1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
|
<pre>Internet Engineering Task Force (IETF) V. Bhuvaneswaran
Request for Comments: 8455 A. Basil
Category: Informational Veryx Technologies
ISSN: 2070-1721 M. Tassinari
Hewlett Packard Enterprise
V. Manral
NanoSec
S. Banks
VSS Monitoring
October 2018
<span class="h1">Terminology for Benchmarking Software-Defined Networking (SDN)</span>
<span class="h1">Controller Performance</span>
Abstract
This document defines terminology for benchmarking a Software-Defined
Networking (SDN) controller's control-plane performance. It extends
the terminology already defined in <a href="./rfc7426">RFC 7426</a> for the purpose of
benchmarking SDN Controllers. The terms provided in this document
help to benchmark an SDN Controller's performance independently of
the controller's supported protocols and/or network services.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8455">https://www.rfc-editor.org/info/rfc8455</a>.
<span class="grey">Bhuvaneswaran, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Conventions Used in This Document ..........................<a href="#page-3">3</a>
<a href="#section-2">2</a>. Term Definitions ................................................<a href="#page-4">4</a>
<a href="#section-2.1">2.1</a>. SDN Terms ..................................................<a href="#page-4">4</a>
<a href="#section-2.1.1">2.1.1</a>. Flow ................................................<a href="#page-4">4</a>
<a href="#section-2.1.2">2.1.2</a>. Northbound Interface ................................<a href="#page-4">4</a>
<a href="#section-2.1.3">2.1.3</a>. Southbound Interface ................................<a href="#page-5">5</a>
<a href="#section-2.1.4">2.1.4</a>. Controller Forwarding Table .........................<a href="#page-5">5</a>
<a href="#section-2.1.5">2.1.5</a>. Proactive Flow Provisioning Mode ....................<a href="#page-5">5</a>
<a href="#section-2.1.6">2.1.6</a>. Reactive Flow Provisioning Mode .....................<a href="#page-6">6</a>
<a href="#section-2.1.7">2.1.7</a>. Path ................................................<a href="#page-6">6</a>
<a href="#section-2.1.8">2.1.8</a>. Standalone Mode .....................................<a href="#page-6">6</a>
<a href="#section-2.1.9">2.1.9</a>. Cluster/Redundancy Mode .............................<a href="#page-7">7</a>
<a href="#section-2.1.10">2.1.10</a>. Asynchronous Message ...............................<a href="#page-7">7</a>
<a href="#section-2.1.11">2.1.11</a>. Test Traffic Generator .............................<a href="#page-7">7</a>
<a href="#section-2.1.12">2.1.12</a>. Leaf-Spine Topology ................................<a href="#page-8">8</a>
<a href="#section-2.2">2.2</a>. Test Configuration/Setup Terms .............................<a href="#page-8">8</a>
<a href="#section-2.2.1">2.2.1</a>. Number of Network Devices ...........................<a href="#page-8">8</a>
<a href="#section-2.2.2">2.2.2</a>. Trial Repetition ....................................<a href="#page-8">8</a>
<a href="#section-2.2.3">2.2.3</a>. Trial Duration ......................................<a href="#page-9">9</a>
<a href="#section-2.2.4">2.2.4</a>. Number of Cluster Nodes .............................<a href="#page-9">9</a>
<a href="#section-2.3">2.3</a>. Benchmarking Terms .........................................<a href="#page-9">9</a>
<a href="#section-2.3.1">2.3.1</a>. Performance .........................................<a href="#page-9">9</a>
<a href="#section-2.3.1.1">2.3.1.1</a>. Network Topology Discovery Time ............<a href="#page-9">9</a>
<a href="#section-2.3.1.2">2.3.1.2</a>. Asynchronous Message Processing Time ......<a href="#page-10">10</a>
<a href="#section-2.3.1.3">2.3.1.3</a>. Asynchronous Message Processing Rate ......<a href="#page-10">10</a>
<a href="#section-2.3.1.4">2.3.1.4</a>. Reactive Path Provisioning Time ...........<a href="#page-11">11</a>
<a href="#section-2.3.1.5">2.3.1.5</a>. Proactive Path Provisioning Time ..........<a href="#page-12">12</a>
<a href="#section-2.3.1.6">2.3.1.6</a>. Reactive Path Provisioning Rate ...........<a href="#page-12">12</a>
<a href="#section-2.3.1.7">2.3.1.7</a>. Proactive Path Provisioning Rate ..........<a href="#page-13">13</a>
<a href="#section-2.3.1.8">2.3.1.8</a>. Network Topology Change Detection Time ....<a href="#page-13">13</a>
<span class="grey">Bhuvaneswaran, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<a href="#section-2.3.2">2.3.2</a>. Scalability ........................................<a href="#page-14">14</a>
<a href="#section-2.3.2.1">2.3.2.1</a>. Control Sessions Capacity .................<a href="#page-14">14</a>
<a href="#section-2.3.2.2">2.3.2.2</a>. Network Discovery Size ....................<a href="#page-14">14</a>
<a href="#section-2.3.2.3">2.3.2.3</a>. Forwarding Table Capacity .................<a href="#page-15">15</a>
