1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
|
<pre>Internet Research Task Force (IRTF) M. Mosko
Request for Comments: 8609 PARC, Inc.
Category: Experimental I. Solis
ISSN: 2070-1721 LinkedIn
C. Wood
University of California Irvine
July 2019
<span class="h1">Content-Centric Networking (CCNx) Messages in TLV Format</span>
Abstract
Content-Centric Networking (CCNx) is a network protocol that uses a
hierarchical name to forward requests and to match responses to
requests. This document specifies the encoding of CCNx messages in a
TLV packet format, including the TLV types used by each message
element and the encoding of each value. The semantics of CCNx
messages follow the encoding-independent CCNx Semantics
specification.
This document is a product of the Information Centric Networking
research group (ICNRG). The document received wide review among
ICNRG participants and has two full implementations currently in
active use, which have informed the technical maturity of the
protocol specification.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Research Task
Force (IRTF). The IRTF publishes the results of Internet-related
research and development activities. These results might not be
suitable for deployment. This RFC represents the consensus of the
Information-Centric Networking Research Group of the Internet
Research Task Force (IRTF). Documents approved for publication by
the IRSG are not candidates for any level of Internet Standard; see
<a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8609">https://www.rfc-editor.org/info/rfc8609</a>.
<span class="grey">Mosko, et al. Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Requirements Language . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-2">2</a>. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3">3</a>. Type-Length-Value (TLV) Packets . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. Overall Packet Format . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3.2">3.2</a>. Fixed Headers . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.2.1">3.2.1</a>. Interest Fixed Header . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.2.1.1">3.2.1.1</a>. Interest HopLimit . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.2.2">3.2.2</a>. Content Object Fixed Header . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.2.3">3.2.3</a>. Interest Return Fixed Header . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.2.3.1">3.2.3.1</a>. Interest Return HopLimit . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.2.3.2">3.2.3.2</a>. Interest Return Flags . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.2.3.3">3.2.3.3</a>. Return Code . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.3">3.3</a>. Global Formats . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-3.3.1">3.3.1</a>. Pad . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-3.3.2">3.3.2</a>. Organization-Specific TLVs . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-3.3.3">3.3.3</a>. Hash Format . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-3.3.4">3.3.4</a>. Link . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-3.4">3.4</a>. Hop-by-Hop TLV Headers . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-3.4.1">3.4.1</a>. Interest Lifetime . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-3.4.2">3.4.2</a>. Recommended Cache Time . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-3.4.3">3.4.3</a>. Message Hash . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-3.5">3.5</a>. Top-Level Types . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-3.6">3.6</a>. CCNx Message TLV . . . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-3.6.1">3.6.1</a>. Name . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-3.6.1.1">3.6.1.1</a>. Name Segments . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-3.6.1.2">3.6.1.2</a>. Interest Payload ID . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-3.6.2">3.6.2</a>. Message TLVs . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-3.6.2.1">3.6.2.1</a>. Interest Message TLVs . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-3.6.2.2">3.6.2.2</a>. Content Object Message TLVs . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-3.6.3">3.6.3</a>. Payload . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-3.6.4">3.6.4</a>. Validation . . . . . . . . . . . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-3.6.4.1">3.6.4.1</a>. Validation Algorithm . . . . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-3.6.4.2">3.6.4.2</a>. Validation Payload . . . . . . . . . . . . . . . <a href="#page-32">32</a>
<span class="grey">Mosko, et al. Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<a href="#section-4">4</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-33">33</a>
<a href="#section-4.1">4.1</a>. Packet Type Registry . . . . . . . . . . . . . . . . . . <a href="#page-33">33</a>
<a href="#section-4.2">4.2</a>. Interest Return Code Registry . . . . . . . . . . . . . . <a href="#page-34">34</a>
<a href="#section-4.3">4.3</a>. Hop-by-Hop Type Registry . . . . . . . . . . . . . . . . <a href="#page-35">35</a>
<a href="#section-4.4">4.4</a>. Top-Level Type Registry . . . . . . . . . . . . . . . . . <a href="#page-36">36</a>
<a href="#section-4.5">4.5</a>. Name Segment Type Registry . . . . . . . . . . . . . . . <a href="#page-37">37</a>
<a href="#section-4.6">4.6</a>. Message Type Registry . . . . . . . . . . . . . . . . . . <a href="#page-37">37</a>
<a href="#section-4.7">4.7</a>. Payload Type Registry . . . . . . . . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#section-4.8">4.8</a>. Validation Algorithm Type Registry . . . . . . . . . . . <a href="#page-39">39</a>
<a href="#section-4.9">4.9</a>. Validation-Dependent Data Type Registry . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-4.10">4.10</a>. Hash Function Type Registry . . . . . . . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-5">5</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-41">41</a>
<a href="#section-6">6</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-44">44</a>
<a href="#section-6.1">6.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-44">44</a>
<a href="#section-6.2">6.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-44">44</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-46">46</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document specifies a Type-Length-Value (TLV) packet format and
the TLV type and value encodings for CCNx messages. A full
description of the CCNx network protocol, providing an encoding-free
description of CCNx messages and message elements, may be found in
[<a href="./rfc8569" title=""Content-Centric Networking (CCNx) Semantics"">RFC8569</a>]. CCNx is a network protocol that uses a hierarchical name
to forward requests and to match responses to requests. It does not
use endpoint addresses; the Internet Protocol does. Restrictions in
a request can limit the response by the public key of the response's
signer or the cryptographic hash of the response. Every CCNx
forwarder along the path does the name matching and restriction
checking. The CCNx protocol fits within the broader framework of
Information-Centric Networking (ICN) protocols [<a href="./rfc7927" title=""Information-Centric Networking (ICN) Research Challenges"">RFC7927</a>].
This document describes a TLV scheme using a fixed 2-byte T and a
fixed 2-byte L field. The rational for this choice is described in
<a href="#section-5">Section 5</a>. Briefly, this choice avoids multiple encodings of the
same value (aliases) and reduces the work of a validator to ensure
compliance. Unlike some uses of TLV in networking, each network hop
must evaluate the encoding, so even small validation latencies at
each hop could add up to a large overall forwarding delay. For very
small packets or low-throughput links, where the extra bytes may
become a concern, one may use a TLV compression protocol, for
example, [<a href="#ref-compress" title=""Header Compression for TLV-based Packets"">compress</a>] and [<a href="#ref-CCNxz" title=""CCNxz TLV Header Compression Experimental Code"">CCNxz</a>].
This document uses the terms CCNx Packet, CCNx Message, and CCNx
Message TLV. A CCNx Packet refers to the entire Layer 3 datagram as
specified in <a href="#section-3.1">Section 3.1</a>. A CCNx Message is the ABNF token defined
in the CCNx Semantics document [<a href="./rfc8569" title=""Content-Centric Networking (CCNx) Semantics"">RFC8569</a>]. A CCNx Message TLV refers
to the encoding of a CCNx Message as specified in <a href="#section-3.6">Section 3.6</a>.
<span class="grey">Mosko, et al. Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
This document specifies:
o the CCNx Packet format,
o the CCNx Message TLV format,
o the TLV types used by CCNx messages,
o the encoding of values for each type,
o top-level types that exist at the outermost containment,
o Interest TLVs that exist within Interest containment, and
o Content Object TLVs that exist within Content Object containment.
This document is supplemented by these documents:
o [<a href="./rfc8569" title=""Content-Centric Networking (CCNx) Semantics"">RFC8569</a>], which covers message semantics and the protocol
operation regarding Interest and Content Object, including the
Interest Return protocol.
o [<a href="#ref-CCNxURI" title=""The CCNx URI Scheme"">CCNxURI</a>], which covers the CCNx URI notation.
The type values in <a href="#section-4">Section 4</a> conform to the IANA-assigned numbers for
the CCNx protocol. This document uses the symbolic names defined in
that section. All TLV type values are relative to their parent
containers. For example, each level of a nested TLV structure might
define a "type = 1" with a completely different meaning.
Packets are represented as 32-bit wide words using ASCII art. Due to
the nested levels of TLV encoding and the presence of optional fields
and variable sizes, there is no concise way to represent all
possibilities. We use the convention that ASCII art fields enclosed
by vertical bars "|" represent exact bit widths. Fields with a
forward slash "/" are variable bit widths, which we typically pad out
to word alignment for picture readability.
The document represents the consensus of the ICN RG. It is the first
ICN protocol from the RG, created from the early CCNx protocol [<a href="#ref-nnc" title=""Networking Named Content"">nnc</a>]
with significant revision and input from the ICN community and RG
members. The document has received critical reading by several
members of the ICN community and the RG. The authors and RG chairs
approve of the contents. The document is sponsored under the IRTF
and is not issued by the IETF and is not an IETF standard. This is
an experimental protocol and may not be suitable for any specific
application and the specification may change in the future.
<span class="grey">Mosko, et al. Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Definitions</span>
These definitions summarize items defined in [<a href="./rfc8569" title=""Content-Centric Networking (CCNx) Semantics"">RFC8569</a>]. This
document defines their encodings.
o Name: A hierarchically structured variable-length identifier. It
is an ordered list of path segments, which are variable-length
octet strings. In human-readable form, it is represented in URI
format as "ccnx:/path/part". There is no host or query string.
See [<a href="#ref-CCNxURI" title=""The CCNx URI Scheme"">CCNxURI</a>] for complete details.
o Interest: A message requesting a Content Object with a matching
Name and other optional selectors to choose from multiple objects
with the same Name. Any Content Object with a Name and attributes
that matches the Name and optional selectors of the Interest is
said to satisfy the Interest.
o Content Object: A data object sent in response to an Interest
request. It has an optional Name and a content payload that are
bound together via cryptographic means.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Type-Length-Value (TLV) Packets</span>
We use 16-bit Type and 16-bit Length fields to encode TLV-based
packets. This provides 65,536 different possible types and value
field lengths of up to 64 KiB. With 65,536 possible types at each
level of TLV encoding, there should be sufficient space for basic
protocol types, while also allowing ample room for experimentation,
application use, vendor extensions, and growth. This encoding does
not allow for jumbo packets beyond 64 KiB total length. If used on a
media that allows for jumbo frames, we suggest defining a media
adaptation envelope that allows for multiple smaller frames.
