bormann, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-2">2</a>. Conventions and Terminology .....................................<a href="#page-6">6</a>
<a href="#section-3">3</a>. CoAP over TCP ...................................................<a href="#page-7">7</a>
<a href="#section-3.1">3.1</a>. Messaging Model ............................................<a href="#page-7">7</a>
<a href="#section-3.2">3.2</a>. Message Format .............................................<a href="#page-9">9</a>
<a href="#section-3.3">3.3</a>. Message Transmission ......................................<a href="#page-11">11</a>
<a href="#section-3.4">3.4</a>. Connection Health .........................................<a href="#page-12">12</a>
<a href="#section-4">4</a>. CoAP over WebSockets ...........................................<a href="#page-13">13</a>
<a href="#section-4.1">4.1</a>. Opening Handshake .........................................<a href="#page-15">15</a>
<a href="#section-4.2">4.2</a>. Message Format ............................................<a href="#page-15">15</a>
<a href="#section-4.3">4.3</a>. Message Transmission ......................................<a href="#page-16">16</a>
<a href="#section-4.4">4.4</a>. Connection Health .........................................<a href="#page-17">17</a>
<a href="#section-5">5</a>. Signaling ......................................................<a href="#page-17">17</a>
<a href="#section-5.1">5.1</a>. Signaling Codes ...........................................<a href="#page-17">17</a>
<a href="#section-5.2">5.2</a>. Signaling Option Numbers ..................................<a href="#page-18">18</a>
<a href="#section-5.3">5.3</a>. Capabilities and Settings Messages (CSMs) .................<a href="#page-18">18</a>
<a href="#section-5.4">5.4</a>. Ping and Pong Messages ....................................<a href="#page-20">20</a>
<a href="#section-5.5">5.5</a>. Release Messages ..........................................<a href="#page-21">21</a>
<a href="#section-5.6">5.6</a>. Abort Messages ............................................<a href="#page-23">23</a>
<a href="#section-5.7">5.7</a>. Signaling Examples ........................................<a href="#page-24">24</a>
<a href="#section-6">6</a>. Block-Wise Transfer and Reliable Transports ....................<a href="#page-25">25</a>
<a href="#section-6.1">6.1</a>. Example: GET with BERT Blocks .............................<a href="#page-27">27</a>
<a href="#section-6.2">6.2</a>. Example: PUT with BERT Blocks .............................<a href="#page-27">27</a>
<a href="#section-7">7</a>. Observing Resources over Reliable Transports ...................<a href="#page-28">28</a>
<a href="#section-7.1">7.1</a>. Notifications and Reordering ..............................<a href="#page-28">28</a>
<a href="#section-7.2">7.2</a>. Transmission and Acknowledgments ..........................<a href="#page-28">28</a>
<a href="#section-7.3">7.3</a>. Freshness .................................................<a href="#page-28">28</a>
<a href="#section-7.4">7.4</a>. Cancellation ..............................................<a href="#page-29">29</a>
<span class="grey">Bormann, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<a href="#section-8">8</a>. CoAP over Reliable Transport URIs ..............................<a href="#page-29">29</a>
<a href="#section-8.1">8.1</a>. coap+tcp URI Scheme .......................................<a href="#page-30">30</a>
<a href="#section-8.2">8.2</a>. coaps+tcp URI Scheme ......................................<a href="#page-31">31</a>
<a href="#section-8.3">8.3</a>. coap+ws URI Scheme ........................................<a href="#page-32">32</a>
<a href="#section-8.4">8.4</a>. coaps+ws URI Scheme .......................................<a href="#page-33">33</a>
<a href="#section-8.5">8.5</a>. Uri-Host and Uri-Port Options .............................<a href="#page-33">33</a>
<a href="#section-8.6">8.6</a>. Decomposing URIs into Options .............................<a href="#page-34">34</a>
<a href="#section-8.7">8.7</a>. Composing URIs from Options ...............................<a href="#page-35">35</a>
<a href="#section-9">9</a>. Securing CoAP ..................................................<a href="#page-35">35</a>
<a href="#section-9.1">9.1</a>. TLS Binding for CoAP over TCP .............................<a href="#page-36">36</a>
<a href="#section-9.2">9.2</a>. TLS Usage for CoAP over WebSockets ........................<a href="#page-37">37</a>
<a href="#section-10">10</a>. Security Considerations .......................................<a href="#page-37">37</a>
<a href="#section-10.1">10.1</a>. Signaling Messages .......................................<a href="#page-37">37</a>
<a href="#section-11">11</a>. IANA Considerations ...........................................<a href="#page-38">38</a>
<a href="#section-11.1">11.1</a>. Signaling Codes ..........................................<a href="#page-38">38</a>
<a href="#section-11.2">11.2</a>. CoAP Signaling Option Numbers Registry ...................<a href="#page-38">38</a>
<a href="#section-11.3">11.3</a>. Service Name and Port Number Registration ................<a href="#page-40">40</a>
<a href="#section-11.4">11.4</a>. Secure Service Name and Port Number Registration .........<a href="#page-40">40</a>
<a href="#section-11.5">11.5</a>. URI Scheme Registration ..................................<a href="#page-41">41</a>
<a href="#section-11.6">11.6</a>. Well-Known URI Suffix Registration .......................<a href="#page-43">43</a>
<a href="#section-11.7">11.7</a>. ALPN Protocol Identifier .................................<a href="#page-44">44</a>
<a href="#section-11.8">11.8</a>. WebSocket Subprotocol Registration .......................<a href="#page-44">44</a>
<a href="#section-11.9">11.9</a>. CoAP Option Numbers Registry .............................<a href="#page-44">44</a>
<a href="#section-12">12</a>. References ....................................................<a href="#page-45">45</a>
<a href="#section-12.1">12.1</a>. Normative References .....................................<a href="#page-45">45</a>
<a href="#section-12.2">12.2</a>. Informative References ...................................<a href="#page-47">47</a>
<a href="#appendix-A">Appendix A</a>. Examples of CoAP over WebSockets ......................<a href="#page-49">49</a>
Acknowledgments ...................................................<a href="#page-52">52</a>
Contributors ......................................................<a href="#page-52">52</a>
Authors' Addresses ................................................<a href="#page-53">53</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The Constrained Application Protocol (CoAP) [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>] was designed
for Internet of Things (IoT) deployments, assuming that UDP [<a href="./rfc768" title=""User Datagram Protocol"">RFC768</a>]
can be used unimpeded as can the Datagram Transport Layer Security
(DTLS) protocol [<a href="./rfc6347" title=""Datagram Transport Layer Security Version 1.2"">RFC6347</a>] over UDP. The use of CoAP over UDP is
focused on simplicity, has a low code footprint, and has a small
over-the-wire message size.
The primary reason for introducing CoAP over TCP [<a href="./rfc793" title=""Transmission Control Protocol"">RFC793</a>] and TLS
[<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] is that some networks do not forward UDP packets. Complete
blocking of UDP happens in between about 2% and 4% of terrestrial
access networks, according to [<a href="#ref-EK2016" title=""Using UDP for Internet Transport Evolution"">EK2016</a>]. UDP impairment is especially
concentrated in enterprise networks and networks in geographic
regions with otherwise challenged connectivity. Some networks also
<span class="grey">Bormann, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
rate-limit UDP traffic, as reported in [<a href="#ref-BK2015" title=""Advisory Guidelines for UDP Deployment"">BK2015</a>], and deployment
investigations related to the standardization of Quick UDP Internet
Connections (QUIC) revealed numbers around 0.3% [<a href="#ref-SW2016" title=""QUIC Deployment Experience @Google"">SW2016</a>].
The introduction of CoAP over TCP also leads to some additional
effects that may be desirable in a specific deployment:
o Where NATs are present along the communication path, CoAP over TCP
leads to different NAT traversal behavior than CoAP over UDP.
NATs often calculate expiration timers based on the
transport-layer protocol being used by application protocols.
Many NATs maintain TCP-based NAT bindings for longer periods based
on the assumption that a transport-layer protocol, such as TCP,
offers additional information about the session lifecycle. UDP,
on the other hand, does not provide such information to a NAT and
timeouts tend to be much shorter [<a href="#ref-HomeGateway">HomeGateway</a>]. According to
[<a href="#ref-HomeGateway">HomeGateway</a>], the mean for TCP and UDP NAT binding timeouts is
386 minutes (TCP) and 160 seconds (UDP). Shorter timeout values
require keepalive messages to be sent more frequently. Hence, the
use of CoAP over TCP requires less-frequent transmission of
keepalive messages.
o TCP utilizes mechanisms for congestion control and flow control
that are more sophisticated than the default mechanisms provided
by CoAP over UDP; these TCP mechanisms are useful for the transfer
of larger payloads. (However, work is ongoing to add advanced
congestion control to CoAP over UDP as well; see [<a href="#ref-CoCoA" title=""CoAP Simple Congestion Control/Advanced"">CoCoA</a>].)
Note that the use of CoAP over UDP (and CoAP over DTLS over UDP) is
still the recommended transport for use in constrained node networks,
particularly when used in concert with block-wise transfer. CoAP
over TCP is applicable for those cases where the networking
infrastructure leaves no other choice. The use of CoAP over TCP
leads to a larger code size, more round trips, increased RAM
requirements, and larger packet sizes. Developers implementing CoAP
over TCP are encouraged to consult [<a href="#ref-TCP-in-IoT">TCP-in-IoT</a>] for guidance on
low-footprint TCP implementations for IoT devices.
Standards based on CoAP, such as Lightweight Machine to Machine
[<a href="#ref-LWM2M" title=""Lightweight Machine to Machine Technical Specification Version 1.0"">LWM2M</a>], currently use CoAP over UDP as a transport; adding support
for CoAP over TCP enables them to address the issues above for
specific deployments and to protect investments in existing CoAP
implementations and deployments.
Although HTTP/2 could also potentially address the need for
enterprise firewall traversal, there would be additional costs and
delays introduced by such a transition from CoAP to HTTP/2.
Currently, there are also fewer HTTP/2 implementations available for
<span class="grey">Bormann, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
constrained devices in comparison to CoAP. Since CoAP also supports
group communication using IP-layer multicast and unreliable
communication, IoT devices would have to support HTTP/2 in addition
to CoAP.
Furthermore, CoAP may be integrated into a web environment where the
front end uses CoAP over UDP from IoT devices to a cloud
infrastructure and then CoAP over TCP between the back-end services.
A TCP-to-UDP gateway can be used at the cloud boundary to communicate
with the UDP-based IoT device.
Finally, CoAP applications running inside a web browser may be
without access to connectivity other than HTTP. In this case, the
WebSocket Protocol [<a href="./rfc6455" title=""The WebSocket Protocol"">RFC6455</a>] may be used to transport CoAP requests
and responses, as opposed to cross-proxying them via HTTP to an
HTTP-to-CoAP cross-proxy. This preserves the functionality of CoAP
without translation -- in particular, the Observe Option [<a href="./rfc7641" title=""Observing Resources in the Constrained Application Protocol (CoAP)"">RFC7641</a>].
To address the above-mentioned deployment requirements, this document
defines how to transport CoAP over TCP, CoAP over TLS, and CoAP over
WebSockets. For these cases, the reliability offered by the
transport protocol subsumes the reliability functions of the message
layer used for CoAP over UDP. (Note that for both a reliable
transport and the message layer for CoAP over UDP, the reliability
offered is per transport hop: where proxies -- see Sections <a href="#section-5.7">5.7</a> and
10 of [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>] -- are involved, that layer's reliability function
does not extend end to end.) Figure 1 illustrates the layering:
+--------------------------------+
| Application |
+--------------------------------+
+--------------------------------+
| Requests/Responses/Signaling | CoAP (<a href="./rfc7252">RFC 7252</a>) / This Document
|--------------------------------|
| Message Framing | This Document
+--------------------------------+
| Reliable Transport |
+--------------------------------+
Figure 1: Layering of CoAP over Reliable Transports
This document specifies how to access resources using CoAP requests
and responses over the TCP, TLS, and WebSocket protocols. This
allows connectivity-limited applications to obtain end-to-end CoAP
connectivity either (1) by communicating CoAP directly with a CoAP
server accessible over a TCP, TLS, or WebSocket connection or (2) via
a CoAP intermediary that proxies CoAP requests and responses between
different transports, such as between WebSockets and UDP.
