1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
|
<pre>Internet Engineering Task Force (IETF) J. Ahlberg, Ed.
Request for Comments: 8432 Ericsson AB
Category: Informational M. Ye, Ed.
ISSN: 2070-1721 Huawei Technologies
X. Li
NEC Laboratories Europe
LM. Contreras
Telefonica I+D
CJ. Bernardos
Universidad Carlos III de Madrid
October 2018
<span class="h1">A Framework for Management and Control of</span>
<span class="h1">Microwave and Millimeter Wave Interface Parameters</span>
Abstract
The unification of control and management of microwave radio link
interfaces is a precondition for seamless multi-layer networking and
automated network provisioning and operation.
This document describes the required characteristics and use cases
for control and management of radio link interface parameters using a
YANG data model.
The purpose is to create a framework to identify the necessary
information elements and define a YANG data model for control and
management of the radio link interfaces in a microwave node. Some
parts of the resulting model may be generic and could also be used by
other technologies, e.g., Ethernet technology.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8432">https://www.rfc-editor.org/info/rfc8432</a>.
<span class="grey">Ahlberg, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Conventions Used in This Document ..........................<a href="#page-5">5</a>
<a href="#section-2">2</a>. Terminology and Definitions .....................................<a href="#page-5">5</a>
<a href="#section-3">3</a>. Approaches to Manage and Control Radio Link Interfaces ..........<a href="#page-7">7</a>
<a href="#section-3.1">3.1</a>. Network Management Solutions ...............................<a href="#page-7">7</a>
<a href="#section-3.2">3.2</a>. Software-Defined Networking ................................<a href="#page-7">7</a>
<a href="#section-4">4</a>. Use Cases .......................................................<a href="#page-8">8</a>
<a href="#section-4.1">4.1</a>. Configuration Management ...................................<a href="#page-9">9</a>
<a href="#section-4.2">4.2</a>. Inventory .................................................<a href="#page-10">10</a>
<a href="#section-4.3">4.3</a>. Status and Statistics .....................................<a href="#page-10">10</a>
<a href="#section-4.4">4.4</a>. Performance Management ....................................<a href="#page-10">10</a>
<a href="#section-4.5">4.5</a>. Fault Management ..........................................<a href="#page-11">11</a>
<a href="#section-4.6">4.6</a>. Troubleshooting and Root Cause Analysis ...................<a href="#page-11">11</a>
<a href="#section-5">5</a>. Requirements ...................................................<a href="#page-11">11</a>
<a href="#section-6">6</a>. Gap Analysis on Models .........................................<a href="#page-12">12</a>
<a href="#section-6.1">6.1</a>. Microwave Radio Link Functionality ........................<a href="#page-13">13</a>
<a href="#section-6.2">6.2</a>. Generic Functionality .....................................<a href="#page-14">14</a>
<a href="#section-6.3">6.3</a>. Summary ...................................................<a href="#page-15">15</a>
<a href="#section-7">7</a>. Security Considerations ........................................<a href="#page-16">16</a>
<a href="#section-8">8</a>. IANA Considerations ............................................<a href="#page-16">16</a>
<a href="#section-9">9</a>. References .....................................................<a href="#page-16">16</a>
<a href="#section-9.1">9.1</a>. Normative References ......................................<a href="#page-16">16</a>
<a href="#section-9.2">9.2</a>. Informative References ....................................<a href="#page-17">17</a>
Contributors ......................................................<a href="#page-19">19</a>
Authors' Addresses ................................................<a href="#page-20">20</a>
<span class="grey">Ahlberg, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Microwave radio is a technology that uses high-frequency radio waves
to provide high-speed wireless connections that can send and receive
voice, video, and data information. It is a general term used for
systems covering a very large range of traffic capacities, channel
separations, modulation formats, and applications over a wide range
of frequency bands from 1.4 GHz up to and above 100 GHz.
The main application for microwave is backhaul for mobile broadband.
Those networks will continue to be modernized using a combination of
microwave and fiber technologies. The choice of technology depends
on fiber presence and cost of ownership, not capacity limitations in
microwave.
Today, microwave is already able to fully support the capacity needs
of a backhaul in a radio access network and will evolve to support
multiple gigabits in traditional frequency bands and more than 10
gigabits in higher-frequency bands with more bandwidth. Layer 2 (L2)
Ethernet features are normally an integrated part of microwave nodes,
and more advanced L2 and Layer 3 (L3) features will be introduced
over time to support the evolution of the transport services that
will be provided by a backhaul/transport network. Note that wireless
access technologies such as 3/4/5G and Wi-Fi are not within the scope
of this document.
Open and standardized interfaces are a prerequisite for efficient
management of equipment from multiple vendors, integrated in a single
system/controller. This framework addresses management and control
of the radio link interface(s) and their relationship to other
interfaces (typically, Ethernet interfaces) in a microwave node. A
radio link provides the transport over the air, using one or several
carriers in aggregated or protected configurations. Managing and
controlling a transport service over a microwave node involves both
radio link and packet transport functionality.