<span class="grey">Mosko, et al. Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
+--------+------------------+---------------------------------------+
| Abbrev | Name | Description |
+--------+------------------+---------------------------------------+
| T_ORG | Vendor Specific | Information specific to a vendor |
| | Information | implementation (<a href="#section-3.3.2">Section 3.3.2</a>). |
| | | |
| T_PAD | Padding | Adds padding to a field (Section |
| | | 3.3.1). |
| | | |
| n/a | Experimental | Experimental use. |
+--------+------------------+---------------------------------------+
Table 1: Reserved TLV Types
There are several global TLV definitions that we reserve at all
hierarchical contexts. The TLV types in the range 0x1000 - 0x1FFF
are Reserved for Experimental Use. The TLV type T_ORG is also
Reserved for Vendor Extensions (see <a href="#section-3.3.2">Section 3.3.2</a>). The TLV type
T_PAD is used to optionally pad a field out to some desired
alignment.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Type | Length |
+---------------+---------------+---------------+---------------+
Figure 1: Type and Length encoding
The Length field contains the length of the Value field in octets.
It does not include the length of the Type and Length fields. The
Length MAY be zero.
TLV structures are nestable, allowing the Value field of one TLV
structure to contain additional TLV structures. The enclosing TLV
structure is called the container of the enclosed TLV.
Type values are context dependent. Within a TLV container, one may
reuse previous type values for new context-dependent purposes.
<span class="grey">Mosko, et al. Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Overall Packet Format</span>
Each CCNx Packet includes the 8-byte fixed header, described below,
followed by a set of TLV fields. These fields are optional hop-by-
hop headers and the Packet Payload.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Version | PacketType | PacketLength |
+---------------+---------------+---------------+---------------+
| PacketType-specific fields | HeaderLength |
+---------------+---------------+---------------+---------------+
/ Optional hop-by-hop header TLVs /
+---------------+---------------+---------------+---------------+
/ PacketPayload TLVs /
+---------------+---------------+---------------+---------------+
Figure 2: Overall Packet Format
The PacketPayload of a CCNx Packet is the protocol message itself.
The Content Object Hash is computed over the PacketPayload only,
excluding the fixed and hop-by-hop headers, as those might change
from hop to hop. Signed information or similarity hashes should not
include any of the fixed or hop-by-hop headers. The PacketPayload
should be self-sufficient in the event that the fixed and hop-by-hop
headers are removed. See Message Hash (<a href="#section-3.4.3">Section 3.4.3</a>).
Following the CCNx Message TLV, the PacketPayload may include
optional Validation TLVs.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| CCNx Message TLV /
+---------------+---------------+---------------+---------------+
/ Optional CCNx ValidationAlgorithm TLV /
+---------------+---------------+---------------+---------------+
/ Optional CCNx ValidationPayload TLV (ValidationAlg required) /
+---------------+---------------+---------------+---------------+
Figure 3: PacketPayload TLVs
After discarding the fixed and hop-by-hop headers, the remaining
PacketPayload should be a valid protocol message. Therefore, the
PacketPayload always begins with 4 bytes of type-length that
specifies the protocol message (whether it is an Interest, Content
Object, or other message type) and its total length. The embedding
<span class="grey">Mosko, et al. Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
of a self-sufficient protocol data unit inside the fixed and hop-by-
hop headers allows a network stack to discard the headers and operate
only on the embedded message. It also decouples the PacketType field
-- which specifies how to forward the packet -- from the
PacketPayload.
The range of bytes protected by the Validation includes the CCNx
Message TLV and the ValidationAlgorithm TLV.
The ContentObjectHash begins with the CCNx Message TLV and ends at
the tail of the CCNx Packet.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Fixed Headers</span>
In Figure 2, the fixed header fields are:
o Version: defines the version of the packet, which MUST be 1.
o HeaderLength: The length of the fixed header (8 bytes) and hop-by-
hop headers. The minimum value MUST be 8.
o PacketType: describes forwarder actions to take on the packet.
o PacketLength: Total octets of packet including all headers (fixed
header plus hop-by-hop headers) and protocol message.
o PacketType-specific Fields: specific PacketTypes define the use of
these bits.
The PacketType field indicates how the forwarder should process the
packet. A Request Packet (Interest) has PacketType PT_INTEREST, a
Response (Content Object) has PacketType PT_CONTENT, and an Interest
Return has PacketType PT_RETURN.
HeaderLength is the number of octets from the start of the CCNx
Packet (Version) to the end of the hop-by-hop headers. PacketLength
is the number of octets from the start of the packet to the end of
the packet. Both lengths have a minimum value of 8 (the fixed header
itself).
The PacketType-specific fields are reserved bits whose use depends on
the PacketType. They are used for network-level signaling.
<span class="grey">Mosko, et al. Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Interest Fixed Header</span>
If the PacketType is PT_INTEREST, it indicates that the packet should
be forwarded following the Interest pipeline in <a href="./rfc8569#section-2.4.4">Section 2.4.4 of
[RFC8569]</a>. For this type of packet, the Fixed Header includes a
field for a HopLimit as well as Reserved and Flags fields. The
Reserved field MUST be set to 0 in an Interest. There are currently
no flags defined, so the Flags field MUST be set to 0.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Version | PT_INTEREST | PacketLength |
+---------------+---------------+---------------+---------------+
| HopLimit | Reserved | Flags | HeaderLength |
+---------------+---------------+---------------+---------------+
Figure 4: Interest Header
<span class="h5"><a class="selflink" id="section-3.2.1.1" href="#section-3.2.1.1">3.2.1.1</a>. Interest HopLimit</span>
For an Interest message, the HopLimit is a counter that is
decremented with each hop. It limits the distance an Interest may
travel on the network. The node originating the Interest MAY put in
any value up to the maximum of 255. Each node that receives an
Interest with a HopLimit decrements the value upon reception. If the
value is 0 after the decrement, the Interest MUST NOT be forwarded
off the node.
It is an error to receive an Interest from a remote node with the
HopLimit field set to 0.
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. Content Object Fixed Header</span>
If the PacketType is PT_CONTENT, it indicates that the packet should
be forwarded following the Content Object pipeline in <a href="./rfc8569#section-2.4.4">Section 2.4.4
of [RFC8569]</a>. A Content Object defines a Flags field; however, there
are currently no flags defined, so the Flags field must be set to 0.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Version | PT_CONTENT | PacketLength |
+---------------+---------------+---------------+---------------+
| Reserved | Flags | HeaderLength |
+---------------+---------------+---------------+---------------+
Figure 5: Content Object Header
<span class="grey">Mosko, et al. Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. Interest Return Fixed Header</span>
If the PacketType is PT_RETURN, it indicates that the packet should
be processed following the Interest Return rules in <a href="./rfc8569#section-10">Section 10 of
[RFC8569]</a>. The only difference between this Interest Return message
and the original Interest is that the PacketType is changed to
PT_RETURN and a ReturnCode is put into the ReturnCode field. All
other fields are unchanged from the Interest packet. The purpose of
this encoding is to prevent packet length changes so no additional
bytes are needed to return an Interest to the previous hop.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Version | PT_RETURN | PacketLength |
+---------------+---------------+---------------+---------------+
| HopLimit | ReturnCode | Flags | HeaderLength |
+---------------+---------------+---------------+---------------+
Figure 6: Interest Return Header
<span class="h5"><a class="selflink" id="section-3.2.3.1" href="#section-3.2.3.1">3.2.3.1</a>. Interest Return HopLimit</span>
This is the original Interest's HopLimit, as received before
decrement at the node sending the Interest Return.
<span class="h5"><a class="selflink" id="section-3.2.3.2" href="#section-3.2.3.2">3.2.3.2</a>. Interest Return Flags</span>
These are the original Flags as set in the Interest.
<span class="h5"><a class="selflink" id="section-3.2.3.3" href="#section-3.2.3.3">3.2.3.3</a>. Return Code</span>
This section maps the Return Code name [<a href="./rfc8569" title=""Content-Centric Networking (CCNx) Semantics"">RFC8569</a>] to the TLV symbolic
name. <a href="#section-4.2">Section 4.2</a> maps the symbolic names to numeric values. This
field is set by the node creating the Interest Return.
A return code of "0" MUST NOT be used, as it indicates that the
returning system did not modify the Return Code field.
<span class="grey">Mosko, et al. Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
+-------------------------------------+-----------------------------+
| Return Type | Name in <a href="./rfc8569">RFC 8569</a> |
+-------------------------------------+-----------------------------+
| T_RETURN_NO_ROUTE | No Route |
| | |
| T_RETURN_LIMIT_EXCEEDED | Hop Limit Exceeded |
| | |
| T_RETURN_NO_RESOURCES | No Resources |
| | |
| T_RETURN_PATH_ERROR | Path Error |
| | |
| T_RETURN_PROHIBITED | Prohibited |
| | |
| T_RETURN_CONGESTED | Congested |
| | |
| T_RETURN_MTU_TOO_LARGE | MTU too large |
| | |
| T_RETURN_UNSUPPORTED_HASH_RESTRICTI | Unsupported ContentObjectHa |
| ON | shRestriction |
| | |
| T_RETURN_MALFORMED_INTEREST | Malformed Interest |
+-------------------------------------+-----------------------------+
Table 2: Return Codes
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Global Formats</span>
This section defines global formats that may be nested within other
TLVs.
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. Pad</span>
The pad type may be used by sources that prefer word-aligned data.
Padding 4-byte words, for example, would use a 1-byte, 2-byte, and
3-byte Length. Padding 8-byte words would use a (0, 1, 2, 3, 5, 6,
7)-byte Length.
One MUST NOT pad inside a Name. Apart from that, a pad MAY be
inserted after any other TLV in the CCNx Message TLV or in the
ValidationAlgorithm TLV. In the remainder of this document, we will
not show optional Pad TLVs.
<span class="grey">Mosko, et al. Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_PAD | Length |
+---------------+---------------+---------------+---------------+
/ variable-length pad MUST be zeros /
+---------------+---------------+---------------+---------------+
Figure 7: Pad Encoding
<span class="h4"><a class="selflink" id="section-3.3.2" href="#section-3.3.2">3.3.2</a>. Organization-Specific TLVs</span>
Organization-specific TLVs (also known as Vendor TLVs) MUST use the
T_ORG type. The Length field is the length of the organization-
specific information plus 3. The Value begins with the 3 byte
organization number derived from the network byte order encoding of
the IANA "Private Enterprise Numbers" registry [<a href="#ref-IANA-PEN" title=""Private Enterprise Numbers"">IANA-PEN</a>], followed
by the organization-specific information.
