1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8660: Segment Routing with the MPLS Data Plane</title>
<meta content="Ahmed Bashandy" name="author">
<meta content="Clarence Filsfils" name="author">
<meta content="Stefano Previdi" name="author">
<meta content="Bruno Decraene" name="author">
<meta content="Stephane Litkowski" name="author">
<meta content="Rob Shakir" name="author">
<meta content="
Segment Routing (SR) leverages the source-routing paradigm. A node
steers a packet through a controlled set of instructions, called
segments, by prepending the packet with an SR header. In the MPLS
data plane, the SR header is instantiated through a label stack. This
document specifies the forwarding behavior to allow instantiating SR
over the MPLS data plane (SR-MPLS).
" name="description">
<meta content="xml2rfc 2.35.0" name="generator">
<meta content="8660" name="rfc.number">
<link href="rfc8660.xml" type="application/rfc+xml" rel="alternate">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Avoid wrapping of URLs in references */
@media screen {
.references a {
white-space: nowrap;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin: 0 0 0.25em 0;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.sourcecode {
margin-bottom: 1em;
}
}</style>
<link href="rfc-local.css" type="text/css" rel="stylesheet">
<link href="https://dx.doi.org/10.17487/rfc8660" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-spring-segment-routing-mpls-22" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8660</td>
<td class="center">Segment Routing with the MPLS Data Plane</td>
<td class="right">December 2019</td>
</tr></thead>
<tfoot><tr>
<td class="left">Bashandy, et al.</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8660" class="eref">8660</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2019-12" class="published">December 2019</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">A. Bashandy, <span class="editor">Ed.</span>
</div>
<div class="org">Arrcus</div>
</div>
<div class="author">
<div class="author-name">C. Filsfils, <span class="editor">Ed.</span>
</div>
<div class="org">Cisco Systems, Inc.</div>
</div>
<div class="author">
<div class="author-name">S. Previdi</div>
<div class="org">Cisco Systems, Inc.</div>
</div>
<div class="author">
<div class="author-name">B. Decraene</div>
<div class="org">Orange</div>
</div>
<div class="author">
<div class="author-name">S. Litkowski</div>
<div class="org">Orange</div>
</div>
<div class="author">
<div class="author-name">R. Shakir</div>
<div class="org">Google</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8660</h1>
<h1 id="title">Segment Routing with the MPLS Data Plane</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">
Segment Routing (SR) leverages the source-routing paradigm. A node
steers a packet through a controlled set of instructions, called
segments, by prepending the packet with an SR header. In the MPLS
data plane, the SR header is instantiated through a label stack. This
document specifies the forwarding behavior to allow instantiating SR
over the MPLS data plane (SR-MPLS).<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc8660">https://www.rfc-editor.org/info/rfc8660</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.1.2.1">
<p id="section-toc.1-1.1.2.1.1"><a href="#section-1.1" class="xref">1.1</a>. <a href="#name-requirements-language" class="xref">Requirements Language</a><a href="#section-toc.1-1.1.2.1.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-mpls-instantiation-of-segme" class="xref">MPLS Instantiation of Segment Routing</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-multiple-forwarding-behavio" class="xref">Multiple Forwarding Behaviors for the Same Prefix</a><a href="#section-toc.1-1.2.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1"><a href="#section-2.2" class="xref">2.2</a>. <a href="#name-sid-representation-in-the-m" class="xref">SID Representation in the MPLS Forwarding Plane</a><a href="#section-toc.1-1.2.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.3">
<p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="xref">2.3</a>. <a href="#name-segment-routing-global-bloc" class="xref">Segment Routing Global Block and Local Block</a><a href="#section-toc.1-1.2.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.4">
<p id="section-toc.1-1.2.2.4.1"><a href="#section-2.4" class="xref">2.4</a>. <a href="#name-mapping-a-sid-index-to-an-m" class="xref">Mapping a SID Index to an MPLS Label</a><a href="#section-toc.1-1.2.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.5">
<p id="section-toc.1-1.2.2.5.1"><a href="#section-2.5" class="xref">2.5</a>. <a href="#name-incoming-label-collision" class="xref">Incoming Label Collision</a><a href="#section-toc.1-1.2.2.5.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.2.2.5.2.1">
<p id="section-toc.1-1.2.2.5.2.1.1"><a href="#section-2.5.1" class="xref">2.5.1</a>. <a href="#name-tiebreaking-rules" class="xref">Tiebreaking Rules</a><a href="#section-toc.1-1.2.2.5.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.5.2.2">
<p id="section-toc.1-1.2.2.5.2.2.1"><a href="#section-2.5.2" class="xref">2.5.2</a>. <a href="#name-redistribution-between-rout" class="xref">Redistribution between Routing Protocol Instances</a><a href="#section-toc.1-1.2.2.5.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.6">
<p id="section-toc.1-1.2.2.6.1"><a href="#section-2.6" class="xref">2.6</a>. <a href="#name-effect-of-incoming-label-co" class="xref">Effect of Incoming Label Collision on Outgoing Label Programming</a><a href="#section-toc.1-1.2.2.6.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.7">
<p id="section-toc.1-1.2.2.7.1"><a href="#section-2.7" class="xref">2.7</a>. <a href="#name-push-continue-and-next" class="xref">PUSH, CONTINUE, and NEXT</a><a href="#section-toc.1-1.2.2.7.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.2.2.7.2.1">
<p id="section-toc.1-1.2.2.7.2.1.1"><a href="#section-2.7.1" class="xref">2.7.1</a>. <a href="#name-push" class="xref">PUSH</a><a href="#section-toc.1-1.2.2.7.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.7.2.2">
<p id="section-toc.1-1.2.2.7.2.2.1"><a href="#section-2.7.2" class="xref">2.7.2</a>. <a href="#name-continue" class="xref">CONTINUE</a><a href="#section-toc.1-1.2.2.7.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.7.2.3">
<p id="section-toc.1-1.2.2.7.2.3.1"><a href="#section-2.7.3" class="xref">2.7.3</a>. <a href="#name-next" class="xref">NEXT</a><a href="#section-toc.1-1.2.2.7.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.8">
<p id="section-toc.1-1.2.2.8.1"><a href="#section-2.8" class="xref">2.8</a>. <a href="#name-mpls-label-downloaded-to-th" class="xref">MPLS Label Downloaded to the FIB for Global and Local SIDs</a><a href="#section-toc.1-1.2.2.8.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.9">
<p id="section-toc.1-1.2.2.9.1"><a href="#section-2.9" class="xref">2.9</a>. <a href="#name-active-segment" class="xref">Active Segment</a><a href="#section-toc.1-1.2.2.9.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.10">
<p id="section-toc.1-1.2.2.10.1"><a href="#section-2.10" class="xref">2.10</a>. <a href="#name-forwarding-behavior-for-glo" class="xref">Forwarding Behavior for Global SIDs</a><a href="#section-toc.1-1.2.2.10.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.2.2.10.2.1">
<p id="section-toc.1-1.2.2.10.2.1.1"><a href="#section-2.10.1" class="xref">2.10.1</a>. <a href="#name-forwarding-for-push-and-con" class="xref">Forwarding for PUSH and CONTINUE of Global SIDs</a><a href="#section-toc.1-1.2.2.10.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.10.2.2">
<p id="section-toc.1-1.2.2.10.2.2.1"><a href="#section-2.10.2" class="xref">2.10.2</a>. <a href="#name-forwarding-for-the-next-ope" class="xref">Forwarding for the NEXT Operation for Global SIDs</a><a href="#section-toc.1-1.2.2.10.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.11">
<p id="section-toc.1-1.2.2.11.1"><a href="#section-2.11" class="xref">2.11</a>. <a href="#name-forwarding-behavior-for-loc" class="xref">Forwarding Behavior for Local SIDs</a><a href="#section-toc.1-1.2.2.11.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.2.2.11.2.1">
<p id="section-toc.1-1.2.2.11.2.1.1"><a href="#section-2.11.1" class="xref">2.11.1</a>. <a href="#name-forwarding-for-the-push-ope" class="xref">Forwarding for the PUSH Operation on Local SIDs</a><a href="#section-toc.1-1.2.2.11.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.11.2.2">
<p id="section-toc.1-1.2.2.11.2.2.1"><a href="#section-2.11.2" class="xref">2.11.2</a>. <a href="#name-forwarding-for-the-continue" class="xref">Forwarding for the CONTINUE Operation for Local SIDs</a><a href="#section-toc.1-1.2.2.11.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.11.2.3">
<p id="section-toc.1-1.2.2.11.2.3.1"><a href="#section-2.11.3" class="xref">2.11.3</a>. <a href="#name-outgoing-label-for-the-next" class="xref">Outgoing Label for the NEXT Operation for Local SIDs</a><a href="#section-toc.1-1.2.2.11.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-manageability-consideration" class="xref">Manageability Considerations</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.6.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.6.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-appendix.a" class="xref">Appendix A</a>. <a href="#name-examples" class="xref">Examples</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-a.1" class="xref">A.1</a>. <a href="#name-igp-segment-examples" class="xref">IGP Segment Examples</a><a href="#section-toc.1-1.7.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-a.2" class="xref">A.2</a>. <a href="#name-incoming-label-collision-ex" class="xref">Incoming Label Collision Examples</a><a href="#section-toc.1-1.7.2.2.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.1">
<p id="section-toc.1-1.7.2.2.2.1.1"><a href="#section-a.2.1" class="xref">A.2.1</a>. <a href="#name-example-1" class="xref">Example 1</a><a href="#section-toc.1-1.7.2.2.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.2">
<p id="section-toc.1-1.7.2.2.2.2.1"><a href="#section-a.2.2" class="xref">A.2.2</a>. <a href="#name-example-2" class="xref">Example 2</a><a href="#section-toc.1-1.7.2.2.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.3">
<p id="section-toc.1-1.7.2.2.2.3.1"><a href="#section-a.2.3" class="xref">A.2.3</a>. <a href="#name-example-3" class="xref">Example 3</a><a href="#section-toc.1-1.7.2.2.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.4">
<p id="section-toc.1-1.7.2.2.2.4.1"><a href="#section-a.2.4" class="xref">A.2.4</a>. <a href="#name-example-4" class="xref">Example 4</a><a href="#section-toc.1-1.7.2.2.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.5">
<p id="section-toc.1-1.7.2.2.2.5.1"><a href="#section-a.2.5" class="xref">A.2.5</a>. <a href="#name-example-5" class="xref">Example 5</a><a href="#section-toc.1-1.7.2.2.2.5.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.6">
<p id="section-toc.1-1.7.2.2.2.6.1"><a href="#section-a.2.6" class="xref">A.2.6</a>. <a href="#name-example-6" class="xref">Example 6</a><a href="#section-toc.1-1.7.2.2.2.6.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.7">
<p id="section-toc.1-1.7.2.2.2.7.1"><a href="#section-a.2.7" class="xref">A.2.7</a>. <a href="#name-example-7" class="xref">Example 7</a><a href="#section-toc.1-1.7.2.2.2.7.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.8">
<p id="section-toc.1-1.7.2.2.2.8.1"><a href="#section-a.2.8" class="xref">A.2.8</a>. <a href="#name-example-8" class="xref">Example 8</a><a href="#section-toc.1-1.7.2.2.2.8.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.9">
<p id="section-toc.1-1.7.2.2.2.9.1"><a href="#section-a.2.9" class="xref">A.2.9</a>. <a href="#name-example-9" class="xref">Example 9</a><a href="#section-toc.1-1.7.2.2.2.9.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.10">
<p id="section-toc.1-1.7.2.2.2.10.1"><a href="#section-a.2.10" class="xref">A.2.10</a>. <a href="#name-example-10" class="xref">Example 10</a><a href="#section-toc.1-1.7.2.2.2.10.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.11">
<p id="section-toc.1-1.7.2.2.2.11.1"><a href="#section-a.2.11" class="xref">A.2.11</a>. <a href="#name-example-11" class="xref">Example 11</a><a href="#section-toc.1-1.7.2.2.2.11.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.12">
<p id="section-toc.1-1.7.2.2.2.12.1"><a href="#section-a.2.12" class="xref">A.2.12</a>. <a href="#name-example-12" class="xref">Example 12</a><a href="#section-toc.1-1.7.2.2.2.12.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.13">
<p id="section-toc.1-1.7.2.2.2.13.1"><a href="#section-a.2.13" class="xref">A.2.13</a>. <a href="#name-example-13" class="xref">Example 13</a><a href="#section-toc.1-1.7.2.2.2.13.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2.2.14">
<p id="section-toc.1-1.7.2.2.2.14.1"><a href="#section-a.2.14" class="xref">A.2.14</a>. <a href="#name-example-14" class="xref">Example 14</a><a href="#section-toc.1-1.7.2.2.2.14.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.3">
<p id="section-toc.1-1.7.2.3.1"><a href="#section-a.3" class="xref">A.3</a>. <a href="#name-examples-for-the-effect-of-" class="xref">Examples for the Effect of Incoming Label Collision on an Outgoing Label</a><a href="#section-toc.1-1.7.2.3.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.7.2.3.2.1">
<p id="section-toc.1-1.7.2.3.2.1.1"><a href="#section-a.3.1" class="xref">A.3.1</a>. <a href="#name-example-1-2" class="xref">Example 1</a><a href="#section-toc.1-1.7.2.3.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.3.2.2">
<p id="section-toc.1-1.7.2.3.2.2.1"><a href="#section-a.3.2" class="xref">A.3.2</a>. <a href="#name-example-2-2" class="xref">Example 2</a><a href="#section-toc.1-1.7.2.3.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-appendix.c" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-appendix.d" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="convert-section-1">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">
The Segment Routing architecture <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span> can be directly applied to
the MPLS architecture with no change in the MPLS forwarding plane.
This document specifies forwarding-plane behavior to allow
Segment Routing to operate on top of the MPLS data plane (SR-MPLS). This
document does not address control-plane behavior. Control-plane
behavior is specified in other documents such as <span>[<a href="#RFC8665" class="xref">RFC8665</a>]</span>, <span>[<a href="#RFC8666" class="xref">RFC8666</a>]</span>, and <span>[<a href="#RFC8667" class="xref">RFC8667</a>]</span>.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">
The Segment Routing problem statement is described in <span>[<a href="#RFC7855" class="xref">RFC7855</a>]</span>.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">
Coexistence of SR over the MPLS forwarding plane with LDP <span>[<a href="#RFC5036" class="xref">RFC5036</a>]</span> is
specified in <span>[<a href="#RFC8661" class="xref">RFC8661</a>]</span>.<a href="#section-1-3" class="pilcrow">¶</a></p>
<p id="section-1-4">
Policy routing and traffic engineering using Segment Routing can be
found in <span>[<a href="#ROUTING-POLICY" class="xref">ROUTING-POLICY</a>]</span>.<a href="#section-1-4" class="pilcrow">¶</a></p>
<div id="convert-section-1.1">
<section id="section-1.1">
<h3 id="name-requirements-language">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
</h3>
<p id="section-1.1-1">
The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as
described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span>
when, and only when, they appear in all capitals, as shown here.<a href="#section-1.1-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="convert-section-2">
<section id="section-2">
<h2 id="name-mpls-instantiation-of-segme">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-mpls-instantiation-of-segme" class="section-name selfRef">MPLS Instantiation of Segment Routing</a>
</h2>
<p id="section-2-1">
MPLS instantiation of Segment Routing fits in the MPLS architecture
as defined in <span>[<a href="#RFC3031" class="xref">RFC3031</a>]</span> from both a control-plane and forwarding-plane
perspective:<a href="#section-2-1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2-2.1">From a control-plane perspective, <span>[<a href="#RFC3031" class="xref">RFC3031</a>]</span> does not mandate a
single signaling protocol. Segment Routing makes use of various
control-plane protocols such as link-state IGPs <span>[<a href="#RFC8665" class="xref">RFC8665</a>]</span> <span>[<a href="#RFC8666" class="xref">RFC8666</a>]</span> <span>[<a href="#RFC8667" class="xref">RFC8667</a>]</span>.