Today, there are already numerous IETF data models, RFCs, and
Internet-Drafts with technology-specific extensions that cover a
large part of the L2 and L3 domains. Examples include IP Management
[<a href="./rfc8344" title=""A YANG Data Model for IP Management"">RFC8344</a>], Routing Management [<a href="./rfc8349" title=""A YANG Data Model for Routing Management (NMDA Version)"">RFC8349</a>], and Provider Bridge
[<a href="#ref-IEEE802.1Qcp">IEEE802.1Qcp</a>]. These are based on the IETF YANG data model for
Interface Management [<a href="./rfc8343" title=""A YANG Data Model for Interface Management"">RFC8343</a>], which is an evolution of the SNMP
IF-MIB [<a href="./rfc2863" title=""The Interfaces Group MIB"">RFC2863</a>].
Since microwave nodes will contain more and more L2 and L3 (packet)
functionality that is expected to be managed using those models,
there are advantages if radio link interfaces can be modeled and
managed using the same structure and the same approach. This is
<span class="grey">Ahlberg, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
especially true for use cases in which a microwave node is managed as
one common entity that includes both the radio link and the L2 and L3
functionality, e.g., basic configuration of the node and connections,
centralized troubleshooting, upgrade, and maintenance. All
interfaces in a node, irrespective of technology, would then be
accessed from the same core model, i.e., [<a href="./rfc8343" title=""A YANG Data Model for Interface Management"">RFC8343</a>], and could be
extended with technology-specific parameters in models augmenting
that core model. The relationship/connectivity between interfaces
could be given by the physical equipment configuration. For example,
the slot where the Radio Link Terminal (modem) is plugged in could be
associated with a specific Ethernet port due to the wiring in the
backplane of the system, or it could be flexible and therefore
configured via a management system or controller.
+------------------------------------------------------------------+
| Interface [<a href="./rfc8343" title=""A YANG Data Model for Interface Management"">RFC8343</a>] |
| +---------------+ |
| | Ethernet Port | |
| +---------------+ |
| \ |
| +---------------------+ |
| | Radio Link Terminal | |
| +---------------------+ |
| / \ |
| +---------------------+ +---------------------+ |
| | Carrier Termination | | Carrier Termination | |
| +---------------------+ +---------------------+ |
+------------------------------------------------------------------+
Figure 1: Relationship between Interfaces in a Node
There will always be certain implementations that differ among
products, so it is practically impossible to achieve industry
consensus on every design detail. It is therefore important to focus
on the parameters that are required to support the use cases
applicable for centralized, unified, multi-vendor management and to
allow other parameters to either be optional or be covered by
extensions to the standardized model. Furthermore, a standard that
allows for a certain degree of freedom encourages innovation and
competition, which benefits the entire industry. Thus, it is
important that a radio link management model covers all relevant
functions but also leaves room for product- and feature-specific
extensions.
Models are available for microwave radio link functionality:
"Microwave Information Model" by the ONF [<a href="#ref-ONF-MW" title=""Microwave Information Model"">ONF-MW</a>] and "Microwave
Radio Link YANG Data Models" submitted to and discussed by the CCAMP
Working Group [<a href="#ref-CCAMP-MW" title=""Microwave Radio Link YANG Data Models"">CCAMP-MW</a>]. The purpose of this document is to reach
<span class="grey">Ahlberg, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
consensus within the industry around one common approach with respect
to the use cases and requirements to be supported, the type and
structure of the model, and the resulting attributes to be included.
This document describes the use cases, requirements, and expected
characteristics of the model. It also includes an analysis of how
the models in the two ongoing initiatives fulfill these expectations
and recommendations for what can be reused and what gaps need to be
filled by a new and evolved model ("A YANG Data Model for Microwave
Radio Link" by the IETF [<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>]).
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology and Definitions</span>
Microwave radio: a term commonly used for technologies that operate
in both microwave and millimeter wavelengths and in frequency
bands from 1.4 GHz up to and beyond 100 GHz. In traditional
bands, it typically supports capacities of 1-3 Gbps; in the 70/80
GHz band, it supports up to 10 Gbps. Using multi-carrier systems
operating in frequency bands with wider channels, the technology
will be capable of providing capacities of up to 100 Gbps.
Microwave radio technology: widely used for point-to-point
telecommunications because its small wavelength allows
conveniently sized antennas to direct radio waves in narrow beams
and its comparatively higher frequencies allow broad bandwidth and
high data-transmission rates. It is used for a broad range of
fixed and mobile services, including high-speed, point-to-point
wireless local area networks (WLANs) and broadband access.