A T_ORG MAY be used as a path segment in a Name. It is treated like
any other path segment.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_ORG | Length (3+value length) |
+---------------+---------------+---------------+---------------+
| PEN[0] | PEN[1] | PEN[2] | /
+---------------+---------------+---------------+ +
/ Vendor Specific Value /
+---------------+---------------+---------------+---------------+
Figure 8: Organization-Specific TLVs
<span class="h4"><a class="selflink" id="section-3.3.3" href="#section-3.3.3">3.3.3</a>. Hash Format</span>
Hash values are used in several fields throughout a packet. This TLV
encoding is commonly embedded inside those fields to specify the
specific hash function used and its value. Note that the reserved
TLV types are also reserved here for user-defined experimental
functions.
The LENGTH field of the hash value MUST be less than or equal to the
hash function length. If the LENGTH is less than the full length, it
is taken as the left LENGTH bytes of the hash function output. Only
specified truncations are allowed, not arbitrary truncations.
<span class="grey">Mosko, et al. Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
This nested format is used because it allows binary comparison of
hash values for certain fields without a router needing to understand
a new hash function. For example, the KeyIdRestriction is bit-wise
compared between an Interest's KeyIdRestriction field and a
ContentObject's KeyId field. This format means the outer field
values do not change with differing hash functions so a router can
still identify those fields and do a binary comparison of the hash
TLV without need to understand the specific hash used. An
alternative approach, such as using T_KEYID_SHA512-256, would require
each router keeps an up-to-date parser and supporting user-defined
hash functions here would explode the parsing state-space.
A CCNx entity MUST support the hash type T_SHA-256. An entity MAY
support the remaining hash types.
+-----------+------------------------+
| Abbrev | Lengths (octets) |
+-----------+------------------------+
| T_SHA-256 | 32 |
| | |
| T_SHA-512 | 64, 32 |
| | |
| n/a | Experimental TLV types |
+-----------+------------------------+
Table 3: CCNx Hash Functions
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_FOO | 36 |
+---------------+---------------+---------------+---------------+
| T_SHA512 | 32 |
+---------------+---------------+---------------+---------------+
/ 32-byte hash value /
+---------------+---------------+---------------+---------------+
Figure 9: Example nesting inside type T_FOO
<span class="h4"><a class="selflink" id="section-3.3.4" href="#section-3.3.4">3.3.4</a>. Link</span>
A Link is the tuple: {Name, [KeyIdRestr], [ContentObjectHashRestr]}.
It is a general encoding that is used in both the payload of a
Content Object with PayloadType = "Link" and in a Content Object's
KeyLink field. A Link is essentially the body of an Interest.
<span class="grey">Mosko, et al. Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
/ Mandatory CCNx Name /
+---------------+---------------+---------------+---------------+
/ Optional KeyIdRestriction /
+---------------+---------------+---------------+---------------+
/ Optional ContentObjectHashRestriction /
+---------------+---------------+---------------+---------------+
Figure 10: Link Encoding
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Hop-by-Hop TLV Headers</span>
Hop-by-hop TLV headers are unordered and meaning MUST NOT be attached
to their ordering. Three hop-by-hop headers are described in this
document:
+-------------+--------------------+--------------------------------+
| Abbrev | Name | Description |
+-------------+--------------------+--------------------------------+
| T_INTLIFE | Interest Lifetime | The time an Interest should |
| | (<a href="#section-3.4.1">Section 3.4.1</a>) | stay pending at an |
| | | intermediate node. |
| | | |
| T_CACHETIME | Recommended Cache | The Recommended Cache Time for |
| | Time (Section | Content Objects. |
| | 3.4.2) | |
| | | |
| T_MSGHASH | Message Hash | A cryptographic hash (Section |
| | (<a href="#section-3.4.3">Section 3.4.3</a>) | 3.3.3). |
+-------------+--------------------+--------------------------------+
Table 4: Hop-by-Hop Header Types
Additional hop-by-hop headers are defined in higher level
specifications such as the fragmentation specification.
<span class="h4"><a class="selflink" id="section-3.4.1" href="#section-3.4.1">3.4.1</a>. Interest Lifetime</span>
The Interest Lifetime is the time that an Interest should stay
pending at an intermediate node. It is expressed in milliseconds as
an unsigned integer in network byte order.
A value of 0 (encoded as 1 byte 0x00) indicates the Interest does not
elicit a Content Object response. It should still be forwarded, but
no reply is expected and a forwarder could skip creating a PIT entry.
<span class="grey">Mosko, et al. Experimental [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_INTLIFE | Length |
+---------------+---------------+---------------+---------------+
/ /
/ Lifetime (Length octets) /
/ /
+---------------+---------------+---------------+---------------+
Figure 11: Interest Lifetime Encoding
<span class="h4"><a class="selflink" id="section-3.4.2" href="#section-3.4.2">3.4.2</a>. Recommended Cache Time</span>
The Recommended Cache Time (RCT) is a measure of the useful lifetime
of a Content Object as assigned by a content producer or upstream
node. It serves as a guideline to the Content Store cache in
determining how long to keep the Content Object. It is a
recommendation only and may be ignored by the cache. This is in
contrast to the ExpiryTime (described in <a href="#section-3.6.2.2.2">Section 3.6.2.2.2</a>) which
takes precedence over the RCT and must be obeyed.
Because the Recommended Cache Time is an optional hop-by-hop header
and not a part of the signed message, a content producer may re-issue
a previously signed Content Object with an updated RCT without
needing to re-sign the message. There is little ill effect from an
attacker changing the RCT as the RCT serves as a guideline only.
The Recommended Cache Time (a millisecond timestamp) is an unsigned
integer in network byte order that indicates the time when the
payload expires (as the number of milliseconds since the epoch in
UTC). It is a 64-bit field.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_CACHETIME | 8 |
+---------------+---------------+---------------+---------------+
/ /
/ Recommended Cache Time /
/ /
+---------------+---------------+---------------+---------------+
Figure 12: Recommended Cache Time Encoding
<span class="grey">Mosko, et al. Experimental [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h4"><a class="selflink" id="section-3.4.3" href="#section-3.4.3">3.4.3</a>. Message Hash</span>
Within a trusted domain, an operator may calculate the message hash
at a border device and insert that value into the hop-by-hop headers
of a message. An egress device should remove the value. This
permits intermediate devices within that trusted domain to match
against a ContentObjectHashRestriction without calculating it at
every hop.
The message hash is a cryptographic hash from the start of the CCNx
Message TLV to the end of the packet. It is used to match against
the ContentObjectHashRestriction (<a href="#section-3.6.2.1.2">Section 3.6.2.1.2</a>). The Message
Hash may be of longer length than an Interest's restriction, in which
case the device should use the left bytes of the Message Hash to
check against the Interest's value.
The Message Hash may only carry one hash type and there may only be
one Message Hash header.
The Message Hash header is unprotected, so this header is only of
practical use within a trusted domain, such as an operator's
autonomous system.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_MSGHASH | (length + 4) |
+---------------+---------------+---------------+---------------+
| hash type | length |
+---------------+---------------+---------------+---------------+
/ hash value /
+---------------+---------------+---------------+---------------+
Figure 13: Message Hash Header
<span class="grey">Mosko, et al. Experimental [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Top-Level Types</span>
The top-level TLV types listed below exist at the outermost level of
a CCNx Message TLV.
+----------------------+------------+-------------------------------+
| Abbrev | Name | Description |
+----------------------+------------+-------------------------------+
| T_INTEREST | Interest | An Interest MessageType. |
| | (Section | |
| | 3.6) | |
| | | |
| T_OBJECT | Content | A Content Object MessageType |
| | Object | |
| | (Section | |
| | 3.6) | |
| | | |
| T_VALIDATION_ALG | Validation | The method of message |
| | Algorithm | verification such as a |
| | (Section | Message Integrity Check |
| | 3.6.4.1) | (MIC), Message Authentication |
| | | Code (MAC), or cryptographic |
| | | signature. |
| | | |
| T_VALIDATION_PAYLOAD | Validation | The validation output, such |
| | Payload | as the CRC32C code or the RSA |
| | (Section | signature. |
| | 3.6.4.2) | |
+----------------------+------------+-------------------------------+
Table 5: CCNx Top Level Types
<span class="grey">Mosko, et al. Experimental [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. CCNx Message TLV</span>
This is the format for the CCNx Message itself. The CCNx Message TLV
is the portion of the CCNx Packet between the hop-by-hop headers and
the Validation TLVs. The figure below is an expansion of the "CCNx
Message TLV" depicted in the beginning of <a href="#section-3">Section 3</a>. The CCNx
Message TLV begins with MessageType and runs through the optional
Payload. The same general format is used for both Interest and
Content Object messages which are differentiated by the MessageType
field. The first enclosed TLV of a CCNx Message TLV is always the
Name TLV, if present. This is followed by an optional Message TLVs
and an optional Payload TLV.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| MessageType | MessageLength |
+---------------+---------------+---------------+---------------+
/ Name TLV (Type = T_NAME) /
+---------------+---------------+---------------+---------------+
/ Optional Message TLVs (Various Types) /
+---------------+---------------+---------------+---------------+
/ Optional Payload TLV (Type = T_PAYLOAD) /
+---------------+---------------+---------------+---------------+
Figure 14: CCNx Message TLV Encoding
+-----------+---------------+---------------------------------------+
| Abbrev | Name | Description |
+-----------+---------------+---------------------------------------+
| T_NAME | Name (Section | The CCNx Name requested in an |
| | 3.6.1) | Interest or published in a Content |
| | | Object. |
| | | |
| T_PAYLOAD | Payload | The message payload. |
| | (Section | |
| | 3.6.3) | |
+-----------+---------------+---------------------------------------+
Table 6: CCNx Message TLV Types
<span class="grey">Mosko, et al. Experimental [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h4"><a class="selflink" id="section-3.6.1" href="#section-3.6.1">3.6.1</a>. Name</span>
A Name is a TLV encoded sequence of segments. The table below lists
the type values appropriate for these name segments. A Name MUST NOT
include Pad TLVs.
