1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
|
<pre>Internet Engineering Task Force (IETF) Y. Nir
Request for Comments: 8422 Check Point
Obsoletes: <a href="./rfc4492">4492</a> S. Josefsson
Category: Standards Track SJD AB
ISSN: 2070-1721 M. Pegourie-Gonnard
ARM
August 2018
<span class="h1">Elliptic Curve Cryptography (ECC) Cipher Suites</span>
<span class="h1">for Transport Layer Security (TLS) Versions 1.2 and Earlier</span>
Abstract
This document describes key exchange algorithms based on Elliptic
Curve Cryptography (ECC) for the Transport Layer Security (TLS)
protocol. In particular, it specifies the use of Ephemeral Elliptic
Curve Diffie-Hellman (ECDHE) key agreement in a TLS handshake and the
use of the Elliptic Curve Digital Signature Algorithm (ECDSA) and
Edwards-curve Digital Signature Algorithm (EdDSA) as authentication
mechanisms.
This document obsoletes <a href="./rfc4492">RFC 4492</a>.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8422">https://www.rfc-editor.org/info/rfc8422</a>.
<span class="grey">Nir, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Nir, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Conventions Used in This Document . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. Key Exchange Algorithm . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2.1">2.1</a>. ECDHE_ECDSA . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-2.2">2.2</a>. ECDHE_RSA . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-2.3">2.3</a>. ECDH_anon . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-2.4">2.4</a>. Algorithms in Certificate Chains . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3">3</a>. Client Authentication . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.1">3.1</a>. ECDSA_sign . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-4">4</a>. TLS Extensions for ECC . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-5">5</a>. Data Structures and Computations . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5.1">5.1</a>. Client Hello Extensions . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5.1.1">5.1.1</a>. Supported Elliptic Curves Extension . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-5.1.2">5.1.2</a>. Supported Point Formats Extension . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-5.1.3">5.1.3</a>. The signature_algorithms Extension and EdDSA . . . . <a href="#page-13">13</a>
<a href="#section-5.2">5.2</a>. Server Hello Extension . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-5.3">5.3</a>. Server Certificate . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-5.4">5.4</a>. Server Key Exchange . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-5.4.1">5.4.1</a>. Uncompressed Point Format for NIST Curves . . . . . . <a href="#page-19">19</a>
<a href="#section-5.5">5.5</a>. Certificate Request . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-5.6">5.6</a>. Client Certificate . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-5.7">5.7</a>. Client Key Exchange . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-5.8">5.8</a>. Certificate Verify . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-5.9">5.9</a>. Elliptic Curve Certificates . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-5.10">5.10</a>. ECDH, ECDSA, and RSA Computations . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-5.11">5.11</a>. Public Key Validation . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-6">6</a>. Cipher Suites . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-7">7</a>. Implementation Status . . . . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-8">8</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-9">9</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-28">28</a>
<a href="#section-10">10</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-10.1">10.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-10.2">10.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-31">31</a>
<a href="#appendix-A">Appendix A</a>. Equivalent Curves (Informative) . . . . . . . . . . <a href="#page-32">32</a>
<a href="#appendix-B">Appendix B</a>. Differences from <a href="./rfc4492">RFC 4492</a> . . . . . . . . . . . . . <a href="#page-33">33</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-34">34</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-34">34</a>
<span class="grey">Nir, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document describes additions to TLS to support ECC that are
applicable to TLS versions 1.0 [<a href="./rfc2246" title=""The TLS Protocol Version 1.0"">RFC2246</a>], 1.1 [<a href="./rfc4346" title=""The Transport Layer Security (TLS) Protocol Version 1.1"">RFC4346</a>], and 1.2
[<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]. The use of ECC in TLS 1.3 is defined in [<a href="#ref-TLS1.3" title=""The Transport Layer Security (TLS) Protocol Version 1.3"">TLS1.3</a>] and is
explicitly out of scope for this document. In particular, this
document defines:
o the use of the ECDHE key agreement scheme with ephemeral keys to
establish the TLS premaster secret, and
o the use of ECDSA and EdDSA signatures for authentication of TLS
peers.
The remainder of this document is organized as follows. <a href="#section-2">Section 2</a>
provides an overview of ECC-based key exchange algorithms for TLS.
<a href="#section-3">Section 3</a> describes the use of ECC certificates for client
authentication. TLS extensions that allow a client to negotiate the
use of specific curves and point formats are presented in <a href="#section-4">Section 4</a>.
<a href="#section-5">Section 5</a> specifies various data structures needed for an ECC-based
handshake, their encoding in TLS messages, and the processing of
those messages. <a href="#section-6">Section 6</a> defines ECC-based cipher suites and
identifies a small subset of these as recommended for all
implementations of this specification. <a href="#section-8">Section 8</a> discusses security
considerations. <a href="#section-9">Section 9</a> describes IANA considerations for the name
spaces created by this document's predecessor. <a href="#appendix-B">Appendix B</a> provides
differences from [<a href="./rfc4492" title=""Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)"">RFC4492</a>], the document that this one replaces.
Implementation of this specification requires familiarity with TLS,
TLS extensions [<a href="./rfc4366" title=""Transport Layer Security (TLS) Extensions"">RFC4366</a>], and ECC.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Key Exchange Algorithm</span>
This document defines three new ECC-based key exchange algorithms for
TLS. All of them use Ephemeral ECDH (ECDHE) to compute the TLS
premaster secret, and they differ only in the mechanism (if any) used
to authenticate them. The derivation of the TLS master secret from
the premaster secret and the subsequent generation of bulk
encryption/MAC keys and initialization vectors is independent of the
key exchange algorithm and not impacted by the introduction of ECC.
<span class="grey">Nir, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Table 1 summarizes the new key exchange algorithms. All of these key
exchange algorithms provide forward secrecy if and only if fresh
ephemeral keys are generated and used, and also destroyed after use.
+-------------+------------------------------------------------+
| Algorithm | Description |
+-------------+------------------------------------------------+
| ECDHE_ECDSA | Ephemeral ECDH with ECDSA or EdDSA signatures. |
| ECDHE_RSA | Ephemeral ECDH with RSA signatures. |
| ECDH_anon | Anonymous ephemeral ECDH, no signatures. |
+-------------+------------------------------------------------+
Table 1: ECC Key Exchange Algorithms
These key exchanges are analogous to DHE_DSS, DHE_RSA, and DH_anon,
respectively.
With ECDHE_RSA, a server can reuse its existing RSA certificate and
easily comply with a constrained client's elliptic curve preferences
(see <a href="#section-4">Section 4</a>). However, the computational cost incurred by a
server is higher for ECDHE_RSA than for the traditional RSA key
exchange, which does not provide forward secrecy.
The anonymous key exchange algorithm does not provide authentication
of the server or the client. Like other anonymous TLS key exchanges,
it is subject to man-in-the-middle attacks. Applications using TLS
with this algorithm SHOULD provide authentication by other means.