<a href="#section-2.3.3">2.3.3</a>. Security ...........................................<a href="#page-15">15</a>
<a href="#section-2.3.3.1">2.3.3.1</a>. Exception Handling ........................<a href="#page-15">15</a>
<a href="#section-2.3.3.2">2.3.3.2</a>. Handling Denial-of-Service Attacks ........<a href="#page-16">16</a>
<a href="#section-2.3.4">2.3.4</a>. Reliability ........................................<a href="#page-16">16</a>
<a href="#section-2.3.4.1">2.3.4.1</a>. Controller Failover Time ..................<a href="#page-16">16</a>
<a href="#section-2.3.4.2">2.3.4.2</a>. Network Re-provisioning Time ..............<a href="#page-17">17</a>
<a href="#section-3">3</a>. Test Setup .....................................................<a href="#page-17">17</a>
<a href="#section-3.1">3.1</a>. Test Setup - Controller Operating in Standalone Mode ......<a href="#page-18">18</a>
<a href="#section-3.2">3.2</a>. Test Setup - Controller Operating in Cluster Mode .........<a href="#page-19">19</a>
<a href="#section-4">4</a>. Test Coverage ..................................................<a href="#page-20">20</a>
<a href="#section-5">5</a>. IANA Considerations ............................................<a href="#page-21">21</a>
<a href="#section-6">6</a>. Security Considerations ........................................<a href="#page-21">21</a>
<a href="#section-7">7</a>. Normative References ...........................................<a href="#page-21">21</a>
Acknowledgments ...................................................<a href="#page-22">22</a>
Authors' Addresses ................................................<a href="#page-23">23</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Software-Defined Networking (SDN) is a networking architecture in
which network control is decoupled from the underlying forwarding
function and is placed in a centralized location called the SDN
Controller. The SDN Controller provides an abstraction of the
underlying network and offers a global view of the overall network to
applications and business logic. Thus, an SDN Controller provides
the flexibility to program, control, and manage network behavior
dynamically through northbound and southbound interfaces. Since the
network controls are logically centralized, the need to benchmark the
SDN Controller's performance becomes significant. This document
defines terms to benchmark various controller designs for
performance, scalability, reliability, and security, independently of
northbound and southbound protocols. A mechanism for benchmarking
the performance of SDN Controllers is defined in the companion
methodology document [<a href="./rfc8456" title=""Benchmarking Methodology for Software- Defined Networking (SDN) Controller Performance"">RFC8456</a>]. These two documents provide methods
for measuring and evaluating the performance of various controller
implementations.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
<span class="grey">Bhuvaneswaran, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Term Definitions</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. SDN Terms</span>
The terms defined in this section are extensions to the terms defined
in [<a href="./rfc7426" title=""Software- Defined Networking (SDN): Layers and Architecture Terminology"">RFC7426</a>] ("Software-Defined Networking (SDN): Layers and
Architecture Terminology"). Readers should refer to [<a href="./rfc7426" title=""Software- Defined Networking (SDN): Layers and Architecture Terminology"">RFC7426</a>] before
attempting to make use of this document.
<span class="h4"><a class="selflink" id="section-2.1.1" href="#section-2.1.1">2.1.1</a>. Flow</span>
Definition:
The definition of "flow" is the same as the definition of
"microflows" provided in <a href="./rfc4689#section-3.1.5">Section 3.1.5 of [RFC4689]</a>.
Discussion:
A flow can be a set of packets having the same source address,
destination address, source port, and destination port, or any
combination of these items.
Measurement Units:
N/A
<span class="h4"><a class="selflink" id="section-2.1.2" href="#section-2.1.2">2.1.2</a>. Northbound Interface</span>
Definition:
The definition of "northbound interface" is the same as the
definition of "service interface" provided in [<a href="./rfc7426" title=""Software- Defined Networking (SDN): Layers and Architecture Terminology"">RFC7426</a>].
Discussion:
The northbound interface allows SDN applications and orchestration
systems to program and retrieve the network information through
the SDN Controller.
Measurement Units:
N/A
<span class="grey">Bhuvaneswaran, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h4"><a class="selflink" id="section-2.1.3" href="#section-2.1.3">2.1.3</a>. Southbound Interface</span>
Definition:
The southbound interface is the application programming interface
provided by the SDN Controller to interact with the SDN nodes.
