1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
<pre>Independent Submission C. Filsfils, Ed.
Request for Comments: 8604 Cisco Systems, Inc.
Category: Informational S. Previdi
ISSN: 2070-1721 Huawei Technologies
G. Dawra, Ed.
LinkedIn
W. Henderickx
Nokia
D. Cooper
CenturyLink
June 2019
<span class="h1">Interconnecting Millions of Endpoints with Segment Routing</span>
Abstract
This document describes an application of Segment Routing to scale
the network to support hundreds of thousands of network nodes, and
tens of millions of physical underlay endpoints. This use case can
be applied to the interconnection of massive-scale Data Centers (DCs)
and/or large aggregation networks. Forwarding tables of midpoint and
leaf nodes only require a few tens of thousands of entries. This may
be achieved by the inherently scaleable nature of Segment Routing and
the design proposed in this document.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not candidates for any level of Internet Standard;
see <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8604">https://www.rfc-editor.org/info/rfc8604</a>.
<span class="grey">Filsfils, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8604">RFC 8604</a> Large-Scale Segment Routing June 2019</span>
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-2">2</a>. Terminology .....................................................<a href="#page-3">3</a>
<a href="#section-3">3</a>. Reference Design ................................................<a href="#page-3">3</a>
<a href="#section-4">4</a>. Control Plane ...................................................<a href="#page-5">5</a>
<a href="#section-5">5</a>. Illustration of the Scale .......................................<a href="#page-5">5</a>
<a href="#section-6">6</a>. Design Options ..................................................<a href="#page-6">6</a>
<a href="#section-6.1">6.1</a>. Segment Routing Global Block (SRGB) Size ...................<a href="#page-6">6</a>
<a href="#section-6.2">6.2</a>. Redistribution of Routes for Agg Nodes .....................<a href="#page-7">7</a>
<a href="#section-6.3">6.3</a>. Sizing and Hierarchy .......................................<a href="#page-7">7</a>
<a href="#section-6.4">6.4</a>. Local Segments to Hosts/Servers ............................<a href="#page-7">7</a>
<a href="#section-6.5">6.5</a>. Compressed SRTE Policies ...................................<a href="#page-7">7</a>
<a href="#section-7">7</a>. Deployment Model ................................................<a href="#page-8">8</a>
<a href="#section-8">8</a>. Benefits ........................................................<a href="#page-8">8</a>
<a href="#section-8.1">8.1</a>. Simplified Operations ......................................<a href="#page-8">8</a>
<a href="#section-8.2">8.2</a>. Inter-domain SLAs ..........................................<a href="#page-8">8</a>
<a href="#section-8.3">8.3</a>. Scale ......................................................<a href="#page-9">9</a>
<a href="#section-8.4">8.4</a>. ECMP .......................................................<a href="#page-9">9</a>
<a href="#section-9">9</a>. IANA Considerations .............................................<a href="#page-9">9</a>
<a href="#section-10">10</a>. Manageability Considerations ...................................<a href="#page-9">9</a>
<a href="#section-11">11</a>. Security Considerations ........................................<a href="#page-9">9</a>
<a href="#section-12">12</a>. Informative References .........................................<a href="#page-9">9</a>
Acknowledgements ..................................................<a href="#page-10">10</a>
Contributors ......................................................<a href="#page-10">10</a>
Authors' Addresses ................................................<a href="#page-11">11</a>
<span class="grey">Filsfils, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8604">RFC 8604</a> Large-Scale Segment Routing June 2019</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document describes how Segment Routing (SR) can be used to
interconnect millions of endpoints.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The following terms and abbreviations are used in this document:
Term Definition
-------------------------------------------------------------
Agg Aggregation
BGP Border Gateway Protocol
DC Data Center
DCI Data Center Interconnect
ECMP Equal-Cost Multipath
FIB Forwarding Information Base
LDP Label Distribution Protocol
LFIB Label Forwarding Information Base
MPLS Multiprotocol Label Switching
PCE Path Computation Element
PCEP Path Computation Element Communication Protocol
PW Pseudowire
SLA Service Level Agreement
SR Segment Routing
SRTE Policy Segment Routing Traffic Engineering Policy
TE Traffic Engineering
TI-LFA Topology Independent Loop-Free Alternate
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Reference Design</span>
The network diagram below illustrates the reference network topology
used in this document:
+-------+ +--------+ +--------+ +-------+ +-------+
A DCI1 Agg1 Agg3 DCI3 Z
| DC1 | | M1 | | C | | M2 | | DC2 |
| DCI2 Agg2 Agg4 DCI4 |
+-------+ +--------+ +--------+ +-------+ +-------+
Figure 1: Reference Topology
The following apply to the reference topology above:
o Independent ISIS-OSPF/SR instance in core (C) region.
o Independent ISIS-OSPF/SR instance in Metro1 (M1) region.
