1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
  
     | 
    
      <pre>Independent Submission                                         R. Browne
Request for Comments: 8592                                   A. Chilikin
Category: Informational                                            Intel
ISSN: 2070-1721                                               T. Mizrahi
                                        Huawei Network.IO Innovation Lab
                                                                May 2019
                <span class="h1">Key Performance Indicator (KPI) Stamping</span>
                  <span class="h1">for the Network Service Header (NSH)</span>
Abstract
   This document describes methods of carrying Key Performance
   Indicators (KPIs) using the Network Service Header (NSH).  These
   methods may be used, for example, to monitor latency and QoS marking
   to identify problems on some links or service functions.
Status of This Memo
   This document is not an Internet Standards Track specification; it is
   published for informational purposes.
   This is a contribution to the RFC Series, independently of any other
   RFC stream.  The RFC Editor has chosen to publish this document at
   its discretion and makes no statement about its value for
   implementation or deployment.  Documents approved for publication by
   the RFC Editor are not candidates for any level of Internet Standard;
   see <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   <a href="https://www.rfc-editor.org/info/rfc8592">https://www.rfc-editor.org/info/rfc8592</a>.
Copyright Notice
   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.
   This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.
<span class="grey">Browne, et al.                Informational                     [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
Table of Contents
   <a href="#section-1">1</a>. Introduction ....................................................<a href="#page-2">2</a>
   <a href="#section-2">2</a>. Terminology .....................................................<a href="#page-3">3</a>
      <a href="#section-2.1">2.1</a>. Requirements Language ......................................<a href="#page-3">3</a>
      <a href="#section-2.2">2.2</a>. Definition of Terms ........................................<a href="#page-3">3</a>
           <a href="#section-2.2.1">2.2.1</a>. Terms Defined in This Document ......................<a href="#page-4">4</a>
      <a href="#section-2.3">2.3</a>. Abbreviations ..............................................<a href="#page-5">5</a>
   <a href="#section-3">3</a>. NSH KPI Stamping: An Overview ...................................<a href="#page-6">6</a>
      <a href="#section-3.1">3.1</a>. Prerequisites ..............................................<a href="#page-7">7</a>
      <a href="#section-3.2">3.2</a>. Operation ..................................................<a href="#page-9">9</a>
           <a href="#section-3.2.1">3.2.1</a>. Flow Selection ......................................<a href="#page-9">9</a>
           <a href="#section-3.2.2">3.2.2</a>. SCP Interface ......................................<a href="#page-10">10</a>
      <a href="#section-3.3">3.3</a>. Performance Considerations ................................<a href="#page-11">11</a>
   <a href="#section-4">4</a>. NSH KPI-Stamping Encapsulation .................................<a href="#page-12">12</a>
      <a href="#section-4.1">4.1</a>. KPI-Stamping Extended Encapsulation .......................<a href="#page-13">13</a>
           <a href="#section-4.1.1">4.1.1</a>. NSH Timestamping Encapsulation (Extended Mode) .....<a href="#page-15">15</a>
           <a href="#section-4.1.2">4.1.2</a>. NSH QoS-Stamping Encapsulation (Extended Mode) .....<a href="#page-17">17</a>
      <a href="#section-4.2">4.2</a>. KPI-Stamping Encapsulation (Detection Mode) ...............<a href="#page-20">20</a>
   <a href="#section-5">5</a>. Hybrid Models ..................................................<a href="#page-22">22</a>
      <a href="#section-5.1">5.1</a>. Targeted VNF Stamping .....................................<a href="#page-23">23</a>
   <a href="#section-6">6</a>. Fragmentation Considerations ...................................<a href="#page-23">23</a>
   <a href="#section-7">7</a>. Security Considerations ........................................<a href="#page-24">24</a>
   <a href="#section-8">8</a>. IANA Considerations ............................................<a href="#page-24">24</a>
   <a href="#section-9">9</a>. References .....................................................<a href="#page-25">25</a>
      <a href="#section-9.1">9.1</a>. Normative References ......................................<a href="#page-25">25</a>
      <a href="#section-9.2">9.2</a>. Informative References ....................................<a href="#page-25">25</a>
   Acknowledgments ...................................................<a href="#page-27">27</a>
   Contributors ......................................................<a href="#page-27">27</a>
   Authors' Addresses ................................................<a href="#page-27">27</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>.  Introduction</span>
   The Network Service Header (NSH), as defined by [<a href="./rfc8300" title=""Network Service Header (NSH)"">RFC8300</a>], specifies
   a method for steering traffic among an ordered set of Service
   Functions (SFs) using an extensible service header.  This allows for
   flexibility and programmability in the forwarding plane to invoke the
   appropriate SFs for specific flows.
   The NSH promises a compelling vista of operational flexibility.
   However, many service providers are concerned about service and
   configuration visibility.  This concern increases when considering
   that many service providers wish to run their networks seamlessly in
   "hybrid mode", whereby they wish to mix physical and virtual SFs and
   run services seamlessly between the two domains.
<span class="grey">Browne, et al.                Informational                     [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   This document describes generic methods to monitor and debug Service
   Function Chains (SFCs) in terms of latency and QoS marking of the
   flows within an SFC.  These are referred to as "detection mode" and
   "extended mode" and are explained in <a href="#section-4">Section 4</a>.
   The methods described in this document are compliant with hybrid
   architectures in which Virtual Network Functions (VNFs) and Physical
   Network Functions (PNFs) are freely mixed in the SFC.  These methods
   also provide flexibility for monitoring the performance and
   configuration of an entire chain or parts thereof as desired.  These
   methods are extensible to monitoring other Key Performance Indicators
   (KPIs).  Please refer to [<a href="./rfc7665" title=""Service Function Chaining (SFC) Architecture"">RFC7665</a>] for an architectural context for
   this document.