<span class="grey">Nir, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Client Server
------ ------
ClientHello -------->
ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest*+
<-------- ServerHelloDone
Certificate*+
ClientKeyExchange
CertificateVerify*+
[ChangeCipherSpec]
Finished -------->
[ChangeCipherSpec]
<-------- Finished
Application Data <-------> Application Data
* message is not sent under some conditions
+ message is not sent unless client authentication
is desired
Figure 1: Message Flow in a Full TLS 1.2 Handshake
Figure 1 shows all messages involved in the TLS key establishment
protocol (aka full handshake). The addition of ECC has direct impact
only on the ClientHello, the ServerHello, the server's Certificate
message, the ServerKeyExchange, the ClientKeyExchange, the
CertificateRequest, the client's Certificate message, and the
CertificateVerify. Next, we describe the ECC key exchange algorithm
in greater detail in terms of the content and processing of these
messages. For ease of exposition, we defer discussion of client
authentication and associated messages (identified with a '+' in
Figure 1) until <a href="#section-3">Section 3</a> and of the optional ECC-specific extensions
(which impact the Hello messages) until <a href="#section-4">Section 4</a>.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. ECDHE_ECDSA</span>
In ECDHE_ECDSA, the server's certificate MUST contain an ECDSA- or
EdDSA-capable public key.
The server sends its ephemeral ECDH public key and a specification of
the corresponding curve in the ServerKeyExchange message. These
parameters MUST be signed with ECDSA or EdDSA using the private key
corresponding to the public key in the server's Certificate.
The client generates an ECDH key pair on the same curve as the
server's ephemeral ECDH key and sends its public key in the
ClientKeyExchange message.
<span class="grey">Nir, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Both client and server perform an ECDH operation (see <a href="#section-5.10">Section 5.10</a>)
and use the resultant shared secret as the premaster secret.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. ECDHE_RSA</span>
This key exchange algorithm is the same as ECDHE_ECDSA except that
the server's certificate MUST contain an RSA public key authorized
for signing and the signature in the ServerKeyExchange message must
be computed with the corresponding RSA private key.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. ECDH_anon</span>
NOTE: Despite the name beginning with "ECDH_" (no E), the key used in
ECDH_anon is ephemeral just like the key in ECDHE_RSA and
ECDHE_ECDSA. The naming follows the example of DH_anon, where the
key is also ephemeral but the name does not reflect it.
In ECDH_anon, the server's Certificate, the CertificateRequest, the
client's Certificate, and the CertificateVerify messages MUST NOT be
sent.
The server MUST send an ephemeral ECDH public key and a specification
of the corresponding curve in the ServerKeyExchange message. These
parameters MUST NOT be signed.
The client generates an ECDH key pair on the same curve as the
server's ephemeral ECDH key and sends its public key in the
ClientKeyExchange message.
Both client and server perform an ECDH operation and use the
resultant shared secret as the premaster secret. All ECDH
calculations are performed as specified in <a href="#section-5.10">Section 5.10</a>.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Algorithms in Certificate Chains</span>
This specification does not impose restrictions on signature schemes
used anywhere in the certificate chain. The previous version of this
document required the signatures to match, but this restriction,
originating in previous TLS versions, is lifted here as it had been
in <a href="./rfc5246">RFC 5246</a>.
<span class="grey">Nir, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Client Authentication</span>
This document defines a client authentication mechanism named after
the type of client certificate involved: ECDSA_sign. The ECDSA_sign
mechanism is usable with any of the non-anonymous ECC key exchange
algorithms described in <a href="#section-2">Section 2</a> as well as other non-anonymous
(non-ECC) key exchange algorithms defined in TLS.
Note that client certificates with EdDSA public keys also use this
mechanism.
The server can request ECC-based client authentication by including
this certificate type in its CertificateRequest message. The client
must check if it possesses a certificate appropriate for the method
suggested by the server and is willing to use it for authentication.
If these conditions are not met, the client SHOULD send a client
Certificate message containing no certificates. In this case, the
ClientKeyExchange MUST be sent as described in <a href="#section-2">Section 2</a>, and the
CertificateVerify MUST NOT be sent. If the server requires client
authentication, it may respond with a fatal handshake failure alert.
If the client has an appropriate certificate and is willing to use it
for authentication, it must send that certificate in the client's
Certificate message (as per <a href="#section-5.6">Section 5.6</a>) and prove possession of the
private key corresponding to the certified key. The process of
determining an appropriate certificate and proving possession is
different for each authentication mechanism and is described below.
NOTE: It is permissible for a server to request (and the client to
send) a client certificate of a different type than the server
certificate.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. ECDSA_sign</span>
To use this authentication mechanism, the client MUST possess a
certificate containing an ECDSA- or EdDSA-capable public key.
The client proves possession of the private key corresponding to the
certified key by including a signature in the CertificateVerify
message as described in <a href="#section-5.8">Section 5.8</a>.
<span class="grey">Nir, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. TLS Extensions for ECC</span>
Two TLS extensions are defined in this specification: (i) the
Supported Elliptic Curves Extension and (ii) the Supported Point
Formats Extension. These allow negotiating the use of specific
curves and point formats (e.g., compressed vs. uncompressed,
respectively) during a handshake starting a new session. These
extensions are especially relevant for constrained clients that may
only support a limited number of curves or point formats. They
follow the general approach outlined in [<a href="./rfc4366" title=""Transport Layer Security (TLS) Extensions"">RFC4366</a>]; message details
are specified in <a href="#section-5">Section 5</a>. The client enumerates the curves it
supports and the point formats it can parse by including the
appropriate extensions in its ClientHello message. The server
similarly enumerates the point formats it can parse by including an
extension in its ServerHello message.
A TLS client that proposes ECC cipher suites in its ClientHello
message SHOULD include these extensions. Servers implementing ECC
cipher suites MUST support these extensions, and when a client uses
these extensions, servers MUST NOT negotiate the use of an ECC cipher
suite unless they can complete the handshake while respecting the
choice of curves specified by the client. This eliminates the
possibility that a negotiated ECC handshake will be subsequently
aborted due to a client's inability to deal with the server's EC key.
The client MUST NOT include these extensions in the ClientHello
message if it does not propose any ECC cipher suites. A client that
proposes ECC cipher suites may choose not to include these
extensions. In this case, the server is free to choose any one of
the elliptic curves or point formats listed in <a href="#section-5">Section 5</a>. That
section also describes the structure and processing of these
extensions in greater detail.
In the case of session resumption, the server simply ignores the
Supported Elliptic Curves Extension and the Supported Point Formats
Extension appearing in the current ClientHello message. These
extensions only play a role during handshakes negotiating a new
session.
<span class="grey">Nir, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Data Structures and Computations</span>
This section specifies the data structures and computations used by
ECC-based key mechanisms specified in the previous three sections.
The presentation language used here is the same as that used in TLS.
Since this specification extends TLS, these descriptions should be
merged with those in the TLS specification and any others that extend
TLS. This means that enum types may not specify all possible values,
and structures with multiple formats chosen with a select() clause
may not indicate all possible cases.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Client Hello Extensions</span>
This section specifies two TLS extensions that can be included with
the ClientHello message as described in [<a href="./rfc4366" title=""Transport Layer Security (TLS) Extensions"">RFC4366</a>]: the Supported
Elliptic Curves Extension and the Supported Point Formats Extension.
When these extensions are sent:
The extensions SHOULD be sent along with any ClientHello message that
proposes ECC cipher suites.
Meaning of these extensions:
These extensions allow a client to enumerate the elliptic curves it
supports and/or the point formats it can parse.
Structure of these extensions:
The general structure of TLS extensions is described in [<a href="./rfc4366" title=""Transport Layer Security (TLS) Extensions"">RFC4366</a>],
and this specification adds two types to ExtensionType.
enum {
elliptic_curves(10),
ec_point_formats(11)
} ExtensionType;
o elliptic_curves (Supported Elliptic Curves Extension): Indicates
the set of elliptic curves supported by the client. For this
extension, the opaque extension_data field contains
NamedCurveList. See <a href="#section-5.1.1">Section 5.1.1</a> for details.
o ec_point_formats (Supported Point Formats Extension): Indicates
the set of point formats that the client can parse. For this
extension, the opaque extension_data field contains
ECPointFormatList. See <a href="#section-5.1.2">Section 5.1.2</a> for details.
