1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8691: Basic Support for IPv6 Networks Operating Outside the Context of a Basic Service Set over IEEE Std 802.11</title>
<meta content="Nabil Benamar" name="author">
<meta content="Jérôme Härri" name="author">
<meta content="Jong-Hyouk Lee" name="author">
<meta content="Thierry ERNST" name="author">
<meta content="
This document provides methods and settings
for using IPv6 to communicate among nodes within range of one another
over a single IEEE 802.11-OCB link. Support for these methods and
settings require minimal changes to existing stacks. This document
also describes limitations associated with using these methods.
Optimizations and usage of IPv6 over more complex scenarios
are not covered in this specification and are a subject for future work.
" name="description">
<meta content="xml2rfc 2.37.3" name="generator">
<meta content="IPv6 over 802.11p" name="keyword">
<meta content="OCB" name="keyword">
<meta content="IPv6 over 802.11-OCB" name="keyword">
<meta content="8691" name="rfc.number">
<link href="rfc8691.xml" type="application/rfc+xml" rel="alternate">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Avoid wrapping of URLs in references */
@media screen {
.references a {
white-space: nowrap;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin: 0 0 0.25em 0;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/*
The margin-left: 0 on <dd> removes all distinction
between levels from nested <dl>s. Undo that.
*/
dl.olPercent > dd,
dd {
margin-left: revert;
}</style>
<link href="rfc-local.css" type="text/css" rel="stylesheet">
<link href="https://dx.doi.org/10.17487/rfc8691" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-ipwave-ipv6-over-80211ocb-52" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8691</td>
<td class="center">IPv6 over 802.11-OCB</td>
<td class="right">December 2019</td>
</tr></thead>
<tfoot><tr>
<td class="left">Benamar, et al.</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8691" class="eref">8691</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2019-12" class="published">December 2019</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">N. Benamar</div>
<div class="org">Moulay Ismail University of Meknes</div>
</div>
<div class="author">
<div class="author-name">J. Härri</div>
<div class="org">EURECOM</div>
</div>
<div class="author">
<div class="author-name">J. Lee</div>
<div class="org">Sangmyung University</div>
</div>
<div class="author">
<div class="author-name">T. Ernst</div>
<div class="org">YoGoKo</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8691</h1>
<h1 id="title">Basic Support for IPv6 Networks Operating Outside the Context of a Basic Service Set over IEEE Std 802.11</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">
This document provides methods and settings
for using IPv6 to communicate among nodes within range of one another
over a single IEEE 802.11-OCB link. Support for these methods and
settings require minimal changes to existing stacks. This document
also describes limitations associated with using these methods.
Optimizations and usage of IPv6 over more complex scenarios
are not covered in this specification and are a subject for future work.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc8691">https://www.rfc-editor.org/info/rfc8691</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-terminology" class="xref">Terminology</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-communication-scenarios-whe" class="xref">Communication Scenarios Where IEEE 802.11-OCB Links Are Used</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-ipv6-over-80211-ocb" class="xref">IPv6 over 802.11-OCB</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-maximum-transmission-unit-m" class="xref">Maximum Transmission Unit (MTU)</a><a href="#section-toc.1-1.4.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-frame-format" class="xref">Frame Format</a><a href="#section-toc.1-1.4.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-link-local-addresses" class="xref">Link-Local Addresses</a><a href="#section-toc.1-1.4.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.4">
