1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
|
<pre>Internet Engineering Task Force (IETF) J. Schaad
Request for Comments: 8551 August Cellars
Obsoletes: <a href="./rfc5751">5751</a> B. Ramsdell
Category: Standards Track Brute Squad Labs, Inc.
ISSN: 2070-1721 S. Turner
sn3rd
April 2019
<span class="h1">Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0</span>
<span class="h1">Message Specification</span>
Abstract
This document defines Secure/Multipurpose Internet Mail Extensions
(S/MIME) version 4.0. S/MIME provides a consistent way to send and
receive secure MIME data. Digital signatures provide authentication,
message integrity, and non-repudiation with proof of origin.
Encryption provides data confidentiality. Compression can be used to
reduce data size. This document obsoletes <a href="./rfc5751">RFC 5751</a>.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8551">https://www.rfc-editor.org/info/rfc8551</a>.
<span class="grey">Schaad, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Schaad, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-1.1">1.1</a>. Specification Overview . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-1.2">1.2</a>. Definitions . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-1.3">1.3</a>. Conventions Used in This Document . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-1.4">1.4</a>. Compatibility with Prior Practice of S/MIME . . . . . . . <a href="#page-8">8</a>
<a href="#section-1.5">1.5</a>. Changes from S/MIME v3 to S/MIME v3.1 . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-1.6">1.6</a>. Changes from S/MIME v3.1 to S/MIME v3.2 . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-1.7">1.7</a>. Changes for S/MIME v4.0 . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-2">2</a>. CMS Options . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-2.1">2.1</a>. DigestAlgorithmIdentifier . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-2.2">2.2</a>. SignatureAlgorithmIdentifier . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-2.3">2.3</a>. KeyEncryptionAlgorithmIdentifier . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-2.4">2.4</a>. General Syntax . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-2.4.1">2.4.1</a>. Data Content Type . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-2.4.2">2.4.2</a>. SignedData Content Type . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-2.4.3">2.4.3</a>. EnvelopedData Content Type . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-2.4.4">2.4.4</a>. AuthEnvelopedData Content Type . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-2.4.5">2.4.5</a>. CompressedData Content Type . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-2.5">2.5</a>. Attributes and the SignerInfo Type . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-2.5.1">2.5.1</a>. Signing Time Attribute . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-2.5.2">2.5.2</a>. SMIMECapabilities Attribute . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-2.5.3">2.5.3</a>. Encryption Key Preference Attribute . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-2.6">2.6</a>. SignerIdentifier SignerInfo Type . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-2.7">2.7</a>. ContentEncryptionAlgorithmIdentifier . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-2.7.1">2.7.1</a>. Deciding Which Encryption Method to Use . . . . . . . <a href="#page-19">19</a>
<a href="#section-2.7.2">2.7.2</a>. Choosing Weak Encryption . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-2.7.3">2.7.3</a>. Multiple Recipients . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-3">3</a>. Creating S/MIME Messages . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
3.1. Preparing the MIME Entity for Signing, Enveloping, or
Compressing . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-3.1.1">3.1.1</a>. Canonicalization . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-3.1.2">3.1.2</a>. Transfer Encoding . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
3.1.3. Transfer Encoding for Signing Using multipart/signed 25
<a href="#section-3.1.4">3.1.4</a>. Sample Canonical MIME Entity . . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-3.2">3.2</a>. The application/pkcs7-mime Media Type . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-3.2.1">3.2.1</a>. The name and filename Parameters . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-3.2.2">3.2.2</a>. The smime-type Parameter . . . . . . . . . . . . . . <a href="#page-28">28</a>
<a href="#section-3.3">3.3</a>. Creating an Enveloped-Only Message . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-3.4">3.4</a>. Creating an Authenticated Enveloped-Only Message . . . . <a href="#page-30">30</a>
<a href="#section-3.5">3.5</a>. Creating a Signed-Only Message . . . . . . . . . . . . . <a href="#page-31">31</a>
<a href="#section-3.5.1">3.5.1</a>. Choosing a Format for Signed-Only Messages . . . . . <a href="#page-32">32</a>
3.5.2. Signing Using application/pkcs7-mime with SignedData 32
<a href="#section-3.5.3">3.5.3</a>. Signing Using the multipart/signed Format . . . . . . <a href="#page-33">33</a>
<a href="#section-3.6">3.6</a>. Creating a Compressed-Only Message . . . . . . . . . . . <a href="#page-36">36</a>
<a href="#section-3.7">3.7</a>. Multiple Operations . . . . . . . . . . . . . . . . . . . <a href="#page-37">37</a>
<a href="#section-3.8">3.8</a>. Creating a Certificate Management Message . . . . . . . . <a href="#page-38">38</a>
<span class="grey">Schaad, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<a href="#section-3.9">3.9</a>. Registration Requests . . . . . . . . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#section-3.10">3.10</a>. Identifying an S/MIME Message . . . . . . . . . . . . . . <a href="#page-39">39</a>
<a href="#section-4">4</a>. Certificate Processing . . . . . . . . . . . . . . . . . . . <a href="#page-39">39</a>
<a href="#section-4.1">4.1</a>. Key Pair Generation . . . . . . . . . . . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-4.2">4.2</a>. Signature Generation . . . . . . . . . . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-4.3">4.3</a>. Signature Verification . . . . . . . . . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-4.4">4.4</a>. Encryption . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-41">41</a>
<a href="#section-4.5">4.5</a>. Decryption . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-41">41</a>
<a href="#section-5">5</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-41">41</a>
<a href="#section-5.1">5.1</a>. Media Type for application/pkcs7-mime . . . . . . . . . . <a href="#page-42">42</a>
<a href="#section-5.2">5.2</a>. Media Type for application/pkcs7-signature . . . . . . . <a href="#page-43">43</a>
<a href="#section-5.3">5.3</a>. authEnveloped-data smime-type . . . . . . . . . . . . . . <a href="#page-44">44</a>
<a href="#section-5.4">5.4</a>. Reference Updates . . . . . . . . . . . . . . . . . . . . <a href="#page-44">44</a>
<a href="#section-6">6</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-44">44</a>
<a href="#section-7">7</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-48">48</a>
<a href="#section-7.1">7.1</a>. Reference Conventions . . . . . . . . . . . . . . . . . . <a href="#page-48">48</a>
<a href="#section-7.2">7.2</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-49">49</a>
<a href="#section-7.3">7.3</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-52">52</a>
<a href="#appendix-A">Appendix A</a>. ASN.1 Module . . . . . . . . . . . . . . . . . . . . <a href="#page-57">57</a>
<a href="#appendix-B">Appendix B</a>. Historic Mail Considerations . . . . . . . . . . . . <a href="#page-59">59</a>
<a href="#appendix-B.1">B.1</a>. DigestAlgorithmIdentifier . . . . . . . . . . . . . . . . <a href="#page-59">59</a>
<a href="#appendix-B.2">B.2</a>. Signature Algorithms . . . . . . . . . . . . . . . . . . <a href="#page-59">59</a>
<a href="#appendix-B.3">B.3</a>. ContentEncryptionAlgorithmIdentifier . . . . . . . . . . <a href="#page-61">61</a>
<a href="#appendix-B.4">B.4</a>. KeyEncryptionAlgorithmIdentifier . . . . . . . . . . . . <a href="#page-62">62</a>
<a href="#appendix-C">Appendix C</a>. Moving S/MIME v2 Message Specification to Historic
Status . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-62">62</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-62">62</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-63">63</a>
<span class="grey">Schaad, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
S/MIME (Secure/Multipurpose Internet Mail Extensions) provides a
consistent way to send and receive secure MIME data. Based on the
popular Internet MIME standard, S/MIME provides the following
cryptographic security services for electronic messaging
applications: authentication, message integrity, and non-repudiation
of origin (using digital signatures), and data confidentiality (using
encryption). As a supplementary service, S/MIME provides message
compression.
S/MIME can be used by traditional mail user agents (MUAs) to add
cryptographic security services to mail that is sent, and to
interpret cryptographic security services in mail that is received.
However, S/MIME is not restricted to mail; it can be used with any
transport mechanism that transports MIME data, such as HTTP or SIP.
As such, S/MIME takes advantage of the object-based features of MIME
and allows secure messages to be exchanged in mixed-transport
systems.
Further, S/MIME can be used in automated message transfer agents that
use cryptographic security services that do not require any human
intervention, such as the signing of software-generated documents and
the encryption of FAX messages sent over the Internet.
This document defines version 4.0 of the S/MIME Message
Specification. As such, this document obsoletes version 3.2 of the
S/MIME Message Specification [<a href="./rfc5751" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification"">RFC5751</a>].
This specification contains a number of references to documents that
have been obsoleted or replaced. This is intentional, as the updated
documents often do not have the same information or protocol
requirements in them.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Specification Overview</span>
This document describes a protocol for adding cryptographic signature
and encryption services to MIME data. The MIME standard [<a href="#ref-MIME-SPEC" title=" [RFC6838">MIME-SPEC</a>]
provides a general structure for the content of Internet messages and
allows extensions for new applications based on content-type.
This specification defines how to create a MIME body part that has
been cryptographically enhanced according to the Cryptographic
Message Syntax (CMS) [<a href="#ref-CMS">CMS</a>], which is derived from PKCS #7 [<a href="./rfc2315" title=""PKCS #7: Cryptographic Message Syntax Version 1.5"">RFC2315</a>].
This specification also defines the application/pkcs7-mime media
type, which can be used to transport those body parts.
<span class="grey">Schaad, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
This document also discusses how to use the multipart/signed media
type defined in [<a href="./rfc1847" title=""Security Multiparts for MIME: Multipart/Signed and Multipart/Encrypted"">RFC1847</a>] to transport S/MIME signed messages.
multipart/signed is used in conjunction with the
application/pkcs7-signature media type, which is used to transport a
detached S/MIME signature.
In order to create S/MIME messages, an S/MIME agent MUST follow the
specifications in this document, as well as the specifications listed
in [<a href="#ref-CMS">CMS</a>], [<a href="./rfc3370" title=""Cryptographic Message Syntax (CMS) Algorithms"">RFC3370</a>], [<a href="./rfc4056" title=""Use of the RSASSA-PSS Signature Algorithm in Cryptographic Message Syntax (CMS)"">RFC4056</a>], [<a href="./rfc3560" title=""Use of the RSAES-OAEP Key Transport Algorithm in Cryptographic Message Syntax (CMS)"">RFC3560</a>], and [<a href="./rfc5754" title=""Using SHA2 Algorithms with Cryptographic Message Syntax"">RFC5754</a>].
Throughout this specification, there are requirements and
recommendations made for how receiving agents handle incoming
messages. There are separate requirements and recommendations for
how sending agents create outgoing messages. In general, the best
strategy is to follow the Robustness Principle (be liberal in what
you receive and conservative in what you send). Most of the
requirements are placed on the handling of incoming messages, while
the recommendations are mostly on the creation of outgoing messages.
The separation for requirements on receiving agents and sending
agents also derives from the likelihood that there will be S/MIME
systems that involve software other than traditional Internet mail
clients. S/MIME can be used with any system that transports MIME
data. An automated process that sends an encrypted message might not
be able to receive an encrypted message at all, for example. Thus,
the requirements and recommendations for the two types of agents are
listed separately when appropriate.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Definitions</span>
For the purposes of this specification, the following definitions
apply.
ASN.1:
Abstract Syntax Notation One, as defined in ITU-T Recommendations
X.680, X.681, X.682, and X.683 [<a href="#ref-ASN.1" title="X.682">ASN.1</a>].
BER:
Basic Encoding Rules for ASN.1, as defined in ITU-T Recommendation
X.690 [<a href="#ref-X.690" title=""Information Technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)"">X.690</a>].
Certificate:
A type that binds an entity's name to a public key with a digital
signature.
DER:
Distinguished Encoding Rules for ASN.1, as defined in ITU-T
Recommendation X.690 [<a href="#ref-X.690" title=""Information Technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)"">X.690</a>].
<span class="grey">Schaad, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
7-bit data:
Text data with lines less than 998 characters long, where none of
the characters have the 8th bit set, and there are no NULL
characters. <CR> and <LF> occur only as part of a <CR><LF>
end-of-line delimiter.
8-bit data:
Text data with lines less than 998 characters, and where none of
the characters are NULL characters. <CR> and <LF> occur only as
part of a <CR><LF> end-of-line delimiter.
Binary data:
Arbitrary data.
Transfer encoding:
A reversible transformation made on data so 8-bit or binary data
can be sent via a channel that only transmits 7-bit data.
Receiving agent:
Software that interprets and processes S/MIME CMS objects, MIME
body parts that contain CMS content types, or both.
Sending agent:
Software that creates S/MIME CMS content types, MIME body parts
that contain CMS content types, or both.
S/MIME agent:
User software that is a receiving agent, a sending agent, or both.
Data integrity service:
A security service that protects against unauthorized changes to
data by ensuring that changes to the data are detectable
[<a href="./rfc4949" title=""Internet Security Glossary, Version 2"">RFC4949</a>].
Data confidentiality:
The property that data is not disclosed to system entities unless
they have been authorized to know the data [<a href="./rfc4949" title=""Internet Security Glossary, Version 2"">RFC4949</a>].
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
<span class="grey">Schaad, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
We define the additional requirement levels:
SHOULD+ This term means the same as SHOULD. However, the authors
expect that a requirement marked as SHOULD+ will be
promoted at some future time to be a MUST.
SHOULD- This term means the same as SHOULD. However, the authors
expect that a requirement marked as SHOULD- will be demoted
to a MAY in a future version of this document.
MUST- This term means the same as MUST. However, the authors
expect that this requirement will no longer be a MUST in a
future document. Although its status will be determined at
a later time, it is reasonable to expect that if a future
revision of a document alters the status of a MUST-
requirement, it will remain at least a SHOULD or a SHOULD-.
The term "RSA" in this document almost always refers to the
PKCS #1 v1.5 RSA [<a href="./rfc2313" title=""PKCS #1: RSA Encryption Version 1.5"">RFC2313</a>] signature or encryption algorithms even
when not qualified as such. There are a couple of places where it
refers to the general RSA cryptographic operation; these can be
determined from the context where it is used.
<span class="h3"><a class="selflink" id="section-1.4" href="#section-1.4">1.4</a>. Compatibility with Prior Practice of S/MIME</span>
S/MIME version 4.0 agents ought to attempt to have the greatest
interoperability possible with agents for prior versions of S/MIME.
- S/MIME version 2 is described in <a href="./rfc2311">RFC 2311</a> through <a href="./rfc2315">RFC 2315</a>
inclusive [<a href="#ref-SMIMEv2" title="RFC2314">SMIMEv2</a>].
- S/MIME version 3 is described in <a href="./rfc2630">RFC 2630</a> through <a href="./rfc2634">RFC 2634</a>
inclusive and <a href="./rfc5035">RFC 5035</a> [<a href="#ref-SMIMEv3" title=" [RFC2634">SMIMEv3</a>].
- S/MIME version 3.1 is described in <a href="./rfc2634">RFC 2634</a>, <a href="./rfc3850">RFC 3850</a>, <a href="./rfc3851">RFC 3851</a>,
<a href="./rfc3852">RFC 3852</a>, and <a href="./rfc5035">RFC 5035</a> [<a href="#ref-SMIMEv3.1" title="RFC5750">SMIMEv3.1</a>].
- S/MIME version 3.2 is described in <a href="./rfc2634">RFC 2634</a>, <a href="./rfc5035">RFC 5035</a>, <a href="./rfc5652">RFC 5652</a>,
<a href="./rfc5750">RFC 5750</a>, and <a href="./rfc5751">RFC 5751</a> [<a href="#ref-SMIMEv3.2" title="RFC3852">SMIMEv3.2</a>].
- [<a href="./rfc2311" title=""S/MIME Version 2 Message Specification"">RFC2311</a>] also has historical information about the development of
S/MIME.
<span class="grey">Schaad, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h3"><a class="selflink" id="section-1.5" href="#section-1.5">1.5</a>. Changes from S/MIME v3 to S/MIME v3.1</span>
This section describes the changes made between S/MIME v3 and
S/MIME v3.1. Note that the requirement levels indicated by the
capitalized key words ("MUST", "SHOULD", etc.) may have changed in
later versions of S/MIME.
- The RSA public key algorithm was changed to a MUST implement. The
key wrap algorithm and the Diffie-Hellman (DH) algorithm [<a href="./rfc2631" title=""Diffie-Hellman Key Agreement Method"">RFC2631</a>]
were changed to a SHOULD implement.
- The AES symmetric encryption algorithm has been included as a
SHOULD implement.
- The RSA public key algorithm was changed to a MUST implement
signature algorithm.
- Ambiguous language about the use of "empty" SignedData messages to
transmit certificates was clarified to reflect that transmission
of Certificate Revocation Lists is also allowed.
- The use of binary encoding for some MIME entities is now
explicitly discussed.
- Header protection through the use of the message/rfc822 media type
has been added.
- Use of the CompressedData CMS type is allowed, along with required
media type and file extension additions.
<span class="h3"><a class="selflink" id="section-1.6" href="#section-1.6">1.6</a>. Changes from S/MIME v3.1 to S/MIME v3.2</span>
This section describes the changes made between S/MIME v3.1 and
S/MIME v3.2. Note that the requirement levels indicated by the
capitalized key words ("MUST", "SHOULD", etc.) may have changed in
later versions of S/MIME. Note that the section numbers listed here
(e.g., 3.4.3.2) are from [<a href="./rfc5751" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification"">RFC5751</a>].
- Made editorial changes, e.g., replaced "MIME type" with "media
type", "content-type" with "Content-Type".
- Moved "Conventions Used in This Document" to <a href="#section-1.3">Section 1.3</a>. Added
definitions for SHOULD+, SHOULD-, and MUST-.