The ETSI EN 302 217 series defines the characteristics and
requirements of microwave equipment and antennas. In particular,
ETSI EN 302 217-2 [<a href="#ref-EN302217-2">EN302217-2</a>] specifies the essential parameters
for the systems operating from 1.4 GHz to 86 GHz.
Carrier Termination and Radio Link Terminal: two concepts defined to
support modeling of microwave radio link features and parameters
in a structured yet simple manner.
* Carrier Termination: an interface for the capacity provided
over the air by a single carrier. It is typically defined by
its transmitting and receiving frequencies.
<span class="grey">Ahlberg, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
* Radio Link Terminal: an interface providing Ethernet capacity
and/or Time Division Multiplexing (TDM) capacity to the
associated Ethernet and/or TDM interfaces in a node. It is
used for setting up a transport service over a microwave radio
link.
Figure 2 provides a graphical representation of the Carrier
Termination and Radio Link Terminal concepts.
/--------- Radio Link ---------\
Near End Far End
+---------------+ +---------------+
| Radio Link | | Radio Link |
| Terminal | | Terminal |
| | | |
| (Protected or Bonded) |
| | | |
| +-----------+ | | +-----------+ |
| | | | Carrier A | | | |
| | Carrier | |<--------->| | Carrier | |
| |Termination| | | |Termination| |
ETH----| | | | | | | |----ETH
| +-----------+ | | +-----------+ |
TDM----| | | |----TDM
| +-----------+ | | +-----------+ |
| | | | Carrier B | | | |
| | Carrier | |<--------->| | Carrier | |
| |Termination| | | |Termination| |
| | | | | | | |
| +-----------+ | | +-----------+ |
| | | |
+---------------+ +---------------+
\--- Microwave Node ---/ \--- Microwave Node ---/
Figure 2: Radio Link Terminal and Carrier Termination
Software-Defined Networking (SDN): an architecture that decouples
the network control and forwarding functions, enabling the network
control to become directly programmable and the underlying
infrastructure to be abstracted for applications and network
services. SDN can be used for automation of traditional network
management functionality using an SDN approach of standardized
programmable interfaces for control and management [<a href="./rfc7426" title=""Software- Defined Networking (SDN): Layers and Architecture Terminology"">RFC7426</a>].
<span class="grey">Ahlberg, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Approaches to Manage and Control Radio Link Interfaces</span>
This framework addresses the definition of an open and standardized
interface for radio link functionality in a microwave node. The
application of such an interface used for management and control of
nodes and networks typically varies from one operator to another in
terms of the systems used and how they interact. Possible approaches
include using a Network Management System (NMS), Software-Defined
Networking (SDN), or some combination of the two. As there are still
many networks where the NMS is implemented as one component/interface
and the SDN controller is scoped to control-plane functionality as a
separate component/interface, this document does not preclude either
model. The aim of this document is to provide a framework for
development of a common YANG data model for both management and
control of microwave interfaces.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Network Management Solutions</span>
The classic network management solutions, with vendor-specific domain
management combined with cross-domain functionality for service
management and analytics, still dominate the market. These solutions
are expected to evolve and benefit from an increased focus on
standardization by simplifying multi-vendor management and removing
the need for vendor- or domain-specific management.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Software-Defined Networking</span>
One of the main drivers for applying SDN from an operator perspective
is simplification and automation of network provisioning as well as
end-to-end network service management. The vision is to have a
global view of the network conditions spanning different vendors'
equipment and multiple technologies.
If nodes from different vendors are managed by the same SDN
controller via a node management interface without the extra effort
of introducing intermediate systems, all nodes must align their node
management interfaces. Hence, an open and standardized node
management interface is required in a multi-vendor environment. Such
a standardized interface enables unified management and configuration
of nodes from different vendors by a common set of applications.
In addition to SDN applications for configuring, managing, and
controlling the nodes and their associated transport interfaces
(including the L2 Ethernet, L3 IP, and radio interfaces), there are
also a large variety of more advanced SDN applications that can be
utilized and/or developed.
<span class="grey">Ahlberg, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
A potentially flexible approach for operators is to use SDN in a
logically controlled way, managing the radio links by selecting a
predefined operation mode. The operation mode is a set of logical
metrics or parameters describing a complete radio link configuration,
such as capacity, availability, priority, and power consumption.
An example of an operation mode table is shown in Figure 3. Based on
its operation policy (e.g., power consumption or traffic priority),
the SDN controller selects one operation mode and translates that
into the required configuration of the individual parameters for the
Radio Link Terminals and the associated Carrier Terminations.
