1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8670: BGP Prefix Segment in Large-Scale Data Centers</title>
<meta content="Clarence Filsfils" name="author">
<meta content="Stefano Previdi" name="author">
<meta content="Gaurav Dawra" name="author">
<meta content="Ebben Aries" name="author">
<meta content="Petr Lapukhov" name="author">
<meta content="
This document describes the motivation for, and benefits of, applying
Segment Routing (SR) in BGP-based large-scale data centers. It describes the
design to deploy SR in those data centers for both the
MPLS and IPv6 data planes.
" name="description">
<meta content="xml2rfc 2.35.0" name="generator">
<meta content="example" name="keyword">
<meta content="8670" name="rfc.number">
<link href="rfc8670.xml" type="application/rfc+xml" rel="alternate">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Avoid wrapping of URLs in references */
@media screen {
.references a {
white-space: nowrap;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin: 0 0 0.25em 0;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.sourcecode {
margin-bottom: 1em;
}
}</style>
<link href="rfc-local.css" type="text/css" rel="stylesheet">
<link href="https://dx.doi.org/10.17487/rfc8670" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-spring-segment-routing-msdc-11" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8670</td>
<td class="center">BGP Prefix-SID in Large-Scale DCs</td>
<td class="right">December 2019</td>
</tr></thead>
<tfoot><tr>
<td class="left">Filsfils, et al.</td>
<td class="center">Informational</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8670" class="eref">8670</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Informational</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2019-12" class="published">December 2019</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">C. Filsfils, <span class="editor">Ed.</span>
</div>
<div class="org">Cisco Systems, Inc.</div>
</div>
<div class="author">
<div class="author-name">S. Previdi</div>
<div class="org">Cisco Systems, Inc.</div>
</div>
<div class="author">
<div class="author-name">G. Dawra</div>
<div class="org">LinkedIn</div>
</div>
<div class="author">
<div class="author-name">E. Aries</div>
<div class="org">Arrcus, Inc.</div>
</div>
<div class="author">
<div class="author-name">P. Lapukhov</div>
<div class="org">Facebook</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8670</h1>
<h1 id="title">BGP Prefix Segment in Large-Scale Data Centers</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This document describes the motivation for, and benefits of, applying
Segment Routing (SR) in BGP-based large-scale data centers. It describes the
design to deploy SR in those data centers for both the
MPLS and IPv6 data planes.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for informational purposes.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc8670">https://www.rfc-editor.org/info/rfc8670</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-large-scale-data-center-net" class="xref">Large-Scale Data-Center Network Design Summary</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-reference-design" class="xref">Reference Design</a><a href="#section-toc.1-1.2.2.1.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-some-open-problems-in-large" class="xref">Some Open Problems in Large Data-Center Networks</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-applying-segment-routing-in" class="xref">Applying Segment Routing in the DC with MPLS Data Plane</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-bgp-prefix-segment-bgp-pref" class="xref">BGP Prefix Segment (BGP Prefix-SID)</a><a href="#section-toc.1-1.4.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-ebgp-labeled-unicast-rfc-82" class="xref">EBGP Labeled Unicast (RFC 8277)</a><a href="#section-toc.1-1.4.2.2.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.4.2.2.2.1">
<p id="section-toc.1-1.4.2.2.2.1.1"><a href="#section-4.2.1" class="xref">4.2.1</a>. <a href="#name-control-plane" class="xref">Control Plane</a><a href="#section-toc.1-1.4.2.2.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.2.2.2">
<p id="section-toc.1-1.4.2.2.2.2.1"><a href="#section-4.2.2" class="xref">4.2.2</a>. <a href="#name-data-plane" class="xref">Data Plane</a><a href="#section-toc.1-1.4.2.2.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.2.2.3">
<p id="section-toc.1-1.4.2.2.2.3.1"><a href="#section-4.2.3" class="xref">4.2.3</a>. <a href="#name-network-design-variation" class="xref">Network Design Variation</a><a href="#section-toc.1-1.4.2.2.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.2.2.4">
<p id="section-toc.1-1.4.2.2.2.4.1"><a href="#section-4.2.4" class="xref">4.2.4</a>. <a href="#name-global-bgp-prefix-segment-t" class="xref">Global BGP Prefix Segment through the Fabric</a><a href="#section-toc.1-1.4.2.2.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.2.2.5">
<p id="section-toc.1-1.4.2.2.2.5.1"><a href="#section-4.2.5" class="xref">4.2.5</a>. <a href="#name-incremental-deployments" class="xref">Incremental Deployments</a><a href="#section-toc.1-1.4.2.2.2.5.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-ibgp-labeled-unicast-rfc-82" class="xref">IBGP Labeled Unicast (RFC 8277)</a><a href="#section-toc.1-1.4.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-applying-segment-routing-in-" class="xref">Applying Segment Routing in the DC with IPv6 Data Plane</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-communicating-path-informat" class="xref">Communicating Path Information to the Host</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-additional-benefits" class="xref">Additional Benefits</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>. <a href="#name-mpls-data-plane-with-operat" class="xref">MPLS Data Plane with Operational Simplicity</a><a href="#section-toc.1-1.7.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>. <a href="#name-minimizing-the-fib-table" class="xref">Minimizing the FIB Table</a><a href="#section-toc.1-1.7.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.3">
<p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="xref">7.3</a>. <a href="#name-egress-peer-engineering" class="xref">Egress Peer Engineering</a><a href="#section-toc.1-1.7.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.4">
<p id="section-toc.1-1.7.2.4.1"><a href="#section-7.4" class="xref">7.4</a>. <a href="#name-anycast" class="xref">Anycast</a><a href="#section-toc.1-1.7.2.4.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-preferred-srgb-allocation" class="xref">Preferred SRGB Allocation</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-manageability-consideration" class="xref">Manageability Considerations</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.11.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-12" class="xref">12</a>. <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.12.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.12.2.1">
<p id="section-toc.1-1.12.2.1.1"><a href="#section-12.1" class="xref">12.1</a>. <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.12.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.12.2.2">
<p id="section-toc.1-1.12.2.2.1"><a href="#section-12.2" class="xref">12.2</a>. <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.12.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#section-appendix.a" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a><a href="#section-toc.1-1.13.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a><a href="#section-toc.1-1.14.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.15">
<p id="section-toc.1-1.15.1"><a href="#section-appendix.c" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.15.1" class="pilcrow">¶</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="INTRO">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">Segment Routing (SR), as described in <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>, leverages the source-routing
paradigm. A node steers a packet through an ordered list of
instructions called "segments". A segment can represent any instruction,
topological or service based. A segment can have a local semantic to an
SR node or a global semantic within an SR domain. SR allows the enforcement of a flow
through any topological path while maintaining per-flow state only from
the ingress node to the SR domain. SR can be applied to the
MPLS and IPv6 data planes.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">The use cases described in this document should be considered in the
context of the BGP-based large-scale data-center (DC) design described
in <span>[<a href="#RFC7938" class="xref">RFC7938</a>]</span>. This document extends it by applying SR
both with IPv6 and MPLS data planes.<a href="#section-1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="LARGESCALEDC">
<section id="section-2">
<h2 id="name-large-scale-data-center-net">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-large-scale-data-center-net" class="section-name selfRef">Large-Scale Data-Center Network Design Summary</a>
</h2>
<p id="section-2-1">This section provides a brief summary of the Informational RFC
<span>[<a href="#RFC7938" class="xref">RFC7938</a>]</span>, which outlines a practical network design