As described in CCNx Semantics [<a href="./rfc8569" title=""Content-Centric Networking (CCNx) Semantics"">RFC8569</a>], using the CCNx URI
[<a href="#ref-CCNxURI" title=""The CCNx URI Scheme"">CCNxURI</a>] notation, a T_NAME with zero length corresponds to "ccnx:/"
(the default route). The message grammar does not allow the first
name segment to have zero length in a CCNx Message TLV Name. In the
TLV encoding, "ccnx:/" corresponds to T_NAME with zero length.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_NAME | Length |
+---------------+---------------+---------------+---------------+
/ Name segment TLVs /
+---------------+---------------+---------------+---------------+
Figure 15: Name Encoding
+---------------+-------------+-------------------------------------+
| Symbolic Name | Name | Description |
+---------------+-------------+-------------------------------------+
| T_NAMESEGMENT | Name | A generic name segment. |
| | segment | |
| | (Section | |
| | 3.6.1.1) | |
| | | |
| T_IPID | Interest | An identifier that represents the |
| | Payload ID | Interest Payload field. As an |
| | (Section | example, the Payload ID might be a |
| | 3.6.1.2) | hash of the Interest Payload. This |
| | | provides a way to differentiate |
| | | between Interests based on their |
| | | payloads without having to parse |
| | | all the bytes of the payload |
| | | itself, and instead using only this |
| | | Payload ID name segment. |
| | | |
| T_APP:00 - | Application | Application-specific payload in a |
| T_APP:4096 | Components | name segment. An application may |
| | (Section | apply its own semantics to the 4096 |
| | 3.6.1.1) | reserved types. |
+---------------+-------------+-------------------------------------+
Table 7: CCNx Name Types
<span class="grey">Mosko, et al. Experimental [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h5"><a class="selflink" id="section-3.6.1.1" href="#section-3.6.1.1">3.6.1.1</a>. Name Segments</span>
4096 special application payload name segments are allocated. These
have application semantics applied to them. A good convention is to
put the application's identity in the name prior to using these name
segments.
For example, a name like "ccnx:/foo/bar/hi" would be encoded as:
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| (T_NAME) | 0x14 (20) |
+---------------+---------------+---------------+---------------+
| (T_NAME_SEGMENT) | 0x03 (3) |
+---------------+---------------+---------------+---------------+
| f o o |(T_NAME_SEGMENT)
+---------------+---------------+---------------+---------------+
| | 0x03 (3) | b |
+---------------+---------------+---------------+---------------+
| a r | (T_NAME_SEGMENT) |
+---------------+---------------+---------------+---------------+
| 0x02 (2) | h | i |
+---------------+---------------+---------------+---------------+
Figure 16: Name Encoding Example
<span class="h5"><a class="selflink" id="section-3.6.1.2" href="#section-3.6.1.2">3.6.1.2</a>. Interest Payload ID</span>
The InterestPayloadID is a name segment created by the origin of an
Interest to represent the Interest Payload. This allows the proper
multiplexing of Interests based on their name if they have different
payloads. A common representation is to use a hash of the Interest
Payload as the InterestPayloadID.
As part of the Value of the TLV, the InterestPayloadID contains a
one-octet identifier of the method used to create the
InterestPayloadID followed by a variable-length octet string. An
implementation is not required to implement any of the methods to
receive an Interest; the InterestPayloadID may be treated only as an
opaque octet string for the purposes of multiplexing Interests with
different payloads. Only a device creating an InterestPayloadID name
segment or a device verifying such a segment needs to implement the
algorithms.
It uses the encoding of hash values specified in <a href="#section-3.3.3">Section 3.3.3</a>.
<span class="grey">Mosko, et al. Experimental [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
In normal operations, we recommend displaying the InterestPayloadID
as an opaque octet string in a CCNx URI, as this is the common
denominator for implementation parsing.
The InterestPayloadID, even if it is a hash, should not convey any
security context. If a system requires confirmation that a specific
entity created the InterestPayload, it should use a cryptographic
signature on the Interest via the ValidationAlgorithm and
ValidationPayload or use its own methods inside the Interest Payload.
<span class="h4"><a class="selflink" id="section-3.6.2" href="#section-3.6.2">3.6.2</a>. Message TLVs</span>
Each message type (Interest or Content Object) is associated with a
set of optional Message TLVs. Additional specification documents may
extend the types associated with each.
<span class="h5"><a class="selflink" id="section-3.6.2.1" href="#section-3.6.2.1">3.6.2.1</a>. Interest Message TLVs</span>
There are two Message TLVs currently associated with an Interest
message: the KeyIdRestriction selector and the ContentObjectHashRestr
selector are used to narrow the universe of acceptable Content
Objects that would satisfy the Interest.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| MessageType | MessageLength |
+---------------+---------------+---------------+---------------+
| Name TLV |
+---------------+---------------+---------------+---------------+
/ Optional KeyIdRestriction TLV /
+---------------------------------------------------------------+
/ Optional ContentObjectHashRestriction TLV /
+---------------------------------------------------------------+
Figure 17: Interest Message TLVs
<span class="grey">Mosko, et al. Experimental [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
+----------------+------------------------------+-------------------+
| Abbrev | Name | Description |
+----------------+------------------------------+-------------------+
| T_KEYIDRESTR | KeyIdRestriction (Section | A representation |
| | 3.6.2.1.1) | (as per Section |
| | | 3.3.3) of the |
| | | KeyId |
| | | |
| T_OBJHASHRESTR | ContentObjectHashRestriction | A representation |
| | (<a href="#section-3.6.2.1.2">Section 3.6.2.1.2</a>) | (as per Section |
| | | 3.3.3) of the |
| | | hash of the |
| | | specific Content |
| | | Object that would |
| | | satisfy the |
| | | Interest. |
+----------------+------------------------------+-------------------+
Table 8: CCNx Interest Message TLV Types
<span class="h6"><a class="selflink" id="section-3.6.2.1.1" href="#section-3.6.2.1.1">3.6.2.1.1</a>. KeyIdRestriction</span>
An Interest MAY include a KeyIdRestriction selector. This ensures
that only Content Objects with matching KeyIds will satisfy the
Interest. See <a href="#section-3.6.4.1.4.1">Section 3.6.4.1.4.1</a> for the format of a KeyId.
<span class="h6"><a class="selflink" id="section-3.6.2.1.2" href="#section-3.6.2.1.2">3.6.2.1.2</a>. ContentObjectHashRestriction</span>
An Interest MAY contain a ContentObjectHashRestriction selector.
This is the hash of the Content Object -- the self-certifying name
restriction that must be verified in the network, if an Interest
carried this restriction (see Message Hash (<a href="#section-3.4.3">Section 3.4.3</a>)). The
LENGTH MUST be from one of the allowed values for that hash (see
<a href="#section-3.3.3">Section 3.3.3</a>).
The ContentObjectHashRestriction SHOULD be of type T_SHA-256 and of
length 32 bytes.
<span class="grey">Mosko, et al. Experimental [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_OBJHASHRESTR | (LENGTH+4) |
+---------------+---------------+---------------+---------------+
| hash type | LENGTH |
+---------------+---------------+---------------+---------------+
/ LENGTH octets of hash /
+---------------+---------------+---------------+---------------+
Figure 18: ContentObjectHashRestriction Encoding
<span class="h5"><a class="selflink" id="section-3.6.2.2" href="#section-3.6.2.2">3.6.2.2</a>. Content Object Message TLVs</span>
The following message TLVs are currently defined for Content Objects:
PayloadType (optional) and ExpiryTime (optional).
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| MessageType | MessageLength |
+---------------+---------------+---------------+---------------+
| Name TLV |
+---------------+---------------+---------------+---------------+
/ Optional PayloadType TLV /
+---------------------------------------------------------------+
/ Optional ExpiryTime TLV /
+---------------------------------------------------------------+
Figure 19: Content Object Message TLVs
+-------------+-------------+---------------------------------------+
| Abbrev | Name | Description |
+-------------+-------------+---------------------------------------+
| T_PAYLDTYPE | PayloadType | Indicates the type of Payload |
| | (Section | contents. |
| | 3.6.2.2.1) | |
| | | |
| T_EXPIRY | ExpiryTime | The time at which the Payload |
| | (Section | expires, as expressed in the number |
| | 3.6.2.2.2) | of milliseconds since the epoch in |
| | | UTC. If missing, Content Object may |
| | | be used as long as desired. |
+-------------+-------------+---------------------------------------+
Table 9: CCNx Content Object Message TLV Types
<span class="grey">Mosko, et al. Experimental [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h6"><a class="selflink" id="section-3.6.2.2.1" href="#section-3.6.2.2.1">3.6.2.2.1</a>. PayloadType</span>
The PayloadType is an octet representing the general type of the
Payload TLV.
o T_PAYLOADTYPE_DATA: Data (possibly encrypted)
o T_PAYLOADTYPE_KEY: Key
o T_PAYLOADTYPE_LINK: Link
The Data type indicates that the Payload of the ContentObject is
opaque application bytes. The Key type indicates that the Payload is
a DER-encoded public key. The Link type indicates that the Payload
is one or more Links (<a href="#section-3.3.4">Section 3.3.4</a>). If this field is missing, a
Data type is assumed.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_PAYLDTYPE | 1 |
+---------------+---------------+---------------+---------------+
| PayloadType |
+---------------+
Figure 20: PayloadType Encoding
<span class="h6"><a class="selflink" id="section-3.6.2.2.2" href="#section-3.6.2.2.2">3.6.2.2.2</a>. ExpiryTime</span>
The ExpiryTime is the time at which the Payload expires, as expressed
by a timestamp containing the number of milliseconds since the epoch
in UTC. It is a network byte order unsigned integer in a 64-bit
field. A cache or end system should not respond with a Content
Object past its ExpiryTime. Routers forwarding a Content Object do
not need to check the ExpiryTime. If the ExpiryTime field is
missing, the Content Object has no expressed expiration, and a cache
or end system may use the Content Object for as long as desired.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_EXPIRY | 8 |
+---------------+---------------+---------------+---------------+
/ ExpiryTime /
/ /
+---------------+---------------+---------------+---------------+
Figure 21: ExpiryTime encoding
<span class="grey">Mosko, et al. Experimental [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h4"><a class="selflink" id="section-3.6.3" href="#section-3.6.3">3.6.3</a>. Payload</span>
The Payload TLV contains the content of the packet. It MAY be of
zero length. If a packet does not have any payload, this field
SHOULD be omitted, rather than being of zero length.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_PAYLOAD | Length |
+---------------+---------------+---------------+---------------+
/ Payload Contents /
+---------------+---------------+---------------+---------------+
Figure 22: Payload Encoding
<span class="h4"><a class="selflink" id="section-3.6.4" href="#section-3.6.4">3.6.4</a>. Validation</span>
Both Interests and Content Objects have the option to include
information about how to validate the CCNx Message. This information
is contained in two TLVs: the ValidationAlgorithm TLV and the
ValidationPayload TLV. The ValidationAlgorithm TLV specifies the
mechanism to be used to verify the CCNx Message. Examples include
verification with a Message Integrity Check (MIC), a Message
Authentication Code (MAC), or a cryptographic signature. The
ValidationPayload TLV contains the validation output, such as the
CRC32C code or the RSA signature.