Discussion:
The southbound interface enables the controller to interact with
the SDN nodes in the network for dynamically defining the traffic
forwarding behavior.
Measurement Units:
N/A
<span class="h4"><a class="selflink" id="section-2.1.4" href="#section-2.1.4">2.1.4</a>. Controller Forwarding Table</span>
Definition:
A controller Forwarding Table contains flow entries learned in one
of two ways: first, entries can be learned from traffic received
through the data plane, or second, these entries can be statically
provisioned on the controller and distributed to devices via the
southbound interface.
Discussion:
The controller Forwarding Table has an aging mechanism that will
be applied only for dynamically learned entries.
Measurement Units:
N/A
<span class="h4"><a class="selflink" id="section-2.1.5" href="#section-2.1.5">2.1.5</a>. Proactive Flow Provisioning Mode</span>
Definition:
Controller programming flows in Network Devices based on the flow
entries provisioned through the controller's northbound interface.
Discussion:
Network orchestration systems and SDN applications can define the
network forwarding behavior by programming the controller, using
Proactive Flow Provisioning. The controller can then program the
Network Devices with the pre-provisioned entries.
Measurement Units:
N/A
<span class="grey">Bhuvaneswaran, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h4"><a class="selflink" id="section-2.1.6" href="#section-2.1.6">2.1.6</a>. Reactive Flow Provisioning Mode</span>
Definition:
Controller programming flows in Network Devices based on the
traffic received from Network Devices through the controller's
southbound interface.
Discussion:
The SDN Controller dynamically decides the forwarding behavior
based on the incoming traffic from the Network Devices. The
controller then programs the Network Devices, using Reactive Flow
Provisioning.
Measurement Units:
N/A
<span class="h4"><a class="selflink" id="section-2.1.7" href="#section-2.1.7">2.1.7</a>. Path</span>
Definition:
Refer to <a href="./rfc2330#section-5">Section 5 in [RFC2330]</a>.
Discussion:
None
Measurement Units:
N/A
<span class="h4"><a class="selflink" id="section-2.1.8" href="#section-2.1.8">2.1.8</a>. Standalone Mode</span>
Definition:
A single controller handles all control-plane functionalities
without redundancy, and it is unable to provide high availability
and/or automatic failover.
Discussion:
In standalone mode, one controller manages one or more network
domains.
Measurement Units:
N/A
<span class="grey">Bhuvaneswaran, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h4"><a class="selflink" id="section-2.1.9" href="#section-2.1.9">2.1.9</a>. Cluster/Redundancy Mode</span>
Definition:
In this mode, a group of two or more controllers handles all
control-plane functionalities.
Discussion:
In cluster mode, multiple controllers are teamed together for the
purpose of load sharing and/or high availability. The controllers
in the group may operate in active/standby (master/slave) or
active/active (equal) mode, depending on the intended purpose.
Measurement Units:
N/A
<span class="h4"><a class="selflink" id="section-2.1.10" href="#section-2.1.10">2.1.10</a>. Asynchronous Message</span>
Definition:
Any message from the Network Device that is generated for network
events.
Discussion:
Control messages like flow setup request and response messages are
classified as asynchronous messages. The controller has to return
a response message. Note that the Network Device will not be in
blocking mode and continues to send/receive other control
messages.
Measurement Units:
N/A
<span class="h4"><a class="selflink" id="section-2.1.11" href="#section-2.1.11">2.1.11</a>. Test Traffic Generator</span>
Definition:
The test traffic generator is an entity that generates/receives
network traffic.
Discussion:
The test traffic generator typically connects with Network Devices
to send/receive real-time network traffic.
Measurement Units:
N/A
<span class="grey">Bhuvaneswaran, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h4"><a class="selflink" id="section-2.1.12" href="#section-2.1.12">2.1.12</a>. Leaf-Spine Topology</span>
Definition:
"Leaf-Spine" is a two-layered network topology, where a series of
leaf switches that form the access layer are fully meshed to a
series of spine switches that form the backbone layer.
Discussion:
In the Leaf-Spine topology, every leaf switch is connected to each
of the spine switches in the topology.
Measurement Units:
N/A
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Test Configuration/Setup Terms</span>
<span class="h4"><a class="selflink" id="section-2.2.1" href="#section-2.2.1">2.2.1</a>. Number of Network Devices</span>
Definition:
The number of Network Devices present in the defined test
topology.
Discussion:
The Network Devices defined in the test topology can be deployed
using real hardware or can be emulated in hardware platforms.
Measurement Units:
Number of Network Devices.