suitable for data centers of various scales:<a href="#section-2-1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2-2.1">Data-center networks have highly symmetric topologies with
multiple parallel paths between two server-attachment points. The
well-known Clos topology is most popular among the operators (as
described in <span>[<a href="#RFC7938" class="xref">RFC7938</a>]</span>). In a Clos topology, the
minimum number of parallel paths between two elements is determined
by the "width" of the "Tier-1" stage. See <a href="#FIGLARGE" class="xref">Figure 1</a>
for an illustration of the concept.<a href="#section-2-2.1" class="pilcrow">¶</a>
</li>
<li id="section-2-2.2">Large-scale data centers commonly use a routing protocol, such as
BGP-4 <span>[<a href="#RFC4271" class="xref">RFC4271</a>]</span>, in order to provide endpoint
connectivity. Therefore, recovery after a network failure is driven
either by local knowledge of directly available backup paths or by
distributed signaling between the network devices.<a href="#section-2-2.2" class="pilcrow">¶</a>
</li>
<li id="section-2-2.3">Within data-center networks, traffic is load shared using the
Equal Cost Multipath (ECMP) mechanism. With ECMP, every network
device implements a pseudorandom decision, mapping packets to one
of the parallel paths by means of a hash function calculated over
certain parts of the packet, typically a combination of various
packet header fields.<a href="#section-2-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2-3">The following is a schematic of a five-stage Clos topology with four
devices in the "Tier-1" stage. Notice that the number of paths between Node1
and Node12 equals four; the paths have to cross all of the Tier-1
devices. At the same time, the number of paths between Node1 and Node2
equals two, and the paths only cross Tier-2 devices. Other topologies
are possible, but for simplicity, only the topologies that have a single
path from Tier-1 to Tier-3 are considered below. The rest could be
treated similarly, with a few modifications to the logic.<a href="#section-2-3" class="pilcrow">¶</a></p>
<div id="REFDESIGN">
<section id="section-2.1">
<h3 id="name-reference-design">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-reference-design" class="section-name selfRef">Reference Design</a>
</h3>
<span id="name-5-stage-clos-topology"></span><div id="FIGLARGE">
<figure id="figure-1">
<div class="artwork art-text alignLeft" id="section-2.1-1.1">
<pre> Tier-1
+-----+
|NODE |
+->| 5 |--+
| +-----+ |
Tier-2 | | Tier-2
+-----+ | +-----+ | +-----+
+------------>|NODE |--+->|NODE |--+--|NODE |-------------+
| +-----| 3 |--+ | 6 | +--| 9 |-----+ |
| | +-----+ +-----+ +-----+ | |
| | | |
| | +-----+ +-----+ +-----+ | |
| +-----+---->|NODE |--+ |NODE | +--|NODE |-----+-----+ |
| | | +---| 4 |--+->| 7 |--+--| 10 |---+ | | |
| | | | +-----+ | +-----+ | +-----+ | | | |
| | | | | | | | | |
+-----+ +-----+ | +-----+ | +-----+ +-----+
|NODE | |NODE | Tier-3 +->|NODE |--+ Tier-3 |NODE | |NODE |
| 1 | | 2 | | 8 | | 11 | | 12 |
+-----+ +-----+ +-----+ +-----+ +-----+
| | | | | | | |
A O B O <- Servers -> Z O O O</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-5-stage-clos-topology" class="selfRef">5-Stage Clos Topology</a>
</figcaption></figure>
</div>
<p id="section-2.1-2">In the reference topology illustrated in <a href="#FIGLARGE" class="xref">Figure 1</a>,
it is assumed:<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.1-3.1">
<p id="section-2.1-3.1.1">Each node is its own autonomous system (AS) (Node X has AS X). 4-byte AS numbers
are recommended (<span>[<a href="#RFC6793" class="xref">RFC6793</a>]</span>).<a href="#section-2.1-3.1.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.1-3.1.2.1">For simple and efficient route propagation filtering,
Node5, Node6, Node7, and Node8 use the same AS; Node3 and Node4
use the same AS; and Node9 and Node10 use the same AS.<a href="#section-2.1-3.1.2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.1-3.1.2.2">In the case in which 2-byte autonomous system numbers are used
for efficient usage of the scarce 2-byte Private Use AS pool,
different Tier-3 nodes might use the same AS.<a href="#section-2.1-3.1.2.2" class="pilcrow">¶</a>
</li>
<li id="section-2.1-3.1.2.3">Without loss of generality, these details will be
simplified in this document. It is to be assumed that each node has its
own AS.<a href="#section-2.1-3.1.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-2.1-3.2">Each node peers with its neighbors with a BGP session. If not
specified, external BGP (EBGP) is assumed. In a specific use case,
internal BGP (IBGP) will be used, but this will be called out
explicitly in that case.<a href="#section-2.1-3.2" class="pilcrow">¶</a>
</li>
<li id="section-2.1-3.3">
<p id="section-2.1-3.3.1">Each node originates the IPv4 address of its loopback interface
into BGP and announces it to its neighbors.<a href="#section-2.1-3.3.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.1-3.3.2.1">The loopback of Node X is 192.0.2.x/32.<a href="#section-2.1-3.3.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-2.1-4">In this document, the Tier-1, Tier-2, and Tier-3 nodes are referred
to as "Spine", "Leaf", and "ToR" (top of rack) nodes, respectively. When a ToR
node acts as a gateway to the "outside world", it is referred to as a
"border node".<a href="#section-2.1-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="OPENPROBS">
<section id="section-3">
<h2 id="name-some-open-problems-in-large">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-some-open-problems-in-large" class="section-name selfRef">Some Open Problems in Large Data-Center Networks</a>
</h2>
<p id="section-3-1">The data-center-network design summarized above provides means for
moving traffic between hosts with reasonable efficiency. There are few
open performance and reliability problems that arise in such a design:<a href="#section-3-1" class="pilcrow">¶</a></p>
<ul>
<li id="section-3-2.1">ECMP routing is most commonly realized per flow. This means that
large, long-lived "elephant" flows may affect performance of
smaller, short-lived "mouse" flows and may reduce efficiency
of per-flow load sharing. In other words, per-flow ECMP does not
perform efficiently when flow-lifetime distribution is heavy tailed.
Furthermore, due to hash-function inefficiencies, it is possible to
have frequent flow collisions where more flows get placed on one
path over the others.<a href="#section-3-2.1" class="pilcrow">¶</a>
</li>
<li id="section-3-2.2">Shortest-path routing with ECMP implements an oblivious routing
model that is not aware of the network imbalances. If the network
symmetry is broken, for example, due to link failures, utilization
hotspots may appear. For example, if a link fails between Tier-1 and
Tier-2 devices (e.g., Node5 and Node9), Tier-3 devices Node1 and
Node2 will not be aware of that since there are other paths
available from the perspective of Node3. They will continue sending
roughly equal traffic to Node3 and Node4 as if the failure didn't
exist, which may cause a traffic hotspot.<a href="#section-3-2.2" class="pilcrow">¶</a>
</li>
<li id="section-3-2.3">Isolating faults in the network with multiple parallel paths and
ECMP-based routing is nontrivial due to lack of determinism.
Specifically, the connections from HostA to HostB may take a
different path every time a new connection is formed, thus making
consistent reproduction of a failure much more difficult. This
complexity scales linearly with the number of parallel paths in the
network and stems from the random nature of path selection by the
network devices.<a href="#section-3-2.3" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="APPLYSR">
<section id="section-4">
<h2 id="name-applying-segment-routing-in">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-applying-segment-routing-in" class="section-name selfRef">Applying Segment Routing in the DC with MPLS Data Plane</a>
</h2>
<div id="BGPREFIXSEGMENT">
<section id="section-4.1">
<h3 id="name-bgp-prefix-segment-bgp-pref">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-bgp-prefix-segment-bgp-pref" class="section-name selfRef">BGP Prefix Segment (BGP Prefix-SID)</a>
</h3>
<p id="section-4.1-1">A BGP Prefix Segment is a segment associated with a BGP prefix. A
BGP Prefix Segment is a network-wide instruction to forward the packet
along the ECMP-aware best path to the related prefix.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">The BGP Prefix Segment is defined as the BGP Prefix-SID Attribute
in <span>[<a href="#RFC8669" class="xref">RFC8669</a>]</span>, which contains an
index. Throughout this document, the BGP Prefix Segment Attribute is
referred to as the "BGP Prefix-SID" and the encoded index as the
label index.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">In this document, the network design decision has been made to
assume that all the nodes are allocated the same SRGB (Segment Routing
Global Block), e.g., [16000, 23999]. This provides operational
simplification as explained in <a href="#SINGLESRGB" class="xref">Section 8</a>, but this
is not a requirement.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1-4">For illustration purposes, when considering an MPLS data plane, it
is assumed that the label index allocated to prefix 192.0.2.x/32 is X.