- <a href="#section-1.1">Section 1.1</a> and <a href="#appendix-A">Appendix A</a>: Added references to RFCs for
RSASSA-PSS, RSAES-OAEP, and SHA2 CMS algorithms. Added CMS
Multiple Signers Clarification to CMS reference.
<span class="grey">Schaad, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
- <a href="#section-1.2">Section 1.2</a>: Updated references to ASN.1 to X.680, and BER and DER
to X.690.
- <a href="#section-1.4">Section 1.4</a>: Added references to S/MIME v3.1 RFCs.
- <a href="#section-2.1">Section 2.1</a> (digest algorithm): SHA-256 added as MUST, SHA-1 and
MD5 made SHOULD-.
- <a href="#section-2.2">Section 2.2</a> (signature algorithms): RSA with SHA-256 added as
MUST; DSA with SHA-256 added as SHOULD+; RSA with SHA-1, DSA with
SHA-1, and RSA with MD5 changed to SHOULD-; and RSASSA-PSS with
SHA-256 added as SHOULD+. Also added note about what S/MIME v3.1
clients support.
- <a href="#section-2.3">Section 2.3</a> (key encryption): DH changed to SHOULD-, and RSAES-
OAEP added as SHOULD+. Elaborated on requirements for key wrap
algorithm.
- <a href="#section-2.5.1">Section 2.5.1</a>: Added requirement that receiving agents MUST
support both GeneralizedTime and UTCTime.
- <a href="#section-2.5.2">Section 2.5.2</a>: Replaced reference "sha1WithRSAEncryption" with
"sha256WithRSAEncryption", replaced "DES-3EDE-CBC" with "AES-128
CBC", and deleted the RC5 example.
- <a href="#section-2.5.2.1">Section 2.5.2.1</a>: Deleted entire section (discussed
deprecated RC2).
- <a href="#section-2.7">Section 2.7</a>, <a href="#section-2.7.1">Section 2.7.1</a>, and <a href="#appendix-A">Appendix A</a>: References to RC2/40
removed.
- <a href="#section-2.7">Section 2.7</a> (content encryption): AES-128 CBC added as MUST,
AES-192 and AES-256 CBC SHOULD+, and tripleDES now SHOULD-.
- <a href="#section-2.7.1">Section 2.7.1</a>: Updated pointers from 2.7.2.1 through 2.7.2.4 to
2.7.1.1 and 2.7.1.2.
- <a href="#section-3.1.1">Section 3.1.1</a>: Removed text about MIME character sets.
- Sections <a href="#section-3.2.2">3.2.2</a> and <a href="#section-3.6">3.6</a>: Replaced "encrypted" with "enveloped".
Updated OID example to use AES-128 CBC OID.
- <a href="#section-3.4.3.2">Section 3.4.3.2</a>: Replaced "micalg" parameter for "SHA-1" with
"sha-1".
- <a href="#section-4">Section 4</a>: Updated reference to CERT v3.2.
<span class="grey">Schaad, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
- <a href="#section-4.1">Section 4.1</a>: Updated RSA and DSA key size discussion. Moved last
four sentences to security considerations. Updated reference to
randomness requirements for security.
- <a href="#section-5">Section 5</a>: Added IANA registration templates to update media type
registry to point to this document as opposed to <a href="./rfc2311">RFC 2311</a>.
- <a href="#section-6">Section 6</a>: Updated security considerations.
- <a href="#section-7">Section 7</a>: Moved references from <a href="#appendix-B">Appendix B</a> to this section.
Updated references. Added informative references to SMIMEv2,
SMIMEv3, and SMIMEv3.1.
- <a href="#appendix-B">Appendix B</a>: Added <a href="#appendix-B">Appendix B</a> to move S/MIME v2 to Historic status.
<span class="h3"><a class="selflink" id="section-1.7" href="#section-1.7">1.7</a>. Changes for S/MIME v4.0</span>
This section describes the changes made between S/MIME v3.2 and
S/MIME v4.0.
- Added the use of AuthEnvelopedData, including defining and
registering an smime-type value (Sections <a href="#section-2.4.4">2.4.4</a> and <a href="#section-3.4">3.4</a>).
- Updated the content-encryption algorithms (Sections <a href="#section-2.7">2.7</a> and
2.7.1.2): added AES-256 Galois/Counter Mode (GCM), added
ChaCha20-Poly1305, removed mention of AES-192 Cipher Block
Chaining (CBC), and marked tripleDES as historic.
- Updated the set of signature algorithms (<a href="#section-2.2">Section 2.2</a>): added the
Edwards-curve Digital Signature Algorithm (EdDSA), added the
Elliptic Curve Digital Signature Algorithm (ECDSA), and marked DSA
as historic.
- Updated the set of digest algorithms (<a href="#section-2.1">Section 2.1</a>): added SHA-512,
and marked SHA-1 as historic.
- Updated the size of keys to be used for RSA encryption and RSA
signing (<a href="#section-4">Section 4</a>).
- Created <a href="#appendix-B">Appendix B</a>, which discusses considerations for dealing
with historic email messages.
<span class="grey">Schaad, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. CMS Options</span>
CMS allows for a wide variety of options in content, attributes, and
algorithm support. This section puts forth a number of support
requirements and recommendations in order to achieve a base level of
interoperability among all S/MIME implementations. [<a href="./rfc3370" title=""Cryptographic Message Syntax (CMS) Algorithms"">RFC3370</a>] and
[<a href="./rfc5754" title=""Using SHA2 Algorithms with Cryptographic Message Syntax"">RFC5754</a>] provide additional details regarding the use of the
cryptographic algorithms. [<a href="#ref-ESS">ESS</a>] provides additional details
regarding the use of additional attributes.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. DigestAlgorithmIdentifier</span>
The algorithms here are used for digesting the body of the message
and are not the same as the digest algorithms used as part of the
signature algorithms. The result of this is placed in the
message-digest attribute of the signed attributes. It is RECOMMENDED
that the algorithm used for digesting the body of the message be of
similar strength to, or greater strength than, the signature
algorithm.
Sending and receiving agents:
- MUST support SHA-256.
- MUST support SHA-512.
[<a id="ref-RFC5754">RFC5754</a>] provides the details for using these algorithms with
S/MIME.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. SignatureAlgorithmIdentifier</span>
There are different sets of requirements placed on receiving and
sending agents. By having the different requirements, the maximum
amount of interoperability is achieved, as it allows for specialized
protection of private key material but maximum signature validation.
Receiving agents:
- MUST support ECDSA with curve P-256 and SHA-256.
- MUST support EdDSA with curve25519 using PureEdDSA mode [<a href="./rfc8419" title=""Use of Edwards-Curve Digital Signature Algorithm (EdDSA) Signatures in the Cryptographic Message Syntax (CMS)"">RFC8419</a>].
- MUST- support RSA PKCS #1 v1.5 with SHA-256.
- SHOULD support the RSA Probabilistic Signature Scheme (RSASSA-PSS)
with SHA-256.
<span class="grey">Schaad, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
Sending agents:
- MUST support at least one of the following algorithms: ECDSA with
curve P-256 and SHA-256, or EdDSA with curve25519 using PureEdDSA
mode.
- MUST- support RSA PKCS #1 v1.5 with SHA-256.
- SHOULD support RSASSA-PSS with SHA-256.
See <a href="#section-4.1">Section 4.1</a> for information on key size and algorithm references.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. KeyEncryptionAlgorithmIdentifier</span>
Receiving and sending agents:
- MUST support Elliptic Curve Diffie-Hellman (ECDH) ephemeral-static
mode for P-256, as specified in [<a href="./rfc5753" title=""Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS)"">RFC5753</a>].
- MUST support ECDH ephemeral-static mode for X25519 using HKDF-256
("HKDF" stands for "HMAC-based Key Derivation Function") for the
KDF, as specified in [<a href="./rfc8418" title=""Use of the Elliptic Curve Diffie-Hellman Key Agreement Algorithm with X25519 and X448 in the Cryptographic Message Syntax (CMS)"">RFC8418</a>].
- MUST- support RSA encryption, as specified in [<a href="./rfc3370" title=""Cryptographic Message Syntax (CMS) Algorithms"">RFC3370</a>].
- SHOULD+ support RSA Encryption Scheme - Optimal Asymmetric
Encryption Padding (RSAES-OAEP), as specified in [<a href="./rfc3560" title=""Use of the RSAES-OAEP Key Transport Algorithm in Cryptographic Message Syntax (CMS)"">RFC3560</a>].
When ECDH ephemeral-static is used, a key wrap algorithm is also
specified in the KeyEncryptionAlgorithmIdentifier [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>]. The
underlying encryption functions for the key wrap and content-
encryption algorithms [<a href="./rfc3370" title=""Cryptographic Message Syntax (CMS) Algorithms"">RFC3370</a>] [<a href="./rfc3565" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">RFC3565</a>] and the key sizes for the
two algorithms MUST be the same (e.g., AES-128 key wrap algorithm
with AES-128 content-encryption algorithm). As both 128-bit and
256-bit AES modes are mandatory to implement as content-encryption
algorithms (<a href="#section-2.7">Section 2.7</a>), both the AES-128 and AES-256 key wrap
algorithms MUST be supported when ECDH ephemeral-static is used.
Recipients MAY enforce this but MUST use the weaker of the two as
part of any cryptographic strength computations they might do.
<a href="#appendix-B">Appendix B</a> provides information on algorithm support in older
versions of S/MIME.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. General Syntax</span>
There are several CMS content types. Of these, only the Data,
SignedData, EnvelopedData, AuthEnvelopedData, and CompressedData
content types are currently used for S/MIME.
<span class="grey">Schaad, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h4"><a class="selflink" id="section-2.4.1" href="#section-2.4.1">2.4.1</a>. Data Content Type</span>
Sending agents MUST use the id-data content type identifier to
identify the "inner" MIME message content. For example, when
applying a digital signature to MIME data, the CMS SignedData
encapContentInfo eContentType MUST include the id-data object
identifier (OID), and the media type MUST be stored in the SignedData
encapContentInfo eContent OCTET STRING (unless the sending agent is
using multipart/signed, in which case the eContent is absent, per
<a href="#section-3.5.3">Section 3.5.3</a> of this document). As another example, when applying
encryption to MIME data, the CMS EnvelopedData encryptedContentInfo
contentType MUST include the id-data OID and the encrypted MIME
content MUST be stored in the EnvelopedData encryptedContentInfo
encryptedContent OCTET STRING.
<span class="h4"><a class="selflink" id="section-2.4.2" href="#section-2.4.2">2.4.2</a>. SignedData Content Type</span>
Sending agents MUST use the SignedData content type to apply a
digital signature to a message or, in a degenerate case where there
is no signature information, to convey certificates. Applying a
signature to a message provides authentication, message integrity,
and non-repudiation of origin.
<span class="h4"><a class="selflink" id="section-2.4.3" href="#section-2.4.3">2.4.3</a>. EnvelopedData Content Type</span>
This content type is used to apply data confidentiality to a message.
In order to distribute the symmetric key, a sender needs to have
access to a public key for each intended message recipient to use
this service.
<span class="h4"><a class="selflink" id="section-2.4.4" href="#section-2.4.4">2.4.4</a>. AuthEnvelopedData Content Type</span>
This content type is used to apply data confidentiality and message
integrity to a message. This content type does not provide
authentication or non-repudiation. In order to distribute the
symmetric key, a sender needs to have access to a public key for each
intended message recipient to use this service.
<span class="h4"><a class="selflink" id="section-2.4.5" href="#section-2.4.5">2.4.5</a>. CompressedData Content Type</span>
This content type is used to apply data compression to a message.
This content type does not provide authentication, message integrity,
non-repudiation, or data confidentiality; it is only used to reduce
the message's size.
See <a href="#section-3.7">Section 3.7</a> for further guidance on the use of this type in
conjunction with other CMS types.
<span class="grey">Schaad, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>. Attributes and the SignerInfo Type</span>
The SignerInfo type allows the inclusion of unsigned and signed
attributes along with a signature. These attributes can be required
for the processing of messages (e.g., message digest), information
the signer supplied (e.g., SMIME capabilities) that should be
processed, or attributes that are not relevant to the current
situation (e.g., mlExpansionHistory [<a href="./rfc2634" title=""Enhanced Security Services for S/MIME"">RFC2634</a>] for mail viewers).
Receiving agents MUST be able to handle zero or one instance of each
of the signed attributes listed here. Sending agents SHOULD generate
one instance of each of the following signed attributes in each
S/MIME message:
- Signing time (<a href="#section-2.5.1">Section 2.5.1</a> in this document)
- SMIME capabilities (<a href="#section-2.5.2">Section 2.5.2</a> in this document)
- Encryption key Preference (<a href="#section-2.5.3">Section 2.5.3</a> in this document)
- Message digest (<a href="./rfc5652#section-11.2">Section 11.2 in [RFC5652]</a>)
- Content type (<a href="./rfc5652#section-11.1">Section 11.1 in [RFC5652]</a>)
Further, receiving agents SHOULD be able to handle zero or one
instance of the signingCertificate and signingCertificateV2 signed
attributes, as defined in <a href="./rfc2634#section-5">Section 5 of RFC 2634</a> [<a href="#ref-ESS">ESS</a>] and <a href="./rfc5035#section-3">Section 3
of RFC 5035</a> [<a href="#ref-ESS">ESS</a>], respectively.
Sending agents SHOULD generate one instance of the signingCertificate
or signingCertificateV2 signed attribute in each SignerInfo
structure.
Additional attributes and values for these attributes might be
defined in the future. Receiving agents SHOULD handle attributes or
values that they do not recognize in a graceful manner.
Interactive sending agents that include signed attributes that are
not listed here SHOULD display those attributes to the user, so that
the user is aware of all of the data being signed.
<span class="h4"><a class="selflink" id="section-2.5.1" href="#section-2.5.1">2.5.1</a>. Signing Time Attribute</span>
The signingTime attribute is used to convey the time that a message
was signed. The time of signing will most likely be created by a
signer and therefore is only as trustworthy as that signer.
<span class="grey">Schaad, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
Sending agents MUST encode signing time through the year 2049 as
UTCTime; signing times in 2050 or later MUST be encoded as
GeneralizedTime. When the UTCTime CHOICE is used, S/MIME agents MUST
interpret the year field (YY) as follows:
If YY is greater than or equal to 50, the year is interpreted as
19YY; if YY is less than 50, the year is interpreted as 20YY.
Receiving agents MUST be able to process signingTime attributes that
are encoded in either UTCTime or GeneralizedTime.
<span class="h4"><a class="selflink" id="section-2.5.2" href="#section-2.5.2">2.5.2</a>. SMIMECapabilities Attribute</span>
The SMIMECapabilities attribute includes signature algorithms (such
as "sha256WithRSAEncryption"), symmetric algorithms (such as "AES-128
CBC"), authenticated symmetric algorithms (such as "AES-128 GCM"),
and key encipherment algorithms (such as "rsaEncryption"). The
presence of an SMIMECapability attribute containing an algorithm
implies that the sender can deal with the algorithm as well as
understand the ASN.1 structures associated with that algorithm.
There are also several identifiers that indicate support for other
optional features such as binary encoding and compression. The
SMIMECapabilities attribute was designed to be flexible and
extensible so that, in the future, a means of identifying other
capabilities and preferences such as certificates can be added in a
way that will not cause current clients to break.
If present, the SMIMECapabilities attribute MUST be a
SignedAttribute. CMS defines SignedAttributes as a SET OF Attribute.
The SignedAttributes in a signerInfo MUST include a single instance
of the SMIMECapabilities attribute. CMS defines the ASN.1 syntax for
Attribute to include attrValues SET OF AttributeValue. An
SMIMECapabilities attribute MUST only include a single instance of
AttributeValue. If a signature is detected as violating these
requirements, the signature SHOULD be treated as failing.
The semantics of the SMIMECapabilities attribute specify a partial
list as to what the client announcing the SMIMECapabilities can
support. A client does not have to list every capability it
supports, and it need not list all its capabilities so that the
capabilities list doesn't get too long. In an SMIMECapabilities
attribute, the OIDs are listed in order of their preference but
SHOULD be separated logically along the lines of their categories
(signature algorithms, symmetric algorithms, key encipherment
algorithms, etc.).
<span class="grey">Schaad, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
The structure of the SMIMECapabilities attribute is to facilitate
simple table lookups and binary comparisons in order to determine
matches. For instance, the encoding for the SMIMECapability for
sha256WithRSAEncryption includes rather than omits the NULL
parameter. Because of the requirement for identical encoding,
individuals documenting algorithms to be used in the
SMIMECapabilities attribute SHOULD explicitly document the correct
byte sequence for the common cases.
For any capability, the associated parameters for the OID MUST
specify all of the parameters necessary to differentiate between two
instances of the same algorithm.
The same OID that is used to identify an algorithm SHOULD also be
used in the SMIMECapability for that algorithm. There are cases
where a single OID can correspond to multiple algorithms. In these
cases, a single algorithm MUST be assigned to the SMIMECapability
using that OID. Additional OIDs from the smimeCapabilities OID tree
are then allocated for the other algorithms usages. For instance, in
an earlier specification, rsaEncryption was ambiguous because it
could refer to either a signature algorithm or a key encipherment
algorithm. In the event that an OID is ambiguous, it needs to be
arbitrated by the maintainer of the registered SMIMECapabilities list
as to which type of algorithm will use the OID, and a new OID MUST be
allocated under the smimeCapabilities OID to satisfy the other use of
the OID.
The registered SMIMECapabilities list specifies the parameters for
OIDs that need them, most notably key lengths in the case of
variable-length symmetric ciphers. In the event that there are no
differentiating parameters for a particular OID, the parameters MUST
be omitted and MUST NOT be encoded as NULL. Additional values for
the SMIMECapabilities attribute might be defined in the future.