   The methods described in this document are not Operations,
   Administration, and Maintenance (OAM) protocols such as [<a href="#ref-Y.1731" title=""Operations, administration and maintenance (OAM) functions and mechanisms for Ethernet-based networks"">Y.1731</a>].  As
   such, they do not define new OAM packet types or operations.  Rather,
   they monitor the SFC's performance and configuration for subscriber
   payloads and indicate subscriber QoE rather than out-of-band
   infrastructure metrics.  This document differs from [<a href="#ref-In-Situ-OAM">In-Situ-OAM</a>] in
   the sense that it is specifically tied to NSH operations and is not
   generic in nature.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>.  Terminology</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>.  Requirements Language</span>
   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
   capitals, as shown here.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>.  Definition of Terms</span>
   This section presents the main terms used in this document.  This
   document also makes use of the terms defined in [<a href="./rfc7665" title=""Service Function Chaining (SFC) Architecture"">RFC7665</a>] and
   [<a href="./rfc8300" title=""Network Service Header (NSH)"">RFC8300</a>].
<span class="grey">Browne, et al.                Informational                     [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
<span class="h4"><a class="selflink" id="section-2.2.1" href="#section-2.2.1">2.2.1</a>.  Terms Defined in This Document</span>
   First Stamping Node (FSN):  The first node along an SFC that stamps
      packets using KPI stamping.  The FSN matches each packet with a
      Stamping Controller (SC) flow based on (but not limited to) a
      stamping classification criterion such as transport 5-tuple
      coordinates.
   Last Stamping Node (LSN):  The last node along an SFC that stamps
      packets using KPI stamping.  From a forwarding point of view, the
      LSN removes the NSH and forwards the raw IP packet to the next
      hop.  From a control-plane point of view, the LSN reads all the
      metadata (MD) and exports it to a system performance statistics
      agent or repository.  The LSN should use the NSH Service Index
      (SI) to indicate if an SF was at the end of the chain.  The LSN
      may change the Service Path Identifier (SPI) to a preconfigured
      value so that the network underlay forwards the MD back directly
      to the KPI database (KPIDB) based on this value.
   Key Performance Indicator Database (KPIDB):  Denotes the external
      storage of MD for reporting, trend analysis, etc.
   KPI stamping:  The insertion of latency-related and/or QoS-related
      information into a packet using NSH MD.
   Flow ID:  A unique 16-bit identifier written into the header by the
      classifier.  This allows 65536 flows to be concurrently stamped on
      any given NSH service chain.
   QoS stamping:  The insertion of QoS-related information into a packet
      using NSH MD.
   Stamping Controller (SC):  The central logic that decides what
      packets to stamp and how to stamp them.  The SC instructs the
      classifier on how to build the parts of the NSH that are specific
      to KPI stamping.
   Stamping Control Plane (SCP):  The control plane between the FSN and
      the SC.
<span class="grey">Browne, et al.                Informational                     [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>.  Abbreviations</span>
   DEI         Drop Eligible Indicator
   DSCP        Differentiated Services Code Point
   FSN         First Stamping Node
   KPI         Key Performance Indicator
   KPIDB       Key Performance Indicator Database
   LSN         Last Stamping Node
   MD          Metadata
   NFV         Network Function Virtualization
   NSH         Network Service Header
   OAM         Operations, Administration, and Maintenance
   PCP         Priority Code Point
   PNF         Physical Network Function
   PNFN        Physical Network Function Node
   QoE         Quality of Experience
   QoS         Quality of Service
   RSP         Rendered Service Path
   SC          Stamping Controller
   SCL         Service Classifier
   SCP         Stamping Control Plane
   SF          Service Function
   SFC         Service Function Chain
   SI          Service Index
   SSI         Stamp Service Index
<span class="grey">Browne, et al.                Informational                     [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   TS          Timestamp
   VLAN        Virtual Local Area Network
   VNF         Virtual Network Function
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>.  NSH KPI Stamping: An Overview</span>
   A typical KPI-stamping architecture is presented in Figure 1.
       Stamping
      Controller
         |                                                     KPIDB
         | SCP Interface                                        |
       ,---.             ,---.              ,---.              ,---.
      /     \           /     \            /     \            /     \
     (  SCL  )-------->(  SF1  )--------->(  SF2  )--------->(  SFn  )
      \ FSN /           \     /            \     /            \ LSN /
       `---'             `---'              `---'              `---'
                Figure 1: Logical Roles in NSH KPI Stamping
   The SC will be part of the SFC control-plane architecture, but it is
   described separately in this document for clarity.
   The SC is responsible for initiating start/stop stamp requests to the
   SCL or FSN and also for distributing the NSH-stamping policy into the
   service chain via the SCP interface.
   The FSN will typically be part of the SCL but is called out as a
   separate logical entity for clarity.
   The FSN is responsible for marking NSH MD fields; this tells nodes in
   the service chain how to behave in terms of stamping at the SF
   ingress, the SF egress, or both, or ignoring the stamp NSH MD
   completely.
   The FSN also writes the Reference Time value, a (possibly inaccurate)
   estimate of the current time of day, into the header, allowing the
   "SPI:Flow ID" performance to be compared to previous samples for
   offline analysis.
   The FSN should return an error to the SC if not synchronized to the
   current time of day and forward the packet along the service chain
   unchanged.  The code and format of the error are specific to the
   protocol used between the FSN and SC; these considerations are out of
   scope.
<span class="grey">Browne, et al.                Informational                     [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   SF1 and SF2 stamp the packets as dictated by the FSN and process the
   payload as per normal.
   Note 1: The exact location of the stamp creation may not be in the SF
           itself and may be applied by a hardware device -- for
           example, as discussed in <a href="#section-3.3">Section 3.3</a>.
   Note 2: Special cases exist where some of the SFs are NSH unaware.
           This is covered in <a href="#section-5">Section 5</a>.
   The LSN should strip the entire NSH and forward the raw packet to the
   IP next hop as per [<a href="./rfc8300" title=""Network Service Header (NSH)"">RFC8300</a>].  The LSN also exports NSH-stamping
   information to the KPIDB for offline analysis; the LSN may export the
   stamping information of either (1) all packets or (2) a subset based
   on packet sampling.