As a result, a local label (16000+x) is allocated for prefix
192.0.2.x/32 by each node throughout the DC fabric.<a href="#section-4.1-4" class="pilcrow">¶</a></p>
<p id="section-4.1-5">When the IPv6 data plane is considered, it is assumed that Node X is
allocated IPv6 address (segment) 2001:DB8::X.<a href="#section-4.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="eBGP8277">
<section id="section-4.2">
<h3 id="name-ebgp-labeled-unicast-rfc-82">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-ebgp-labeled-unicast-rfc-82" class="section-name selfRef">EBGP Labeled Unicast (RFC 8277)</a>
</h3>
<p id="section-4.2-1">Referring to <a href="#FIGLARGE" class="xref">Figure 1</a> and
<span>[<a href="#RFC7938" class="xref">RFC7938</a>]</span>, the following design modifications are
introduced:<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<ul>
<li id="section-4.2-2.1">Each node peers with its neighbors via an EBGP session with
extensions defined in <span>[<a href="#RFC8277" class="xref">RFC8277</a>]</span> (named "EBGP8277"
throughout this document) and with the BGP Prefix-SID attribute
extension as defined in <span>[<a href="#RFC8669" class="xref">RFC8669</a>]</span>.<a href="#section-4.2-2.1" class="pilcrow">¶</a>
</li>
<li id="section-4.2-2.2">The forwarding plane at Tier-2 and Tier-1 is MPLS.<a href="#section-4.2-2.2" class="pilcrow">¶</a>
</li>
<li id="section-4.2-2.3">The forwarding plane at Tier-3 is either IP2MPLS (if the host
sends IP traffic) or MPLS2MPLS (if the host sends MPLS-encapsulated traffic).<a href="#section-4.2-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.2-3"><a href="#FIGSMALL" class="xref">Figure 2</a> zooms into a path from ServerA to ServerZ within the topology of <a href="#FIGLARGE" class="xref">Figure 1</a>.<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<span id="name-path-from-a-to-z-via-nodes-"></span><div id="FIGSMALL">
<figure id="figure-2">
<div class="artwork art-text alignLeft" id="section-4.2-4.1">
<pre> +-----+ +-----+ +-----+
+---------->|NODE | |NODE | |NODE |
| | 4 |--+->| 7 |--+--| 10 |---+
| +-----+ +-----+ +-----+ |
| |
+-----+ +-----+
|NODE | |NODE |
| 1 | | 11 |
+-----+ +-----+
| |
A <- Servers -> Z</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-path-from-a-to-z-via-nodes-" class="selfRef">Path from A to Z via Nodes 1, 4, 7, 10, and 11</a>
</figcaption></figure>
</div>
<p id="section-4.2-5">Referring to Figures <a href="#FIGLARGE" class="xref">1</a> and <a href="#FIGSMALL" class="xref">2</a>, and assuming the IP address with the AS and
label-index allocation previously described, the following sections
detail the control-plane operation and the data-plane states for the
prefix 192.0.2.11/32 (loopback of Node11).<a href="#section-4.2-5" class="pilcrow">¶</a></p>
<div id="CONTROLPLANE">
<section id="section-4.2.1">
<h4 id="name-control-plane">
<a href="#section-4.2.1" class="section-number selfRef">4.2.1. </a><a href="#name-control-plane" class="section-name selfRef">Control Plane</a>
</h4>
<p id="section-4.2.1-1">Node11 originates 192.0.2.11/32 in BGP and allocates to it a
BGP Prefix-SID with label-index: index11 <span>[<a href="#RFC8669" class="xref">RFC8669</a>]</span>.<a href="#section-4.2.1-1" class="pilcrow">¶</a></p>
<p id="section-4.2.1-2">Node11 sends the following EBGP8277 update to Node10:<a href="#section-4.2.1-2" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2.1-3.1">
<dl class="dlParallel" id="section-4.2.1-3.1.1">
<dt id="section-4.2.1-3.1.1.1">IP Prefix:
</dt>
<dd id="section-4.2.1-3.1.1.2">192.0.2.11/32<a href="#section-4.2.1-3.1.1.2" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-3.1.1.3">Label:
</dt>
<dd id="section-4.2.1-3.1.1.4">Implicit NULL<a href="#section-4.2.1-3.1.1.4" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-3.1.1.5">Next hop:
</dt>
<dd id="section-4.2.1-3.1.1.6">Node11's interface address on the link to Node10<a href="#section-4.2.1-3.1.1.6" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-3.1.1.7">AS Path:
</dt>
<dd id="section-4.2.1-3.1.1.8">{11}<a href="#section-4.2.1-3.1.1.8" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-3.1.1.9">BGP Prefix-SID:
</dt>
<dd id="section-4.2.1-3.1.1.10">Label-Index 11<a href="#section-4.2.1-3.1.1.10" class="pilcrow">¶</a>
</dd>
</dl>
</li>
</ul>
<p id="section-4.2.1-4">Node10 receives the above update. As it is SR capable, Node10 is
able to interpret the BGP Prefix-SID; therefore, it understands that it
should allocate the label from its own SRGB block, offset by the
label index received in the BGP Prefix-SID (16000+11, hence, 16011) to
the Network Layer Reachability Information (NLRI) instead of
allocating a nondeterministic label out of a dynamically allocated
portion of the local label space. The implicit NULL label in the
NLRI tells Node10 that it is the penultimate hop and that it must pop the
top label on the stack before forwarding traffic for this prefix to
Node11.<a href="#section-4.2.1-4" class="pilcrow">¶</a></p>
<p id="section-4.2.1-5">Then, Node10 sends the following EBGP8277 update to Node7:<a href="#section-4.2.1-5" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2.1-6.1">
<dl class="dlParallel" id="section-4.2.1-6.1.1">
<dt id="section-4.2.1-6.1.1.1">IP Prefix:
</dt>
<dd id="section-4.2.1-6.1.1.2">192.0.2.11/32<a href="#section-4.2.1-6.1.1.2" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-6.1.1.3">Label:
</dt>
<dd id="section-4.2.1-6.1.1.4">16011<a href="#section-4.2.1-6.1.1.4" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-6.1.1.5">Next hop:
</dt>
<dd id="section-4.2.1-6.1.1.6">Node10's interface address on the link to Node7<a href="#section-4.2.1-6.1.1.6" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-6.1.1.7">AS Path:
</dt>
<dd id="section-4.2.1-6.1.1.8">{10, 11}<a href="#section-4.2.1-6.1.1.8" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-6.1.1.9">BGP Prefix-SID:
</dt>
<dd id="section-4.2.1-6.1.1.10">Label-Index 11<a href="#section-4.2.1-6.1.1.10" class="pilcrow">¶</a>
</dd>
</dl>
</li>
</ul>
<p id="section-4.2.1-7">Node7 receives the above update. As it is SR capable, Node7 is
able to interpret the BGP Prefix-SID; therefore, it allocates the local
(incoming) label 16011 (16000 + 11) to the NLRI (instead of
allocating a "dynamic" local label from its label
manager). Node7 uses the label in the received EBGP8277 NLRI as the
outgoing label (the index is only used to derive the local/incoming
label).<a href="#section-4.2.1-7" class="pilcrow">¶</a></p>
<p id="section-4.2.1-8">Node7 sends the following EBGP8277 update to Node4:<a href="#section-4.2.1-8" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2.1-9.1">
<dl class="dlParallel" id="section-4.2.1-9.1.1">
<dt id="section-4.2.1-9.1.1.1">IP Prefix:
</dt>
<dd id="section-4.2.1-9.1.1.2">192.0.2.11/32<a href="#section-4.2.1-9.1.1.2" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-9.1.1.3">Label:
</dt>
<dd id="section-4.2.1-9.1.1.4">16011<a href="#section-4.2.1-9.1.1.4" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-9.1.1.5">Next hop:
</dt>
<dd id="section-4.2.1-9.1.1.6">Node7's interface address on the link to Node4<a href="#section-4.2.1-9.1.1.6" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-9.1.1.7">AS Path:
</dt>
<dd id="section-4.2.1-9.1.1.8">{7, 10, 11}<a href="#section-4.2.1-9.1.1.8" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-9.1.1.9">BGP Prefix-SID:
</dt>
<dd id="section-4.2.1-9.1.1.10">Label-Index 11<a href="#section-4.2.1-9.1.1.10" class="pilcrow">¶</a>
</dd>
</dl>
</li>
</ul>
<p id="section-4.2.1-10">Node4 receives the above update. As it is SR capable, Node4 is
able to interpret the BGP Prefix-SID; therefore, it allocates the local
(incoming) label 16011 to the NLRI (instead of allocating a
"dynamic" local label from its label manager). Node4
uses the label in the received EBGP8277 NLRI as an outgoing label (the
index is only used to derive the local/incoming label).<a href="#section-4.2.1-10" class="pilcrow">¶</a></p>