An Interest would most likely only use a MIC type of validation -- a
CRC, checksum, or digest.
<span class="h5"><a class="selflink" id="section-3.6.4.1" href="#section-3.6.4.1">3.6.4.1</a>. Validation Algorithm</span>
The ValidationAlgorithm is a set of nested TLVs containing all of the
information needed to verify the message. The outermost container
has type = T_VALIDATION_ALG. The first nested TLV defines the
specific type of validation to be performed on the message. The type
is identified with the "ValidationType" as shown in the figure below
and elaborated in the table below. Nested within that container are
the TLVs for any ValidationType-dependent data -- for example, a Key
Id, Key Locator, etc.
Complete examples of several types may be found in <a href="#section-3.6.4.1.5">Section 3.6.4.1.5</a>.
<span class="grey">Mosko, et al. Experimental [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_VALIDATION_ALG | ValidationAlgLength |
+---------------+---------------+---------------+---------------+
| ValidationType | Length |
+---------------+---------------+---------------+---------------+
/ ValidationType-dependent data /
+---------------+---------------+---------------+---------------+
Figure 23: Validation Algorithm Encoding
+-----------------+---------------+---------------------------------+
| Abbrev | Name | Description |
+-----------------+---------------+---------------------------------+
| T_CRC32C | CRC32C | Castagnoli CRC32 (iSCSI, ext4, |
| | (Section | etc.) with normal form |
| | 3.6.4.1.1) | polynomial 0x1EDC6F41. |
| | | |
| T_HMAC-SHA256 | HMAC-SHA256 | HMAC (<a href="./rfc2104">RFC 2104</a>) using SHA256 |
| | (Section | hash. |
| | 3.6.4.1.2) | |
| | | |
| T_RSA-SHA256 | RSA-SHA256 | RSA public-key signature using |
| | (Section | SHA256 digest. |
| | 3.6.4.1.3) | |
| | | |
| T_EC-SECP-256K1 | SECP-256K1 | Elliptic Curve signature with |
| | (Section | SECP-256K1 parameters (see |
| | 3.6.4.1.3) | [<a href="#ref-ECC" title=""SEC 2: Recommended Elliptic Curve Domain Parameters"">ECC</a>]). |
| | | |
| T_EC-SECP-384R1 | SECP-384R1 | Elliptic Curve signature with |
| | (Section | SECP-384R1 parameters (see |
| | 3.6.4.1.3) | [<a href="#ref-ECC" title=""SEC 2: Recommended Elliptic Curve Domain Parameters"">ECC</a>]). |
+-----------------+---------------+---------------------------------+
Table 10: CCNx Validation Types
<span class="h6"><a class="selflink" id="section-3.6.4.1.1" href="#section-3.6.4.1.1">3.6.4.1.1</a>. Message Integrity Checks</span>
MICs do not require additional data in order to perform the
verification. An example is CRC32C that has a zero-length value.
<span class="grey">Mosko, et al. Experimental [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h6"><a class="selflink" id="section-3.6.4.1.2" href="#section-3.6.4.1.2">3.6.4.1.2</a>. Message Authentication Codes</span>
MACs are useful for communication between two trusting parties who
have already shared secret keys. An example is the HMAC algorithm.
A MAC uses the KeyId field to identify which shared secret is in use.
The meaning of the KeyId is specific to the two parties involved and
could be simply an integer to enumerate keys. If a new MAC requires
an additional field, such as an Initialization Vector, that field
would need to be defined as part of the updated specification.
<span class="h6"><a class="selflink" id="section-3.6.4.1.3" href="#section-3.6.4.1.3">3.6.4.1.3</a>. Signature</span>
Signature type Validators specify a digest mechanism and a signing
algorithm to verify the message. Examples include an RSA signature
on a SHA256 digest, an Elliptic Curve signature with SECP-256K1
parameters, etc. These Validators require a KeyId and a mechanism
for locating the publisher's public key (a KeyLocator) -- and
optionally a PublicKey or Certificate or KeyLink.
<span class="h6"><a class="selflink" id="section-3.6.4.1.4" href="#section-3.6.4.1.4">3.6.4.1.4</a>. Validation-Dependent Data</span>
Different Validation Algorithms require access to different pieces of
data contained in the ValidationAlgorithm TLV. As described above,
Key Ids, Key Locators, Public Keys, Certificates, Links, and Key
Names all play a role in different Validation Algorithms. Any number
of Validation-Dependent Data containers can be present in a
Validation Algorithm TLV.
<span class="grey">Mosko, et al. Experimental [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
Below is a table of CCNx ValidationType-dependent data types:
+-------------+-----------------+-----------------------------------+
| Abbrev | Name | Description |
+-------------+-----------------+-----------------------------------+
| T_KEYID | SignerKeyId | An identifier of the shared |
| | (Section | secret or public key associated |
| | 3.6.4.1.4.1) | with a MAC or Signature. |
| | | |
| T_PUBLICKEY | Public Key | DER-encoded public key. |
| | (Section | |
| | 3.6.4.1.4.2) | |
| | | |
| T_CERT | Certificate | DER-encoded X.509 certificate. |
| | (Section | |
| | 3.6.4.1.4.3) | |
| | | |
| T_KEYLINK | KeyLink | A CCNx Link object. |
| | (Section | |
| | 3.6.4.1.4.4) | |
| | | |
| T_SIGTIME | SignatureTime | A millisecond timestamp |
| | (Section | indicating the time when the |
| | 3.6.4.1.4.5) | signature was created. |
+-------------+-----------------+-----------------------------------+
Table 11: CCNx Validation-Dependent Data Types
<span class="h6"><a class="selflink" id="section-3.6.4.1.4.1" href="#section-3.6.4.1.4.1">3.6.4.1.4.1</a>. KeyId</span>
The KeyId for a signature is the publisher key identifier. It is
similar to a Subject Key Identifier from X.509 (see <a href="./rfc5280#section-4.2.1.2">Section 4.2.1.2
of [RFC5280]</a>). It should be derived from the key used to sign, such
as from the SHA-256 hash of the key. It applies to both public and
private key systems and to symmetric key systems.
The KeyId is represented using the hash format in <a href="#section-3.3.3">Section 3.3.3</a>. If
an application protocol uses a non-hash identifier, it should use one
of the reserved values.
<span class="grey">Mosko, et al. Experimental [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_KEYID | LENGTH+4 |
+---------------+---------------+---------------+---------------+
| <hash type> | LENGTH |
+---------------+---------------+---------------+---------------+
/ LENGTH octets of hash /
+---------------+---------------+---------------+---------------+
Figure 24: KeyId Encoding
<span class="h6"><a class="selflink" id="section-3.6.4.1.4.2" href="#section-3.6.4.1.4.2">3.6.4.1.4.2</a>. Public Key</span>
A Public Key is a DER-encoded Subject Public Key Info block, as in an
X.509 certificate.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_PUBLICKEY | Length |
+---------------+---------------+---------------+---------------+
/ Public Key (DER-encoded SPKI) /
+---------------+---------------+---------------+---------------+
Figure 25: Public Key Encoding
<span class="h6"><a class="selflink" id="section-3.6.4.1.4.3" href="#section-3.6.4.1.4.3">3.6.4.1.4.3</a>. Certificate</span>
A Certificate is a DER-encoded X.509 certificate. The KeyId
(<a href="#section-3.6.4.1.4.1">Section 3.6.4.1.4.1</a>) is derived from this encoding.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_CERT | Length |
+---------------+---------------+---------------+---------------+
/ Certificate (DER-encoded X.509) /
+---------------+---------------+---------------+---------------+
Figure 26: Certificate Encoding
<span class="grey">Mosko, et al. Experimental [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h6"><a class="selflink" id="section-3.6.4.1.4.4" href="#section-3.6.4.1.4.4">3.6.4.1.4.4</a>. KeyLink</span>
A KeyLink type KeyLocator is a Link.
The KeyLink ContentObjectHashRestr, if included, is the digest of the
Content Object identified by KeyLink, not the digest of the public
key. Likewise, the KeyIdRestr of the KeyLink is the KeyId of the
ContentObject, not necessarily of the wrapped key.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+-------------------------------+
| T_KEYLINK | Length |
+---------------+---------------+-------------------------------+
/ Link /
+---------------------------------------------------------------+
Figure 27: KeyLink Encoding
<span class="h6"><a class="selflink" id="section-3.6.4.1.4.5" href="#section-3.6.4.1.4.5">3.6.4.1.4.5</a>. SignatureTime</span>
The SignatureTime is a millisecond timestamp indicating the time at
which a signature was created. The signer sets this field to the
current time when creating a signature. A verifier may use this time
to determine whether or not the signature was created during the
validity period of a key, or if it occurred in a reasonable sequence
with other associated signatures. The SignatureTime is unrelated to
any time associated with the actual CCNx Message, which could have
been created long before the signature. The default behavior is to
always include a SignatureTime when creating an authenticated message
(e.g., HMAC or RSA).