<span class="h4"><a class="selflink" id="section-2.2.2" href="#section-2.2.2">2.2.2</a>. Trial Repetition</span>
Definition:
The number of times the test needs to be repeated.
Discussion:
The test needs to be repeated for multiple iterations to obtain a
reliable metric. It is recommended that this test SHOULD be
performed for at least 10 iterations to increase confidence in the
measured results.
Measurement Units:
Number of trials.
<span class="grey">Bhuvaneswaran, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h4"><a class="selflink" id="section-2.2.3" href="#section-2.2.3">2.2.3</a>. Trial Duration</span>
Definition:
Defines the duration of test trials for each iteration.
Discussion:
The Trial Duration forms the basis for "stop" criteria for
benchmarking tests. Trials not completed within this time
interval are considered incomplete.
Measurement Units:
Seconds.
<span class="h4"><a class="selflink" id="section-2.2.4" href="#section-2.2.4">2.2.4</a>. Number of Cluster Nodes</span>
Definition:
Defines the number of controllers present in the controller
cluster.
Discussion:
This parameter is relevant when testing the controller's
performance in clustering/teaming mode. The number of nodes in
the cluster MUST be greater than 1.
Measurement Units:
Number of controller nodes.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Benchmarking Terms</span>
This section defines metrics for benchmarking the SDN Controller.
The procedure for performing the defined metrics is defined in the
companion methodology document [<a href="./rfc8456" title=""Benchmarking Methodology for Software- Defined Networking (SDN) Controller Performance"">RFC8456</a>].
<span class="h4"><a class="selflink" id="section-2.3.1" href="#section-2.3.1">2.3.1</a>. Performance</span>
<span class="h5"><a class="selflink" id="section-2.3.1.1" href="#section-2.3.1.1">2.3.1.1</a>. Network Topology Discovery Time</span>
Definition:
The time taken by the controller(s) to determine the complete
network topology, defined as the interval starting with the first
discovery message from the controller(s) at its southbound
interface and ending with all features of the static topology
determined.
Discussion:
Network topology discovery is key for the SDN Controller to
provision and manage the network, so it is important to measure
how quickly the controller discovers the topology to learn the
<span class="grey">Bhuvaneswaran, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
current network state. This benchmark is obtained by presenting a
network topology (tree, mesh, or linear) with a specified number
of nodes to the controller and waiting for the discovery process
to complete. It is expected that the controller supports a
network discovery mechanism and uses protocol messages for its
discovery process.
Measurement Units:
Milliseconds.
<span class="h5"><a class="selflink" id="section-2.3.1.2" href="#section-2.3.1.2">2.3.1.2</a>. Asynchronous Message Processing Time</span>
Definition:
The time taken by the controller(s) to process an asynchronous
message, defined as the interval starting with an asynchronous
message from a Network Device after the discovery of all the
devices by the controller(s) and ending with a response message
from the controller(s) at its southbound interface.
Discussion:
For SDN to support dynamic network provisioning, it is important
to measure how quickly the controller responds to an event
triggered from the network. The event can be any notification
messages generated by a Network Device upon arrival of a new flow,
link down, etc. This benchmark is obtained by sending
asynchronous messages from every connected Network Device one at a
time for the defined Trial Duration. This test assumes that the
controller will respond to the received asynchronous messages.
Measurement Units:
Milliseconds.
<span class="h5"><a class="selflink" id="section-2.3.1.3" href="#section-2.3.1.3">2.3.1.3</a>. Asynchronous Message Processing Rate</span>
Definition:
The number of responses to asynchronous messages per second (a new
flow arrival notification message, link down, etc.) for which the
controller(s) performed processing and replied with a valid and
productive (non-trivial) response message.
Discussion:
As SDN assures a flexible network and agile provisioning, it is
important to measure how many network events (a new flow arrival
notification message, link down, etc.) the controller can handle
at a time. This benchmark is measured by sending asynchronous
messages from every connected Network Device at the rate that the
controller processes (without dropping them). This test assumes
<span class="grey">Bhuvaneswaran, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
that the controller responds to all the received asynchronous
messages (the messages can be designed to elicit individual
responses).
When sending asynchronous messages to the controller(s) at high
rates, some messages or responses may be discarded or corrupted
and require retransmission to controller(s). Therefore, a useful
qualification on the Asynchronous Message Processing Rate is
whether the incoming message count equals the response count in
each trial. This is called the Loss-Free Asynchronous Message
Processing Rate.
Note that several of the early controller benchmarking tools did
not consider lost messages and instead report the maximum response
rate. This is called the Maximum Asynchronous Message Processing
Rate.
