1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
|
<pre>Internet Engineering Task Force (IETF) L. Hornquist Astrand
Request for Comments: 8636 Apple, Inc
Updates: <a href="./rfc4556">4556</a> L. Zhu
Category: Standards Track Oracle Corporation
ISSN: 2070-1721 M. Cullen
Painless Security
G. Hudson
MIT
July 2019
Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)
Algorithm Agility
Abstract
This document updates the Public Key Cryptography for Initial
Authentication in Kerberos (PKINIT) standard (<a href="./rfc4556">RFC 4556</a>) to remove
protocol structures tied to specific cryptographic algorithms. The
PKINIT key derivation function is made negotiable, and the digest
algorithms for signing the pre-authentication data and the client's
X.509 certificates are made discoverable.
These changes provide preemptive protection against vulnerabilities
discovered in the future in any specific cryptographic algorithm and
allow incremental deployment of newer algorithms.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8636">https://www.rfc-editor.org/info/rfc8636</a>.
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2">2</a>. Requirements Notation . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. paChecksum Agility . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-4">4</a>. CMS Digest Algorithm Agility . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-5">5</a>. X.509 Certificate Signer Algorithm Agility . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-6">6</a>. KDF Agility . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-7">7</a>. Interoperability . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-8">8</a>. Test Vectors . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-8.1">8.1</a>. Common Inputs . . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-8.2">8.2</a>. Test Vector for SHA-1, enctype 18 . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-8.2.1">8.2.1</a>. Specific Inputs . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-8.2.2">8.2.2</a>. Outputs . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-8.3">8.3</a>. Test Vector for SHA-256, enctype 18 . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-8.3.1">8.3.1</a>. Specific Inputs . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-8.3.2">8.3.2</a>. Outputs . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-8.4">8.4</a>. Test Vector for SHA-512, enctype 16 . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-8.4.1">8.4.1</a>. Specific Inputs . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-8.4.2">8.4.2</a>. Outputs . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-9">9</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-10">10</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-11">11</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-11.1">11.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-11.2">11.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#appendix-A">Appendix A</a>. PKINIT ASN.1 Module . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The Public Key Cryptography for Initial Authentication in Kerberos
(PKINIT) standard [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>] defines several protocol structures that
are either tied to SHA-1 [<a href="./rfc6234" title=""US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)"">RFC6234</a>] or do not support negotiation or
discovery but are instead based on local policy:
o The checksum algorithm in the authentication request is hardwired
to use SHA-1.
o The acceptable digest algorithms for signing the authentication
data are not discoverable.
o The key derivation function in <a href="./rfc4556#section-3.2.3.1">Section 3.2.3.1 of [RFC4556]</a> is
hardwired to use SHA-1.
o The acceptable digest algorithms for signing the client X.509
certificates are not discoverable.
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
In August 2004, Xiaoyun Wang's research group reported MD4 [<a href="./rfc6150" title=""MD4 to Historic Status"">RFC6150</a>]
collisions [<a href="#ref-WANG04" title=""Cryptanalysis of the Hash Functions MD4 and RIPEMD"">WANG04</a>], alongside attacks on later hash functions
including MD5 [<a href="./rfc1321" title=""The MD5 Message-Digest Algorithm"">RFC1321</a>] and SHA-1 [<a href="./rfc6234" title=""US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)"">RFC6234</a>]. These attacks and their
consequences are discussed in [<a href="./rfc6194" title=""Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms"">RFC6194</a>]. These discoveries
challenged the security of protocols relying on the collision-
resistance properties of these hashes.
The Internet Engineering Task Force (IETF) called for action to
update existing protocols to provide crypto algorithm agility so that
protocols support multiple cryptographic algorithms (including hash
functions) and provide clean, tested transition strategies between
algorithms, as recommended by <a href="https://www.rfc-editor.org/bcp/bcp201">BCP 201</a> [<a href="./rfc7696" title=""Guidelines for Cryptographic Algorithm Agility and Selecting Mandatory-to-Implement Algorithms"">RFC7696</a>].
To address these concerns, new key derivation functions (KDFs),
identified by object identifiers, are defined. The PKINIT client
provides a list of KDFs in the request, and the Key Distribution
Center (KDC) picks one in the response. Thus, a mutually supported
KDF is negotiated.
Furthermore, structures are defined to allow the client to discover
the Cryptographic Message Syntax (CMS) [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>] digest algorithms
supported by the KDC for signing the pre-authentication data and the
client X.509 certificate.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Requirements Notation</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. paChecksum Agility</span>
The paChecksum defined in <a href="./rfc4556#section-3.2.1">Section 3.2.1 of [RFC4556]</a> provides a
cryptographic binding between the client's pre-authentication data
and the corresponding Kerberos request body. This also prevents the
KDC-REQ body from being tampered with. SHA-1 is the only allowed
checksum algorithm defined in [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>]. This facility relies on the
collision-resistance properties of the SHA-1 checksum [<a href="./rfc6234" title=""US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)"">RFC6234</a>].
When the reply key delivery mechanism is based on public key
encryption as described in <a href="./rfc4556#section-3.2.3.2">Section 3.2.3.2 of [RFC4556]</a>, the
asChecksum in the KDC reply provides integrity protection for the
unauthenticated clear text in these messages and the binding between
the pre-authentication and the ticket request and response messages.