<p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>. <a href="#name-stateless-autoconfiguration" class="xref">Stateless Autoconfiguration</a><a href="#section-toc.1-1.4.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.5">
<p id="section-toc.1-1.4.2.5.1"><a href="#section-4.5" class="xref">4.5</a>. <a href="#name-address-mapping" class="xref">Address Mapping</a><a href="#section-toc.1-1.4.2.5.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.4.2.5.2.1">
<p id="section-toc.1-1.4.2.5.2.1.1"><a href="#section-4.5.1" class="xref">4.5.1</a>. <a href="#name-address-mapping-unicast" class="xref">Address Mapping -- Unicast</a><a href="#section-toc.1-1.4.2.5.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.5.2.2">
<p id="section-toc.1-1.4.2.5.2.2.1"><a href="#section-4.5.2" class="xref">4.5.2</a>. <a href="#name-address-mapping-multicast" class="xref">Address Mapping -- Multicast</a><a href="#section-toc.1-1.4.2.5.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.6">
<p id="section-toc.1-1.4.2.6.1"><a href="#section-4.6" class="xref">4.6</a>. <a href="#name-subnet-structure" class="xref">Subnet Structure</a><a href="#section-toc.1-1.4.2.6.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>. <a href="#name-privacy-considerations" class="xref">Privacy Considerations</a><a href="#section-toc.1-1.5.2.1.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.5.2.1.2.1">
<p id="section-toc.1-1.5.2.1.2.1.1"><a href="#section-5.1.1" class="xref">5.1.1</a>. <a href="#name-privacy-risks-of-meaningful" class="xref">Privacy Risks of Meaningful Information in Interface IDs</a><a href="#section-toc.1-1.5.2.1.2.1.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>. <a href="#name-mac-address-and-interface-i" class="xref">MAC Address and Interface ID Generation</a><a href="#section-toc.1-1.5.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.3">
<p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>. <a href="#name-pseudonymization-impact-on-" class="xref">Pseudonymization Impact on Confidentiality and Trust</a><a href="#section-toc.1-1.5.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>. <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.7.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>. <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.7.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-appendix.a" class="xref">Appendix A</a>. <a href="#name-80211p" class="xref">802.11p</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-appendix.b" class="xref">Appendix B</a>. <a href="#name-aspects-introduced-by-ocb-m" class="xref">Aspects Introduced by OCB Mode to 802.11</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-appendix.c" class="xref">Appendix C</a>. <a href="#name-changes-needed-on-an-80211a" class="xref">Changes Needed on an 802.11a Software Driver to Become an 802.11-OCB Driver</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-appendix.d" class="xref">Appendix D</a>. <a href="#name-protocol-layering" class="xref">Protocol Layering</a><a href="#section-toc.1-1.11.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-appendix.e" class="xref">Appendix E</a>. <a href="#name-design-considerations" class="xref">Design Considerations</a><a href="#section-toc.1-1.12.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#section-appendix.f" class="xref">Appendix F</a>. <a href="#name-ieee-80211-messages-transmi" class="xref">IEEE 802.11 Messages Transmitted in OCB Mode</a><a href="#section-toc.1-1.13.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#section-appendix.g" class="xref">Appendix G</a>. <a href="#name-examples-of-packet-formats" class="xref">Examples of Packet Formats</a><a href="#section-toc.1-1.14.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.14.2.1">
<p id="section-toc.1-1.14.2.1.1"><a href="#section-g.1" class="xref">G.1</a>. <a href="#name-capture-in-monitor-mode" class="xref">Capture in Monitor Mode</a><a href="#section-toc.1-1.14.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.14.2.2">