The flooding mechanisms of link-state IGPs fit very well with
label stacking on the ingress. A future control-layer protocol and/or
policy/configuration can be used to specify the label stack.<a href="#section-2-2.1" class="pilcrow">¶</a>
</li>
<li id="section-2-2.2">From a forwarding-plane perspective, Segment Routing does not
require any change to the forwarding plane because Segment IDs
(SIDs) are instantiated as MPLS labels, and the Segment Routing
header is instantiated as a stack of MPLS labels.<a href="#section-2-2.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2-3">
We call the "MPLS Control Plane Client (MCC)" any control-plane entity
installing forwarding entries in the MPLS data plane. Local
configuration and policies applied on a router are examples of MCCs.<a href="#section-2-3" class="pilcrow">¶</a></p>
<p id="section-2-4">
In order to have a node segment reach the node, a network operator
<span class="bcp14">SHOULD</span> configure at least one node segment per routing instance,
topology, or algorithm. Otherwise, the node is not reachable within
the routing instance, within the topology,
or along the routing algorithm, which restricts
its ability to be used by an SR Policy and as a
Topology Independent Loop-Free Alternate (TI-LFA).<a href="#section-2-4" class="pilcrow">¶</a></p>
<div id="convert-section-2.1">
<section id="section-2.1">
<h3 id="name-multiple-forwarding-behavio">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-multiple-forwarding-behavio" class="section-name selfRef">Multiple Forwarding Behaviors for the Same Prefix</a>
</h3>
<p id="section-2.1-1">
The SR architecture does not prohibit having more than one SID for
the same prefix. In fact, by allowing multiple SIDs for the same
prefix, it is possible to have different forwarding behaviors (such
as different paths, different ECMP and Unequal-Cost Multipath (UCMP) behaviors, etc.) for the
same destination.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">
Instantiating Segment Routing over the MPLS forwarding plane fits
seamlessly with this principle. An operator may assign multiple MPLS
labels or indices to the same prefix and assign different forwarding
behaviors to each label/SID. The MCC in the network downloads
different MPLS labels/SIDs to the FIB for different forwarding
behaviors. The MCC at the entry of an SR domain or at any point in
the domain can choose to apply a particular forwarding behavior to a
particular packet by applying the PUSH action to that packet using
the corresponding SID.<a href="#section-2.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.2">
<section id="section-2.2">
<h3 id="name-sid-representation-in-the-m">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-sid-representation-in-the-m" class="section-name selfRef">SID Representation in the MPLS Forwarding Plane</a>
</h3>
<p id="section-2.2-1">
When instantiating SR over the MPLS forwarding plane, a SID is
represented by an MPLS label or an index <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2">
A global SID is a label, or an index that may be mapped to an
MPLS label within the Segment Routing Global Block (SRGB), of the node
that installs a global SID in its FIB and receives the labeled
packet. <a href="#convert-section-2.4" class="xref">Section 2.4</a> specifies the procedure to map a global segment
represented by an index to an MPLS label within the SRGB.<a href="#section-2.2-2" class="pilcrow">¶</a></p>
<p id="section-2.2-3">
The MCC <span class="bcp14">MUST</span> ensure that any label value corresponding to any SID it
installs in the forwarding plane follows the rules below:<a href="#section-2.2-3" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.2-4.1">The label value <span class="bcp14">MUST</span> be unique within the router on which the MCC
is running, i.e., the label <span class="bcp14">MUST</span> only be used to represent the SID
and <span class="bcp14">MUST NOT</span> be used to represent more than one SID or for any
other forwarding purpose on the router.<a href="#section-2.2-4.1" class="pilcrow">¶</a>
</li>
<li id="section-2.2-4.2">The label value <span class="bcp14">MUST NOT</span> come from the range of special-purpose
labels <span>[<a href="#RFC7274" class="xref">RFC7274</a>]</span>.<a href="#section-2.2-4.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.2-5">
Labels allocated in this document are considered per-platform downstream
allocated labels <span>[<a href="#RFC3031" class="xref">RFC3031</a>]</span>.<a href="#section-2.2-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.3">
<section id="section-2.3">
<h3 id="name-segment-routing-global-bloc">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-segment-routing-global-bloc" class="section-name selfRef">Segment Routing Global Block and Local Block</a>
</h3>
<p id="section-2.3-1">
The concepts of SRGB and global SID
are explained in <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>. In general, the SRGB need not be a
contiguous range of labels.<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<p id="section-2.3-2">
For the rest of this document, the SRGB is specified by the list of
MPLS label ranges [Ll(1),Lh(1)], [Ll(2),Lh(2)],..., [Ll(k),Lh(k)]
where Ll(i) =< Lh(i).<a href="#section-2.3-2" class="pilcrow">¶</a></p>
<p id="section-2.3-3">
The following rules apply to the list of MPLS ranges representing the
SRGB:<a href="#section-2.3-3" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.3-4.1">The list of ranges comprising the SRGB <span class="bcp14">MUST NOT</span> overlap.<a href="#section-2.3-4.1" class="pilcrow">¶</a>
</li>
<li id="section-2.3-4.2">Every range in the list of ranges specifying the SRGB <span class="bcp14">MUST NOT</span>
cover or overlap with a reserved label value or range <span>[<a href="#RFC7274" class="xref">RFC7274</a>]</span>,
respectively.<a href="#section-2.3-4.2" class="pilcrow">¶</a>
</li>
<li id="section-2.3-4.3">If the SRGB of a node does not conform to the structure specified
in this section or to the previous two rules, the SRGB <span class="bcp14">MUST</span>
be completely ignored by all routers in the routing domain, and the
node <span class="bcp14">MUST</span> be treated as if it does not have an SRGB.<a href="#section-2.3-4.3" class="pilcrow">¶</a>
</li>
<li id="section-2.3-4.4">The list of label ranges <span class="bcp14">MUST</span> only be used to instantiate global
SIDs into the MPLS forwarding plane.<a href="#section-2.3-4.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.3-5">
A local segment <span class="bcp14">MAY</span> be allocated from the Segment Routing Local Block
(SRLB) <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span> or from any unused label as long as it does not use
a special-purpose label. The SRLB consists of the range of local
labels reserved by the node for certain local segments. In a
controller-driven network, some controllers or applications <span class="bcp14">MAY</span> use
the control plane to discover the available set of Local SIDs on a
particular router <span>[<a href="#ROUTING-POLICY" class="xref">ROUTING-POLICY</a>]</span>. The rules
applicable to the SRGB are also applicable to the SRLB, except the
SRGB <span class="bcp14">MUST</span> only be used to instantiate global
SIDs into the MPLS forwarding plane. The recommended, minimum, or
maximum size of the SRGB and/or SRLB is a matter of future study.<a href="#section-2.3-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.4">
<section id="section-2.4">
<h3 id="name-mapping-a-sid-index-to-an-m">
<a href="#section-2.4" class="section-number selfRef">2.4. </a><a href="#name-mapping-a-sid-index-to-an-m" class="section-name selfRef">Mapping a SID Index to an MPLS Label</a>
</h3>
<p id="section-2.4-1">
This subsection specifies how the MPLS label value is calculated
given the index of a SID. The value of the index is determined by an
MCC such as IS-IS <span>[<a href="#RFC8667" class="xref">RFC8667</a>]</span> or OSPF
<span>[<a href="#RFC8665" class="xref">RFC8665</a>]</span>. This section only
specifies how to map the index to an MPLS label. The calculated MPLS
label is downloaded to the FIB, sent out with a forwarded packet, or
both.<a href="#section-2.4-1" class="pilcrow">¶</a></p>
<p id="section-2.4-2">
Consider a SID represented by the index "I". Consider an SRGB as
specified in <a href="#convert-section-2.3" class="xref">Section 2.3</a>. The total size of the SRGB, represented by
the variable "Size", is calculated according to the formula:<a href="#section-2.4-2" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.4-3">
<pre>
size = Lh(1)- Ll(1) + 1 + Lh(2)- Ll(2) + 1 + ... + Lh(k)- Ll(k) + 1</pre><a href="#section-2.4-3" class="pilcrow">¶</a>
</div>
<p id="section-2.4-4"> The following rules <span class="bcp14">MUST</span> be applied by the MCC when calculating the
MPLS label value corresponding to the SID index value "I".<a href="#section-2.4-4" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-2.4-5.1">0 =< I < size. If index "I" does not satisfy the previous inequality, then the label cannot be calculated.<a href="#section-2.4-5.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-2.4-5.2">
<p id="section-2.4-5.2.1">The label value corresponding to the SID index "I" is calculated
as follows:<a href="#section-2.4-5.2.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-2.4-5.2.2.1">j = 1 , temp = 0<a href="#section-2.4-5.2.2.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-2.4-5.2.2.2">
<p id="section-2.4-5.2.2.2.1">While temp + Lh(j)- Ll(j) < I<a href="#section-2.4-5.2.2.2.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-2.4-5.2.2.2.2.1">temp = temp + Lh(j)- Ll(j) + 1<a href="#section-2.4-5.2.2.2.2.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-2.4-5.2.2.2.2.2">j = j+1<a href="#section-2.4-5.2.2.2.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="ulEmpty" id="section-2.4-5.2.2.3">label = I - temp + Ll(j)<a href="#section-2.4-5.2.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-2.4-6">
An example for how a router calculates labels and forwards traffic
based on the procedure described in this section can be found in
<a href="#convert-section-a.1" class="xref">Appendix A.1</a>.<a href="#section-2.4-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.5">
<section id="section-2.5">
<h3 id="name-incoming-label-collision">
<a href="#section-2.5" class="section-number selfRef">2.5. </a><a href="#name-incoming-label-collision" class="section-name selfRef">Incoming Label Collision</a>
</h3>
<p id="section-2.5-1">
The MPLS Architecture <span>[<a href="#RFC3031" class="xref">RFC3031</a>]</span> defines the term Forwarding
Equivalence Class (FEC) as the set of packets with similar and/or
identical characteristics that are forwarded the same way and are
bound to the same MPLS incoming (local) label. In Segment Routing
MPLS, a local label serves as the SID for a given FEC.<a href="#section-2.5-1" class="pilcrow">¶</a></p>
<p id="section-2.5-2">
We define SR FEC <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span> as one of the following:<a href="#section-2.5-2" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5-3.1">(Prefix, Routing Instance, Topology, Algorithm) <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>, where a
topology identifies a set of links with metrics. For the purpose
of incoming label collision resolution, the same Topology
numerical value <span class="bcp14">SHOULD</span> be used on all routers to identify the same
set of links with metrics. For MCCs where the "Topology" and/or
"Algorithm" fields are not defined, the numerical value of zero
<span class="bcp14">MUST</span> be used for these two fields. For the purpose of incoming
label collision resolution, a routing instance is identified by a
single incoming label downloader to the FIB. Two MCCs running on the
same router are considered different routing instances if the only
way the two instances know about each other's incoming labels
is through redistribution. The numerical value used to identify a
routing instance <span class="bcp14">MAY</span> be derived from other configuration or <span class="bcp14">MAY</span> be
explicitly configured. If it is derived from other configuration,
then the same numerical value <span class="bcp14">SHOULD</span> be derived from the same
configuration as long as the configuration survives router reload.
If the derived numerical value varies for the same configuration,
then an implementation <span class="bcp14">SHOULD</span> make the numerical value used to
identify a routing instance configurable.<a href="#section-2.5-3.1" class="pilcrow">¶</a>
</li>
<li id="section-2.5-3.2">(next hop, outgoing interface), where the outgoing interface is
physical or virtual.<a href="#section-2.5-3.2" class="pilcrow">¶</a>
</li>
<li id="section-2.5-3.3">(number of adjacencies, list of next hops, list of outgoing
interfaces IDs in ascending numerical order). This FEC represents
parallel adjacencies <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>.<a href="#section-2.5-3.3" class="pilcrow">¶</a>
</li>
<li id="section-2.5-3.4">(Endpoint, Color). This FEC represents an SR Policy <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>.<a href="#section-2.5-3.4" class="pilcrow">¶</a>
</li>
<li id="section-2.5-3.5">(Mirror SID). The Mirror SID (see <span>[<a href="#RFC8402" class="xref">RFC8402</a>], <a href="https://www.rfc-editor.org/rfc/rfc8402#section-5.1" class="relref">Section 5.1</a></span>) is the IP
address advertised by the advertising node to identify the Mirror SID.
The IP address is encoded as specified in <a href="#convert-section-2.5.1" class="xref">Section 2.5.1</a>.<a href="#section-2.5-3.5" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.5-4">
This section covers the <span class="bcp14">RECOMMENDED</span> procedure for handling the scenario
where, because of an error/misconfiguration, more than one SR FEC as
defined in this section maps to the same incoming MPLS label.