<span class="grey">Bormann, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<a href="#section-7">Section 7</a> updates [<a href="./rfc7641" title=""Observing Resources in the Constrained Application Protocol (CoAP)"">RFC7641</a>] ("Observing Resources in the Constrained
Application Protocol (CoAP)") for use with CoAP over reliable
transports. [<a href="./rfc7641" title=""Observing Resources in the Constrained Application Protocol (CoAP)"">RFC7641</a>] is an extension to CoAP that enables CoAP
clients to "observe" a resource on a CoAP server. (The CoAP client
retrieves a representation of a resource and registers to be notified
by the CoAP server when the representation is updated.)
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Conventions and Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
This document assumes that readers are familiar with the terms and
concepts that are used in [<a href="./rfc6455" title=""The WebSocket Protocol"">RFC6455</a>], [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>], [<a href="./rfc7641" title=""Observing Resources in the Constrained Application Protocol (CoAP)"">RFC7641</a>], and
[<a href="./rfc7959" title=""Block-Wise Transfers in the Constrained Application Protocol (CoAP)"">RFC7959</a>].
The term "reliable transport" is used only to refer to transport
protocols, such as TCP, that provide reliable and ordered delivery of
a byte stream.
Block-wise Extension for Reliable Transport (BERT):
Extends [<a href="./rfc7959" title=""Block-Wise Transfers in the Constrained Application Protocol (CoAP)"">RFC7959</a>] to enable the use of larger messages over a
reliable transport.
BERT Option:
A Block1 or Block2 option that includes an SZX (block size)
value of 7.
BERT Block:
The payload of a CoAP message that is affected by a BERT Option in
descriptive usage (see <a href="./rfc7959#section-2.1">Section 2.1 of [RFC7959]</a>).
Transport Connection:
Underlying reliable byte-stream connection, as directly provided
by TCP or indirectly provided via TLS or WebSockets.
Connection:
Transport Connection, unless explicitly qualified otherwise.
<span class="grey">Bormann, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Connection Initiator:
The peer that opens a Transport Connection, i.e., the TCP active
opener, TLS client, or WebSocket client.
Connection Acceptor:
The peer that accepts the Transport Connection opened by the other
peer, i.e., the TCP passive opener, TLS server, or WebSocket
server.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. CoAP over TCP</span>
The request/response interaction model of CoAP over TCP is the same
as CoAP over UDP. The primary differences are in the message layer.
The message layer of CoAP over UDP supports optional reliability by
defining four types of messages: Confirmable, Non-confirmable,
Acknowledgment, and Reset. In addition, messages include a
Message ID to relate Acknowledgments to Confirmable messages and to
detect duplicate messages.
Management of the transport connections is left to the application,
i.e., the present specification does not describe how an application
decides to open a connection or to reopen another one in the presence
of failures (or what it would deem to be a failure; see also
<a href="#section-5.4">Section 5.4</a>). In particular, the Connection Initiator need not be
the client of the first request placed on the connection. Some
implementations will want to implement dynamic connection management
similar to the technique described in <a href="./rfc7230#section-6">Section 6 of [RFC7230]</a> for
HTTP: opening a connection when the first client request is ready to
be sent, reusing that connection for subsequent messages until no
more messages are sent for a certain time period and no requests are
outstanding (possibly with a configurable idle time), and then
starting a release process (orderly shutdown) (see <a href="#section-5.5">Section 5.5</a>). In
implementations of this kind, connection releases or aborts may not
be indicated as errors to the application but may simply be handled
by automatic reconnection once the need arises again. Other
implementations may be based on configured connections that are kept
open continuously and lead to management system notifications on
release or abort. The protocol defined in the present specification
is intended to work with either model (or other, application-specific
connection management models).
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Messaging Model</span>
Conceptually, CoAP over TCP replaces most of the message layer of
CoAP over UDP with a framing mechanism on top of the byte stream
provided by TCP/TLS, conveying the length information for each
message that, on datagram transports, is provided by the UDP/DTLS
datagram layer.
<span class="grey">Bormann, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
TCP ensures reliable message transmission, so the message layer of
CoAP over TCP is not required to support Acknowledgment messages or
to detect duplicate messages. As a result, both the Type and
Message ID fields are no longer required and are removed from the
message format for CoAP over TCP.
Figure 2 illustrates the difference between CoAP over UDP and CoAP
over reliable transports. The removed Type and Message ID fields are
indicated by dashes.
CoAP Client CoAP Server CoAP Client CoAP Server
| | | |
| CON [0xbc90] | | (-------) [------] |
| GET /temperature | | GET /temperature |
| (Token 0x71) | | (Token 0x71) |
+------------------->| +------------------->|
| | | |
| ACK [0xbc90] | | (-------) [------] |
| 2.05 Content | | 2.05 Content |
| (Token 0x71) | | (Token 0x71) |
| "22.5 C" | | "22.5 C" |
|<-------------------+ |<-------------------+
| | | |
CoAP over UDP CoAP over reliable
transports
Figure 2: Comparison between CoAP over Unreliable Transports and
CoAP over Reliable Transports
<span class="grey">Bormann, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Message Format</span>
The CoAP message format defined in [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>], as shown in Figure 3,
relies on the datagram transport (UDP, or DTLS over UDP) for keeping
the individual messages separate and for providing length
information.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Ver| T | TKL | Code | Message ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Token (if any, TKL bytes) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options (if any) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 1 1 1 1 1 1 1| Payload (if any) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: CoAP Message Format as Defined in <a href="./rfc7252">RFC 7252</a>
The message format for CoAP over TCP is very similar to the format
specified for CoAP over UDP. The differences are as follows:
o Since the underlying TCP connection provides retransmissions and
deduplication, there is no need for the reliability mechanisms
provided by CoAP over UDP. The Type (T) and Message ID fields in
the CoAP message header are elided.
o The Version (Vers) field is elided as well. In contrast to the
message format of CoAP over UDP, the message format for CoAP over
TCP does not include a version number. CoAP is defined in
[<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>] with a version number of 1. At this time, there is no
known reason to support version numbers different from 1. If
version negotiation needs to be addressed in the future,
Capabilities and Settings Messages (CSMs) (see <a href="#section-5.3">Section 5.3</a>) have
been specifically designed to enable such a potential feature.
<span class="grey">Bormann, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
o In a stream-oriented transport protocol such as TCP, a form of
message delimitation is needed. For this purpose, CoAP over TCP
introduces a length field with variable size. Figure 4 shows the
adjusted CoAP message format with a modified structure for the
fixed header (first 4 bytes of the header for CoAP over UDP),
which includes the length information of variable size.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Len | TKL | Extended Length (if any, as chosen by Len) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Code | Token (if any, TKL bytes) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options (if any) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 1 1 1 1 1 1 1| Payload (if any) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: CoAP Frame for Reliable Transports
Length (Len): 4-bit unsigned integer. A value between 0 and 12
inclusive indicates the length of the message in bytes, starting
with the first bit of the Options field. Three values are
reserved for special constructs:
13: An 8-bit unsigned integer (Extended Length) follows the
initial byte and indicates the length of options/payload
minus 13.
14: A 16-bit unsigned integer (Extended Length) in network byte
order follows the initial byte and indicates the length of
options/payload minus 269.
15: A 32-bit unsigned integer (Extended Length) in network byte
order follows the initial byte and indicates the length of
options/payload minus 65805.
The encoding of the Length field is modeled after the Option Length
field of the CoAP Options (see <a href="./rfc7252#section-3.1">Section 3.1 of [RFC7252]</a>).
For simplicity, a Payload Marker (0xFF) is shown in Figure 4; the
Payload Marker indicates the start of the optional payload and is
absent for zero-length payloads (see <a href="./rfc7252#section-3">Section 3 of [RFC7252]</a>). (If
present, the Payload Marker is included in the message length, which
counts from the start of the Options field to the end of the Payload
field.)
<span class="grey">Bormann, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
For example, a CoAP message just containing a 2.03 code with the
Token 7f and no options or payload is encoded as shown in Figure 5.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x01 | 0x43 | 0x7f |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Len = 0 ------> 0x01
TKL = 1 ___/
Code = 2.03 --> 0x43
Token = 0x7f
Figure 5: CoAP Message with No Options or Payload
The semantics of the other CoAP header fields are left unchanged.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Message Transmission</span>
Once a Transport Connection is established, each endpoint MUST send a
CSM (see <a href="#section-5.3">Section 5.3</a>) as its first message on the connection. This
message establishes the initial settings and capabilities for the
endpoint, such as maximum message size or support for block-wise
transfers. The absence of options in the CSM indicates that base
values are assumed.
To avoid a deadlock, the Connection Initiator MUST NOT wait for the
Connection Acceptor to send its initial CSM before sending its own
initial CSM. Conversely, the Connection Acceptor MAY wait for the
Connection Initiator to send its initial CSM before sending its own
initial CSM.
To avoid unnecessary latency, a Connection Initiator MAY send
additional messages after its initial CSM without waiting to receive
the Connection Acceptor's CSM; however, it is important to note that
the Connection Acceptor's CSM might indicate capabilities that impact
how the Connection Initiator is expected to communicate with the
Connection Acceptor. For example, the Connection Acceptor's CSM
could indicate a Max-Message-Size Option (see <a href="#section-5.3.1">Section 5.3.1</a>) that is
smaller than the base value (1152) in order to limit both buffering
requirements and head-of-line blocking.
<span class="grey">Bormann, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Endpoints MUST treat a missing or invalid CSM as a connection error
and abort the connection (see <a href="#section-5.6">Section 5.6</a>).
CoAP requests and responses are exchanged asynchronously over the
Transport Connection. A CoAP client can send multiple requests
without waiting for a response, and the CoAP server can return
responses in any order. Responses MUST be returned over the same
connection as the originating request. Each concurrent request is
differentiated by its Token, which is scoped locally to the
connection.
The Transport Connection is bidirectional, so requests can be sent by
both the entity that established the connection (Connection
Initiator) and the remote host (Connection Acceptor). If one side
does not implement a CoAP server, an error response MUST be returned
for all CoAP requests from the other side. The simplest approach is
to always return 5.01 (Not Implemented). A more elaborate mock
server could also return 4.xx responses such as 4.04 (Not Found) or
4.02 (Bad Option) where appropriate.
Retransmission and deduplication of messages are provided by TCP.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Connection Health</span>
Empty messages (Code 0.00) can always be sent and MUST be ignored by
the recipient. This provides a basic keepalive function that can
refresh NAT bindings.
If a CoAP client does not receive any response for some time after
sending a CoAP request (or, similarly, when a client observes a
resource and it does not receive any notification for some time), it
can send a CoAP Ping Signaling message (see <a href="#section-5.4">Section 5.4</a>) to test the
Transport Connection and verify that the CoAP server is responsive.
When the underlying Transport Connection is closed or reset, the
signaling state and any observation state (see <a href="#section-7.4">Section 7.4</a>)
associated with the connection are removed. Messages that are
in flight may or may not be lost.
<span class="grey">Bormann, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. CoAP over WebSockets</span>
CoAP over WebSockets is intentionally similar to CoAP over TCP;
therefore, this section only specifies the differences between the
transports.
CoAP over WebSockets can be used in a number of configurations. The
most basic configuration is a CoAP client retrieving or updating a
CoAP resource located on a CoAP server that exposes a WebSocket
endpoint (see Figure 6). The CoAP client acts as the WebSocket
client, establishes a WebSocket connection, and sends a CoAP request,
to which the CoAP server returns a CoAP response. The WebSocket
connection can be used for any number of requests.
___________ ___________
| | | |
| _|___ requests ___|_ |
| CoAP / \ \ -------------> / / \ CoAP |
| Client \__/__/ <------------- \__\__/ Server |
| | responses | |
|___________| |___________|
WebSocket =============> WebSocket
Client Connection Server
Figure 6: CoAP Client (WebSocket Client) Accesses CoAP Server
(WebSocket Server)
The challenge with this configuration is how to identify a resource
in the namespace of the CoAP server. When the WebSocket Protocol is
used by a dedicated client directly (i.e., not from a web page
through a web browser), the client can connect to any WebSocket
endpoint. Sections <a href="#section-8.3">8.3</a> and <a href="#section-8.4">8.4</a> define new URI schemes that enable
the client to identify both a WebSocket endpoint and the path and
query of the CoAP resource within that endpoint.