<p id="section-4.2.1-11">Node4 sends the following EBGP8277 update to Node1:<a href="#section-4.2.1-11" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2.1-12.1">
<dl class="dlParallel" id="section-4.2.1-12.1.1">
<dt id="section-4.2.1-12.1.1.1">IP Prefix:
</dt>
<dd id="section-4.2.1-12.1.1.2">192.0.2.11/32<a href="#section-4.2.1-12.1.1.2" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-12.1.1.3">Label:
</dt>
<dd id="section-4.2.1-12.1.1.4">16011<a href="#section-4.2.1-12.1.1.4" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-12.1.1.5">Next hop:
</dt>
<dd id="section-4.2.1-12.1.1.6">Node4's interface address on the link to Node1<a href="#section-4.2.1-12.1.1.6" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-12.1.1.7">AS Path:
</dt>
<dd id="section-4.2.1-12.1.1.8">{4, 7, 10, 11}<a href="#section-4.2.1-12.1.1.8" class="pilcrow">¶</a>
</dd>
<dt id="section-4.2.1-12.1.1.9">BGP Prefix-SID:
</dt>
<dd id="section-4.2.1-12.1.1.10">Label-Index 11<a href="#section-4.2.1-12.1.1.10" class="pilcrow">¶</a>
</dd>
</dl>
</li>
</ul>
<p id="section-4.2.1-13">Node1 receives the above update. As it is SR capable, Node1 is
able to interpret the BGP Prefix-SID; therefore, it allocates the local
(incoming) label 16011 to the NLRI (instead of allocating a
"dynamic" local label from its label manager). Node1
uses the label in the received EBGP8277 NLRI as an outgoing label (the
index is only used to derive the local/incoming label).<a href="#section-4.2.1-13" class="pilcrow">¶</a></p>
</section>
</div>
<div id="DATAPLANE">
<section id="section-4.2.2">
<h4 id="name-data-plane">
<a href="#section-4.2.2" class="section-number selfRef">4.2.2. </a><a href="#name-data-plane" class="section-name selfRef">Data Plane</a>
</h4>
<p id="section-4.2.2-1">Referring to <a href="#FIGLARGE" class="xref">Figure 1</a>, and assuming all nodes
apply the same advertisement rules described above and all nodes
have the same SRGB (16000-23999), here are the IP/MPLS forwarding
tables for prefix 192.0.2.11/32 at Node1, Node4, Node7, and
Node10.<a href="#section-4.2.2-1" class="pilcrow">¶</a></p>
<span id="name-node1-forwarding-table"></span><div id="NODE1FIB">
<table class="center" id="table-1">
<caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-node1-forwarding-table" class="selfRef">Node1 Forwarding Table
</a>
</caption>
<tbody>
<tr>
<td class="text-center" rowspan="1" colspan="1">Incoming Label or IP Destination
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Label
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Interface
</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">ECMP{3, 4}
</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">192.0.2.11/32
</td>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">ECMP{3, 4}
</td>
</tr>
</tbody>
</table>
</div>
<span id="name-node4-forwarding-table"></span><div id="NODE4FIB">
<table class="center" id="table-2">
<caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-node4-forwarding-table" class="selfRef">Node4 Forwarding Table
</a>
</caption>
<tbody>
<tr>
<td class="text-center" rowspan="1" colspan="1">Incoming Label or IP Destination
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Label
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Interface
</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">ECMP{7, 8}
</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">192.0.2.11/32
</td>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">ECMP{7, 8}
</td>
</tr>
</tbody>
</table>
</div>
<span id="name-node7-forwarding-table"></span><div id="NODE7FIB">
<table class="center" id="table-3">
<caption>
<a href="#table-3" class="selfRef">Table 3</a>:
<a href="#name-node7-forwarding-table" class="selfRef">Node7 Forwarding Table
</a>
</caption>
<tbody>
<tr>
<td class="text-center" rowspan="1" colspan="1">Incoming Label or IP Destination
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Label
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Interface
</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">10
</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">192.0.2.11/32
</td>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">10
</td>
</tr>
</tbody>
</table>
</div>
<span id="name-node10-forwarding-table"></span><div id="NODE10FIB">
<table class="center" id="table-4">
<caption>
<a href="#table-4" class="selfRef">Table 4</a>:
<a href="#name-node10-forwarding-table" class="selfRef">Node10 Forwarding Table
</a>
</caption>
<tbody>
<tr>
<td class="text-center" rowspan="1" colspan="1">Incoming Label or IP Destination
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Label
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Interface
</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">POP
</td>
<td class="text-center" rowspan="1" colspan="1">11
</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">192.0.2.11/32
</td>
<td class="text-center" rowspan="1" colspan="1">N/A
</td>
<td class="text-center" rowspan="1" colspan="1">11
</td>
</tr>
</tbody>
</table>
</div>
</section>
</div>
<div id="VARIATIONS">
<section id="section-4.2.3">
<h4 id="name-network-design-variation">
<a href="#section-4.2.3" class="section-number selfRef">4.2.3. </a><a href="#name-network-design-variation" class="section-name selfRef">Network Design Variation</a>
</h4>
<p id="section-4.2.3-1">A network design choice could consist of switching all the
traffic through Tier-1 and Tier-2 as MPLS traffic. In this case, one
could filter away the IP entries at Node4, Node7, and Node10. This
might be beneficial in order to optimize the forwarding table
size.<a href="#section-4.2.3-1" class="pilcrow">¶</a></p>
<p id="section-4.2.3-2">A network design choice could consist of allowing the hosts to
send MPLS-encapsulated traffic based on the Egress Peer Engineering
(EPE) use case as defined in <span>[<a href="#I-D.ietf-spring-segment-routing-central-epe" class="xref">SR-CENTRAL-EPE</a>]</span>. For example,
applications at HostA would send their Z-destined traffic to Node1
with an MPLS label stack where the top label is 16011 and the next
label is an EPE peer segment (<span>[<a href="#I-D.ietf-spring-segment-routing-central-epe" class="xref">SR-CENTRAL-EPE</a>]</span>) at Node11
directing the traffic to Z.<a href="#section-4.2.3-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="FABRIC">
<section id="section-4.2.4">
<h4 id="name-global-bgp-prefix-segment-t">
<a href="#section-4.2.4" class="section-number selfRef">4.2.4. </a><a href="#name-global-bgp-prefix-segment-t" class="section-name selfRef">Global BGP Prefix Segment through the Fabric</a>
</h4>
<p id="section-4.2.4-1">When the previous design is deployed, the operator enjoys global
BGP Prefix-SID and label allocation throughout the DC fabric.<a href="#section-4.2.4-1" class="pilcrow">¶</a></p>
<p id="section-4.2.4-2">A few examples follow:<a href="#section-4.2.4-2" class="pilcrow">¶</a></p>
<ul>
<li id="section-4.2.4-3.1">Normal forwarding to Node11: A packet with top label 16011
received by any node in the fabric will be forwarded along the
ECMP-aware BGP best path towards Node11, and the label 16011 is
penultimate popped at Node10 (or at Node 9).<a href="#section-4.2.4-3.1" class="pilcrow">¶</a>
</li>
<li id="section-4.2.4-3.2">Traffic-engineered path to Node11: An application on a host
behind Node1 might want to restrict its traffic to paths via the
Spine node Node5. The application achieves this by sending its
packets with a label stack of {16005, 16011}. BGP Prefix-SID
16005 directs the packet up to Node5 along the path (Node1,
Node3, Node5). BGP Prefix-SID 16011 then directs the packet down
to Node11 along the path (Node5, Node9, Node11).<a href="#section-4.2.4-3.2" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="INCRDEP">
<section id="section-4.2.5">
<h4 id="name-incremental-deployments">
<a href="#section-4.2.5" class="section-number selfRef">4.2.5. </a><a href="#name-incremental-deployments" class="section-name selfRef">Incremental Deployments</a>
</h4>
<p id="section-4.2.5-1">The design previously described can be deployed incrementally.