Examples illustrating the behavior specified in this section can be
found in <a href="#convert-section-a.2" class="xref">Appendix A.2</a>.<a href="#section-2.5-4" class="pilcrow">¶</a></p>
<p id="section-2.5-5">
An incoming label collision occurs if the SIDs of the set of FECs
{FEC1, FEC2, ..., FECk} map to the same incoming SR MPLS label "L1".<a href="#section-2.5-5" class="pilcrow">¶</a></p>
<p id="section-2.5-6">
Suppose an anycast prefix is advertised with a Prefix-SID by some,
but not all, of the nodes that advertise that prefix. If the Prefix-SID
sub-TLVs result in mapping that anycast prefix to the same
incoming label, then the advertisement of the Prefix-SID by some, but
not all, of the advertising nodes <span class="bcp14">MUST NOT</span> be treated as a label
collision.<a href="#section-2.5-6" class="pilcrow">¶</a></p>
<p id="section-2.5-7">
An implementation <span class="bcp14">MUST NOT</span> allow the MCCs belonging to the same
router to assign the same incoming label to more than one SR FEC.<a href="#section-2.5-7" class="pilcrow">¶</a></p>
<p id="section-2.5-8">
The objective of the following steps is to deterministically install
in the MPLS Incoming Label Map, also known as label FIB, a single FEC
with the incoming label "L1". By "deterministically install", we mean
if the set of FECs {FEC1, FEC2,..., FECk} map to the same incoming SR
MPLS label "L1", then the steps below assign the same FEC to the
label "L1" irrespective of the order by which the mappings of this
set of FECs to the label "L1" are received. For example, first-
come, first-served tiebreaking is not allowed. The remaining FECs may
be installed in the IP FIB without an incoming label.<a href="#section-2.5-8" class="pilcrow">¶</a></p>
<p id="section-2.5-9">
The procedure in this section relies completely on the local FEC and
label database within a given router.<a href="#section-2.5-9" class="pilcrow">¶</a></p>
<p id="section-2.5-10">
The collision resolution procedure is as follows:<a href="#section-2.5-10" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal" id="section-2.5-11">
<li id="section-2.5-11.1">Given the SIDs of the set of FECs, {FEC1, FEC2,..., FECk} map to
the same MPLS label "L1".<a href="#section-2.5-11.1" class="pilcrow">¶</a>
</li>
<li id="section-2.5-11.2">
<p id="section-2.5-11.2.1">Within an MCC, apply tiebreaking rules to select one FEC only, and
assign the label to it. The losing FECs are handled as if no
labels are attached to them. The losing FECs with algorithms other
than the shortest path first <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span> are not installed in the
FIB.<a href="#section-2.5-11.2.1" class="pilcrow">¶</a></p>
<ol start="1" type="a" class="normal" id="section-2.5-11.2.2">
<li id="section-2.5-11.2.2.1"> If the same set of FECs are attached to the same label "L1",
then the tiebreaking rules <span class="bcp14">MUST</span> always select the same FEC
irrespective of the order in which the FECs and the label "L1"
are received. In other words, the tiebreaking rule <span class="bcp14">MUST</span> be
deterministic.<a href="#section-2.5-11.2.2.1" class="pilcrow">¶</a>
</li>
</ol>
</li>
<li id="section-2.5-11.3">If there is still collision between the FECs belonging to
different MCCs, then reapply the tiebreaking rules to the
remaining FECs to select one FEC only, and assign the label to that
FEC.<a href="#section-2.5-11.3" class="pilcrow">¶</a>
</li>
<li id="section-2.5-11.4">Install the selected FEC into the IP FIB and its incoming label into
the label FIB.<a href="#section-2.5-11.4" class="pilcrow">¶</a>
</li>
<li id="section-2.5-11.5">The remaining FECs with the default algorithm (see the
Prefix-SID algorithm specification <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>) may be installed
in the FIB natively, such as pure IP entries in case of Prefix
FEC, without any incoming labels corresponding to their SIDs. The
remaining FECs with algorithms other than the shortest path first
<span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span> are not installed in the FIB.<a href="#section-2.5-11.5" class="pilcrow">¶</a>
</li>
</ol>
<div id="convert-section-2.5.1">
<section id="section-2.5.1">
<h4 id="name-tiebreaking-rules">
<a href="#section-2.5.1" class="section-number selfRef">2.5.1. </a><a href="#name-tiebreaking-rules" class="section-name selfRef">Tiebreaking Rules</a>
</h4>
<p id="section-2.5.1-1">
The default tiebreaking rules are specified as follows:<a href="#section-2.5.1-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal" id="section-2.5.1-2">
<li id="section-2.5.1-2.1">Determine the lowest administrative distance among the competing FECs as defined in the section below. Then filter away all the competing FECs with a higher administrative distance.<a href="#section-2.5.1-2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-2.2">If more than one competing FEC remains after step 1, select the
smallest numerical FEC value. The numerical value of the FEC is
determined according to the FEC encoding described later in this
section.<a href="#section-2.5.1-2.2" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-2.5.1-3">
These rules deterministically select which FEC to install in the MPLS
forwarding plane for the given incoming label.<a href="#section-2.5.1-3" class="pilcrow">¶</a></p>
<p id="section-2.5.1-4">
This document defines the default tiebreaking rules that <span class="bcp14">SHOULD</span> be
implemented. An implementation <span class="bcp14">MAY</span> choose to support different tiebreaking
rules and <span class="bcp14">MAY</span> use one of these instead of the default
tiebreaking rules. To maximize MPLS forwarding consistency in case
of a SID configuration error, the network operator <span class="bcp14">MUST</span> deploy, within
an IGP flooding area, routers implementing the same tiebreaking
rules.<a href="#section-2.5.1-4" class="pilcrow">¶</a></p>
<p id="section-2.5.1-5">
Each FEC is assigned an administrative distance. The FEC
administrative distance is encoded as an 8-bit value. The lower the
value, the better the administrative distance.<a href="#section-2.5.1-5" class="pilcrow">¶</a></p>
<p id="section-2.5.1-6">
The default FEC administrative distance order starting from the
lowest value <span class="bcp14">SHOULD</span> be:<a href="#section-2.5.1-6" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.1-7.1">
<p id="section-2.5.1-7.1.1">Explicit SID assignment to a FEC that maps to a label outside the
SRGB irrespective of the owner MCC. An explicit SID assignment is
a static assignment of a label to a FEC such that the assignment
survives a router reboot.<a href="#section-2.5.1-7.1.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.1-7.1.2.1">An example of explicit SID allocation is static assignment of
a specific label to an Adj-SID.<a href="#section-2.5.1-7.1.2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-7.1.2.2">An implementation of explicit SID assignment <span class="bcp14">MUST</span> guarantee
collision freeness on the same router.<a href="#section-2.5.1-7.1.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-2.5.1-7.2">
<p id="section-2.5.1-7.2.1">Dynamic SID assignment:<a href="#section-2.5.1-7.2.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.1-7.2.2.1">All FEC types, except for the SR Policy, are
ordered using the default administrative distance
defined by the implementation.<a href="#section-2.5.1-7.2.2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-7.2.2.2">The Binding SID <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span> assigned to the SR Policy always has a
higher default administrative distance than the default
administrative distance of any other FEC type.<a href="#section-2.5.1-7.2.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-2.5.1-8">
To maximize MPLS forwarding consistency, if the same FEC is advertised
in more than one protocol, a user <span class="bcp14">MUST</span> ensure that the administrative
distance preference between protocols is the same on all routers of
the IGP flooding domain. Note that this is not really new as this
already applies to IP forwarding.<a href="#section-2.5.1-8" class="pilcrow">¶</a></p>
<p id="section-2.5.1-9">
The numerical sort across FECs <span class="bcp14">SHOULD</span> be performed as follows:<a href="#section-2.5.1-9" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.1-10.1">
<p id="section-2.5.1-10.1.1">Each FEC is assigned a FEC type encoded in 8 bits. The type codepoints
for each SR FEC defined at the beginning
of this section are as follows:<a href="#section-2.5.1-10.1.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-2.5.1-10.1.2.1">
<dl class="dlParallel" id="section-2.5.1-10.1.2.1.1">
<dt id="section-2.5.1-10.1.2.1.1.1">120:</dt>
<dd id="section-2.5.1-10.1.2.1.1.2">(Prefix, Routing Instance, Topology, Algorithm)<a href="#section-2.5.1-10.1.2.1.1.2" class="pilcrow">¶</a>
</dd>
<dt id="section-2.5.1-10.1.2.1.1.3">130:</dt>
<dd id="section-2.5.1-10.1.2.1.1.4"> (next hop, outgoing interface)<a href="#section-2.5.1-10.1.2.1.1.4" class="pilcrow">¶</a>
</dd>
<dt id="section-2.5.1-10.1.2.1.1.5">140:</dt>
<dd id="section-2.5.1-10.1.2.1.1.6"> Parallel Adjacency <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span><a href="#section-2.5.1-10.1.2.1.1.6" class="pilcrow">¶</a>
</dd>
<dt id="section-2.5.1-10.1.2.1.1.7">150:</dt>
<dd id="section-2.5.1-10.1.2.1.1.8">SR Policy <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span><a href="#section-2.5.1-10.1.2.1.1.8" class="pilcrow">¶</a>
</dd>
<dt id="section-2.5.1-10.1.2.1.1.9">160:</dt>
<dd id="section-2.5.1-10.1.2.1.1.10"> Mirror SID <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span><a href="#section-2.5.1-10.1.2.1.1.10" class="pilcrow">¶</a>
</dd>
</dl>
</li>
</ul>
<p id="section-2.5.1-10.1.3">The numerical values above are mentioned to guide
implementation. If other numerical values are used, then the
numerical values must maintain the same greater-than ordering
of the numbers mentioned here.<a href="#section-2.5.1-10.1.3" class="pilcrow">¶</a></p>
</li>
<li id="section-2.5.1-10.2">
<p id="section-2.5.1-10.2.1">The fields of each FEC are encoded as follows:<a href="#section-2.5.1-10.2.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.1-10.2.2.1">All fields in all FECs are encoded in big endian order.<a href="#section-2.5.1-10.2.2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.2.2.2">The Routing Instance ID is represented by 16 bits. For routing
instances that are identified by less than 16 bits, encode the
Instance ID in the least significant bits while the most
significant bits are set to zero.<a href="#section-2.5.1-10.2.2.2" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.2.2.3">The address family is represented by 8 bits, where IPv4 is encoded as
100, and IPv6 is encoded as 110. These numerical values are
mentioned to guide implementations. If other numerical values
are used, then the numerical value of IPv4 <span class="bcp14">MUST</span> be less than
the numerical value for IPv6.<a href="#section-2.5.1-10.2.2.3" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.2.2.4">
<p id="section-2.5.1-10.2.2.4.1">All addresses are represented in 128 bits as follows:<a href="#section-2.5.1-10.2.2.4.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.1-10.2.2.4.2.1">The IPv6 address is encoded natively.<a href="#section-2.5.1-10.2.2.4.2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.2.2.4.2.2">The IPv4 address is encoded in the most significant bits, and
the remaining bits are set to zero.<a href="#section-2.5.1-10.2.2.4.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-2.5.1-10.2.2.5">
<p id="section-2.5.1-10.2.2.5.1">All prefixes are represented by (8 + 128) bits.<a href="#section-2.5.1-10.2.2.5.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.1-10.2.2.5.2.1">A prefix is encoded in the most significant bits, and the
remaining bits are set to zero.<a href="#section-2.5.1-10.2.2.5.2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.2.2.5.2.2">The prefix length is encoded before the prefix in an 8-bit field.<a href="#section-2.5.1-10.2.2.5.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-2.5.1-10.2.2.6">The Topology ID is represented by 16 bits. For routing instances
that identify topologies using less than 16 bits, encode the
topology ID in the least significant bits while the most
significant bits are set to zero.<a href="#section-2.5.1-10.2.2.6" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.2.2.7">The Algorithm is encoded in a 16-bit field.<a href="#section-2.5.1-10.2.2.7" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.2.2.8">The Color ID is encoded using 32 bits.<a href="#section-2.5.1-10.2.2.8" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-2.5.1-10.3">Choose the set of FECs of the smallest FEC type codepoint.<a href="#section-2.5.1-10.3" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.4">Out of these FECs, choose the FECs with the smallest address
family codepoint.<a href="#section-2.5.1-10.4" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.5">
<p id="section-2.5.1-10.5.1">Encode the remaining set of FECs as follows:<a href="#section-2.5.1-10.5.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.1-10.5.2.1">(Prefix, Routing Instance, Topology, Algorithm) is encoded as
(Prefix Length, Prefix, routing_instance_id, Topology, SR
Algorithm).<a href="#section-2.5.1-10.5.2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.5.2.2">(next hop, outgoing interface) is encoded as (next hop,
outgoing_interface_id).<a href="#section-2.5.1-10.5.2.2" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.5.2.3">(number of adjacencies, list of next hops in ascending
numerical order, list of outgoing interface IDs in ascending
numerical order) is used to encode a parallel
adjacency <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>.<a href="#section-2.5.1-10.5.2.3" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.5.2.4">(Endpoint, Color) is encoded as (Endpoint_address, Color_id).<a href="#section-2.5.1-10.5.2.4" class="pilcrow">¶</a>
</li>
<li id="section-2.5.1-10.5.2.5">(IP address) is the encoding for a Mirror SID FEC. The IP
address is encoded as described above in this section.<a href="#section-2.5.1-10.5.2.5" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-2.5.1-10.6">Select the FEC with the smallest numerical value.<a href="#section-2.5.1-10.6" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.5.1-11">
The numerical values mentioned in this section are for guidance only.