<span class="grey">Bormann, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Another possible configuration is to set up a CoAP forward proxy at
the WebSocket endpoint. Depending on what transports are available
to the proxy, it could forward the request to a CoAP server with a
CoAP UDP endpoint (Figure 7), an SMS endpoint (a.k.a. mobile phone),
or even another WebSocket endpoint. The CoAP client specifies the
resource to be updated or retrieved in the Proxy-Uri Option.
___________ ___________ ___________
| | | | | |
| _|___ ___|_ _|___ ___|_ |
| CoAP / \ \ ---> / / \ CoAP / \ \ ---> / / \ CoAP |
| Client \__/__/ <--- \__\__/ Proxy \__/__/ <--- \__\__/ Server |
| | | | | |
|___________| |___________| |___________|
WebSocket ===> WebSocket UDP UDP
Client Server Client Server
Figure 7: CoAP Client (WebSocket Client) Accesses CoAP Server
(UDP Server) via a CoAP Proxy (WebSocket Server / UDP Client)
A third possible configuration is a CoAP server running inside a web
browser (Figure 8). The web browser initially connects to a
WebSocket endpoint and is then reachable through the WebSocket
server. When no connection exists, the CoAP server is unreachable.
Because the WebSocket server is the only way to reach the CoAP
server, the CoAP proxy should be a reverse-proxy.
___________ ___________ ___________
| | | | | |
| _|___ ___|_ _|___ ___|_ |
| CoAP / \ \ ---> / / \ CoAP / / \ ---> / \ \ CoAP |
| Client \__/__/ <--- \__\__/ Proxy \__\__/ <--- \__/__/ Server |
| | | | | |
|___________| |___________| |___________|
UDP UDP WebSocket <=== WebSocket
Client Server Server Client
Figure 8: CoAP Client (UDP Client) Accesses CoAP Server (WebSocket
Client) via a CoAP Proxy (UDP Server / WebSocket Server)
Further configurations are possible, including those where a
WebSocket connection is established through an HTTP proxy.
<span class="grey">Bormann, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Opening Handshake</span>
Before CoAP requests and responses are exchanged, a WebSocket
connection is established as defined in <a href="./rfc6455#section-4">Section 4 of [RFC6455]</a>.
Figure 9 shows an example.
The WebSocket client MUST include the subprotocol name "coap" in the
list of protocols; this indicates support for the protocol defined in
this document.
The WebSocket client includes the hostname of the WebSocket server in
the Host header field of its handshake as per [<a href="./rfc6455" title=""The WebSocket Protocol"">RFC6455</a>]. The Host
header field also indicates the default value of the Uri-Host Option
in requests from the WebSocket client to the WebSocket server.
GET /.well-known/coap HTTP/1.1
Host: example.org
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Protocol: coap
Sec-WebSocket-Version: 13
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: coap
Figure 9: Example of an Opening Handshake
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Message Format</span>
Once a WebSocket connection is established, CoAP requests and
responses can be exchanged as WebSocket messages. Since CoAP uses a
binary message format, the messages are transmitted in binary data
frames as specified in Sections <a href="#section-5">5</a> and <a href="#section-6">6</a> of [<a href="./rfc6455" title=""The WebSocket Protocol"">RFC6455</a>].
<span class="grey">Bormann, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
The message format shown in Figure 10 is the same as the message
format for CoAP over TCP (see <a href="#section-3.2">Section 3.2</a>), with one change: the
Length (Len) field MUST be set to zero, because the WebSocket frame
contains the length.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Len=0 | TKL | Code | Token (TKL bytes) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options (if any) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 1 1 1 1 1 1 1| Payload (if any) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: CoAP Message Format over WebSockets
As with CoAP over TCP, the message format for CoAP over WebSockets
eliminates the Version field defined in CoAP over UDP. If CoAP
version negotiation is required in the future, CoAP over WebSockets
can address the requirement by defining a new subprotocol identifier
that is negotiated during the opening handshake.
Requests and responses can be fragmented as specified in <a href="./rfc6455#section-5.4">Section 5.4
of [RFC6455]</a>, though typically they are sent unfragmented, as they
tend to be small and fully buffered before transmission. The
WebSocket Protocol does not provide means for multiplexing. If it is
not desirable for a large message to monopolize the connection,
requests and responses can be transferred in a block-wise fashion as
defined in [<a href="./rfc7959" title=""Block-Wise Transfers in the Constrained Application Protocol (CoAP)"">RFC7959</a>].
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Message Transmission</span>
As with CoAP over TCP, each endpoint MUST send a CSM (see
<a href="#section-5.3">Section 5.3</a>) as its first message on the WebSocket connection.
CoAP requests and responses are exchanged asynchronously over the
WebSocket connection. A CoAP client can send multiple requests
without waiting for a response, and the CoAP server can return
responses in any order. Responses MUST be returned over the same
connection as the originating request. Each concurrent request is
differentiated by its Token, which is scoped locally to the
connection.
The connection is bidirectional, so requests can be sent by both the
entity that established the connection and the remote host.
<span class="grey">Bormann, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
As with CoAP over TCP, retransmission and deduplication of messages
are provided by the WebSocket Protocol. CoAP over WebSockets
therefore does not make a distinction between Confirmable messages
and Non-confirmable messages and does not provide Acknowledgment or
Reset messages.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Connection Health</span>
As with CoAP over TCP, a CoAP client can test the health of the
connection for CoAP over WebSockets by sending a CoAP Ping Signaling
message (<a href="#section-5.4">Section 5.4</a>). To ensure that redundant maintenance traffic
is not transmitted, WebSocket Ping and unsolicited Pong frames
(<a href="./rfc6455#section-5.5">Section 5.5 of [RFC6455]</a>) SHOULD NOT be used.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Signaling</span>
Signaling messages are specifically introduced only for CoAP over
reliable transports to allow peers to:
o Learn related characteristics, such as maximum message size for
the connection.
o Shut down the connection in an orderly fashion.
o Provide diagnostic information when terminating a connection in
response to a serious error condition.
Signaling is a third basic kind of message in CoAP, after requests
and responses. Signaling messages share a common structure with the
existing CoAP messages. There are a code, a Token, options, and an
optional payload.
(See <a href="./rfc7252#section-3">Section 3 of [RFC7252]</a> for the overall structure of the message
format, option format, and option value formats.)
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Signaling Codes</span>
A code in the 7.00-7.31 range indicates a Signaling message. Values
in this range are assigned by the "CoAP Signaling Codes" subregistry
(see <a href="#section-11.1">Section 11.1</a>).
For each message, there are a sender and a peer receiving the
message.
Payloads in Signaling messages are diagnostic payloads as defined in
<a href="./rfc7252#section-5.5.2">Section 5.5.2 of [RFC7252]</a>, unless otherwise defined by a Signaling
message option.
<span class="grey">Bormann, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Signaling Option Numbers</span>
Option Numbers for Signaling messages are specific to the message
code. They do not share the number space with CoAP options for
request/response messages or with Signaling messages using other
codes.
Option Numbers are assigned by the "CoAP Signaling Option Numbers"
subregistry (see <a href="#section-11.2">Section 11.2</a>).
Signaling Options are elective or critical as defined in
<a href="./rfc7252#section-5.4.1">Section 5.4.1 of [RFC7252]</a>. If a Signaling Option is critical and
not understood by the receiver, it MUST abort the connection (see
<a href="#section-5.6">Section 5.6</a>). If the option is understood but cannot be processed,
the option documents the behavior.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Capabilities and Settings Messages (CSMs)</span>
CSMs are used for two purposes:
o Each capability option indicates one capability of the sender to
the recipient.
o Each setting option indicates a setting that will be applied by
the sender.
One CSM MUST be sent by each endpoint at the start of the Transport
Connection. Additional CSMs MAY be sent at any other time by either
endpoint over the lifetime of the connection.
Both capability options and setting options are cumulative. A CSM
does not invalidate a previously sent capability indication or
setting even if it is not repeated. A capability message without any
option is a no-operation (and can be used as such). An option that
is sent might override a previous value for the same option. The
option defines how to handle this case if needed.
Base values are listed below for CSM options. These are the values
for the capability and settings before any CSMs send a modified
value.
These are not default values (as defined in <a href="./rfc7252#section-5.4.4">Section 5.4.4 in
[RFC7252]</a>) for the option. Default values apply on a per-message
basis and are thus reset when the value is not present in a
given CSM.
CSMs are indicated by the 7.01 (CSM) code; see Table 1
(<a href="#section-11.1">Section 11.1</a>).
<span class="grey">Bormann, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h4"><a class="selflink" id="section-5.3.1" href="#section-5.3.1">5.3.1</a>. Max-Message-Size Capability Option</span>
The sender can use the elective Max-Message-Size Option to indicate
the maximum size of a message in bytes that it can receive. The
message size indicated includes the entire message, starting from the
first byte of the message header and ending at the end of the message
payload.
(Note that there is no relationship of the message size to the
overall request or response body size that may be achievable in
block-wise transfer. For example, the exchange depicted in Figure 13
(<a href="#section-6.1">Section 6.1</a>) can be performed if the CoAP client indicates a value
of around 6000 bytes for the Max-Message-Size Option, even though the
total body size transferred to the client is 3072 + 5120 + 4711 =
12903 bytes.)
+---+---+---+---------+------------------+--------+--------+--------+
| # | C | R | Applies | Name | Format | Length | Base |
| | | | to | | | | Value |
+---+---+---+---------+------------------+--------+--------+--------+
| 2 | | | CSM | Max-Message-Size | uint | 0-4 | 1152 |
+---+---+---+---------+------------------+--------+--------+--------+
C=Critical, R=Repeatable
As per <a href="./rfc7252#section-4.6">Section 4.6 of [RFC7252]</a>, the base value (and the value used
when this option is not implemented) is 1152.
The active value of the Max-Message-Size Option is replaced each time
the option is sent with a modified value. Its starting value is its
base value.
<span class="h4"><a class="selflink" id="section-5.3.2" href="#section-5.3.2">5.3.2</a>. Block-Wise-Transfer Capability Option</span>
+---+---+---+---------+------------------+--------+--------+--------+
| # | C | R | Applies | Name | Format | Length | Base |
| | | | to | | | | Value |
+---+---+---+---------+------------------+--------+--------+--------+
| 4 | | | CSM | Block-Wise- | empty | 0 | (none) |
| | | | | Transfer | | | |
+---+---+---+---------+------------------+--------+--------+--------+
C=Critical, R=Repeatable
A sender can use the elective Block-Wise-Transfer Option to indicate
that it supports the block-wise transfer protocol [<a href="./rfc7959" title=""Block-Wise Transfers in the Constrained Application Protocol (CoAP)"">RFC7959</a>].
<span class="grey">Bormann, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
If the option is not given, the peer has no information about whether
block-wise transfers are supported by the sender or not. An
implementation wishing to offer block-wise transfers to its peer
therefore needs to indicate so via the Block-Wise-Transfer Option.
If a Max-Message-Size Option is indicated with a value that is
greater than 1152 (in the same CSM or a different CSM), the
Block-Wise-Transfer Option also indicates support for BERT (see
<a href="#section-6">Section 6</a>). Subsequently, if the Max-Message-Size Option is
indicated with a value equal to or less than 1152, BERT support is no
longer indicated. (Note that the indication of BERT support does not
oblige either peer to actually choose to make use of BERT.)
Implementation note: When indicating a value of the Max-Message-Size
Option with an intention to enable BERT, the indicating
implementation may want to (1) choose a particular BERT block size it
wants to encourage and (2) add a delta for the header and any options
that may also need to be included in the message with a BERT block of
that size. <a href="./rfc7252#section-4.6">Section 4.6 of [RFC7252]</a> adds 128 bytes to a maximum
block size of 1024 to arrive at a default message size of 1152. A
BERT-enabled implementation may want to indicate a BERT block size of
2048 or a higher multiple of 1024 and at the same time be more
generous with the size of the header and options added (say, 256 or
512). However, adding 1024 or more to the base BERT block size may
encourage the peer implementation to vary the BERT block size based
on the size of the options included; this type of scenario might make
it harder to establish interoperability.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Ping and Pong Messages</span>
In CoAP over reliable transports, Empty messages (Code 0.00) can
always be sent and MUST be ignored by the recipient. This provides a
basic keepalive function. In contrast, Ping and Pong messages are a
bidirectional exchange.