<span class="grey">Nir, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Actions of the sender:
A client that proposes ECC cipher suites in its ClientHello message
appends these extensions (along with any others), enumerating the
curves it supports and the point formats it can parse. Clients
SHOULD send both the Supported Elliptic Curves Extension and the
Supported Point Formats Extension. If the Supported Point Formats
Extension is indeed sent, it MUST contain the value 0 (uncompressed)
as one of the items in the list of point formats.
Actions of the receiver:
A server that receives a ClientHello containing one or both of these
extensions MUST use the client's enumerated capabilities to guide its
selection of an appropriate cipher suite. One of the proposed ECC
cipher suites must be negotiated only if the server can successfully
complete the handshake while using the curves and point formats
supported by the client (cf. Sections <a href="#section-5.3">5.3</a> and <a href="#section-5.4">5.4</a>).
NOTE: A server participating in an ECDHE_ECDSA key exchange may use
different curves for the ECDSA or EdDSA key in its certificate and
for the ephemeral ECDH key in the ServerKeyExchange message. The
server MUST consider the extensions in both cases.
If a server does not understand the Supported Elliptic Curves
Extension, does not understand the Supported Point Formats Extension,
or is unable to complete the ECC handshake while restricting itself
to the enumerated curves and point formats, it MUST NOT negotiate the
use of an ECC cipher suite. Depending on what other cipher suites
are proposed by the client and supported by the server, this may
result in a fatal handshake failure alert due to the lack of common
cipher suites.
<span class="h4"><a class="selflink" id="section-5.1.1" href="#section-5.1.1">5.1.1</a>. Supported Elliptic Curves Extension</span>
<a href="./rfc4492">RFC 4492</a> defined 25 different curves in the NamedCurve registry (now
renamed the "TLS Supported Groups" registry, although the enumeration
below is still named NamedCurve) for use in TLS. Only three have
seen much use. This specification is deprecating the rest (with
numbers 1-22). This specification also deprecates the explicit
<span class="grey">Nir, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
curves with identifiers 0xFF01 and 0xFF02. It also adds the new
curves defined in [<a href="./rfc7748" title=""Elliptic Curves for Security"">RFC7748</a>]. The end result is as follows:
enum {
deprecated(1..22),
secp256r1 (23), secp384r1 (24), secp521r1 (25),
x25519(29), x448(30),
reserved (0xFE00..0xFEFF),
deprecated(0xFF01..0xFF02),
(0xFFFF)
} NamedCurve;
Note that other specifications have since added other values to this
enumeration. Some of those values are not curves at all, but finite
field groups. See [<a href="./rfc7919" title=""Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS)"">RFC7919</a>].
secp256r1, etc: Indicates support of the corresponding named curve or
groups. The named curves secp256r1, secp384r1, and secp521r1 are
specified in SEC 2 [<a href="#ref-SECG-SEC2">SECG-SEC2</a>]. These curves are also recommended in
ANSI X9.62 [<a href="#ref-ANSI.X9-62.2005">ANSI.X9-62.2005</a>] and FIPS 186-4 [<a href="#ref-FIPS.186-4">FIPS.186-4</a>]. The rest
of this document refers to these three curves as the "NIST curves"
because they were originally standardized by the National Institute
of Standards and Technology. The curves x25519 and x448 are defined
in [<a href="./rfc7748" title=""Elliptic Curves for Security"">RFC7748</a>]. Values 0xFE00 through 0xFEFF are reserved for private
use.
The predecessor of this document also supported explicitly defined
prime and char2 curves, but these are deprecated by this
specification.
The NamedCurve name space (now titled "TLS Supported Groups") is
maintained by IANA. See <a href="#section-9">Section 9</a> for information on how new value
assignments are added.
struct {
NamedCurve named_curve_list<2..2^16-1>
} NamedCurveList;
Items in named_curve_list are ordered according to the client's
preferences (favorite choice first).
As an example, a client that only supports secp256r1 (aka NIST P-256;
value 23 = 0x0017) and secp384r1 (aka NIST P-384; value 24 = 0x0018)
and prefers to use secp256r1 would include a TLS extension consisting
of the following octets. Note that the first two octets indicate the
extension type (Supported Elliptic Curves Extension):
00 0A 00 06 00 04 00 17 00 18
<span class="grey">Nir, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
<span class="h4"><a class="selflink" id="section-5.1.2" href="#section-5.1.2">5.1.2</a>. Supported Point Formats Extension</span>
enum {
uncompressed (0),
deprecated (1..2),
reserved (248..255)
} ECPointFormat;
struct {
ECPointFormat ec_point_format_list<1..2^8-1>
} ECPointFormatList;
Three point formats were included in the definition of ECPointFormat
above. This specification deprecates all but the uncompressed point
format. Implementations of this document MUST support the
uncompressed format for all of their supported curves and MUST NOT
support other formats for curves defined in this specification. For
backwards compatibility purposes, the point format list extension MAY
still be included and contain exactly one value: the uncompressed
point format (0). <a href="./rfc4492">RFC 4492</a> specified that if this extension is
missing, it means that only the uncompressed point format is
supported, so interoperability with implementations that support the
uncompressed format should work with or without the extension.
If the client sends the extension and the extension does not contain
the uncompressed point format, and the client has used the Supported
Groups extension to indicate support for any of the curves defined in
this specification, then the server MUST abort the handshake and
return an illegal_parameter alert.
The ECPointFormat name space (now titled "TLS EC Point Formats") is
maintained by IANA. See <a href="#section-9">Section 9</a> for information on how new value
assignments are added.
A client compliant with this specification that supports no other
curves MUST send the following octets; note that the first two octets
indicate the extension type (Supported Point Formats Extension):
00 0B 00 02 01 00
<span class="h4"><a class="selflink" id="section-5.1.3" href="#section-5.1.3">5.1.3</a>. The signature_algorithms Extension and EdDSA</span>
The signature_algorithms extension, defined in <a href="./rfc5246#section-7.4.1.4.1">Section 7.4.1.4.1 of
[RFC5246]</a>, advertises the combinations of signature algorithm and
hash function that the client supports. The pure (non-prehashed)
forms of EdDSA do not hash the data before signing it. For this
reason, it does not make sense to combine them with a hash function
in the extension.
<span class="grey">Nir, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
For bits-on-the-wire compatibility with TLS 1.3, we define a new
dummy value in the "TLS HashAlgorithm" registry that we call
"Intrinsic" (value 8), meaning that hashing is intrinsic to the
signature algorithm.
To represent ed25519 and ed448 in the signature_algorithms extension,
the value shall be (8,7) and (8,8), respectively.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Server Hello Extension</span>
This section specifies a TLS extension that can be included with the
ServerHello message as described in [<a href="./rfc4366" title=""Transport Layer Security (TLS) Extensions"">RFC4366</a>], the Supported Point
Formats Extension.
When this extension is sent:
The Supported Point Formats Extension is included in a ServerHello
message in response to a ClientHello message containing the Supported
Point Formats Extension when negotiating an ECC cipher suite.
Meaning of this extension:
This extension allows a server to enumerate the point formats it can
parse (for the curve that will appear in its ServerKeyExchange
message when using the ECDHE_ECDSA, ECDHE_RSA, or ECDH_anon key
exchange algorithm.