If other numerical values are used, then the other numerical values
<span class="bcp14">MUST</span> maintain the same numerical ordering among different SR FECs.<a href="#section-2.5.1-11" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.5.2">
<section id="section-2.5.2">
<h4 id="name-redistribution-between-rout">
<a href="#section-2.5.2" class="section-number selfRef">2.5.2. </a><a href="#name-redistribution-between-rout" class="section-name selfRef">Redistribution between Routing Protocol Instances</a>
</h4>
<p id="section-2.5.2-1">
The following rule <span class="bcp14">SHOULD</span> be applied when redistributing SIDs with
prefixes between routing protocol instances:<a href="#section-2.5.2-1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.2-2.1">
<p id="section-2.5.2-2.1.1">If the SRGB of the receiving instance is the same as the SRGB of the origin
instance, then:<a href="#section-2.5.2-2.1.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.2-2.1.2.1">the index is redistributed with the route.<a href="#section-2.5.2-2.1.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-2.5.2-2.2">
<p id="section-2.5.2-2.2.1">Else,<a href="#section-2.5.2-2.2.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.2-2.2.2.1">the index is not redistributed and if the receiving instance
decides to advertise an index with the redistributed route, it
is the duty of the receiving instance to allocate a fresh
index relative to its own SRGB. Note that in this case, the
receiving instance <span class="bcp14">MUST</span> compute the local label it assigns to
the route according to <a href="#convert-section-2.4" class="xref">Section 2.4</a> and install it in FIB.<a href="#section-2.5.2-2.2.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-2.5.2-3">
It is outside the scope of this document to define local node
behaviors that would allow the mapping of the original index into a new index
in the receiving instance via the addition of an offset or other
policy means.<a href="#section-2.5.2-3" class="pilcrow">¶</a></p>
<div id="convert-section-2.5.2.1">
<section id="section-2.5.2.1">
<h5 id="name-illustration">
<a href="#section-2.5.2.1" class="section-number selfRef">2.5.2.1. </a><a href="#name-illustration" class="section-name selfRef">Illustration</a>
</h5>
<div class="artwork art-text alignLeft" id="section-2.5.2.1-1">
<pre>
A----IS-IS----B---OSPF----C-192.0.2.1/32 (20001)</pre><a href="#section-2.5.2.1-1" class="pilcrow">¶</a>
</div>
<p id="section-2.5.2.1-2">Consider the simple topology above, where:<a href="#section-2.5.2.1-2" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.5.2.1-3.1">A and B are in the IS-IS domain with SRGB = [16000-17000]<a href="#section-2.5.2.1-3.1" class="pilcrow">¶</a>
</li>
<li id="section-2.5.2.1-3.2">B and C are in the OSPF domain with SRGB = [20000-21000]<a href="#section-2.5.2.1-3.2" class="pilcrow">¶</a>
</li>
<li id="section-2.5.2.1-3.3">B redistributes 192.0.2.1/32 into the IS-IS domain<a href="#section-2.5.2.1-3.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.5.2.1-4">In this case, A learns 192.0.2.1/32 as an IP leaf connected to B, which is
usual for IP prefix redistribution<a href="#section-2.5.2.1-4" class="pilcrow">¶</a></p>
<p id="section-2.5.2.1-5">However, according to the redistribution rule above, B
decides not to advertise any index with 192.0.2.1/32 into IS-IS
because the SRGB is not the same.<a href="#section-2.5.2.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.5.2.2">
<section id="section-2.5.2.2">
<h5 id="name-illustration-2">
<a href="#section-2.5.2.2" class="section-number selfRef">2.5.2.2. </a><a href="#name-illustration-2" class="section-name selfRef">Illustration 2</a>
</h5>
<p id="section-2.5.2.2-1">
Consider the example in the illustration described in <a href="#convert-section-2.5.2.1" class="xref">Section 2.5.2.1</a>.<a href="#section-2.5.2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.5.2.2-2">
When router B redistributes the prefix 192.0.2.1/32, router B decides
to allocate and advertise the same index 1 with the prefix
192.0.2.1/32.<a href="#section-2.5.2.2-2" class="pilcrow">¶</a></p>
<p id="section-2.5.2.2-3">
Within the SRGB of the IS-IS domain, index 1 corresponds to the local
label 16001. Hence, according to the redistribution rule above, router B
programs the incoming label 16001 in its FIB to match traffic
arriving from the IS-IS domain destined to the prefix
192.0.2.1/32.<a href="#section-2.5.2.2-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="convert-section-2.6">
<section id="section-2.6">
<h3 id="name-effect-of-incoming-label-co">
<a href="#section-2.6" class="section-number selfRef">2.6. </a><a href="#name-effect-of-incoming-label-co" class="section-name selfRef">Effect of Incoming Label Collision on Outgoing Label Programming</a>
</h3>
<p id="section-2.6-1">
When determining what outgoing label to use, the ingress node
that pushes new segments, and hence a stack of MPLS labels, <span class="bcp14">MUST</span> use, for
a given FEC, the label that has been selected by the node
receiving the packet with that label exposed as the top label. So in case
of incoming label collision on this receiving node, the ingress node
<span class="bcp14">MUST</span> resolve this collision by using this same "Incoming Label Collision resolution procedure" and by using the data of the receiving node.<a href="#section-2.6-1" class="pilcrow">¶</a></p>
<p id="section-2.6-2">
In the general case, the ingress node may not have the exact same
data as the receiving node, so the result may be different. This is
under the responsibility of the network operator. But in a typical
case, e.g., where a centralized node or a distributed link-state IGP
is used, all nodes would have the same database. However, to minimize
the chance of misforwarding, a FEC that loses its incoming label to
the tiebreaking rules specified in <a href="#convert-section-2.5" class="xref">Section 2.5</a> <span class="bcp14">MUST NOT</span> be
installed in FIB with an outgoing Segment Routing label based on the
SID corresponding to the lost incoming label.<a href="#section-2.6-2" class="pilcrow">¶</a></p>
<p id="section-2.6-3">
Examples for the behavior specified in this section can be found in
<a href="#convert-section-a.3" class="xref">Appendix A.3</a>.<a href="#section-2.6-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.7">
<section id="section-2.7">
<h3 id="name-push-continue-and-next">
<a href="#section-2.7" class="section-number selfRef">2.7. </a><a href="#name-push-continue-and-next" class="section-name selfRef">PUSH, CONTINUE, and NEXT</a>
</h3>
<p id="section-2.7-1">
PUSH, NEXT, and CONTINUE are operations applied by the forwarding
plane. The specifications of these operations can be found in
<span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>. This subsection specifies how to implement each of these
operations in the MPLS forwarding plane.<a href="#section-2.7-1" class="pilcrow">¶</a></p>
<div id="convert-section-2.7.1">
<section id="section-2.7.1">
<h4 id="name-push">
<a href="#section-2.7.1" class="section-number selfRef">2.7.1. </a><a href="#name-push" class="section-name selfRef">PUSH</a>
</h4>
<p id="section-2.7.1-1">
As described in <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>, PUSH corresponds to pushing one or more
labels on top of an incoming packet then sending it out of a
particular physical interface or virtual interface, such as a UDP
tunnel <span>[<a href="#RFC7510" class="xref">RFC7510</a>]</span> or the Layer 2 Tunneling Protocol version 3 (L2TPv3) <span>[<a href="#RFC4817" class="xref">RFC4817</a>]</span>, towards a particular
next hop.
When pushing labels onto a packet's label stack, the Time-to-Live
(TTL) field <span>[<a href="#RFC3032" class="xref">RFC3032</a>]</span> <span>[<a href="#RFC3443" class="xref">RFC3443</a>]</span> and the Traffic Class (TC)
field <span>[<a href="#RFC3032" class="xref">RFC3032</a>]</span> <span>[<a href="#RFC5462" class="xref">RFC5462</a>]</span> of each label stack entry must, of
course, be set. This document does not specify any set of rules for
setting these fields; that is a matter of local policy. Sections <a href="#convert-section-2.10" class="xref">2.10</a> and <a href="#convert-section-2.11" class="xref">2.11</a> specify additional details about forwarding
behavior.<a href="#section-2.7.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.7.2">
<section id="section-2.7.2">
<h4 id="name-continue">
<a href="#section-2.7.2" class="section-number selfRef">2.7.2. </a><a href="#name-continue" class="section-name selfRef">CONTINUE</a>
</h4>
<p id="section-2.7.2-1">
As described in <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>, the CONTINUE operation corresponds to
swapping the incoming label with an outgoing label. The value of the
outgoing label is calculated as specified in Sections <a href="#convert-section-2.10" class="xref">2.10</a> and <a href="#convert-section-2.11" class="xref">2.11</a>.<a href="#section-2.7.2-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.7.3">
<section id="section-2.7.3">
<h4 id="name-next">
<a href="#section-2.7.3" class="section-number selfRef">2.7.3. </a><a href="#name-next" class="section-name selfRef">NEXT</a>
</h4>
<p id="section-2.7.3-1">
As described in <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>, NEXT corresponds to popping the topmost
label. The action before and/or after the popping depends on the
instruction associated with the active SID on the received packet
prior to the popping. For example, suppose the active SID in the
received packet was an Adj-SID <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>; on receiving the
packet, the node applies the NEXT operation, which corresponds to popping
the topmost label, and then sends the packet out of the physical or
virtual interface (e.g., the UDP tunnel <span>[<a href="#RFC7510" class="xref">RFC7510</a>]</span> or L2TPv3 tunnel
<span>[<a href="#RFC4817" class="xref">RFC4817</a>]</span>) towards the next hop corresponding to the Adj-SID.<a href="#section-2.7.3-1" class="pilcrow">¶</a></p>
<div id="convert-section-2.7.3.1">
<section id="section-2.7.3.1">
<h5 id="name-mirror-sid">
<a href="#section-2.7.3.1" class="section-number selfRef">2.7.3.1. </a><a href="#name-mirror-sid" class="section-name selfRef">Mirror SID</a>
</h5>
<p id="section-2.7.3.1-1">
If the active SID in the received packet was a Mirror SID (see <span>[<a href="#RFC8402" class="xref">RFC8402</a>], <a href="https://www.rfc-editor.org/rfc/rfc8402#section-5.1" class="relref">Section 5.1</a></span>) allocated by the receiving router, the receiving
router applies the NEXT operation, which corresponds to popping the topmost
label, and then performs a lookup using the contents of the packet
after popping the outermost label in the mirrored forwarding table.
The method by which the lookup is made, and/or the actions applied to
the packet after the lookup in the mirror table, depends on the
contents of the packet and the mirror table. Note that the packet
exposed after popping the topmost label may or may not be an MPLS
packet. A Mirror SID can be viewed as a generalization of the context
label in <span>[<a href="#RFC5331" class="xref">RFC5331</a>]</span> because a Mirror SID does not make any
assumptions about the packet underneath the top label.<a href="#section-2.7.3.1-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="convert-section-2.8">
<section id="section-2.8">
<h3 id="name-mpls-label-downloaded-to-th">
<a href="#section-2.8" class="section-number selfRef">2.8. </a><a href="#name-mpls-label-downloaded-to-th" class="section-name selfRef">MPLS Label Downloaded to the FIB for Global and Local SIDs</a>
</h3>
<p id="section-2.8-1">
The label corresponding to the global SID "Si", which is represented by the
global index "I" and downloaded to the FIB, is used to match packets whose
active segment (and hence topmost label) is "Si". The value of this
label is calculated as specified in <a href="#convert-section-2.4" class="xref">Section 2.4</a>.<a href="#section-2.8-1" class="pilcrow">¶</a></p>
<p id="section-2.8-2">
For Local SIDs, the MCC is responsible for downloading the correct
label value to the FIB. For example, an IGP with SR extensions <span>[<a href="#RFC8667" class="xref">RFC8667</a>]</span> <span>[<a href="#RFC8665" class="xref">RFC8665</a>]</span> downloads the MPLS label corresponding to an Adj-SID <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>.<a href="#section-2.8-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.9">
<section id="section-2.9">
<h3 id="name-active-segment">
<a href="#section-2.9" class="section-number selfRef">2.9. </a><a href="#name-active-segment" class="section-name selfRef">Active Segment</a>
</h3>
<p id="section-2.9-1">
When instantiated in the MPLS domain, the active segment on a packet
corresponds to the topmost label and is calculated
according to the procedure specified in Sections <a href="#convert-section-2.10" class="xref">2.10</a> and <a href="#convert-section-2.11" class="xref">2.11</a>. When
arriving at a node, the topmost label corresponding to the active SID
matches the MPLS label downloaded to the FIB as specified in <a href="#convert-section-2.4" class="xref">Section 2.4</a>.<a href="#section-2.9-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.10">
<section id="section-2.10">
<h3 id="name-forwarding-behavior-for-glo">
<a href="#section-2.10" class="section-number selfRef">2.10. </a><a href="#name-forwarding-behavior-for-glo" class="section-name selfRef">Forwarding Behavior for Global SIDs</a>
</h3>
<p id="section-2.10-1">
This section specifies the forwarding behavior, including the calculation
of outgoing labels, that corresponds to a global SID when applying
the PUSH, CONTINUE, and NEXT operations in the MPLS forwarding plane.<a href="#section-2.10-1" class="pilcrow">¶</a></p>
<p id="section-2.10-2">
This document covers the calculation of the outgoing label for the
top label only. The case where the outgoing label is not the top
label and is part of a stack of labels that instantiates a routing
policy or a traffic-engineering tunnel is outside the scope of this
document and may be covered in other documents such as <span>[<a href="#ROUTING-POLICY" class="xref">ROUTING-POLICY</a>]</span>.<a href="#section-2.10-2" class="pilcrow">¶</a></p>
<div id="convert-section-2.10.1">
<section id="section-2.10.1">
<h4 id="name-forwarding-for-push-and-con">
<a href="#section-2.10.1" class="section-number selfRef">2.10.1. </a><a href="#name-forwarding-for-push-and-con" class="section-name selfRef">Forwarding for PUSH and CONTINUE of Global SIDs</a>
</h4>
<p id="section-2.10.1-1">
Suppose an MCC on router "R0" determines that, before sending the packet towards a neighbor "N", the PUSH or CONTINUE
operation is to be applied to an incoming packet related to the global SID "Si".
SID "Si" is represented by the global index "I" and owned by the router Ri. Neighbor "N" may be directly
connected to "R0" through either a physical or a virtual interface (e.g.,
UDP tunnel <span>[<a href="#RFC7510" class="xref">RFC7510</a>]</span> or L2TPv3 tunnel <span>[<a href="#RFC4817" class="xref">RFC4817</a>]</span>).<a href="#section-2.10.1-1" class="pilcrow">¶</a></p>
<p id="section-2.10.1-2">
The method by which the MCC on router "R0" determines that the PUSH or
CONTINUE operation must be applied using the SID "Si" is beyond the
scope of this document.
An example of a method to determine the SID
"Si" for the PUSH operation is the case where IS-IS <span>[<a href="#RFC8667" class="xref">RFC8667</a>]</span>
receives the Prefix-SID "Si" sub-TLV
advertised with the prefix "P/m" in TLV 135, and the prefix "P/m" is the longest matching
network prefix for the incoming IPv4 packet.<a href="#section-2.10.1-2" class="pilcrow">¶</a></p>
<p id="section-2.10.1-3">
For the CONTINUE operation, an example of a method used to determine the SID
"Si" is the case where IS-IS <span>[<a href="#RFC8667" class="xref">RFC8667</a>]</span> receives the Prefix-SID "Si" sub-TLV advertised with
prefix "P" in TLV 135, and the top label of the incoming packet
matches the MPLS label in the FIB corresponding to the SID "Si" on
router "R0".<a href="#section-2.10.1-3" class="pilcrow">¶</a></p>
<p id="section-2.10.1-4">
The forwarding behavior for PUSH and CONTINUE corresponding to the
SID "Si" is as follows:<a href="#section-2.10.1-4" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.10.1-5.1">
<p id="section-2.10.1-5.1.1">If neighbor "N" does not support SR or advertises an invalid
SRGB or a SRGB that is too small for the SID "Si", then:<a href="#section-2.10.1-5.1.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.10.1-5.1.2.1">If it is possible to send the packet towards neighbor "N"
using standard MPLS forwarding behavior as specified in
<span>[<a href="#RFC3031" class="xref">RFC3031</a>]</span> and <span>[<a href="#RFC3032" class="xref">RFC3032</a>]</span>, forward the packet. The method
by which a router decides whether it is possible to send the
packet to "N" or not is beyond the scope of this document. For
example, the router "R0" can use the downstream label
determined by another MCC, such as LDP <span>[<a href="#RFC5036" class="xref">RFC5036</a>]</span>, to send the
packet.<a href="#section-2.10.1-5.1.2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.10.1-5.1.2.2">Else, if there are other usable next hops, use them to forward the incoming packet.