Upon receipt of a Ping message, the receiver MUST return a Pong
message with an identical Token in response. Unless the Ping carries
an option with delaying semantics such as the Custody Option, it
SHOULD respond as soon as practical. As with all Signaling messages,
the recipient of a Ping or Pong message MUST ignore elective options
it does not understand.
Ping and Pong messages are indicated by the 7.02 code (Ping) and
the 7.03 code (Pong).
<span class="grey">Bormann, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Note that, as with similar mechanisms defined in [<a href="./rfc6455" title=""The WebSocket Protocol"">RFC6455</a>] and
[<a href="./rfc7540" title=""Hypertext Transfer Protocol Version 2 (HTTP/2)"">RFC7540</a>], the present specification does not define any specific
maximum time that the sender of a Ping message has to allow when
waiting for a Pong reply. Any limitations on patience for this reply
are a matter of the application making use of these messages, as is
any approach to recover from a failure to respond in time.
<span class="h4"><a class="selflink" id="section-5.4.1" href="#section-5.4.1">5.4.1</a>. Custody Option</span>
+---+---+---+----------+----------------+--------+--------+---------+
| # | C | R | Applies | Name | Format | Length | Base |
| | | | to | | | | Value |
+---+---+---+----------+----------------+--------+--------+---------+
| 2 | | | Ping, | Custody | empty | 0 | (none) |
| | | | Pong | | | | |
+---+---+---+----------+----------------+--------+--------+---------+
C=Critical, R=Repeatable
When responding to a Ping message, the receiver can include an
elective Custody Option in the Pong message. This option indicates
that the application has processed all the request/response messages
received prior to the Ping message on the current connection. (Note
that there is no definition of specific application semantics for
"processed", but there is an expectation that the receiver of a Pong
message with a Custody Option should be able to free buffers based on
this indication.)
A sender can also include an elective Custody Option in a Ping
message to explicitly request the inclusion of an elective Custody
Option in the corresponding Pong message. In that case, the receiver
SHOULD delay its Pong message until it finishes processing all the
request/response messages received prior to the Ping message on the
current connection.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Release Messages</span>
A Release message indicates that the sender does not want to continue
maintaining the Transport Connection and opts for an orderly
shutdown, but wants to leave it to the peer to actually start closing
the connection. The details are in the options. A diagnostic
payload (see <a href="./rfc7252#section-5.5.2">Section 5.5.2 of [RFC7252]</a>) MAY be included.
A peer will normally respond to a Release message by closing the
Transport Connection. (In case that does not happen, the sender of
the release may want to implement a timeout mechanism if getting rid
of the connection is actually important to it.)
<span class="grey">Bormann, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Messages may be in flight or responses outstanding when the sender
decides to send a Release message (which is one reason the sender had
decided to wait before closing the connection). The peer responding
to the Release message SHOULD delay the closing of the connection
until it has responded to all requests received by it before the
Release message. It also MAY wait for the responses to its own
requests.
It is NOT RECOMMENDED for the sender of a Release message to continue
sending requests on the connection it already indicated to be
released: the peer might close the connection at any time and miss
those requests. The peer is not obligated to check for this
condition, though.
Release messages are indicated by the 7.04 code (Release).
Release messages can indicate one or more reasons using elective
options. The following options are defined:
+---+---+---+---------+------------------+--------+--------+--------+
| # | C | R | Applies | Name | Format | Length | Base |
| | | | to | | | | Value |
+---+---+---+---------+------------------+--------+--------+--------+
| 2 | | x | Release | Alternative- | string | 1-255 | (none) |
| | | | | Address | | | |
+---+---+---+---------+------------------+--------+--------+--------+
C=Critical, R=Repeatable
The elective Alternative-Address Option requests the peer to instead
open a connection of the same scheme as the present connection to the
alternative transport address given. Its value is in the form
"authority" as defined in <a href="./rfc3986#section-3.2">Section 3.2 of [RFC3986]</a>. (Existing state
related to the connection is not transferred from the present
connection to the new connection.)
<span class="grey">Bormann, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
The Alternative-Address Option is a repeatable option as defined in
<a href="./rfc7252#section-5.4.5">Section 5.4.5 of [RFC7252]</a>. When multiple occurrences of the option
are included, the peer can choose any of the alternative transport
addresses.
+---+---+---+---------+-----------------+--------+--------+---------+
| # | C | R | Applies | Name | Format | Length | Base |
| | | | to | | | | Value |
+---+---+---+---------+-----------------+--------+--------+---------+
| 4 | | | Release | Hold-Off | uint | 0-3 | (none) |
+---+---+---+---------+-----------------+--------+--------+---------+
C=Critical, R=Repeatable
The elective Hold-Off Option indicates that the server is requesting
that the peer not reconnect to it for the number of seconds given in
the value.
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Abort Messages</span>
An Abort message indicates that the sender is unable to continue
maintaining the Transport Connection and cannot even wait for an
orderly release. The sender shuts down the connection immediately
after the Abort message (and may or may not wait for a Release
message, Abort message, or connection shutdown in the inverse
direction). A diagnostic payload (see <a href="./rfc7252#section-5.5.2">Section 5.5.2 of [RFC7252]</a>)
SHOULD be included in the Abort message. Messages may be in flight
or responses outstanding when the sender decides to send an Abort
message. The general expectation is that these will NOT be
processed.
Abort messages are indicated by the 7.05 code (Abort).
Abort messages can indicate one or more reasons using elective
options. The following option is defined:
+---+---+---+---------+-----------------+--------+--------+---------+
| # | C | R | Applies | Name | Format | Length | Base |
| | | | to | | | | Value |
+---+---+---+---------+-----------------+--------+--------+---------+
| 2 | | | Abort | Bad-CSM-Option | uint | 0-2 | (none) |
+---+---+---+---------+-----------------+--------+--------+---------+
C=Critical, R=Repeatable
<span class="grey">Bormann, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Bad-CSM-Option, which is elective, indicates that the sender is
unable to process the CSM option identified by its Option Number,
e.g., when it is critical and the Option Number is unknown by the
sender, or when there is a parameter problem with the value of an
elective option. More detailed information SHOULD be included as a
diagnostic payload.
For CoAP over UDP, messages that contain syntax violations are
processed as message format errors. As described in Sections <a href="#section-4.2">4.2</a> and
4.3 of [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>], such messages are rejected by sending a matching
Reset message and otherwise ignoring the message.
For CoAP over reliable transports, the recipient rejects such
messages by sending an Abort message and otherwise ignoring (not
processing) the message. No specific Option has been defined for the
Abort message in this case, as the details are best left to a
diagnostic payload.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. Signaling Examples</span>
An encoded example of a Ping message with a non-empty Token is shown
in Figure 11.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x01 | 0xe2 | 0x42 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Len = 0 -------> 0x01
TKL = 1 ___/
Code = 7.02 Ping --> 0xe2
Token = 0x42
Figure 11: Ping Message Example
<span class="grey">Bormann, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
An encoded example of the corresponding Pong message is shown in
Figure 12.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x01 | 0xe3 | 0x42 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Len = 0 -------> 0x01
TKL = 1 ___/
Code = 7.03 Pong --> 0xe3
Token = 0x42
Figure 12: Pong Message Example
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Block-Wise Transfer and Reliable Transports</span>
The message size restrictions defined in <a href="./rfc7252#section-4.6">Section 4.6 of [RFC7252]</a> to
avoid IP fragmentation are not necessary when CoAP is used over a
reliable transport. While this suggests that the block-wise transfer
protocol [<a href="./rfc7959" title=""Block-Wise Transfers in the Constrained Application Protocol (CoAP)"">RFC7959</a>] is also no longer needed, it remains applicable
for a number of cases:
o Large messages, such as firmware downloads, may cause undesired
head-of-line blocking when a single transport connection is used.
o A UDP-to-TCP gateway may simply not have the context to convert a
message with a Block Option into the equivalent exchange without
any use of a Block Option (it would need to convert the entire
block-wise exchange from start to end into a single exchange).
BERT extends the block-wise transfer protocol to enable the use of
larger messages over a reliable transport.
The use of this new extension is signaled by sending Block1 or Block2
Options with SZX == 7 (a "BERT Option"). SZX == 7 is a reserved
value in [<a href="./rfc7959" title=""Block-Wise Transfers in the Constrained Application Protocol (CoAP)"">RFC7959</a>].
In control usage, a BERT Option is interpreted in the same way as the
equivalent Option with SZX == 6, except that it also indicates the
capability to process BERT blocks. As with the basic block-wise
transfer protocol, the recipient of a CoAP request with a BERT Option
in control usage is allowed to respond with a different SZX value,
e.g., to send a non-BERT block instead.
<span class="grey">Bormann, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
In descriptive usage, a BERT Option is interpreted in the same way as
the equivalent Option with SZX == 6, except that the payload is also
allowed to contain multiple blocks. For non-final BERT blocks, the
payload is always a multiple of 1024 bytes. For final BERT blocks,
the payload is a multiple (possibly 0) of 1024 bytes plus a partial
block of less than 1024 bytes.
The recipient of a non-final BERT block (M=1) conceptually partitions
the payload into a sequence of 1024-byte blocks and acts exactly as
if it had received this sequence in conjunction with block numbers
starting at, and sequentially increasing from, the block number given
in the Block Option. In other words, the entire BERT block is
positioned at the byte position that results from multiplying the
block number by 1024. The position of further blocks to be
transferred is indicated by incrementing the block number by the
number of elements in this sequence (i.e., the size of the payload
divided by 1024 bytes).
As with SZX == 6, the recipient of a final BERT block (M=0) simply
appends the payload at the byte position that is indicated by the
block number multiplied by 1024.
The following examples illustrate BERT Options. A value of SZX == 7
is labeled as "BERT" or as "BERT(nnn)" to indicate a payload of
size nnn.
In all these examples, a Block Option is decomposed to indicate the
kind of Block Option (1 or 2) followed by a colon, the block number
(NUM), the more bit (M), and the block size (2**(SZX + 4)) separated
by slashes. For example, a Block2 Option value of 33 would be shown
as 2:2/0/32), or a Block1 Option value of 59 would be shown as
1:3/1/128.
<span class="grey">Bormann, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Example: GET with BERT Blocks</span>
Figure 13 shows a GET request with a response that is split into
three BERT blocks. The first response contains 3072 bytes of
payload; the second, 5120; and the third, 4711. Note how the block
number increments to move the position inside the response body
forward.
CoAP Client CoAP Server
| |
| GET, /status ------> |
| |
| <------ 2.05 Content, 2:0/1/BERT(3072) |
| |
| GET, /status, 2:3/0/BERT ------> |
| |
| <------ 2.05 Content, 2:3/1/BERT(5120) |
| |
| GET, /status, 2:8/0/BERT ------> |
| |
| <------ 2.05 Content, 2:8/0/BERT(4711) |
Figure 13: GET with BERT Blocks
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Example: PUT with BERT Blocks</span>
Figure 14 demonstrates a PUT exchange with BERT blocks.
CoAP Client CoAP Server
| |
| PUT, /options, 1:0/1/BERT(8192) ------> |
| |
| <------ 2.31 Continue, 1:0/1/BERT |
| |
| PUT, /options, 1:8/1/BERT(16384) ------> |
| |
| <------ 2.31 Continue, 1:8/1/BERT |
| |
| PUT, /options, 1:24/0/BERT(5683) ------> |
| |
| <------ 2.04 Changed, 1:24/0/BERT |
| |
Figure 14: PUT with BERT Blocks
<span class="grey">Bormann, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Observing Resources over Reliable Transports</span>
This section describes how the procedures defined in [<a href="./rfc7641" title=""Observing Resources in the Constrained Application Protocol (CoAP)"">RFC7641</a>] for
observing resources over CoAP are applied (and modified, as needed)
for reliable transports. In this section, "client" and "server"
refer to the CoAP client and CoAP server.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Notifications and Reordering</span>
When using the Observe Option [<a href="./rfc7641" title=""Observing Resources in the Constrained Application Protocol (CoAP)"">RFC7641</a>] with CoAP over UDP,
notifications from the server set the option value to an increasing
sequence number for reordering detection on the client, since
messages can arrive in a different order than they were sent. This
sequence number is not required for CoAP over reliable transports,
since TCP ensures reliable and ordered delivery of messages. The
value of the Observe Option in 2.xx notifications MAY be empty on
transmission and MUST be ignored on reception.