   In fully virtualized environments, the LSN is likely to be co-located
   with the SF that decrements the NSH SI to zero.  Corner cases exist
   where this is not the case; see <a href="#section-5">Section 5</a>.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>.  Prerequisites</span>
   Timestamping has its own set of prerequisites; however, these
   prerequisites are not required for QoS stamping.  In order to
   guarantee MD accuracy, all servers hosting VNFs should be
   synchronized from a centralized stable clock.  As it is assumed that
   PNFs do not timestamp (as this would involve a software change and a
   probable impact on throughput performance), there is no need for them
   to synchronize.  There are two possible levels of synchronization:
   Level A: Low-accuracy time-of-day synchronization, based on NTP
            [<a href="./rfc5905" title=""Network Time Protocol Version 4: Protocol and Algorithms Specification"">RFC5905</a>].
   Level B: High-accuracy synchronization (typically on the order of
            microseconds), based on [<a href="#ref-IEEE1588">IEEE1588</a>].
   Each SF SHOULD have Level A synchronization and MAY have Level B
   synchronization.
   Level A requires each platform (including the SC) to synchronize its
   system real-time clock to an NTP server.  This is used to mark the MD
   in the chain, using the Reference Time field in the NSH KPI stamp
   header (<a href="#section-4.1">Section 4.1</a>).  This timestamp is inserted into the NSH by the
   first SF in the chain.  NTP accuracy can vary by several milliseconds
   between locations.  This is not an issue, as the Reference Time is
   merely being used as a time-of-day reference inserted into the KPIDB
   for performance monitoring and MD retrieval.
<span class="grey">Browne, et al.                Informational                     [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   Level B synchronization requires each platform to be synchronized to
   a Primary Reference Clock (PRC) using the Precision Time Protocol
   (PTP) [<a href="#ref-IEEE1588">IEEE1588</a>].  A platform MAY also use Synchronous Ethernet
   [<a href="#ref-G.8261" title=""Timing and synchronization aspects in packet networks"">G.8261</a>] [<a href="#ref-G.8262" title=""Timing characteristics of a synchronous Ethernet equipment slave clock"">G.8262</a>] [<a href="#ref-G.8264" title=""Distribution of timing information through packet networks"">G.8264</a>], allowing more accurate frequency
   synchronization.
   If an SF is not synchronized at the moment of timestamping, it should
   indicate its synchronization status in the NSH.  This is described in
   more detail in <a href="#section-4">Section 4</a>.
   By synchronizing the network in this way, the timestamping operation
   is independent of the current RSP.  Indeed, the timestamp MD can
   indicate where a chain has been moved due to a resource starvation
   event as indicated in Figure 2, between VNF3 and VNF4 at time B.
     Delay
      |                                  v
      |                           v
      |                                  x
      |                           x             x = Reference Time A
      |                    xv                   v = Reference Time B
      |             xv
      |      xv
      |______|______|______|______|______|_____
         VNF1    VNF2   VNF3   VNF4   VNF5
               Figure 2: Flow Performance in a Service Chain
   For QoS stamping, it is desired that the SCL or FSN be synchronized
   in order to provide a Reference Time for offline analysis, but this
   is not a hard requirement (they may be in holdover or free-run state,
   for example).  Other SFs in the service chain do not need to be
   synchronized for QoS-stamping operations, as described below.
   QoS stamping can be used to check the consistency of configuration
   across the entire chain or parts thereof.  By adding all potential
   Layer 2 and Layer 3 QoS fields into a QoS sum at the SF ingress or
   egress, this allows quick identification of QoS mismatches across
   multiple Layer 2 / Layer 3 fields, which otherwise is a manual,
   expert-led consuming process.
<span class="grey">Browne, et al.                Informational                     [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   |
   |
   |                                  xy
   |                           xy           x = ingress QoS sum
   |                    xv                  v = egress QoS sum
   |             xv                         y = egress QoS sum mismatch
   |      xv
   |______|______|______|______|______|_____
         SF1    SF2    SF3    SF4    SF5
             Figure 3: Flow QoS Consistency in a Service Chain
   Referring to Figure 3, x, v, and y are notional sum values of the QoS
   marking configuration of the flow within a given chain.  As the
   encapsulation of the flow can change from hop to hop in terms of VLAN
   header(s), MPLS labels, or DSCP(s), these values are used to compare
   the consistency of configuration from, for example, payload DSCP
   through overlay and underlay QoS settings in VLAN IEEE 802.1Q bits,
   MPLS bits, and infrastructure DSCPs.
   Figure 3 indicates that, at SF4 in the chain, the egress QoS marking
   is inconsistent.  That is, the ingress QoS settings do not match the
   egress.  The method described here will indicate which QoS field(s)
   is inconsistent and whether this is ingress (where the underlay has
   incorrectly marked and queued the packet) or egress (where the SF has
   incorrectly marked and queued the packet.
   Note that the SC must be aware of cases when an SF re-marks QoS
   fields deliberately and thus does not flag an issue for desired
   behavior.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>.  Operation</span>
   KPI-stamping detection mode uses MD Type 2 as defined in [<a href="./rfc8300" title=""Network Service Header (NSH)"">RFC8300</a>].
   This involves the SFC classifier stamping the flow at the chain
   ingress and no subsequent stamps being applied; rather, each upstream
   SF can compare its local condition with the ingress value and take
   appropriate action.  Therefore, detection mode is very efficient in
   terms of header size that does not grow after the classification.
   This is further explained in <a href="#section-4.2">Section 4.2</a>.
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>.  Flow Selection</span>
   The SC should maintain a list of flows within each service chain to
   be monitored.  This flow table should be in the format "SPI:Flow ID".
   The SC should map these pairs to unique values presented as Flow IDs
   per service chain within the NSH TLV specified in this document (see
   <a href="#section-4">Section 4</a>).  The SC should instruct the FSN to initiate timestamping
<span class="grey">Browne, et al.                Informational                     [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   on flow table match.  The SC may also tell the classifier the
   duration of the timestamping operation, by either the number of
   packets in the flow or a certain time duration.