SignatureTime is an unsigned integer in network byte order that
indicates when the signature was created (as the number of
milliseconds since the epoch in UTC). It is a fixed 64-bit field.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+-------------------------------+
| T_SIGTIME | 8 |
+---------------+---------------+-------------------------------+
/ SignatureTime /
+---------------------------------------------------------------+
Figure 28: SignatureTime Encoding
<span class="grey">Mosko, et al. Experimental [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h6"><a class="selflink" id="section-3.6.4.1.5" href="#section-3.6.4.1.5">3.6.4.1.5</a>. Validation Examples</span>
As an example of a MIC-type validation, the encoding for CRC32C
validation would be:
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_VALIDATION_ALG | 4 |
+---------------+---------------+---------------+---------------+
| T_CRC32C | 0 |
+---------------+---------------+---------------+---------------+
Figure 29: CRC32C Encoding Example
As an example of a MAC-type validation, the encoding for an HMAC
using a SHA256 hash would be:
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_VALIDATION_ALG | 40 |
+---------------+---------------+---------------+---------------+
| T_HMAC-SHA256 | 36 |
+---------------+---------------+---------------+---------------+
| T_KEYID | 32 |
+---------------+---------------+---------------+---------------+
/ KeyId /
/---------------+---------------+-------------------------------+
Figure 30: HMAC-SHA256 Encoding Example
<span class="grey">Mosko, et al. Experimental [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
As an example of a Signature-type validation, the encoding for an RSA
public-key signature using a SHA256 digest and Public Key would be:
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_VALIDATION_ALG | 44 octets + Variable Length |
+---------------+---------------+---------------+---------------+
| T_RSA-SHA256 | 40 octets + Variable Length |
+---------------+---------------+---------------+---------------+
| T_KEYID | 32 |
+---------------+---------------+---------------+---------------+
/ KeyId /
/---------------+---------------+-------------------------------+
| T_PUBLICKEY | Variable Length (~160 octets)|
+---------------+---------------+---------------+---------------+
/ Public Key (DER-encoded SPKI) /
+---------------+---------------+---------------+---------------+
Figure 31: RSA-SHA256 Encoding Example
<span class="h5"><a class="selflink" id="section-3.6.4.2" href="#section-3.6.4.2">3.6.4.2</a>. Validation Payload</span>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| T_VALIDATION_PAYLOAD | ValidationPayloadLength |
+---------------+---------------+---------------+---------------+
/ Type-dependent data /
+---------------+---------------+---------------+---------------+
Figure 32: Validation Payload Encoding
The ValidationPayload contains the validation output, such as the
CRC32C code or the RSA signature.
<span class="grey">Mosko, et al. Experimental [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. IANA Considerations</span>
This section details each kind of CCNx protocol value that can be
registered. Each type registry can be updated by incrementally
expanding the type space, i.e., by allocating and reserving new
types. As per [<a href="./rfc8126" title="">RFC8126</a>], this section details the creation of the
"Content-Centric Networking (CCNx)" registry and several
subregistries.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Packet Type Registry</span>
IANA has created the "CCNx Packet Types" registry and allocated the
packet types described below. The registration procedure is RFC
Required. The Type value is 1 octet. The range is 0x00-0xFF.
+------+-------------+----------------------------------+
| Type | Name | Reference |
+------+-------------+----------------------------------+
| 0x00 | PT_INTEREST | Fixed Header Types (<a href="#section-3.2">Section 3.2</a>) |
| | | |
| 0x01 | PT_CONTENT | Fixed Header Types (<a href="#section-3.2">Section 3.2</a>) |
| | | |
| 0x02 | PT_RETURN | Fixed Header Types (<a href="#section-3.2">Section 3.2</a>) |
+------+-------------+----------------------------------+
Packet Types
<span class="grey">Mosko, et al. Experimental [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Interest Return Code Registry</span>
IANA has created the "CCNx Interest Return Code Types" registry and
allocated the Interest Return code types described below. The
registration procedure is Specification Required. The Type value is
1 octet. The range is 0x00-0xFF.
+------+---------------------------------------+--------------------+
| Type | Name | Reference |
+------+---------------------------------------+--------------------+
| 0x00 | Reserved | |
| | | |
| 0x01 | T_RETURN_NO_ROUTE | Fixed Header Types |
| | | (<a href="#section-3.2.3.3">Section 3.2.3.3</a>) |
| | | |
| 0x02 | T_RETURN_LIMIT_EXCEEDED | Fixed Header Types |
| | | (<a href="#section-3.2.3.3">Section 3.2.3.3</a>) |
| | | |
| 0x03 | T_RETURN_NO_RESOURCES | Fixed Header Types |
| | | (<a href="#section-3.2.3.3">Section 3.2.3.3</a>) |
| | | |
| 0x04 | T_RETURN_PATH_ERROR | Fixed Header Types |
| | | (<a href="#section-3.2.3.3">Section 3.2.3.3</a>) |
| | | |
| 0x05 | T_RETURN_PROHIBITED | Fixed Header Types |
| | | (<a href="#section-3.2.3.3">Section 3.2.3.3</a>) |
| | | |
| 0x06 | T_RETURN_CONGESTED | Fixed Header Types |
| | | (<a href="#section-3.2.3.3">Section 3.2.3.3</a>) |
| | | |
| 0x07 | T_RETURN_MTU_TOO_LARGE | Fixed Header Types |
| | | (<a href="#section-3.2.3.3">Section 3.2.3.3</a>) |
| | | |
| 0x08 | T_RETURN_UNSUPPORTED_HASH_RESTRICTION | Fixed Header Types |
| | | (<a href="#section-3.2.3.3">Section 3.2.3.3</a>) |
| | | |
| 0x09 | T_RETURN_MALFORMED_INTEREST | Fixed Header Types |
| | | (<a href="#section-3.2.3.3">Section 3.2.3.3</a>) |
+------+---------------------------------------+--------------------+
CCNx Interest Return Types
<span class="grey">Mosko, et al. Experimental [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Hop-by-Hop Type Registry</span>
IANA has created the "CCNx Hop-by-Hop Types" registry and allocated
the hop-by-hop types described below. The registration procedure is
RFC Required. The Type value is 2 octets. The range is
0x0000-0xFFFF.
+---------------+-------------+-------------------------------------+
| Type | Name | Reference |
+---------------+-------------+-------------------------------------+
| 0x0000 | Reserved | |
| | | |
| 0x0001 | T_INTLIFE | Hop-by-hop TLV headers (Section |
| | | 3.4) |
| | | |
| 0x0002 | T_CACHETIME | Hop-by-hop TLV headers (Section |
| | | 3.4) |
| | | |
| 0x0003 | T_MSGHASH | Hop-by-hop TLV headers (Section |
| | | 3.4) |
| | | |
| 0x0004 - | Reserved | |
| 0x0007 | | |
| | | |
| 0x0FFE | T_PAD | Pad (<a href="#section-3.3.1">Section 3.3.1</a>) |
| | | |
| 0x0FFF | T_ORG | Organization-Specific TLVs (Section |
| | | 3.3.2) |
| | | |
| 0x1000-0x1FFF | Reserved | Experimental Use (<a href="#section-3">Section 3</a>) |
+---------------+-------------+-------------------------------------+
CCNx Hop-by-Hop Types
<span class="grey">Mosko, et al. Experimental [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Top-Level Type Registry</span>
IANA has created the "CCNx Top-Level Types" registry and allocated
the top-level types described below. The registration procedure is
RFC Required. The Type value is 2 octets. The range is
0x0000-0xFFFF.
+--------+----------------------+-------------------------------+
| Type | Name | Reference |
+--------+----------------------+-------------------------------+
| 0x0000 | Reserved | |
| | | |
| 0x0001 | T_INTEREST | Top-Level Types (<a href="#section-3.5">Section 3.5</a>) |
| | | |
| 0x0002 | T_OBJECT | Top-Level Types (<a href="#section-3.5">Section 3.5</a>) |
| | | |
| 0x0003 | T_VALIDATION_ALG | Top-Level Types (<a href="#section-3.5">Section 3.5</a>) |
| | | |
| 0x0004 | T_VALIDATION_PAYLOAD | Top-Level Types (<a href="#section-3.5">Section 3.5</a>) |
+--------+----------------------+-------------------------------+
CCNx Top-Level Types
<span class="grey">Mosko, et al. Experimental [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Name Segment Type Registry</span>
IANA has created the "CCNx Name Segment Types" registry and allocated
the name segment types described below. The registration procedure
is Specification Required. The Type value is 2 octets. The range is
0x0000-0xFFFF.
+--------------+------------------+---------------------------------+
| Type | Name | Reference |
+--------------+------------------+---------------------------------+
| 0x0000 | Reserved | |
| | | |
| 0x0001 | T_NAMESEGMENT | Name (<a href="#section-3.6.1">Section 3.6.1</a>) |
| | | |
| 0x0002 | T_IPID | Name (<a href="#section-3.6.1">Section 3.6.1</a>) |
| | | |
| 0x0010 - | Reserved | <a href="./rfc8609">RFC 8609</a> |
| 0x0013 | | |
| | | |
| 0x0FFF | T_ORG | Organization-Specific TLVs |
| | | (<a href="#section-3.3.2">Section 3.3.2</a>) |
| | | |
| 0x1000 - | T_APP:00 - | Application Components (Section |
| 0x1FFF | T_APP:4096 | 3.6.1) |
+--------------+------------------+---------------------------------+
CCNx Name Segment Types
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Message Type Registry</span>
IANA has created the "CCNx Message Types" registry and registered the
message segment types described below. The registration procedure is
RFC Required. The Type value is 2 octets. The range is
0x0000-0xFFFF.
<span class="grey">Mosko, et al. Experimental [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
+---------------+----------------+----------------------------------+
| Type | Name | Reference |
+---------------+----------------+----------------------------------+
| 0x0000 | T_NAME | Message Types (<a href="#section-3.6">Section 3.6</a>) |
| | | |
| 0x0001 | T_PAYLOAD | Message Types (<a href="#section-3.6">Section 3.6</a>) |
| | | |
| 0x0002 | T_KEYIDRESTR | Message Types (<a href="#section-3.6">Section 3.6</a>) |
| | | |
| 0x0003 | T_OBJHASHRESTR | Message Types (<a href="#section-3.6">Section 3.6</a>) |
| | | |
| 0x0005 | T_PAYLDTYPE | Content Object Message Types |
| | | (<a href="#section-3.6.2.2">Section 3.6.2.2</a>) |
| | | |
| 0x0006 | T_EXPIRY | Content Object Message Types |
| | | (<a href="#section-3.6.2.2">Section 3.6.2.2</a>) |
| | | |
| 0x0007 - | Reserved | <a href="./rfc8609">RFC 8609</a> |
| 0x000C | | |
| | | |
| 0x0FFE | T_PAD | Pad (<a href="#section-3.3.1">Section 3.3.1</a>) |
| | | |
| 0x0FFF | T_ORG | Organization-Specific TLVs |
| | | (<a href="#section-3.3.2">Section 3.3.2</a>) |
| | | |
| 0x1000-0x1FFF | Reserved | Experimental Use (<a href="#section-3">Section 3</a>) |
+---------------+----------------+----------------------------------+
CCNx Message Types
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. Payload Type Registry</span>
IANA has created the "CCNx Payload Types" registry and allocated the
payload types described below. The registration procedure is
Specification Required. The Type value is 1 octet. The range is
0x00-0xFF.