<p id="section-toc.1-1.14.2.2.1"><a href="#section-g.2" class="xref">G.2</a>. <a href="#name-capture-in-normal-mode" class="xref">Capture in Normal Mode</a><a href="#section-toc.1-1.14.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.15">
<p id="section-toc.1-1.15.1"><a href="#section-appendix.h" class="xref">Appendix H</a>. <a href="#name-extra-terminology" class="xref">Extra Terminology</a><a href="#section-toc.1-1.15.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.16">
<p id="section-toc.1-1.16.1"><a href="#section-appendix.i" class="xref">Appendix I</a>. <a href="#name-neighbor-discovery-nd-poten" class="xref">Neighbor Discovery (ND) Potential Issues in Wireless Links</a><a href="#section-toc.1-1.16.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.17">
<p id="section-toc.1-1.17.1"><a href="#section-appendix.j" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a><a href="#section-toc.1-1.17.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.18">
<p id="section-toc.1-1.18.1"><a href="#section-appendix.k" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a><a href="#section-toc.1-1.18.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.19">
<p id="section-toc.1-1.19.1"><a href="#section-appendix.l" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.19.1" class="pilcrow">¶</a></p>
</li>
</ul>
</nav>
</section>
</div>
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">
This document provides a baseline for using IPv6 to
communicate among nodes in range of one another over a single IEEE 802.11-OCB link
<span>[<a href="#IEEE-802.11-2016" class="xref">IEEE-802.11-2016</a>]</span> (a.k.a., 802.11p;
see Appendices <a href="#i802.11p" class="xref">A</a>,
<a href="#introduced-by-OCB" class="xref">B</a>, and <a href="#software-changes" class="xref">C</a>)
with minimal changes to existing stacks. Moreover, the document
identifies the limitations
of such usage. Concretely, the document describes the layering
of IPv6 networking on top of the IEEE Std 802.11 MAC layer or an IEEE Std 802.3
MAC layer with a frame translation underneath. The resulting stack is derived from IPv6
over Ethernet <span>[<a href="#RFC2464" class="xref">RFC2464</a>]</span> but operates over 802.11-OCB to provide at least P2P (point-to-point) connectivity
using IPv6 Neighbor Discovery (ND) and link-local addresses.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">
The IPv6 network layer operates on 802.11-OCB in the same
manner as operating on the Ethernet with the following
exceptions:<a href="#section-1-2" class="pilcrow">¶</a></p>
<ul>
<li id="section-1-3.1">
Exceptions due to the different operation of the IPv6 network
layer on 802.11 compared to the Ethernet. The operation of IP
on Ethernet is described in <span>[<a href="#RFC1042" class="xref">RFC1042</a>]</span> and <span>[<a href="#RFC2464" class="xref">RFC2464</a>]</span>.<a href="#section-1-3.1" class="pilcrow">¶</a>
</li>
<li id="section-1-3.2">
Exceptions due to the OCB nature of 802.11-OCB compared to
802.11. This has impacts on security, privacy, subnet
structure, and movement detection. Security and
privacy recommendations are discussed in Sections <a href="#slaac" class="xref">4.4</a> and <a href="#Security" class="xref">5</a>. The subnet structure is described
in <a href="#subnet-structure" class="xref">Section 4.6</a>. The movement
detection on OCB links is not described in this document.
Likewise, ND extensions and IP Wireless Access in Vehicular
Environments (IPWAVE) optimizations for vehicular communications are
not in scope of this document. The expectation is that further specifications will be edited to cover
more complex vehicular networking scenarios.<a href="#section-1-3.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-1-4">
The reader may refer to <span>[<a href="#I-D.ietf-ipwave-vehicular-networking" class="xref">IPWAVE</a>]</span> for an overview of