Receiving agents MUST handle an SMIMECapabilities object that has
values that it does not recognize in a graceful manner.
<a href="#section-2.7.1">Section 2.7.1</a> explains a strategy for caching capabilities.
<span class="h4"><a class="selflink" id="section-2.5.3" href="#section-2.5.3">2.5.3</a>. Encryption Key Preference Attribute</span>
The encryption key preference attribute allows the signer to
unambiguously describe which of the signer's certificates has the
signer's preferred encryption key. This attribute is designed to
enhance behavior for interoperating with those clients that use
separate keys for encryption and signing. This attribute is used to
convey to anyone viewing the attribute which of the listed
certificates is appropriate for encrypting a session key for future
encrypted messages.
<span class="grey">Schaad, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
If present, the SMIMEEncryptionKeyPreference attribute MUST be a
SignedAttribute. CMS defines SignedAttributes as a SET OF Attribute.
The SignedAttributes in a signerInfo MUST include a single instance
of the SMIMEEncryptionKeyPreference attribute. CMS defines the ASN.1
syntax for Attribute to include attrValues SET OF AttributeValue. An
SMIMEEncryptionKeyPreference attribute MUST only include a single
instance of AttributeValue. If a signature is detected as violating
these requirements, the signature SHOULD be treated as failing.
The sending agent SHOULD include the referenced certificate in the
set of certificates included in the signed message if this attribute
is used. The certificate MAY be omitted if it has been previously
made available to the receiving agent. Sending agents SHOULD use
this attribute if the commonly used or preferred encryption
certificate is not the same as the certificate used to sign the
message.
Receiving agents SHOULD store the preference data if the signature on
the message is valid and the signing time is greater than the
currently stored value. (As with the SMIMECapabilities, the clock
skew SHOULD be checked and the data not used if the skew is too
great.) Receiving agents SHOULD respect the sender's encryption key
preference attribute if possible. This, however, represents only a
preference, and the receiving agent can use any certificate in
replying to the sender that is valid.
<a href="#section-2.7.1">Section 2.7.1</a> explains a strategy for caching preference data.
<span class="h5"><a class="selflink" id="section-2.5.3.1" href="#section-2.5.3.1">2.5.3.1</a>. Selection of Recipient Key Management Certificate</span>
In order to determine the key management certificate to be used when
sending a future CMS EnvelopedData message for a particular
recipient, the following steps SHOULD be followed:
- If an SMIMEEncryptionKeyPreference attribute is found in a
SignedData object received from the desired recipient, this
identifies the X.509 certificate that SHOULD be used as the X.509
key management certificate for the recipient.
- If an SMIMEEncryptionKeyPreference attribute is not found in a
SignedData object received from the desired recipient, the set of
X.509 certificates SHOULD be searched for an X.509 certificate
with the same subject name as the signer of an X.509 certificate
that can be used for key management.
<span class="grey">Schaad, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
- Or, use some other method of determining the user's key management
key. If an X.509 key management certificate is not found, then
encryption cannot be done with the signer of the message. If
multiple X.509 key management certificates are found, the S/MIME
agent can make an arbitrary choice between them.
<span class="h3"><a class="selflink" id="section-2.6" href="#section-2.6">2.6</a>. SignerIdentifier SignerInfo Type</span>
S/MIME v4.0 implementations MUST support both issuerAndSerialNumber
and subjectKeyIdentifier. Messages that use the subjectKeyIdentifier
choice cannot be read by S/MIME v2 clients.
It is important to understand that some certificates use a value for
subjectKeyIdentifier that is not suitable for uniquely identifying a
certificate. Implementations MUST be prepared for multiple
certificates for potentially different entities to have the same
value for subjectKeyIdentifier and MUST be prepared to try each
matching certificate during signature verification before indicating
an error condition.
<span class="h3"><a class="selflink" id="section-2.7" href="#section-2.7">2.7</a>. ContentEncryptionAlgorithmIdentifier</span>
Sending and receiving agents:
- MUST support encryption and decryption with AES-128 GCM and
AES-256 GCM [<a href="./rfc5084" title=""Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic Message Syntax (CMS)"">RFC5084</a>].
- MUST- support encryption and decryption with AES-128 CBC
[<a href="./rfc3565" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">RFC3565</a>].
- SHOULD+ support encryption and decryption with ChaCha20-Poly1305
[<a href="./rfc7905" title=""ChaCha20-Poly1305 Cipher Suites for Transport Layer Security (TLS)"">RFC7905</a>].
<span class="h4"><a class="selflink" id="section-2.7.1" href="#section-2.7.1">2.7.1</a>. Deciding Which Encryption Method to Use</span>
When a sending agent creates an encrypted message, it has to decide
which type of encryption to use. The decision process involves using
information garnered from the capabilities lists included in messages
received from the recipient, as well as out-of-band information such
as private agreements, user preferences, legal restrictions, and
so on.
<a href="#section-2.5.2">Section 2.5.2</a> defines a method by which a sending agent can
optionally announce, among other things, its decrypting capabilities
in its order of preference. The following method for processing and
remembering the encryption capabilities attribute in incoming signed
messages SHOULD be used.
<span class="grey">Schaad, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
- If the receiving agent has not yet created a list of capabilities
for the sender's public key, then, after verifying the signature
on the incoming message and checking the timestamp, the receiving
agent SHOULD create a new list containing at least the signing
time and the symmetric capabilities.
- If such a list already exists, the receiving agent SHOULD verify
that the signing time in the incoming message is greater than the
signing time stored in the list and that the signature is valid.
If so, the receiving agent SHOULD update both the signing time and
capabilities in the list. Values of the signing time that lie far
in the future (that is, a greater discrepancy than any reasonable
clock skew), or a capabilities list in messages whose signature
could not be verified, MUST NOT be accepted.
The list of capabilities SHOULD be stored for future use in creating
messages.
Before sending a message, the sending agent MUST decide whether it is
willing to use weak encryption for the particular data in the
message. If the sending agent decides that weak encryption is
unacceptable for this data, then the sending agent MUST NOT use a
weak algorithm. The decision to use or not use weak encryption
overrides any other decision in this section about which encryption
algorithm to use.
Sections <a href="#section-2.7.1.1">2.7.1.1</a> and <a href="#section-2.7.1.2">2.7.1.2</a> describe the decisions a sending agent
SHOULD use when choosing which type of encryption will be applied to
a message. These rules are ordered, so the sending agent SHOULD make
its decision in the order given.
<span class="h5"><a class="selflink" id="section-2.7.1.1" href="#section-2.7.1.1">2.7.1.1</a>. Rule 1: Known Capabilities</span>
If the sending agent has received a set of capabilities from the
recipient for the message the agent is about to encrypt, then the
sending agent SHOULD use that information by selecting the first
capability in the list (that is, the capability most preferred by the
intended recipient) that the sending agent knows how to encrypt. The
sending agent SHOULD use one of the capabilities in the list if the
agent reasonably expects the recipient to be able to decrypt the
message.
<span class="h5"><a class="selflink" id="section-2.7.1.2" href="#section-2.7.1.2">2.7.1.2</a>. Rule 2: Unknown Capabilities, Unknown Version of S/MIME</span>
If the following two conditions are met, the sending agent SHOULD use
AES-256 GCM, as AES-256 GCM is a stronger algorithm and is required
by S/MIME v4.0:
<span class="grey">Schaad, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
- The sending agent has no knowledge of the encryption capabilities
of the recipient.
- The sending agent has no knowledge of the version of S/MIME used
or supported by the recipient.
If the sending agent chooses not to use AES-256 GCM in this step,
given the presumption is that a client implementing AES-GCM would do
both AES-256 and AES-128, it SHOULD use AES-128 CBC.
<span class="h4"><a class="selflink" id="section-2.7.2" href="#section-2.7.2">2.7.2</a>. Choosing Weak Encryption</span>
Algorithms such as RC2 are considered to be weak encryption
algorithms. Algorithms such as TripleDES are not state of the art
and are considered to be weaker algorithms than AES. A sending agent
that is controlled by a human SHOULD allow a human sender to
determine the risks of sending data using a weaker encryption
algorithm before sending the data, and possibly allow the human to
use a stronger encryption algorithm such as AES GCM or AES CBC even
if there is a possibility that the recipient will not be able to
process that algorithm.
<span class="h4"><a class="selflink" id="section-2.7.3" href="#section-2.7.3">2.7.3</a>. Multiple Recipients</span>
If a sending agent is composing an encrypted message to a group of
recipients where the encryption capabilities of some of the
recipients do not overlap, the sending agent is forced to send more
than one message. Please note that if the sending agent chooses to
send a message encrypted with a strong algorithm and then send the
same message encrypted with a weak algorithm, someone watching the
communications channel could learn the contents of the strongly
encrypted message simply by decrypting the weakly encrypted message.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Creating S/MIME Messages</span>
This section describes the S/MIME message formats and how they are
created. S/MIME messages are a combination of MIME bodies and CMS
content types. Several media types as well as several CMS content
types are used. The data to be secured is always a canonical MIME
entity. The MIME entity and other data, such as certificates and
algorithm identifiers, are given to CMS processing facilities that
produce a CMS object. Finally, the CMS object is wrapped in MIME.
The "Enhanced Security Services for S/MIME" documents [<a href="#ref-ESS">ESS</a>] provide
descriptions of how nested, secured S/MIME messages are formatted.
ESS provides a description of how a triple-wrapped S/MIME message is
formatted using multipart/signed and application/pkcs7-mime for the
signatures.
<span class="grey">Schaad, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
S/MIME provides one format for enveloped-only data, several formats
for signed-only data, and several formats for signed and enveloped
data. Several formats are required to accommodate several
environments -- in particular, for signed messages. The criteria for
choosing among these formats are also described.
Anyone reading this section is expected to understand MIME as
described in [<a href="#ref-MIME-SPEC" title=" [RFC6838">MIME-SPEC</a>] and [<a href="./rfc1847" title=""Security Multiparts for MIME: Multipart/Signed and Multipart/Encrypted"">RFC1847</a>].
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Preparing the MIME Entity for Signing, Enveloping, or Compressing</span>
S/MIME is used to secure MIME entities. A MIME message is composed
of a MIME header and a MIME body. A body can consist of a single
MIME entity or a tree of MIME entities (rooted with a multipart).
S/MIME can be used to secure either a single MIME entity or a tree of
MIME entities. These entities can be in locations other than the
root. S/MIME can be applied multiple times to different entities in
a single message. A MIME entity that is the whole message includes
only the MIME message headers and MIME body and does not include the
<a href="./rfc822">rfc822</a> header. Note that S/MIME can also be used to secure MIME
entities used in applications other than Internet mail. For cases
where protection of the <a href="./rfc822">rfc822</a> header is required, the use of the
message/rfc822 media type is explained later in this section.
The MIME entity that is secured and described in this section can be
thought of as the "inside" MIME entity. That is, it is the
"innermost" object in what is possibly a larger MIME message.
Processing "outside" MIME entities into CMS EnvelopedData,
CompressedData, and AuthEnvelopedData content types is described in
Sections <a href="#section-3.2">3.2</a> and <a href="#section-3.5">3.5</a>. Other documents define additional CMS content
types; those documents should be consulted for processing those CMS
content types.
The procedure for preparing a MIME entity is given in [<a href="#ref-MIME-SPEC" title=" [RFC6838">MIME-SPEC</a>].
The same procedure is used here with some additional restrictions
when signing. The description of the procedures from [<a href="#ref-MIME-SPEC" title=" [RFC6838">MIME-SPEC</a>] is
repeated here, but it is suggested that the reader refer to those
documents for the exact procedures. This section also describes
additional requirements.
A single procedure is used for creating MIME entities that are to
have any combination of signing, enveloping, and compressing applied.
Some additional steps are recommended to defend against known
corruptions that can occur during mail transport that are of
particular importance for clear-signing using the multipart/signed
format. It is recommended that these additional steps be performed
on enveloped messages, or signed and enveloped messages, so that the
messages can be forwarded to any environment without modification.
<span class="grey">Schaad, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
These steps are descriptive rather than prescriptive. The
implementer is free to use any procedure as long as the result is
the same.
Step 1. The MIME entity is prepared according to local conventions.
Step 2. The leaf parts of the MIME entity are converted to
canonical form.
Step 3. Appropriate transfer encoding is applied to the leaves
of the MIME entity.
When an S/MIME message is received, the security services on the
message are processed, and the result is the MIME entity. That MIME
entity is typically passed to a MIME-capable user agent where it is
further decoded and presented to the user or receiving application.
In order to protect outer, non-content-related message header fields
(for instance, the "Subject", "To", "From", and "Cc" fields), the
sending client MAY wrap a full MIME message in a message/rfc822
wrapper in order to apply S/MIME security services to these header
fields. It is up to the receiving client to decide how to present
this "inner" header along with the unprotected "outer" header. Given
the security difference between headers, it is RECOMMENDED that the
receiving client provide a distinction between header fields,
depending on where they are located.
When an S/MIME message is received, if the top-level protected MIME
entity has a Content-Type of message/rfc822, it can be assumed that
the intent was to provide header protection. This entity SHOULD be
presented as the top-level message, taking into account
header-merging issues as previously discussed.
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. Canonicalization</span>
Each MIME entity MUST be converted to a canonical form that is
uniquely and unambiguously representable in the environment where the
signature is created and the environment where the signature will be
verified. MIME entities MUST be canonicalized for enveloping and
compressing as well as signing.
The exact details of canonicalization depend on the actual media type
and subtype of an entity and are not described here. Instead, the
standard for the particular media type SHOULD be consulted. For
example, canonicalization of type text/plain is different from
canonicalization of audio/basic. Other than text types, most types
have only one representation, regardless of computing platform or
environment, that can be considered their canonical representation.
<span class="grey">Schaad, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
In general, canonicalization will be performed by the non-security
part of the sending agent rather than the S/MIME implementation.
The most common and important canonicalization is for text, which is
often represented differently in different environments. MIME
entities of major type "text" MUST have both their line endings and
character set canonicalized. The line ending MUST be the pair of
characters <CR><LF>, and the charset SHOULD be a registered charset
[<a href="#ref-CHARSETS" title=""Character sets assigned by IANA"">CHARSETS</a>]. The details of the canonicalization are specified in
[<a href="#ref-MIME-SPEC" title=" [RFC6838">MIME-SPEC</a>].
Note that some charsets such as ISO-2022 have multiple
representations for the same characters. When preparing such text
for signing, the canonical representation specified for the charset
MUST be used.
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Transfer Encoding</span>
When generating any of the secured MIME entities below, except the
signing using the multipart/signed format, no transfer encoding is
required at all. S/MIME implementations MUST be able to deal with
binary MIME objects. If no Content-Transfer-Encoding header field is
present, the transfer encoding is presumed to be 7BIT.
As a rule, S/MIME implementations SHOULD use transfer encoding as
described in <a href="#section-3.1.3">Section 3.1.3</a> for all MIME entities they secure. The
reason for securing only 7-bit MIME entities, even for enveloped data
that is not exposed to the transport, is that it allows the MIME
entity to be handled in any environment without changing it. For
example, a trusted gateway might remove the envelope, but not the
signature, of a message, and then forward the signed message on to
the end recipient so that they can verify the signatures directly.
If the transport internal to the site is not 8-bit clean, such as on
a wide-area network with a single mail gateway, verifying the
signature will not be possible unless the original MIME entity was
only 7-bit data.
In the case where S/MIME implementations can determine that all
intended recipients are capable of handling inner (all but the
outermost) binary MIME objects, implementations SHOULD use binary
encoding as opposed to a 7-bit-safe transfer encoding for the inner
entities. The use of a 7-bit-safe encoding (such as base64)
unnecessarily expands the message size. Implementations MAY
determine that recipient implementations are capable of
handling inner binary MIME entities by (1) interpreting the
id-cap-preferBinaryInside SMIMECapabilities attribute, (2) prior
agreement, or (3) other means.
<span class="grey">Schaad, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
If one or more intended recipients are unable to handle inner binary
MIME objects or if this capability is unknown for any of the intended
recipients, S/MIME implementations SHOULD use transfer encoding as
described in <a href="#section-3.1.3">Section 3.1.3</a> for all MIME entities they secure.
<span class="h4"><a class="selflink" id="section-3.1.3" href="#section-3.1.3">3.1.3</a>. Transfer Encoding for Signing Using multipart/signed</span>
If a multipart/signed entity is ever to be transmitted over the
standard Internet SMTP infrastructure or other transport that is
constrained to 7-bit text, it MUST have transfer encoding applied so
that it is represented as 7-bit text. MIME entities that are already
7-bit data need no transfer encoding. Entities such as 8-bit text
and binary data can be encoded with quoted-printable or base64
transfer encoding.
The primary reason for the 7-bit requirement is that the Internet
mail transport infrastructure cannot guarantee transport of 8-bit or
binary data. Even though many segments of the transport
infrastructure now handle 8-bit and even binary data, it is sometimes
not possible to know whether the transport path is 8-bit clean. If a
mail message with 8-bit data were to encounter a message transfer
agent that cannot transmit 8-bit or binary data, the agent has three
options, none of which are acceptable for a clear-signed message:
- The agent could change the transfer encoding; this would
invalidate the signature.
- The agent could transmit the data anyway, which would most likely
result in the 8th bit being corrupted; this too would invalidate
the signature.
- The agent could return the message to the sender.
[<a id="ref-RFC1847">RFC1847</a>] prohibits an agent from changing the transfer encoding of
the first part of a multipart/signed message. If a compliant agent
that cannot transmit 8-bit or binary data encountered a
multipart/signed message with 8-bit or binary data in the first part,
it would have to return the message to the sender as undeliverable.