However, if the reply key delivery mechanism is based on the Diffie-
Hellman key agreement as described in <a href="./rfc4556#section-3.2.3.1">Section 3.2.3.1 of [RFC4556]</a>,
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
the security provided by using SHA-1 in the paChecksum is weak, and
nothing else cryptographically binds the Authentication Service (AS)
request to the ticket response. In this case, the new KDF selected
by the KDC, as described in <a href="#section-6">Section 6</a>, provides the cryptographic
binding and integrity protection.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. CMS Digest Algorithm Agility</span>
<a href="./rfc4556#section-3.2.2">Section 3.2.2 of [RFC4556]</a> is updated to add optional typed data to
the KDC_ERR_DIGEST_IN_SIGNED_DATA_NOT_ACCEPTED error. When a KDC
implementation conforming to this specification returns this error
code, it MAY include a list of supported CMS types signifying the
digest algorithms supported by the KDC in decreasing order of
preference. This is accomplished by including a
TD_CMS_DATA_DIGEST_ALGORITHMS typed data element in the error data.
td-cms-digest-algorithms INTEGER ::= 111
The corresponding data for the TD_CMS_DATA_DIGEST_ALGORITHMS contains
the TD-CMS-DIGEST-ALGORITHMS-DATA structure, which is ASN.1
Distinguished Encoding Rules (DER) [<a href="#ref-X680" title=""Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation"">X680</a>] [<a href="#ref-X690" title=""Information technology - ASN.1 encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)"">X690</a>] encoded and is
defined as follows:
TD-CMS-DIGEST-ALGORITHMS-DATA ::= SEQUENCE OF
AlgorithmIdentifier
-- Contains the list of CMS algorithm [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>]
-- identifiers indicating the digest algorithms
-- acceptable to the KDC for signing CMS data in
-- decreasing order of preference.
The algorithm identifiers in TD-CMS-DIGEST-ALGORITHMS identify the
digest algorithms supported by the KDC.
This information sent by the KDC via TD_CMS_DATA_DIGEST_ALGORITHMS
can facilitate troubleshooting when none of the digest algorithms
supported by the client is supported by the KDC.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. X.509 Certificate Signer Algorithm Agility</span>
<a href="./rfc4556#section-3.2.2">Section 3.2.2 of [RFC4556]</a> is updated to add optional typed data to
the KDC_ERR_DIGEST_IN_CERT_NOT_ACCEPTED error. When a KDC conforming
to this specification returns this error, it MAY send a list of
digest algorithms acceptable to the KDC for use by the certification
authority (CA) in signing the client's X.509 certificate in
decreasing order of preference. This is accomplished by including a
TD_CERT_DIGEST_ALGORITHMS typed data element in the error data. The
corresponding data contains the ASN.1 DER encoding of the TD-CERT-
DIGEST-ALGORITHMS-DATA structure defined as follows:
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
td-cert-digest-algorithms INTEGER ::= 112
TD-CERT-DIGEST-ALGORITHMS-DATA ::= SEQUENCE {
allowedAlgorithms [0] SEQUENCE OF AlgorithmIdentifier,
-- Contains the list of CMS algorithm [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>]
-- identifiers indicating the digest algorithms
-- that are used by the CA to sign the client's
-- X.509 certificate and are acceptable to the KDC
-- in the process of validating the client's X.509
-- certificate in decreasing order of
-- preference.
rejectedAlgorithm [1] AlgorithmIdentifier OPTIONAL,
-- This identifies the digest algorithm that was
-- used to sign the client's X.509 certificate and
-- has been rejected by the KDC in the process of
-- validating the client's X.509 certificate
-- [<a href="./rfc5280" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC5280</a>].
...
}
The KDC fills in the allowedAlgorithm field with the list of
algorithm [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>] identifiers indicating digest algorithms that are
used by the CA to sign the client's X.509 certificate and are
acceptable to the KDC in the process of validating the client's X.509
certificate in decreasing order of preference. The rejectedAlgorithm
field identifies the signing algorithm for use in signing the
client's X.509 certificate that has been rejected by the KDC in the
process of validating the client's certificate [<a href="./rfc5280" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC5280</a>].
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. KDF Agility</span>
<a href="./rfc4556#section-3.2.3.1">Section 3.2.3.1 of [RFC4556]</a> is updated to define additional key
derivation functions (KDFs) to derive a Kerberos protocol key based
on the secret value generated by the Diffie-Hellman key exchange.
<a href="./rfc4556#section-3.2.1">Section 3.2.1 of [RFC4556]</a> is updated to add a new field to the
AuthPack structure to indicate which new KDFs are supported by the
client. <a href="./rfc4556#section-3.2.3">Section 3.2.3 of [RFC4556]</a> is updated to add a new field to
the DHRepInfo structure to indicate which KDF is selected by the KDC.
The KDF algorithm described in this document (based on [<a href="#ref-SP80056A" title=""Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography"">SP80056A</a>])
can be implemented using any cryptographic hash function.
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
A new KDF for PKINIT usage is identified by an object identifier.