The method by which the
router "R0" decides on the possibility of using other next hops
is beyond the scope of this document. For example, the
MCC on "R0" may chose the send an IPv4 packet without pushing
any label to another next hop.<a href="#section-2.10.1-5.1.2.2" class="pilcrow">¶</a>
</li>
<li id="section-2.10.1-5.1.2.3">Otherwise, drop the packet.<a href="#section-2.10.1-5.1.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-2.10.1-5.2">
<p id="section-2.10.1-5.2.1">Else,<a href="#section-2.10.1-5.2.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.10.1-5.2.2.1">
Calculate the outgoing label as specified in <a href="#convert-section-2.4" class="xref">Section 2.4</a> using
the SRGB of neighbor "N".<a href="#section-2.10.1-5.2.2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.10.1-5.2.2.2">
<p id="section-2.10.1-5.2.2.2.1">Determine the outgoing label stack<a href="#section-2.10.1-5.2.2.2.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.10.1-5.2.2.2.2.1">
<p id="section-2.10.1-5.2.2.2.2.1.1">If the operation is PUSH:<a href="#section-2.10.1-5.2.2.2.2.1.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.10.1-5.2.2.2.2.1.2.1">Push the calculated label according to the MPLS label
pushing rules specified in <span>[<a href="#RFC3032" class="xref">RFC3032</a>]</span>.<a href="#section-2.10.1-5.2.2.2.2.1.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-2.10.1-5.2.2.2.2.2">
<p id="section-2.10.1-5.2.2.2.2.2.1">Else,<a href="#section-2.10.1-5.2.2.2.2.2.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.10.1-5.2.2.2.2.2.2.1">swap the incoming label with the calculated label
according to the label-swapping rules in <span>[<a href="#RFC3031" class="xref">RFC3031</a>]</span>.<a href="#section-2.10.1-5.2.2.2.2.2.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-2.10.1-5.2.2.2.2.3">Send the packet towards neighbor "N".<a href="#section-2.10.1-5.2.2.2.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</section>
</div>
<div id="convert-section-2.10.2">
<section id="section-2.10.2">
<h4 id="name-forwarding-for-the-next-ope">
<a href="#section-2.10.2" class="section-number selfRef">2.10.2. </a><a href="#name-forwarding-for-the-next-ope" class="section-name selfRef">Forwarding for the NEXT Operation for Global SIDs</a>
</h4>
<p id="section-2.10.2-1">
As specified in <a href="#convert-section-2.7.3" class="xref">Section 2.7.3</a>, the NEXT operation corresponds to popping
the topmost label. The forwarding behavior is as follows:<a href="#section-2.10.2-1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.10.2-2.1">Pop the topmost label<a href="#section-2.10.2-2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.10.2-2.2">Apply the instruction associated with the incoming label that has
been popped<a href="#section-2.10.2-2.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.10.2-3">
The action on the packet after popping the topmost label depends on
the instruction associated with the incoming label as well as the
contents of the packet right underneath the top label that was
popped. Examples of the NEXT operation are described in <a href="#convert-section-a.1" class="xref">Appendix A.1</a><a href="#section-2.10.2-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="convert-section-2.11">
<section id="section-2.11">
<h3 id="name-forwarding-behavior-for-loc">
<a href="#section-2.11" class="section-number selfRef">2.11. </a><a href="#name-forwarding-behavior-for-loc" class="section-name selfRef">Forwarding Behavior for Local SIDs</a>
</h3>
<p id="section-2.11-1">
This section specifies the forwarding behavior for Local SIDs when SR
is instantiated over the MPLS forwarding plane.<a href="#section-2.11-1" class="pilcrow">¶</a></p>
<div id="convert-section-2.11.1">
<section id="section-2.11.1">
<h4 id="name-forwarding-for-the-push-ope">
<a href="#section-2.11.1" class="section-number selfRef">2.11.1. </a><a href="#name-forwarding-for-the-push-ope" class="section-name selfRef">Forwarding for the PUSH Operation on Local SIDs</a>
</h4>
<p id="section-2.11.1-1">
Suppose an MCC on router "R0" determines that the PUSH operation is to
be applied to an incoming packet using the Local SID "Si" before
sending the packet towards neighbor "N", which is directly connected to R0
through a physical or virtual interface such as a UDP tunnel <span>[<a href="#RFC7510" class="xref">RFC7510</a>]</span>
or L2TPv3 tunnel <span>[<a href="#RFC4817" class="xref">RFC4817</a>]</span>.<a href="#section-2.11.1-1" class="pilcrow">¶</a></p>
<p id="section-2.11.1-2">
An example of such a Local SID is an Adj-SID allocated and advertised
by IS-IS <span>[<a href="#RFC8667" class="xref">RFC8667</a>]</span>. The method by
which the MCC on "R0" determines that the PUSH operation is to be applied
to the incoming packet is beyond the scope of this document. An
example of such a method is the backup path used to protect against a
failure using TI-LFA <span>[<a href="#FAST-REROUTE" class="xref">FAST-REROUTE</a>]</span>.<a href="#section-2.11.1-2" class="pilcrow">¶</a></p>
<p id="section-2.11.1-3">
As mentioned in <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>, a Local SID is specified by an MPLS label.
Hence, the PUSH operation for a Local SID is identical to the label push
operation using any MPLS label <span>[<a href="#RFC3031" class="xref">RFC3031</a>]</span>. The forwarding action after
pushing the MPLS label corresponding to the Local SID is also
determined by the MCC. For example, if the PUSH operation was done to
forward a packet over a backup path calculated using TI-LFA, then the
forwarding action may be sending the packet to a certain neighbor
that will in turn continue to forward the packet along the backup
path.<a href="#section-2.11.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.11.2">
<section id="section-2.11.2">
<h4 id="name-forwarding-for-the-continue">
<a href="#section-2.11.2" class="section-number selfRef">2.11.2. </a><a href="#name-forwarding-for-the-continue" class="section-name selfRef">Forwarding for the CONTINUE Operation for Local SIDs</a>
</h4>
<p id="section-2.11.2-1">
A Local SID on router "R0" corresponds to a local label.
In such a
scenario, the outgoing label towards next hop "N" is determined by
the MCC running on the router "R0", and the forwarding behavior for the
CONTINUE operation is identical to the swap operation on an
MPLS label <span>[<a href="#RFC3031" class="xref">RFC3031</a>]</span>.<a href="#section-2.11.2-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-2.11.3">
<section id="section-2.11.3">
<h4 id="name-outgoing-label-for-the-next">
<a href="#section-2.11.3" class="section-number selfRef">2.11.3. </a><a href="#name-outgoing-label-for-the-next" class="section-name selfRef">Outgoing Label for the NEXT Operation for Local SIDs</a>
</h4>
<p id="section-2.11.3-1">
The NEXT operation for Local SIDs is identical to the NEXT operation for
global SIDs as specified in <a href="#convert-section-2.10.2" class="xref">Section 2.10.2</a>.<a href="#section-2.11.3-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="convert-section-3">
<section id="section-3">
<h2 id="name-iana-considerations">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-3-1">
This document has no IANA actions.<a href="#section-3-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-4">
<section id="section-4">
<h2 id="name-manageability-consideration">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-manageability-consideration" class="section-name selfRef">Manageability Considerations</a>
</h2>
<p id="section-4-1">
This document describes the applicability of Segment Routing over the
MPLS data plane. Segment Routing does not introduce any change in
the MPLS data plane. Manageability considerations described in
<span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span> apply to the MPLS data plane when used with Segment
Routing. SR Operations, Administration, and Maintenance (OAM) use cases for the MPLS data plane are defined in
<span>[<a href="#RFC8403" class="xref">RFC8403</a>]</span>. SR OAM procedures for the MPLS data plane are defined in
<span>[<a href="#RFC8287" class="xref">RFC8287</a>]</span>.<a href="#section-4-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-5">
<section id="section-5">
<h2 id="name-security-considerations">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-5-1">
This document does not introduce additional security requirements and
mechanisms other than the ones described in <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>.<a href="#section-5-1" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-6">
<h2 id="name-references">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-6.1">
<h3 id="name-normative-references">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dt id="RFC3031">[RFC3031]</dt>
<dd>
<span class="refAuthor">Rosen, E.</span><span class="refAuthor">, Viswanathan, A.</span><span class="refAuthor">, and R. Callon</span>, <span class="refTitle">"Multiprotocol Label Switching Architecture"</span>, <span class="seriesInfo">RFC 3031</span>, <span class="seriesInfo">DOI 10.17487/RFC3031</span>, <time datetime="2001-01">January 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3031">https://www.rfc-editor.org/info/rfc3031</a>></span>. </dd>
<dt id="RFC3032">[RFC3032]</dt>
<dd>
<span class="refAuthor">Rosen, E.</span><span class="refAuthor">, Tappan, D.</span><span class="refAuthor">, Fedorkow, G.</span><span class="refAuthor">, Rekhter, Y.</span><span class="refAuthor">, Farinacci, D.</span><span class="refAuthor">, Li, T.</span><span class="refAuthor">, and A. Conta</span>, <span class="refTitle">"MPLS Label Stack Encoding"</span>, <span class="seriesInfo">RFC 3032</span>, <span class="seriesInfo">DOI 10.17487/RFC3032</span>, <time datetime="2001-01">January 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3032">https://www.rfc-editor.org/info/rfc3032</a>></span>. </dd>
<dt id="RFC3443">[RFC3443]</dt>
<dd>
<span class="refAuthor">Agarwal, P.</span><span class="refAuthor"> and B. Akyol</span>, <span class="refTitle">"Time To Live (TTL) Processing in Multi-Protocol Label Switching (MPLS) Networks"</span>, <span class="seriesInfo">RFC 3443</span>, <span class="seriesInfo">DOI 10.17487/RFC3443</span>, <time datetime="2003-01">January 2003</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3443">https://www.rfc-editor.org/info/rfc3443</a>></span>. </dd>
<dt id="RFC5462">[RFC5462]</dt>
<dd>
<span class="refAuthor">Andersson, L.</span><span class="refAuthor"> and R. Asati</span>, <span class="refTitle">"Multiprotocol Label Switching (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic Class" Field"</span>, <span class="seriesInfo">RFC 5462</span>, <span class="seriesInfo">DOI 10.17487/RFC5462</span>, <time datetime="2009-02">February 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5462">https://www.rfc-editor.org/info/rfc5462</a>></span>. </dd>
<dt id="RFC7274">[RFC7274]</dt>
<dd>
<span class="refAuthor">Kompella, K.</span><span class="refAuthor">, Andersson, L.</span><span class="refAuthor">, and A. Farrel</span>, <span class="refTitle">"Allocating and Retiring Special-Purpose MPLS Labels"</span>, <span class="seriesInfo">RFC 7274</span>, <span class="seriesInfo">DOI 10.17487/RFC7274</span>, <time datetime="2014-06">June 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7274">https://www.rfc-editor.org/info/rfc7274</a>></span>. </dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dt id="RFC8402">[RFC8402]</dt>
<dd>
<span class="refAuthor">Filsfils, C., Ed.</span><span class="refAuthor">, Previdi, S., Ed.</span><span class="refAuthor">, Ginsberg, L.</span><span class="refAuthor">, Decraene, B.</span><span class="refAuthor">, Litkowski, S.</span><span class="refAuthor">, and R. Shakir</span>, <span class="refTitle">"Segment Routing Architecture"</span>, <span class="seriesInfo">RFC 8402</span>, <span class="seriesInfo">DOI 10.17487/RFC8402</span>, <time datetime="2018-07">July 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8402">https://www.rfc-editor.org/info/rfc8402</a>></span>. </dd>
</dl>
</section>
<section id="section-6.2">
<h3 id="name-informative-references">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="FAST-REROUTE">[FAST-REROUTE]</dt>
<dd>
<span class="refAuthor">Litkowski, S.</span><span class="refAuthor">, Bashandy, A.</span><span class="refAuthor">, Filsfils, C.</span><span class="refAuthor">, Decraene, B.</span><span class="refAuthor">, Francois, P.</span><span class="refAuthor">, Voyer, D.</span><span class="refAuthor">, Clad, F.</span><span class="refAuthor">, and P. Camarillo</span>, <span class="refTitle">"Topology Independent Fast Reroute using Segment Routing"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rtgwg-segment-routing-ti-lfa-01</span>, <time datetime="2019-03-05">5 March 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-rtgwg-segment-routing-ti-lfa-01">https://tools.ietf.org/html/draft-ietf-rtgwg-segment-routing-ti-lfa-01</a>></span>. </dd>
<dt id="RFC4817">[RFC4817]</dt>
<dd>
<span class="refAuthor">Townsley, M.</span><span class="refAuthor">, Pignataro, C.</span><span class="refAuthor">, Wainner, S.</span><span class="refAuthor">, Seely, T.</span><span class="refAuthor">, and J. Young</span>, <span class="refTitle">"Encapsulation of MPLS over Layer 2 Tunneling Protocol Version 3"</span>, <span class="seriesInfo">RFC 4817</span>, <span class="seriesInfo">DOI 10.17487/RFC4817</span>, <time datetime="2007-03">March 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4817">https://www.rfc-editor.org/info/rfc4817</a>></span>. </dd>
<dt id="RFC5036">[RFC5036]</dt>
<dd>
<span class="refAuthor">Andersson, L., Ed.</span><span class="refAuthor">, Minei, I., Ed.</span><span class="refAuthor">, and B. Thomas, Ed.</span>, <span class="refTitle">"LDP Specification"</span>, <span class="seriesInfo">RFC 5036</span>, <span class="seriesInfo">DOI 10.17487/RFC5036</span>, <time datetime="2007-10">October 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5036">https://www.rfc-editor.org/info/rfc5036</a>></span>. </dd>
<dt id="RFC5331">[RFC5331]</dt>
<dd>