+----+---------------+------------+-------------+-----------+------+
| ID |Description | Capacity |Availability | Priority |Power |
+----+---------------+------------+-------------+-----------+------+
| 1 |High capacity | 400 Mbps | 99.9% | Low |High |
+----+---------------+------------+-------------+-----------+------+
| 2 |High avail- | 100 Mbps | 99.999% | High |Low |
| | ability | | | | |
+----+---------------+------------+-------------+-----------+------+
Figure 3: Example of an Operation Mode Table
An operation mode bundles together the values of a set of different
parameters. How each operation mode maps a certain set of attributes
is out of the scope of this document.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Use Cases</span>
The use cases described should be the basis for identifying and
defining the parameters to be supported by a YANG data model for
management of radio links that will be applicable to centralized,
unified, multi-vendor management. The use cases involve
configuration management, inventory, status and statistics,
performance management, fault management, and troubleshooting and
root cause analysis.
Other product-specific use cases, e.g., addressing installation or
on-site troubleshooting and fault resolution, are outside the scope
of this framework. If required, these use cases are expected to be
supported by product-specific extensions to the standardized model.
<span class="grey">Ahlberg, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Configuration Management</span>
Configuration management involves configuring a Radio Link Terminal,
the constituent Carrier Terminations, and, when applicable, the
relationship to IP/Ethernet and TDM interfaces.
o Understand the capabilities and limitations
Exchange of information between a manager and a device about the
capabilities supported and specific limitations in the parameter
values and enumerations that can be used.
Examples of information that could be exchanged include the
maximum modulation supported and support (or lack of support) for
the Cross Polarization Interference Cancellation (XPIC) feature.
o Initial Configuration
Initial configuration of a Radio Link Terminal, enough to
establish Layer 1 (L1) connectivity to an associated Radio Link
Terminal on a device at the far end over the hop. It may also
include configuration of the relationship between a Radio Link
Terminal and an associated traffic interface, e.g., an Ethernet
interface, unless that is given by the equipment configuration.
Frequency, modulation, coding, and output power are examples of
parameters typically configured for a Carrier Termination and type
of aggregation/bonding or protection configurations expected for a
Radio Link Terminal.
o Radio link reconfiguration and optimization
Reconfiguration, update, or optimization of an existing Radio Link
Terminal. Output power and modulation for a Carrier Termination
as well as protection schemas and activation/deactivation of
carriers in a Radio Link Terminal are examples on parameters that
can be reconfigured and used for optimization of the performance
of a network.
o Radio link logical configuration
Radio Link Terminals configured to include a group of carriers are
widely used in microwave technology. There are several kinds of
groups: aggregation/bonding, 1+1 protection/redundancy, etc. To
avoid configuration on each Carrier Termination directly, a
logical control provides flexible management by mapping a logical
configuration to a set of physical attributes. This could also be
<span class="grey">Ahlberg, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
applied in a hierarchical SDN environment where some domain
controllers are located between the SDN controller and the Radio
Link Terminal.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Inventory</span>
o Retrieve logical inventory and configuration from device
Request from manager and response by device with information about
radio interfaces, e.g., their constitution and configuration.
o Retrieve physical/equipment inventory from device
Request from manager about physical and/or equipment inventory
associated with the Radio Link Terminals and Carrier Terminations.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Status and Statistics</span>
o Actual status and performance of a radio link interface
Manager requests and device responds with information about actual
status and statistics of configured radio link interfaces and
their constituent parts. It's important to report the effective
bandwidth of a radio link since it can be configured to
dynamically adjust the modulation based on the current signal
conditions.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Performance Management</span>
o Configuration of historical performance measurements
Configuration of historical performance measurements for a radio
link interface and/or its constituent parts. See <a href="#section-4.1">Section 4.1</a>.
o Collection of historical performance data
Collection of historical performance data in bulk by the manager
is a general use case for a device and not specific to a radio
link interface.
Collection of an individual counter for a specific interval is in
some cases required as a complement to the retrieval in bulk as
described above.
<span class="grey">Ahlberg, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Fault Management</span>
o Configuration of alarm reporting
Configuration of alarm reporting associated specifically with
radio interfaces, e.g., configuration of alarm severity, is a
subset of the configuration use case to be supported. See
<a href="#section-4.1">Section 4.1</a>.
o Alarm management
Alarm synchronization, visualization, handling, notifications, and
events are generic use cases for a device and should be supported
on a radio link interface. There are, however, radio-specific
alarms that are important to report. Signal degradation of the
radio link is one example.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Troubleshooting and Root Cause Analysis</span>
Provide information and suggest actions required by a manager/
operator to investigate and understand the underlying issue to a
problem in the performance and/or functionality of a Radio Link
Terminal and the associated Carrier Terminations.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Requirements</span>
For managing a microwave node including both the radio link and the
packet transport functionality, a unified data model is desired to
unify the modeling of the radio link interfaces and the L2/L3
interfaces using the same structure and the same modeling approach.
If some part of the model is generic for other technology usage, it
should be clearly stated.
The purpose of the YANG data model is for management and control of
the radio link interface(s) and the relationship/connectivity to
other interfaces, typically to Ethernet interfaces, in a microwave
node.