Let us assume that Node7 does not support the BGP Prefix-SID, and let
us show how the fabric connectivity is preserved.<a href="#section-4.2.5-1" class="pilcrow">¶</a></p>
<p id="section-4.2.5-2">From a signaling viewpoint, nothing would change; even though
Node7 does not support the BGP Prefix-SID, it does propagate the
attribute unmodified to its neighbors.<a href="#section-4.2.5-2" class="pilcrow">¶</a></p>
<p id="section-4.2.5-3">From a label-allocation viewpoint, the only difference is that
Node7 would allocate a dynamic (random) label to the prefix
192.0.2.11/32 (e.g., 123456) instead of the "hinted" label as
instructed by the BGP Prefix-SID. The neighbors of Node7 adapt
automatically as they always use the label in the BGP8277 NLRI as
an outgoing label.<a href="#section-4.2.5-3" class="pilcrow">¶</a></p>
<p id="section-4.2.5-4">Node4 does understand the BGP Prefix-SID; therefore, it allocates the
indexed label in the SRGB (16011) for 192.0.2.11/32.<a href="#section-4.2.5-4" class="pilcrow">¶</a></p>
<p id="section-4.2.5-5">As a result, all the data-plane entries across the network would
be unchanged except the entries at Node7 and its neighbor Node4 as
shown in the figures below.<a href="#section-4.2.5-5" class="pilcrow">¶</a></p>
<p id="section-4.2.5-6">The key point is that the end-to-end Label Switched Path (LSP) is
preserved because the outgoing label is always derived from the
received label within the BGP8277 NLRI. The index in the
BGP Prefix-SID is only used as a hint on how to allocate the local
label (the incoming label) but never for the outgoing label.<a href="#section-4.2.5-6" class="pilcrow">¶</a></p>
<span id="name-node7-forwarding-table-2"></span><div id="NODE7FIBINC">
<table class="center" id="table-5">
<caption>
<a href="#table-5" class="selfRef">Table 5</a>:
<a href="#name-node7-forwarding-table-2" class="selfRef">Node7 Forwarding Table
</a>
</caption>
<tbody>
<tr>
<td class="text-center" rowspan="1" colspan="1">Incoming Label or IP Destination
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Label
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Interface
</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">12345
</td>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">10
</td>
</tr>
</tbody>
</table>
</div>
<span id="name-node4-forwarding-table-2"></span><div id="NODE4FIBINC">
<table class="center" id="table-6">
<caption>
<a href="#table-6" class="selfRef">Table 6</a>:
<a href="#name-node4-forwarding-table-2" class="selfRef">Node4 Forwarding Table
</a>
</caption>
<tbody>
<tr>
<td class="text-center" rowspan="1" colspan="1">Incoming Label or IP Destination
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Label
</td>
<td class="text-center" rowspan="1" colspan="1">Outgoing Interface
</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">16011
</td>
<td class="text-center" rowspan="1" colspan="1">12345
</td>
<td class="text-center" rowspan="1" colspan="1">7
</td>
</tr>
</tbody>
</table>
</div>
<p id="section-4.2.5-9">The BGP Prefix-SID can thus be deployed incrementally, i.e., one node at
a time.<a href="#section-4.2.5-9" class="pilcrow">¶</a></p>
<p id="section-4.2.5-10">When deployed together with a homogeneous SRGB (the same SRGB across
the fabric), the operator incrementally enjoys the global prefix
segment benefits as the deployment progresses through the
fabric.<a href="#section-4.2.5-10" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="iBGP3107">
<section id="section-4.3">
<h3 id="name-ibgp-labeled-unicast-rfc-82">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-ibgp-labeled-unicast-rfc-82" class="section-name selfRef">IBGP Labeled Unicast (RFC 8277)</a>
</h3>
<p id="section-4.3-1">The same exact design as EBGP8277 is used with the following
modifications:<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<ul>
<li id="section-4.3-2.1">All nodes use the same AS number.<a href="#section-4.3-2.1" class="pilcrow">¶</a>
</li>
<li id="section-4.3-2.2">Each node peers with its neighbors via an internal BGP session
(IBGP) with extensions defined in <span>[<a href="#RFC8277" class="xref">RFC8277</a>]</span> (named
"IBGP8277" throughout this document).<a href="#section-4.3-2.2" class="pilcrow">¶</a>
</li>
<li id="section-4.3-2.3">Each node acts as a route reflector for each of its neighbors
and with the next-hop-self option. Next-hop-self is a well-known
operational feature that consists of rewriting the next hop of a
BGP update prior to sending it to the neighbor. Usually,
it's a common practice to apply next-hop-self behavior
towards IBGP peers for EBGP-learned routes. In the case outlined
in this section, it is proposed to use the next-hop-self mechanism
also to IBGP-learned routes.<a href="#section-4.3-2.3" class="pilcrow">¶</a>
</li>
</ul>
<span id="name-ibgp-sessions-with-reflecti"></span><div id="IBGPFIG">
<figure id="figure-3">
<div class="artwork art-text alignLeft" id="section-4.3-3.1">
<pre>
Cluster-1
+-----------+
| Tier-1 |
| +-----+ |
| |NODE | |
| | 5 | |
Cluster-2 | +-----+ | Cluster-3
+---------+ | | +---------+
| Tier-2 | | | | Tier-2 |
| +-----+ | | +-----+ | | +-----+ |
| |NODE | | | |NODE | | | |NODE | |
| | 3 | | | | 6 | | | | 9 | |
| +-----+ | | +-----+ | | +-----+ |
| | | | | |
| | | | | |
| +-----+ | | +-----+ | | +-----+ |
| |NODE | | | |NODE | | | |NODE | |
| | 4 | | | | 7 | | | | 10 | |
| +-----+ | | +-----+ | | +-----+ |
+---------+ | | +---------+
| |
| +-----+ |
| |NODE | |
Tier-3 | | 8 | | Tier-3
+-----+ +-----+ | +-----+ | +-----+ +-----+
|NODE | |NODE | +-----------+ |NODE | |NODE |
| 1 | | 2 | | 11 | | 12 |
+-----+ +-----+ +-----+ +-----+</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-ibgp-sessions-with-reflecti" class="selfRef">IBGP Sessions with Reflection and Next-Hop-Self</a>
</figcaption></figure>
</div>
<ul>
<li id="section-4.3-4.1">
<p id="section-4.3-4.1.1">For simple and efficient route propagation filtering and as
illustrated in <a href="#IBGPFIG" class="xref">Figure 3</a>:<a href="#section-4.3-4.1.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-4.3-4.1.2.1">Node5, Node6, Node7, and Node8 use the same Cluster ID
(Cluster-1).<a href="#section-4.3-4.1.2.1" class="pilcrow">¶</a>
</li>
<li id="section-4.3-4.1.2.2">Node3 and Node4 use the same Cluster ID (Cluster-2).<a href="#section-4.3-4.1.2.2" class="pilcrow">¶</a>
</li>
<li id="section-4.3-4.1.2.3">Node9 and Node10 use the same Cluster ID (Cluster-3).<a href="#section-4.3-4.1.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-4.3-4.2">The control-plane behavior is mostly the same as described in
the previous section; the only difference is that the EBGP8277
path propagation is simply replaced by an IBGP8277 path reflection
with next hop changed to self.<a href="#section-4.3-4.2" class="pilcrow">¶</a>
</li>
<li id="section-4.3-4.3">The data-plane tables are exactly the same.<a href="#section-4.3-4.3" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
</section>
</div>
<div id="IPV6">
<section id="section-5">
<h2 id="name-applying-segment-routing-in-">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-applying-segment-routing-in-" class="section-name selfRef">Applying Segment Routing in the DC with IPv6 Data Plane</a>
</h2>
<p id="section-5-1">The design described in <span>[<a href="#RFC7938" class="xref">RFC7938</a>]</span> is reused with one
single modification. It is highlighted using the example of the
reachability to Node11 via Spine node Node5.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">Node5 originates 2001:DB8::5/128 with the attached BGP Prefix-SID for
IPv6 packets destined to segment 2001:DB8::5 (<span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>).<a href="#section-5-2" class="pilcrow">¶</a></p>
<p id="section-5-3">Node11 originates 2001:DB8::11/128 with the attached BGP Prefix-SID
advertising the support of the Segment Routing Header (SRH) for IPv6 packets destined to segment
2001:DB8::11.<a href="#section-5-3" class="pilcrow">¶</a></p>
<p id="section-5-4">The control-plane and data-plane processing of all the other nodes in
the fabric is unchanged. Specifically, the routes to 2001:DB8::5 and
2001:DB8::11 are installed in the FIB along the EBGP best path to Node5
(Spine node) and Node11 (ToR node) respectively.<a href="#section-5-4" class="pilcrow">¶</a></p>
<p id="section-5-5">An application on HostA that needs to send traffic to HostZ via only
Node5 (Spine node) can do so by sending IPv6 packets with a Segment
Routing Header (SRH, <span>[<a href="#I-D.ietf-6man-segment-routing-header" class="xref">IPv6-SRH</a>]</span>). The destination
address and active segment is set to 2001:DB8::5. The next and last
segment is set to 2001:DB8::11.<a href="#section-5-5" class="pilcrow">¶</a></p>