Structure of this extension:
The server's Supported Point Formats Extension has the same structure
as the client's Supported Point Formats Extension (see
<a href="#section-5.1.2">Section 5.1.2</a>). Items in ec_point_format_list here are ordered
according to the server's preference (favorite choice first). Note
that the server MAY include items that were not found in the client's
list. However, without extensions, this specification allows exactly
one point format, so there is not really any opportunity for
mismatches.
Actions of the sender:
A server that selects an ECC cipher suite in response to a
ClientHello message including a Supported Point Formats Extension
appends this extension (along with others) to its ServerHello
message, enumerating the point formats it can parse. The Supported
Point Formats Extension, when used, MUST contain the value 0
(uncompressed) as one of the items in the list of point formats.
<span class="grey">Nir, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Actions of the receiver:
A client that receives a ServerHello message containing a Supported
Point Formats Extension MUST respect the server's choice of point
formats during the handshake (cf. Sections <a href="#section-5.6">5.6</a> and <a href="#section-5.7">5.7</a>). If no
Supported Point Formats Extension is received with the ServerHello,
this is equivalent to an extension allowing only the uncompressed
point format.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Server Certificate</span>
When this message is sent:
This message is sent in all non-anonymous, ECC-based key exchange
algorithms.
Meaning of this message:
This message is used to authentically convey the server's static
public key to the client. The following table shows the server
certificate type appropriate for each key exchange algorithm. ECC
public keys MUST be encoded in certificates as described in
<a href="#section-5.9">Section 5.9</a>.
NOTE: The server's Certificate message is capable of carrying a chain
of certificates. The restrictions mentioned in Table 2 apply only to
the server's certificate (first in the chain).
+-------------+-----------------------------------------------------+
| Algorithm | Server Certificate Type |
+-------------+-----------------------------------------------------+
| ECDHE_ECDSA | Certificate MUST contain an ECDSA- or EdDSA-capable |
| | public key. |
| ECDHE_RSA | Certificate MUST contain an RSA public key. |
+-------------+-----------------------------------------------------+
Table 2: Server Certificate Types
Structure of this message:
Identical to the TLS Certificate format.
Actions of the sender:
The server constructs an appropriate certificate chain and conveys it
to the client in the Certificate message. If the client has used a
Supported Elliptic Curves Extension, the public key in the server's
<span class="grey">Nir, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
certificate MUST respect the client's choice of elliptic curves. A
server that cannot satisfy this requirement MUST NOT choose an ECC
cipher suite in its ServerHello message.)
Actions of the receiver:
The client validates the certificate chain, extracts the server's
public key, and checks that the key type is appropriate for the
negotiated key exchange algorithm. (A possible reason for a fatal
handshake failure is that the client's capabilities for handling
elliptic curves and point formats are exceeded; cf. <a href="#section-5.1">Section 5.1</a>.)
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Server Key Exchange</span>
When this message is sent:
This message is sent when using the ECDHE_ECDSA, ECDHE_RSA, and
ECDH_anon key exchange algorithms.
Meaning of this message:
This message is used to convey the server's ephemeral ECDH public key
(and the corresponding elliptic curve domain parameters) to the
client.
The ECCurveType enum used to have values for explicit prime and for
explicit char2 curves. Those values are now deprecated, so only one
value remains:
Structure of this message:
enum {
deprecated (1..2),
named_curve (3),
reserved(248..255)
} ECCurveType;
The value named_curve indicates that a named curve is used. This
option is now the only remaining format.
Values 248 through 255 are reserved for private use.
The ECCurveType name space (now titled "TLS EC Curve Types") is
maintained by IANA. See <a href="#section-9">Section 9</a> for information on how new value
assignments are added.
<span class="grey">Nir, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
<a href="./rfc4492">RFC 4492</a> had a specification for an ECCurve structure and an
ECBasisType structure. Both of these are omitted now because they
were only used with the now deprecated explicit curves.
struct {
opaque point <1..2^8-1>;
} ECPoint;
point: This is the byte string representation of an elliptic curve
point following the conversion routine in Section 4.3.6 of
[<a href="#ref-ANSI.X9-62.2005">ANSI.X9-62.2005</a>]. This byte string may represent an elliptic curve
point in uncompressed, compressed, or hybrid format, but this
specification deprecates all but the uncompressed format. For the
NIST curves, the format is repeated in <a href="#section-5.4.1">Section 5.4.1</a> for convenience.
For the X25519 and X448 curves, the only valid representation is the
one specified in [<a href="./rfc7748" title=""Elliptic Curves for Security"">RFC7748</a>], a 32- or 56-octet representation of the u
value of the point. This structure MUST NOT be used with Ed25519 and
Ed448 public keys.
struct {
ECCurveType curve_type;
select (curve_type) {
case named_curve:
NamedCurve namedcurve;
};
} ECParameters;
curve_type: This identifies the type of the elliptic curve domain
parameters.
namedCurve: Specifies a recommended set of elliptic curve domain
parameters. All those values of NamedCurve are allowed that refer to
a curve capable of Diffie-Hellman. With the deprecation of the
explicit curves, this now includes all of the NamedCurve values.
struct {
ECParameters curve_params;
ECPoint public;
} ServerECDHParams;
curve_params: Specifies the elliptic curve domain parameters
associated with the ECDH public key.
public: The ephemeral ECDH public key.
<span class="grey">Nir, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
The ServerKeyExchange message is extended as follows.
enum {
ec_diffie_hellman
} KeyExchangeAlgorithm;
o ec_diffie_hellman: Indicates the ServerKeyExchange message
contains an ECDH public key.
select (KeyExchangeAlgorithm) {
case ec_diffie_hellman:
ServerECDHParams params;
Signature signed_params;
} ServerKeyExchange;
o params: Specifies the ECDH public key and associated domain
parameters.
o signed_params: A hash of the params, with the signature
appropriate to that hash applied. The private key corresponding
to the certified public key in the server's Certificate message is
used for signing.
enum {
ecdsa(3),
ed25519(7)
ed448(8)
} SignatureAlgorithm;
select (SignatureAlgorithm) {
case ecdsa:
digitally-signed struct {
opaque sha_hash[sha_size];
};
case ed25519,ed448:
digitally-signed struct {
opaque rawdata[rawdata_size];
};
} Signature;
ServerKeyExchange.signed_params.sha_hash
SHA(ClientHello.random + ServerHello.random +
ServerKeyExchange.params);
ServerKeyExchange.signed_params.rawdata
ClientHello.random + ServerHello.random +
ServerKeyExchange.params;
NOTE: SignatureAlgorithm is "rsa" for the ECDHE_RSA key exchange
algorithm and "anonymous" for ECDH_anon. These cases are defined in
TLS. SignatureAlgorithm is "ecdsa" or "eddsa" for ECDHE_ECDSA.
<span class="grey">Nir, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
ECDSA signatures are generated and verified as described in
<a href="#section-5.10">Section 5.10</a>. SHA, in the above template for sha_hash, may denote a
hash algorithm other than SHA-1. As per ANSI X9.62, an ECDSA
signature consists of a pair of integers, r and s. The digitally-
signed element is encoded as an opaque vector <0..2^16-1>, the
contents of which are the DER encoding corresponding to the following
ASN.1 notation.