To characterize both the Loss-Free Asynchronous Message Processing
Rate and the Maximum Asynchronous Message Processing Rate, a test
can begin the first trial by sending asynchronous messages to the
controller(s) at the maximum possible rate and can then record the
message reply rate and the message loss rate. The message-sending
rate is then decreased by the STEP size. The message reply rate
and the message loss rate are recorded. The test ends with a
trial where the controller(s) processes all of the asynchronous
messages sent without loss. This is the Loss-Free Asynchronous
Message Processing Rate.
The trial where the controller(s) produced the maximum response
rate is the Maximum Asynchronous Message Processing Rate. Of
course, the first trial can begin at a low sending rate with zero
lost responses and then increase the rate until the Loss-Free
Asynchronous Message Processing Rate and the Maximum Asynchronous
Message Processing Rate are discovered.
Measurement Units:
Messages processed per second.
<span class="h5"><a class="selflink" id="section-2.3.1.4" href="#section-2.3.1.4">2.3.1.4</a>. Reactive Path Provisioning Time</span>
Definition:
The time taken by the controller to set up a path reactively
between source and destination nodes, defined as the interval
starting with the first flow provisioning request message received
by the controller(s) and ending with the last flow provisioning
response message sent from the controller(s) at its southbound
interface.
<span class="grey">Bhuvaneswaran, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
Discussion:
As SDN supports agile provisioning, it is important to measure how
fast the controller provisions an end-to-end flow in the
data plane. The benchmark is obtained by sending traffic from a
source endpoint to the destination endpoint and finding the time
difference between the first and last flow provisioning message
exchanged between the controller and the Network Devices for the
traffic path.
Measurement Units:
Milliseconds.
<span class="h5"><a class="selflink" id="section-2.3.1.5" href="#section-2.3.1.5">2.3.1.5</a>. Proactive Path Provisioning Time</span>
Definition:
The time taken by the controller to proactively set up a path
between source and destination nodes, defined as the interval
starting with the first proactive flow provisioned in the
controller(s) at its northbound interface and ending with the last
flow provisioning command message sent from the controller(s) at
its southbound interface.
Discussion:
For SDN to support pre-provisioning of the traffic path from the
application, it is important to measure how fast the controller
provisions an end-to-end flow in the data plane. The benchmark is
obtained by provisioning a flow on the controller's northbound
interface for the traffic to reach from a source to a destination
endpoint and finding the time difference between the first and
last flow provisioning message exchanged between the controller
and the Network Devices for the traffic path.
Measurement Units:
Milliseconds.
<span class="h5"><a class="selflink" id="section-2.3.1.6" href="#section-2.3.1.6">2.3.1.6</a>. Reactive Path Provisioning Rate</span>
Definition:
The maximum number of independent paths a controller can
concurrently establish per second between source and destination
nodes reactively, defined as the number of paths provisioned per
second by the controller(s) at its southbound interface for the
flow provisioning requests received for path provisioning at its
southbound interface between the start of the trial and the expiry
of the given Trial Duration.
<span class="grey">Bhuvaneswaran, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
Discussion:
For SDN to support agile traffic forwarding, it is important to
measure how many end-to-end flows the controller can set up in the
data plane. This benchmark is obtained by sending each traffic
flow with unique source and destination pairs from the source
Network Device and determining the number of frames received at
the destination Network Device.
Measurement Units:
Paths provisioned per second.
<span class="h5"><a class="selflink" id="section-2.3.1.7" href="#section-2.3.1.7">2.3.1.7</a>. Proactive Path Provisioning Rate</span>
Definition:
The maximum number of independent paths a controller can
concurrently establish per second between source and destination
nodes proactively, defined as the number of paths provisioned per
second by the controller(s) at its southbound interface for the
paths provisioned in its northbound interface between the start of
the trial and the expiry of the given Trial Duration.
Discussion:
For SDN to support pre-provisioning of the traffic path for a
larger network from the application, it is important to measure
how many end-to-end flows the controller can set up in the
data plane. This benchmark is obtained by sending each traffic
flow with unique source and destination pairs from the source
Network Device. Program the flows on the controller's northbound
interface for traffic to reach from each of the unique source and
destination pairs, and determine the number of frames received at
the destination Network Device.
Measurement Units:
Paths provisioned per second.
<span class="h5"><a class="selflink" id="section-2.3.1.8" href="#section-2.3.1.8">2.3.1.8</a>. Network Topology Change Detection Time</span>
Definition:
The amount of time taken by the controller to detect any changes
in the network topology, defined as the interval starting with the
notification message received by the controller(s) at its
southbound interface and ending with the first topology
rediscovery messages sent from the controller(s) at its southbound
interface.