The following KDF object identifiers are defined:
id-pkinit OBJECT IDENTIFIER ::=
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) kerberosv5(2) pkinit (3) }
-- Defined in <a href="./rfc4556">RFC 4556</a> and quoted here for the reader.
id-pkinit-kdf OBJECT IDENTIFIER ::= { id-pkinit kdf(6) }
-- PKINIT KDFs
id-pkinit-kdf-ah-sha1 OBJECT IDENTIFIER
::= { id-pkinit-kdf sha1(1) }
-- SP800-56A ASN.1 structured hash-based KDF using SHA-1
id-pkinit-kdf-ah-sha256 OBJECT IDENTIFIER
::= { id-pkinit-kdf sha256(2) }
-- SP800-56A ASN.1 structured hash-based KDF using SHA-256
id-pkinit-kdf-ah-sha512 OBJECT IDENTIFIER
::= { id-pkinit-kdf sha512(3) }
-- SP800-56A ASN.1 structured hash-based KDF using SHA-512
id-pkinit-kdf-ah-sha384 OBJECT IDENTIFIER
::= { id-pkinit-kdf sha384(4) }
-- SP800-56A ASN.1 structured hash-based KDF using SHA-384
Where id-pkinit is defined in [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>]. All key derivation
functions specified above use the one-step key derivation method
described in Section 5.8.2.1 of [<a href="#ref-SP80056A" title=""Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography"">SP80056A</a>], choosing the ASN.1 format
for FixedInfo, and Section 4.1 of [<a href="#ref-SP80056C" title=""Recommendation for Key-Derivation Methods in Key-Establishment Schemes"">SP80056C</a>], choosing option 1 for
the auxiliary function H. id-pkinit-kdf-ah-sha1 uses SHA-1 [<a href="./rfc6234" title=""US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)"">RFC6234</a>]
as the hash function. id-pkinit-kdf-ah-sha256, id-pkinit-kdf-ah-
sha356, and id-pkinit-kdf-ah-sha512 use SHA-256 [<a href="./rfc6234" title=""US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)"">RFC6234</a>], SHA-384
[<a href="./rfc6234" title=""US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)"">RFC6234</a>], and SHA-512 [<a href="./rfc6234" title=""US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)"">RFC6234</a>], respectively.
To name the input parameters, an abbreviated version of the key
derivation method is described below.
1. reps = ceiling(L/H_outputBits)
2. Initialize a 32-bit, big-endian bit string counter as 1.
3. For i = 1 to reps by 1, do the following:
1. Compute Hashi = H(counter || Z || OtherInfo).
2. Increment counter (not to exceed 2^32-1)
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
4. Set key_material = Hash1 || Hash2 || ... so that the length of
key_material is L bits, truncating the last block as necessary.
5. The above KDF produces a bit string of length L in bits as the
keying material. The AS reply key is the output of random-to-
key() [<a href="./rfc3961" title=""Encryption and Checksum Specifications for Kerberos 5"">RFC3961</a>], using that keying material as the input.
The input parameters for these KDFs are provided as follows:
o H_outputBits is 160 bits for id-pkinit-kdf-ah-sha1, 256 bits for
id-pkinit-kdf-ah-sha256, 384 bits for id-pkinit-kdf-ah-sha384, and
512 bits for id-pkinit-kdf-ah-sha512.
o max_H_inputBits is 2^64.
o The secret value (Z) is the shared secret value generated by the
Diffie-Hellman exchange. The Diffie-Hellman shared value is first
padded with leading zeros such that the size of the secret value
in octets is the same as that of the modulus, then represented as
a string of octets in big-endian order.
o The key data length (L) is the key-generation seed length in bits
[<a href="./rfc3961" title=""Encryption and Checksum Specifications for Kerberos 5"">RFC3961</a>] for the Authentication Service (AS) reply key. The
enctype of the AS reply key is selected according to [<a href="./rfc4120" title=""The Kerberos Network Authentication Service (V5)"">RFC4120</a>].
o The algorithm identifier (algorithmID) input parameter is the
identifier of the respective KDF. For example, this is id-pkinit-
kdf-ah-sha1 if the KDF uses SHA-1 as the hash.
o The initiator identifier (partyUInfo) contains the ASN.1 DER
encoding of the KRB5PrincipalName [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>] that identifies the
client as specified in the AS-REQ [<a href="./rfc4120" title=""The Kerberos Network Authentication Service (V5)"">RFC4120</a>] in the request.
o The recipient identifier (partyVInfo) contains the ASN.1 DER
encoding of the KRB5PrincipalName [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>] that identifies the
ticket-granting server (TGS) as specified in the AS-REQ [<a href="./rfc4120" title=""The Kerberos Network Authentication Service (V5)"">RFC4120</a>]
in the request.
o The supplemental public information (suppPubInfo) is the ASN.1 DER
encoding of the PkinitSuppPubInfo structure, as defined later in
this section.
o The supplemental private information (suppPrivInfo) is absent.
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
OtherInfo is the ASN.1 DER encoding of the following sequence:
OtherInfo ::= SEQUENCE {
algorithmID AlgorithmIdentifier,
partyUInfo [0] OCTET STRING,
partyVInfo [1] OCTET STRING,
suppPubInfo [2] OCTET STRING OPTIONAL,
suppPrivInfo [3] OCTET STRING OPTIONAL
}
The PkinitSuppPubInfo structure is defined as follows:
PkinitSuppPubInfo ::= SEQUENCE {
enctype [0] Int32,
-- The enctype of the AS reply key.
as-REQ [1] OCTET STRING,
-- The DER encoding of the AS-REQ [<a href="./rfc4120" title=""The Kerberos Network Authentication Service (V5)"">RFC4120</a>] from the
-- client.
pk-as-rep [2] OCTET STRING,
-- The DER encoding of the PA-PK-AS-REP [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>] in the
-- KDC reply.