<span class="h4"><a class="selflink" id="section-3.1.4" href="#section-3.1.4">3.1.4</a>. Sample Canonical MIME Entity</span>
This example shows a multipart/mixed message with full transfer
encoding. This message contains a text part and an attachment. The
sample message text includes characters that are not ASCII and thus
need to be transfer encoded. Though not shown here, the end of each
line is <CR><LF>. The line ending of the MIME headers, the text, and
the transfer-encoded parts all MUST be <CR><LF>.
<span class="grey">Schaad, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
Note that this example is not an example of an S/MIME message.
Content-Type: multipart/mixed; boundary=bar
--bar
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: quoted-printable
=A1Hola Michael!
How do you like the new S/MIME specification?
It's generally a good idea to encode lines that begin with
From=20because some mail transport agents will insert a
greater-than (>) sign, thus invalidating the signature.
Also, in some cases it might be desirable to encode any =20
trailing whitespace that occurs on lines in order to ensure =20
that the message signature is not invalidated when passing =20
a gateway that modifies such whitespace (like BITNET). =20
--bar
Content-Type: image/jpeg
Content-Transfer-Encoding: base64
iQCVAwUBMJrRF2N9oWBghPDJAQE9UQQAtl7LuRVndBjrk4EqYBIb3h5QXIX/LC//
jJV5bNvkZIGPIcEmI5iFd9boEgvpirHtIREEqLQRkYNoBActFBZmh9GC3C041WGq
uMbrbxc+nIs1TIKlA08rVi9ig/2Yh7LFrK5Ein57U/W72vgSxLhe/zhdfolT9Brn
HOxEa44b+EI=
--bar--
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. The application/pkcs7-mime Media Type</span>
The application/pkcs7-mime media type is used to carry CMS content
types, including EnvelopedData, SignedData, and CompressedData. The
details of constructing these entities are described in subsequent
sections. This section describes the general characteristics of the
application/pkcs7-mime media type.
The carried CMS object always contains a MIME entity that is prepared
as described in <a href="#section-3.1">Section 3.1</a> if the eContentType is id-data. Other
contents MAY be carried when the eContentType contains different
values. See [<a href="#ref-ESS">ESS</a>] for an example of this with signed receipts.
Since CMS content types are binary data, in most cases base64
transfer encoding is appropriate -- in particular, when used with
SMTP transport. The transfer encoding used depends on the transport
<span class="grey">Schaad, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
through which the object is to be sent and is not a characteristic of
the media type.
Note that this discussion refers to the transfer encoding of the CMS
object or "outside" MIME entity. It is completely distinct from, and
unrelated to, the transfer encoding of the MIME entity secured by the
CMS object -- the "inside" object, which is described in <a href="#section-3.1">Section 3.1</a>.
Because there are several types of application/pkcs7-mime objects, a
sending agent SHOULD do as much as possible to help a receiving agent
know about the contents of the object without forcing the receiving
agent to decode the ASN.1 for the object. The Content-Type header
field of all application/pkcs7-mime objects SHOULD include the
optional "smime-type" parameter, as described in the following
sections.
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. The name and filename Parameters</span>
For application/pkcs7-mime, sending agents SHOULD emit the
optional "name" parameter to the Content-Type field for compatibility
with older systems. Sending agents SHOULD also emit the optional
Content-Disposition field [<a href="./rfc2183" title=""Communicating Presentation Information in Internet Messages: The Content-Disposition Header Field"">RFC2183</a>] with the "filename" parameter.
If a sending agent emits the above parameters, the value of the
parameters SHOULD be a filename with the appropriate extension:
File
Media Type Extension
-------------------------------------------------------------------
application/pkcs7-mime (SignedData, EnvelopedData, .p7m
AuthEnvelopedData)
application/pkcs7-mime (degenerate SignedData certificate .p7c
management message)
application/pkcs7-mime (CompressedData) .p7z
application/pkcs7-signature (SignedData) .p7s
In addition, the filename SHOULD be limited to eight characters
followed by a three-letter extension. The eight-character filename
base can be any distinct name; the use of the filename base "smime"
SHOULD be used to indicate that the MIME entity is associated with
S/MIME.
Including a filename serves two purposes. It facilitates easier use
of S/MIME objects as files on disk. It also can convey type
information across gateways. When a MIME entity of type
application/pkcs7-mime (for example) arrives at a gateway that has no
special knowledge of S/MIME, it will default the entity's media type
to application/octet-stream and treat it as a generic attachment,
thus losing the type information. However, the suggested filename
<span class="grey">Schaad, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
for an attachment is often carried across a gateway. This often
allows the receiving systems to determine the appropriate application
to hand the attachment off to -- in this case, a standalone S/MIME
processing application. Note that this mechanism is provided as a
convenience for implementations in certain environments. A proper
S/MIME implementation MUST use the media types and MUST NOT rely on
the file extensions.
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. The smime-type Parameter</span>
The application/pkcs7-mime content type defines the optional
"smime-type" parameter. The intent of this parameter is to convey
details about the security applied (signed or enveloped) along with
information about the contained content. This specification defines
the following smime-types.
Name CMS Type Inner Content
----------------------------------------------------------
enveloped-data EnvelopedData id-data
signed-data SignedData id-data
certs-only SignedData id-data
compressed-data CompressedData id-data
authEnveloped-data AuthEnvelopedData id-data
In order for consistency to be obtained with future specifications,
the following guidelines SHOULD be followed when assigning a new
smime-type parameter.
1. If both signing and encryption can be applied to the content,
then three values for smime-type SHOULD be assigned: "signed-*",
"authEnv-*", and "enveloped-*". If one operation can be
assigned, then this can be omitted. Thus, since "certs-only" can
only be signed, "signed-" is omitted.
2. A common string for a content OID SHOULD be assigned. We use
"data" for the id-data content OID when MIME is the inner
content.
3. If no common string is assigned, then the common string of
"OID.<oid>" is recommended (for example,
"OID.2.16.840.1.101.3.4.1.2" would be AES-128 CBC).
It is explicitly intended that this field be a suitable hint for mail
client applications to indicate whether a message is "signed",
"authEnveloped", or "enveloped" without having to tunnel into the CMS
payload.
<span class="grey">Schaad, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
A registry for additional smime-type parameter values has been
defined in [<a href="./rfc7114" title=""Creation of a Registry for smime-type Parameter Values"">RFC7114</a>].
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Creating an Enveloped-Only Message</span>
This section describes the format for enveloping a MIME entity
without signing it. It is important to note that sending enveloped
but not signed messages does not provide for data integrity. The
"enveloped-only" structure does not support authenticated symmetric
algorithms. Use the "authenticated enveloped" structure for these
algorithms. Thus, it is possible to replace ciphertext in such a way
that the processed message will still be valid, but the meaning can
be altered.
Step 1. The MIME entity to be enveloped is prepared according to
<a href="#section-3.1">Section 3.1</a>.
Step 2. The MIME entity and other required data are processed into a
CMS object of type EnvelopedData. In addition to encrypting
a copy of the content-encryption key (CEK) for each
recipient, a copy of the CEK SHOULD be encrypted for the
originator and included in the EnvelopedData (see <a href="./rfc5652#section-6">[RFC5652],
Section 6</a>).
Step 3. The EnvelopedData object is wrapped in a CMS ContentInfo
object.
Step 4. The ContentInfo object is inserted into an
application/pkcs7-mime MIME entity.
The smime-type parameter for enveloped-only messages is
"enveloped-data". The file extension for this type of message
is ".p7m".
A sample message would be:
Content-Type: application/pkcs7-mime; name=smime.p7m;
smime-type=enveloped-data
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m
MIIBHgYJKoZIhvcNAQcDoIIBDzCCAQsCAQAxgcAwgb0CAQAwJjASMRAwDgYDVQQDEw
dDYXJsUlNBAhBGNGvHgABWvBHTbi7NXXHQMA0GCSqGSIb3DQEBAQUABIGAC3EN5nGI
iJi2lsGPcP2iJ97a4e8kbKQz36zg6Z2i0yx6zYC4mZ7mX7FBs3IWg+f6KgCLx3M1eC
bWx8+MDFbbpXadCDgO8/nUkUNYeNxJtuzubGgzoyEd8Ch4H/dd9gdzTd+taTEgS0ip
dSJuNnkVY4/M652jKKHRLFf02hosdR8wQwYJKoZIhvcNAQcBMBQGCCqGSIb3DQMHBA
gtaMXpRwZRNYAgDsiSf8Z9P43LrY4OxUk660cu1lXeCSFOSOpOJ7FuVyU=
<span class="grey">Schaad, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Creating an Authenticated Enveloped-Only Message</span>
This section describes the format for enveloping a MIME entity
without signing it. Authenticated enveloped messages provide
confidentiality and data integrity. It is important to note that
sending authenticated enveloped messages does not provide for proof
of origination when using S/MIME. It is possible for a third party
to replace ciphertext in such a way that the processed message will
still be valid, but the meaning can be altered. However, this is
substantially more difficult than it is for an enveloped-only
message, as the algorithm does provide a level of authentication.
Any recipient for whom the message is encrypted can replace it
without detection.
Step 1. The MIME entity to be enveloped is prepared according to
<a href="#section-3.1">Section 3.1</a>.
Step 2. The MIME entity and other required data are processed into a
CMS object of type AuthEnvelopedData. In addition to
encrypting a copy of the CEK for each recipient, a copy of
the CEK SHOULD be encrypted for the originator and included
in the AuthEnvelopedData (see [<a href="./rfc5083" title=""Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Content Type"">RFC5083</a>]).
Step 3. The AuthEnvelopedData object is wrapped in a CMS ContentInfo
object.
Step 4. The ContentInfo object is inserted into an
application/pkcs7-mime MIME entity.
The smime-type parameter for authenticated enveloped-only messages is
"authEnveloped-data". The file extension for this type of message
is ".p7m".
<span class="grey">Schaad, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
A sample message would be:
Content-Type: application/pkcs7-mime; smime-type=authEnveloped-data;
name=smime.p7m
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m
MIIDWQYLKoZIhvcNAQkQARegggNIMIIDRAIBADGBvjCBuwIBADAmMBIxEDAO
BgNVBAMTB0NhcmxSU0ECEEY0a8eAAFa8EdNuLs1dcdAwCwYJKoZIhvcNAQEB
BIGAgyZJo0ERTxA4xdTri5P5tVMyh0RARepTUCORZvlUbcUlaI8IpJZH3/J1
Fv6MxTRS4O/K+ZcTlQmYeWLQvwdltQdOIP3mhpqXzTnOYhTK1IDtF2zx75Lg
vE+ilpcLIzXfJB4RCBPtBWaHAof4Wb+VMQvLkk9OolX4mRSH1LPktgAwggJq
BgkqhkiG9w0BBwEwGwYJYIZIAWUDBAEGMA4EDGPizioC9OHSsnNx4oCCAj7Y
Cb8rOy8+55106newEJohC/aDgWbJhrMKzSOwa7JraXOV3HXD3NvKbl665dRx
vmDwSCNaLCRU5q8/AxQx2SvnAbM+JKcEfC/VFdd4SiHNiUECAApLku2rMi5B
WrhW/FXmx9d+cjum2BRwB3wj0q1wajdB0/kVRbQwg697dnlYyUog4vpJERjr
7KAkawZx1RMHaM18wgZjUNpCBXFS3chQi9mTBp2i2Hf5iZ8OOtTx+rCQUmI6
Jhy03vdcPCCARBjn3v0d3upZYDZddMA41CB9fKnnWFjadV1KpYwv80tqsEfx
Vo0lJQ5VtJ8MHJiBpLVKadRIZ4iH2ULC0JtN5mXE1SrFKh7cqbJ4+7nqSRL3
oBTud3rX41DGshOjpqcYHT4sqYlgZkc6dp0g1+hF1p3cGmjHdpysV2NVSUev
ghHbvSqhIsXFzRSWKiZOigmlkv3R5LnjpYyP4brM62Jl7y0qborvV4dNMz7m
D+5YxSlH0KAe8z6TT3LHuQdN7QCkFoiUSCaNhpAFaakkGIpqcqLhpOK4lXxt
kptCG93eUwNCcTxtx6bXufPR5TUHohvZvfeqMp42kL37FJC/A8ZHoOxXy8+X
X5QYxCQNuofWlvnIWv0Nr8w65x6lgVjPYmd/cHwzQKBTBMXN6pBud/PZL5zF
tw3QHlQkBR+UflMWZKeN9L0KdQ27mQlCo5gQS85aifxoiiA2v9+0hxZw91rP
IW4D+GS7oMMoKj8ZNyCJJsyf5smRZ+WxeBoolb3+TiGcBBCsRnfe6noLZiFO
6Zeu2ZwE
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Creating a Signed-Only Message</span>
There are two formats for signed messages defined for S/MIME:
- application/pkcs7-mime with SignedData.
- multipart/signed.
In general, the multipart/signed form is preferred for sending, and
receiving agents MUST be able to handle both.
<span class="grey">Schaad, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h4"><a class="selflink" id="section-3.5.1" href="#section-3.5.1">3.5.1</a>. Choosing a Format for Signed-Only Messages</span>
There are no hard-and-fast rules as to when a particular signed-only
format is chosen. It depends on the capabilities of all the
receivers and the relative importance of receivers with S/MIME
facilities being able to verify the signature versus the importance
of receivers without S/MIME software being able to view the message.
Messages signed using the multipart/signed format can always be
viewed by the receiver whether or not they have S/MIME software.
They can also be viewed whether they are using a MIME-native user
agent or they have messages translated by a gateway. In this
context, "be viewed" means the ability to process the message
essentially as if it were not a signed message, including any other
MIME structure the message might have.
Messages signed using the SignedData format cannot be viewed by a
recipient unless they have S/MIME facilities. However, the
SignedData format protects the message content from being changed by
benign intermediate agents. Such agents might do line wrapping or
content-transfer encoding changes that would break the signature.
<span class="h4"><a class="selflink" id="section-3.5.2" href="#section-3.5.2">3.5.2</a>. Signing Using application/pkcs7-mime with SignedData</span>
This signing format uses the application/pkcs7-mime media type. The
steps to create this format are as follows:
Step 1. The MIME entity is prepared according to <a href="#section-3.1">Section 3.1</a>.
Step 2. The MIME entity and other required data are processed into a
CMS object of type SignedData.
Step 3. The SignedData object is wrapped in a CMS ContentInfo
object.
Step 4. The ContentInfo object is inserted into an
application/pkcs7-mime MIME entity.
The smime-type parameter for messages using application/pkcs7-mime
with SignedData is "signed-data". The file extension for this type
of message is ".p7m".
<span class="grey">Schaad, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
A sample message would be:
Content-Type: application/pkcs7-mime; smime-type=signed-data;
name=smime.p7m
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m
MIIDmQYJKoZIhvcNAQcCoIIDijCCA4YCAQExCTAHBgUrDgMCGjAtBgkqhkiG9w0BBw
GgIAQeDQpUaGlzIGlzIHNvbWUgc2FtcGxlIGNvbnRlbnQuoIIC4DCCAtwwggKboAMC
AQICAgDIMAkGByqGSM44BAMwEjEQMA4GA1UEAxMHQ2FybERTUzAeFw05OTA4MTcwMT
EwNDlaFw0zOTEyMzEyMzU5NTlaMBMxETAPBgNVBAMTCEFsaWNlRFNTMIIBtjCCASsG
ByqGSM44BAEwggEeAoGBAIGNze2D6gqeOT7CSCij5EeT3Q7XqA7sU8WrhAhP/5Thc0
h+DNbzREjR/p+vpKGJL+HZMMg23j+bv7dM3F9piuR10DcMkQiVm96nXvn89J8v3UOo
i1TxP7AHCEdNXYjDw7Wz41UIddU5dhDEeL3/nbCElzfy5FEbteQJllzzflvbAhUA4k
emGkVmuBPG2o+4NyErYov3k80CgYAmONAUiTKqOfs+bdlLWWpMdiM5BAI1XPLLGjDD
HlBd3ZtZ4s2qBT1YwHuiNrhuB699ikIlp/R1z0oIXks+kPht6pzJIYo7dhTpzi5dow
fNI4W4LzABfG1JiRGJNkS9+MiVSlNWteL5c+waYTYfEX/Cve3RUP+YdMLRgUpgObo2
OQOBhAACgYBc47ladRSWC6l63eM/qeysXty9txMRNKYWiSgRI9k0hmd1dRMSPUNbb+
VRv/qJ8qIbPiR9PQeNW2PIu0WloErjhdbOBoA/6CN+GvIkq1MauCcNHu8Iv2YUgFxi
rGX6FYvxuzTU0pY39mFHssQyhPB+QUD9RqdjTjPypeL08oPluKOBgTB/MAwGA1UdEw
EB/wQCMAAwDgYDVR0PAQH/BAQDAgbAMB8GA1UdIwQYMBaAFHBEPoIub4feStN14z0g
vEMrk/EfMB0GA1UdDgQWBBS+bKGz48H37UNwpM4TAeL945f+zTAfBgNVHREEGDAWgR
RBbGljZURTU0BleGFtcGxlLmNvbTAJBgcqhkjOOAQDAzAAMC0CFFUMpBkfQiuJcSIz
jYNqtT1na79FAhUAn2FTUlQLXLLd2ud2HeIQUltDXr0xYzBhAgEBMBgwEjEQMA4GA1
UEAxMHQ2FybERTUwICAMgwBwYFKw4DAhowCQYHKoZIzjgEAwQuMCwCFD1cSW6LIUFz
eXle3YI5SKSBer/sAhQmCq7s/CTFHOEjgASeUjbMpx5g6A==
<span class="h4"><a class="selflink" id="section-3.5.3" href="#section-3.5.3">3.5.3</a>. Signing Using the multipart/signed Format</span>
This format is a clear-signing format. Recipients without any S/MIME
or CMS processing facilities are able to view the message. It makes
use of the multipart/signed media type described in [<a href="./rfc1847" title=""Security Multiparts for MIME: Multipart/Signed and Multipart/Encrypted"">RFC1847</a>]. The
multipart/signed media type has two parts. The first part contains
the MIME entity that is signed; the second part contains the
"detached signature" CMS SignedData object in which the
encapContentInfo eContent field is absent.