<p id="section-5-6">The application must only use IPv6 addresses that have been
advertised as capable for SRv6 segment processing (e.g., for which the
BGP Prefix Segment capability has been advertised). How applications
learn this (e.g., centralized controller and orchestration) is outside
the scope of this document.<a href="#section-5-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="COMMHOSTS">
<section id="section-6">
<h2 id="name-communicating-path-informat">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-communicating-path-informat" class="section-name selfRef">Communicating Path Information to the Host</a>
</h2>
<p id="section-6-1">There are two general methods for communicating path information to
the end-hosts: "proactive" and "reactive", aka "push" and "pull" models.
There are multiple ways to implement either of these methods. Here, it
is noted that one way could be using a centralized controller: the
controller either tells the hosts of the prefix-to-path mappings
beforehand and updates them as needed (network event driven push) or
responds to the hosts making requests for a path to a specific destination
(host event driven pull). It is also possible to use a hybrid model,
i.e., pushing some state from the controller in response to particular
network events, while the host pulls other state on demand.<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2">Note also that when disseminating network-related data to the
end-hosts, a trade-off is made to balance the amount of information
vs. the level of visibility in the network state. This applies
to both push and pull models. In the extreme case, the host would request
path information on every flow and keep no local state at all. On the
other end of the spectrum, information for every prefix in the network
along with available paths could be pushed and continuously updated on
all hosts.<a href="#section-6-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="BENEFITS">
<section id="section-7">
<h2 id="name-additional-benefits">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-additional-benefits" class="section-name selfRef">Additional Benefits</a>
</h2>
<div id="MPLSIMPLE">
<section id="section-7.1">
<h3 id="name-mpls-data-plane-with-operat">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-mpls-data-plane-with-operat" class="section-name selfRef">MPLS Data Plane with Operational Simplicity</a>
</h3>
<p id="section-7.1-1">As required by <span>[<a href="#RFC7938" class="xref">RFC7938</a>]</span>, no new signaling protocol
is introduced. The BGP Prefix-SID is a lightweight extension to BGP
Labeled Unicast <span>[<a href="#RFC8277" class="xref">RFC8277</a>]</span>. It applies either to EBGP- or
IBGP-based designs.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
<p id="section-7.1-2">Specifically, LDP and RSVP-TE are not used. These protocols would
drastically impact the operational complexity of the data center and
would not scale. This is in line with the requirements expressed in
<span>[<a href="#RFC7938" class="xref">RFC7938</a>]</span>.<a href="#section-7.1-2" class="pilcrow">¶</a></p>
<p id="section-7.1-3">Provided the same SRGB is configured on all nodes, all nodes use
the same MPLS label for a given IP prefix. This is simpler from an
operation standpoint, as discussed in <a href="#SINGLESRGB" class="xref">Section 8</a>.<a href="#section-7.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="MINFIB">
<section id="section-7.2">
<h3 id="name-minimizing-the-fib-table">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-minimizing-the-fib-table" class="section-name selfRef">Minimizing the FIB Table</a>
</h3>
<p id="section-7.2-1">The designer may decide to switch all the traffic at Tier-1 and
Tier-2 based on MPLS, thereby drastically decreasing the IP table size
at these nodes.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
<p id="section-7.2-2">This is easily accomplished by encapsulating the traffic either
directly at the host or at the source ToR node. The encapsulation is
done by pushing the BGP Prefix-SID of the destination ToR for intra-DC
traffic, or by pushing the BGP Prefix-SID for the border node for
inter-DC or DC-to-outside-world traffic.<a href="#section-7.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="EPE">
<section id="section-7.3">
<h3 id="name-egress-peer-engineering">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-egress-peer-engineering" class="section-name selfRef">Egress Peer Engineering</a>
</h3>
<p id="section-7.3-1">It is straightforward to combine the design illustrated in this
document with the Egress Peer Engineering (EPE) use case described in
<span>[<a href="#I-D.ietf-spring-segment-routing-central-epe" class="xref">SR-CENTRAL-EPE</a>]</span>.<a href="#section-7.3-1" class="pilcrow">¶</a></p>
<p id="section-7.3-2">In such a case, the operator is able to engineer its outbound traffic
on a per-host-flow basis, without incurring any additional state at
intermediate points in the DC fabric.<a href="#section-7.3-2" class="pilcrow">¶</a></p>
<p id="section-7.3-3">For example, the controller only needs to inject a per-flow state
on the HostA to force it to send its traffic destined to a specific
Internet destination D via a selected border node (say Node12 in <a href="#FIGLARGE" class="xref">Figure 1</a> instead of another border node, Node11) and a
specific egress peer of Node12 (say peer AS 9999 of local PeerNode
segment 9999 at Node12 instead of any other peer that provides a path
to the destination D). Any packet matching this state at HostA would
be encapsulated with SR segment list (label stack) {16012, 9999}.
16012 would steer the flow through the DC fabric, leveraging any ECMP,
along the best path to border node Node12. Once the flow gets to
border node Node12, the active segment is 9999 (because of Penultimate
Hop Popping (PHP) on the upstream neighbor of Node12). This EPE
PeerNode segment forces border node Node12 to forward the packet to
peer AS 9999 without any IP lookup at the border node. There is no
per-flow state for this engineered flow in the DC fabric. A benefit of
SR is that the per-flow state is only required at the
source.<a href="#section-7.3-3" class="pilcrow">¶</a></p>
<p id="section-7.3-4">As well as allowing full traffic-engineering control, such a design
also offers FIB table-minimization benefits as the Internet-scale FIB
at border node Node12 is not required if all FIB lookups are avoided
there by using EPE.<a href="#section-7.3-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ANYCAST">
<section id="section-7.4">
<h3 id="name-anycast">
<a href="#section-7.4" class="section-number selfRef">7.4. </a><a href="#name-anycast" class="section-name selfRef">Anycast</a>
</h3>
<p id="section-7.4-1">The design presented in this document preserves the availability
and load-balancing properties of the base design presented in <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>.<a href="#section-7.4-1" class="pilcrow">¶</a></p>
<p id="section-7.4-2">For example, one could assign an anycast loopback 192.0.2.20/32 and
associate segment index 20 to it on the border nodes Node11 and Node12 (in
addition to their node-specific loopbacks). Doing so, the EPE
controller could express a default "go-to-the-Internet via any border
node" policy as segment list {16020}. Indeed, from any host in the DC
fabric or from any ToR node, 16020 steers the packet towards the
border nodes Node11 or Node12 leveraging ECMP where available along the best
paths to these nodes.<a href="#section-7.4-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="SINGLESRGB">
<section id="section-8">
<h2 id="name-preferred-srgb-allocation">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-preferred-srgb-allocation" class="section-name selfRef">Preferred SRGB Allocation</a>
</h2>
<p id="section-8-1">In the MPLS case, it is recommended to use the same SRGBs at each node.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">Different SRGBs in each node likely increase the complexity of the
solution both from an operational viewpoint and from a controller
viewpoint.<a href="#section-8-2" class="pilcrow">¶</a></p>
<p id="section-8-3">From an operational viewpoint, it is much simpler to have the same
global label at every node for the same destination (the MPLS
troubleshooting is then similar to the IPv6 troubleshooting where this
global property is a given).<a href="#section-8-3" class="pilcrow">¶</a></p>
<p id="section-8-4">From a controller viewpoint, this allows us to construct simple
policies applicable across the fabric.<a href="#section-8-4" class="pilcrow">¶</a></p>
<p id="section-8-5">Let us consider two applications, A and B, respectively connected to
Node1 and Node2 (ToR nodes). Application A has two flows, FA1 and FA2, destined to Z.