   In this way, the system can monitor the performance of all en-route
   traffic, an individual subscriber in a chain, or just a specific
   application or QoS class that is used in the network.
   The SC should write the list of monitored flows into the KPIDB for
   correlation of performance and configuration data.  Thus, when the
   KPIDB receives data from the LSN, it understands to which flow the
   data pertains.
   The association of a source IP address with a subscriber identity is
   outside the scope of this document and will vary by network
   application.  For example, the method of association of a source IP
   address with an International Mobile Subscriber Identity (IMSI) will
   be different from how a Customer Premises Equipment (CPE) entity with
   a Network Address Translation (NAT) function may be chained in an
   enterprise NFV application.
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>.  SCP Interface</span>
   An SCP interface is required between the SC and the FSN or
   classifier.  This interface is used to:
   o  Query the SFC classifier for a list of active chains and flows.
   o  Communicate which chains and flows to stamp.  This can be a
      specific "SPI:Flow ID" combination or can include wildcards for
      monitoring subscribers across multiple chains or multiple flows
      within one chain.
   o  Instruct how the stamp should be applied (ingress, egress, both
      ingress and egress, or specific).
   o  Indicate when to stop stamping (after either a certain number of
      packets or a certain time duration).
   Typically, SCP timestamps flows for a certain duration for trend
   analysis but only stamps one packet of each QoS class in a chain
   periodically (perhaps once per day or after a network change).
   Therefore, timestamping is generally applied to a much larger set of
   packets than QoS stamping.
   The exact specification of SCP is left for further study.
<span class="grey">Browne, et al.                Informational                    [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>.  Performance Considerations</span>
   This document does not mandate a specific stamping implementation
   method; thus, NSH KPI stamping can be performed by either hardware
   mechanisms or software.
   If software-based stamping is used, applying and operating on the
   stamps themselves incur an additional small delay in the service
   chain.  However, it can be assumed that these additional delays are
   all relative for the flow in question.  This is only pertinent for
   timestamping mode, and not for QoS-stamping mode.  Thus, whilst the
   absolute timestamps may not be fully accurate for normal
   non-timestamped traffic, they can be assumed to be relative.
   It is assumed that the methods described in this document would only
   operate on a small percentage of user flows.
   The service provider may choose a flexible policy in the SC to
   timestamp a selection of a user plane every minute -- for example, to
   highlight any performance issues.  Alternatively, the LSN may
   selectively export a subset of the KPI stamps it receives, based on a
   predefined sampling method.  Of course, the SC can stress-test an
   individual flow or chain should a deeper analysis be required.  We
   can expect that this type of deep analysis will have an impact on the
   performance of the chain itself whilst under investigation.  This
   impact will be dependent on vendor implementations and is outside the
   scope of this document.
   For QoS stamping, the methods described here are even less intrusive,
   as typically packets are only QoS stamped periodically (perhaps once
   per day) to check service chain configuration per QoS class.
<span class="grey">Browne, et al.                Informational                    [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>.  NSH KPI-Stamping Encapsulation</span>
   KPI stamping uses NSH MD Type 0x2 for detection of anomalies and
   extended mode for root-cause analysis of KPI violations.  These are
   further explained in this section.
   The generic NSH MD Type 2 TLV for KPI stamping is shown below.
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ver|O|U|    TTL    |   Length  |U|U|U|U|Type=2 | Next Protocol |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Service Path Identifier              | Service Index |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |        Metadata Class         |      Type     |U|    Length   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |       Variable Length KPI Metadata header and TLV(s)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  Figure 4: Generic NSH KPI Encapsulation
   Relevant fields in the header that the FSN must implement are as
   follows:
   o  The O bit must not be set.
   o  The MD type must be set to 0x2.
   o  The Metadata Class must be set to a value from the experimental
      range 0xfff6 to 0xfffe according to an agreement by all parties to
      the experiment.
   o  Unassigned bits: All fields marked "U" are unassigned and
      available for future use [<a href="./rfc8300" title=""Network Service Header (NSH)"">RFC8300</a>].
   o  The Type field may have one of the following values; the content
      of the Variable Length KPI Metadata header and TLV(s) field
      depends on the Type value:
      *  Type = 0x01 (Det): Detection
      *  Type = 0x02 (TS): Timestamp Extended
      *  Type = 0x03 (QoS): QoS stamp Extended
   The Type field determines the type of KPI-stamping format.  The
   supported formats are presented in the following subsections.
<span class="grey">Browne, et al.                Informational                    [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>.  KPI-Stamping Extended Encapsulation</span>
   The generic NSH MD Type 2 KPI-stamping header (extended mode) is
   shown in Figure 5.  This is the format for performance monitoring of
   service chain issues with respect to QoS configuration and latency.
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ver|O|U|    TTL    |   Length  |U|U|U|U|Type=2 | Next Protocol |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Service Path Identifier              | Service Index |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Metadata Class        |     Type      |U|    Length   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Variable Length KPI Configuration Header            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                  Variable Length KPI Value (LSN)              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \                                                               \
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                  Variable Length KPI Value (FSN)              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            Figure 5: Generic KPI Encapsulation (Extended Mode)
   As mentioned above, two types are defined under the experimental MD
   class to indicate the extended KPI MD: a timestamp type and a
   QoS-stamp type.
   The KPI Encapsulation Configuration Header format is shown below.
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |K|K|T|K|K|K|K|K|   Stamping SI |           Flow ID             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Reference Time                         |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Figure 6: KPI Encapsulation Configuration Header
<span class="grey">Browne, et al.                Informational                    [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   The bits marked "K" are reserved for specific KPI type use and are
   described in the subsections below.
   The T bit should be set if Reference Time follows the KPI
   Encapsulation Configuration Header.
   The SSI (Stamping SI) contains the SI used for KPI stamping and is
   described in the subsections below.