...
}
The PkinitSuppPubInfo structure contains mutually known public
information specific to the authentication exchange. The enctype
field is the enctype of the AS reply key as selected according to
[<a href="./rfc4120" title=""The Kerberos Network Authentication Service (V5)"">RFC4120</a>]. The as-REQ field contains the DER encoding of the AS-REQ
type [<a href="./rfc4120" title=""The Kerberos Network Authentication Service (V5)"">RFC4120</a>] in the request sent from the client to the KDC. Note
that the as-REQ field does not include the wrapping 4-octet length
when TCP is used. The pk-as-rep field contains the DER encoding of
the PA-PK-AS-REP [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>] type in the KDC reply. The
PkinitSuppPubInfo provides a cryptographic binding between the pre-
authentication data and the corresponding ticket request and
response, thus addressing the concerns described in <a href="#section-3">Section 3</a>.
The KDF is negotiated between the client and the KDC. The client
sends an unordered set of supported KDFs in the request, and the KDC
picks one from the set in the reply.
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
To accomplish this, the AuthPack structure in [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>] is extended
as follows:
AuthPack ::= SEQUENCE {
pkAuthenticator [0] PKAuthenticator,
clientPublicValue [1] SubjectPublicKeyInfo OPTIONAL,
supportedCMSTypes [2] SEQUENCE OF AlgorithmIdentifier
OPTIONAL,
clientDHNonce [3] DHNonce OPTIONAL,
...,
supportedKDFs [4] SEQUENCE OF KDFAlgorithmId OPTIONAL,
-- Contains an unordered set of KDFs supported by the
-- client.
...
}
KDFAlgorithmId ::= SEQUENCE {
kdf-id [0] OBJECT IDENTIFIER,
-- The object identifier of the KDF
...
}
The new supportedKDFs field contains an unordered set of KDFs
supported by the client.
The KDFAlgorithmId structure contains an object identifier that
identifies a KDF. The algorithm of the KDF and its parameters are
defined by the corresponding specification of that KDF.
The DHRepInfo structure in [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>] is extended as follows:
DHRepInfo ::= SEQUENCE {
dhSignedData [0] IMPLICIT OCTET STRING,
serverDHNonce [1] DHNonce OPTIONAL,
...,
kdf [2] KDFAlgorithmId OPTIONAL,
-- The KDF picked by the KDC.
...
}
The new kdf field in the extended DHRepInfo structure identifies the
KDF picked by the KDC. If the supportedKDFs field is present in the
request, a KDC conforming to this specification MUST choose one of
the KDFs supported by the client and indicate its selection in the
kdf field in the reply. If the supportedKDFs field is absent in the
request, the KDC MUST omit the kdf field in the reply and use the key
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
derivation function from <a href="./rfc4556#section-3.2.3.1">Section 3.2.3.1 of [RFC4556]</a>. If none of
the KDFs supported by the client is acceptable to the KDC, the KDC
MUST reply with the new error code KDC_ERR_NO_ACCEPTABLE_KDF:
o KDC_ERR_NO_ACCEPTABLE_KDF 100
If the client fills the supportedKDFs field in the request but the
kdf field in the reply is not present, the client can deduce that the
KDC is not updated to conform with this specification, or that the
exchange was subjected to a downgrade attack. It is a matter of
local policy on the client whether to reject the reply when the kdf
field is absent in the reply; if compatibility with non-updated KDCs
is not a concern, the reply should be rejected.
Implementations conforming to this specification MUST support
id-pkinit-kdf-ah-sha256.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Interoperability</span>
An old client interoperating with a new KDC will not recognize a
TD-CMS-DIGEST-ALGORITHMS-DATA element in a
KDC_ERR_DIGEST_IN_SIGNED_DATA_NOT_ACCEPTED error or a TD-CERT-DIGEST-
ALGORITHMS-DATA element in a KDC_ERR_DIGEST_IN_CERT_NOT_ACCEPTED
error. Because the error data is encoded as typed data, the client
will ignore the unrecognized elements.
An old KDC interoperating with a new client will not include a
TD-CMS-DIGEST-ALGORITHMS-DATA element in a
KDC_ERR_DIGEST_IN_SIGNED_DATA_NOT_ACCEPTED error or a TD-CERT-DIGEST-
ALGORITHMS-DATA element in a KDC_ERR_DIGEST_IN_CERT_NOT_ACCEPTED
error. To the client, this appears just as if a new KDC elected not
to include a list of digest algorithms.
An old client interoperating with a new KDC will not include the
supportedKDFs field in the request. The KDC MUST omit the kdf field
in the reply and use the [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>] KDF as expected by the client or
reject the request if local policy forbids use of the old KDF.
A new client interoperating with an old KDC will include the
supportedKDFs field in the request; this field will be ignored as an
unknown extension by the KDC. The KDC will omit the kdf field in the
reply and will use the [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>] KDF. The client can deduce from the
omitted kdf field that the KDC is not updated to conform to this
specification or that the exchange was subjected to a downgrade
attack. The client MUST use the [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>] KDF or reject the reply if
local policy forbids the use of the old KDF.