<span class="h5"><a class="selflink" id="section-3.5.3.1" href="#section-3.5.3.1">3.5.3.1</a>. The application/pkcs7-signature Media Type</span>
This media type always contains a CMS ContentInfo containing a single
CMS object of type SignedData. The SignedData encapContentInfo
eContent field MUST be absent. The signerInfos field contains the
signatures for the MIME entity.
The file extension for signed-only messages using
application/pkcs7-signature is ".p7s".
<span class="grey">Schaad, et al. Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h5"><a class="selflink" id="section-3.5.3.2" href="#section-3.5.3.2">3.5.3.2</a>. Creating a multipart/signed Message</span>
Step 1. The MIME entity to be signed is prepared according to
<a href="#section-3.1">Section 3.1</a>, taking special care for clear-signing.
Step 2. The MIME entity is presented to CMS processing in order to
obtain an object of type SignedData in which the
encapContentInfo eContent field is absent.
Step 3. The MIME entity is inserted into the first part of a
multipart/signed message with no processing other than that
described in <a href="#section-3.1">Section 3.1</a>.
Step 4. Transfer encoding is applied to the "detached signature" CMS
SignedData object, and it is inserted into a MIME entity of
type application/pkcs7-signature.
Step 5. The MIME entity of the application/pkcs7-signature is
inserted into the second part of the multipart/signed
entity.
The multipart/signed Content-Type has two required parameters: the
protocol parameter and the micalg parameter.
The protocol parameter MUST be "application/pkcs7-signature". Note
that quotation marks are required around the protocol parameter
because MIME requires that the "/" character in the parameter value
MUST be quoted.
<span class="grey">Schaad, et al. Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
The micalg parameter allows for one-pass processing when the
signature is being verified. The value of the micalg parameter is
dependent on the message digest algorithm(s) used in the calculation
of the Message Integrity Check. If multiple message digest
algorithms are used, they MUST be separated by commas per [<a href="./rfc1847" title=""Security Multiparts for MIME: Multipart/Signed and Multipart/Encrypted"">RFC1847</a>].
The values to be placed in the micalg parameter SHOULD be from the
following:
Algorithm Value Used
-----------------------------------------------------------
MD5* md5
SHA-1* sha-1
SHA-224 sha-224
SHA-256 sha-256
SHA-384 sha-384
SHA-512 sha-512
Any other (defined separately in the algorithm profile
or "unknown" if not defined)
*Note: MD5 and SHA-1 are historical and no longer considered secure.
See <a href="#appendix-B">Appendix B</a> for details.
(Historical note: Some early implementations of S/MIME emitted and
expected "rsa-md5", "rsa-sha1", and "sha1" for the micalg parameter.)
Receiving agents SHOULD be able to recover gracefully from a micalg
parameter value that they do not recognize. Future values for this
parameter will be taken from the IANA "Hash Function Textual Names"
registry.
<span class="grey">Schaad, et al. Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h5"><a class="selflink" id="section-3.5.3.3" href="#section-3.5.3.3">3.5.3.3</a>. Sample multipart/signed Message</span>
Content-Type: multipart/signed;
micalg=sha-256;
boundary="----=_NextBoundary____Fri,_06_Sep_2002_00:25:21";
protocol="application/pkcs7-signature"
This is a multipart message in MIME format.
------=_NextBoundary____Fri,_06_Sep_2002_00:25:21
This is some sample content.
------=_NextBoundary____Fri,_06_Sep_2002_00:25:21
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s
MIIBJgYJKoZIhvcNAQcCoIIBFzCCARMCAQExADALBgkqhkiG9w0BBwExgf4w
gfsCAQIwJjASMRAwDgYDVQQDEwdDYXJsUlNBAhBGNGvHgABWvBHTbi7EELOw
MAsGCWCGSAFlAwQCAaAxMC8GCSqGSIb3DQEJBDEiBCCxwpZGNZzTSsugsn+f
lEidzQK4mf/ozKqfmbxhcIkKqjALBgkqhkiG9w0BAQsEgYB0XJV7fjPa5Nuh
oth5msDfP8A5urYUMjhNpWgXG8ae3XpppqVrPi2nVO41onHnkByjkeD/wc31
A9WH8MzFQgSTsrJ65JvffTTXkOpRPxsSHn3wJFwP/atWHkh8YK/jR9bULhUl
Mv5jQEDiwVX5DRasxu6Ld8zv9u5/TsdBNiufGw==
------=_NextBoundary____Fri,_06_Sep_2002_00:25:21--
The content that is digested (the first part of the multipart/signed)
consists of the bytes:
54 68 69 73 20 69 73 20 73 6f 6d 65 20 73 61 6d 70 6c 65 20 63 6f 6e
74 65 6e 74 2e 0d 0a
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. Creating a Compressed-Only Message</span>
This section describes the format for compressing a MIME entity.
Please note that versions of S/MIME prior to version 3.1 did not
specify any use of CompressedData and will not recognize it. The use
of a capability to indicate the ability to receive CompressedData is
described in [<a href="./rfc3274" title=""Compressed Data Content Type for Cryptographic Message Syntax (CMS)"">RFC3274</a>] and is the preferred method for compatibility.
Step 1. The MIME entity to be compressed is prepared according to
<a href="#section-3.1">Section 3.1</a>.
Step 2. The MIME entity and other required data are processed into a
CMS object of type CompressedData.
<span class="grey">Schaad, et al. Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
Step 3. The CompressedData object is wrapped in a CMS ContentInfo
object.
Step 4. The ContentInfo object is inserted into an
application/pkcs7-mime MIME entity.
The smime-type parameter for compressed-only messages is
"compressed-data". The file extension for this type of message
is ".p7z".
A sample message would be:
Content-Type: application/pkcs7-mime; smime-type=compressed-data;
name=smime.p7z
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7z
eNoLycgsVgCi4vzcVIXixNyCnFSF5Py8ktS8Ej0AlCkKVA==
<span class="h3"><a class="selflink" id="section-3.7" href="#section-3.7">3.7</a>. Multiple Operations</span>
The signed-only, enveloped-only, and compressed-only MIME formats can
be nested. This works because these formats are all MIME entities
that encapsulate other MIME entities.
An S/MIME implementation MUST be able to receive and process
arbitrarily nested S/MIME within reasonable resource limits of the
recipient computer.
It is possible to apply any of the signing, encrypting, and
compressing operations in any order. It is up to the implementer and
the user to choose. When signing first, the signatories are then
securely obscured by the enveloping. When enveloping first, the
signatories are exposed, but it is possible to verify signatures
without removing the enveloping. This can be useful in an
environment where automatic signature verification is desired, as no
private key material is required to verify a signature.
There are security ramifications related to choosing whether to sign
first or encrypt first. A recipient of a message that is encrypted
and then signed can validate that the encrypted block was unaltered
but cannot determine any relationship between the signer and the
unencrypted contents of the message. A recipient of a message that
is signed and then encrypted can assume that the signed message
itself has not been altered but that a careful attacker could have
changed the unauthenticated portions of the encrypted message.
<span class="grey">Schaad, et al. Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
When using compression, keep the following guidelines in mind:
- Compression of encrypted data that is transferred as binary data
is discouraged, since it will not yield significant compression.
Encrypted data that is transferred as base64-encoded data could
benefit as well.
- If a lossy compression algorithm is used with signing, you will
need to compress first, then sign.
<span class="h3"><a class="selflink" id="section-3.8" href="#section-3.8">3.8</a>. Creating a Certificate Management Message</span>
The certificate management message or MIME entity is used to
transport certificates and/or Certificate Revocation Lists (CRLs),
such as in response to a registration request.
Step 1. The certificates and/or CRLs are made available to the CMS
generating process that creates a CMS object of type
SignedData. The SignedData encapContentInfo eContent field
MUST be absent, and the signerInfos field MUST be empty.
Step 2. The SignedData object is wrapped in a CMS ContentInfo
object.
Step 3. The ContentInfo object is enclosed in an
application/pkcs7-mime MIME entity.
The smime-type parameter for a certificate management message is
"certs-only". The file extension for this type of message is ".p7c".
<span class="h3"><a class="selflink" id="section-3.9" href="#section-3.9">3.9</a>. Registration Requests</span>
A sending agent that signs messages MUST have a certificate for the
signature so that a receiving agent can verify the signature. There
are many ways of getting certificates, such as through an exchange
with a certification authority, through a hardware token or diskette,
and so on.
S/MIME v2 [<a href="#ref-SMIMEv2" title="RFC2314">SMIMEv2</a>] specified a method for "registering" public keys
with certificate authorities using an application/pkcs10 body part.
Since that time, the IETF PKIX Working Group has developed other
methods for requesting certificates. However, S/MIME v4.0 does not
require a particular certificate request mechanism.
<span class="grey">Schaad, et al. Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h3"><a class="selflink" id="section-3.10" href="#section-3.10">3.10</a>. Identifying an S/MIME Message</span>
Because S/MIME takes into account interoperation in non-MIME
environments, several different mechanisms are employed to carry the
type information, and it becomes a bit difficult to identify S/MIME
messages. The following table lists criteria for determining whether
or not a message is an S/MIME message. A message is considered an
S/MIME message if it matches any of the criteria listed below.
The file suffix in the table below comes from the "name" parameter in
the Content-Type header field or the "filename" parameter in the
Content-Disposition header field. The MIME parameters that carry the
file suffix are not listed below.
Media Type Parameters File Suffix
---------------------------------------------------------------------
application/pkcs7-mime N/A N/A
multipart/signed protocol= N/A
"application/pkcs7-signature"
application/octet-stream N/A p7m, p7s,
p7c, p7z
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Certificate Processing</span>
A receiving agent MUST provide some certificate retrieval mechanism
in order to gain access to certificates for recipients of digital
envelopes. This specification does not cover how S/MIME agents
handle certificates -- only what they do after a certificate has been
validated or rejected. S/MIME certificate issues are covered in
[<a href="./rfc5750" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Certificate Handling"">RFC5750</a>].
At a minimum, for initial S/MIME deployment, a user agent could
automatically generate a message to an intended recipient requesting
that recipient's certificate in a signed return message. Receiving
and sending agents SHOULD also provide a mechanism to allow a user to
"store and protect" certificates for correspondents in such a way as
to guarantee their later retrieval.
<span class="grey">Schaad, et al. Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Key Pair Generation</span>
All key pairs MUST be generated from a good source of
non-deterministic random input [<a href="./rfc4086" title=""Randomness Requirements for Security"">RFC4086</a>], and the private key MUST be
protected in a secure fashion.
An S/MIME user agent MUST NOT generate asymmetric keys less than
2048 bits for use with an RSA signature algorithm.
For 2048-bit through 4096-bit RSA with SHA-256, see [<a href="./rfc5754" title=""Using SHA2 Algorithms with Cryptographic Message Syntax"">RFC5754</a>] and
[<a href="#ref-FIPS186-4">FIPS186-4</a>]. The first reference provides the signature algorithm's
OID, and the second provides the signature algorithm's definition.
For RSASSA-PSS with SHA-256, see [<a href="./rfc4056" title=""Use of the RSASSA-PSS Signature Algorithm in Cryptographic Message Syntax (CMS)"">RFC4056</a>]. For RSAES-OAEP, see
[<a href="./rfc3560" title=""Use of the RSAES-OAEP Key Transport Algorithm in Cryptographic Message Syntax (CMS)"">RFC3560</a>].
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Signature Generation</span>
The following are the requirements for an S/MIME agent when
generating RSA and RSASSA-PSS signatures:
key size <= 2047 : SHOULD NOT (Note 2)
2048 <= key size <= 4096 : SHOULD (Note 1)
4096 < key size : MAY (Note 1)
Note 1: See Security Considerations in <a href="#section-6">Section 6</a>.
Note 2: See Historical Mail Considerations in <a href="#appendix-B">Appendix B</a>.
Key sizes for ECDSA and EdDSA are fixed by the curve.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Signature Verification</span>
The following are the requirements for S/MIME receiving agents during
verification of RSA and RSASSA-PSS signatures:
key size <= 2047 : SHOULD NOT (Note 2)
2048 <= key size <= 4096 : MUST (Note 1)
4096 < key size : MAY (Note 1)
Note 1: See Security Considerations in <a href="#section-6">Section 6</a>.
Note 2: See Historical Mail Considerations in <a href="#appendix-B">Appendix B</a>.
Key sizes for ECDSA and EdDSA are fixed by the curve.
<span class="grey">Schaad, et al. Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Encryption</span>
The following are the requirements for an S/MIME agent when
establishing keys for content encryption using the RSA and RSA-OAEP
algorithms:
key size <= 2047 : SHOULD NOT (Note 2)
2048 <= key size <= 4096 : SHOULD (Note 1)
4096 < key size : MAY (Note 1)
Note 1: See Security Considerations in <a href="#section-6">Section 6</a>.
Note 2: See Historical Mail Considerations in <a href="#appendix-B">Appendix B</a>.
Key sizes for ECDH are fixed by the curve.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Decryption</span>
The following are the requirements for an S/MIME agent when
establishing keys for content decryption using the RSA and RSAES-OAEP
algorithms:
key size <= 2047 : MAY (Note 2)
2048 <= key size <= 4096 : MUST (Note 1)
4096 < key size : MAY (Note 1)
Note 1: See Security Considerations in <a href="#section-6">Section 6</a>.
Note 2: See Historical Mail Considerations in <a href="#appendix-B">Appendix B</a>.
Key sizes for ECDH are fixed by the curve.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
This section (1) updates the media type registrations for
application/pkcs7-mime and application/pkcs7-signature to refer to
this document as opposed to <a href="./rfc5751">RFC 5751</a>, (2) adds authEnveloped-data to
the list of values for smime-type, and (3) updates references from
<a href="./rfc5751">RFC 5751</a> to this document in general.
Note that other documents can define additional media types for
S/MIME.
<span class="grey">Schaad, et al. Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Media Type for application/pkcs7-mime</span>
Type name: application
Subtype Name: pkcs7-mime
Required Parameters: NONE
Optional Parameters: smime-type
name
Encoding Considerations: See <a href="#section-3">Section 3</a> of this document
Security Considerations: See <a href="#section-6">Section 6</a> of this document
Interoperability Considerations: See Sections <a href="#section-1">1</a>-<a href="#section-6">6</a> of this document
Published Specification: <a href="./rfc2311">RFC 2311</a>, <a href="./rfc2633">RFC 2633</a>, <a href="./rfc5751">RFC 5751</a>,
and this document
Applications that use this media type: Security applications
Fragment identifier considerations: N/A
Additional information:
Deprecated alias names for this type: N/A
Magic number(s): N/A
File extensions(s): See <a href="#section-3.2.1">Section 3.2.1</a> of this document
Macintosh file type code(s): N/A
Person & email address to contact for further information:
The IESG <iesg@ietf.org>
Intended usage: COMMON
Restrictions on usage: NONE
Author: Sean Turner
Change Controller: LAMPS working group delegated from the IESG
<span class="grey">Schaad, et al. Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Media Type for application/pkcs7-signature</span>
Type name: application
Subtype Name: pkcs7-signature
Required Parameters: N/A
Optional Parameters: N/A
Encoding Considerations: See <a href="#section-3">Section 3</a> of this document
Security Considerations: See <a href="#section-6">Section 6</a> of this document
Interoperability Considerations: See Sections <a href="#section-1">1</a>-<a href="#section-6">6</a> of this document
Published Specification: <a href="./rfc2311">RFC 2311</a>, <a href="./rfc2633">RFC 2633</a>, <a href="./rfc5751">RFC 5751</a>,
and this document
Applications that use this media type: Security applications
Fragment identifier considerations: N/A
Additional information:
Deprecated alias names for this type: N/A
Magic number(s): N/A
File extensions(s): See <a href="#section-3.2.1">Section 3.2.1</a> of this document
Macintosh file type code(s): N/A
Person & email address to contact for further information:
The IESG <iesg@ietf.org>
Intended usage: COMMON
Restrictions on usage: N/A
Author: Sean Turner
Change Controller: LAMPS working group delegated from the IESG
<span class="grey">Schaad, et al. Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. authEnveloped-data smime-type</span>
IANA has registered the following value in the "Parameter Values for
the smime-type Parameter" registry.
smime-type value: authEnveloped-data
Reference: <a href="./rfc8551#section-3.2.2">RFC 8551, Section 3.2.2</a>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Reference Updates</span>
IANA is to update all references to <a href="./rfc5751">RFC 5751</a> to this document. Known
registries to be updated are "CoAP Content-Formats" and "media-
types".
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
Cryptographic algorithms will be broken or weakened over time.
Implementers and users need to check that the cryptographic
algorithms listed in this document continue to provide the expected
level of security. The IETF from time to time may issue documents
dealing with the current state of the art. For example:
- The Million Message Attack described in <a href="./rfc3218">RFC 3218</a> [<a href="./rfc3218" title=""Preventing the Million Message Attack on Cryptographic Message Syntax"">RFC3218</a>].
- The Diffie-Hellman "small-subgroup" attacks described in <a href="./rfc2785">RFC 2785</a>
[<a href="./rfc2785" title=""Methods for Avoiding the "">RFC2785</a>].