   The Flow ID is a unique 16-bit identifier written into the header by
   the classifier.  This allows 65536 flows to be concurrently stamped
   on any given NSH service chain (SPI).  Flow IDs are not written by
   subsequent SFs in the chain.  The FSN may export monitored Flow IDs
   to the KPIDB for correlation.
   Reference Time is the wall clock of the FSN and may be used for
   historical comparison of SC performance.  If the FSN is not Level A
   synchronized (see <a href="#section-3.1">Section 3.1</a>), it should inform the SC over the SCP
   interface.  The Reference Time is represented in 64-bit NTP format
   [<a href="./rfc5905" title=""Network Time Protocol Version 4: Protocol and Algorithms Specification"">RFC5905</a>], as presented in Figure 7:
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                            Seconds                            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                            Fraction                           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Figure 7: NTP 64-Bit Timestamp Format (<a href="./rfc5905">RFC 5905</a>)
<span class="grey">Browne, et al.                Informational                    [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
<span class="h4"><a class="selflink" id="section-4.1.1" href="#section-4.1.1">4.1.1</a>.  NSH Timestamping Encapsulation (Extended Mode)</span>
   The NSH timestamping extended encapsulation is shown below.
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ver|O|C|U|U|U|U|U|U|   Length  |U|U|U|U|Type=2 |   NextProto   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Service Path ID                      | Service Index |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Metadata Class         |  Type=TS(2) |U|     Len     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |I|E|T|U|U|U|SSI|  Stamping SI  |           Flow ID             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
    |              Reference Time (T bit is set)                    |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |I|E|U|U|U| SYN |  Stamping SI  |         Unassigned            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
    |            Ingress Timestamp (I bit is set) (LSN)             |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Egress Timestamp (E bit is set) (LSN)             |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |I|E|U|U|U| SYN |  Stamping SI  |          Unassigned           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
    |                 Ingress Timestamp (I bit is set) (FSN)        |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Egress Timestamp (E bit is set) (FSN)         |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           Figure 8: NSH Timestamp Encapsulation (Extended Mode)
   The FSN KPI stamp MD starts with the Stamping Configuration Header.
   This header contains the I, E, and T bits, and the SSI.
   The I bit should be set if the Ingress stamp is requested.
   The E bit should be set if the Egress stamp is requested.
<span class="grey">Browne, et al.                Informational                    [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   The SSI field must be set to one of the following values:
   o  0x0: KPI stamp mode.  No SI is specified in the Stamping SI field.
   o  0x1: KPI stamp hybrid mode is selected.  The Stamping SI field
      contains the LSN SI.  This is used when PNFs or NSH-unaware SFs
      are used at the tail of the chain.  If SSI=0x1, then the value in
      the Type field informs the chain regarding which SF should act as
      the LSN.
   o  0x2: KPI stamp Specific mode is selected.  The Stamping SI field
      contains the targeted SI.  In this case, the Stamping SI field
      indicates which SF is to be stamped.  Both Ingress stamps and
      Egress stamps are performed when the SI=SSI in the chain.  For
      timestamping mode, the FSN will also apply the Reference Time and
      Ingress Timestamp.  This will indicate the delay along the entire
      service chain to the targeted SF.  This method may also be used as
      a light implementation to monitor end-to-end service chain
      performance whereby the targeted SF is the LSN.  This is not
      applicable to QoS-stamping mode.
   Each stamping node adds stamp MD that consists of the Stamping
   Reporting Header and timestamps.
   The E bit should be set if the Egress stamp is reported.
   The I bit should be set if the Ingress stamp is reported.
   With respect to timestamping mode, the SYN bits are an indication of
   the synchronization status of the node performing the timestamp and
   must be set to one of the following values:
   o  In synch: 0x00
   o  In holdover: 0x01
   o  In free run: 0x02
   o  Out of synch: 0x03
   If the platform hosting the SF is out of synch or in free run, no
   timestamp is applied by the node, and the packet is processed
   normally.
<span class="grey">Browne, et al.                Informational                    [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   If the FSN is out of synch or in free run, the timestamp request is
   rejected and is not propagated through the chain.  In such an event,
   the FSN should inform the SC over the SCP interface.  Similarly, if
   the KPIDB receives timestamps that are out of order (i.e., a
   timestamp of an "N+1" SF is prior to the timestamp of an "N" SF), it
   should notify the SC of this condition over the SCP interface.
   The outer SI value is copied into the stamp MD as the Stamping SI to
   help cater to hybrid chains that are a mix of VNFs and PNFs or
   through NSH-unaware SFs.  Thus, if a flow transits through a PNF or
   an NSH-unaware node, the delta in the inner SI between timestamps
   will indicate this.
   The Ingress Timestamp and Egress Timestamp are represented in 64-bit
   NTP format.  The corresponding bits (I and E) are reported in the
   Stamping Reporting Header of the node's MD.
<span class="h4"><a class="selflink" id="section-4.1.2" href="#section-4.1.2">4.1.2</a>.  NSH QoS-Stamping Encapsulation (Extended Mode)</span>
   Packets have a variable QoS stack.  For example, the same payload IP
   can have a very different stack in the access part of the network
   than the core.  This is most apparent in mobile networks where, for
   example, in an access circuit we would have an infrastructure IP
   header (DSCP) composed of two layers -- one based on transport and
   the other based on IPsec -- in addition to multiple MPLS and VLAN
   tags.  The same packet, as it leaves the Packet Data Network (PDN)
   Gateway Gi egress interface, may be very much simplified in terms of
   overhead and related QoS fields.
   Because of this variability, we need to build extra meaning into the
   QoS headers.  They are not, for example, all PTP timestamps of a
   fixed length, as in the case of timestamping; rather, they are of
   variable lengths and types.  Also, they can be changed on the
   underlay at any time without the knowledge of the SFC system.
   Therefore, each SF must be able to ascertain and record its ingress
   and egress QoS configuration on the fly.