B has two flows, FB1 and FB2, destined to Z. The controller wants FA1 and
FB1 to be load shared across the fabric while FA2 and FB2 must be
respectively steered via Node5 and Node8.<a href="#section-8-5" class="pilcrow">¶</a></p>
<p id="section-8-6">Assuming a consistent unique SRGB across the fabric as described in
this document, the controller can simply do it by instructing A and B to
use {16011} respectively for FA1 and FB1 and by instructing A and B to
use {16005 16011} and {16008 16011} respectively for FA2 and FB2.<a href="#section-8-6" class="pilcrow">¶</a></p>
<p id="section-8-7">Let us assume a design where the SRGB is different at every node and
where the SRGB of each node is advertised using the Originator SRGB TLV
of the BGP Prefix-SID as defined in <span>[<a href="#RFC8669" class="xref">RFC8669</a>]</span>: SRGB of Node K starts at value
K*1000, and the SRGB length is 1000 (e.g., Node1's SRGB is [1000,
1999], Node2's SRGB is [2000, 2999], ...).<a href="#section-8-7" class="pilcrow">¶</a></p>
<p id="section-8-8">In this case, the controller would need to collect and store all of
these different SRGBs (e.g., through the Originator SRGB TLV of the
BGP Prefix-SID); furthermore, it would also need to adapt the policy for
each host. Indeed, the controller would instruct A to use {1011} for FA1
while it would have to instruct B to use {2011} for FB1 (while with the
same SRGB, both policies are the same {16011}).<a href="#section-8-8" class="pilcrow">¶</a></p>
<p id="section-8-9">Even worse, the controller would instruct A to use {1005, 5011} for
FA1 while it would instruct B to use {2011, 8011} for FB1 (while with
the same SRGB, the second segment is the same across both policies:
16011). When combining segments to create a policy, one needs to
carefully update the label of each segment. This is obviously more error
prone, more complex, and more difficult to troubleshoot.<a href="#section-8-9" class="pilcrow">¶</a></p>
</section>
</div>
<div id="IANA">
<section id="section-9">
<h2 id="name-iana-considerations">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-9-1">This document has no IANA actions.<a href="#section-9-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="MANAGE">
<section id="section-10">
<h2 id="name-manageability-consideration">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-manageability-consideration" class="section-name selfRef">Manageability Considerations</a>
</h2>
<p id="section-10-1">The design and deployment guidelines described in this document are
based on the network design described in <span>[<a href="#RFC7938" class="xref">RFC7938</a>]</span>.<a href="#section-10-1" class="pilcrow">¶</a></p>
<p id="section-10-2">The deployment model assumed in this document is based on a single
domain where the interconnected DCs are part of the same administrative
domain (which, of course, is split into different autonomous systems).
The operator has full control of the whole domain, and the usual
operational and management mechanisms and procedures are used in order
to prevent any information related to internal prefixes and topology to
be leaked outside the domain.<a href="#section-10-2" class="pilcrow">¶</a></p>
<p id="section-10-3">As recommended in <span>[<a href="#RFC8402" class="xref">RFC8402</a>]</span>,
the same SRGB should be allocated in all nodes in order to facilitate
the design, deployment, and operations of the domain.<a href="#section-10-3" class="pilcrow">¶</a></p>
<p id="section-10-4">When EPE (<span>[<a href="#I-D.ietf-spring-segment-routing-central-epe" class="xref">SR-CENTRAL-EPE</a>]</span>) is used (as
explained in <a href="#EPE" class="xref">Section 7.3</a>), the same operational model is
assumed. EPE information is originated and propagated throughout the
domain towards an internal server, and unless explicitly configured by
the operator, no EPE information is leaked outside the domain
boundaries.<a href="#section-10-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="SEC">
<section id="section-11">
<h2 id="name-security-considerations">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-11-1">This document proposes to apply SR to a well-known
scalability requirement expressed in <span>[<a href="#RFC7938" class="xref">RFC7938</a>]</span> using the
BGP Prefix-SID as defined in <span>[<a href="#RFC8669" class="xref">RFC8669</a>]</span>.<a href="#section-11-1" class="pilcrow">¶</a></p>
<p id="section-11-2">It has to be noted, as described in <a href="#MANAGE" class="xref">Section 10</a>, that the
design illustrated in <span>[<a href="#RFC7938" class="xref">RFC7938</a>]</span> and in this document
refer to a deployment model where all nodes are under the same
administration. In this context, it is assumed that the operator doesn't
want to leak outside of the domain any information related to internal
prefixes and topology. The internal information includes Prefix-SID and
EPE information. In order to prevent such leaking, the standard BGP
mechanisms (filters) are applied on the boundary of the domain.<a href="#section-11-2" class="pilcrow">¶</a></p>
<p id="section-11-3">Therefore, the solution proposed in this document does not introduce
any additional security concerns from what is expressed in <span>[<a href="#RFC7938" class="xref">RFC7938</a>]</span> and <span>[<a href="#RFC8669" class="xref">RFC8669</a>]</span>. It
is assumed that the security and confidentiality of the prefix and
topology information is preserved by outbound filters at each peering
point of the domain as described in <a href="#MANAGE" class="xref">Section 10</a>.<a href="#section-11-3" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-12">
<h2 id="name-references">
<a href="#section-12" class="section-number selfRef">12. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-12.1">
<h3 id="name-normative-references">
<a href="#section-12.1" class="section-number selfRef">12.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC4271">[RFC4271]</dt>
<dd>
<span class="refAuthor">Rekhter, Y., Ed.</span><span class="refAuthor">, Li, T., Ed.</span><span class="refAuthor">, and S. Hares, Ed.</span>, <span class="refTitle">"A Border Gateway Protocol 4 (BGP-4)"</span>, <span class="seriesInfo">RFC 4271</span>, <span class="seriesInfo">DOI 10.17487/RFC4271</span>, <time datetime="2006-01">January 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4271">https://www.rfc-editor.org/info/rfc4271</a>></span>. </dd>
<dt id="RFC7938">[RFC7938]</dt>
<dd>
<span class="refAuthor">Lapukhov, P.</span><span class="refAuthor">, Premji, A.</span><span class="refAuthor">, and J. Mitchell, Ed.</span>, <span class="refTitle">"Use of BGP for Routing in Large-Scale Data Centers"</span>, <span class="seriesInfo">RFC 7938</span>, <span class="seriesInfo">DOI 10.17487/RFC7938</span>, <time datetime="2016-08">August 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7938">https://www.rfc-editor.org/info/rfc7938</a>></span>. </dd>
<dt id="RFC8277">[RFC8277]</dt>
<dd>
<span class="refAuthor">Rosen, E.</span>, <span class="refTitle">"Using BGP to Bind MPLS Labels to Address Prefixes"</span>, <span class="seriesInfo">RFC 8277</span>, <span class="seriesInfo">DOI 10.17487/RFC8277</span>, <time datetime="2017-10">October 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8277">https://www.rfc-editor.org/info/rfc8277</a>></span>. </dd>
<dt id="RFC8402">[RFC8402]</dt>
<dd>
<span class="refAuthor">Filsfils, C., Ed.</span><span class="refAuthor">, Previdi, S., Ed.</span><span class="refAuthor">, Ginsberg, L.</span><span class="refAuthor">, Decraene, B.</span><span class="refAuthor">, Litkowski, S.</span><span class="refAuthor">, and R. Shakir</span>, <span class="refTitle">"Segment Routing Architecture"</span>, <span class="seriesInfo">RFC 8402</span>, <span class="seriesInfo">DOI 10.17487/RFC8402</span>, <time datetime="2018-07">July 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8402">https://www.rfc-editor.org/info/rfc8402</a>></span>. </dd>