problems related to running IPv6 over 802.11-OCB. It is out of scope
of this document to reiterate those problems.<a href="#section-1-4" class="pilcrow">¶</a></p>
</section>
<div id="terminology">
<section id="section-2">
<h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h2>
<p id="section-2-1">
The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as
described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span>
when, and only when, they appear in all capitals, as shown here.<a href="#section-2-1" class="pilcrow">¶</a></p>
<p id="section-2-2">
The document makes uses of the following terms:<a href="#section-2-2" class="pilcrow">¶</a></p>
<dl class="dlNewline" id="section-2-3">
<dt id="section-2-3.1">IP-OBU (Internet Protocol On-Board Unit):</dt>
<dd id="section-2-3.2">An IP-OBU denotes a
computer situated in a vehicle such as a car, bicycle,
or similar. It has at least one IP interface that runs in
mode OCB of 802.11 and has an "OBU" transceiver. See
the definition of the term "OBU" in <a href="#extra-terminology" class="xref">Appendix H</a>.<a href="#section-2-3.2" class="pilcrow">¶</a>
</dd>
<dt id="section-2-3.3">IP-RSU (IP Roadside Unit):</dt>
<dd id="section-2-3.4">An IP-RSU is situated along the
road. It has at least two distinct IP-enabled interfaces. The
wireless PHY/MAC layer of at least one of its IP-enabled
interfaces is configured to operate in 802.11-OCB mode. An
IP-RSU communicates with the IP-OBU over an 802.11
wireless link operating in OCB mode. An IP-RSU is similar to
an Access Network Router (ANR), defined in <span>[<a href="#RFC3753" class="xref">RFC3753</a>]</span>, and a Wireless Termination Point (WTP),
defined in <span>[<a href="#RFC5415" class="xref">RFC5415</a>]</span>.<a href="#section-2-3.4" class="pilcrow">¶</a>
</dd>
<dt id="section-2-3.5">OCB (outside the context of a Basic Service Set - BSS):</dt>
<dd id="section-2-3.6">This is a mode
of operation in which a station (STA) is not a member of a BSS and does
not utilize IEEE Std 802.11 authentication, association, or
data confidentiality.<a href="#section-2-3.6" class="pilcrow">¶</a>
</dd>
<dt id="section-2-3.7">802.11-OCB:</dt>
<dd id="section-2-3.8"> This refers to the mode specified in IEEE Std 802.11-2016 when the
MIB attribute dot11OCBActivited is 'true'.<a href="#section-2-3.8" class="pilcrow">¶</a>
</dd>
</dl>
</section>
</div>
<section id="section-3">
<h2 id="name-communication-scenarios-whe">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-communication-scenarios-whe" class="section-name selfRef">Communication Scenarios Where IEEE 802.11-OCB Links Are Used</a>
</h2>
<p id="section-3-1">
IEEE 802.11-OCB networks are used for vehicular
communications as 'Wireless Access in Vehicular
Environments'. In particular, we refer the reader to <span>[<a href="#I-D.ietf-ipwave-vehicular-networking" class="xref">IPWAVE</a>]</span>, which lists
some scenarios and requirements for IP in Intelligent
Transportation Systems (ITS).<a href="#section-3-1" class="pilcrow">¶</a></p>
<p id="section-3-2">
The link model is the following: STA --- 802.11-OCB --- STA.
In vehicular networks, STAs can be IP-RSUs and/or IP-OBUs.
All links are assumed to be P2P, and multiple links can be on one radio
interface. While 802.11-OCB is clearly specified and a legacy IPv6
stack can operate on such links, the use of the operating environment
(vehicular networks) brings in new perspectives.<a href="#section-3-2" class="pilcrow">¶</a></p>
</section>
<section id="section-4">
<h2 id="name-ipv6-over-80211-ocb">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-ipv6-over-80211-ocb" class="section-name selfRef">IPv6 over 802.11-OCB</a>
</h2>
<div id="MTU">
<section id="section-4.1">
<h3 id="name-maximum-transmission-unit-m">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-maximum-transmission-unit-m" class="section-name selfRef">Maximum Transmission Unit (MTU)</a>
</h3>
<p id="section-4.1-1">
The default MTU for IP packets on 802.11-OCB is inherited
from <span>[<a href="#RFC2464" class="xref">RFC2464</a>]</span> and, as such, is 1500 octets.