<span class="grey">Filsfils, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8604">RFC 8604</a> Large-Scale Segment Routing June 2019</span>
o Independent ISIS-OSPF/SR instance in Metro2 (M2) region.
o BGP/SR in DC1.
o BGP/SR in DC2.
o Agg routes (Agg1, Agg2, Agg3, Agg4) are redistributed from C to M
(M1 and M2) and from M to DC domains.
o No other route is advertised or redistributed between regions.
o The same homogeneous Segment Routing Global Block (SRGB) is used
throughout the domains (e.g., 16000-23999).
o Unique SRGB sub-ranges are allocated to each metro (M) and core
(C) domain:
* The 16000-16999 range is allocated to the core (C)
domain/region.
* The 17000-17999 range is allocated to the M1 domain/region.
* The 18000-18999 range is allocated to the M2 domain/region.
* Specifically, the Agg1 router has Segment Identifier (SID)
16001 allocated, and the Agg2 router has SID 16002 allocated.
* Specifically, the Agg3 router has SID 16003 allocated, and the
anycast SID for Agg3 and Agg4 is 16006.
* Specifically, the DCI3 router has SID 18003 allocated, and the
anycast SID for DCI3 and DCI4 is 18006.
* Specifically, at the Agg1 router, the binding SID 4001 leads to
DCI pair (DCI3, DCI4) via a specific low-latency path {16002,
16003, 18006}.
o The same SRGB sub-range is reused within each DC (DC1 and DC2)
region for each DC (e.g., 20000-23999). Specifically, nodes A
and Z both have SID 20001 allocated to them.
<span class="grey">Filsfils, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8604">RFC 8604</a> Large-Scale Segment Routing June 2019</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Control Plane</span>
This section provides a high-level description of how a control plane
could be implemented using protocol components already defined in
other RFCs.
The mechanism through which SRTE Policies are defined, computed, and
programmed in the source nodes is outside the scope of this document.
Typically, a controller or a service orchestration system programs
node A with a PW to a remote next-hop node Z with a given SLA
contract (e.g., low-latency path, disjointness from a specific core
plane, disjointness from a different PW service).
Node A automatically detects that node Z is not reachable. It then
automatically sends a PCEP request to an SR PCE for an SRTE policy
that provides reachability information for node Z with the
requested SLA.
The SR PCE [<a href="./rfc4655" title=""A Path Computation Element (PCE)-Based Architecture"">RFC4655</a>] is made of two components: a multi-domain
topology and a computation engine. The multi-domain topology is
continuously refreshed through BGP - Link State (BGP-LS) feeds
[<a href="./rfc7752" title=""North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP"">RFC7752</a>] from each domain. The computation engine is designed to
implement TE algorithms and provide output in SR Path format. Upon
receiving the PCEP request [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>], the SR PCE computes the
requested path. The path is expressed through a list of segments
(e.g., {16003, 18006, 20001}) and provided to node A.
The SR PCE logs the request as a stateful query and hence is able to
recompute the path at each network topology change.
Node A receives the PCEP reply with the path (expressed as a segment
list). Node A installs the received SRTE policy in the data plane.
Node A then automatically steers the PW into that SRTE policy.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Illustration of the Scale</span>
According to the reference topology shown in Figure 1, the following
assumptions are made:
o There is one core domain, and there are 100 leaf (metro) domains.
o The core domain includes 200 nodes.
o Two nodes connect each leaf (metro) domain. Each node connecting
a leaf domain has a SID allocated. Each pair of nodes connecting
a leaf domain also has a common anycast SID. This yields up to
300 prefix segments in total.
<span class="grey">Filsfils, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8604">RFC 8604</a> Large-Scale Segment Routing June 2019</span>
o A core node connects only one leaf domain.
o Each leaf domain has 6,000 leaf-node segments. Each leaf node has
500 endpoints attached and thus 500 adjacency segments. This
yields a total of 3 million endpoints for a leaf domain.
Based on the above, the network scaling numbers are as follows:
o 6,000 leaf-node segments multiplied by 100 leaf domains:
600,000 nodes.
o 600,000 nodes multiplied by 500 endpoints: 300 million endpoints.
The node scaling numbers are as follows:
o Leaf-node segment scale: 6,000 leaf-node segments + 300 core-node
segments + 500 adjacency segments = 6,800 segments.
o Core-node segment scale: 6,000 leaf-domain segments +
300 core-domain segments = 6,300 segments.