Ecdsa-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER
}
EdDSA signatures in both the protocol and in certificates that
conform to [<a href="./rfc8410" title=""Algorithm Identifiers for Ed25519, Ed448, X25519 and X448 for Use in the Internet X.509 Public Key Infrastructure"">RFC8410</a>] are generated and verified according to
[<a href="./rfc8032" title=""Edwards-Curve Digital Signature Algorithm (EdDSA)"">RFC8032</a>]. The digitally-signed element is encoded as an opaque
vector <0..2^16-1>, the contents of which include the octet string
output of the EdDSA signing algorithm.
Actions of the sender:
The server selects elliptic curve domain parameters and an ephemeral
ECDH public key corresponding to these parameters according to the
ECKAS-DH1 scheme from IEEE 1363 [<a href="#ref-IEEE.P1363">IEEE.P1363</a>]. It conveys this
information to the client in the ServerKeyExchange message using the
format defined above.
Actions of the receiver:
The client verifies the signature (when present) and retrieves the
server's elliptic curve domain parameters and ephemeral ECDH public
key from the ServerKeyExchange message. (A possible reason for a
fatal handshake failure is that the client's capabilities for
handling elliptic curves and point formats are exceeded; cf.
<a href="#section-5.1">Section 5.1</a>.)
<span class="h4"><a class="selflink" id="section-5.4.1" href="#section-5.4.1">5.4.1</a>. Uncompressed Point Format for NIST Curves</span>
The following represents the wire format for representing ECPoint in
ServerKeyExchange records. The first octet of the representation
indicates the form, which may be compressed, uncompressed, or hybrid.
This specification supports only the uncompressed format for these
curves. This is followed by the binary representation of the X value
in "big-endian" or "network" format, followed by the binary
representation of the Y value in "big-endian" or "network" format.
There are no internal length markers, so each number representation
occupies as many octets as implied by the curve parameters. For
<span class="grey">Nir, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
P-256 this means that each of X and Y use 32 octets, padded on the
left by zeros if necessary. For P-384, they take 48 octets each, and
for P-521, they take 66 octets each.
Here's a more formal representation:
enum {
uncompressed(4),
(255)
} PointConversionForm;
struct {
PointConversionForm form;
opaque X[coordinate_length];
opaque Y[coordinate_length];
} UncompressedPointRepresentation;
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Certificate Request</span>
When this message is sent:
This message is sent when requesting client authentication.
Meaning of this message:
The server uses this message to suggest acceptable client
authentication methods.
Structure of this message:
The TLS CertificateRequest message is extended as follows.
enum {
ecdsa_sign(64),
deprecated1(65), /* was rsa_fixed_ecdh */
deprecated2(66), /* was ecdsa_fixed_ecdh */
(255)
} ClientCertificateType;
o ecdsa_sign: Indicates that the server would like to use the
corresponding client authentication method specified in <a href="#section-3">Section 3</a>.
Note that <a href="./rfc4492">RFC 4492</a> also defined RSA and ECDSA certificates that
included a fixed ECDH public key. These mechanisms saw very little
implementation, so this specification is deprecating them.
<span class="grey">Nir, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Actions of the sender:
The server decides which client authentication methods it would like
to use and conveys this information to the client using the format
defined above.
Actions of the receiver:
The client determines whether it has a suitable certificate for use
with any of the requested methods and whether to proceed with client
authentication.
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Client Certificate</span>
When this message is sent:
This message is sent in response to a CertificateRequest when a
client has a suitable certificate and has decided to proceed with
client authentication. (Note that if the server has used a Supported
Point Formats Extension, a certificate can only be considered
suitable for use with the ECDSA_sign authentication method if the
public key point specified in it is uncompressed, as that is the only
point format still supported.
Meaning of this message:
This message is used to authentically convey the client's static
public key to the server. ECC public keys must be encoded in
certificates as described in <a href="#section-5.9">Section 5.9</a>. The certificate MUST
contain an ECDSA- or EdDSA-capable public key.
NOTE: The client's Certificate message is capable of carrying a chain
of certificates. The restrictions mentioned above apply only to the
client's certificate (first in the chain).
Structure of this message:
Identical to the TLS client Certificate format.
Actions of the sender:
The client constructs an appropriate certificate chain and conveys it
to the server in the Certificate message.
<span class="grey">Nir, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Actions of the receiver:
The TLS server validates the certificate chain, extracts the client's
public key, and checks that the key type is appropriate for the
client authentication method.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. Client Key Exchange</span>
When this message is sent:
This message is sent in all key exchange algorithms. It contains the
client's ephemeral ECDH public key.
Meaning of the message:
This message is used to convey ephemeral data relating to the key
exchange belonging to the client (such as its ephemeral ECDH public
key).
Structure of this message:
The TLS ClientKeyExchange message is extended as follows.
enum {
implicit,
explicit
} PublicValueEncoding;
o implicit, explicit: For ECC cipher suites, this indicates whether
the client's ECDH public key is in the client's certificate
("implicit") or is provided, as an ephemeral ECDH public key, in
the ClientKeyExchange message ("explicit"). The implicit encoding
is deprecated and is retained here for backward compatibility
only.
struct {
ECPoint ecdh_Yc;
} ClientECDiffieHellmanPublic;
ecdh_Yc: Contains the client's ephemeral ECDH public key as a byte
string ECPoint.point, which may represent an elliptic curve point in
uncompressed format.
struct {
select (KeyExchangeAlgorithm) {
case ec_diffie_hellman: ClientECDiffieHellmanPublic;
} exchange_keys;
} ClientKeyExchange;
<span class="grey">Nir, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Actions of the sender:
The client selects an ephemeral ECDH public key corresponding to the
parameters it received from the server. The format is the same as in
<a href="#section-5.4">Section 5.4</a>.
Actions of the receiver:
The server retrieves the client's ephemeral ECDH public key from the
ClientKeyExchange message and checks that it is on the same elliptic
curve as the server's ECDH key.
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. Certificate Verify</span>
When this message is sent:
This message is sent when the client sends a client certificate
containing a public key usable for digital signatures.
Meaning of the message:
This message contains a signature that proves possession of the
private key corresponding to the public key in the client's
Certificate message.
Structure of this message:
The TLS CertificateVerify message and the underlying signature type
are defined in the TLS base specifications, and the latter is
extended here in <a href="#section-5.4">Section 5.4</a>. For the "ecdsa" and "eddsa" cases, the
signature field in the CertificateVerify message contains an ECDSA or
EdDSA (respectively) signature computed over handshake messages
exchanged so far, exactly similar to CertificateVerify with other
signing algorithms:
CertificateVerify.signature.sha_hash
SHA(handshake_messages);
CertificateVerify.signature.rawdata
handshake_messages;
ECDSA signatures are computed as described in <a href="#section-5.10">Section 5.10</a>, and SHA
in the above template for sha_hash accordingly may denote a hash
algorithm other than SHA-1. As per ANSI X9.62, an ECDSA signature
consists of a pair of integers, r and s. The digitally-signed
element is encoded as an opaque vector <0..2^16-1>, the contents of
which are the DER encoding [<a href="#ref-X.690" title=""Information technology-ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)"">X.690</a>] corresponding to the following
ASN.1 notation [<a href="#ref-X.680" title=""Abstract Syntax Notation One (ASN.1): Specification of basic notation"">X.680</a>].
<span class="grey">Nir, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Ecdsa-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER
}
EdDSA signatures are generated and verified according to [<a href="./rfc8032" title=""Edwards-Curve Digital Signature Algorithm (EdDSA)"">RFC8032</a>].
The digitally-signed element is encoded as an opaque vector
<0..2^16-1>, the contents of which include the octet string output of
the EdDSA signing algorithm.