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Test Vectors</span>
This section contains test vectors for the KDF defined above.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Common Inputs</span>
Z: Length = 256 bytes, Hex Representation = (All Zeros)
<span class="h2"><a class="selflink" id="section-00000000" href="#section-00000000">00000000</a> 00000000 00000000 00000000 000000000 00000000 00000000 00000000</span>
<span class="h2"><a class="selflink" id="section-00000000" href="#section-00000000">00000000</a> 00000000 00000000 00000000 000000000 00000000 00000000 00000000</span>
<span class="h2"><a class="selflink" id="section-00000000" href="#section-00000000">00000000</a> 00000000 00000000 00000000 000000000 00000000 00000000 00000000</span>
<span class="h2"><a class="selflink" id="section-00000000" href="#section-00000000">00000000</a> 00000000 00000000 00000000 000000000 00000000 00000000 00000000</span>
<span class="h2"><a class="selflink" id="section-00000000" href="#section-00000000">00000000</a> 00000000 00000000 00000000 000000000 00000000 00000000 00000000</span>
<span class="h2"><a class="selflink" id="section-00000000" href="#section-00000000">00000000</a> 00000000 00000000 00000000 000000000 00000000 00000000 00000000</span>
<span class="h2"><a class="selflink" id="section-00000000" href="#section-00000000">00000000</a> 00000000 00000000 00000000 000000000 00000000 00000000 00000000</span>
<span class="h2"><a class="selflink" id="section-00000000" href="#section-00000000">00000000</a> 00000000 00000000 00000000 000000000 00000000 00000000 00000000</span>
client: Length = 9 bytes, ASCII Representation = lha@SU.SE
server: Length = 18 bytes, ASCII Representation = krbtgt/SU.SE@SU.SE
as-req: Length = 10 bytes, Hex Representation =
AAAAAAAA AAAAAAAA AAAA
pk-as-rep: Length = 9 bytes, Hex Representation =
BBBBBBBB BBBBBBBB BB
ticket: Length = 55 bytes, Hex Representation =
<span class="h2"><a class="selflink" id="section-61353033" href="#section-61353033">61353033</a> A0030201 05A1071B 0553552E 5345A210 300EA003 020101A1 0730051B</span>
036C6861 A311300F A0030201 12A20804 0668656A 68656A
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Test Vector for SHA-1, enctype 18</span>
<span class="h4"><a class="selflink" id="section-8.2.1" href="#section-8.2.1">8.2.1</a>. Specific Inputs</span>
algorithm-id: (id-pkinit-kdf-ah-sha1) Length = 8 bytes, Hex
Representation = 2B060105 02030601
enctype: (aes256-cts-hmac-sha1-96) Length = 1 byte, Decimal
Representation = 18
<span class="h4"><a class="selflink" id="section-8.2.2" href="#section-8.2.2">8.2.2</a>. Outputs</span>
key-material: Length = 32 bytes, Hex Representation =
E6AB38C9 413E035B B079201E D0B6B73D 8D49A814 A737C04E E6649614 206F73AD
key: Length = 32 bytes, Hex Representation =
E6AB38C9 413E035B B079201E D0B6B73D 8D49A814 A737C04E E6649614 206F73AD
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Test Vector for SHA-256, enctype 18</span>
<span class="h4"><a class="selflink" id="section-8.3.1" href="#section-8.3.1">8.3.1</a>. Specific Inputs</span>
algorithm-id: (id-pkinit-kdf-ah-sha256) Length = 8 bytes, Hex
Representation = 2B060105 02030602
enctype: (aes256-cts-hmac-sha1-96) Length = 1 byte, Decimal
Representation = 18
<span class="h4"><a class="selflink" id="section-8.3.2" href="#section-8.3.2">8.3.2</a>. Outputs</span>
key-material: Length = 32 bytes, Hex Representation =
77EF4E48 C420AE3F EC75109D 7981697E ED5D295C 90C62564 F7BFD101 FA9bC1D5
key: Length = 32 bytes, Hex Representation =
77EF4E48 C420AE3F EC75109D 7981697E ED5D295C 90C62564 F7BFD101 FA9bC1D5
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. Test Vector for SHA-512, enctype 16</span>
<span class="h4"><a class="selflink" id="section-8.4.1" href="#section-8.4.1">8.4.1</a>. Specific Inputs</span>
algorithm-id: (id-pkinit-kdf-ah-sha512) Length = 8 bytes, Hex
Representation = 2B060105 02030603
enctype: (des3-cbc-sha1-kd) Length = 1 byte, Decimal
Representation = 16
<span class="h4"><a class="selflink" id="section-8.4.2" href="#section-8.4.2">8.4.2</a>. Outputs</span>
key-material: Length = 24 bytes, Hex Representation =
D3C78A79 D65213EF E9A826F7 5DFB01F7 2362FB16 FB01DAD6
key: Length = 32 bytes, Hex Representation =
D3C78A79 D65213EF E9A826F7 5DFB01F7 2362FB16 FB01DAD6
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Security Considerations</span>
This document describes negotiation of checksum types, key derivation
functions, and other cryptographic functions. If a given negotiation
is unauthenticated, care must be taken to accept only secure values;
to do otherwise allows an active attacker to perform a downgrade
attack.