Implementation note: This means that a proxy from a reordering
transport to a reliable (in-order) transport (such as a UDP-to-TCP
proxy) needs to process the Observe Option in notifications according
to the rules in <a href="./rfc7641#section-3.4">Section 3.4 of [RFC7641]</a>.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Transmission and Acknowledgments</span>
For CoAP over UDP, server notifications to the client can be
Confirmable or Non-confirmable. A Confirmable message requires the
client to respond with either an Acknowledgment message or a Reset
message. An Acknowledgment message indicates that the client is
alive and wishes to receive further notifications. A Reset message
indicates that the client does not recognize the Token; this causes
the server to remove the associated entry from the list of observers.
Since TCP eliminates the need for the message layer to support
reliability, CoAP over reliable transports does not support
Confirmable or Non-confirmable message types. All notifications are
delivered reliably to the client with positive acknowledgment of
receipt occurring at the TCP level. If the client does not recognize
the Token in a notification, it MAY immediately abort the connection
(see <a href="#section-5.6">Section 5.6</a>).
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Freshness</span>
For CoAP over UDP, if a client does not receive a notification for
some time, it can send a new GET request with the same Token as the
original request to re-register its interest in a resource and verify
that the server is still responsive. For CoAP over reliable
transports, it is more efficient to check the health of the
<span class="grey">Bormann, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
connection (and all its active observations) by sending a single CoAP
Ping Signaling message (<a href="#section-5.4">Section 5.4</a>) rather than individual requests
to confirm each active observation. (Note that such a Ping/Pong only
confirms a single hop: a proxy is not obligated or expected to react
to a Ping by checking all its own registered interests or all the
connections, if any, underlying them. A proxy MAY maintain its own
schedule for confirming the interests that it relies on being
registered toward the origin server; however, it is generally
inadvisable for a proxy to generate a large number of outgoing checks
based on a single incoming check.)
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>. Cancellation</span>
For CoAP over UDP, a client that is no longer interested in receiving
notifications can "forget" the observation and respond to the next
notification from the server with a Reset message to cancel the
observation.
For CoAP over reliable transports, a client MUST explicitly
deregister by issuing a GET request that has the Token field set to
the Token of the observation to be canceled and includes an Observe
Option with the value set to 1 (deregister).
If the client observes one or more resources over a reliable
transport, then the CoAP server (or intermediary in the role of the
CoAP server) MUST remove all entries associated with the client
endpoint from the lists of observers when the connection either
times out or is closed.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. CoAP over Reliable Transport URIs</span>
CoAP over UDP [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>] defines the "coap" and "coaps" URI schemes.
This document introduces four additional URI schemes for identifying
CoAP resources and providing a means of locating the resource:
o The "coap+tcp" URI scheme for CoAP over TCP.
o The "coaps+tcp" URI scheme for CoAP over TCP secured by TLS.
o The "coap+ws" URI scheme for CoAP over WebSockets.
o The "coaps+ws" URI scheme for CoAP over WebSockets secured by TLS.
Resources made available via these schemes have no shared identity
even if their resource identifiers indicate the same authority (the
same host listening to the same TCP port). They are hosted in
distinct namespaces because each URI scheme implies a distinct origin
server.
<span class="grey">Bormann, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
In this section, the syntax for the URI schemes is specified using
the Augmented Backus-Naur Form (ABNF) [<a href="./rfc5234" title=""Augmented BNF for Syntax Specifications: ABNF"">RFC5234</a>]. The definitions of
"host", "port", "path-abempty", and "query" are adopted from
[<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>].
<a href="#section-8">Section 8</a> ("Multicast CoAP") in [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>] is not applicable to these
schemes.
As with the "coap" and "coaps" schemes defined in [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>], all URI
schemes defined in this section also support the path prefix
"/.well-known/" as defined by [<a href="./rfc5785" title=""Defining Well-Known Uniform Resource Identifiers (URIs)"">RFC5785</a>] for "well-known locations" in
the namespace of a host. This enables discovery as per <a href="./rfc7252#section-7">Section 7 of
[RFC7252]</a>.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. coap+tcp URI Scheme</span>
The "coap+tcp" URI scheme identifies CoAP resources that are intended
to be accessible using CoAP over TCP.
coap-tcp-URI = "coap+tcp:" "//" host [ ":" port ]
path-abempty [ "?" query ]
The syntax defined in <a href="./rfc7252#section-6.1">Section 6.1 of [RFC7252]</a> applies to this URI
scheme, with the following change:
o The port subcomponent indicates the TCP port at which the CoAP
Connection Acceptor is located. (If it is empty or not given,
then the default port 5683 is assumed, as with UDP.)
Encoding considerations: The scheme encoding conforms to the
encoding rules established for URIs in [<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>].
Interoperability considerations: None.
Security considerations: See <a href="./rfc7252#section-11.1">Section 11.1 of [RFC7252]</a>.
<span class="grey">Bormann, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. coaps+tcp URI Scheme</span>
The "coaps+tcp" URI scheme identifies CoAP resources that are
intended to be accessible using CoAP over TCP secured with TLS.
coaps-tcp-URI = "coaps+tcp:" "//" host [ ":" port ]
path-abempty [ "?" query ]
The syntax defined in <a href="./rfc7252#section-6.2">Section 6.2 of [RFC7252]</a> applies to this URI
scheme, with the following changes:
o The port subcomponent indicates the TCP port at which the TLS
server for the CoAP Connection Acceptor is located. If it is
empty or not given, then the default port 5684 is assumed.
o If a TLS server does not support the Application-Layer Protocol
Negotiation (ALPN) extension [<a href="./rfc7301" title=""Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension"">RFC7301</a>] or wishes to accommodate
TLS clients that do not support ALPN, it MAY offer a coaps+tcp
endpoint on TCP port 5684. This endpoint MAY also be ALPN
enabled. A TLS server MAY offer coaps+tcp endpoints on ports
other than TCP port 5684, which MUST be ALPN enabled.
o For TCP ports other than port 5684, the TLS client MUST use the
ALPN extension to advertise the "coap" protocol identifier (see
<a href="#section-11.7">Section 11.7</a>) in the list of protocols in its ClientHello. If the
TCP server selects and returns the "coap" protocol identifier
using the ALPN extension in its ServerHello, then the connection
succeeds. If the TLS server either does not negotiate the ALPN
extension or returns a no_application_protocol alert, the TLS
client MUST close the connection.
o For TCP port 5684, a TLS client MAY use the ALPN extension to
advertise the "coap" protocol identifier in the list of protocols
in its ClientHello. If the TLS server selects and returns the
"coap" protocol identifier using the ALPN extension in its
ServerHello, then the connection succeeds. If the TLS server
returns a no_application_protocol alert, then the TLS client MUST
close the connection. If the TLS server does not negotiate the
ALPN extension, then coaps+tcp is implicitly selected.
o For TCP port 5684, if the TLS client does not use the ALPN
extension to negotiate the protocol, then coaps+tcp is implicitly
selected.
<span class="grey">Bormann, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Encoding considerations: The scheme encoding conforms to the
encoding rules established for URIs in [<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>].
Interoperability considerations: None.
Security considerations: See <a href="./rfc7252#section-11.1">Section 11.1 of [RFC7252]</a>.
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. coap+ws URI Scheme</span>
The "coap+ws" URI scheme identifies CoAP resources that are intended
to be accessible using CoAP over WebSockets.
coap-ws-URI = "coap+ws:" "//" host [ ":" port ]
path-abempty [ "?" query ]
The port subcomponent is OPTIONAL. The default is port 80.
The WebSocket endpoint is identified by a "ws" URI that is composed
of the authority part of the "coap+ws" URI and the well-known path
"/.well-known/coap" [<a href="./rfc5785" title=""Defining Well-Known Uniform Resource Identifiers (URIs)"">RFC5785</a>] [<a href="./rfc8307" title=""Well-Known URIs for the WebSocket Protocol"">RFC8307</a>]. Within the endpoint
specified in a "coap+ws" URI, the path and query parts of the URI
identify a resource that can be operated on by the methods defined
by CoAP:
coap+ws://example.org/sensors/temperature?u=Cel
\______ ______/\___________ ___________/
\/ \/
Uri-Path: "sensors"
ws://example.org/.well-known/coap Uri-Path: "temperature"
Uri-Query: "u=Cel"
Figure 15: The "coap+ws" URI Scheme
Encoding considerations: The scheme encoding conforms to the
encoding rules established for URIs in [<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>].
Interoperability considerations: None.
Security considerations: See <a href="./rfc7252#section-11.1">Section 11.1 of [RFC7252]</a>.
<span class="grey">Bormann, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. coaps+ws URI Scheme</span>
The "coaps+ws" URI scheme identifies CoAP resources that are intended
to be accessible using CoAP over WebSockets secured by TLS.
coaps-ws-URI = "coaps+ws:" "//" host [ ":" port ]
path-abempty [ "?" query ]
The port subcomponent is OPTIONAL. The default is port 443.
The WebSocket endpoint is identified by a "wss" URI that is composed
of the authority part of the "coaps+ws" URI and the well-known path
"/.well-known/coap" [<a href="./rfc5785" title=""Defining Well-Known Uniform Resource Identifiers (URIs)"">RFC5785</a>] [<a href="./rfc8307" title=""Well-Known URIs for the WebSocket Protocol"">RFC8307</a>]. Within the endpoint
specified in a "coaps+ws" URI, the path and query parts of the URI
identify a resource that can be operated on by the methods defined
by CoAP:
coaps+ws://example.org/sensors/temperature?u=Cel
\______ ______/\___________ ___________/
\/ \/
Uri-Path: "sensors"
wss://example.org/.well-known/coap Uri-Path: "temperature"
Uri-Query: "u=Cel"
Figure 16: The "coaps+ws" URI Scheme
Encoding considerations: The scheme encoding conforms to the
encoding rules established for URIs in [<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>].
Interoperability considerations: None.
Security considerations: See <a href="./rfc7252#section-11.1">Section 11.1 of [RFC7252]</a>.
<span class="h3"><a class="selflink" id="section-8.5" href="#section-8.5">8.5</a>. Uri-Host and Uri-Port Options</span>
CoAP over reliable transports maintains the property from
<a href="./rfc7252#section-5.10.1">Section 5.10.1 of [RFC7252]</a>:
The default values for the Uri-Host and Uri-Port Options are
sufficient for requests to most servers.
Unless otherwise noted, the default value of the Uri-Host Option is
the IP literal representing the destination IP address of the request
message. The default value of the Uri-Port Option is the destination
TCP port.
<span class="grey">Bormann, et al. Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
For CoAP over TLS, these default values are the same, unless Server
Name Indication (SNI) [<a href="./rfc6066" title=""Transport Layer Security (TLS) Extensions: Extension Definitions"">RFC6066</a>] is negotiated. In this case, the
default value of the Uri-Host Option in requests from the TLS client
to the TLS server is the SNI host.
For CoAP over WebSockets, the default value of the Uri-Host Option in
requests from the WebSocket client to the WebSocket server is
indicated by the Host header field from the WebSocket handshake.
<span class="h3"><a class="selflink" id="section-8.6" href="#section-8.6">8.6</a>. Decomposing URIs into Options</span>
The steps are the same as those specified in <a href="./rfc7252#section-6.4">Section 6.4 of
[RFC7252]</a>, with minor changes:
This step from [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>]:
3. If |url| does not have a <scheme> component whose value, when
converted to ASCII lowercase, is "coap" or "coaps", then fail
this algorithm.
is updated to:
3. If |url| does not have a <scheme> component whose value, when
converted to ASCII lowercase, is "coap+tcp", "coaps+tcp",
"coap+ws", or "coaps+ws", then fail this algorithm.
This step from [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>]:
7. If |port| does not equal the request's destination UDP port,
include a Uri-Port Option and let that option's value be |port|.
is updated to:
7. If |port| does not equal the request's destination TCP port,
include a Uri-Port Option and let that option's value be |port|.