Actions of the sender:
The client computes its signature over all handshake messages sent or
received starting at client hello and up to but not including this
message. It uses the private key corresponding to its certified
public key to compute the signature, which is conveyed in the format
defined above.
Actions of the receiver:
The server extracts the client's signature from the CertificateVerify
message and verifies the signature using the public key it received
in the client's Certificate message.
<span class="h3"><a class="selflink" id="section-5.9" href="#section-5.9">5.9</a>. Elliptic Curve Certificates</span>
X.509 certificates containing ECC public keys or signed using ECDSA
MUST comply with [<a href="./rfc3279" title=""Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC3279</a>] or another RFC that replaces or extends
it. X.509 certificates containing ECC public keys or signed using
EdDSA MUST comply with [<a href="./rfc8410" title=""Algorithm Identifiers for Ed25519, Ed448, X25519 and X448 for Use in the Internet X.509 Public Key Infrastructure"">RFC8410</a>]. Clients SHOULD use the elliptic
curve domain parameters recommended in ANSI X9.62, FIPS 186-4, and
SEC 2 [<a href="#ref-SECG-SEC2">SECG-SEC2</a>], or in [<a href="./rfc8032" title=""Edwards-Curve Digital Signature Algorithm (EdDSA)"">RFC8032</a>].
EdDSA keys using the Ed25519 algorithm MUST use the ed25519 signature
algorithm, and Ed448 keys MUST use the ed448 signature algorithm.
This document does not define use of Ed25519ph and Ed448ph keys with
TLS. Ed25519, Ed25519ph, Ed448, and Ed448ph keys MUST NOT be used
with ECDSA.
<span class="h3"><a class="selflink" id="section-5.10" href="#section-5.10">5.10</a>. ECDH, ECDSA, and RSA Computations</span>
All ECDH calculations for the NIST curves (including parameter and
key generation as well as the shared secret calculation) are
performed according to [<a href="#ref-IEEE.P1363">IEEE.P1363</a>] using the ECKAS-DH1 scheme with
the identity map as the Key Derivation Function (KDF) so that the
premaster secret is the x-coordinate of the ECDH shared secret
elliptic curve point represented as an octet string. Note that this
octet string (Z in IEEE 1363 terminology), as output by FE2OSP (Field
<span class="grey">Nir, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Element to Octet String Conversion Primitive), has constant length
for any given field; leading zeros found in this octet string MUST
NOT be truncated.
(Note that this use of the identity KDF is a technicality. The
complete picture is that ECDH is employed with a non-trivial KDF
because TLS does not directly use the premaster secret for anything
other than for computing the master secret. In TLS 1.0 and 1.1, this
means that the MD5- and SHA-1-based TLS Pseudorandom Function (PRF)
serves as a KDF; in TLS 1.2, the KDF is determined by ciphersuite,
and it is conceivable that future TLS versions or new TLS extensions
introduced in the future may vary this computation.)
An ECDHE key exchange using X25519 (curve x25519) goes as follows:
(1) each party picks a secret key d uniformly at random and computes
the corresponding public key x = X25519(d, G); (2) parties exchange
their public keys and compute a shared secret as x_S = X25519(d,
x_peer); and (3), if either party obtains all-zeroes x_S, it MUST
abort the handshake (as required by definition of X25519 and X448).
ECDHE for X448 works similarly, replacing X25519 with X448 and x25519
with x448. The derived shared secret is used directly as the
premaster secret, which is always exactly 32 bytes when ECDHE with
X25519 is used and 56 bytes when ECDHE with X448 is used.
All ECDSA computations MUST be performed according to ANSI X9.62 or
its successors. Data to be signed/verified is hashed, and the result
runs directly through the ECDSA algorithm with no additional hashing.
A secure hash function such as SHA-256, SHA-384, or SHA-512 from
[<a href="#ref-FIPS.180-4">FIPS.180-4</a>] MUST be used.
All EdDSA computations MUST be performed according to [<a href="./rfc8032" title=""Edwards-Curve Digital Signature Algorithm (EdDSA)"">RFC8032</a>] or
its successors. Data to be signed/verified is run through the EdDSA
algorithm with no hashing (EdDSA will internally run the data through
the "prehash" function PH). The context parameter for Ed448 MUST be
set to the empty string.
<a href="./rfc4492">RFC 4492</a> anticipated the standardization of a mechanism for
specifying the required hash function in the certificate, perhaps in
the parameters field of the subjectPublicKeyInfo. Such
standardization never took place, and as a result, SHA-1 is used in
TLS 1.1 and earlier (except for EdDSA, which uses identity function).
TLS 1.2 added a SignatureAndHashAlgorithm parameter to the
DigitallySigned struct, thus allowing agility in choosing the
signature hash. EdDSA signatures MUST have HashAlgorithm of 8
(Intrinsic).
All RSA signatures must be generated and verified according to
<a href="./rfc8017#section-7.2">Section 7.2 of [RFC8017]</a>.
<span class="grey">Nir, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
<span class="h3"><a class="selflink" id="section-5.11" href="#section-5.11">5.11</a>. Public Key Validation</span>
With the NIST curves, each party MUST validate the public key sent by
its peer in the ClientKeyExchange and ServerKeyExchange messages. A
receiving party MUST check that the x and y parameters from the
peer's public value satisfy the curve equation, y^2 = x^3 + ax + b
mod p. See Section 2.3 of [<a href="#ref-Menezes" title=""On reusing ephemeral keys in Diffie-Hellman key agreement protocols"">Menezes</a>] for details. Failing to do so
allows attackers to gain information about the private key to the
point that they may recover the entire private key in a few requests
if that key is not really ephemeral.
With X25519 and X448, a receiving party MUST check whether the
computed premaster secret is the all-zero value and abort the
handshake if so, as described in <a href="./rfc7748#section-6">Section 6 of [RFC7748]</a>.
Ed25519 and Ed448 internally do public key validation as part of
signature verification.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Cipher Suites</span>
The table below defines ECC cipher suites that use the key exchange
algorithms specified in <a href="#section-2">Section 2</a>.
+-----------------------------------------+----------------+
| CipherSuite | Identifier |
+-----------------------------------------+----------------+
| TLS_ECDHE_ECDSA_WITH_NULL_SHA | { 0xC0, 0x06 } |
| TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA | { 0xC0, 0x08 } |
| TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA | { 0xC0, 0x09 } |
| TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA | { 0xC0, 0x0A } |
| TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 | { 0xC0, 0x2B } |
| TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 | { 0xC0, 0x2C } |
| | |
| TLS_ECDHE_RSA_WITH_NULL_SHA | { 0xC0, 0x10 } |
| TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA | { 0xC0, 0x12 } |
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA | { 0xC0, 0x13 } |
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA | { 0xC0, 0x14 } |
| TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 | { 0xC0, 0x2F } |
| TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 | { 0xC0, 0x30 } |
| | |
| TLS_ECDH_anon_WITH_NULL_SHA | { 0xC0, 0x15 } |
| TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA | { 0xC0, 0x17 } |
| TLS_ECDH_anon_WITH_AES_128_CBC_SHA | { 0xC0, 0x18 } |
| TLS_ECDH_anon_WITH_AES_256_CBC_SHA | { 0xC0, 0x19 } |
+-----------------------------------------+----------------+
Table 3: TLS ECC Cipher Suites
<span class="grey">Nir, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
The key exchange method, cipher, and hash algorithm for each of these
cipher suites are easily determined by examining the name. Ciphers
(other than AES ciphers) and hash algorithms are defined in [<a href="./rfc2246" title=""The TLS Protocol Version 1.0"">RFC2246</a>]
and [<a href="./rfc4346" title=""The Transport Layer Security (TLS) Protocol Version 1.1"">RFC4346</a>]. AES ciphers are defined in [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>], and AES-GCM
ciphersuites are in [<a href="./rfc5289" title=""TLS Elliptic Curve Cipher Suites with SHA- 256/384 and AES Galois Counter Mode (GCM)"">RFC5289</a>].