In the above calculations, the link-adjacency segments are not taken
into account. These are local segments and, typically, less than 100
per node.
It has to be noted that, depending on leaf-node FIB capabilities,
leaf domains could be split into multiple smaller domains. In the
above example, the leaf domains could be split into six smaller
domains so that each leaf node only needs to learn 1,000 leaf-node
segments + 300 core-node segments + 500 adjacency segments, yielding
a total of 1,800 segments.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Design Options</span>
This section describes multiple design options to illustrate scale as
described in the previous section.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Segment Routing Global Block (SRGB) Size</span>
In the simplified illustrations in this document, we picked a small
homogeneous SRGB range of 16000-23999. In practice, a large-scale
design would use a bigger range, such as 16000-80000 or even larger.
A larger range provides allocations for various TE applications
within a given domain.
<span class="grey">Filsfils, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8604">RFC 8604</a> Large-Scale Segment Routing June 2019</span>
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Redistribution of Routes for Agg Nodes</span>
The operator might choose to not redistribute the routes for Agg
nodes into the Metro/DC domains. In that case, more segments are
required in order to express an inter-domain path.
For example, node A would use an SRTE Policy {DCI1, Agg1, Agg3,
DCI3, Z} in order to reach Z instead of {Agg3, DCI3, Z} in the
reference design.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Sizing and Hierarchy</span>
The operator is free to choose among a small number of larger leaf
domains, a large number of small leaf domains, or a mix of small and
large core/leaf domains.
The operator is free to use a two-tier (Core/Metro) or three-tier
(Core/Metro/DC) design.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Local Segments to Hosts/Servers</span>
Local segments can be programmed at any leaf node (e.g., node Z) in
order to identify locally attached hosts (or Virtual Machines (VMs)).
For example, if node Z has bound a local segment 40001 to a local
host ZH1, then node A uses the following SRTE Policy in order to
reach that host: {16006, 18006, 20001, 40001}. Such a local segment
could represent the NID (Network Interface Device) in the context of
the service provider access network, or a VM in the context of the DC
network.
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. Compressed SRTE Policies</span>
As an example and according to <a href="#section-3">Section 3</a>, we assume that node A can
reach node Z (e.g., with a low-latency SLA contract) via the SRTE
policy that consists of the path Agg1, Agg2, Agg3, DCI3/4(anycast),
Z. The path is represented by the segment list {16001, 16002, 16003,
18006, 20001}.
It is clear that the control-plane solution can install an SRTE
Policy {16002, 16003, 18006} at Agg1, collect the binding SID
allocated by Agg1 to that policy (e.g., 4001), and hence program
node A with the compressed SRTE Policy {16001, 4001, 20001}.
From node A, 16001 leads to Agg1. Once at Agg1, 4001 leads to the
DCI pair (DCI3, DCI4) via a specific low-latency path {16002, 16003,
18006}. Once at that DCI pair, 20001 leads to Z.
<span class="grey">Filsfils, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8604">RFC 8604</a> Large-Scale Segment Routing June 2019</span>
Binding SIDs allocated to "intermediate" SRTE Policies achieve the
compression of end-to-end SRTE Policies.
The segment list {16001, 4001, 20001} expresses the same path as
{16001, 16002, 16003, 18006, 20001} but with two less segments.
The binding SID also provides for inherent churn protection.
When the core topology changes, the control plane can update the
low-latency SRTE Policy from Agg1 to the DCI pair to DC2 without
updating the SRTE Policy from A to Z.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Deployment Model</span>
It is expected that this design will be used in "green field"
deployments as well as interworking ("brown field") deployments with
an MPLS design across multiple domains.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Benefits</span>
The design options illustrated in this document allow
interconnections on a very large scale. Millions of endpoints across
different domains can be interconnected.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Simplified Operations</span>
Two control-plane protocols not needed in this design are LDP and
RSVP-TE. No new protocol has been introduced. The design leverages
the core IP protocols ISIS, OSPF, BGP, and PCEP with straightforward
SR extensions.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Inter-domain SLAs</span>
Fast reroute and resiliency are provided by TI-LFA with sub-50-ms
fast reroute upon failure of a link, node, or Shared Risk Link Group
(SRLG). TI-LFA is described in [<a href="#ref-SR-TI-LFA">SR-TI-LFA</a>].
The use of anycast SIDs also provides improved availability and
resiliency.
Inter-domain SLAs can be delivered (e.g., latency vs. cost-optimized
paths, disjointness from backbone planes, disjointness from other
services, disjointness between primary and backup paths).