+------+--------------------+-----------------------------------+
| Type | Name | Reference |
+------+--------------------+-----------------------------------+
| 0x00 | T_PAYLOADTYPE_DATA | Payload Types (<a href="#section-3.6.2.2.1">Section 3.6.2.2.1</a>) |
| | | |
| 0x01 | T_PAYLOADTYPE_KEY | Payload Types (<a href="#section-3.6.2.2.1">Section 3.6.2.2.1</a>) |
| | | |
| 0x02 | T_PAYLOADTYPE_LINK | Payload Types (<a href="#section-3.6.2.2.1">Section 3.6.2.2.1</a>) |
+------+--------------------+-----------------------------------+
CCNx Payload Types
<span class="grey">Mosko, et al. Experimental [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h3"><a class="selflink" id="section-4.8" href="#section-4.8">4.8</a>. Validation Algorithm Type Registry</span>
IANA has created the "CCNx Validation Algorithm Types" registry and
allocated the validation algorithm types described below. The
registration procedure is Specification Required. The Type value is
2 octets. The range is 0x0000-0xFFFF.
+---------------+-----------------+---------------------------------+
| Type | Name | Reference |
+---------------+-----------------+---------------------------------+
| 0x0000 | Reserved | |
| | | |
| 0x0002 | T_CRC32C | Validation Algorithm (Section |
| | | 3.6.4.1) |
| | | |
| 0x0004 | T_HMAC-SHA256 | Validation Algorithm (Section |
| | | 3.6.4.1) |
| | | |
| 0x0005 | T_RSA-SHA256 | Validation Algorithm (Section |
| | | 3.6.4.1) |
| | | |
| 0x0006 | T_EC-SECP-256K1 | Validation Algorithm (Section |
| | | 3.6.4.1) |
| | | |
| 0x0007 | T_EC-SECP-384R1 | Validation Algorithm (Section |
| | | 3.6.4.1) |
| | | |
| 0x0FFE | T_PAD | Pad (<a href="#section-3.3.1">Section 3.3.1</a>) |
| | | |
| 0x0FFF | T_ORG | Organization-Specific TLVs |
| | | (<a href="#section-3.3.2">Section 3.3.2</a>) |
| | | |
| 0x1000-0x1FFF | Reserved | Experimental Use (<a href="#section-3">Section 3</a>) |
+---------------+-----------------+---------------------------------+
CCNx Validation Algorithm Types
<span class="grey">Mosko, et al. Experimental [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
<span class="h3"><a class="selflink" id="section-4.9" href="#section-4.9">4.9</a>. Validation-Dependent Data Type Registry</span>
IANA has created the "CCNx Validation-Dependent Data Types" registry
and allocated the validation-dependent data types described below.
The registration procedure is RFC Required. The Type value is 2
octets. The range is 0x0000-0xFFFF.
+---------------+----------------+----------------------------------+
| Type | Name | Reference |
+---------------+----------------+----------------------------------+
| 0x0000 | Reserved | |
| | | |
| 0x0009 | T_KEYID | Validation-Dependent Data |
| | | (<a href="#section-3.6.4.1.4">Section 3.6.4.1.4</a>) |
| | | |
| 0x000A | T_PUBLICKEYLOC | Validation-Dependent Data |
| | | (<a href="#section-3.6.4.1.4">Section 3.6.4.1.4</a>) |
| | | |
| 0x000B | T_PUBLICKEY | Validation-Dependent Data |
| | | (<a href="#section-3.6.4.1.4">Section 3.6.4.1.4</a>) |
| | | |
| 0x000C | T_CERT | Validation-Dependent Data |
| | | (<a href="#section-3.6.4.1.4">Section 3.6.4.1.4</a>) |
| | | |
| 0x000D | T_LINK | Validation-Dependent Data |
| | | (<a href="#section-3.6.4.1.4">Section 3.6.4.1.4</a>) |
| | | |
| 0x000E | T_KEYLINK | Validation-Dependent Data |
| | | (<a href="#section-3.6.4.1.4">Section 3.6.4.1.4</a>) |
| | | |
| 0x000F | T_SIGTIME | Validation-Dependent Data |
| | | (<a href="#section-3.6.4.1.4">Section 3.6.4.1.4</a>) |
| | | |
| 0x0FFF | T_ORG | Organization-Specific TLVs |
| | | (<a href="#section-3.3.2">Section 3.3.2</a>) |
| | | |
| 0x1000-0x1FFF | Reserved | Experimental Use (<a href="#section-3">Section 3</a>) |
+---------------+----------------+----------------------------------+
CCNx Validation-Dependent Data Types
<span class="h3"><a class="selflink" id="section-4.10" href="#section-4.10">4.10</a>. Hash Function Type Registry</span>
IANA has created the "CCNx Hash Function Types" registry and
allocated the hash function types described below. The registration
procedure is Specification Required. The Type value is 2 octets.
The range is 0x0000-0xFFFF.
<span class="grey">Mosko, et al. Experimental [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
+---------------+-----------+---------------------------------------+
| Type | Name | Reference |
+---------------+-----------+---------------------------------------+
| 0x0000 | Reserved | |
| | | |
| 0x0001 | T_SHA-256 | Hash Format (<a href="#section-3.3.3">Section 3.3.3</a>) |
| | | |
| 0x0002 | T_SHA-512 | Hash Format (<a href="#section-3.3.3">Section 3.3.3</a>) |
| | | |
| 0x0FFF | T_ORG | Organization-Specific TLVs (Section |
| | | 3.3.2) |
| | | |
| 0x1000-0x1FFF | Reserved | Experimental Use (<a href="#section-3">Section 3</a>) |
+---------------+-----------+---------------------------------------+
CCNx Hash Function Types
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
The CCNx protocol is a Layer 3 network protocol, which may also
operate as an overlay using other transports such as UDP or other
tunnels. It includes intrinsic support for message authentication
via a signature (e.g., RSA or elliptic curve) or Message
Authentication Code (e.g., HMAC). In lieu of an authenticator, it
may instead use a Message Integrity Check (e.g., SHA or CRC). CCNx
does not specify an encryption envelope; that function is left to a
high-layer protocol (e.g., Encrypted Sessions in CCNx [<a href="#ref-esic" title=""Encrypted Sessions In CCNx (ESIC)"">esic</a>]).
The CCNx Packet format includes the ability to attach MICs (e.g.,
SHA-256 or CRC), MACs (e.g., HMAC), and Signatures (e.g., RSA or
ECDSA) to all packet types. Because Interest packets can be sent at
will, an application should carefully select when to use a given
ValidationAlgorithm in an Interest to avoid DoS attacks. MICs, for
example, are inexpensive and could be used as desired, whereas MACs
and Signatures are more expensive and their inappropriate use could
open a computational DoS attack surface. Applications should use an
explicit protocol to guide their use of packet signatures. As a
general guideline, an application might use a MIC on an Interest to
detect unintentionally corrupted packets. If one wishes to secure an
Interest, one should consider using an encrypted wrapper and a
protocol that prevents replay attacks, especially if the Interest is
being used as an actuator. Simply using an authentication code or
signature does not make an Interest secure. There are several
examples in the literature on how to secure ICN-style messaging
[<a href="#ref-mobile" title=""Mobile Sessions in Content-Centric Networks"">mobile</a>] [<a href="#ref-ace" title=""NDN-ACE: Access control for constrained environments over named data networking"">ace</a>].
<span class="grey">Mosko, et al. Experimental [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
As a Layer 3 protocol, this document does not describe how one
arrives at keys or how one trusts keys. The CCNx content object may
include a public key embedded in the object or may use the
PublicKeyLocator field to point to a public key (or public-key
certificate) that authenticates the message. One key exchange
specification is CCNxKE [<a href="#ref-ccnxke" title=""CCNx Key Exchange Protocol Version 1.0"">ccnxke</a>] [<a href="#ref-mobile" title=""Mobile Sessions in Content-Centric Networks"">mobile</a>], which is similar to the
TLS 1.3 key exchange except it is over the CCNx Layer 3 messages.
Trust is beyond the scope of a Layer 3 protocol and is left to
applications or application frameworks.
The combination of an ephemeral key exchange (e.g., CCNxKE [<a href="#ref-ccnxke" title=""CCNx Key Exchange Protocol Version 1.0"">ccnxke</a>])
and an encapsulating encryption (e.g., [<a href="#ref-esic" title=""Encrypted Sessions In CCNx (ESIC)"">esic</a>]) provides the
equivalent of a TLS tunnel. Intermediate nodes may forward the
Interests and Content Objects but have no visibility inside. It also
completely hides the internal names in those used by the encryption
layer. This type of tunneling encryption is useful for content that
has little or no cacheability, as it can only be used by someone with
the ephemeral key. Short-term caching may help with lossy links or
mobility, but long-term caching is usually not of interest.
Broadcast encryption or proxy re-encryption may be useful for content
with multiple uses over time or many consumers. There is currently
no recommendation for this form of encryption.
The specific encoding of messages will have security implications.
This document uses a Type-Length-Value (TLV) encoding. We chose to
compromise between extensibility and unambiguous encodings of types
and lengths. Some TLV encodings use variable-length T and variable-
length L fields to accommodate a wide gamut of values while trying to
be byte efficient. Our TLV encoding uses a fixed length 2-byte T and
2-byte L. Using fixed-length T and L fields solves two problems.