<span class="grey">Browne, et al.                Informational                    [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   The suggested QoS Type (QT) and lengths are listed below.
    QoS Type  Value    Length    Comment
    ----------------------------------------------------------
    IVLAN     0x01     4 Bits    Ingress VLAN (PCP + DEI)
    EVLAN     0x02     4 Bits    Egress VLAN
    IQINQ     0x03     8 Bits    Ingress QinQ (2x (PCP + DEI))
    EQINQ     0x04     8 Bits    Egress QinQ
    IMPLS     0x05     3 Bits    Ingress Label
    EMPLS     0x06     3 Bits    Egress Label
    IMPLS     0x07     6 Bits    Two Ingress Labels (2x EXP)
    EMPLS     0x08     6 Bits    Two Egress Labels
    IDSCP     0x09     8 Bits    Ingress DSCP
    EDSCP     0x0A     8 Bits    Egress DSCP
   For stacked headers such as MPLS and 802.1ad, we extract the relevant
   QoS data from the header and insert it into one QoS value in order to
   be more efficient in terms of packet size.  Thus, for MPLS, we
   represent both experimental bits (EXP) fields in one QoS value, and
   both 802.1p priority and drop precedence in one QoS value, as
   indicated above.
   For stack types not listed here (for example, three or more MPLS
   tags), the SF would insert IMPLS/EMPLS several times, with each layer
   in the stack indicating EXP QoS for that layer.
<span class="grey">Browne, et al.                Informational                    [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ver|O|C|U|U|U|U|U|U|   Length  |U|U|U|U|Type=2 | NextProto=0x0 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Service Path ID                      | Service Index |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Metadata Class        |   Type=QoS(3) |U|     Len     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |U|U|T|U|U|U|SSI|  Stamping SI  |           Flow ID             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
    |              Reference Time (T bit is set)                    |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |U|U|U|U|U|U|U|U|  Stamping SI  |         Unassigned            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
    |   QT  |    QoS Value  |U|U|U|E|  QT   | QoS Value     |U|U|U|E|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |U|U|U|U|U|U|U|U|  Stamping SI  |          Unassigned           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
    |   QT  |   QoS Value   |U|U|U|E|  QT   | QoS Value     |U|U|U|E|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       Figure 9: NSH QoS Configuration Encapsulation (Extended Mode)
   The encapsulation in Figure 9 is very similar to the encapsulation
   detailed in <a href="#section-4.1.1">Section 4.1.1</a>, with the following exceptions:
   o  I and E bits are not required, as we wish to examine the full QoS
      stack at the ingress and egress at every SF.
   o  SYN status bits are not required.
   o  The QT and QoS values are as outlined in the list above.
   o  The E bit at the tail of each QoS context field indicates if this
      is the last egress QoS stamp for a given SF.  This should coincide
      with SI=0 at the LSN, whereby the packet is truncated, the NSH MD
      is sent to the KPIDB, and the subscriber's raw IP packet is
      forwarded to the underlay next hop.
<span class="grey">Browne, et al.                Informational                    [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   Note: It is possible to compress the frame structure to better
   utilize the header, but this would come at the expense of crossing
   byte boundaries.  For ease of implementation, and so that
   QoS stamping is applied on an extremely small subset of user-plane
   traffic, we believe that the above structure is a pragmatic
   compromise between header efficiency and ease of implementation.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>.  KPI-Stamping Encapsulation (Detection Mode)</span>
   The format of the NSH MD Type 2 KPI-stamping TLV (detection mode) is
   shown in Figure 10.
   This TLV is used for KPI anomaly detection.  Upon detecting a problem
   or an anomaly, it will be possible to enable the use of KPI-stamping
   extended encapsulations, which will provide more detailed analysis.
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ver|O|U|    TTL    |   Length  |U|U|U|U|Type=2 | Next Protocol |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Service Path Identifier              | Service Index |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |        Metadata Class         | Type=Det(1)   |U|    Length   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   KPI Type    |      Stamping SI      |          Flow ID      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      Threshold KPI Value                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Ingress KPI stamp                       |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         Figure 10: Generic NSH KPI Encapsulation (Detection Mode)
   The following fields are defined in the KPIDB MD:
   o  KPI Type: This field determines the type of KPI stamp that is
      included in this MD.  If a receiver along the path does not
      understand the KPI type, it will pass the packet on transparently
      and will not drop it.  The supported values of KPI Type are:
      *  0x0: Timestamp
      *  0x1: QoS stamp
<span class="grey">Browne, et al.                Informational                    [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   o  Threshold KPI Value: In the first header, the SFC classifier may
      program a KPI threshold value.  This is a value that, when
      exceeded, requires the SF to insert the current SI value into the
      SI field.  The KPI type is the type of KPI stamp inserted into the
      header as per Figure 10.
   o  Stamping SI: This is the Service Identifier of the SF when the
      above threshold value is exceeded.
   o  Flow ID: The Flow ID is inserted into the header by the SFC
      classifier in order to correlate flow data in the KPIDB for
      offline analysis.
   o  Ingress KPI stamp: The last 8 octets are reserved for the
      KPI stamp.  This is the KPI value at the chain ingress at the SFC
      classifier.  Depending on the KPI type, the KPI stamp includes
      either a timestamp or a QoS stamp.  If the KPI type is Timestamp,
      then the Ingress KPI stamp field contains a timestamp in 64-bit
      NTP timestamp format.  If the KPI type is QoS stamp, then the
      format of the 64-bit Ingress KPI stamp is as follows.
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   QT  |    QoS Value  |              Unassigned               |
    +-+-+-+-+-+-+-+-+-+-+-+-+                                       +
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               Figure 11: QoS-Stamp Format (Detection Mode)
   As an example operation, let's say we are using KPI type 0x01
   (Timestamp).  When an SF (say SFn) receives the packet, it can
   compare the current local timestamp (it first checks that it is
   synchronized to the network's PRC) with the chain Ingress Timestamp
   to calculate the latency in the chain.  If this value exceeds the
   timestamp threshold, it then inserts its SI and returns the NSH to
   the KPIDB.  This effectively tells the system that at SFn the packet
   violated the KPI threshold.  Please refer to Figure 8 for the
   timestamp format.