<span class="grey">Bormann, et al. Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h3"><a class="selflink" id="section-8.7" href="#section-8.7">8.7</a>. Composing URIs from Options</span>
The steps are the same as those specified in <a href="./rfc7252#section-6.5">Section 6.5 of
[RFC7252]</a>, with minor changes:
This step from [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>]:
1. If the request is secured using DTLS, let |url| be the string
"coaps://". Otherwise, let |url| be the string "coap://".
is updated to:
1. For CoAP over TCP, if the request is secured using TLS, let |url|
be the string "coaps+tcp://". Otherwise, let |url| be the string
"coap+tcp://". For CoAP over WebSockets, if the request is
secured using TLS, let |url| be the string "coaps+ws://".
Otherwise, let |url| be the string "coap+ws://".
This step from [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>]:
4. If the request includes a Uri-Port Option, let |port| be that
option's value. Otherwise, let |port| be the request's
destination UDP port.
is updated to:
4. If the request includes a Uri-Port Option, let |port| be that
option's value. Otherwise, let |port| be the request's
destination TCP port.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Securing CoAP</span>
"Security Challenges For the Internet Of Things" [<a href="#ref-SecurityChallenges">SecurityChallenges</a>]
recommends the following:
... it is essential that IoT protocol suites specify a mandatory
to implement but optional to use security solution. This will
ensure security is available in all implementations, but
configurable to use when not necessary (e.g., in closed
environment). ... even if those features stretch the capabilities
of such devices.
A security solution MUST be implemented to protect CoAP over reliable
transports and MUST be enabled by default. This document defines the
TLS binding, but alternative solutions at different layers in the
protocol stack MAY be used to protect CoAP over reliable transports
<span class="grey">Bormann, et al. Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
when appropriate. Note that there is ongoing work to support a data-
object-based security model for CoAP that is independent of transport
(see [<a href="#ref-OSCORE" title=""Object Security for Constrained RESTful Environments (OSCORE)"">OSCORE</a>]).
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. TLS Binding for CoAP over TCP</span>
The TLS usage guidance in [<a href="./rfc7925" title=""Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things"">RFC7925</a>] applies, including the guidance
about cipher suites in that document that are derived from the
mandatory-to-implement cipher suites defined in [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>].
This guidance assumes implementation in a constrained device or for
communication with a constrained device. However, CoAP over TCP/TLS
has a wider applicability. It may, for example, be implemented on a
gateway or on a device that is less constrained (such as a smart
phone or a tablet), for communication with a peer that is likewise
less constrained, or within a back-end environment that only
communicates with constrained devices via proxies. As an exception
to the previous paragraph, in this case, the recommendations in
[<a href="./rfc7525" title=""Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"">RFC7525</a>] are more appropriate.
Since the guidance offered in [<a href="./rfc7925" title=""Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things"">RFC7925</a>] differs from the guidance
offered in [<a href="./rfc7525" title=""Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"">RFC7525</a>] in terms of algorithms and credential types, it
is assumed that an implementation of CoAP over TCP/TLS that needs to
support both cases implements the recommendations offered by both
specifications.
During the provisioning phase, a CoAP device is provided with the
security information that it needs, including keying materials,
access control lists, and authorization servers. At the end of the
provisioning phase, the device will be in one of four security modes:
NoSec: TLS is disabled.
PreSharedKey: TLS is enabled. The guidance in <a href="./rfc7925#section-4.2">Section 4.2 of
[RFC7925]</a> applies.
RawPublicKey: TLS is enabled. The guidance in <a href="./rfc7925#section-4.3">Section 4.3 of
[RFC7925]</a> applies.
Certificate: TLS is enabled. The guidance in <a href="./rfc7925#section-4.4">Section 4.4 of
[RFC7925]</a> applies.
The "NoSec" mode is optional to implement. The system simply sends
the packets over normal TCP; this is indicated by the "coap+tcp"
scheme and the TCP CoAP default port. The system is secured only by
keeping attackers from being able to send or receive packets from the
network with the CoAP nodes.
<span class="grey">Bormann, et al. Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
"PreSharedKey", "RawPublicKey", or "Certificate" is mandatory to
implement for the TLS binding, depending on the credential type used
with the device. These security modes are achieved using TLS and
are indicated by the "coaps+tcp" scheme and TLS-secured CoAP
default port.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. TLS Usage for CoAP over WebSockets</span>
A CoAP client requesting a resource identified by a "coaps+ws" URI
negotiates a secure WebSocket connection to a WebSocket server
endpoint with a "wss" URI. This is described in <a href="#section-8.4">Section 8.4</a>.
The client MUST perform a TLS handshake after opening the connection
to the server. The guidance in <a href="./rfc6455#section-4.1">Section 4.1 of [RFC6455]</a> applies.
When a CoAP server exposes resources identified by a "coaps+ws" URI,
the guidance in <a href="./rfc7925#section-4.4">Section 4.4 of [RFC7925]</a> applies towards mandatory-
to-implement TLS functionality for certificates. For the server-side
requirements for accepting incoming connections over an HTTPS
(HTTP over TLS) port, the guidance in <a href="./rfc6455#section-4.2">Section 4.2 of [RFC6455]</a>
applies.
Note that the guidance above formally inherits the mandatory-to-
implement cipher suites defined in [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]. However, modern
browsers usually implement cipher suites that are more recent; these
cipher suites are then automatically picked up via the JavaScript
WebSocket API. WebSocket servers that provide secure CoAP over
WebSockets for the browser use case will need to follow the browser
preferences and MUST follow [<a href="./rfc7525" title=""Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"">RFC7525</a>].
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Security Considerations</span>
The security considerations of [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>] apply. For CoAP over
WebSockets and CoAP over TLS-secured WebSockets, the security
considerations of [<a href="./rfc6455" title=""The WebSocket Protocol"">RFC6455</a>] also apply.
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Signaling Messages</span>
The guidance given by an Alternative-Address Option cannot be
followed blindly. In particular, a peer MUST NOT assume that a
successful connection to the Alternative-Address inherits all the
security properties of the current connection.
<span class="grey">Bormann, et al. Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Signaling Codes</span>
IANA has created a third subregistry for values of the Code field in
the CoAP header (<a href="./rfc7252#section-12.1">Section 12.1 of [RFC7252]</a>). The name of this
subregistry is "CoAP Signaling Codes".
Each entry in the subregistry must include the Signaling Code in the
range 7.00-7.31, its name, and a reference to its documentation.
Initial entries in this subregistry are as follows:
+------+---------+-----------+
| Code | Name | Reference |
+------+---------+-----------+
| 7.01 | CSM | <a href="./rfc8323">RFC 8323</a> |
| | | |
| 7.02 | Ping | <a href="./rfc8323">RFC 8323</a> |
| | | |
| 7.03 | Pong | <a href="./rfc8323">RFC 8323</a> |
| | | |
| 7.04 | Release | <a href="./rfc8323">RFC 8323</a> |
| | | |
| 7.05 | Abort | <a href="./rfc8323">RFC 8323</a> |
+------+---------+-----------+
Table 1: CoAP Signaling Codes
All other Signaling Codes are Unassigned.
The IANA policy for future additions to this subregistry is
"IETF Review" or "IESG Approval" as described in [<a href="./rfc8126" title="">RFC8126</a>].
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. CoAP Signaling Option Numbers Registry</span>
IANA has created a subregistry for Option Numbers used in CoAP
Signaling Options within the "Constrained RESTful Environments (CoRE)
Parameters" registry. The name of this subregistry is "CoAP
Signaling Option Numbers".
Each entry in the subregistry must include one or more of the codes
in the "CoAP Signaling Codes" subregistry (<a href="#section-11.1">Section 11.1</a>), the number
for the Option, the name of the Option, and a reference to the
Option's documentation.
<span class="grey">Bormann, et al. Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Initial entries in this subregistry are as follows:
+------------+--------+---------------------+-----------+
| Applies to | Number | Name | Reference |
+------------+--------+---------------------+-----------+
| 7.01 | 2 | Max-Message-Size | <a href="./rfc8323">RFC 8323</a> |
| | | | |
| 7.01 | 4 | Block-Wise-Transfer | <a href="./rfc8323">RFC 8323</a> |
| | | | |
| 7.02, 7.03 | 2 | Custody | <a href="./rfc8323">RFC 8323</a> |
| | | | |
| 7.04 | 2 | Alternative-Address | <a href="./rfc8323">RFC 8323</a> |
| | | | |
| 7.04 | 4 | Hold-Off | <a href="./rfc8323">RFC 8323</a> |
| | | | |
| 7.05 | 2 | Bad-CSM-Option | <a href="./rfc8323">RFC 8323</a> |
+------------+--------+---------------------+-----------+
Table 2: CoAP Signaling Option Codes
The IANA policy for future additions to this subregistry is based on
number ranges for the option numbers, analogous to the policy defined
in <a href="./rfc7252#section-12.2">Section 12.2 of [RFC7252]</a>. (The policy is analogous rather than
identical because the structure of this subregistry includes an
additional column ("Applies to"); however, the value of this column
has no influence on the policy.)
The documentation for a Signaling Option Number should specify the
semantics of an option with that number, including the following
properties:
o Whether the option is critical or elective, as determined by the
Option Number.
o Whether the option is repeatable.
o The format and length of the option's value.
o The base value for the option, if any.
<span class="grey">Bormann, et al. Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h3"><a class="selflink" id="section-11.3" href="#section-11.3">11.3</a>. Service Name and Port Number Registration</span>
IANA has assigned the port number 5683 and the service name "coap",
in accordance with [<a href="./rfc6335" title=""Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry"">RFC6335</a>].
Service Name:
coap
Transport Protocol:
tcp
Assignee:
IESG <iesg@ietf.org>
Contact:
IETF Chair <chair@ietf.org>
Description:
Constrained Application Protocol (CoAP)
Reference:
<a href="./rfc8323">RFC 8323</a>
Port Number:
5683
<span class="h3"><a class="selflink" id="section-11.4" href="#section-11.4">11.4</a>. Secure Service Name and Port Number Registration</span>
IANA has assigned the port number 5684 and the service name "coaps",
in accordance with [<a href="./rfc6335" title=""Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry"">RFC6335</a>]. The port number is to address the
exceptional case of TLS implementations that do not support the ALPN
extension [<a href="./rfc7301" title=""Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension"">RFC7301</a>].
Service Name:
coaps
Transport Protocol:
tcp
Assignee:
IESG <iesg@ietf.org>
Contact:
IETF Chair <chair@ietf.org>
Description:
Constrained Application Protocol (CoAP)
<span class="grey">Bormann, et al. Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Reference:
[<a href="./rfc7301" title=""Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension"">RFC7301</a>], <a href="./rfc8323">RFC 8323</a>
Port Number:
5684
<span class="h3"><a class="selflink" id="section-11.5" href="#section-11.5">11.5</a>. URI Scheme Registration</span>
URI schemes are registered within the "Uniform Resource Identifier
(URI) Schemes" registry maintained at [<a href="#ref-IANA.uri-schemes">IANA.uri-schemes</a>].
Note: The following has been added as a note for each of the URI
schemes defined in this document:
CoAP registers different URI schemes for accessing CoAP resources
via different protocols. This approach runs counter to the WWW
principle that a URI identifies a resource and that multiple URIs
for identifying the same resource should be avoided
<<a href="https://www.w3.org/TR/webarch/#avoid-uri-aliases">https://www.w3.org/TR/webarch/#avoid-uri-aliases</a>>.
This is not a problem for many of the usage scenarios envisioned for
CoAP over reliable transports; additional URI schemes can be
introduced to address additional usage scenarios (as being prepared,
for example, in [<a href="#ref-Multi-Transport-URIs">Multi-Transport-URIs</a>] and [<a href="#ref-CoAP-Alt-Transports">CoAP-Alt-Transports</a>]).
<span class="h4"><a class="selflink" id="section-11.5.1" href="#section-11.5.1">11.5.1</a>. coap+tcp</span>
IANA has registered the URI scheme "coap+tcp". This registration
request complies with [<a href="./rfc7595" title=""Guidelines and Registration Procedures for URI Schemes"">RFC7595</a>].
Scheme name:
coap+tcp
Status:
Permanent
Applications/protocols that use this scheme name:
The scheme is used by CoAP endpoints to access CoAP resources
using TCP.