Existing inter-domain solutions do not provide any support for SLA
contracts. They just provide best-effort reachability across
domains.
<span class="grey">Filsfils, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8604">RFC 8604</a> Large-Scale Segment Routing June 2019</span>
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Scale</span>
In addition to having eliminated the need for LDP and RSVP-TE,
per-service midpoint states have also been removed from the network.
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. ECMP</span>
Each policy (intra-domain or inter-domain, with or without TE) is
expressed as a list of segments. Since each segment is optimized for
ECMP, the entire policy is optimized for ECMP. The benefit of an
anycast prefix segment optimized for ECMP should also be considered
(e.g., 16001 load-shares across any gateway from the M1 leaf domain
to the Core and 16002 load-shares across any gateway from the Core to
the M1 leaf domain).
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. IANA Considerations</span>
This document has no IANA actions.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Manageability Considerations</span>
This document describes an application of SR over the MPLS data
plane. SR does not introduce any changes in the MPLS data plane.
The manageability considerations described in [<a href="./rfc8402" title=""Segment Routing Architecture"">RFC8402</a>] apply to the
MPLS data plane when used with SR.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Security Considerations</span>
This document does not introduce additional security requirements and
mechanisms other than those described in [<a href="./rfc8402" title=""Segment Routing Architecture"">RFC8402</a>].
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Informative References</span>
[<a id="ref-RFC4655">RFC4655</a>] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
Computation Element (PCE)-Based Architecture", <a href="./rfc4655">RFC 4655</a>,
DOI 10.17487/RFC4655, August 2006,
<<a href="https://www.rfc-editor.org/info/rfc4655">https://www.rfc-editor.org/info/rfc4655</a>>.
[<a id="ref-RFC5440">RFC5440</a>] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
Element (PCE) Communication Protocol (PCEP)", <a href="./rfc5440">RFC 5440</a>,
DOI 10.17487/RFC5440, March 2009,
<<a href="https://www.rfc-editor.org/info/rfc5440">https://www.rfc-editor.org/info/rfc5440</a>>.
[<a id="ref-RFC7752">RFC7752</a>] Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
S. Ray, "North-Bound Distribution of Link-State and
Traffic Engineering (TE) Information Using BGP", <a href="./rfc7752">RFC 7752</a>,
DOI 10.17487/RFC7752, March 2016,
<<a href="https://www.rfc-editor.org/info/rfc7752">https://www.rfc-editor.org/info/rfc7752</a>>.
<span class="grey">Filsfils, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8604">RFC 8604</a> Large-Scale Segment Routing June 2019</span>
[<a id="ref-RFC8402">RFC8402</a>] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
Decraene, B., Litkowski, S., and R. Shakir, "Segment
Routing Architecture", <a href="./rfc8402">RFC 8402</a>, DOI 10.17487/RFC8402,
July 2018, <<a href="https://www.rfc-editor.org/info/rfc8402">https://www.rfc-editor.org/info/rfc8402</a>>.
[<a id="ref-SR-TI-LFA">SR-TI-LFA</a>]
Litkowski, S., Bashandy, A., Filsfils, C.,
Decraene, B., Francois, P., Voyer, D., Clad, F., and
P. Camarillo, "Topology Independent Fast Reroute
using Segment Routing", Work in Progress,
<a href="./draft-ietf-rtgwg-segment-routing-ti-lfa-01">draft-ietf-rtgwg-segment-routing-ti-lfa-01</a>, March 2019.
Acknowledgements
We would like to thank Giles Heron, Alexander Preusche, Steve
Braaten, and Francis Ferguson for their contributions to the content
of this document.
Contributors
The following people substantially contributed to the editing of this
document:
Dennis Cai
Individual
Tim Laberge
Individual
Steven Lin
Google Inc.
Bruno Decraene
Orange
Luay Jalil
Verizon
Jeff Tantsura
Individual
Rob Shakir
Google Inc.
<span class="grey">Filsfils, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8604">RFC 8604</a> Large-Scale Segment Routing June 2019</span>
Authors' Addresses
Clarence Filsfils (editor)
Cisco Systems, Inc.
Brussels
Belgium
Email: cfilsfil@cisco.com
Stefano Previdi
Huawei Technologies
Email: stefano@previdi.net
Gaurav Dawra (editor)
LinkedIn
United States of America
Email: gdawra.ietf@gmail.com
Wim Henderickx
Nokia
Copernicuslaan 50
Antwerp 2018
Belgium
Email: wim.henderickx@nokia.com
Dave Cooper
CenturyLink
Email: Dave.Cooper@centurylink.com
Filsfils, et al. Informational [Page 11]
</pre>
|