The discovery method described in <a href="#section-4">Section 4</a> uses a Kerberos error
message, which is unauthenticated in a typical exchange. An attacker
may attempt to downgrade a client to a weaker CMS type by forging a
KDC_ERR_DIGEST_IN_SIGNED_DATA_NOT_ACCEPTED error. It is a matter of
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
local policy whether a client accepts a downgrade to a weaker CMS
type and whether the KDC accepts the weaker CMS type. A client may
reasonably assume that the real KDC implements all hash functions
used in the client's X.509 certificate, and so the client may refuse
attempts to downgrade to weaker hash functions.
The discovery method described in <a href="#section-5">Section 5</a> also uses a Kerberos
error message. An attacker may attempt to downgrade a client to a
certificate using a weaker signing algorithm by forging a
KDC_ERR_DIGEST_IN_CERT_NOT_ACCEPTED error. It is a matter of local
policy whether a client accepts a downgrade to a weaker certificate
and whether the KDC accepts the weaker certificate. This attack is
only possible if the client device possesses multiple client
certificates of varying strengths.
In the KDF negotiation method described in <a href="#section-6">Section 6</a>, the client
supportedKDFs value is protected by the signature on the
signedAuthPack field in the request. If this signature algorithm is
vulnerable to collision attacks, an attacker may attempt to downgrade
the negotiation by substituting an AuthPack with a different or
absent supportedKDFs value, using a PKINIT freshness token [<a href="./rfc8070" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) Freshness Extension"">RFC8070</a>]
to partially control the legitimate AuthPack value. A client that is
performing anonymous PKINIT [<a href="./rfc8062" title=""Anonymity Support for Kerberos"">RFC8062</a>] does not sign the AuthPack, so
an attacker can easily remove the supportedKDFs value in this case.
Finally, the kdf field in the DHRepInfo of the KDC response is
unauthenticated and could be altered or removed by an attacker,
although this alteration will likely result in a decryption failure
by the client rather than a successful downgrade. It is a matter of
local policy whether a client accepts a downgrade to the old KDF and
whether the KDC allows the use of the old KDF.
The paChecksum field, which binds the client pre-authentication data
to the Kerberos request body, remains fixed at SHA-1. If an attacker
substitutes a different request body using an attack against SHA-1 (a
second preimage attack is likely required as the attacker does not
control any part of the legitimate request body), the KDC will not
detect the substitution. Instead, if a new KDF is negotiated, the
client will detect the substitution by failing to decrypt the reply.
An attacker may attempt to impersonate the KDC to the client via an
attack on the hash function used in the dhSignedData signature,
substituting the attacker's subjectPublicKey for the legitimate one
without changing the hash value. It is a matter of local policy
which hash function the KDC uses in its signature and which hash
functions the client will accept in the KDC signature. A KDC may
reasonably assume that the client implements all hash functions used
in the KDF algorithms listed the supportedKDFs field of the request.
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. IANA Considerations</span>
IANA has made the following assignments in the Kerberos "Pre-
authentication and Typed Data" registry created by Section 7.1 of <a href="./rfc6113">RFC</a>
<a href="./rfc6113">6113</a>.
TD-CMS-DIGEST-ALGORITHMS 111 [<a href="./rfc8636">RFC8636</a>]
TD-CERT-DIGEST-ALGORITHMS 112 [<a href="./rfc8636">RFC8636</a>]
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC3961">RFC3961</a>] Raeburn, K., "Encryption and Checksum Specifications for
Kerberos 5", <a href="./rfc3961">RFC 3961</a>, DOI 10.17487/RFC3961, February
2005, <<a href="https://www.rfc-editor.org/info/rfc3961">https://www.rfc-editor.org/info/rfc3961</a>>.
[<a id="ref-RFC4120">RFC4120</a>] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
Kerberos Network Authentication Service (V5)", <a href="./rfc4120">RFC 4120</a>,
DOI 10.17487/RFC4120, July 2005,
<<a href="https://www.rfc-editor.org/info/rfc4120">https://www.rfc-editor.org/info/rfc4120</a>>.
[<a id="ref-RFC4556">RFC4556</a>] Zhu, L. and B. Tung, "Public Key Cryptography for Initial
Authentication in Kerberos (PKINIT)", <a href="./rfc4556">RFC 4556</a>,
DOI 10.17487/RFC4556, June 2006,
<<a href="https://www.rfc-editor.org/info/rfc4556">https://www.rfc-editor.org/info/rfc4556</a>>.
[<a id="ref-RFC5280">RFC5280</a>] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", <a href="./rfc5280">RFC 5280</a>, DOI 10.17487/RFC5280, May 2008,
<<a href="https://www.rfc-editor.org/info/rfc5280">https://www.rfc-editor.org/info/rfc5280</a>>.
[<a id="ref-RFC5652">RFC5652</a>] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
<a href="./rfc5652">RFC 5652</a>, DOI 10.17487/RFC5652, September 2009,
<<a href="https://www.rfc-editor.org/info/rfc5652">https://www.rfc-editor.org/info/rfc5652</a>>.
[<a id="ref-RFC6234">RFC6234</a>] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
(SHA and SHA-based HMAC and HKDF)", <a href="./rfc6234">RFC 6234</a>,
DOI 10.17487/RFC6234, May 2011,
<<a href="https://www.rfc-editor.org/info/rfc6234">https://www.rfc-editor.org/info/rfc6234</a>>.