Contact:
IETF Chair <chair@ietf.org>
Change controller:
IESG <iesg@ietf.org>
Reference:
<a href="./rfc8323#section-8.1">Section 8.1 in RFC 8323</a>
<span class="grey">Bormann, et al. Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h4"><a class="selflink" id="section-11.5.2" href="#section-11.5.2">11.5.2</a>. coaps+tcp</span>
IANA has registered the URI scheme "coaps+tcp". This registration
request complies with [<a href="./rfc7595" title=""Guidelines and Registration Procedures for URI Schemes"">RFC7595</a>].
Scheme name:
coaps+tcp
Status:
Permanent
Applications/protocols that use this scheme name:
The scheme is used by CoAP endpoints to access CoAP resources
using TLS.
Contact:
IETF Chair <chair@ietf.org>
Change controller:
IESG <iesg@ietf.org>
Reference:
<a href="./rfc8323#section-8.2">Section 8.2 in RFC 8323</a>
<span class="h4"><a class="selflink" id="section-11.5.3" href="#section-11.5.3">11.5.3</a>. coap+ws</span>
IANA has registered the URI scheme "coap+ws". This registration
request complies with [<a href="./rfc7595" title=""Guidelines and Registration Procedures for URI Schemes"">RFC7595</a>].
Scheme name:
coap+ws
Status:
Permanent
Applications/protocols that use this scheme name:
The scheme is used by CoAP endpoints to access CoAP resources
using the WebSocket Protocol.
Contact:
IETF Chair <chair@ietf.org>
Change controller:
IESG <iesg@ietf.org>
Reference:
<a href="./rfc8323#section-8.3">Section 8.3 in RFC 8323</a>
<span class="grey">Bormann, et al. Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h4"><a class="selflink" id="section-11.5.4" href="#section-11.5.4">11.5.4</a>. coaps+ws</span>
IANA has registered the URI scheme "coaps+ws". This registration
request complies with [<a href="./rfc7595" title=""Guidelines and Registration Procedures for URI Schemes"">RFC7595</a>].
Scheme name:
coaps+ws
Status:
Permanent
Applications/protocols that use this scheme name:
The scheme is used by CoAP endpoints to access CoAP resources
using the WebSocket Protocol secured with TLS.
Contact:
IETF Chair <chair@ietf.org>
Change controller:
IESG <iesg@ietf.org>
References:
<a href="./rfc8323#section-8.4">Section 8.4 in RFC 8323</a>
<span class="h3"><a class="selflink" id="section-11.6" href="#section-11.6">11.6</a>. Well-Known URI Suffix Registration</span>
IANA has registered "coap" in the "Well-Known URIs" registry. This
registration request complies with [<a href="./rfc5785" title=""Defining Well-Known Uniform Resource Identifiers (URIs)"">RFC5785</a>].
URI suffix:
coap
Change controller:
IETF
Specification document(s):
<a href="./rfc8323">RFC 8323</a>
Related information:
None.
<span class="grey">Bormann, et al. Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h3"><a class="selflink" id="section-11.7" href="#section-11.7">11.7</a>. ALPN Protocol Identifier</span>
IANA has assigned the following value in the "Application-Layer
Protocol Negotiation (ALPN) Protocol IDs" registry created by
[<a href="./rfc7301" title=""Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension"">RFC7301</a>]. The "coap" string identifies CoAP when used over TLS.
Protocol:
CoAP
Identification Sequence:
0x63 0x6f 0x61 0x70 ("coap")
Reference:
<a href="./rfc8323">RFC 8323</a>
<span class="h3"><a class="selflink" id="section-11.8" href="#section-11.8">11.8</a>. WebSocket Subprotocol Registration</span>
IANA has registered the WebSocket CoAP subprotocol in the "WebSocket
Subprotocol Name Registry":
Subprotocol Identifier:
coap
Subprotocol Common Name:
Constrained Application Protocol (CoAP)
Subprotocol Definition:
<a href="./rfc8323">RFC 8323</a>
<span class="h3"><a class="selflink" id="section-11.9" href="#section-11.9">11.9</a>. CoAP Option Numbers Registry</span>
IANA has added this document as a reference for the following entries
registered by [<a href="./rfc7959" title=""Block-Wise Transfers in the Constrained Application Protocol (CoAP)"">RFC7959</a>] in the "CoAP Option Numbers" subregistry
defined by [<a href="./rfc7252" title=""The Constrained Application Protocol (CoAP)"">RFC7252</a>]:
+--------+--------+--------------------+
| Number | Name | Reference |
+--------+--------+--------------------+
| 23 | Block2 | <a href="./rfc7959">RFC 7959</a>, <a href="./rfc8323">RFC 8323</a> |
| | | |
| 27 | Block1 | <a href="./rfc7959">RFC 7959</a>, <a href="./rfc8323">RFC 8323</a> |
+--------+--------+--------------------+
Table 3: CoAP Option Numbers
<span class="grey">Bormann, et al. Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. References</span>
<span class="h3"><a class="selflink" id="section-12.1" href="#section-12.1">12.1</a>. Normative References</span>
[<a id="ref-RFC793">RFC793</a>] Postel, J., "Transmission Control Protocol", STD 7,
<a href="./rfc793">RFC 793</a>, DOI 10.17487/RFC0793, September 1981,
<<a href="https://www.rfc-editor.org/info/rfc793">https://www.rfc-editor.org/info/rfc793</a>>.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC3986">RFC3986</a>] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
<a href="./rfc3986">RFC 3986</a>, DOI 10.17487/RFC3986, January 2005,
<<a href="https://www.rfc-editor.org/info/rfc3986">https://www.rfc-editor.org/info/rfc3986</a>>.
[<a id="ref-RFC5234">RFC5234</a>] Crocker, D., Ed., and P. Overell, "Augmented BNF for
Syntax Specifications: ABNF", STD 68, <a href="./rfc5234">RFC 5234</a>,
DOI 10.17487/RFC5234, January 2008,
<<a href="https://www.rfc-editor.org/info/rfc5234">https://www.rfc-editor.org/info/rfc5234</a>>.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>,
DOI 10.17487/RFC5246, August 2008,
<<a href="https://www.rfc-editor.org/info/rfc5246">https://www.rfc-editor.org/info/rfc5246</a>>.
[<a id="ref-RFC5785">RFC5785</a>] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
Uniform Resource Identifiers (URIs)", <a href="./rfc5785">RFC 5785</a>,
DOI 10.17487/RFC5785, April 2010,
<<a href="https://www.rfc-editor.org/info/rfc5785">https://www.rfc-editor.org/info/rfc5785</a>>.
[<a id="ref-RFC6066">RFC6066</a>] Eastlake 3rd, D., "Transport Layer Security (TLS)
Extensions: Extension Definitions", <a href="./rfc6066">RFC 6066</a>,
DOI 10.17487/RFC6066, January 2011,
<<a href="https://www.rfc-editor.org/info/rfc6066">https://www.rfc-editor.org/info/rfc6066</a>>.
[<a id="ref-RFC6455">RFC6455</a>] Fette, I. and A. Melnikov, "The WebSocket Protocol",
<a href="./rfc6455">RFC 6455</a>, DOI 10.17487/RFC6455, December 2011,
<<a href="https://www.rfc-editor.org/info/rfc6455">https://www.rfc-editor.org/info/rfc6455</a>>.
[<a id="ref-RFC7252">RFC7252</a>] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
Application Protocol (CoAP)", <a href="./rfc7252">RFC 7252</a>,
DOI 10.17487/RFC7252, June 2014,
<<a href="https://www.rfc-editor.org/info/rfc7252">https://www.rfc-editor.org/info/rfc7252</a>>.
<span class="grey">Bormann, et al. Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
[<a id="ref-RFC7301">RFC7301</a>] Friedl, S., Popov, A., Langley, A., and E. Stephan,
"Transport Layer Security (TLS) Application-Layer Protocol
Negotiation Extension", <a href="./rfc7301">RFC 7301</a>, DOI 10.17487/RFC7301,
July 2014, <<a href="https://www.rfc-editor.org/info/rfc7301">https://www.rfc-editor.org/info/rfc7301</a>>.
[<a id="ref-RFC7525">RFC7525</a>] Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", <a href="https://www.rfc-editor.org/bcp/bcp195">BCP 195</a>, <a href="./rfc7525">RFC 7525</a>, DOI 10.17487/RFC7525,
May 2015, <<a href="https://www.rfc-editor.org/info/rfc7525">https://www.rfc-editor.org/info/rfc7525</a>>.
[<a id="ref-RFC7595">RFC7595</a>] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
and Registration Procedures for URI Schemes", <a href="https://www.rfc-editor.org/bcp/bcp35">BCP 35</a>,
<a href="./rfc7595">RFC 7595</a>, DOI 10.17487/RFC7595, June 2015,
<<a href="https://www.rfc-editor.org/info/rfc7595">https://www.rfc-editor.org/info/rfc7595</a>>.
[<a id="ref-RFC7641">RFC7641</a>] Hartke, K., "Observing Resources in the Constrained
Application Protocol (CoAP)", <a href="./rfc7641">RFC 7641</a>,
DOI 10.17487/RFC7641, September 2015,
<<a href="https://www.rfc-editor.org/info/rfc7641">https://www.rfc-editor.org/info/rfc7641</a>>.
[<a id="ref-RFC7925">RFC7925</a>] Tschofenig, H., Ed., and T. Fossati, "Transport Layer
Security (TLS) / Datagram Transport Layer Security (DTLS)
Profiles for the Internet of Things", <a href="./rfc7925">RFC 7925</a>,
DOI 10.17487/RFC7925, July 2016,
<<a href="https://www.rfc-editor.org/info/rfc7925">https://www.rfc-editor.org/info/rfc7925</a>>.
[<a id="ref-RFC7959">RFC7959</a>] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
the Constrained Application Protocol (CoAP)", <a href="./rfc7959">RFC 7959</a>,
DOI 10.17487/RFC7959, August 2016,
<<a href="https://www.rfc-editor.org/info/rfc7959">https://www.rfc-editor.org/info/rfc7959</a>>.
[<a id="ref-RFC8126">RFC8126</a>] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>,
<a href="./rfc8126">RFC 8126</a>, DOI 10.17487/RFC8126, June 2017,
<<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>>.
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in
<a href="./rfc2119">RFC 2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>,
DOI 10.17487/RFC8174, May 2017,
<<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
[<a id="ref-RFC8307">RFC8307</a>] Bormann, C., "Well-Known URIs for the WebSocket Protocol",
<a href="./rfc8307">RFC 8307</a>, DOI 10.17487/RFC8307, January 2018,
<<a href="https://www.rfc-editor.org/info/rfc8307">https://www.rfc-editor.org/info/rfc8307</a>>.
<span class="grey">Bormann, et al. Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h3"><a class="selflink" id="section-12.2" href="#section-12.2">12.2</a>. Informative References</span>
[<a id="ref-BK2015">BK2015</a>] Byrne, C. and J. Kleberg, "Advisory Guidelines for UDP
Deployment", Work in Progress, <a href="./draft-byrne-opsec-udp-advisory-00">draft-byrne-opsec-udp-</a>
<a href="./draft-byrne-opsec-udp-advisory-00">advisory-00</a>, July 2015.
[<a id="ref-CoAP-Alt-Transports">CoAP-Alt-Transports</a>]
Silverajan, B. and T. Savolainen, "CoAP Communication with
Alternative Transports", Work in Progress,
<a href="./draft-silverajan-core-coap-alternative-transports-10">draft-silverajan-core-coap-alternative-transports-10</a>,
July 2017.
[<a id="ref-CoCoA">CoCoA</a>] Bormann, C., Betzler, A., Gomez, C., and I. Demirkol,
"CoAP Simple Congestion Control/Advanced", Work in
Progress, <a href="./draft-ietf-core-cocoa-02">draft-ietf-core-cocoa-02</a>, October 2017.
[<a id="ref-EK2016">EK2016</a>] Edeline, K., Kuehlewind, M., Trammell, B., Aben, E., and
B. Donnet, "Using UDP for Internet Transport Evolution",
arXiv preprint 1612.07816, December 2016,
<<a href="https://arxiv.org/abs/1612.07816">https://arxiv.org/abs/1612.07816</a>>.
[<a id="ref-HomeGateway">HomeGateway</a>]
Haetoenen, S., Nyrhinen, A., Eggert, L., Strowes, S.,
Sarolahti, P., and N. Kojo, "An experimental study of home
gateway characteristics", Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement,
DOI 10.1145/1879141.1879174, November 2010.