<span class="refAuthor">Aggarwal, R.</span><span class="refAuthor">, Rekhter, Y.</span><span class="refAuthor">, and E. Rosen</span>, <span class="refTitle">"MPLS Upstream Label Assignment and Context-Specific Label Space"</span>, <span class="seriesInfo">RFC 5331</span>, <span class="seriesInfo">DOI 10.17487/RFC5331</span>, <time datetime="2008-08">August 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5331">https://www.rfc-editor.org/info/rfc5331</a>></span>. </dd>
<dt id="RFC7510">[RFC7510]</dt>
<dd>
<span class="refAuthor">Xu, X.</span><span class="refAuthor">, Sheth, N.</span><span class="refAuthor">, Yong, L.</span><span class="refAuthor">, Callon, R.</span><span class="refAuthor">, and D. Black</span>, <span class="refTitle">"Encapsulating MPLS in UDP"</span>, <span class="seriesInfo">RFC 7510</span>, <span class="seriesInfo">DOI 10.17487/RFC7510</span>, <time datetime="2015-04">April 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7510">https://www.rfc-editor.org/info/rfc7510</a>></span>. </dd>
<dt id="RFC7855">[RFC7855]</dt>
<dd>
<span class="refAuthor">Previdi, S., Ed.</span><span class="refAuthor">, Filsfils, C., Ed.</span><span class="refAuthor">, Decraene, B.</span><span class="refAuthor">, Litkowski, S.</span><span class="refAuthor">, Horneffer, M.</span><span class="refAuthor">, and R. Shakir</span>, <span class="refTitle">"Source Packet Routing in Networking (SPRING) Problem Statement and Requirements"</span>, <span class="seriesInfo">RFC 7855</span>, <span class="seriesInfo">DOI 10.17487/RFC7855</span>, <time datetime="2016-05">May 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7855">https://www.rfc-editor.org/info/rfc7855</a>></span>. </dd>
<dt id="RFC8287">[RFC8287]</dt>
<dd>
<span class="refAuthor">Kumar, N., Ed.</span><span class="refAuthor">, Pignataro, C., Ed.</span><span class="refAuthor">, Swallow, G.</span><span class="refAuthor">, Akiya, N.</span><span class="refAuthor">, Kini, S.</span><span class="refAuthor">, and M. Chen</span>, <span class="refTitle">"Label Switched Path (LSP) Ping/Traceroute for Segment Routing (SR) IGP-Prefix and IGP-Adjacency Segment Identifiers (SIDs) with MPLS Data Planes"</span>, <span class="seriesInfo">RFC 8287</span>, <span class="seriesInfo">DOI 10.17487/RFC8287</span>, <time datetime="2017-12">December 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8287">https://www.rfc-editor.org/info/rfc8287</a>></span>. </dd>
<dt id="RFC8403">[RFC8403]</dt>
<dd>
<span class="refAuthor">Geib, R., Ed.</span><span class="refAuthor">, Filsfils, C.</span><span class="refAuthor">, Pignataro, C., Ed.</span><span class="refAuthor">, and N. Kumar</span>, <span class="refTitle">"A Scalable and Topology-Aware MPLS Data-Plane Monitoring System"</span>, <span class="seriesInfo">RFC 8403</span>, <span class="seriesInfo">DOI 10.17487/RFC8403</span>, <time datetime="2018-07">July 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8403">https://www.rfc-editor.org/info/rfc8403</a>></span>. </dd>
<dt id="RFC8661">[RFC8661]</dt>
<dd>
<span class="refAuthor">Bashandy, A., Ed.</span><span class="refAuthor">, Filsfils, C., Ed.</span><span class="refAuthor">, Previdi, S.</span><span class="refAuthor">, Decraene, B.</span><span class="refAuthor">, and S. Litkowski</span>, <span class="refTitle">"Segment Routing MPLS Interworking with LDP"</span>, <span class="seriesInfo">RFC 8661</span>, <span class="seriesInfo">DOI 10.17487/RFC8661</span>, <time datetime="2019-12">December 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfC8661">https://www.rfc-editor.org/info/rfC8661</a>></span>. </dd>
<dt id="RFC8665">[RFC8665]</dt>
<dd>
<span class="refAuthor">Psenak, P., Ed.</span><span class="refAuthor">, Previdi, S., Ed.</span><span class="refAuthor">, Filsfils, C.</span><span class="refAuthor">, Gredler, H.</span><span class="refAuthor">, Shakir, R.</span><span class="refAuthor">, Henderickx, W.</span><span class="refAuthor">, and J. Tantsura</span>, <span class="refTitle">"OSPF Extensions for Segment Routing"</span>, <span class="seriesInfo">RFC 8665</span>, <span class="seriesInfo">DOI 10.17487/RFC8665</span>, <time datetime="2019-12">December 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8665">https://www.rfc-editor.org/info/rfc8665</a>></span>. </dd>
<dt id="RFC8666">[RFC8666]</dt>
<dd>
<span class="refAuthor">Psenak, P., Ed.</span><span class="refAuthor"> and S. Previdi, Ed.</span>, <span class="refTitle">"OSPFv3 Extensions for Segment Routing"</span>, <span class="seriesInfo">RFC 8666</span>, <span class="seriesInfo">DOI 10.17487/RFC8666</span>, <time datetime="2019-12">December 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8666">https://www.rfc-editor.org/info/rfc8666</a>></span>. </dd>
<dt id="RFC8667">[RFC8667]</dt>
<dd>
<span class="refAuthor">Previdi, S., Ed.</span><span class="refAuthor">, Ginsberg, L., Ed.</span><span class="refAuthor">, Filsfils, C.</span><span class="refAuthor">, Bashandy, A.</span><span class="refAuthor">, Gredler, H.</span><span class="refAuthor">, and B. Decraene</span>, <span class="refTitle">"IS-IS Extensions for Segment Routing"</span>, <span class="seriesInfo">RFC 8667</span>, <span class="seriesInfo">DOI 10.17487/RFC8667</span>, <time datetime="2019-12">December 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8667">https://www.rfc-editor.org/info/rfc8667</a>></span>. </dd>
<dt id="ROUTING-POLICY">[ROUTING-POLICY]</dt>
<dd>
<span class="refAuthor">Filsfils, C.</span><span class="refAuthor">, Sivabalan, S.</span><span class="refAuthor">, Voyer, D.</span><span class="refAuthor">, Bogdanov, A.</span><span class="refAuthor">, and P. Mattes</span>, <span class="refTitle">"Segment Routing Policy Architecture"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-spring-segment-routing-policy-05</span>, <time datetime="2019-11-17">17 November 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-spring-segment-routing-policy-05">https://tools.ietf.org/html/draft-ietf-spring-segment-routing-policy-05</a>></span>. </dd>
</dl>
</section>
</section>
<div id="convert-section-a">
<section id="section-appendix.a">
<h2 id="name-examples">
<a href="#section-appendix.a" class="section-number selfRef">Appendix A. </a><a href="#name-examples" class="section-name selfRef">Examples</a>
</h2>
<div id="convert-section-a.1">
<section id="section-a.1">
<h2 id="name-igp-segment-examples">
<a href="#section-a.1" class="section-number selfRef">A.1. </a><a href="#name-igp-segment-examples" class="section-name selfRef">IGP Segment Examples</a>
</h2>
<p id="section-a.1-1">
Consider the network diagram of <a href="#fig1" class="xref">Figure 1</a> and the IP addresses and IGP
segment allocations of <a href="#fig2" class="xref">Figure 2</a>. Assume that the network is running
IS-IS with SR extensions <span>[<a href="#RFC8667" class="xref">RFC8667</a>]</span>,
and all links have the same metric. The following examples can be
constructed.<a href="#section-a.1-1" class="pilcrow">¶</a></p>
<span id="name-igp-segments-illustration"></span><div id="fig1">
<figure id="figure-1">
<div class="artwork art-text alignLeft" id="section-a.1-2.1">
<pre>
+--------+
/ \
R0-----R1-----R2----------R3-----R8
| \ / |
| +--R4--+ |
| |
+-----R5-----+</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-igp-segments-illustration" class="selfRef">IGP Segments -- Illustration</a>
</figcaption></figure>
</div>
<span id="name-igp-address-and-segment-all"></span><div id="fig2">
<figure id="figure-2">
<div class="artwork art-text alignLeft" id="section-a.1-3.1">
<pre>
+-----------------------------------------------------------+
| IP addresses allocated by the operator: |
| 192.0.2.1/32 as a loopback of R1 |
| 192.0.2.2/32 as a loopback of R2 |
| 192.0.2.3/32 as a loopback of R3 |
| 192.0.2.4/32 as a loopback of R4 |
| 192.0.2.5/32 as a loopback of R5 |
| 192.0.2.8/32 as a loopback of R8 |
| 198.51.100.9/32 as an anycast loopback of R4 |
| 198.51.100.9/32 as an anycast loopback of R5 |
| |
| SRGB defined by the operator as [1000,5000] |
| |
| Global IGP SID indices allocated by the operator: |
| 1 allocated to 192.0.2.1/32 |
| 2 allocated to 192.0.2.2/32 |
| 3 allocated to 192.0.2.3/32 |
| 4 allocated to 192.0.2.4/32 |
| 8 allocated to 192.0.2.8/32 |
| 1009 allocated to 198.51.100.9/32 |
| |
| Local IGP SID allocated dynamically by R2 |
| for its "north" adjacency to R3: 9001 |
| for its "east" adjacency to R3 : 9002 |
| for its "south" adjacency to R3: 9003 |
| for its only adjacency to R4 : 9004 |
| for its only adjacency to R1 : 9005 |
+-----------------------------------------------------------+</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-igp-address-and-segment-all" class="selfRef">IGP Address and Segment Allocation -- Illustration</a>
</figcaption></figure>
</div>
<p id="section-a.1-4">
Suppose R1 wants to send IPv4 packet P1 to R8. In this case, R1
needs to apply the PUSH operation to the IPv4 packet.<a href="#section-a.1-4" class="pilcrow">¶</a></p>
<p id="section-a.1-5">
Remember that the SID index "8" is a global IGP segment attached to
the IP prefix 192.0.2.8/32. Its semantic is global within the IGP
domain: any router forwards a packet received with active segment 8
to the next hop along the ECMP-aware shortest path to the related
prefix.<a href="#section-a.1-5" class="pilcrow">¶</a></p>
<p id="section-a.1-6">
R2 is the next hop along the shortest path towards R8. By applying
the steps in <a href="#convert-section-2.8" class="xref">Section 2.8</a>, the outgoing label downloaded to R1's FIB
corresponding to the global SID index "8" is 1008 because the SRGB of
R2 = [1000,5000] as shown in <a href="#fig2" class="xref">Figure 2</a>.<a href="#section-a.1-6" class="pilcrow">¶</a></p>
<p id="section-a.1-7">
Because the packet is IPv4, R1 applies the PUSH operation using the
label value 1008 as specified in <a href="#convert-section-2.10.1" class="xref">Section 2.10.1</a>. The resulting MPLS
header will have the "S" bit <span>[<a href="#RFC3032" class="xref">RFC3032</a>]</span> set because it is followed
directly by an IPv4 packet.<a href="#section-a.1-7" class="pilcrow">¶</a></p>
<p id="section-a.1-8">
The packet arrives at router R2.
Because top label 1008
corresponds to the IGP SID index "8", which is the Prefix-SID attached to
the prefix 192.0.2.8/32 owned by Node R8, the instruction
associated with the SID is "forward the packet using one of the ECMP interfaces or next hops along the shortest path(s) towards R8". Because R2 is not the penultimate hop, R2
applies the CONTINUE operation to the packet and sends it to R3 using
one of the two links connected to R3 with top label 1008 as specified
in <a href="#convert-section-2.10.1" class="xref">Section 2.10.1</a>.<a href="#section-a.1-8" class="pilcrow">¶</a></p>
<p id="section-a.1-9">
R3 receives the packet with top label 1008. Because top label
1008 corresponds to the IGP SID index "8", which is the Prefix-SID attached
to the prefix 192.0.2.8/32 owned by Node R8, the instruction
associated with the SID is "send the packet using one of the ECMP interfaces and next hops along the shortest path towards R8". Because R3
is the penultimate hop, we assume that R3 performs penultimate hop
popping, which corresponds to the NEXT operation; the packet is then sent to
R8. The NEXT operation results in popping the outer label
and sending the packet as a pure IPv4 packet to R8.<a href="#section-a.1-9" class="pilcrow">¶</a></p>
<p id="section-a.1-10">
In conclusion, the path followed by P1 is R1-R2--R3-R8. The ECMP
awareness ensures that the traffic is load-shared between any ECMP
path; in this case, it's the two links between R2 and R3.<a href="#section-a.1-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2">
<section id="section-a.2">
<h2 id="name-incoming-label-collision-ex">
<a href="#section-a.2" class="section-number selfRef">A.2. </a><a href="#name-incoming-label-collision-ex" class="section-name selfRef">Incoming Label Collision Examples</a>
</h2>
<p id="section-a.2-1">
This section outlines several examples to illustrate the handling of
label collision described in <a href="#convert-section-2.5" class="xref">Section 2.5</a>.<a href="#section-a.2-1" class="pilcrow">¶</a></p>
<p id="section-a.2-2">
For the examples in this section, we assume that Node A has the
following:<a href="#section-a.2-2" class="pilcrow">¶</a></p>
<ul>
<li id="section-a.2-3.1">OSPF default admin distance for implementation=50<a href="#section-a.2-3.1" class="pilcrow">¶</a>
</li>
<li id="section-a.2-3.2">IS-IS default admin distance for implementation=60<a href="#section-a.2-3.2" class="pilcrow">¶</a>
</li>
</ul>
<div id="convert-section-a.2.1">
<section id="section-a.2.1">
<h3 id="name-example-1">
<a href="#section-a.2.1" class="section-number selfRef">A.2.1. </a><a href="#name-example-1" class="section-name selfRef">Example 1</a>
</h3>
<p id="section-a.2.1-1">
The following example illustrates incoming label collision resolution for the same FEC
type using MCC administrative distance.<a href="#section-a.2.1-1" class="pilcrow">¶</a></p>
<p id="section-a.2.1-2">
FEC1:<a href="#section-a.2.1-2" class="pilcrow">¶</a></p>
<p id="section-a.2.1-3">
Node A receives an OSPF Prefix-SID Advertisement from Node B for 198.51.100.5/32 with index=5.
Assuming that OSPF SRGB on Node A = [1000,1999], the incoming label is 1005.<a href="#section-a.2.1-3" class="pilcrow">¶</a></p>
<p id="section-a.2.1-4">
FEC2:<a href="#section-a.2.1-4" class="pilcrow">¶</a></p>
<p id="section-a.2.1-5">
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for 203.0.113.105/32
with index=5. Assuming that IS-IS SRGB on Node A = [1000,1999], the incoming label is 1005.<a href="#section-a.2.1-5" class="pilcrow">¶</a></p>
<p id="section-a.2.1-6">
FEC1 and FEC2 both use dynamic SID assignment.
Since neither of the
FECs are of type 'SR Policy', we use the default admin distances of 50 and
60 to break the tie. So FEC1 wins.<a href="#section-a.2.1-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.2">
<section id="section-a.2.2">
<h3 id="name-example-2">
<a href="#section-a.2.2" class="section-number selfRef">A.2.2. </a><a href="#name-example-2" class="section-name selfRef">Example 2</a>
</h3>
<p id="section-a.2.2-1">
The following example Illustrates incoming label collision resolution for different FEC
types using the MCC administrative distance.<a href="#section-a.2.2-1" class="pilcrow">¶</a></p>
<p id="section-a.2.2-2">
FEC1:<a href="#section-a.2.2-2" class="pilcrow">¶</a></p>
<p id="section-a.2.2-3">
Node A receives an OSPF Prefix-SID Advertisement from Node B for
198.51.100.6/32 with index=6.