The capability of configuring and managing microwave nodes includes
the following requirements for the model:
1. It MUST be possible to configure, manage, and control a Radio
Link Terminal and the constituent Carrier Terminations.
A. Configuration of frequency, channel bandwidth, modulation,
coding, and transmitter output power MUST be supported for a
Carrier Termination.
<span class="grey">Ahlberg, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
B. A Radio Link Terminal MUST configure the associated Carrier
Terminations and the type of aggregation/bonding or
protection configurations expected for the Radio Link
Terminal.
C. The capability (e.g., the maximum modulation supported) and
the actual status/statistics (e.g., administrative status of
the carriers) SHOULD also be supported by the data model.
D. The definition of the features and parameters SHOULD be based
on established microwave equipment and radio standards, such
as ETSI EN 302 217 [<a href="#ref-EN302217-2">EN302217-2</a>], which specifies the
essential parameters for microwave systems operating from 1.4
GHz to 86 GHz.
2. It MUST be possible to map different traffic types (e.g., TDM and
Ethernet) to the transport capacity provided by a specific Radio
Link Terminal.
3. It MUST be possible to configure and collect historical
measurements (for the use case described in <a href="#section-4.4">Section 4.4</a>) to be
performed on a radio link interface (e.g., minimum, maximum,
average transmit power, and received level in dBm).
4. It MUST be possible to configure and retrieve alarms reporting
associated with the radio interfaces (e.g., configuration fault,
signal lost, modem fault, and radio fault).
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Gap Analysis on Models</span>
The purpose of the gap analysis is to identify and recommend what
models to use in a microwave device to support the use cases and
requirements specified in the previous sections. This document also
makes a recommendation for how the gaps not supported should be
filled, including the need for development of new models and
evolution of existing models and documents.
Models are available for microwave radio link functionality:
"Microwave Information Model" by the ONF [<a href="#ref-ONF-MW" title=""Microwave Information Model"">ONF-MW</a>] and "Microwave
Radio Link YANG Data Models" submitted to and discussed by the CCAMP
Working Group [<a href="#ref-CCAMP-MW" title=""Microwave Radio Link YANG Data Models"">CCAMP-MW</a>]. The analysis in this document takes these
initiatives into consideration and makes a recommendation on how to
use and complement them in order to fill the gaps identified.
For generic functionality, not functionality specific to radio link,
the ambition is to refer to existing or emerging models that could be
applicable for all functional areas in a microwave node.
<span class="grey">Ahlberg, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Microwave Radio Link Functionality</span>
[<a id="ref-ONF-CIM">ONF-CIM</a>] defines a CoreModel of the ONF Common Information Model.
An information model describes the things in a domain in terms of
objects, their properties (represented as attributes), and their
relationships. The ONF information model is expressed in Unified
Modeling Language (UML). The ONF CoreModel is independent of
specific data-plane technology. The technology-specific content,
acquired in a runtime solution via "filled in" cases of
specification, augments the CoreModel by providing a forwarding
technology-specific representation.
IETF data models define implementations and protocol-specific
details. YANG is a data modeling language used to model the
configuration and state data. [<a href="./rfc8343" title=""A YANG Data Model for Interface Management"">RFC8343</a>] defines a generic YANG data
model for interface management that doesn't include technology-
specific information. To describe the technology-specific
information, several YANG data models have been proposed in the IETF
to augment [<a href="./rfc8343" title=""A YANG Data Model for Interface Management"">RFC8343</a>], e.g., the data model defined in [<a href="./rfc8344" title=""A YANG Data Model for IP Management"">RFC8344</a>]. The
YANG data model is a popular approach for modeling interfaces for
many packet transport technologies and is thereby well positioned to
become an industry standard. In light of this trend, [<a href="#ref-CCAMP-MW" title=""Microwave Radio Link YANG Data Models"">CCAMP-MW</a>]
provides a YANG data model proposal for radio interfaces that is well
aligned with the structure of other technology-specific YANG data
models augmenting [<a href="./rfc8343" title=""A YANG Data Model for Interface Management"">RFC8343</a>].
[<a id="ref-RFC3444">RFC3444</a>] explains the difference between Information Models (IMs)
and Data Models (DMs). An IM models managed objects at a conceptual
level for designers and operators, while a DM is defined at a lower
level and includes many details for implementers. In addition, the
protocol-specific details are usually included in a DM. Since
conceptual models can be implemented in different ways, multiple DMs
can be derived from a single IM.
It is recommended to use the structure of the model described in
[<a href="#ref-CCAMP-MW" title=""Microwave Radio Link YANG Data Models"">CCAMP-MW</a>] as the starting point, since it is a data model providing
the wanted alignment with [<a href="./rfc8343" title=""A YANG Data Model for Interface Management"">RFC8343</a>]. To cover the identified gaps,
it is recommended to define new leafs/parameters and include those in
the new model [<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>] while taking reference from [<a href="#ref-ONF-CIM" title=""Core Information Model (CoreModel)"">ONF-CIM</a>]. It is
also recommended to add the required data nodes to describe the
interface layering for the capacity provided by a Radio Link Terminal
and the associated Ethernet and TDM interfaces in a microwave node.