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in <a href="./rfc2119">RFC</a>
<a href="./rfc2119">2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>, DOI 10.17487/RFC8174,
May 2017, <<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
[<a id="ref-SP80056A">SP80056A</a>] Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.
Davis, "Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography", NIST
Special Publications 800-56A, Revision 3,
DOI 10.6028/NIST.SP.800-56Ar3, April 2018,
<<a href="https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf">https://nvlpubs.nist.gov/nistpubs/SpecialPublications/</a>
<a href="https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf">NIST.SP.800-56Ar3.pdf</a>>.
[<a id="ref-SP80056C">SP80056C</a>] Barker, E., Chen, L., and R. Davis, "Recommendation for
Key-Derivation Methods in Key-Establishment Schemes", NIST
Special Publications 800-56C, Revision 1,
DOI 10.6028/NIST.SP.800-56Cr1, April 2018,
<<a href="https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr1.pdf">https://nvlpubs.nist.gov/nistpubs/SpecialPublications/</a>
<a href="https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr1.pdf">NIST.SP.800-56Cr1.pdf</a>>.
[<a id="ref-X680">X680</a>] ITU-T, "Information technology - Abstract Syntax Notation
One (ASN.1): Specification of basic notation", ITU-T
Recommendation X.680, August 2015,
<<a href="https://www.itu.int/rec/T-REC-X.680-201508-I/en">https://www.itu.int/rec/T-REC-X.680-201508-I/en</a>>.
[<a id="ref-X690">X690</a>] ITU-T, "Information technology - ASN.1 encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules
(DER)", ITU-T Recommendation X.690, August 2015,
<<a href="https://www.itu.int/rec/T-REC-X.690-201508-I/en">https://www.itu.int/rec/T-REC-X.690-201508-I/en</a>>.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Informative References</span>
[<a id="ref-RFC1321">RFC1321</a>] Rivest, R., "The MD5 Message-Digest Algorithm", <a href="./rfc1321">RFC 1321</a>,
DOI 10.17487/RFC1321, April 1992,
<<a href="https://www.rfc-editor.org/info/rfc1321">https://www.rfc-editor.org/info/rfc1321</a>>.
[<a id="ref-RFC6150">RFC6150</a>] Turner, S. and L. Chen, "MD4 to Historic Status",
<a href="./rfc6150">RFC 6150</a>, DOI 10.17487/RFC6150, March 2011,
<<a href="https://www.rfc-editor.org/info/rfc6150">https://www.rfc-editor.org/info/rfc6150</a>>.
[<a id="ref-RFC6194">RFC6194</a>] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
Considerations for the SHA-0 and SHA-1 Message-Digest
Algorithms", <a href="./rfc6194">RFC 6194</a>, DOI 10.17487/RFC6194, March 2011,
<<a href="https://www.rfc-editor.org/info/rfc6194">https://www.rfc-editor.org/info/rfc6194</a>>.
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
[<a id="ref-RFC7696">RFC7696</a>] Housley, R., "Guidelines for Cryptographic Algorithm
Agility and Selecting Mandatory-to-Implement Algorithms",
<a href="https://www.rfc-editor.org/bcp/bcp201">BCP 201</a>, <a href="./rfc7696">RFC 7696</a>, DOI 10.17487/RFC7696, November 2015,
<<a href="https://www.rfc-editor.org/info/rfc7696">https://www.rfc-editor.org/info/rfc7696</a>>.
[<a id="ref-RFC8062">RFC8062</a>] Zhu, L., Leach, P., Hartman, S., and S. Emery, Ed.,
"Anonymity Support for Kerberos", <a href="./rfc8062">RFC 8062</a>,
DOI 10.17487/RFC8062, February 2017,
<<a href="https://www.rfc-editor.org/info/rfc8062">https://www.rfc-editor.org/info/rfc8062</a>>.
[<a id="ref-RFC8070">RFC8070</a>] Short, M., Ed., Moore, S., and P. Miller, "Public Key
Cryptography for Initial Authentication in Kerberos
(PKINIT) Freshness Extension", <a href="./rfc8070">RFC 8070</a>,
DOI 10.17487/RFC8070, February 2017,
<<a href="https://www.rfc-editor.org/info/rfc8070">https://www.rfc-editor.org/info/rfc8070</a>>.
[<a id="ref-WANG04">WANG04</a>] Wang, X., Lai, X., Feng, D., Chen, H., and X. Yu,
"Cryptanalysis of the Hash Functions MD4 and RIPEMD",
Advances in Cryptology - EUROCRYPT 2005,
DOI 10.1007/11426639_1, August 2004.
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. PKINIT ASN.1 Module</span>
KerberosV5-PK-INIT-Agility-SPEC {
iso(1) identified-organization(3) dod(6) internet(1)
security(5) kerberosV5(2) modules(4) pkinit(5) agility (1)
} DEFINITIONS EXPLICIT TAGS ::= BEGIN
IMPORTS
AlgorithmIdentifier, SubjectPublicKeyInfo
FROM PKIX1Explicit88 { iso (1)
identified-organization (3) dod (6) internet (1)
security (5) mechanisms (5) pkix (7) id-mod (0)
id-pkix1-explicit (18) }
-- As defined in <a href="./rfc5280">RFC 5280</a>.