The first is aliases. If one is able to encode the same value, such
as 0x02 and 0x0002, in different byte lengths, then one must decide
if they mean the same thing, if they are different, or if one is
illegal. If they are different, then one must always compare on the
buffers not the integer equivalents. If one is illegal, then one
must validate the TLV encoding -- every field of every packet at
every hop. If they are the same, then one has the second problem:
how to specify packet filters. For example, if a name has 6 name
components, then there are 7 T fields and 7 L fields, each of which
might have up to 4 representations of the same value. That would be
14 fields with 4 encodings each, or 1001 combinations. It also means
that one cannot compare, for example, a name via a memory function,
as one needs to consider that any embedded T or L might have a
different format.
<span class="grey">Mosko, et al. Experimental [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
The Interest Return message has no authenticator from the previous
hop. Therefore, the payload of the Interest Return should only be
used locally to match an Interest. A node should never forward that
Interest payload as an Interest. It should also verify that it sent
the Interest in the Interest Return to that node and not allow anyone
to negate Interest messages.
Caching nodes must take caution when processing content objects. It
is essential that the Content Store obey the rules outlined in
[<a href="./rfc8569" title=""Content-Centric Networking (CCNx) Semantics"">RFC8569</a>] to avoid certain types of attacks. CCNx 1.0 has no
mechanism to work around an undesired result from the network (there
are no "excludes"), so if a cache becomes poisoned with bad content
it might cause problems retrieving content. There are three types of
access to content from a Content Store: unrestricted, signature
restricted, and hash restricted. If an Interest has no restrictions,
then the requester is not particular about what they get back, so any
matching cached object is OK. In the hash restricted case, the
requester is very specific about what they want, and the Content
Store (and every forward hop) can easily verify that the content
matches the request. In the signature restricted case (which is
often used for initial manifest discovery), the requester only knows
the KeyId that signed the content. This case requires the closest
attention in the Content Store to avoid amplifying bad data. The
Content Store must only respond with a content object if it can
verify the signature -- this means either the content object carries
the public key inside it or the Interest carries the public key in
addition to the KeyId. If that is not the case, then the Content
Store should treat the Interest as a cache miss and let an endpoint
respond.
A user-level cache could perform full signature verification by
fetching a public key according to the PublicKeyLocator. However,
that is not a burden we wish to impose on the forwarder. A user-
level cache could also rely on out-of-band attestation, such as the
cache operator only inserting content that it knows has the correct
signature.
The CCNx grammar allows for hash algorithm agility via the HashType.
It specifies a short list of acceptable hash algorithms that should
be implemented at each forwarder. Some hash values only apply to end
systems, so updating the hash algorithm does not affect forwarders --
they would simply match the buffer that includes the type-length-hash
buffer. Some fields, such as the ConObjHash, must be verified at
each hop, so a forwarder (or related system) must know the hash
algorithm, and it could cause backward compatibility problems if the
hash type is updated.
<span class="grey">Mosko, et al. Experimental [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
A CCNx name uses binary matching, whereas a URI uses a case-
insensitive hostname. Some systems may also use case-insensitive
matching of the URI path to a resource. An implication of this is
that human-entered CCNx names will likely have case or non-ASCII
symbol mismatches unless one uses a consistent URI normalization for
the CCNx name. It also means that an entity that registers a CCNx-
routable prefix -- say, "ccnx:/example.com" -- would need separate
registrations for simple variations like "ccnx:/Example.com". Unless
this is addressed in URI normalization and routing protocol
conventions, there could be phishing attacks.
For a more general introduction to ICN-related security concerns and
approaches, see [<a href="./rfc7927" title=""Information-Centric Networking (ICN) Research Challenges"">RFC7927</a>] and [<a href="./rfc7945" title=""Information-Centric Networking: Evaluation and Security Considerations"">RFC7945</a>].
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. References</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in <a href="./rfc2119">RFC</a>
<a href="./rfc2119">2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>, DOI 10.17487/RFC8174,
May 2017, <<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Informative References</span>
[<a id="ref-ace">ace</a>] Shang, W., Yu, Y., Liang, T., Zhang, B., and L. Zhang,
"NDN-ACE: Access control for constrained environments over
named data networking", NDN Technical Report NDN-0036,
2015, <<a href="http://new.named-data.net/wp-content/uploads/2015/12/ndn-0036-1-ndn-ace.pdf">http://new.named-data.net/wp-content/uploads/2015/</a>
<a href="http://new.named-data.net/wp-content/uploads/2015/12/ndn-0036-1-ndn-ace.pdf">12/ndn-0036-1-ndn-ace.pdf</a>>.
[<a id="ref-ccnxke">ccnxke</a>] Mosko, M., Uzun, E., and C. Wood, "CCNx Key Exchange
Protocol Version 1.0", Work in Progress, <a href="./draft-wood-icnrg-ccnxkeyexchange-02">draft-wood-icnrg-</a>
<a href="./draft-wood-icnrg-ccnxkeyexchange-02">ccnxkeyexchange-02</a>, March 2017.
[<a id="ref-CCNxURI">CCNxURI</a>] Mosko, M. and C. Wood, <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22The+CCNx+URI+Scheme%22'>"The CCNx URI Scheme"</a>, Work in
Progress, <a href="./draft-mosko-icnrg-ccnxurischeme-01">draft-mosko-icnrg-ccnxurischeme-01</a>, April 2016.
[<a id="ref-CCNxz">CCNxz</a>] Mosko, M., "CCNxz TLV Header Compression Experimental
Code", commit f1093a2, March 2018,
<<a href="https://github.com/PARC/CCNxz">https://github.com/PARC/CCNxz</a>>.
<span class="grey">Mosko, et al. Experimental [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
[<a id="ref-compress">compress</a>] Mosko, M., "Header Compression for TLV-based Packets",
ICNRG Interim Meeting, 2016,
<<a href="https://datatracker.ietf.org/meeting/interim-2016-icnrg-02/materials/slides-interim-2016-icnrg-2-7">https://datatracker.ietf.org/meeting/interim-2016-icnrg-</a>
<a href="https://datatracker.ietf.org/meeting/interim-2016-icnrg-02/materials/slides-interim-2016-icnrg-2-7">02/materials/slides-interim-2016-icnrg-2-7</a>>.
[<a id="ref-ECC">ECC</a>] Certicom Research, "SEC 2: Recommended Elliptic Curve
Domain Parameters", 2010,
<<a href="http://www.secg.org/sec2-v2.pdf">http://www.secg.org/sec2-v2.pdf</a>>.
[<a id="ref-esic">esic</a>] Mosko, M. and C. Wood, "Encrypted Sessions In CCNx
(ESIC)", Work in Progress, <a href="./draft-wood-icnrg-esic-01">draft-wood-icnrg-esic-01</a>,
September 2017.
[<a id="ref-IANA-PEN">IANA-PEN</a>] IANA, "Private Enterprise Numbers",
<<a href="http://www.iana.org/assignments/enterprise-numbers">http://www.iana.org/assignments/enterprise-numbers</a>>.
[<a id="ref-mobile">mobile</a>] Mosko, M., Uzun, E., and C. Wood, "Mobile Sessions in
Content-Centric Networks", IFIP Networking, 2017,
<<a href="http://dl.ifip.org/db/conf/networking/networking2017/1570334964.pdf">http://dl.ifip.org/db/conf/networking/</a>
<a href="http://dl.ifip.org/db/conf/networking/networking2017/1570334964.pdf">networking2017/1570334964.pdf</a>>.
[<a id="ref-nnc">nnc</a>] Jacobson, V., Smetters, D., Thornton, J., Plass, M.,
Briggs, N., and R. Braynard, "Networking Named Content",
Proceedings of the 5th international conference on
Emerging networking experiments and technologies (CoNEXT
'09), 2009, <<a href="http://dx.doi.org/10.1145/1658939.1658941">http://dx.doi.org/10.1145/1658939.1658941</a>>.
[<a id="ref-RFC5280">RFC5280</a>] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", <a href="./rfc5280">RFC 5280</a>, DOI 10.17487/RFC5280, May 2008,
<<a href="https://www.rfc-editor.org/info/rfc5280">https://www.rfc-editor.org/info/rfc5280</a>>.
[<a id="ref-RFC7927">RFC7927</a>] Kutscher, D., Ed., Eum, S., Pentikousis, K., Psaras, I.,
Corujo, D., Saucez, D., Schmidt, T., and M. Waehlisch,
"Information-Centric Networking (ICN) Research
Challenges", <a href="./rfc7927">RFC 7927</a>, DOI 10.17487/RFC7927, July 2016,
<<a href="https://www.rfc-editor.org/info/rfc7927">https://www.rfc-editor.org/info/rfc7927</a>>.
[<a id="ref-RFC7945">RFC7945</a>] Pentikousis, K., Ed., Ohlman, B., Davies, E., Spirou, S.,
and G. Boggia, "Information-Centric Networking: Evaluation
and Security Considerations", <a href="./rfc7945">RFC 7945</a>,
DOI 10.17487/RFC7945, September 2016,
<<a href="https://www.rfc-editor.org/info/rfc7945">https://www.rfc-editor.org/info/rfc7945</a>>.
<span class="grey">Mosko, et al. Experimental [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc8609">RFC 8609</a> CCNx TLV July 2019</span>
[<a id="ref-RFC8126">RFC8126</a>] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>,
<a href="./rfc8126">RFC 8126</a>, DOI 10.17487/RFC8126, June 2017,
<<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>>.
[<a id="ref-RFC8569">RFC8569</a>] Mosko, M., Solis, I., and C. Wood, "Content-Centric
Networking (CCNx) Semantics", <a href="./rfc8569">RFC 8569</a>,
DOI 10.17487/RFC8569, July 2019,
<<a href="https://www.rfc-editor.org/info/rfc8569">https://www.rfc-editor.org/info/rfc8569</a>>.
Authors' Addresses
Marc Mosko
PARC, Inc.
Palo Alto, California 94304
United States of America
Phone: +01 650-812-4405
Email: mmosko@parc.com
Ignacio Solis
LinkedIn
Mountain View, California 94043
United States of America
Email: nsolis@linkedin.com
Christopher A. Wood
University of California, Irvine
Irvine, California 92697
United States of America
Phone: +01 315-806-5939
Email: woodc1@uci.edu
Mosko, et al. Experimental [Page 46]
</pre>
|