<span class="grey">Bhuvaneswaran, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
Discussion:
In order for the controller to support fast network failure
recovery, it is critical to measure how fast the controller is
able to detect any network-state change events. This benchmark is
obtained by triggering a topology change event and measuring the
time the controller takes to detect and initiate a topology
rediscovery process.
Measurement Units:
Milliseconds.
<span class="h4"><a class="selflink" id="section-2.3.2" href="#section-2.3.2">2.3.2</a>. Scalability</span>
<span class="h5"><a class="selflink" id="section-2.3.2.1" href="#section-2.3.2.1">2.3.2.1</a>. Control Sessions Capacity</span>
Definition:
The maximum number of control sessions the controller can
maintain, defined as the number of sessions that the controller
can accept from Network Devices, starting with the first control
session and ending with the last control session that the
controller(s) accepts at its southbound interface.
Discussion:
Measuring the controller's Control Sessions Capacity is important
for determining the controller's system and bandwidth resource
requirements. This benchmark is obtained by establishing a
control session with the controller from each of the Network
Devices until the controller fails. The number of sessions that
were successfully established will provide the Control Sessions
Capacity.
Measurement Units:
Maximum number of control sessions.
<span class="h5"><a class="selflink" id="section-2.3.2.2" href="#section-2.3.2.2">2.3.2.2</a>. Network Discovery Size</span>
Definition:
The network size (number of nodes and links) that a controller can
discover, defined as the size of a network that the controller(s)
can discover, starting with a network topology provided by the
user for discovery and ending with the number of nodes and links
that the controller(s) can successfully discover.
Discussion:
Measuring the maximum network size that the controller can
discover is key to optimal network planning. This benchmark is
obtained by presenting an initial set of Network Devices for
discovery to the controller. Based on the initial discovery, the
<span class="grey">Bhuvaneswaran, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
number of Network Devices is increased or decreased to determine
the maximum number of nodes and links that the controller can
discover.
Measurement Units:
Maximum number of network nodes and links.
<span class="h5"><a class="selflink" id="section-2.3.2.3" href="#section-2.3.2.3">2.3.2.3</a>. Forwarding Table Capacity</span>
Definition:
The maximum number of flow entries that a controller can manage in
its Forwarding Table.
Discussion:
It is important to measure the capacity of a controller's
Forwarding Table to determine the number of flows that the
controller can forward without flooding or dropping any traffic.
This benchmark is obtained by continuously presenting the
controller with new flow entries through the Reactive Flow
Provisioning mode or the Proactive Flow Provisioning mode until
the Forwarding Table becomes full. The maximum number of nodes
that the controller can hold in its Forwarding Table will provide
the Forwarding Table Capacity.
Measurement Units:
Maximum number of flow entries managed.
<span class="h4"><a class="selflink" id="section-2.3.3" href="#section-2.3.3">2.3.3</a>. Security</span>
<span class="h5"><a class="selflink" id="section-2.3.3.1" href="#section-2.3.3.1">2.3.3.1</a>. Exception Handling</span>
Definition:
To determine the effect of handling error packets and
notifications on performance tests.
Discussion:
This benchmark is to be performed after obtaining the baseline
measurement results for the performance tests defined in
<a href="#section-2.3.1">Section 2.3.1</a>. This benchmark determines the deviation from the
baseline performance due to the handling of error or failure
messages from the connected Network Devices.
Measurement Units:
Deviation from baseline metrics while handling Exceptions.
<span class="grey">Bhuvaneswaran, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h5"><a class="selflink" id="section-2.3.3.2" href="#section-2.3.3.2">2.3.3.2</a>. Handling Denial-of-Service Attacks</span>
Definition:
To determine the effect of handling denial-of-service (DoS)
attacks on performance and scalability tests.
Discussion:
This benchmark is to be performed after obtaining the baseline
measurement results for the performance and scalability tests
defined in Sections <a href="#section-2.3.1">2.3.1</a> and <a href="#section-2.3.2">2.3.2</a>. This benchmark determines
the deviation from the baseline performance due to the handling of
DoS attacks on the controller.
Measurement Units:
Deviation from baseline metrics while handling DoS attacks.
<span class="h4"><a class="selflink" id="section-2.3.4" href="#section-2.3.4">2.3.4</a>. Reliability</span>
<span class="h5"><a class="selflink" id="section-2.3.4.1" href="#section-2.3.4.1">2.3.4.1</a>. Controller Failover Time</span>
Definition:
The time taken to switch from an active controller to the backup
controller when the controllers operate in redundancy mode and the
active controller fails, defined as the interval starting when the
active controller is brought down and ending with the first
rediscovery message received from the new controller at its
southbound interface.
Discussion:
This benchmark determines the impact of provisioning new flows
when controllers are teamed together and the active controller
fails.