<dt id="RFC8669">[RFC8669]</dt>
<dd>
<span class="refAuthor">Previdi, S.</span><span class="refAuthor">, Filsfils, C.</span><span class="refAuthor">, Lindem, A., Ed.</span><span class="refAuthor">, Sreekantiah, A.</span><span class="refAuthor">, and H. Gredler</span>, <span class="refTitle">"Segment Routing Prefix Segment Identifier Extensions for BGP"</span>, <span class="seriesInfo">RFC 8669</span>, <span class="seriesInfo">DOI 10.17487/RFC8669</span>, <time datetime="2019-12">December 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8669">https://www.rfc-editor.org/info/rfc8669</a>></span>. </dd>
</dl>
</section>
<section id="section-12.2">
<h3 id="name-informative-references">
<a href="#section-12.2" class="section-number selfRef">12.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="I-D.ietf-6man-segment-routing-header">[IPv6-SRH]</dt>
<dd>
<span class="refAuthor">Filsfils, C.</span><span class="refAuthor">, Dukes, D.</span><span class="refAuthor">, Previdi, S.</span><span class="refAuthor">, Leddy, J.</span><span class="refAuthor">, Matsushima, S.</span><span class="refAuthor">, and D. Voyer</span>, <span class="refTitle">"IPv6 Segment Routing Header (SRH)"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-6man-segment-routing-header-26</span>, <time datetime="2019-10-22">22 October 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-26">https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-26</a>></span>. </dd>
<dt id="RFC6793">[RFC6793]</dt>
<dd>
<span class="refAuthor">Vohra, Q.</span><span class="refAuthor"> and E. Chen</span>, <span class="refTitle">"BGP Support for Four-Octet Autonomous System (AS) Number Space"</span>, <span class="seriesInfo">RFC 6793</span>, <span class="seriesInfo">DOI 10.17487/RFC6793</span>, <time datetime="2012-12">December 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6793">https://www.rfc-editor.org/info/rfc6793</a>></span>. </dd>
<dt id="I-D.ietf-spring-segment-routing-central-epe">[SR-CENTRAL-EPE]</dt>
<dd>
<span class="refAuthor">Filsfils, C.</span><span class="refAuthor">, Previdi, S.</span><span class="refAuthor">, Dawra, G.</span><span class="refAuthor">, Aries, E.</span><span class="refAuthor">, and D. Afanasiev</span>, <span class="refTitle">"Segment Routing Centralized BGP Egress Peer Engineering"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-spring-segment-routing-central-epe-10</span>, <time datetime="2017-12-21">21 December 2017</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-spring-segment-routing-central-epe-10">https://tools.ietf.org/html/draft-ietf-spring-segment-routing-central-epe-10</a>></span>. </dd>
</dl>
</section>
</section>
<div id="Acknowledgements">
<section id="section-appendix.a">
<h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
</h2>
<p id="section-appendix.a-1">The authors would like to thank Benjamin Black, Arjun Sreekantiah,
Keyur Patel, Acee Lindem, and Anoop Ghanwani for their comments and
review of this document.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Contributors">
<section id="section-appendix.b">
<h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
</h2>
<div class="artwork art-text alignLeft" id="section-appendix.b-1">
<pre>Gaya Nagarajan
Facebook
United States of America
Email: gaya@fb.com</pre><a href="#section-appendix.b-1" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.b-2">
<pre>Gaurav Dawra
Cisco Systems
United States of America
Email: gdawra.ietf@gmail.com</pre><a href="#section-appendix.b-2" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.b-3">
<pre>Dmitry Afanasiev
Yandex
Russian Federation
Email: fl0w@yandex-team.ru</pre><a href="#section-appendix.b-3" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.b-4">
<pre>Tim Laberge
Cisco
United States of America
Email: tlaberge@cisco.com</pre><a href="#section-appendix.b-4" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.b-5">
<pre>Edet Nkposong
Salesforce.com Inc.
United States of America
Email: enkposong@salesforce.com</pre><a href="#section-appendix.b-5" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.b-6">
<pre>Mohan Nanduri
Microsoft
United States of America
Email: mohan.nanduri@oracle.com</pre><a href="#section-appendix.b-6" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.b-7">
<pre>James Uttaro
ATT
United States of America
Email: ju1738@att.com</pre><a href="#section-appendix.b-7" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.b-8">
<pre>Saikat Ray
Unaffiliated
United States of America
Email: raysaikat@gmail.com</pre><a href="#section-appendix.b-8" class="pilcrow">¶</a>
</div>
<div class="artwork art-text alignLeft" id="section-appendix.b-9">
<pre>Jon Mitchell
Unaffiliated
United States of America
Email: jrmitche@puck.nether.net</pre><a href="#section-appendix.b-9" class="pilcrow">¶</a>
</div>
</section>
</div>
<div id="authors-addresses">
<section id="section-appendix.c">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Clarence Filsfils (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems, Inc.</span></div>
<div dir="auto" class="left"> <span class="locality">Brussels</span>
</div>
<div dir="auto" class="left"><span class="country-name">Belgium</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:cfilsfil@cisco.com" class="email">cfilsfil@cisco.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Stefano Previdi</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems, Inc.</span></div>
<div dir="auto" class="left"><span class="country-name">Italy</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:stefano@previdi.net" class="email">stefano@previdi.net</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Gaurav Dawra</span></div>
<div dir="auto" class="left"><span class="org">LinkedIn</span></div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:gdawra.ietf@gmail.com" class="email">gdawra.ietf@gmail.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Ebben Aries</span></div>
<div dir="auto" class="left"><span class="org">Arrcus, Inc.</span></div>
<div dir="auto" class="left"><span class="street-address">2077 Gateway Place, Suite #400</span></div>
<div dir="auto" class="left">
<span class="locality">San Jose</span>, <span class="postal-code">CA 95119</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:exa@arrcus.com" class="email">exa@arrcus.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Petr Lapukhov</span></div>
<div dir="auto" class="left"><span class="org">Facebook</span></div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:petr@fb.com" class="email">petr@fb.com</a>
</div>
</address>
</section>
</div>
<script>var toc = document.getElementById("toc");
var tocToggle = toc.querySelector("h2");
var tocNav = toc.querySelector("nav");
// mobile menu toggle
tocToggle.onclick = function(event) {
if (window.innerWidth < 1024) {
var tocNavDisplay = tocNav.currentStyle ? tocNav.currentStyle.display : getComputedStyle(tocNav, null).display;
if (tocNavDisplay == "none") {
tocNav.style.display = "block";
} else {
tocNav.style.display = "none";
}
}
}
// toc anchor scroll to anchor
tocNav.addEventListener("click", function (event) {
event.preventDefault();
if (event.target.nodeName == 'A') {
if (window.innerWidth < 1024) {
tocNav.style.display = "none";
}
var href = event.target.getAttribute("href");
var anchorId = href.substr(1);
var anchor = document.getElementById(anchorId);
anchor.scrollIntoView(true);
window.history.pushState("","",href);
}
});
// switch toc mode when window resized
window.onresize = function () {
if (window.innerWidth < 1024) {
tocNav.style.display = "none";
} else {
tocNav.style.display = "block";
}
}
</script>
</body>
</html>
|