Ticket, Int32, Realm, EncryptionKey, Checksum
FROM KerberosV5Spec2 { iso(1) identified-organization(3)
dod(6) internet(1) security(5) kerberosV5(2)
modules(4) krb5spec2(2) }
-- as defined in <a href="./rfc4120">RFC 4120</a>.
PKAuthenticator, DHNonce, id-pkinit
FROM KerberosV5-PK-INIT-SPEC {
iso(1) identified-organization(3) dod(6) internet(1)
security(5) kerberosV5(2) modules(4) pkinit(5) };
-- as defined in <a href="./rfc4556">RFC 4556</a>.
id-pkinit-kdf OBJECT IDENTIFIER ::= { id-pkinit kdf(6) }
-- PKINIT KDFs
id-pkinit-kdf-ah-sha1 OBJECT IDENTIFIER
::= { id-pkinit-kdf sha1(1) }
-- SP800-56A ASN.1 structured hash-based KDF using SHA-1
id-pkinit-kdf-ah-sha256 OBJECT IDENTIFIER
::= { id-pkinit-kdf sha256(2) }
-- SP800-56A ASN.1 structured hash-based KDF using SHA-256
id-pkinit-kdf-ah-sha512 OBJECT IDENTIFIER
::= { id-pkinit-kdf sha512(3) }
-- SP800-56A ASN.1 structured hash-based KDF using SHA-512
id-pkinit-kdf-ah-sha384 OBJECT IDENTIFIER
::= { id-pkinit-kdf sha384(4) }
-- SP800-56A ASN.1 structured hash-based KDF using SHA-384
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
TD-CMS-DIGEST-ALGORITHMS-DATA ::= SEQUENCE OF
AlgorithmIdentifier
-- Contains the list of CMS algorithm [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>]
-- identifiers indicating the digest algorithms
-- acceptable to the KDC for signing CMS data in
-- decreasing order of preference.
TD-CERT-DIGEST-ALGORITHMS-DATA ::= SEQUENCE {
allowedAlgorithms [0] SEQUENCE OF AlgorithmIdentifier,
-- Contains the list of CMS algorithm [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>]
-- identifiers indicating the digest algorithms
-- that are used by the CA to sign the client's
-- X.509 certificate and are acceptable to the KDC
-- in the process of validating the client's X.509
-- certificate in decreasing order of
-- preference.
rejectedAlgorithm [1] AlgorithmIdentifier OPTIONAL,
-- This identifies the digest algorithm that was
-- used to sign the client's X.509 certificate and
-- has been rejected by the KDC in the process of
-- validating the client's X.509 certificate
-- [<a href="./rfc5280" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC5280</a>].
...
}
OtherInfo ::= SEQUENCE {
algorithmID AlgorithmIdentifier,
partyUInfo [0] OCTET STRING,
partyVInfo [1] OCTET STRING,
suppPubInfo [2] OCTET STRING OPTIONAL,
suppPrivInfo [3] OCTET STRING OPTIONAL
}
PkinitSuppPubInfo ::= SEQUENCE {
enctype [0] Int32,
-- The enctype of the AS reply key.
as-REQ [1] OCTET STRING,
-- The DER encoding of the AS-REQ [<a href="./rfc4120" title=""The Kerberos Network Authentication Service (V5)"">RFC4120</a>] from the
-- client.
pk-as-rep [2] OCTET STRING,
-- The DER encoding of the PA-PK-AS-REP [<a href="./rfc4556" title=""Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)"">RFC4556</a>] in the
-- KDC reply.
...
}
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
AuthPack ::= SEQUENCE {
pkAuthenticator [0] PKAuthenticator,
clientPublicValue [1] SubjectPublicKeyInfo OPTIONAL,
supportedCMSTypes [2] SEQUENCE OF AlgorithmIdentifier
OPTIONAL,
clientDHNonce [3] DHNonce OPTIONAL,
...,
supportedKDFs [4] SEQUENCE OF KDFAlgorithmId OPTIONAL,
-- Contains an unordered set of KDFs supported by the
-- client.
...
}
KDFAlgorithmId ::= SEQUENCE {
kdf-id [0] OBJECT IDENTIFIER,
-- The object identifier of the KDF
...
}
DHRepInfo ::= SEQUENCE {
dhSignedData [0] IMPLICIT OCTET STRING,
serverDHNonce [1] DHNonce OPTIONAL,
...,
kdf [2] KDFAlgorithmId OPTIONAL,
-- The KDF picked by the KDC.
...
}
END
<span class="grey">Hornquist Astrand, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8636">RFC 8636</a> PKINIT Algorithm Agility July 2019</span>
Acknowledgements
Jeffery Hutzelman, Shawn Emery, Tim Polk, Kelley Burgin, Ben Kaduk,
Scott Bradner, and Eric Rescorla reviewed the document and provided
suggestions for improvements.
Authors' Addresses
Love Hornquist Astrand
Apple, Inc
Cupertino, CA
United States of America
Email: lha@apple.com
Larry Zhu
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
United States of America
Email: larryzhu@live.com
Margaret Cullen
Painless Security
4 High St, Suite 134
North Andover, MA 01845
United States of America
Phone: +1 781-405-7464
Email: margaret@painless-security.com
Greg Hudson
MIT
Email: ghudson@mit.edu
Hornquist Astrand, et al. Standards Track [Page 21]
</pre>
|