The principles and data nodes for interface layering described in
[<a href="./rfc8343" title=""A YANG Data Model for Interface Management"">RFC8343</a>] should be used as a basis.
<span class="grey">Ahlberg, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Generic Functionality</span>
For generic functionality, not functionality specific to radio links,
the recommendation is to refer to existing RFCs or emerging Internet-
Drafts according to Figure 4. "[<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>]" is used in Figure 4 for
the cases where the functionality is recommended to be included in
the new model [<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>] as described in <a href="#section-6.1">Section 6.1</a>.
+------------------------------------+-----------------------------+
| Generic Functionality | Recommendation |
| | |
+------------------------------------+-----------------------------+
|1. Fault Management | |
| | |
| Alarm Configuration | [<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>] |
| | |
| Alarm Notifications/ | [<a href="#ref-YANG-ALARM">YANG-ALARM</a>] |
| Synchronization | |
+------------------------------------+-----------------------------+
|2. Performance Management | |
| | |
| Performance Configuration/ | [<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>] |
| Activation | |
| | |
| Performance Collection | [<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>] and XML files |
+------------------------------------+-----------------------------+
|3. Physical/Equipment Inventory | [<a href="./rfc8348" title=""A YANG Data Model for Hardware Management"">RFC8348</a>] |
+------------------------------------+-----------------------------+
Figure 4: Recommendation for How to Support Generic Functionality
Microwave-specific alarm configurations are recommended to be
included in the new model [<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>] and could be based on what is
supported in the models described in [<a href="#ref-ONF-MW" title=""Microwave Information Model"">ONF-MW</a>] and [<a href="#ref-CCAMP-MW" title=""Microwave Radio Link YANG Data Models"">CCAMP-MW</a>]. Alarm
notifications and synchronization are general and are recommended to
be supported by a generic model, such as [<a href="#ref-YANG-ALARM">YANG-ALARM</a>].
Activation of interval counters and thresholds could be a generic
function, but it is recommended to be supported by the new model
[<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>]. It can be based on the models described in [<a href="#ref-ONF-MW" title=""Microwave Information Model"">ONF-MW</a>] and
[<a href="#ref-CCAMP-MW" title=""Microwave Radio Link YANG Data Models"">CCAMP-MW</a>].
Collection of interval/historical counters is a generic function that
needs to be supported in a node. File-based collection via the SSH
File Transfer Protocol (SFTP) and collection via NETCONF/YANG
interfaces are two possible options; the recommendation is to include
<span class="grey">Ahlberg, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
support for the latter in the new model [<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>]. The models
described in [<a href="#ref-ONF-MW" title=""Microwave Information Model"">ONF-MW</a>] and [<a href="#ref-CCAMP-MW" title=""Microwave Radio Link YANG Data Models"">CCAMP-MW</a>] can also be used as a basis in
this area.
Physical and/or equipment inventory associated with the Radio Link
Terminals and Carrier Terminations is recommended to be covered by a
generic model for the complete node, e.g., the model defined in
[<a href="./rfc8348" title=""A YANG Data Model for Hardware Management"">RFC8348</a>]. It is thereby outside the scope of the new model
[<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>].
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Summary</span>
The conclusions and recommendations from the analysis can be
summarized as follows:
1. A new YANG data model for radio link [<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>] should be defined
with enough scope to support the use cases and requirements in
Sections <a href="#section-4">4</a> and <a href="#section-5">5</a> of this document.
2. Use the structure of the model described in [<a href="#ref-CCAMP-MW" title=""Microwave Radio Link YANG Data Models"">CCAMP-MW</a>] as the
starting point. It augments [<a href="./rfc8343" title=""A YANG Data Model for Interface Management"">RFC8343</a>] and is thereby as required
aligned with the structure of the models for management of the L2
and L3 domains.
3. Use established microwave equipment and radio standards (such as
[<a href="#ref-EN302217-2">EN302217-2</a>], the model described in [<a href="#ref-CCAMP-MW" title=""Microwave Radio Link YANG Data Models"">CCAMP-MW</a>], and the model
described in [<a href="#ref-ONF-MW" title=""Microwave Information Model"">ONF-MW</a>]) as the basis for the definition of the
detailed leafs/ parameters to support the specified use cases and
requirements, proposing new ones to cover identified gaps.
4. Add the required data nodes to describe the interface layering
for the capacity provided by a Radio Link Terminal and the
associated Ethernet and TDM interfaces, using the principles and
data nodes for interface layering described in [<a href="./rfc8343" title=""A YANG Data Model for Interface Management"">RFC8343</a>] as a
basis.