[<a id="ref-IANA.uri-schemes">IANA.uri-schemes</a>]
IANA, "Uniform Resource Identifier (URI) Schemes",
<<a href="https://www.iana.org/assignments/uri-schemes">https://www.iana.org/assignments/uri-schemes</a>>.
[<a id="ref-LWM2M">LWM2M</a>] Open Mobile Alliance, "Lightweight Machine to Machine
Technical Specification Version 1.0", February 2017,
<<a href="http://www.openmobilealliance.org/release/LightweightM2M/V1_0-20170208-A/OMA-TS-LightweightM2M-V1_0-20170208-A.pdf">http://www.openmobilealliance.org/release/LightweightM2M/</a>
<a href="http://www.openmobilealliance.org/release/LightweightM2M/V1_0-20170208-A/OMA-TS-LightweightM2M-V1_0-20170208-A.pdf">V1_0-20170208-A/</a>
<a href="http://www.openmobilealliance.org/release/LightweightM2M/V1_0-20170208-A/OMA-TS-LightweightM2M-V1_0-20170208-A.pdf">OMA-TS-LightweightM2M-V1_0-20170208-A.pdf</a>>.
[<a id="ref-Multi-Transport-URIs">Multi-Transport-URIs</a>]
Thaler, D., <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22Using+URIs+With+Multiple+Transport+Stacks%22'>"Using URIs With Multiple Transport Stacks"</a>,
Work in Progress, <a href="./draft-thaler-appsawg-multi-transport-uris-01">draft-thaler-appsawg-multi-transport-</a>
<a href="./draft-thaler-appsawg-multi-transport-uris-01">uris-01</a>, July 2017.
[<a id="ref-OSCORE">OSCORE</a>] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
"Object Security for Constrained RESTful Environments
(OSCORE)", Work in Progress, <a href="./draft-ietf-core-object-security-08">draft-ietf-core-object-</a>
<a href="./draft-ietf-core-object-security-08">security-08</a>, January 2018.
<span class="grey">Bormann, et al. Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
[<a id="ref-RFC768">RFC768</a>] Postel, J., "User Datagram Protocol", STD 6, <a href="./rfc768">RFC 768</a>,
DOI 10.17487/RFC0768, August 1980,
<<a href="https://www.rfc-editor.org/info/rfc768">https://www.rfc-editor.org/info/rfc768</a>>.
[<a id="ref-RFC6335">RFC6335</a>] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
Cheshire, "Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry", <a href="https://www.rfc-editor.org/bcp/bcp165">BCP 165</a>,
<a href="./rfc6335">RFC 6335</a>, DOI 10.17487/RFC6335, August 2011,
<<a href="https://www.rfc-editor.org/info/rfc6335">https://www.rfc-editor.org/info/rfc6335</a>>.
[<a id="ref-RFC6347">RFC6347</a>] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", <a href="./rfc6347">RFC 6347</a>, DOI 10.17487/RFC6347,
January 2012, <<a href="https://www.rfc-editor.org/info/rfc6347">https://www.rfc-editor.org/info/rfc6347</a>>.
[<a id="ref-RFC7230">RFC7230</a>] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
Transfer Protocol (HTTP/1.1): Message Syntax and Routing",
<a href="./rfc7230">RFC 7230</a>, DOI 10.17487/RFC7230, June 2014,
<<a href="https://www.rfc-editor.org/info/rfc7230">https://www.rfc-editor.org/info/rfc7230</a>>.
[<a id="ref-RFC7540">RFC7540</a>] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
Transfer Protocol Version 2 (HTTP/2)", <a href="./rfc7540">RFC 7540</a>,
DOI 10.17487/RFC7540, May 2015,
<<a href="https://www.rfc-editor.org/info/rfc7540">https://www.rfc-editor.org/info/rfc7540</a>>.
[<a id="ref-SecurityChallenges">SecurityChallenges</a>]
Polk, T. and S. Turner, "Security Challenges For the
Internet Of Things", Interconnecting Smart Objects with
the Internet / IAB Workshop, February 2011,
<<a href="https://www.iab.org/wp-content/IAB-uploads/2011/03/Turner.pdf">https://www.iab.org/wp-content/IAB-uploads/2011/03/</a>
<a href="https://www.iab.org/wp-content/IAB-uploads/2011/03/Turner.pdf">Turner.pdf</a>>.
[<a id="ref-SW2016">SW2016</a>] Swett, I., "QUIC Deployment Experience @Google", IETF 96
Proceedings, Berlin, Germany, July 2016,
<<a href="https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf">https://www.ietf.org/proceedings/96/slides/</a>
<a href="https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf">slides-96-quic-3.pdf</a>>.
[<a id="ref-TCP-in-IoT">TCP-in-IoT</a>]
Gomez, C., Crowcroft, J., and M. Scharf, "TCP Usage
Guidance in the Internet of Things (IoT)", Work in
Progress, <a href="./draft-ietf-lwig-tcp-constrained-node-networks-01">draft-ietf-lwig-tcp-constrained-node-</a>
<a href="./draft-ietf-lwig-tcp-constrained-node-networks-01">networks-01</a>, October 2017.
<span class="grey">Bormann, et al. Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Examples of CoAP over WebSockets</span>
This appendix gives examples for the first two configurations
discussed in <a href="#section-4">Section 4</a>.
An example of the process followed by a CoAP client to retrieve the
representation of a resource identified by a "coap+ws" URI might be
as follows. Figure 17 below illustrates the WebSocket and CoAP
messages exchanged in detail.
1. The CoAP client obtains the URI
<coap+ws://example.org/sensors/temperature?u=Cel>, for example,
from a resource representation that it retrieved previously.
2. The CoAP client establishes a WebSocket connection to the
endpoint URI composed of the authority "example.org" and the
well-known path "/.well-known/coap",
<ws://example.org/.well-known/coap>.
3. CSMs (<a href="#section-5.3">Section 5.3</a>) are exchanged (not shown).
4. The CoAP client sends a single-frame, masked, binary message
containing a CoAP request. The request indicates the target
resource with the Uri-Path ("sensors", "temperature") and
Uri-Query ("u=Cel") Options.
5. The CoAP client waits for the server to return a response.
6. The CoAP client uses the connection for further requests, or the
connection is closed.
<span class="grey">Bormann, et al. Standards Track [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
CoAP CoAP
Client Server
(WebSocket (WebSocket
Client) Server)
| |
| |
+=========>| GET /.well-known/coap HTTP/1.1
| | Host: example.org
| | Upgrade: websocket
| | Connection: Upgrade
| | Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
| | Sec-WebSocket-Protocol: coap
| | Sec-WebSocket-Version: 13
| |
|<=========+ HTTP/1.1 101 Switching Protocols
| | Upgrade: websocket
| | Connection: Upgrade
| | Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
| | Sec-WebSocket-Protocol: coap
: :
:<-------->: Exchange of CSMs (not shown)
| |
+--------->| Binary frame (opcode=%x2, FIN=1, MASK=1)
| | +-------------------------+
| | | GET |
| | | Token: 0x53 |
| | | Uri-Path: "sensors" |
| | | Uri-Path: "temperature" |
| | | Uri-Query: "u=Cel" |
| | +-------------------------+
| |
|<---------+ Binary frame (opcode=%x2, FIN=1, MASK=0)
| | +-------------------------+
| | | 2.05 Content |
| | | Token: 0x53 |
| | | Payload: "22.3 Cel" |
| | +-------------------------+
: :
: :
+--------->| Close frame (opcode=%x8, FIN=1, MASK=1)
| |
|<---------+ Close frame (opcode=%x8, FIN=1, MASK=0)
| |
Figure 17: A CoAP Client Retrieves the Representation of a Resource
Identified by a "coap+ws" URI
<span class="grey">Bormann, et al. Standards Track [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Figure 18 shows how a CoAP client uses a CoAP forward proxy with a
WebSocket endpoint to retrieve the representation of the resource
"coap://[2001:db8::1]/". The use of the forward proxy and the
address of the WebSocket endpoint are determined by the client from
local configuration rules. The request URI is specified in the
Proxy-Uri Option. Since the request URI uses the "coap" URI scheme,
the proxy fulfills the request by issuing a Confirmable GET request
over UDP to the CoAP server and returning the response over the
WebSocket connection to the client.
CoAP CoAP CoAP
Client Proxy Server
(WebSocket (WebSocket (UDP
Client) Server) Endpoint)
| | |
+--------->| | Binary frame (opcode=%x2, FIN=1, MASK=1)
| | | +------------------------------------+
| | | | GET |
| | | | Token: 0x7d |
| | | | Proxy-Uri: "coap://[2001:db8::1]/" |
| | | +------------------------------------+
| | |
| +--------->| CoAP message (Ver=1, T=Con, MID=0x8f54)
| | | +------------------------------------+
| | | | GET |
| | | | Token: 0x0a15 |
| | | +------------------------------------+
| | |
| |<---------+ CoAP message (Ver=1, T=Ack, MID=0x8f54)
| | | +------------------------------------+
| | | | 2.05 Content |
| | | | Token: 0x0a15 |
| | | | Payload: "ready" |
| | | +------------------------------------+
| | |
|<---------+ | Binary frame (opcode=%x2, FIN=1, MASK=0)
| | | +------------------------------------+
| | | | 2.05 Content |
| | | | Token: 0x7d |
| | | | Payload: "ready" |
| | | +------------------------------------+
| | |
Figure 18: A CoAP Client Retrieves the Representation of a Resource
Identified by a "coap" URI via a WebSocket-Enabled CoAP Proxy
<span class="grey">Bormann, et al. Standards Track [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Acknowledgments
We would like to thank Stephen Berard, Geoffrey Cristallo, Olivier
Delaby, Esko Dijk, Christian Groves, Nadir Javed, Michael Koster,
Achim Kraus, David Navarro, Szymon Sasin, Goeran Selander, Zach
Shelby, Andrew Summers, Julien Vermillard, and Gengyu Wei for their
feedback.
Last Call reviews from Yoshifumi Nishida, Mark Nottingham, and Meral
Shirazipour as well as several IESG reviewers provided extensive
comments; from the IESG, we would like to specifically call out Ben
Campbell, Mirja Kuehlewind, Eric Rescorla, Adam Roach, and the
responsible AD Alexey Melnikov.
Contributors
Matthias Kovatsch
Siemens AG
Otto-Hahn-Ring 6
Munich D-81739
Germany
Phone: +49-173-5288856
Email: matthias.kovatsch@siemens.com
Teemu Savolainen
Nokia Technologies
Hatanpaan valtatie 30
Tampere FI-33100
Finland
Email: teemu.savolainen@nokia.com
Valik Solorzano Barboza
Zebra Technologies
820 W. Jackson Blvd. Suite 700
Chicago, IL 60607
United States of America
Phone: +1-847-634-6700
Email: vsolorzanobarboza@zebra.com
<span class="grey">Bormann, et al. Standards Track [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Authors' Addresses
Carsten Bormann
Universitaet Bremen TZI
Postfach 330440
Bremen D-28359
Germany
Phone: +49-421-218-63921
Email: cabo@tzi.org
Simon Lemay
Zebra Technologies
820 W. Jackson Blvd. Suite 700
Chicago, IL 60607
United States of America
Phone: +1-847-634-6700
Email: slemay@zebra.com
Hannes Tschofenig
ARM Ltd.
110 Fulbourn Road
Cambridge CB1 9NJ
United Kingdom
Email: Hannes.tschofenig@gmx.net
URI: <a href="http://www.tschofenig.priv.at">http://www.tschofenig.priv.at</a>
Klaus Hartke
Universitaet Bremen TZI
Postfach 330440
Bremen D-28359
Germany
Phone: +49-421-218-63905
Email: hartke@tzi.org
<span class="grey">Bormann, et al. Standards Track [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc8323">RFC 8323</a> TCP/TLS/WebSockets Transports for CoAP February 2018</span>
Bilhanan Silverajan
Tampere University of Technology
Korkeakoulunkatu 10
Tampere FI-33720
Finland
Email: bilhanan.silverajan@tut.fi
Brian Raymor (editor)
Email: brianraymor@hotmail.com
Bormann, et al. Standards Track [Page 54]
</pre>
|