Measurement Units:
Milliseconds.
<span class="grey">Bhuvaneswaran, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h5"><a class="selflink" id="section-2.3.4.2" href="#section-2.3.4.2">2.3.4.2</a>. Network Re-provisioning Time</span>
Definition:
The time taken by the controller to reroute traffic when there is
a failure in existing traffic paths, defined as the interval
starting with the first failure notification message received by
the controller and ending with the last flow re-provisioning
message sent by the controller at its southbound interface.
Discussion:
This benchmark determines the controller's re-provisioning ability
upon network failures and makes the following assumptions:
1. The network topology supports a redundant path between the
source and destination endpoints.
2. The controller does not pre-provision the redundant path.
Measurement Units:
Milliseconds.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Test Setup</span>
This section provides common reference topologies that are referred
to in individual tests defined in the companion methodology document
[<a href="./rfc8456" title=""Benchmarking Methodology for Software- Defined Networking (SDN) Controller Performance"">RFC8456</a>].
<span class="grey">Bhuvaneswaran, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Test Setup - Controller Operating in Standalone Mode</span>
+-----------------------------------------------------------+
| Application-Plane Test Emulator |
| |
| +-----------------+ +-------------+ |
| | Application | | Service | |
| +-----------------+ +-------------+ |
| |
+-----------------------------+(I2)-------------------------+
|
| (Northbound Interface)
+-------------------------------+
| +----------------+ |
| | SDN Controller | |
| +----------------+ |
| |
| Device Under Test (DUT) |
+-------------------------------+
| (Southbound Interface)
|
+-----------------------------+(I1)-------------------------+
| |
| +-----------+ +-----------+ |
| | Network | | Network | |
| | Device 2 |--..-| Device n-1| |
| +-----------+ +-----------+ |
| / \ / \ |
| / \ / \ |
| l0 / X \ ln |
| / / \ \ |
| +-----------+ +-----------+ |
| | Network | | Network | |
| | Device 1 |..| Device n | |
| +-----------+ +-----------+ |
| | | |
| +---------------+ +---------------+ |
| | Test Traffic | | Test Traffic | |
| | Generator | | Generator | |
| | (TP1) | | (TP2) | |
| +---------------+ +---------------+ |
| |
| Forwarding-Plane Test Emulator |
+-----------------------------------------------------------+
Figure 1
<span class="grey">Bhuvaneswaran, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Test Setup - Controller Operating in Cluster Mode</span>
+-----------------------------------------------------------+
| Application-Plane Test Emulator |
| |
| +-----------------+ +-------------+ |
| | Application | | Service | |
| +-----------------+ +-------------+ |
| |
+-----------------------------+(I2)-------------------------+
|
| (Northbound Interface)
+---------------------------------------------------------+
| |
| +------------------+ +------------------+ |
| | SDN Controller 1 | <--E/W--> | SDN Controller n | |
| +------------------+ +------------------+ |
| |
| Device Under Test (DUT) |
+---------------------------------------------------------+
| (Southbound Interface)
|
+-----------------------------+(I1)-------------------------+
| |
| +-----------+ +-----------+ |
| | Network | | Network | |
| | Device 2 |--..-| Device n-1| |
| +-----------+ +-----------+ |
| / \ / \ |
| / \ / \ |
| l0 / X \ ln |
| / / \ \ |
| +-----------+ +-----------+ |
| | Network | | Network | |
| | Device 1 |..| Device n | |
| +-----------+ +-----------+ |
| | | |
| +---------------+ +---------------+ |
| | Test Traffic | | Test Traffic | |
| | Generator | | Generator | |
| | (TP1) | | (TP2) | |
| +---------------+ +---------------+ |
| |
| Forwarding-Plane Test Emulator |
+-----------------------------------------------------------+
Figure 2
<span class="grey">Bhuvaneswaran, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Test Coverage</span>
+-------------------------------------------------------------------+
| Lifecycle | Speed | Scalability | Reliability |
+------------+-------------------+---------------+------------------+
| | 1. Network |1. Network | |
| | Topology | Discovery | |
| | Discovery | Size | |
| | Time | | |
| | | | |
| | 2. Reactive Path | | |
| | Provisioning | | |
| | Time | | |
| | | | |
| | 3. Proactive Path | | |
| Setup | Provisioning | | |
| | Time | | |
| | | | |
| | 4. Reactive Path | | |
| | Provisioning | | |
| | Rate | | |
| | | | |
| | 5. Proactive Path | | |
| | Provisioning | | |
| | Rate | | |
| | | | |
+------------+-------------------+---------------+------------------+
| | 1. Maximum |1. Control |1. Network |
| | Asynchronous | Sessions | Topology |
| | Message | Capacity | Change |
| | Processing Rate| | Detection Time |
| | |2. Forwarding | |
| | 2. Loss-Free | Table |2. Exception |
| | Asynchronous | Capacity | Handling |
| | Message | | |
| Operational| Processing Rate| |3. Handling |
| | | | Denial-of- |
| | 3. Asynchronous | | Service Attacks|
| | Message | | |
| | Processing Time| |4. Network |
| | | | Re-provisioning|
| | | | Time |
| | | | |
+------------+-------------------+---------------+------------------+
| Teardown | | |1. Controller |
| | | | Failover Time |
+------------+-------------------+---------------+------------------+
<span class="grey">Bhuvaneswaran, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
This document has no IANA actions.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
The benchmarking tests described in this document are limited to the
performance characterization of controllers in a lab environment with
isolated networks.