- The attacks against hash algorithms described in <a href="./rfc4270">RFC 4270</a>
[<a href="./rfc4270" title=""Attacks on Cryptographic Hashes in Internet Protocols"">RFC4270</a>].
This specification uses Public-Key Cryptography technologies. It is
assumed that the private key is protected to ensure that it is not
accessed or altered by unauthorized parties.
It is impossible for most people or software to estimate the value of
a message's content. Further, it is impossible for most people or
software to estimate the actual cost of recovering an encrypted
message's content that is encrypted with a key of a particular size.
Further, it is quite difficult to determine the cost of a failed
decryption if a recipient cannot process a message's content. Thus,
choosing between different key sizes (or choosing whether to just use
plaintext) is also impossible for most people or software. However,
decisions based on these criteria are made all the time, and
therefore this specification gives a framework for using those
estimates in choosing algorithms.
<span class="grey">Schaad, et al. Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
The choice of 2048 bits as an RSA asymmetric key size in this
specification is based on the desire to provide at least 100 bits of
security. The key sizes that must be supported to conform to this
specification seem appropriate for the Internet, based on [<a href="./rfc3766" title=""Determining Strengths For Public Keys Used For Exchanging Symmetric Keys"">RFC3766</a>].
Of course, there are environments, such as financial and medical
systems, that may select different key sizes. For this reason, an
implementation MAY support key sizes beyond those recommended in this
specification.
Receiving agents that validate signatures and sending agents that
encrypt messages need to be cautious of cryptographic processing
usage when validating signatures and encrypting messages using keys
larger than those mandated in this specification. An attacker could
send certificates with keys that would result in excessive
cryptographic processing -- for example, keys larger than those
mandated in this specification, as such keys could swamp the
processing element. Agents that use such keys without first
validating the certificate to a trust anchor are advised to have some
sort of cryptographic resource management system to prevent such
attacks.
Some cryptographic algorithms such as RC2 offer little actual
security over sending plaintext. Other algorithms such as TripleDES
provide security but are no longer considered to be state of the art.
S/MIME requires the use of current state-of-the-art algorithms such
as AES and provides the ability to announce cryptographic
capabilities to parties with whom you communicate. This allows the
sender to create messages that can use the strongest common
encryption algorithm. Using algorithms such as RC2 is never
recommended unless the only alternative is no cryptography.
RSA and DSA keys of less than 2048 bits are now considered by many
experts to be cryptographically insecure (due to advances in
computing power) and should no longer be used to protect messages.
Such keys were previously considered secure, so processing previously
received signed and encrypted mail will often result in the use of
weak keys. Implementations that wish to support previous versions of
S/MIME or process old messages need to consider the security risks
that result from smaller key sizes (e.g., spoofed messages) versus
the costs of denial of service. If an implementation supports
verification of digital signatures generated with RSA and DSA keys of
less than 1024 bits, it MUST warn the user. Implementers should
consider providing different warnings for newly received messages and
previously stored messages. Server implementations (e.g., secure
mail list servers) where user warnings are not appropriate SHOULD
reject messages with weak signatures.
<span class="grey">Schaad, et al. Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
Implementers SHOULD be aware that multiple active key pairs can be
associated with a single individual. For example, one key pair can
be used to support confidentiality, while a different key pair can be
used for digital signatures.
If a sending agent is sending the same message using different
strengths of cryptography, an attacker watching the communications
channel might be able to determine the contents of the strongly
encrypted message by decrypting the weakly encrypted version. In
other words, a sender SHOULD NOT send a copy of a message using
weaker cryptography than they would use for the original of the
message.
Modification of the ciphertext in EnvelopedData can go undetected if
authentication is not also used, which is the case when sending
EnvelopedData without wrapping it in SignedData or enclosing
SignedData within it. This is one of the reasons for moving from
EnvelopedData to AuthEnvelopedData, as the authenticated encryption
algorithms provide the authentication without needing the SignedData
layer.
If an implementation is concerned about compliance with National
Institute of Standards and Technology (NIST) key size
recommendations, then see [<a href="#ref-SP800-57" title=""Recommendation for Key Management - Part 1: General"">SP800-57</a>].
If messaging environments make use of the fact that a message is
signed to change the behavior of message processing (examples would
be running rules or UI display hints), without first verifying that
the message is actually signed and knowing the state of the
signature, this can lead to incorrect handling of the message.
Visual indicators on messages may need to have the signature
validation code checked periodically if the indicator is supposed to
give information on the current status of a message.
Many people assume that the use of an authenticated encryption
algorithm is all that is needed for the sender of the message to be
authenticated. In almost all cases, this is not a correct statement.
There are a number of preconditions that need to hold for an
authenticated encryption algorithm to provide this service:
- The starting key must be bound to a single entity. The use of a
group key only would allow for the statement that a message was
sent by one of the entities that held the key but will not
identify a specific entity.
<span class="grey">Schaad, et al. Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
- The message must have exactly one sender and one recipient.
Having more than one recipient would allow for the second
recipient to create a message that the first recipient would
believe is from the sender by stripping the second recipient from
the message.
- A direct path needs to exist from the starting key to the key used
as the CEK. That path needs to guarantee that no third party
could have seen the resulting CEK. This means that one needs to
be using an algorithm that is called a "Direct Encryption" or a
"Direct Key Agreement" algorithm in other contexts. This means
that the starting key is (1) used directly as the CEK or (2) used
to create a secret that is then transformed into the CEK via a
KDF step.
S/MIME implementations almost universally use ephemeral-static rather
than static-static key agreement and do not use a shared secret for
encryption. This means that the first precondition is not met.
[<a href="./rfc6278" title=""Use of Static-Static Elliptic Curve Diffie-Hellman Key Agreement in Cryptographic Message Syntax"">RFC6278</a>] defines how to use static-static key agreement with CMS, so
the first precondition can be met. Currently, all S/MIME key
agreement methods derive a key-encryption key (KEK) and wrap a CEK.
This violates the third precondition above. New key agreement
algorithms that directly created the CEK without creating an
intervening KEK would need to be defined.
Even when all of the preconditions are met and origination of a
message is established by the use of an authenticated encryption
algorithm, users need to be aware that there is no way to prove this
to a third party. This is because either of the parties can
successfully create the message (or just alter the content) based on
the fact that the CEK is going to be known to both parties. Thus,
the origination is always built on a presumption that "I did not send
this message to myself."
All of the authenticated encryption algorithms in this document use
counter mode for the encryption portion of the algorithm. This means
that the length of the plaintext will always be known, as the
ciphertext length and the plaintext length are always the same. This
information can enable passive observers to infer information based
solely on the length of the message. Applications for which this is
a concern need to provide some type of padding so that the length of
the message does not provide this information.
When compression is used with encryption, it has the potential to
provide an additional layer of security. However, care needs to be
taken when designing a protocol that relies on using compression, so
as not to create a compression oracle. Compression oracle attacks
require an adaptive input to the process and attack the unknown
<span class="grey">Schaad, et al. Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
content of a message based on the length of the compressed output.
This means that no attack on the encryption key is necessarily
required.
A recent paper on S/MIME and OpenPGP email security [<a href="#ref-Efail" title=""Efail: Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels"">Efail</a>] has
pointed out a number of problems with the current S/MIME
specifications and how people have implemented mail clients. Due to
the nature of how CBC mode operates, the modes allow for malleability
of plaintexts. This malleability allows for attackers to make
changes in the ciphertext and, if parts of the plaintext are known,
create arbitrary blocks of plaintext. These changes can be made
without the weak integrity check in CBC mode being triggered. This
type of attack can be prevented by the use of an Authenticated
Encryption with Associated Data (AEAD) algorithm with a more robust
integrity check on the decryption process. It is therefore
recommended that mail systems migrate to using AES-GCM as quickly as
possible and that the decrypted content not be acted on prior to
finishing the integrity check.
The other attack that is highlighted in [<a href="#ref-Efail" title=""Efail: Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels"">Efail</a>] is due to an error in
how mail clients deal with HTML and multipart/mixed messages.
Clients MUST require that a text/html content type be a complete HTML
document (per [<a href="./rfc1866" title=""Hypertext Markup Language - 2.0"">RFC1866</a>]). Clients SHOULD treat each of the different
pieces of the multipart/mixed construct as being of different
origins. Clients MUST treat each encrypted or signed piece of a MIME
message as being of different origins both from unprotected content
and from each other.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. References</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Reference Conventions</span>
[<a id="ref-ASN.1">ASN.1</a>] refers to [<a href="#ref-X.680" title=""Information Technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation"">X.680</a>], [<a href="#ref-X.681" title=""Information Technology - Abstract Syntax Notation One (ASN.1): Information object specification"">X.681</a>], [<a href="#ref-X.682" title=""Information Technology - Abstract Syntax Notation One (ASN.1): Constraint specification"">X.682</a>], and [<a href="#ref-X.683" title=""Information Technology - Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications"">X.683</a>].
[<a id="ref-CMS">CMS</a>] refers to [<a href="./rfc5083" title=""Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Content Type"">RFC5083</a>] and [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>].
[<a id="ref-ESS">ESS</a>] refers to [<a href="./rfc2634" title=""Enhanced Security Services for S/MIME"">RFC2634</a>] and [<a href="./rfc5035" title=""Enhanced Security Services (ESS) Update: Adding CertID Algorithm Agility"">RFC5035</a>].
[<a id="ref-MIME-SPEC">MIME-SPEC</a>] refers to [<a href="./rfc2045" title=""Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies"">RFC2045</a>], [<a href="./rfc2046" title=""Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types"">RFC2046</a>], [<a href="./rfc2047" title=""MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text"">RFC2047</a>], [<a href="./rfc2049" title=""Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria and Examples"">RFC2049</a>],
[<a href="./rfc6838" title=""Media Type Specifications and Registration Procedures"">RFC6838</a>], and [<a href="./rfc4289" title=""Multipurpose Internet Mail Extensions (MIME) Part Four: Registration Procedures"">RFC4289</a>].
[<a id="ref-SMIMEv2">SMIMEv2</a>] refers to [<a href="./rfc2311" title=""S/MIME Version 2 Message Specification"">RFC2311</a>], [<a href="./rfc2312" title=""S/MIME Version 2 Certificate Handling"">RFC2312</a>], [<a href="./rfc2313" title=""PKCS #1: RSA Encryption Version 1.5"">RFC2313</a>], [<a href="./rfc2314" title=""PKCS #10: Certification Request Syntax Version 1.5"">RFC2314</a>], and
[<a href="./rfc2315" title=""PKCS #7: Cryptographic Message Syntax Version 1.5"">RFC2315</a>].
[<a id="ref-SMIMEv3">SMIMEv3</a>] refers to [<a href="./rfc2630" title=""Cryptographic Message Syntax"">RFC2630</a>], [<a href="./rfc2631" title=""Diffie-Hellman Key Agreement Method"">RFC2631</a>], [<a href="./rfc2632" title=""S/MIME Version 3 Certificate Handling"">RFC2632</a>], [<a href="./rfc2633" title=""S/MIME Version 3 Message Specification"">RFC2633</a>],
[<a href="./rfc2634" title=""Enhanced Security Services for S/MIME"">RFC2634</a>], and [<a href="./rfc5035" title=""Enhanced Security Services (ESS) Update: Adding CertID Algorithm Agility"">RFC5035</a>].
<span class="grey">Schaad, et al. Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
[<a id="ref-SMIMEv3.1">SMIMEv3.1</a>] refers to [<a href="./rfc2634" title=""Enhanced Security Services for S/MIME"">RFC2634</a>], [<a href="./rfc5035" title=""Enhanced Security Services (ESS) Update: Adding CertID Algorithm Agility"">RFC5035</a>], [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>], [<a href="./rfc5750" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Certificate Handling"">RFC5750</a>], and
[<a href="./rfc5751" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification"">RFC5751</a>].
[<a id="ref-SMIMEv3.2">SMIMEv3.2</a>] refers to [<a href="./rfc2634" title=""Enhanced Security Services for S/MIME"">RFC2634</a>], [<a href="./rfc3850" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Certificate Handling"">RFC3850</a>], [<a href="./rfc3851" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification"">RFC3851</a>], [<a href="./rfc3852" title=""Cryptographic Message Syntax (CMS)"">RFC3852</a>], and
[<a href="./rfc5035" title=""Enhanced Security Services (ESS) Update: Adding CertID Algorithm Agility"">RFC5035</a>].
[<a id="ref-SMIMEv4">SMIMEv4</a>] refers to [<a href="./rfc2634" title=""Enhanced Security Services for S/MIME"">RFC2634</a>], [<a href="./rfc5035" title=""Enhanced Security Services (ESS) Update: Adding CertID Algorithm Agility"">RFC5035</a>], [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>], [<a href="./rfc8550" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Certificate Handling"">RFC8550</a>], and
this document.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Normative References</span>
[<a id="ref-CHARSETS">CHARSETS</a>] IANA, "Character sets assigned by IANA",
<<a href="http://www.iana.org/assignments/character-sets">http://www.iana.org/assignments/character-sets</a>>.
[<a id="ref-FIPS186-4">FIPS186-4</a>]
National Institute of Standards and Technology (NIST),
"Digital Signature Standard (DSS)", Federal Information
Processing Standards Publication 186-4,
DOI 10.6028/NIST.FIPS.186-4, July 2013,
<<a href="https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf">https://nvlpubs.nist.gov/nistpubs/fips/</a>
<a href="https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf">nist.fips.186-4.pdf</a>>.
[<a id="ref-RFC1847">RFC1847</a>] Galvin, J., Murphy, S., Crocker, S., and N. Freed,
"Security Multiparts for MIME: Multipart/Signed and
Multipart/Encrypted", <a href="./rfc1847">RFC 1847</a>, DOI 10.17487/RFC1847,
October 1995, <<a href="https://www.rfc-editor.org/info/rfc1847">https://www.rfc-editor.org/info/rfc1847</a>>.
[<a id="ref-RFC2045">RFC2045</a>] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies", <a href="./rfc2045">RFC 2045</a>, DOI 10.17487/RFC2045, November 1996,
<<a href="https://www.rfc-editor.org/info/rfc2045">https://www.rfc-editor.org/info/rfc2045</a>>.
[<a id="ref-RFC2046">RFC2046</a>] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types", <a href="./rfc2046">RFC 2046</a>,
DOI 10.17487/RFC2046, November 1996,
<<a href="https://www.rfc-editor.org/info/rfc2046">https://www.rfc-editor.org/info/rfc2046</a>>.
[<a id="ref-RFC2047">RFC2047</a>] Moore, K., "MIME (Multipurpose Internet Mail Extensions)
Part Three: Message Header Extensions for Non-ASCII Text",
<a href="./rfc2047">RFC 2047</a>, DOI 10.17487/RFC2047, November 1996,
<<a href="https://www.rfc-editor.org/info/rfc2047">https://www.rfc-editor.org/info/rfc2047</a>>.
[<a id="ref-RFC2049">RFC2049</a>] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Five: Conformance Criteria and
Examples", <a href="./rfc2049">RFC 2049</a>, DOI 10.17487/RFC2049, November 1996,
<<a href="https://www.rfc-editor.org/info/rfc2049">https://www.rfc-editor.org/info/rfc2049</a>>.
<span class="grey">Schaad, et al. Standards Track [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2183">RFC2183</a>] Troost, R., Dorner, S., and K. Moore, Ed., "Communicating
Presentation Information in Internet Messages: The
Content-Disposition Header Field", <a href="./rfc2183">RFC 2183</a>,
DOI 10.17487/RFC2183, August 1997,
<<a href="https://www.rfc-editor.org/info/rfc2183">https://www.rfc-editor.org/info/rfc2183</a>>.
[<a id="ref-RFC2634">RFC2634</a>] Hoffman, P., Ed., "Enhanced Security Services for S/MIME",
<a href="./rfc2634">RFC 2634</a>, DOI 10.17487/RFC2634, June 1999,
<<a href="https://www.rfc-editor.org/info/rfc2634">https://www.rfc-editor.org/info/rfc2634</a>>.
[<a id="ref-RFC3274">RFC3274</a>] Gutmann, P., "Compressed Data Content Type for
Cryptographic Message Syntax (CMS)", <a href="./rfc3274">RFC 3274</a>,
DOI 10.17487/RFC3274, June 2002,
<<a href="https://www.rfc-editor.org/info/rfc3274">https://www.rfc-editor.org/info/rfc3274</a>>.
[<a id="ref-RFC3370">RFC3370</a>] Housley, R., "Cryptographic Message Syntax (CMS)
Algorithms", <a href="./rfc3370">RFC 3370</a>, DOI 10.17487/RFC3370, August 2002,
<<a href="https://www.rfc-editor.org/info/rfc3370">https://www.rfc-editor.org/info/rfc3370</a>>.
[<a id="ref-RFC3560">RFC3560</a>] Housley, R., "Use of the RSAES-OAEP Key Transport
Algorithm in Cryptographic Message Syntax (CMS)",
<a href="./rfc3560">RFC 3560</a>, DOI 10.17487/RFC3560, July 2003,
<<a href="https://www.rfc-editor.org/info/rfc3560">https://www.rfc-editor.org/info/rfc3560</a>>.
[<a id="ref-RFC3565">RFC3565</a>] Schaad, J., "Use of the Advanced Encryption Standard (AES)
Encryption Algorithm in Cryptographic Message Syntax
(CMS)", <a href="./rfc3565">RFC 3565</a>, DOI 10.17487/RFC3565, July 2003,
<<a href="https://www.rfc-editor.org/info/rfc3565">https://www.rfc-editor.org/info/rfc3565</a>>.