Server implementations SHOULD support all of the following cipher
suites, and client implementations SHOULD support at least one of
them:
o TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
o TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
o TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Implementation Status</span>
Both ECDHE and ECDSA with the NIST curves are widely implemented and
supported in all major browsers and all widely used TLS libraries.
ECDHE with Curve25519 is by now implemented in several browsers and
several TLS libraries including OpenSSL. Curve448 and EdDSA have
working interoperable implementations, but they are not yet as widely
deployed.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
Security issues are discussed throughout this memo.
For TLS handshakes using ECC cipher suites, the security
considerations in <a href="#appendix-D">Appendix D</a> of each of the three TLS base documents
apply accordingly.
Security discussions specific to ECC can be found in [<a href="#ref-IEEE.P1363">IEEE.P1363</a>] and
[<a href="#ref-ANSI.X9-62.2005">ANSI.X9-62.2005</a>]. One important issue that implementers and users
must consider is elliptic curve selection. Guidance on selecting an
appropriate elliptic curve size is given in Table 1. Security
considerations specific to X25519 and X448 are discussed in <a href="./rfc7748#section-7">Section 7
of [RFC7748]</a>.
Beyond elliptic curve size, the main issue is elliptic curve
structure. As a general principle, it is more conservative to use
elliptic curves with as little algebraic structure as possible.
Thus, random curves are more conservative than special curves such as
Koblitz curves, and curves over F_p with p random are more
conservative than curves over F_p with p of a special form, and
<span class="grey">Nir, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
curves over F_p with p random are considered more conservative than
curves over F_2^m as there is no choice between multiple fields of
similar size for characteristic 2.
Another issue is the potential for catastrophic failures when a
single elliptic curve is widely used. In this case, an attack on the
elliptic curve might result in the compromise of a large number of
keys. Again, this concern may need to be balanced against efficiency
and interoperability improvements associated with widely used curves.
Substantial additional information on elliptic curve choice can be
found in [<a href="#ref-IEEE.P1363">IEEE.P1363</a>], [<a href="#ref-ANSI.X9-62.2005">ANSI.X9-62.2005</a>], and [<a href="#ref-FIPS.186-4">FIPS.186-4</a>].
The Introduction of [<a href="./rfc8032" title=""Edwards-Curve Digital Signature Algorithm (EdDSA)"">RFC8032</a>] lists the security, performance, and
operational advantages of EdDSA signatures over ECDSA signatures
using the NIST curves.
All of the key exchange algorithms defined in this document provide
forward secrecy. Some of the deprecated key exchange algorithms do
not.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. IANA Considerations</span>
[<a href="./rfc4492" title=""Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)"">RFC4492</a>], the predecessor of this document, defined the IANA
registries for the following:
o Supported Groups (<a href="#section-5.1">Section 5.1</a>)
o EC Point Format (<a href="#section-5.1">Section 5.1</a>)
o EC Curve Type (<a href="#section-5.4">Section 5.4</a>)
IANA has prepended "TLS" to the names of these three registries.
For each name space, this document defines the initial value
assignments and defines a range of 256 values (NamedCurve) or eight
values (ECPointFormat and ECCurveType) reserved for Private Use. The
policy for any additional assignments is "Specification Required".
(<a href="./rfc4492">RFC 4492</a> required IETF review.)
All existing entries in the "ExtensionType Values", "TLS
ClientCertificateType Identifiers", "TLS Cipher Suites", "TLS
Supported Groups", "TLS EC Point Format", and "TLS EC Curve Type"
registries that referred to <a href="./rfc4492">RFC 4492</a> have been updated to refer to
this document.
IANA has assigned the value 29 to x25519 and the value 30 to x448 in
the "TLS Supported Groups" registry.
<span class="grey">Nir, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
IANA has assigned two values in the "TLS SignatureAlgorithm" registry
for ed25519 (7) and ed448 (8) with this document as reference. This
keeps compatibility with TLS 1.3.
IANA has assigned one value from the "TLS HashAlgorithm" registry for
Intrinsic (8) with DTLS-OK set to true (Y) and this document as
reference. This keeps compatibility with TLS 1.3.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. References</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Normative References</span>
[<a id="ref-ANSI.X9-62.2005">ANSI.X9-62.2005</a>]
American National Standards Institute, "Public Key
Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA)",
ANSI X9.62, November 2005.
[<a id="ref-FIPS.186-4">FIPS.186-4</a>]
National Institute of Standards and Technology, "Digital
Signature Standard (DSS)", FIPS PUB 186-4,
DOI 10.6028/NIST.FIPS.186-4, July 2013,
<<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf">http://nvlpubs.nist.gov/nistpubs/FIPS/</a>
<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf">NIST.FIPS.186-4.pdf</a>>.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2246">RFC2246</a>] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
<a href="./rfc2246">RFC 2246</a>, DOI 10.17487/RFC2246, January 1999,
<<a href="https://www.rfc-editor.org/info/rfc2246">https://www.rfc-editor.org/info/rfc2246</a>>.
[<a id="ref-RFC3279">RFC3279</a>] Bassham, L., Polk, W., and R. Housley, "Algorithms and
Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", <a href="./rfc3279">RFC 3279</a>, DOI 10.17487/RFC3279, April
2002, <<a href="https://www.rfc-editor.org/info/rfc3279">https://www.rfc-editor.org/info/rfc3279</a>>.
[<a id="ref-RFC4346">RFC4346</a>] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.1", <a href="./rfc4346">RFC 4346</a>,
DOI 10.17487/RFC4346, April 2006,
<<a href="https://www.rfc-editor.org/info/rfc4346">https://www.rfc-editor.org/info/rfc4346</a>>.
<span class="grey">Nir, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
[<a id="ref-RFC4366">RFC4366</a>] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
and T. Wright, "Transport Layer Security (TLS)
Extensions", <a href="./rfc4366">RFC 4366</a>, DOI 10.17487/RFC4366, April 2006,
<<a href="https://www.rfc-editor.org/info/rfc4366">https://www.rfc-editor.org/info/rfc4366</a>>.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>,
DOI 10.17487/RFC5246, August 2008,
<<a href="https://www.rfc-editor.org/info/rfc5246">https://www.rfc-editor.org/info/rfc5246</a>>.
[<a id="ref-RFC5289">RFC5289</a>] Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
256/384 and AES Galois Counter Mode (GCM)", <a href="./rfc5289">RFC 5289</a>,
DOI 10.17487/RFC5289, August 2008,
<<a href="https://www.rfc-editor.org/info/rfc5289">https://www.rfc-editor.org/info/rfc5289</a>>.
[<a id="ref-RFC7748">RFC7748</a>] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
for Security", <a href="./rfc7748">RFC 7748</a>, DOI 10.17487/RFC7748, January
2016, <<a href="https://www.rfc-editor.org/info/rfc7748">https://www.rfc-editor.org/info/rfc7748</a>>.