The benchmarking network topology will be an independent test setup
and MUST NOT be connected to devices that may forward the test
traffic into a production network or misroute traffic to the test
management network.
Further, benchmarking is performed on a "black-box" basis, relying
solely on measurements observable external to the controller.
Special capabilities SHOULD NOT exist in the controller specifically
for benchmarking purposes. Any implications for network security
arising from the controller SHOULD be identical in the lab and in
production networks.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2330">RFC2330</a>] Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
"Framework for IP Performance Metrics", <a href="./rfc2330">RFC 2330</a>,
DOI 10.17487/RFC2330, May 1998,
<<a href="https://www.rfc-editor.org/info/rfc2330">https://www.rfc-editor.org/info/rfc2330</a>>.
[<a id="ref-RFC4689">RFC4689</a>] Poretsky, S., Perser, J., Erramilli, S., and S. Khurana,
"Terminology for Benchmarking Network-layer Traffic
Control Mechanisms", <a href="./rfc4689">RFC 4689</a>, DOI 10.17487/RFC4689,
October 2006, <<a href="https://www.rfc-editor.org/info/rfc4689">https://www.rfc-editor.org/info/rfc4689</a>>.
[<a id="ref-RFC7426">RFC7426</a>] Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,
Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-
Defined Networking (SDN): Layers and Architecture
Terminology", <a href="./rfc7426">RFC 7426</a>, DOI 10.17487/RFC7426,
January 2015, <<a href="https://www.rfc-editor.org/info/rfc7426">https://www.rfc-editor.org/info/rfc7426</a>>.
<span class="grey">Bhuvaneswaran, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in
<a href="./rfc2119">RFC 2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>,
DOI 10.17487/RFC8174, May 2017,
<<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
[<a id="ref-RFC8456">RFC8456</a>] Bhuvaneswaran, V., Basil, A., Tassinari, M., Manral, V.,
and S. Banks, "Benchmarking Methodology for Software-
Defined Networking (SDN) Controller Performance",
<a href="./rfc8456">RFC 8456</a>, DOI 10.17487/RFC8456, October 2018,
<<a href="https://www.rfc-editor.org/info/rfc8456">https://www.rfc-editor.org/info/rfc8456</a>>.
Acknowledgments
The authors would like to acknowledge Al Morton (AT&T) for his
significant contributions to the earlier draft versions of this
document. The authors would like to thank the following individuals
for providing their valuable comments to the earlier draft versions
of this document: Sandeep Gangadharan (HP), M. Georgescu (NAIST),
Andrew McGregor (Google), Scott Bradner, Jay Karthik (Cisco),
Ramki Krishnan (VMware), and Boris Khasanov (Huawei).
<span class="grey">Bhuvaneswaran, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8455">RFC 8455</a> SDN Controller Benchmarking Terminology October 2018</span>
Authors' Addresses
Bhuvaneswaran Vengainathan
Veryx Technologies Inc.
1 International Plaza, Suite 550
Philadelphia, PA 19113
United States of America
Email: bhuvaneswaran.vengainathan@veryxtech.com
Anton Basil
Veryx Technologies Inc.
1 International Plaza, Suite 550
Philadelphia, PA 19113
United States of America
Email: anton.basil@veryxtech.com
Mark Tassinari
Hewlett Packard Enterprise
8000 Foothills Blvd.
Roseville, CA 95747
United States of America
Email: mark.tassinari@hpe.com
Vishwas Manral
NanoSec Co
3350 Thomas Rd.
Santa Clara, CA 95054
United States of America
Email: vishwas.manral@gmail.com
Sarah Banks
VSS Monitoring
930 De Guigne Drive
Sunnyvale, CA 94085
United States of America
Email: sbanks@encrypted.net
Bhuvaneswaran, et al. Informational [Page 23]
</pre>
|