[<a id="ref-RFC4289">RFC4289</a>] Freed, N. and J. Klensin, "Multipurpose Internet Mail
Extensions (MIME) Part Four: Registration Procedures",
<a href="https://www.rfc-editor.org/bcp/bcp13">BCP 13</a>, <a href="./rfc4289">RFC 4289</a>, DOI 10.17487/RFC4289, December 2005,
<<a href="https://www.rfc-editor.org/info/rfc4289">https://www.rfc-editor.org/info/rfc4289</a>>.
[<a id="ref-RFC4056">RFC4056</a>] Schaad, J., "Use of the RSASSA-PSS Signature Algorithm in
Cryptographic Message Syntax (CMS)", <a href="./rfc4056">RFC 4056</a>,
DOI 10.17487/RFC4056, June 2005,
<<a href="https://www.rfc-editor.org/info/rfc4056">https://www.rfc-editor.org/info/rfc4056</a>>.
[<a id="ref-RFC4086">RFC4086</a>] Eastlake 3rd, D., Schiller, J., and S. Crocker,
"Randomness Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>, <a href="./rfc4086">RFC 4086</a>,
DOI 10.17487/RFC4086, June 2005,
<<a href="https://www.rfc-editor.org/info/rfc4086">https://www.rfc-editor.org/info/rfc4086</a>>.
<span class="grey">Schaad, et al. Standards Track [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
[<a id="ref-RFC5083">RFC5083</a>] Housley, R., "Cryptographic Message Syntax (CMS)
Authenticated-Enveloped-Data Content Type", <a href="./rfc5083">RFC 5083</a>,
DOI 10.17487/RFC5083, November 2007,
<<a href="https://www.rfc-editor.org/info/rfc5083">https://www.rfc-editor.org/info/rfc5083</a>>.
[<a id="ref-RFC5084">RFC5084</a>] Housley, R., "Using AES-CCM and AES-GCM Authenticated
Encryption in the Cryptographic Message Syntax (CMS)",
<a href="./rfc5084">RFC 5084</a>, DOI 10.17487/RFC5084, November 2007,
<<a href="https://www.rfc-editor.org/info/rfc5084">https://www.rfc-editor.org/info/rfc5084</a>>.
[<a id="ref-RFC5652">RFC5652</a>] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
<a href="./rfc5652">RFC 5652</a>, DOI 10.17487/RFC5652, September 2009,
<<a href="https://www.rfc-editor.org/info/rfc5652">https://www.rfc-editor.org/info/rfc5652</a>>.
[<a id="ref-RFC5753">RFC5753</a>] Turner, S. and D. Brown, "Use of Elliptic Curve
Cryptography (ECC) Algorithms in Cryptographic Message
Syntax (CMS)", <a href="./rfc5753">RFC 5753</a>, DOI 10.17487/RFC5753,
January 2010, <<a href="https://www.rfc-editor.org/info/rfc5753">https://www.rfc-editor.org/info/rfc5753</a>>.
[<a id="ref-RFC5754">RFC5754</a>] Turner, S., "Using SHA2 Algorithms with Cryptographic
Message Syntax", <a href="./rfc5754">RFC 5754</a>, DOI 10.17487/RFC5754,
January 2010, <<a href="https://www.rfc-editor.org/info/rfc5754">https://www.rfc-editor.org/info/rfc5754</a>>.
[<a id="ref-RFC6838">RFC6838</a>] Freed, N., Klensin, J., and T. Hansen, "Media Type
Specifications and Registration Procedures", <a href="https://www.rfc-editor.org/bcp/bcp13">BCP 13</a>,
<a href="./rfc6838">RFC 6838</a>, DOI 10.17487/RFC6838, January 2013,
<<a href="https://www.rfc-editor.org/info/rfc6838">https://www.rfc-editor.org/info/rfc6838</a>>.
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in <a href="./rfc2119">RFC</a>
<a href="./rfc2119">2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>, DOI 10.17487/RFC8174,
May 2017, <<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
[<a id="ref-RFC8418">RFC8418</a>] Housley, R., "Use of the Elliptic Curve Diffie-Hellman Key
Agreement Algorithm with X25519 and X448 in the
Cryptographic Message Syntax (CMS)", <a href="./rfc8418">RFC 8418</a>,
DOI 10.17487/RFC8418, August 2018,
<<a href="https://www.rfc-editor.org/info/rfc8418">https://www.rfc-editor.org/info/rfc8418</a>>.
[<a id="ref-RFC8419">RFC8419</a>] Housley, R., "Use of Edwards-Curve Digital Signature
Algorithm (EdDSA) Signatures in the Cryptographic Message
Syntax (CMS)", <a href="./rfc8419">RFC 8419</a>, DOI 10.17487/RFC8419,
August 2018, <<a href="https://www.rfc-editor.org/info/rfc8419">https://www.rfc-editor.org/info/rfc8419</a>>.
[<a id="ref-RFC8550">RFC8550</a>] Schaad, J., Ramsdell, B., and S. Turner,
"Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 4.0 Certificate Handling", <a href="./rfc8550">RFC 8550</a>,
DOI 10.17487/RFC8550, April 2019,
<<a href="https://www.rfc-editor.org/info/rfc8550">https://www.rfc-editor.org/info/rfc8550</a>>.
<span class="grey">Schaad, et al. Standards Track [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
[<a id="ref-X.680">X.680</a>] "Information Technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation", ITU-T
Recommendation X.680, ISO/IEC 8824-1:2015, August 2015,
<<a href="https://www.itu.int/rec/T-REC-X.680">https://www.itu.int/rec/T-REC-X.680</a>>.
[<a id="ref-X.681">X.681</a>] "Information Technology - Abstract Syntax Notation One
(ASN.1): Information object specification", ITU-T
Recommendation X.681, ISO/IEC 8824-2:2015, August 2015,
<<a href="https://www.itu.int/rec/T-REC-X.681">https://www.itu.int/rec/T-REC-X.681</a>>.
[<a id="ref-X.682">X.682</a>] "Information Technology - Abstract Syntax Notation One
(ASN.1): Constraint specification", ITU-T
Recommendation X.682, ISO/IEC 8824-3:2015, August 2015,
<<a href="https://www.itu.int/rec/T-REC-X.682">https://www.itu.int/rec/T-REC-X.682</a>>.
[<a id="ref-X.683">X.683</a>] "Information Technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 specifications", ITU-T
Recommendation X.683, ISO/IEC 8824-4:2015, August 2015,
<<a href="https://www.itu.int/rec/T-REC-X.683">https://www.itu.int/rec/T-REC-X.683</a>>.
[<a id="ref-X.690">X.690</a>] "Information Technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules
(DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2015,
August 2015, <<a href="https://www.itu.int/rec/T-REC-X.690">https://www.itu.int/rec/T-REC-X.690</a>>.
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Informative References</span>
[<a id="ref-Efail">Efail</a>] Poddebniak, D., Dresen, C., Muller, J., Ising, F.,
Schinzel, S., Friedberger, S., Somorovsky, J., and J.
Schwenk, "Efail: Breaking S/MIME and OpenPGP Email
Encryption using Exfiltration Channels",
UsenixSecurity 2018, August 2018,
<<a href="https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-poddebniak.pdf">https://www.usenix.org/system/files/conference/</a>
<a href="https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-poddebniak.pdf">usenixsecurity18/sec18-poddebniak.pdf</a>>.
[<a id="ref-FIPS186-2">FIPS186-2</a>]
National Institute of Standards and Technology (NIST),
"Digital Signature Standard (DSS) (also with Change
Notice 1)", Federal Information Processing Standards
Publication 186-2, January 2000,
<<a href="https://csrc.nist.gov/publications/detail/fips/186/2/archive/2000-01-27">https://csrc.nist.gov/publications/detail/fips/186/2/</a>
<a href="https://csrc.nist.gov/publications/detail/fips/186/2/archive/2000-01-27">archive/2000-01-27</a>>.
[<a id="ref-RFC1866">RFC1866</a>] Berners-Lee, T. and D. Connolly, "Hypertext Markup
Language - 2.0", <a href="./rfc1866">RFC 1866</a>, DOI 10.17487/RFC1866,
November 1995, <<a href="https://www.rfc-editor.org/info/rfc1866">https://www.rfc-editor.org/info/rfc1866</a>>.
<span class="grey">Schaad, et al. Standards Track [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
[<a id="ref-RFC2268">RFC2268</a>] Rivest, R., "A Description of the RC2(r) Encryption
Algorithm", <a href="./rfc2268">RFC 2268</a>, DOI 10.17487/RFC2268, March 1998,
<<a href="https://www.rfc-editor.org/info/rfc2268">https://www.rfc-editor.org/info/rfc2268</a>>.
[<a id="ref-RFC2311">RFC2311</a>] Dusse, S., Hoffman, P., Ramsdell, B., Lundblade, L., and
L. Repka, "S/MIME Version 2 Message Specification",
<a href="./rfc2311">RFC 2311</a>, DOI 10.17487/RFC2311, March 1998,
<<a href="https://www.rfc-editor.org/info/rfc2311">https://www.rfc-editor.org/info/rfc2311</a>>.
[<a id="ref-RFC2312">RFC2312</a>] Dusse, S., Hoffman, P., Ramsdell, B., and J. Weinstein,
"S/MIME Version 2 Certificate Handling", <a href="./rfc2312">RFC 2312</a>, DOI
10.17487/RFC2312, March 1998,
<<a href="https://www.rfc-editor.org/info/rfc2312">https://www.rfc-editor.org/info/rfc2312</a>>.
[<a id="ref-RFC2313">RFC2313</a>] Kaliski, B., "PKCS #1: RSA Encryption Version 1.5",
<a href="./rfc2313">RFC 2313</a>, DOI 10.17487/RFC2313, March 1998,
<<a href="https://www.rfc-editor.org/info/rfc2313">https://www.rfc-editor.org/info/rfc2313</a>>.
[<a id="ref-RFC2314">RFC2314</a>] Kaliski, B., "PKCS #10: Certification Request Syntax
Version 1.5", <a href="./rfc2314">RFC 2314</a>, DOI 10.17487/RFC2314, March 1998,
<<a href="https://www.rfc-editor.org/info/rfc2314">https://www.rfc-editor.org/info/rfc2314</a>>.
[<a id="ref-RFC2315">RFC2315</a>] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
Version 1.5", <a href="./rfc2315">RFC 2315</a>, DOI 10.17487/RFC2315, March 1998,
<<a href="https://www.rfc-editor.org/info/rfc2315">https://www.rfc-editor.org/info/rfc2315</a>>.
[<a id="ref-RFC2630">RFC2630</a>] Housley, R., "Cryptographic Message Syntax", <a href="./rfc2630">RFC 2630</a>,
DOI 10.17487/RFC2630, June 1999,
<<a href="https://www.rfc-editor.org/info/rfc2630">https://www.rfc-editor.org/info/rfc2630</a>>.
[<a id="ref-RFC2631">RFC2631</a>] Rescorla, E., "Diffie-Hellman Key Agreement Method",
<a href="./rfc2631">RFC 2631</a>, DOI 10.17487/RFC2631, June 1999,
<<a href="https://www.rfc-editor.org/info/rfc2631">https://www.rfc-editor.org/info/rfc2631</a>>.
[<a id="ref-RFC2632">RFC2632</a>] Ramsdell, B., Ed., "S/MIME Version 3 Certificate
Handling", <a href="./rfc2632">RFC 2632</a>, DOI 10.17487/RFC2632, June 1999,
<<a href="https://www.rfc-editor.org/info/rfc2632">https://www.rfc-editor.org/info/rfc2632</a>>.
[<a id="ref-RFC2633">RFC2633</a>] Ramsdell, B., Ed., "S/MIME Version 3 Message
Specification", <a href="./rfc2633">RFC 2633</a>, DOI 10.17487/RFC2633, June 1999,
<<a href="https://www.rfc-editor.org/info/rfc2633">https://www.rfc-editor.org/info/rfc2633</a>>.
[<a id="ref-RFC2785">RFC2785</a>] Zuccherato, R., "Methods for Avoiding the "Small-Subgroup"
Attacks on the Diffie-Hellman Key Agreement Method for
S/MIME", <a href="./rfc2785">RFC 2785</a>, DOI 10.17487/RFC2785, March 2000,
<<a href="https://www.rfc-editor.org/info/rfc2785">https://www.rfc-editor.org/info/rfc2785</a>>.
<span class="grey">Schaad, et al. Standards Track [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
[<a id="ref-RFC3218">RFC3218</a>] Rescorla, E., "Preventing the Million Message Attack on
Cryptographic Message Syntax", <a href="./rfc3218">RFC 3218</a>,
DOI 10.17487/RFC3218, January 2002,
<<a href="https://www.rfc-editor.org/info/rfc3218">https://www.rfc-editor.org/info/rfc3218</a>>.
[<a id="ref-RFC3766">RFC3766</a>] Orman, H. and P. Hoffman, "Determining Strengths For
Public Keys Used For Exchanging Symmetric Keys", <a href="https://www.rfc-editor.org/bcp/bcp86">BCP 86</a>,
<a href="./rfc3766">RFC 3766</a>, DOI 10.17487/RFC3766, April 2004,
<<a href="https://www.rfc-editor.org/info/rfc3766">https://www.rfc-editor.org/info/rfc3766</a>>.
[<a id="ref-RFC3850">RFC3850</a>] Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.1 Certificate Handling",
<a href="./rfc3850">RFC 3850</a>, DOI 10.17487/RFC3850, July 2004,
<<a href="https://www.rfc-editor.org/info/rfc3850">https://www.rfc-editor.org/info/rfc3850</a>>.
[<a id="ref-RFC3851">RFC3851</a>] Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.1 Message Specification",
<a href="./rfc3851">RFC 3851</a>, DOI 10.17487/RFC3851, July 2004,
<<a href="https://www.rfc-editor.org/info/rfc3851">https://www.rfc-editor.org/info/rfc3851</a>>.
[<a id="ref-RFC3852">RFC3852</a>] Housley, R., "Cryptographic Message Syntax (CMS)",
<a href="./rfc3852">RFC 3852</a>, DOI 10.17487/RFC3852, July 2004,
<<a href="https://www.rfc-editor.org/info/rfc3852">https://www.rfc-editor.org/info/rfc3852</a>>.
[<a id="ref-RFC4134">RFC4134</a>] Hoffman, P., Ed., "Examples of S/MIME Messages", <a href="./rfc4134">RFC 4134</a>,
DOI 10.17487/RFC4134, July 2005,
<<a href="https://www.rfc-editor.org/info/rfc4134">https://www.rfc-editor.org/info/rfc4134</a>>.
[<a id="ref-RFC4270">RFC4270</a>] Hoffman, P. and B. Schneier, "Attacks on Cryptographic
Hashes in Internet Protocols", <a href="./rfc4270">RFC 4270</a>,
DOI 10.17487/RFC4270, November 2005,
<<a href="https://www.rfc-editor.org/info/rfc4270">https://www.rfc-editor.org/info/rfc4270</a>>.
[<a id="ref-RFC4949">RFC4949</a>] Shirey, R., "Internet Security Glossary, Version 2",
FYI 36, <a href="./rfc4949">RFC 4949</a>, DOI 10.17487/RFC4949, August 2007,
<<a href="https://www.rfc-editor.org/info/rfc4949">https://www.rfc-editor.org/info/rfc4949</a>>.
[<a id="ref-RFC5035">RFC5035</a>] Schaad, J., "Enhanced Security Services (ESS) Update:
Adding CertID Algorithm Agility", <a href="./rfc5035">RFC 5035</a>, DOI
10.17487/RFC5035, August 2007,
<<a href="https://www.rfc-editor.org/info/rfc5035">https://www.rfc-editor.org/info/rfc5035</a>>.
[<a id="ref-RFC5750">RFC5750</a>] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
Mail Extensions (S/MIME) Version 3.2 Certificate
Handling", <a href="./rfc5750">RFC 5750</a>, DOI 10.17487/RFC5750, January 2010,
<<a href="https://www.rfc-editor.org/info/rfc5750">https://www.rfc-editor.org/info/rfc5750</a>>.
<span class="grey">Schaad, et al. Standards Track [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
[<a id="ref-RFC5751">RFC5751</a>] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
Mail Extensions (S/MIME) Version 3.2 Message
Specification", <a href="./rfc5751">RFC 5751</a>, DOI 10.17487/RFC5751,
January 2010, <<a href="https://www.rfc-editor.org/info/rfc5751">https://www.rfc-editor.org/info/rfc5751</a>>.
[<a id="ref-RFC6151">RFC6151</a>] Turner, S. and L. Chen, "Updated Security Considerations
for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
<a href="./rfc6151">RFC 6151</a>, DOI 10.17487/RFC6151, March 2011,
<<a href="https://www.rfc-editor.org/info/rfc6151">https://www.rfc-editor.org/info/rfc6151</a>>.
[<a id="ref-RFC6194">RFC6194</a>] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
Considerations for the SHA-0 and SHA-1 Message-Digest
Algorithms", <a href="./rfc6194">RFC 6194</a>, DOI 10.17487/RFC6194, March 2011,
<<a href="https://www.rfc-editor.org/info/rfc6194">https://www.rfc-editor.org/info/rfc6194</a>>.
[<a id="ref-RFC6268">RFC6268</a>] Schaad, J. and S. Turner, "Additional New ASN.1 Modules
for the Cryptographic Message Syntax (CMS) and the Public
Key Infrastructure Using X.509 (PKIX)", <a href="./rfc6268">RFC 6268</a>,
DOI 10.17487/RFC6268, July 2011,
<<a href="https://www.rfc-editor.org/info/rfc6268">https://www.rfc-editor.org/info/rfc6268</a>>.
[<a id="ref-RFC6278">RFC6278</a>] Herzog, J. and R. Khazan, "Use of Static-Static Elliptic
Curve Diffie-Hellman Key Agreement in Cryptographic
Message Syntax", <a href="./rfc6278">RFC 6278</a>, DOI 10.17487/RFC6278,
June 2011, <<a href="https://www.rfc-editor.org/info/rfc6278">https://www.rfc-editor.org/info/rfc6278</a>>.