   When this occurs, the SFC control-plane system would then invoke the
   KPI extended mode, which uses a more sophisticated (and intrusive)
   method to isolate the root cause of the KPI violation, as described
   below.
<span class="grey">Browne, et al.                Informational                    [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   Note: Whilst detection mode is a valuable tool for latency actions,
   the authors feel that building the logic into the KPI system for QoS
   configuration is not justified.  As QoS stamping is done infrequently
   and on a tiny percentage of the user plane, it is more practical to
   use extended mode only for service chain QoS verification.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>.  Hybrid Models</span>
   A hybrid chain may be defined as a chain whereby there is a mix of
   NSH-aware and NSH-unaware SFs.
   Figure 12 shows an example of a hybrid chain with a PNF in the
   middle.
      Stamping
     Controller
         |                                                      KPIDB
         | SCP Interface                                        |
       ,---.             ,---.              ,---.              ,---.
      /     \           /     \            /     \            /     \
     (  SCL  )-------->(  SF1  )--------->(  SF2  )--------->(  SFn  )
      \ FSN /           \     /            \ PNF1/            \ LSN /
       `---'             `---'              `---'              `---'
                Figure 12: Hybrid Chain with PNF in Middle
   In this example, the FSN begins its operation and sets the SI to 3.
   SF1 decrements the SI to 2 and passes the packet to an SFC proxy
   (not shown).
   The SFC proxy strips the NSH and passes the packet to the PNF.  On
   receipt back from the PNF, the proxy decrements the SI and passes the
   packet to the LSN with SI=1.
   After the LSN processes the traffic, it knows from the SI value that
   it is the last node in the chain, and it exports the entire NSH and
   all MD to the KPIDB.  The payload is forwarded to the next hop on the
   underlay minus the NSH.  The stamping information packet may be given
   a new SPI to act as a homing tag to transport the stamp data back to
   the KPIDB.
<span class="grey">Browne, et al.                Informational                    [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   Figure 13 shows an example of a hybrid chain with a PNF at the end.
     Stamping
    Controller
        |                                                      KPIDB
        | SCP Interface                                        |
      ,---.             ,---.              ,---.              ,---.
     /     \           /     \            /     \            /     \
    (  SCL  )-------->(  SF1  )--------->(  SF2  )--------->(  PNFN )
     \ FSN /           \     /            \ LSN /            \     /
      `---'             `---'              `---'              `---'
                  Figure 13: Hybrid Chain with PNF at End
   In this example, the FSN begins its operation and sets the SI to 3.
   The SSI field is set to 0x1, and the type is set to 1.  Thus, when
   SF2 receives the packet with SI=1, it understands that it is expected
   to take on the role of the LSN, as it is the last NSH-aware node in
   the chain.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>.  Targeted VNF Stamping</span>
   For the majority of flows within the service chain, stamps (Ingress
   stamps, Egress stamps, or both) will be carried out at each hop until
   the SI decrements to zero and the NSH and stamp MD are exported to
   the KPIDB.  However, the need to just test a particular VNF may exist
   (perhaps after a scale-out operation, software upgrade, or underlay
   change, for example).  In this case, the FSN should mark the NSH as
   follows:
   o  The SSI field is set to 0x2.
   o  Type is set to the expected SI at the SF in question.
   o  When the outer SI is equal to the SSI, stamps are applied at the
      SF ingress and egress, and the NSH and MD are exported to the
      KPIDB.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>.  Fragmentation Considerations</span>
   The methods described in this document do not support fragmentation.
   The SC should return an error should a stamping request from an
   external system exceed MTU limits and require fragmentation.
   Depending on the length of the payload and the type of KPI stamp and
   chain length, this will vary for each packet.
<span class="grey">Browne, et al.                Informational                    [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   In most service provider architectures, we would expect SI << 10,
   which may include some PNFs in the chain that do not add overhead.
   Thus, for typical Internet Mix (IMIX) packet sizes [<a href="./rfc6985" title=""IMIX Genome: Specification of Variable Packet Sizes for Additional Testing"">RFC6985</a>], we
   expect to be able to perform timestamping on the vast majority of
   flows without fragmentation.  Thus, the classifier can apply a simple
   rule that only allows KPI stamping on packet sizes less than 1200
   bytes, for example.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>.  Security Considerations</span>
   The security considerations for the NSH in general are discussed in
   [<a href="./rfc8300" title=""Network Service Header (NSH)"">RFC8300</a>].
   In-band timestamping, as defined in this document, can be used as a
   means for network reconnaissance.  By passively eavesdropping on
   timestamped traffic, an attacker can gather information about network
   delays and performance bottlenecks.
   The NSH timestamp is intended to be used by various applications to
   monitor network performance and to detect anomalies.  Thus, a
   man-in-the-middle attacker can maliciously modify timestamps in order
   to attack applications that use the timestamp values.  For example,
   an attacker could manipulate the SFC classifier operation, such that
   it forwards traffic through "better-behaved" chains.  Furthermore, if
   timestamping is performed on a fraction of the traffic, an attacker
   can selectively induce synthetic delay only to timestamped packets
   and can systematically trigger measurement errors.
   Similarly, if an attacker can modify QoS stamps, erroneous values may
   be imported into the KPIDB, resulting in further misconfiguration and
   subscriber QoE impairment.
   An attacker that gains access to the SCP can enable timestamping and
   QoS stamping for all subscriber flows, thereby causing performance
   bottlenecks, fragmentation, or outages.
   As discussed in previous sections, NSH timestamping relies on an
   underlying time synchronization protocol.  Thus, by attacking the
   time protocol, an attacker can potentially compromise the integrity
   of the NSH timestamp.  A detailed discussion about the threats
   against time protocols and how to mitigate them is presented in
   [<a href="./rfc7384" title=""Security Requirements of Time Protocols in Packet Switched Networks"">RFC7384</a>].