[<a id="ref-RFC8017">RFC8017</a>] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
"PKCS #1: RSA Cryptography Specifications Version 2.2",
<a href="./rfc8017">RFC 8017</a>, DOI 10.17487/RFC8017, November 2016,
<<a href="https://www.rfc-editor.org/info/rfc8017">https://www.rfc-editor.org/info/rfc8017</a>>.
[<a id="ref-RFC8032">RFC8032</a>] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
Signature Algorithm (EdDSA)", <a href="./rfc8032">RFC 8032</a>,
DOI 10.17487/RFC8032, January 2017,
<<a href="https://www.rfc-editor.org/info/rfc8032">https://www.rfc-editor.org/info/rfc8032</a>>.
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in <a href="./rfc2119">RFC</a>
<a href="./rfc2119">2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>, DOI 10.17487/RFC8174,
May 2017, <<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
[<a id="ref-RFC8410">RFC8410</a>] Josefsson, S. and J. Schaad, "Algorithm Identifiers for
Ed25519, Ed448, X25519 and X448 for Use in the Internet
X.509 Public Key Infrastructure", <a href="./rfc8410">RFC 8410</a>,
DOI 10.17487/RFC8410, August 2018,
<<a href="https://www.rfc-editor.org/info/rfc8410">https://www.rfc-editor.org/info/rfc8410</a>>.
[<a id="ref-SECG-SEC2">SECG-SEC2</a>]
Certicom Research, "SEC 2: Recommended Elliptic Curve
Domain Parameters", Standards for Efficient Cryptography 2
(SEC 2), Version 2.0, January 2010,
<<a href="http://www.secg.org/sec2-v2.pdf">http://www.secg.org/sec2-v2.pdf</a>>.
[<a id="ref-X.680">X.680</a>] ITU-T, "Abstract Syntax Notation One (ASN.1):
Specification of basic notation", ITU-T Recommendation
X.680, ISO/IEC 8824-1, August 2015.
<span class="grey">Nir, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
[<a id="ref-X.690">X.690</a>] ITU-T, "Information technology-ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules
(DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1, August
2015.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Informative References</span>
[<a id="ref-FIPS.180-4">FIPS.180-4</a>]
National Institute of Standards and Technology, "Secure
Hash Standard (SHS)", FIPS PUB 180-4, DOI
10.6028/NIST.FIPS.180-4, August 2015,
<<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf">http://nvlpubs.nist.gov/nistpubs/FIPS/</a>
<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf">NIST.FIPS.180-4.pdf</a>>.
[<a id="ref-IEEE.P1363">IEEE.P1363</a>]
IEEE, "Standard Specifications for Public Key
Cryptography", IEEE Std P1363,
<<a href="http://ieeexplore.ieee.org/document/891000/">http://ieeexplore.ieee.org/document/891000/</a>>.
[<a id="ref-Menezes">Menezes</a>] Menezes, A. and B. Ustaoglu, "On reusing ephemeral keys in
Diffie-Hellman key agreement protocols", International
Journal of Applied Cryptography, Vol. 2, Issue 2,
DOI 10.1504/IJACT.2010.038308, January 2010.
[<a id="ref-RFC4492">RFC4492</a>] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS)", <a href="./rfc4492">RFC 4492</a>,
DOI 10.17487/RFC4492, May 2006,
<<a href="https://www.rfc-editor.org/info/rfc4492">https://www.rfc-editor.org/info/rfc4492</a>>.
[<a id="ref-RFC7919">RFC7919</a>] Gillmor, D., "Negotiated Finite Field Diffie-Hellman
Ephemeral Parameters for Transport Layer Security (TLS)",
<a href="./rfc7919">RFC 7919</a>, DOI 10.17487/RFC7919, August 2016,
<<a href="https://www.rfc-editor.org/info/rfc7919">https://www.rfc-editor.org/info/rfc7919</a>>.
[<a id="ref-TLS1.3">TLS1.3</a>] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", Work in Progress, <a href="./draft-ietf-tls-tls13-28">draft-ietf-tls-tls13-28</a>,
March 2018.
<span class="grey">Nir, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Equivalent Curves (Informative)</span>
All of the NIST curves [<a href="#ref-FIPS.186-4">FIPS.186-4</a>] and several of the ANSI curves
[<a href="#ref-ANSI.X9-62.2005">ANSI.X9-62.2005</a>] are equivalent to curves listed in <a href="#section-5.1.1">Section 5.1.1</a>.
The following table displays the curve names chosen by different
standards organizations; multiple names in one row represent aliases
for the same curve.
+-----------+------------+------------+
| SECG | ANSI X9.62 | NIST |
+-----------+------------+------------+
| sect163k1 | | NIST K-163 |
| sect163r1 | | |
| sect163r2 | | NIST B-163 |
| sect193r1 | | |
| sect193r2 | | |
| sect233k1 | | NIST K-233 |
| sect233r1 | | NIST B-233 |
| sect239k1 | | |
| sect283k1 | | NIST K-283 |
| sect283r1 | | NIST B-283 |
| sect409k1 | | NIST K-409 |
| sect409r1 | | NIST B-409 |
| sect571k1 | | NIST K-571 |
| sect571r1 | | NIST B-571 |
| secp160k1 | | |
| secp160r1 | | |
| secp160r2 | | |
| secp192k1 | | |
| secp192r1 | prime192v1 | NIST P-192 |
| secp224k1 | | |
| secp224r1 | | NIST P-224 |
| secp256k1 | | |
| secp256r1 | prime256v1 | NIST P-256 |
| secp384r1 | | NIST P-384 |
| secp521r1 | | NIST P-521 |
+-----------+------------+------------+
Table 4: Equivalent Curves Defined by SECG, ANSI, and NIST
<span class="grey">Nir, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Differences from <a href="./rfc4492">RFC 4492</a></span>
o Renamed EllipticCurveList to NamedCurveList.
o Added TLS 1.2.
o Merged errata.
o Removed the ECDH key exchange algorithms: ECDH_RSA and ECDH_ECDSA
o Deprecated a bunch of ciphersuites:
TLS_ECDH_ECDSA_WITH_NULL_SHA
TLS_ECDH_ECDSA_WITH_RC4_128_SHA
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDH_RSA_WITH_NULL_SHA
TLS_ECDH_RSA_WITH_RC4_128_SHA
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
All the other RC4 ciphersuites
o Removed unused curves and all but the uncompressed point format.
o Added X25519 and X448.
o Deprecated explicit curves.
o Removed restriction on signature algorithm in certificate.
<span class="grey">Nir, et al. Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc8422">RFC 8422</a> ECC Cipher Suites for TLS August 2018</span>
Acknowledgements
Most of the text in this document is taken from [<a href="./rfc4492" title=""Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)"">RFC4492</a>], the
predecessor of this document. The authors of that document were:
o Simon Blake-Wilson
o Nelson Bolyard
o Vipul Gupta
o Chris Hawk
o Bodo Moeller
In the predecessor document, the authors acknowledged the
contributions of Bill Anderson and Tim Dierks.
The authors would like to thank Nikos Mavrogiannopoulos, Martin
Thomson, and Tanja Lange for contributions to this document.
Authors' Addresses
Yoav Nir
Check Point Software Technologies Ltd.
5 Hasolelim st.
Tel Aviv 6789735
Israel
Email: ynir.ietf@gmail.com
Simon Josefsson
SJD AB
Email: simon@josefsson.org
Manuel Pegourie-Gonnard
ARM
Email: mpg@elzevir.fr
Nir, et al. Standards Track [Page 34]
</pre>
|