5. Include support for configuration of microwave-specific alarms in
the new YANG data model [<a href="#ref-IETF-MW" title=""A YANG Data Model for Microwave Radio Link"">IETF-MW</a>] and rely on a generic model
such as [<a href="#ref-YANG-ALARM">YANG-ALARM</a>] for notifications and alarm synchronization.
6. Use a generic model such as [<a href="./rfc8348" title=""A YANG Data Model for Hardware Management"">RFC8348</a>] for physical/equipment
inventory.
<span class="grey">Ahlberg, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
The configuration information may be considered sensitive or
vulnerable in network environments. Unauthorized access to
configuration data nodes can have a negative effect on network
operations, e.g., interrupting the ability to forward traffic or
increasing the interference level of the network. The status and
inventory reveal some network information that could be very helpful
to an attacker. A malicious attack to that information may result in
a loss of customer data. Security issues concerning the access
control to management interfaces can be generally addressed by
authentication techniques providing origin verification, integrity,
and confidentiality. In addition, management interfaces can be
physically or logically isolated by configuring them to be only
accessible out-of-band, through a system that is physically or
logically separated from the rest of the network infrastructure. In
cases where management interfaces are accessible in-band at the
client device or within the microwave transport network domain,
filtering or firewalling techniques can be used to restrict
unauthorized in-band traffic. Additionally, authentication
techniques may be used in all cases.
This framework describes the requirements and characteristics of a
YANG data model for control and management of the radio link
interfaces in a microwave node. It is supposed to be accessed via a
management protocol with a secure transport layer, such as NETCONF
[<a href="./rfc6241" title=""Network Configuration Protocol (NETCONF)"">RFC6241</a>].
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. IANA Considerations</span>
This document has no IANA actions.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in <a href="./rfc2119">RFC</a>
<a href="./rfc2119">2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>, DOI 10.17487/RFC8174,
May 2017, <<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
<span class="grey">Ahlberg, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-CCAMP-MW">CCAMP-MW</a>] Ahlberg, J., Carlson, J-O., Lund, H-A., Olausson, T.,
Ye, M., and M. Vaupotic, "Microwave Radio Link YANG Data
Models", Work in Progress, <a href="./draft-ahlberg-ccamp-microwave-radio-link-01">draft-ahlberg-ccamp-microwave-</a>
<a href="./draft-ahlberg-ccamp-microwave-radio-link-01">radio-link-01</a>, May 2016.
[<a id="ref-EN302217-2">EN302217-2</a>]
ETSI, "Fixed Radio Systems; Characteristics and
requirements for point-to-point equipment and antennas;
Part 2: Digital systems operating in frequency bands from
1 GHz to 86 GHz; Harmonised Standard covering the
essential requirements of article 3.2 of Directive
2014/53/EU", ETSI EN 302 217-2, V3.1.1, May 2017.
[<a id="ref-IEEE802.1Qcp">IEEE802.1Qcp</a>]
IEEE, "Bridges and Bridged Networks Ammendment: YANG Data
Model", Work in Progress, Draft 2.2, March 2018,
<<a href="https://1.ieee802.org/tsn/802-1qcp/">https://1.ieee802.org/tsn/802-1qcp/</a>>.
[<a id="ref-IETF-MW">IETF-MW</a>] Ahlberg, J., Ye, M., Li, X., Spreafico, D., and
M. Vaupotic, "A YANG Data Model for Microwave Radio Link",
Work in Progress, <a href="./draft-ietf-ccamp-mw-yang-10">draft-ietf-ccamp-mw-yang-10</a>, October
2018.
[<a id="ref-ONF-CIM">ONF-CIM</a>] ONF, "Core Information Model (CoreModel)", ONF
TR-512, version 1.2, September 2016,
<<a href="https://www.opennetworking.org/images/stories/downloads/">https://www.opennetworking.org/images/stories/downloads/</a>
sdn-resources/technical-reports/
TR-512_CIM_(CoreModel)_1.2.zip>.
[<a id="ref-ONF-MW">ONF-MW</a>] ONF, "Microwave Information Model", ONF TR-532, version
1.0, December 2016,
<<a href="https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR-532-Microwave-Information-Model-V1.pdf">https://www.opennetworking.org/images/stories/downloads/</a>
<a href="https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR-532-Microwave-Information-Model-V1.pdf">sdn-resources/technical-reports/</a>
<a href="https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR-532-Microwave-Information-Model-V1.pdf">TR-532-Microwave-Information-Model-V1.pdf</a>>.
[<a id="ref-RFC2863">RFC2863</a>] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
MIB", <a href="./rfc2863">RFC 2863</a>, DOI 10.17487/RFC2863, June 2000,
<<a href="https://www.rfc-editor.org/info/rfc2863">https://www.rfc-editor.org/info/rfc2863</a>>.