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>.  IANA Considerations</span>
   This document has no IANA actions.
<span class="grey">Browne, et al.                Informational                    [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>.  References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>.  Normative References</span>
   [<a id="ref-RFC2119">RFC2119</a>]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
              DOI 10.17487/RFC2119, March 1997,
              <<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
   [<a id="ref-RFC7665">RFC7665</a>]  Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
              Chaining (SFC) Architecture", <a href="./rfc7665">RFC 7665</a>,
              DOI 10.17487/RFC7665, October 2015,
              <<a href="https://www.rfc-editor.org/info/rfc7665">https://www.rfc-editor.org/info/rfc7665</a>>.
   [<a id="ref-RFC8174">RFC8174</a>]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in
              <a href="./rfc2119">RFC 2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>,
              DOI 10.17487/RFC8174, May 2017,
              <<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
   [<a id="ref-RFC8300">RFC8300</a>]  Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
              "Network Service Header (NSH)", <a href="./rfc8300">RFC 8300</a>,
              DOI 10.17487/RFC8300, January 2018,
              <<a href="https://www.rfc-editor.org/info/rfc8300">https://www.rfc-editor.org/info/rfc8300</a>>.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>.  Informative References</span>
   [<a id="ref-IEEE1588">IEEE1588</a>]
              IEEE, "IEEE Standard for a Precision Clock Synchronization
              Protocol for Networked Measurement and Control Systems",
              IEEE Standard 1588,
              <<a href="https://standards.ieee.org/standard/1588-2008.html">https://standards.ieee.org/standard/1588-2008.html</a>>.
   [<a id="ref-RFC5905">RFC5905</a>]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", <a href="./rfc5905">RFC 5905</a>, DOI 10.17487/RFC5905, June 2010,
              <<a href="https://www.rfc-editor.org/info/rfc5905">https://www.rfc-editor.org/info/rfc5905</a>>.
   [<a id="ref-RFC7384">RFC7384</a>]  Mizrahi, T., "Security Requirements of Time Protocols in
              Packet Switched Networks", <a href="./rfc7384">RFC 7384</a>, DOI 10.17487/RFC7384,
              October 2014, <<a href="https://www.rfc-editor.org/info/rfc7384">https://www.rfc-editor.org/info/rfc7384</a>>.
   [<a id="ref-RFC6985">RFC6985</a>]  Morton, A., "IMIX Genome: Specification of Variable Packet
              Sizes for Additional Testing", <a href="./rfc6985">RFC 6985</a>,
              DOI 10.17487/RFC6985, July 2013,
              <<a href="https://www.rfc-editor.org/info/rfc6985">https://www.rfc-editor.org/info/rfc6985</a>>.
<span class="grey">Browne, et al.                Informational                    [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
   [<a id="ref-Y.1731">Y.1731</a>]   ITU-T Recommendation G.8013/Y.1731, "Operations,
              administration and maintenance (OAM) functions and
              mechanisms for Ethernet-based networks", August 2015,
              <<a href="https://www.itu.int/rec/T-REC-G.8013/en">https://www.itu.int/rec/T-REC-G.8013/en</a>>.
   [<a id="ref-G.8261">G.8261</a>]   ITU-T Recommendation G.8261/Y.1361, "Timing and
              synchronization aspects in packet networks", August 2013,
              <<a href="https://www.itu.int/rec/T-REC-G.8261">https://www.itu.int/rec/T-REC-G.8261</a>>.
   [<a id="ref-G.8262">G.8262</a>]   ITU-T Recommendation G.8262/Y.1362, "Timing
              characteristics of a synchronous Ethernet equipment slave
              clock", November 2018,
              <<a href="https://www.itu.int/rec/T-REC-G.8262">https://www.itu.int/rec/T-REC-G.8262</a>>.
   [<a id="ref-G.8264">G.8264</a>]   ITU-T Recommendation G.8264/Y.1364, "Distribution of
              timing information through packet networks", August 2017,
              <<a href="https://www.itu.int/rec/T-REC-G.8264">https://www.itu.int/rec/T-REC-G.8264</a>>.
   [<a id="ref-In-Situ-OAM">In-Situ-OAM</a>]
              Brockners, F., Bhandari, S., Pignataro, C., Gredler, H.,
              Leddy, J., Youell, S., Mizrahi, T., Mozes, D., Lapukhov,
              P., Chang, R., Bernier, D., and J. Lemon, "Data Fields for
              In-situ OAM", Work in Progress,
              <a href="./draft-ietf-ippm-ioam-data-05">draft-ietf-ippm-ioam-data-05</a>, March 2019.
<span class="grey">Browne, et al.                Informational                    [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc8592">RFC 8592</a>                    KPI Timestamping                    May 2019</span>
Acknowledgments
   The authors gratefully acknowledge Mohamed Boucadair, Martin
   Vigoureux, and Adrian Farrel for their thorough reviews and helpful
   comments.
Contributors
   This document originated as <a href="./draft-browne-sfc-nsh-timestamp-00">draft-browne-sfc-nsh-timestamp-00</a>; the
   following people were coauthors of that draft.  We would like to
   thank them and recognize them for their contributions.
   Yoram Moses
   Technion
   Email: moses@ee.technion.ac.il
   Brendan Ryan
   Intel Corporation
   Email: brendan.ryan@intel.com
Authors' Addresses
   Rory Browne
   Intel
   Dromore House
   Shannon
   Co. Clare
   Ireland
   Email: rorybrowne@yahoo.com
   Andrey Chilikin
   Intel
   Dromore House
   Shannon
   Co. Clare
   Ireland
   Email: andrey.chilikin@intel.com
   Tal Mizrahi
   Huawei Network.IO Innovation Lab
   Israel
   Email: tal.mizrahi.phd@gmail.com
Browne, et al.                Informational                    [Page 27]
</pre>
 
     |