[<a id="ref-RFC7114">RFC7114</a>] Leiba, B., "Creation of a Registry for smime-type
Parameter Values", <a href="./rfc7114">RFC 7114</a>, DOI 10.17487/RFC7114,
January 2014, <<a href="https://www.rfc-editor.org/info/rfc7114">https://www.rfc-editor.org/info/rfc7114</a>>.
[<a id="ref-RFC7905">RFC7905</a>] Langley, A., Chang, W., Mavrogiannopoulos, N.,
Strombergson, J., and S. Josefsson, "ChaCha20-Poly1305
Cipher Suites for Transport Layer Security (TLS)",
<a href="./rfc7905">RFC 7905</a>, DOI 10.17487/RFC7905, June 2016,
<<a href="https://www.rfc-editor.org/info/rfc7905">https://www.rfc-editor.org/info/rfc7905</a>>.
[<a id="ref-SP800-56A">SP800-56A</a>]
National Institute of Standards and Technology (NIST),
"Recommendation for Pair-Wise Key Establishment Schemes
Using Discrete Logarithm Cryptography", NIST Special
Publication 800-56A Revision 2,
DOI 10.6028/NIST.SP.800-56Ar2, May 2013,
<<a href="https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf">https://nvlpubs.nist.gov/nistpubs/SpecialPublications/</a>
<a href="https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf">NIST.SP.800-56Ar2.pdf</a>>.
<span class="grey">Schaad, et al. Standards Track [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
[<a id="ref-SP800-57">SP800-57</a>] National Institute of Standards and Technology (NIST),
"Recommendation for Key Management - Part 1: General",
NIST Special Publication 800-57 Revision 4,
DOI 10.6028/NIST.SP.800-57pt1r4, January 2016,
<<a href="https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf">https://nvlpubs.nist.gov/nistpubs/SpecialPublications/</a>
<a href="https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf">NIST.SP.800-57pt1r4.pdf</a>>.
[<a id="ref-TripleDES">TripleDES</a>]
Tuchman, W., "Hellman Presents No Shortcut Solutions to
the DES", IEEE Spectrum v. 16, n. 7, pp. 40-41,
DOI 10.1109/MSPEC.1979.6368160, July 1979.
<span class="grey">Schaad, et al. Standards Track [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. ASN.1 Module</span>
Note: The ASN.1 module contained herein is unchanged from <a href="./rfc5751">RFC 5751</a>
[<a href="#ref-SMIMEv2" title="RFC2314">SMIMEv2</a>] and <a href="./rfc3851">RFC 3851</a> [<a href="#ref-SMIMEv3.1" title="RFC5750">SMIMEv3.1</a>], with the exception of a change to
the preferBinaryInside ASN.1 comment in <a href="./rfc3851">RFC 3851</a> [<a href="#ref-SMIMEv3.1" title="RFC5750">SMIMEv3.1</a>]. If a
module is needed that is compatible with current ASN.1 standards, one
can be found in [<a href="./rfc6268" title=""Additional New ASN.1 Modules for the Cryptographic Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)"">RFC6268</a>]. This module uses the 1988 version
of ASN.1.
SecureMimeMessageV3dot1
{ iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(0) msg-v3dot1(21) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
IMPORTS
-- Cryptographic Message Syntax [<a href="#ref-CMS">CMS</a>]
SubjectKeyIdentifier, IssuerAndSerialNumber,
RecipientKeyIdentifier
FROM CryptographicMessageSyntax
{ iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2001(14) };
-- id-aa is the arc with all new authenticated and unauthenticated
-- attributes produced by the S/MIME Working Group.
id-aa OBJECT IDENTIFIER ::= {iso(1) member-body(2) usa(840)
rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) attributes(2)}
-- S/MIME Capabilities provides a method of broadcasting the
-- symmetric capabilities understood. Algorithms SHOULD be ordered
-- by preference and grouped by type.
smimeCapabilities OBJECT IDENTIFIER ::= {iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 15}
SMIMECapability ::= SEQUENCE {
capabilityID OBJECT IDENTIFIER,
parameters ANY DEFINED BY capabilityID OPTIONAL }
SMIMECapabilities ::= SEQUENCE OF SMIMECapability
-- Encryption Key Preference provides a method of broadcasting the
-- preferred encryption certificate.
<span class="grey">Schaad, et al. Standards Track [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
id-aa-encrypKeyPref OBJECT IDENTIFIER ::= {id-aa 11}
SMIMEEncryptionKeyPreference ::= CHOICE {
issuerAndSerialNumber [0] IssuerAndSerialNumber,
receipentKeyId [1] RecipientKeyIdentifier,
subjectAltKeyIdentifier [2] SubjectKeyIdentifier
}
-- "receipentKeyId" is spelled incorrectly but is kept for
-- historical reasons.
id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
rsadsi(113549) pkcs(1) pkcs-9(9) 16 }
id-cap OBJECT IDENTIFIER ::= { id-smime 11 }
-- The preferBinaryInside OID indicates an ability to receive
-- messages with binary encoding inside the CMS wrapper.
-- The preferBinaryInside attribute's value field is ABSENT.
id-cap-preferBinaryInside OBJECT IDENTIFIER ::= { id-cap 1 }
-- The following is a list of OIDs to be used with S/MIME v3.
-- Signature Algorithms Not Found in [<a href="./rfc3370" title=""Cryptographic Message Syntax (CMS) Algorithms"">RFC3370</a>], [<a href="./rfc5754" title=""Using SHA2 Algorithms with Cryptographic Message Syntax"">RFC5754</a>], [<a href="./rfc4056" title=""Use of the RSASSA-PSS Signature Algorithm in Cryptographic Message Syntax (CMS)"">RFC4056</a>],
-- and [<a href="./rfc3560" title=""Use of the RSAES-OAEP Key Transport Algorithm in Cryptographic Message Syntax (CMS)"">RFC3560</a>]
--
-- md2WithRSAEncryption OBJECT IDENTIFIER ::=
-- {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)
-- 2}
--
-- Other Signed Attributes
--
-- signingTime OBJECT IDENTIFIER ::=
-- {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
-- 5}
-- See [<a href="#ref-CMS">CMS</a>] for a description of how to encode the attribute
-- value.
SMIMECapabilitiesParametersForRC2CBC ::= INTEGER
-- (RC2 Key Length (number of bits))
END
<span class="grey">Schaad, et al. Standards Track [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Historic Mail Considerations</span>
Over the course of updating the S/MIME specifications, the set of
recommended algorithms has been modified each time the documents have
been updated. This means that if a user has historic emails and
their user agent has been updated to only support the current set of
recommended algorithms, some of those old emails will no longer be
accessible. It is strongly suggested that user agents implement some
of the following algorithms for dealing with historic emails.
This appendix contains a number of references to documents that have
been obsoleted or replaced. This is intentional, as the updated
documents often do not have the same information in them.
<span class="h3"><a class="selflink" id="appendix-B.1" href="#appendix-B.1">B.1</a>. DigestAlgorithmIdentifier</span>
The following algorithms have been called out for some level of
support by previous S/MIME specifications:
- SHA-1 was dropped in [<a href="#ref-SMIMEv4" title="RFC8550">SMIMEv4</a>]. SHA-1 is no longer considered to
be secure, as it is no longer collision resistant. The IETF
statement on SHA-1 can be found in [<a href="./rfc6194" title=""Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms"">RFC6194</a>], but it is out of
date relative to the most recent advances.
- MD5 was dropped in [<a href="#ref-SMIMEv4" title="RFC8550">SMIMEv4</a>]. MD5 is no longer considered to be
secure, as it is no longer collision resistant. Details can be
found in [<a href="./rfc6151" title=""Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms"">RFC6151</a>].
<span class="h3"><a class="selflink" id="appendix-B.2" href="#appendix-B.2">B.2</a>. Signature Algorithms</span>
There are a number of problems with validating signatures on
sufficiently historic messages. For this reason, it is strongly
suggested that user agents treat these signatures differently from
those on current messages. These problems include the following:
- Certification authorities are not required to keep certificates on
a CRL beyond one update after a certificate has expired. This
means that unless CRLs are cached as part of the message it is not
always possible to check to see if a certificate has been revoked.
The same problems exist with Online Certificate Status Protocol
(OCSP) responses, as they may be based on a CRL rather than on the
certificate database.
<span class="grey">Schaad, et al. Standards Track [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
- RSA and DSA keys of less than 2048 bits are now considered by many
experts to be cryptographically insecure (due to advances in
computing power). Such keys were previously considered secure, so
the processing of historic signed messages will often result in
the use of weak keys. Implementations that wish to support
previous versions of S/MIME or process old messages need to
consider the security risks that result from smaller key sizes
(e.g., spoofed messages) versus the costs of denial of service.
[<a id="ref-SMIMEv3.1">SMIMEv3.1</a>] set the lower limit on suggested key sizes for
creating and validation at 1024 bits. Prior to that, the lower
bound on key sizes was 512 bits.
- Hash functions used to validate signatures on historic messages
may no longer be considered to be secure (see below). While there
are not currently any known practical pre-image or second
pre-image attacks against MD5 or SHA-1, the fact that they are no
longer considered to be collision resistant implies that the
security levels of the signatures are generally considered
suspect. If a message is known to be historic and it has been in
the possession of the client for some time, then it might still be
considered to be secure.
- The previous two issues apply to the certificates used to validate
the binding of the public key to the identity that signed the
message as well.
The following algorithms have been called out for some level of
support by previous S/MIME specifications:
- RSA with MD5 was dropped in [<a href="#ref-SMIMEv4" title="RFC8550">SMIMEv4</a>]. MD5 is no longer
considered to be secure, as it is no longer collision resistant.
Details can be found in [<a href="./rfc6151" title=""Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms"">RFC6151</a>].
- RSA and DSA with SHA-1 were dropped in [<a href="#ref-SMIMEv4" title="RFC8550">SMIMEv4</a>]. SHA-1 is no
longer considered to be secure, as it is no longer collision
resistant. The IETF statement on SHA-1 can be found in [<a href="./rfc6194" title=""Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms"">RFC6194</a>],
but it is out of date relative to the most recent advances.
- DSA with SHA-256 was dropped in [<a href="#ref-SMIMEv4" title="RFC8550">SMIMEv4</a>]. DSA has been replaced
by elliptic curve versions.
<span class="grey">Schaad, et al. Standards Track [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
As requirements for "mandatory to implement" have changed over time,
some issues have been created that can cause interoperability
problems:
- S/MIME v2 clients are only required to verify digital signatures
using the rsaEncryption algorithm with SHA-1 or MD5 and might not
implement id-dsa-with-sha1 or id-dsa at all.
- S/MIME v3 clients might only implement signing or signature
verification using id-dsa-with-sha1 and might also use id-dsa as
an AlgorithmIdentifier in this field.
- Note that S/MIME v3.1 clients support verifying id-dsa-with-sha1
and rsaEncryption and might not implement sha256WithRSAEncryption.
NOTE: Receiving clients SHOULD recognize id-dsa as equivalent to
id-dsa-with-sha1.
For 512-bit RSA with SHA-1, see [<a href="./rfc3370" title=""Cryptographic Message Syntax (CMS) Algorithms"">RFC3370</a>] and [<a href="#ref-FIPS186-2">FIPS186-2</a>] without
Change Notice 1; for 512-bit RSA with SHA-256, see [<a href="./rfc5754" title=""Using SHA2 Algorithms with Cryptographic Message Syntax"">RFC5754</a>] and
[<a href="#ref-FIPS186-2">FIPS186-2</a>] without Change Notice 1; and for 1024-bit through
2048-bit RSA with SHA-256, see [<a href="./rfc5754" title=""Using SHA2 Algorithms with Cryptographic Message Syntax"">RFC5754</a>] and [<a href="#ref-FIPS186-2">FIPS186-2</a>] with Change
Notice 1. The first reference provides the signature algorithm's
OID, and the second provides the signature algorithm's definition.
For 512-bit DSA with SHA-1, see [<a href="./rfc3370" title=""Cryptographic Message Syntax (CMS) Algorithms"">RFC3370</a>] and [<a href="#ref-FIPS186-2">FIPS186-2</a>] without
Change Notice 1; for 512-bit DSA with SHA-256, see [<a href="./rfc5754" title=""Using SHA2 Algorithms with Cryptographic Message Syntax"">RFC5754</a>] and
[<a href="#ref-FIPS186-2">FIPS186-2</a>] without Change Notice 1; for 1024-bit DSA with SHA-1, see
[<a href="./rfc3370" title=""Cryptographic Message Syntax (CMS) Algorithms"">RFC3370</a>] and [<a href="#ref-FIPS186-2">FIPS186-2</a>] with Change Notice 1; and for 1024-bit and
above DSA with SHA-256, see [<a href="./rfc5754" title=""Using SHA2 Algorithms with Cryptographic Message Syntax"">RFC5754</a>] and [<a href="#ref-FIPS186-4">FIPS186-4</a>]. The first
reference provides the signature algorithm's OID, and the second
provides the signature algorithm's definition.
<span class="h3"><a class="selflink" id="appendix-B.3" href="#appendix-B.3">B.3</a>. ContentEncryptionAlgorithmIdentifier</span>
The following algorithms have been called out for some level of
support by previous S/MIME specifications:
- RC2/40 [<a href="./rfc2268" title=""A Description of the RC2(r) Encryption Algorithm"">RFC2268</a>] was dropped in [<a href="#ref-SMIMEv3.2" title="RFC3852">SMIMEv3.2</a>]. The algorithm is
known to be insecure and, if supported, should only be used to
decrypt existing email.
- DES EDE3 CBC [<a href="#ref-TripleDES">TripleDES</a>], also known as "tripleDES", was dropped
in [<a href="#ref-SMIMEv4" title="RFC8550">SMIMEv4</a>]. This algorithm is removed from the list of
supported algorithms because (1) it has a 64-bit block size and
(2) it offers less than 128 bits of security. This algorithm
should be supported only to decrypt existing email; it should not
be used to encrypt new emails.
<span class="grey">Schaad, et al. Standards Track [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
<span class="h3"><a class="selflink" id="appendix-B.4" href="#appendix-B.4">B.4</a>. KeyEncryptionAlgorithmIdentifier</span>
The following algorithms have been called out for some level of
support by previous S/MIME specifications:
- DH ephemeral-static mode, as specified in [<a href="./rfc3370" title=""Cryptographic Message Syntax (CMS) Algorithms"">RFC3370</a>] and
[<a href="#ref-SP800-57" title=""Recommendation for Key Management - Part 1: General"">SP800-57</a>], was dropped in [<a href="#ref-SMIMEv4" title="RFC8550">SMIMEv4</a>].
- RSA key sizes have been increased over time. Decrypting old mail
with smaller key sizes is reasonable; however, new mail should use
the updated key sizes.
For 1024-bit DH, see [<a href="./rfc3370" title=""Cryptographic Message Syntax (CMS) Algorithms"">RFC3370</a>]. For 1024-bit and larger DH, see
[<a href="#ref-SP800-56A">SP800-56A</a>]; regardless, use the KDF, which is from X9.42, specified
in [<a href="./rfc3370" title=""Cryptographic Message Syntax (CMS) Algorithms"">RFC3370</a>].
<span class="h2"><a class="selflink" id="appendix-C" href="#appendix-C">Appendix C</a>. Moving S/MIME v2 Message Specification to Historic Status</span>
The S/MIME v3 [<a href="#ref-SMIMEv3" title=" [RFC2634">SMIMEv3</a>], v3.1 [<a href="#ref-SMIMEv3.1" title="RFC5750">SMIMEv3.1</a>], and v3.2 [<a href="#ref-SMIMEv3.2" title="RFC3852">SMIMEv3.2</a>]
specifications are backward compatible with the S/MIME v2 Message
Specification [<a href="#ref-SMIMEv2" title="RFC2314">SMIMEv2</a>], with the exception of the algorithms
(dropped RC2/40 requirement and added DSA and RSASSA-PSS
requirements). Therefore, <a href="./rfc2311">RFC 2311</a> [<a href="#ref-SMIMEv2" title="RFC2314">SMIMEv2</a>] was moved to Historic
status.
Acknowledgements
Many thanks go out to the other authors of the S/MIME version 2
Message Specification RFC: Steve Dusse, Paul Hoffman, Laurence
Lundblade, and Lisa Repka. Without v2, there wouldn't be a v3, v3.1,
v3.2, or v4.0.
Some of the examples in this document were copied from [<a href="./rfc4134" title=""Examples of S/MIME Messages"">RFC4134</a>].
Thanks go to the people who wrote and verified the examples in that
document.
A number of the members of the S/MIME Working Group have also worked
very hard and contributed to this document. Any list of people is
doomed to omission, and for that I apologize. In alphabetical order,
the following people stand out in my mind because they made direct
contributions to this document:
Tony Capel, Piers Chivers, Dave Crocker, Bill Flanigan, Peter
Gutmann, Alfred Hoenes, Paul Hoffman, Russ Housley, William Ottaway,
and John Pawling.
The version 4 update to the S/MIME documents was done under the
auspices of the LAMPS Working Group.
<span class="grey">Schaad, et al. Standards Track [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc8551">RFC 8551</a> S/MIME 4.0 Message Specification April 2019</span>
Authors' Addresses
Jim Schaad
August Cellars
Email: ietf@augustcellars.com
Blake Ramsdell
Brute Squad Labs, Inc.
Email: blaker@gmail.com
Sean Turner
sn3rd
Email: sean@sn3rd.com
Schaad, et al. Standards Track [Page 63]
</pre>
|