[<a id="ref-RFC3444">RFC3444</a>] Pras, A. and J. Schoenwaelder, "On the Difference between
Information Models and Data Models", <a href="./rfc3444">RFC 3444</a>,
DOI 10.17487/RFC3444, January 2003,
<<a href="https://www.rfc-editor.org/info/rfc3444">https://www.rfc-editor.org/info/rfc3444</a>>.
<span class="grey">Ahlberg, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
[<a id="ref-RFC6241">RFC6241</a>] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", <a href="./rfc6241">RFC 6241</a>, DOI 10.17487/RFC6241, June 2011,
<<a href="https://www.rfc-editor.org/info/rfc6241">https://www.rfc-editor.org/info/rfc6241</a>>.
[<a id="ref-RFC7426">RFC7426</a>] Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,
Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-
Defined Networking (SDN): Layers and Architecture
Terminology", <a href="./rfc7426">RFC 7426</a>, DOI 10.17487/RFC7426, January
2015, <<a href="https://www.rfc-editor.org/info/rfc7426">https://www.rfc-editor.org/info/rfc7426</a>>.
[<a id="ref-RFC8343">RFC8343</a>] Bjorklund, M., "A YANG Data Model for Interface
Management", <a href="./rfc8343">RFC 8343</a>, DOI 10.17487/RFC8343, March 2018,
<<a href="https://www.rfc-editor.org/info/rfc8343">https://www.rfc-editor.org/info/rfc8343</a>>.
[<a id="ref-RFC8344">RFC8344</a>] Bjorklund, M., "A YANG Data Model for IP Management",
<a href="./rfc8344">RFC 8344</a>, DOI 10.17487/RFC8344, March 2018,
<<a href="https://www.rfc-editor.org/info/rfc8344">https://www.rfc-editor.org/info/rfc8344</a>>.
[<a id="ref-RFC8348">RFC8348</a>] Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu, "A
YANG Data Model for Hardware Management", <a href="./rfc8348">RFC 8348</a>,
DOI 10.17487/RFC8348, March 2018,
<<a href="https://www.rfc-editor.org/info/rfc8348">https://www.rfc-editor.org/info/rfc8348</a>>.
[<a id="ref-RFC8349">RFC8349</a>] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for
Routing Management (NMDA Version)", <a href="./rfc8349">RFC 8349</a>,
DOI 10.17487/RFC8349, March 2018,
<<a href="https://www.rfc-editor.org/info/rfc8349">https://www.rfc-editor.org/info/rfc8349</a>>.
[<a id="ref-YANG-ALARM">YANG-ALARM</a>]
Vallin, S. and M. Bjorklund, <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22YANG+Alarm+Module%22'>"YANG Alarm Module"</a>, Work in
Progress, <a href="./draft-ietf-ccamp-alarm-module-04">draft-ietf-ccamp-alarm-module-04</a>, October 2018.
<span class="grey">Ahlberg, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
Contributors
Marko Vaupotic
Aviat Networks
Motnica 9
Trzin-Ljubljana 1236
Slovenia
Email: Marko.Vaupotic@aviatnet.com
Jeff Tantsura
Email: jefftant.ietf@gmail.com
Koji Kawada
NEC Corporation
1753, Shimonumabe Nakahara-ku
Kawasaki, Kanagawa 211-8666
Japan
Email: k-kawada@ah.jp.nec.com
Ippei Akiyoshi
NEC
1753, Shimonumabe Nakahara-ku
Kawasaki, Kanagawa 211-8666
Japan
Email: i-akiyoshi@ah.jp.nec.com
Daniela Spreafico
Nokia - IT
Via Energy Park, 14
Vimercate (MI) 20871
Italy
Email: daniela.spreafico@nokia.com
<span class="grey">Ahlberg, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8432">RFC 8432</a> Microwave Framework October 2018</span>
Authors' Addresses
Jonas Ahlberg (editor)
Ericsson AB
Lindholmspiren 11
Goteborg 417 56
Sweden
Email: jonas.ahlberg@ericsson.com
Min Ye (editor)
Huawei Technologies
No.1899, Xiyuan Avenue
Chengdu 611731
China
Email: amy.yemin@huawei.com
Xi Li
NEC Laboratories Europe
Kurfuersten-Anlage 36
Heidelberg 69115
Germany
Email: Xi.Li@neclab.eu
Luis Contreras
Telefonica I+D
Ronda de la Comunicacion, S/N
Madrid 28050
Spain
Email: luismiguel.contrerasmurillo@telefonica.com
Carlos J. Bernardos
Universidad Carlos III de Madrid
Av. Universidad, 30
Madrid, Leganes 28911
Spain
Email: cjbc@it.uc3m.es
Ahlberg, et al. Informational [Page 20]
</pre>
|