Assuming that OSPF SRGB on Node A = [1000,1999],
the incoming label on Node A corresponding to
198.51.100.6/32 is 1006.<a href="#section-a.2.2-3" class="pilcrow">¶</a></p>
<p id="section-a.2.2-4">
FEC2:<a href="#section-a.2.2-4" class="pilcrow">¶</a></p>
<p id="section-a.2.2-5">
IS-IS on Node A assigns label 1006 to the globally significant
Adj-SID (i.e., when advertised, the L-Flag is clear in the Adj-SID
sub-TLV as described in <span>[<a href="#RFC8667" class="xref">RFC8667</a>]</span>). Hence, the incoming label corresponding
to this Adj-SID is 1006. Assume Node A allocates this Adj-SID
dynamically, and it may differ across router reboots.<a href="#section-a.2.2-5" class="pilcrow">¶</a></p>
<p id="section-a.2.2-6">
FEC1 and FEC2 both use dynamic SID assignment. Since neither of the
FECs are of type 'SR Policy', we use the default admin distances of 50 and
60 to break the tie. So FEC1 wins.<a href="#section-a.2.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.3">
<section id="section-a.2.3">
<h3 id="name-example-3">
<a href="#section-a.2.3" class="section-number selfRef">A.2.3. </a><a href="#name-example-3" class="section-name selfRef">Example 3</a>
</h3>
<p id="section-a.2.3-1">
The following example illustrates incoming label collision resolution based on
preferring static over dynamic SID assignment.<a href="#section-a.2.3-1" class="pilcrow">¶</a></p>
<p id="section-a.2.3-2">
FEC1:<a href="#section-a.2.3-2" class="pilcrow">¶</a></p>
<p id="section-a.2.3-3">
OSPF on Node A receives a Prefix-SID Advertisement from Node B for
198.51.100.7/32 with index=7. Assuming that the OSPF SRGB on Node A
= [1000,1999], the incoming label corresponding to 198.51.100.7/32
is 1007.<a href="#section-a.2.3-3" class="pilcrow">¶</a></p>
<p id="section-a.2.3-4">
FEC2:<a href="#section-a.2.3-4" class="pilcrow">¶</a></p>
<p id="section-a.2.3-5">
The operator on Node A configures IS-IS on Node A to assign label
1007 to the globally significant Adj-SID (i.e., when advertised, the
L-Flag is clear in the Adj-SID sub-TLV as described in <span>[<a href="#RFC8667" class="xref">RFC8667</a>]</span>).<a href="#section-a.2.3-5" class="pilcrow">¶</a></p>
<p id="section-a.2.3-6">
Node A assigns this Adj-SID explicitly via configuration, so the Adj-SID
survives router reboots.<a href="#section-a.2.3-6" class="pilcrow">¶</a></p>
<p id="section-a.2.3-7">
FEC1 uses dynamic SID assignment, while FEC2 uses explicit SID
assignment. So FEC2 wins.<a href="#section-a.2.3-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.4">
<section id="section-a.2.4">
<h3 id="name-example-4">
<a href="#section-a.2.4" class="section-number selfRef">A.2.4. </a><a href="#name-example-4" class="section-name selfRef">Example 4</a>
</h3>
<p id="section-a.2.4-1">
The following example illustrates incoming label collision resolution using FEC type
default administrative distance.<a href="#section-a.2.4-1" class="pilcrow">¶</a></p>
<p id="section-a.2.4-2">
FEC1:<a href="#section-a.2.4-2" class="pilcrow">¶</a></p>
<p id="section-a.2.4-3">
OSPF on Node A receives a Prefix-SID Advertisement from Node B for
198.51.100.8/32 with index=8. Assuming that OSPF SRGB on Node A =
[1000,1999], the incoming label corresponding to 198.51.100.8/32 is
1008.<a href="#section-a.2.4-3" class="pilcrow">¶</a></p>
<p id="section-a.2.4-4">
FEC2:<a href="#section-a.2.4-4" class="pilcrow">¶</a></p>
<p id="section-a.2.4-5">
Suppose the SR Policy Advertisement from the controller to Node A for the
policy identified by (Endpoint = 192.0.2.208, color = 100) that
consists of SID-List=<S1, S2> assigns the globally significant
Binding-SID label 1008.<a href="#section-a.2.4-5" class="pilcrow">¶</a></p>
<p id="section-a.2.4-6">
From the point of view of Node A, FEC1 and FEC2 both use dynamic SID
assignment. Based on the default administrative distance outlined in
<a href="#convert-section-2.5.1" class="xref">Section 2.5.1</a>, the Binding SID has a higher administrative distance
than the Prefix-SID; hence, FEC1 wins.<a href="#section-a.2.4-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.5">
<section id="section-a.2.5">
<h3 id="name-example-5">
<a href="#section-a.2.5" class="section-number selfRef">A.2.5. </a><a href="#name-example-5" class="section-name selfRef">Example 5</a>
</h3>
<p id="section-a.2.5-1">
The following example illustrates incoming label collision resolution based on FEC type
preference.<a href="#section-a.2.5-1" class="pilcrow">¶</a></p>
<p id="section-a.2.5-2">
FEC1:<a href="#section-a.2.5-2" class="pilcrow">¶</a></p>
<p id="section-a.2.5-3">
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.110/32 with index=10. Assuming that the IS-IS SRGB on Node A
= [1000,1999], the incoming label corresponding to 203.0.113.110/32
is 1010.<a href="#section-a.2.5-3" class="pilcrow">¶</a></p>
<p id="section-a.2.5-4">
FEC2:<a href="#section-a.2.5-4" class="pilcrow">¶</a></p>
<p id="section-a.2.5-5">
IS-IS on Node A assigns label 1010 to the globally significant
Adj-SID (i.e., when advertised, the L-Flag is clear in the Adj-SID
sub-TLV as described in <span>[<a href="#RFC8667" class="xref">RFC8667</a>]</span>).<a href="#section-a.2.5-5" class="pilcrow">¶</a></p>
<p id="section-a.2.5-6">
Node A allocates this Adj-SID dynamically, and it may differ across
router reboots. Hence, both FEC1 and FEC2 both use dynamic SID
assignment.<a href="#section-a.2.5-6" class="pilcrow">¶</a></p>
<p id="section-a.2.5-7">
Since both FECs are from the same MCC, they have the same default
admin distance. So we compare the FEC type codepoints. FEC1 has FEC type
codepoint=120, while FEC2 has FEC type codepoint=130. Therefore,
FEC1 wins.<a href="#section-a.2.5-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.6">
<section id="section-a.2.6">
<h3 id="name-example-6">
<a href="#section-a.2.6" class="section-number selfRef">A.2.6. </a><a href="#name-example-6" class="section-name selfRef">Example 6</a>
</h3>
<p id="section-a.2.6-1">
The following example illustrates incoming label collision resolution based on address
family preference.<a href="#section-a.2.6-1" class="pilcrow">¶</a></p>
<p id="section-a.2.6-2">
FEC1:<a href="#section-a.2.6-2" class="pilcrow">¶</a></p>
<p id="section-a.2.6-3">
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.111/32 with index=11. Assuming that the IS-IS SRGB on Node A
= [1000,1999], the incoming label on Node A for 203.0.113.111/32 is
1011.<a href="#section-a.2.6-3" class="pilcrow">¶</a></p>
<p id="section-a.2.6-4">
FEC2:<a href="#section-a.2.6-4" class="pilcrow">¶</a></p>
<p id="section-a.2.6-5">
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
2001:DB8:1000::11/128 with index=11. Assuming that the IS-IS SRGB on
Node A = [1000,1999], the incoming label on Node A for
2001:DB8:1000::11/128 is 1011.<a href="#section-a.2.6-5" class="pilcrow">¶</a></p>
<p id="section-a.2.6-6">
FEC1 and FEC2 both use dynamic SID assignment. Since both FECs are
from the same MCC, they have the same default admin distance. So we
compare the FEC type codepoints. Both FECs have FEC type codepoint=120.
So we compare the address family. Since IPv4 is preferred over IPv6, FEC1
wins.<a href="#section-a.2.6-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.7">
<section id="section-a.2.7">
<h3 id="name-example-7">
<a href="#section-a.2.7" class="section-number selfRef">A.2.7. </a><a href="#name-example-7" class="section-name selfRef">Example 7</a>
</h3>
<p id="section-a.2.7-1">
The following example illustrates incoming label collision resolution based on prefix
length.<a href="#section-a.2.7-1" class="pilcrow">¶</a></p>
<p id="section-a.2.7-2">
FEC1:<a href="#section-a.2.7-2" class="pilcrow">¶</a></p>
<p id="section-a.2.7-3">
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.112/32 with index=12. Assuming that IS-IS SRGB on Node A =
[1000,1999], the incoming label for 203.0.113.112/32 on Node A is
1012.<a href="#section-a.2.7-3" class="pilcrow">¶</a></p>
<p id="section-a.2.7-4">
FEC2:<a href="#section-a.2.7-4" class="pilcrow">¶</a></p>
<p id="section-a.2.7-5">
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.128/30 with index=12. Assuming that the IS-IS SRGB on Node A
= [1000,1999], the incoming label for 203.0.113.128/30 on Node A is
1012.<a href="#section-a.2.7-5" class="pilcrow">¶</a></p>
<p id="section-a.2.7-6">
FEC1 and FEC2 both use dynamic SID assignment. Since both FECs are
from the same MCC, they have the same default admin distance. So we
compare the FEC type codepoints. Both FECs have FEC type codepoint=120.
So we compare the address family. Both are a part of the IPv4 address family, so we
compare the prefix length. FEC1 has prefix length=32, and FEC2 has
prefix length=30, so FEC2 wins.<a href="#section-a.2.7-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.8">
<section id="section-a.2.8">
<h3 id="name-example-8">
<a href="#section-a.2.8" class="section-number selfRef">A.2.8. </a><a href="#name-example-8" class="section-name selfRef">Example 8</a>
</h3>
<p id="section-a.2.8-1">
The following example illustrates incoming label collision resolution based on the
numerical value of the FECs.<a href="#section-a.2.8-1" class="pilcrow">¶</a></p>
<p id="section-a.2.8-2">
FEC1:<a href="#section-a.2.8-2" class="pilcrow">¶</a></p>
<p id="section-a.2.8-3">
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.113/32 with index=13. Assuming that IS-IS SRGB on Node A =
[1000,1999], the incoming label for 203.0.113.113/32 on Node A
is 1013.<a href="#section-a.2.8-3" class="pilcrow">¶</a></p>
<p id="section-a.2.8-4">
FEC2:<a href="#section-a.2.8-4" class="pilcrow">¶</a></p>
<p id="section-a.2.8-5">
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.213/32 with index=13. Assuming that IS-IS SRGB on Node A =
[1000,1999], the incoming label for 203.0.113.213/32 on Node A
is 1013.<a href="#section-a.2.8-5" class="pilcrow">¶</a></p>
<p id="section-a.2.8-6">
FEC1 and FEC2 both use dynamic SID assignment. Since both FECs are
from the same MCC, they have the same default admin distance. So we
compare the FEC type codepoints. Both FECs have FEC type codepoint=120.
So we compare the address family. Both are a part of the IPv4 address family, so we
compare the prefix length. Prefix lengths are the same, so we compare
the prefix. FEC1 has the lower prefix, so FEC1 wins.<a href="#section-a.2.8-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.9">
<section id="section-a.2.9">
<h3 id="name-example-9">
<a href="#section-a.2.9" class="section-number selfRef">A.2.9. </a><a href="#name-example-9" class="section-name selfRef">Example 9</a>
</h3>
<p id="section-a.2.9-1">
The following example illustrates incoming label collision resolution based on the Routing
Instance ID.<a href="#section-a.2.9-1" class="pilcrow">¶</a></p>
<p id="section-a.2.9-2">
FEC1:<a href="#section-a.2.9-2" class="pilcrow">¶</a></p>
<p id="section-a.2.9-3">
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.114/32 with index=14. Assume that this IS-IS instance on
Node A has Routing Instance ID = 1000 and SRGB = [1000,1999]. Hence,
the incoming label for 203.0.113.114/32 on Node A is 1014.<a href="#section-a.2.9-3" class="pilcrow">¶</a></p>
<p id="section-a.2.9-4">
FEC2:<a href="#section-a.2.9-4" class="pilcrow">¶</a></p>
<p id="section-a.2.9-5">
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.114/32 with index=14. Assume that this is another instance
of IS-IS on Node A but Routing Instance ID = 2000 is different and
SRGB = [1000,1999] is the same. Hence, the incoming label for 203.0.113.114/32 on
Node A is 1014.<a href="#section-a.2.9-5" class="pilcrow">¶</a></p>
<p id="section-a.2.9-6">
These two FECs match all the way through the prefix length and
prefix. So the Routing Instance ID breaks the tie, and FEC1 wins.<a href="#section-a.2.9-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.10">
<section id="section-a.2.10">
<h3 id="name-example-10">
<a href="#section-a.2.10" class="section-number selfRef">A.2.10. </a><a href="#name-example-10" class="section-name selfRef">Example 10</a>
</h3>
<p id="section-a.2.10-1">
The following example illustrates incoming label collision resolution based on the topology
ID.<a href="#section-a.2.10-1" class="pilcrow">¶</a></p>
<p id="section-a.2.10-2">
FEC1:<a href="#section-a.2.10-2" class="pilcrow">¶</a></p>
<p id="section-a.2.10-3">
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.115/32 with index=15. Assume that this IS-IS instance on
Node A has Routing Instance ID = 1000. Assume that the prefix
advertisement of 203.0.113.115/32 was received in the IS-IS Multi-topology
advertisement with ID = 50. If the IS-IS SRGB for this routing
instance on Node A = [1000,1999], then the incoming label of
203.0.113.115/32 for topology 50 on Node A is 1015.<a href="#section-a.2.10-3" class="pilcrow">¶</a></p>
<p id="section-a.2.10-4">
FEC2:<a href="#section-a.2.10-4" class="pilcrow">¶</a></p>
<p id="section-a.2.10-5">
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.115/32 with index=15. Assume that it has the same Routing
Instance ID = 1000, but 203.0.113.115/32 was advertised with
IS-IS Multi-topology ID = 40, which is different. If the IS-IS SRGB on Node A =
[1000,1999], then the incoming label of 203.0.113.115/32 for topology 40
on Node A is also 1015.<a href="#section-a.2.10-5" class="pilcrow">¶</a></p>
<p id="section-a.2.10-6">
Since these two FECs match all the way through the prefix length, prefix,
and Routing Instance ID, we compare the IS-IS Multi-topology ID, so FEC2
wins.<a href="#section-a.2.10-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.11">
<section id="section-a.2.11">
<h3 id="name-example-11">
<a href="#section-a.2.11" class="section-number selfRef">A.2.11. </a><a href="#name-example-11" class="section-name selfRef">Example 11</a>
</h3>
<p id="section-a.2.11-1">
The following example illustrates incoming label collision for resolution based on
the algorithm ID.<a href="#section-a.2.11-1" class="pilcrow">¶</a></p>
<p id="section-a.2.11-2">
FEC1:<a href="#section-a.2.11-2" class="pilcrow">¶</a></p>
<p id="section-a.2.11-3">
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.116/32 with index=16. Assume that IS-IS on Node A has Routing
Instance ID = 1000. Assume that Node B advertised 203.0.113.116/32
with IS-IS Multi-topology ID = 50 and SR algorithm = 0. Assume that
the IS-IS SRGB on Node A = [1000,1999]. Hence, the incoming label
corresponding to this advertisement of 203.0.113.116/32 is 1016.<a href="#section-a.2.11-3" class="pilcrow">¶</a></p>
<p id="section-a.2.11-4">
FEC2:<a href="#section-a.2.11-4" class="pilcrow">¶</a></p>
<p id="section-a.2.11-5">
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.116/32 with index=16. Assume that it is the same IS-IS
instance on Node A with Routing Instance ID = 1000. Also assume that
Node C advertised 203.0.113.116/32 with IS-IS Multi-topology ID = 50
but with SR algorithm = 22. Since it is the same routing instance,
the SRGB on Node A = [1000,1999]. Hence, the incoming label
corresponding to this advertisement of 203.0.113.116/32 by Node C is
also 1016.<a href="#section-a.2.11-5" class="pilcrow">¶</a></p>
<p id="section-a.2.11-6">
Since these two FECs match all the way through in terms of the prefix length, prefix,
Routing Instance ID, and Multi-topology ID, we compare the SR
algorithm IDs, so FEC1 wins.<a href="#section-a.2.11-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.12">
<section id="section-a.2.12">
<h3 id="name-example-12">
<a href="#section-a.2.12" class="section-number selfRef">A.2.12. </a><a href="#name-example-12" class="section-name selfRef">Example 12</a>
</h3>
<p id="section-a.2.12-1">
The following example illustrates incoming label collision resolution based on the FEC
numerical value, independent of how the SID is assigned to the
colliding FECs.<a href="#section-a.2.12-1" class="pilcrow">¶</a></p>
<p id="section-a.2.12-2">
FEC1:<a href="#section-a.2.12-2" class="pilcrow">¶</a></p>
<p id="section-a.2.12-3">
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.117/32 with index=17. Assume that the IS-IS SRGB on Node A
= [1000,1999]; thus, the incoming label is 1017.<a href="#section-a.2.12-3" class="pilcrow">¶</a></p>
<p id="section-a.2.12-4">
FEC2:<a href="#section-a.2.12-4" class="pilcrow">¶</a></p>
<p id="section-a.2.12-5">
Suppose there is an IS-IS Mapping Server Advertisement (SID / Label
Binding TLV) from Node D that has range = 100 and prefix = 203.0.113.1/32.
Suppose this Mapping Server Advertisement generates 100 mappings, one
of which maps 203.0.113.17/32 to index=17.
Assuming that it is the
same IS-IS instance, the SRGB = [1000,1999] and hence the
incoming label for 1017.<a href="#section-a.2.12-5" class="pilcrow">¶</a></p>
<p id="section-a.2.12-6">
Even though FEC1 comes from a normal Prefix-SID Advertisement and
FEC2 is generated from a Mapping Server Advertisement, it is not used as
a tiebreaking parameter. Both FECs use dynamic SID assignment, are
from the same MCC, and have the same FEC type codepoint=120. Their
prefix lengths are the same as well. FEC2 wins based on its lower
numerical prefix value, since 203.0.113.17 is less than
203.0.113.117.<a href="#section-a.2.12-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.13">
<section id="section-a.2.13">
<h3 id="name-example-13">
<a href="#section-a.2.13" class="section-number selfRef">A.2.13. </a><a href="#name-example-13" class="section-name selfRef">Example 13</a>
</h3>
<p id="section-a.2.13-1">
The following example illustrates incoming label collision resolution based on address
family preference.<a href="#section-a.2.13-1" class="pilcrow">¶</a></p>
<p id="section-a.2.13-2">
FEC1:<a href="#section-a.2.13-2" class="pilcrow">¶</a></p>
<p id="section-a.2.13-3">
SR Policy Advertisement from the controller to Node A. Endpoint
address=2001:DB8:3000::100, color=100, SID-List=<S1, S2>, and the
Binding-SID label=1020.<a href="#section-a.2.13-3" class="pilcrow">¶</a></p>
<p id="section-a.2.13-4">
FEC2:<a href="#section-a.2.13-4" class="pilcrow">¶</a></p>
<p id="section-a.2.13-5">
SR Policy Advertisement from controller to Node A. Endpoint
address=192.0.2.60, color=100, SID-List=<S3, S4>, and the Binding-SID
label=1020.<a href="#section-a.2.13-5" class="pilcrow">¶</a></p>
<p id="section-a.2.13-6">The FEC tiebreakers match, and they have the
same FEC type codepoint=140. Thus, FEC2 wins based on the IPv4 address family
being preferred over IPv6.<a href="#section-a.2.13-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.2.14">
<section id="section-a.2.14">
<h3 id="name-example-14">
<a href="#section-a.2.14" class="section-number selfRef">A.2.14. </a><a href="#name-example-14" class="section-name selfRef">Example 14</a>
</h3>
<p id="section-a.2.14-1">
The following example illustrates incoming label resolution based on the numerical value of
the policy endpoint.<a href="#section-a.2.14-1" class="pilcrow">¶</a></p>
<p id="section-a.2.14-2">
FEC1:<a href="#section-a.2.14-2" class="pilcrow">¶</a></p>
<p id="section-a.2.14-3">
SR Policy Advertisement from the controller to Node A. Endpoint
address=192.0.2.70, color=100, SID-List=<S1, S2>, and Binding-SID
label=1021.<a href="#section-a.2.14-3" class="pilcrow">¶</a></p>
<p id="section-a.2.14-4">
FEC2:<a href="#section-a.2.14-4" class="pilcrow">¶</a></p>
<p id="section-a.2.14-5">
SR Policy Advertisement from the controller to Node A. Endpoint
address=192.0.2.71, color=100, SID-List=<S3, S4>, and Binding-SID
label=1021.<a href="#section-a.2.14-5" class="pilcrow">¶</a></p>
<p id="section-a.2.14-6">
The FEC tiebreakers match, and they have the
same address family. Thus, FEC1 wins by having the lower numerical endpoint
address value.<a href="#section-a.2.14-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="convert-section-a.3">
<section id="section-a.3">
<h2 id="name-examples-for-the-effect-of-">
<a href="#section-a.3" class="section-number selfRef">A.3. </a><a href="#name-examples-for-the-effect-of-" class="section-name selfRef">Examples for the Effect of Incoming Label Collision on an Outgoing Label</a>
</h2>
<p id="section-a.3-1">
This section presents examples to illustrate the effect of incoming
label collision on the selection of the outgoing label as described in
<a href="#convert-section-2.6" class="xref">Section 2.6</a>.<a href="#section-a.3-1" class="pilcrow">¶</a></p>
<div id="convert-section-a.3.1">
<section id="section-a.3.1">
<h3 id="name-example-1-2">
<a href="#section-a.3.1" class="section-number selfRef">A.3.1. </a><a href="#name-example-1-2" class="section-name selfRef">Example 1</a>
</h3>
<p id="section-a.3.1-1">
The following example illustrates the effect of incoming label resolution on the
outgoing label.<a href="#section-a.3.1-1" class="pilcrow">¶</a></p>
<p id="section-a.3.1-2">
FEC1:<a href="#section-a.3.1-2" class="pilcrow">¶</a></p>
<p id="section-a.3.1-3">
IS-IS on Node A receives a Prefix-SID Advertisement from Node B for
203.0.113.122/32 with index=22. Assuming that the IS-IS SRGB on Node A
= [1000,1999], the corresponding incoming label is 1022.<a href="#section-a.3.1-3" class="pilcrow">¶</a></p>
<p id="section-a.3.1-4">
FEC2:<a href="#section-a.3.1-4" class="pilcrow">¶</a></p>
<p id="section-a.3.1-5">
IS-IS on Node A receives a Prefix-SID Advertisement from Node C for
203.0.113.222/32 with index=22. Assuming that the IS-IS SRGB on Node A
= [1000,1999], the corresponding incoming label is 1022.<a href="#section-a.3.1-5" class="pilcrow">¶</a></p>
<p id="section-a.3.1-6">
FEC1 wins based on the lowest numerical prefix value. This means that
Node A installs a transit MPLS forwarding entry to swap incoming
label 1022 with outgoing label N and to use outgoing interface I. N is
determined by the index associated with FEC1 (index=22) and the SRGB
advertised by the next-hop node on the shortest path to reach
203.0.113.122/32.<a href="#section-a.3.1-6" class="pilcrow">¶</a></p>
<p id="section-a.3.1-7">
Node A will generally also install an imposition MPLS forwarding
entry corresponding to FEC1 for incoming prefix=203.0.113.122/32
pushing outgoing label N, and using outgoing interface I.<a href="#section-a.3.1-7" class="pilcrow">¶</a></p>
<p id="section-a.3.1-8">
The rule in <a href="#convert-section-2.6" class="xref">Section 2.6</a> means Node A <span class="bcp14">MUST NOT</span> install an ingress
MPLS forwarding entry corresponding to FEC2 (the losing FEC, which
would be for prefix 203.0.113.222/32).<a href="#section-a.3.1-8" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-a.3.2">
<section id="section-a.3.2">
<h3 id="name-example-2-2">
<a href="#section-a.3.2" class="section-number selfRef">A.3.2. </a><a href="#name-example-2-2" class="section-name selfRef">Example 2</a>
</h3>
<p id="section-a.3.2-1">
The following example illustrates the effect of incoming label collision resolution on
outgoing label programming on Node A.<a href="#section-a.3.2-1" class="pilcrow">¶</a></p>
<p id="section-a.3.2-2">
FEC1:<a href="#section-a.3.2-2" class="pilcrow">¶</a></p>
<p id="section-a.3.2-3">SR Policy Advertisement from the controller to Node A.
Endpoint address=192.0.2.80, color=100, SID-List=<S1, S2>, and
Binding-SID label=1023.<a href="#section-a.3.2-3" class="pilcrow">¶</a></p>
<p id="section-a.3.2-4">
FEC2:<a href="#section-a.3.2-4" class="pilcrow">¶</a></p>
<p id="section-a.3.2-5">
SR Policy Advertisement from controller to Node A.
Endpoint address=192.0.2.81, color=100, SID-List=<S3, S4>, and
Binding-SID label=1023.<a href="#section-a.3.2-5" class="pilcrow">¶</a></p>
<p id="section-a.3.2-6">
FEC1 wins by having the lower numerical endpoint address value. This
means that Node A installs a transit MPLS forwarding entry to swap
incoming label=1023 with outgoing labels, and the outgoing interface
is determined by the SID-List for FEC1.<a href="#section-a.3.2-6" class="pilcrow">¶</a></p>
<p id="section-a.3.2-7">
In this example, we assume that Node A receives two BGP/VPN routes:<a href="#section-a.3.2-7" class="pilcrow">¶</a></p>
<ul>
<li id="section-a.3.2-8.1">R1 with VPN label=V1, BGP next hop = 192.0.2.80, and color=100<a href="#section-a.3.2-8.1" class="pilcrow">¶</a>
</li>
<li id="section-a.3.2-8.2">R2 with VPN label=V2, BGP next hop = 192.0.2.81, and color=100<a href="#section-a.3.2-8.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-a.3.2-9">
We also assume that Node A has a BGP policy that matches color=100
and allows its usage as Service Level Agreement (SLA) steering information. In this case,
Node A will install a VPN route with label stack = <S1,S2,V1>
(corresponding to FEC1).<a href="#section-a.3.2-9" class="pilcrow">¶</a></p>
<p id="section-a.3.2-10">
The rule described in <a href="#convert-section-2.6" class="xref">Section 2.6</a> means that Node A <span class="bcp14">MUST NOT</span> install
a VPN route with label stack = <S3,S4,V1> (corresponding to FEC2.)<a href="#section-a.3.2-10" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="convert-section-7">
<section id="section-appendix.b">
<h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
</h2>
<p id="section-appendix.b-1">
The authors would like to thank Les Ginsberg, Chris Bowers, Himanshu
Shah, Adrian Farrel, Alexander Vainshtein, Przemyslaw Krol, Darren
Dukes, Zafar Ali, and Martin Vigoureux for their valuable comments on
this document.<a href="#section-appendix.b-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="convert-section-6">
<section id="section-appendix.c">
<h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
</h2>
<p id="section-appendix.c-1">
The following contributors have substantially helped the definition
and editing of the content of this document:<a href="#section-appendix.c-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-appendix.c-2">
<pre>
Martin Horneffer
Deutsche Telekom
Email: Martin.Horneffer@telekom.de</pre><a href="#section-appendix.c-2" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.c-3">
<pre>
Wim Henderickx
Nokia
Email: wim.henderickx@nokia.com</pre><a href="#section-appendix.c-3" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.c-4">
<pre>
Jeff Tantsura
Email: jefftant@gmail.com</pre><a href="#section-appendix.c-4" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.c-5">
<pre>
Edward Crabbe
Email: edward.crabbe@gmail.com</pre><a href="#section-appendix.c-5" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.c-6">
<pre>
Igor Milojevic
Email: milojevicigor@gmail.com</pre><a href="#section-appendix.c-6" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.c-7">
<pre>
Saku Ytti
Email: saku@ytti.fi</pre><a href="#section-appendix.c-7" class="pilcrow">¶</a>
</div>
</section>
</div>
<div id="authors-addresses">
<section id="section-appendix.d">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Ahmed Bashandy (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Arrcus</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:abashandy.ietf@gmail.com" class="email">abashandy.ietf@gmail.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Clarence Filsfils (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems, Inc.</span></div>
<div dir="auto" class="left"><span class="street-address">Brussels</span></div>
<div dir="auto" class="left"><span class="country-name">Belgium</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:cfilsfil@cisco.com" class="email">cfilsfil@cisco.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Stefano Previdi</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems, Inc.</span></div>
<div dir="auto" class="left"><span class="country-name">Italy</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:stefano@previdi.net" class="email">stefano@previdi.net</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Bruno Decraene</span></div>
<div dir="auto" class="left"><span class="org">Orange</span></div>
<div dir="auto" class="left"><span class="country-name">France</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:bruno.decraene@orange.com" class="email">bruno.decraene@orange.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Stephane Litkowski</span></div>
<div dir="auto" class="left"><span class="org">Orange</span></div>
<div dir="auto" class="left"><span class="country-name">France</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:slitkows.ietf@gmail.com" class="email">slitkows.ietf@gmail.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Rob Shakir</span></div>
<div dir="auto" class="left"><span class="org">Google</span></div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:robjs@google.com" class="email">robjs@google.com</a>
</div>
</address>
</section>
</div>
<script>var toc = document.getElementById("toc");
var tocToggle = toc.querySelector("h2");
var tocNav = toc.querySelector("nav");
// mobile menu toggle
tocToggle.onclick = function(event) {
if (window.innerWidth < 1024) {
var tocNavDisplay = tocNav.currentStyle ? tocNav.currentStyle.display : getComputedStyle(tocNav, null).display;
if (tocNavDisplay == "none") {
tocNav.style.display = "block";
} else {
tocNav.style.display = "none";
}
}
}
// toc anchor scroll to anchor
tocNav.addEventListener("click", function (event) {
event.preventDefault();
if (event.target.nodeName == 'A') {
if (window.innerWidth < 1024) {
tocNav.style.display = "none";
}
var href = event.target.getAttribute("href");
var anchorId = href.substr(1);
var anchor = document.getElementById(anchorId);
anchor.scrollIntoView(true);
window.history.pushState("","",href);
}
});
// switch toc mode when window resized
window.onresize = function () {
if (window.innerWidth < 1024) {
tocNav.style.display = "none";
} else {
tocNav.style.display = "block";
}
}
</script>
</body>
</html>
|