As noted in <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span>, every link on the Internet must have a
minimum MTU of 1280 octets and must follow the other
recommendations, especially with regard to fragmentation.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.2">
<h3 id="name-frame-format">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-frame-format" class="section-name selfRef">Frame Format</a>
</h3>
<p id="section-4.2-1">
IP packets <span class="bcp14">MUST</span> be transmitted over 802.11-OCB media as QoS
data frames whose format is specified in an IEEE 802.11 spec
<span>[<a href="#IEEE-802.11-2016" class="xref">IEEE-802.11-2016</a>]</span>.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2-2">
The IPv6 packet transmitted on 802.11-OCB is
immediately preceded by a Logical Link Control (LLC) header
and an 802.11 header. In the LLC header and in accordance
with EtherType Protocol Discrimination (EPD; see <a href="#epd" class="xref">Appendix D</a>), the value of the Type field <span class="bcp14">MUST</span> be set to
0x86DD (IPv6). The mapping to the 802.11 data service <span class="bcp14">SHOULD</span>
use a 'priority' value of 1 (QoS with a 'Background' user priority),
reserving higher priority values for safety-critical and time-sensitive
traffic, including the ones listed in <span>[<a href="#ETSI-sec-archi" class="xref">ETSI-sec-archi</a>]</span>.<a href="#section-4.2-2" class="pilcrow">¶</a></p>
<p id="section-4.2-3">
To simplify the Application Programming Interface (API)
between the operating system and the 802.11-OCB media,
device drivers <span class="bcp14">MAY</span> implement IPv6 over Ethernet as per <span>[<a href="#RFC2464" class="xref">RFC2464</a>]</span>
and then a frame translation from 802.3 to 802.11 in order
to minimize the code changes.<a href="#section-4.2-3" class="pilcrow">¶</a></p>
</section>
<div id="ll">
<section id="section-4.3">
<h3 id="name-link-local-addresses">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-link-local-addresses" class="section-name selfRef">Link-Local Addresses</a>
</h3>
<p id="section-4.3-1">
There are several types of IPv6 addresses <span>[<a href="#RFC4291" class="xref">RFC4291</a>]</span> <span>[<a href="#RFC4193" class="xref">RFC4193</a>]</span> that may be
assigned to an 802.11-OCB interface. Among these types of
addresses, only the IPv6 link-local addresses can be formed
using an EUI-64 identifier, particularly during transition
time (the period of time before an interface starts using an address
different from the LL one).<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2">
If the IPv6 link-local address is formed using an EUI-64
identifier, then the mechanism for forming that address is
the same mechanism as that used to form an IPv6 link-local
address on Ethernet links. Moreover, regardless of whether the interface
identifier is derived from the EUI-64 identifier, its length is 64 bits,
as is the case for the Ethernet <span>[<a href="#RFC2464" class="xref">RFC2464</a>]</span>.<a href="#section-4.3-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="slaac">
<section id="section-4.4">
<h3 id="name-stateless-autoconfiguration">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-stateless-autoconfiguration" class="section-name selfRef">Stateless Autoconfiguration</a>
</h3>
<p id="section-4.4-1">
The steps a host takes in deciding how to
autoconfigure its interfaces in IPv6 are described
in <span>[<a href="#RFC4862" class="xref">RFC4862</a>]</span>. This section describes
the formation of Interface Identifiers for 'Global' or 'Unique Local' IPv6 addresses. Interface Identifiers
for 'link-local' IPv6 addresses are discussed in <a href="#ll" class="xref">Section 4.3</a>.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<p id="section-4.4-2">
The <span class="bcp14">RECOMMENDED</span> method for forming
stable Interface Identifiers (IIDs) is described in <span>[<a href="#RFC8064" class="xref">RFC8064</a>]</span>. The method of forming IIDs described in
<span><a href="https://www.rfc-editor.org/rfc/rfc2464#section-4" class="relref">Section 4</a> of [<a href="#RFC2464" class="xref">RFC2464</a>]</span> <span class="bcp14">MAY</span> be used during
transition time, particularly for IPv6 link-local
addresses. Regardless of the method used to form the IID,
its length is 64 bits, similarly to IPv6 over Ethernet <span>[<a href="#RFC2464" class="xref">RFC2464</a>]</span>.<a href="#section-4.4-2" class="pilcrow">¶</a></p>
<p id="section-4.4-3">
The bits in the IID have no specific meaning,
and the identifier should be treated as an opaque value.
The bits 'Universal' and 'Group' in the identifier of an
802.11-OCB interface, which is an IEEE link-layer address, are
significant. The details of this significance are
described in <span>[<a href="#RFC7136" class="xref">RFC7136</a>]</span>.<a href="#section-4.4-3" class="pilcrow">¶</a></p>
<p id="section-4.4-4">
Semantically opaque IIDs, instead of
meaningful IIDs derived from a valid and
meaningful MAC address (<span>[<a href="#RFC2464" class="xref">RFC2464</a>], <a href="https://www.rfc-editor.org/rfc/rfc2464#section-4" class="relref">Section 4</a></span>), help avoid certain privacy risks (see the risks
mentioned in <a href="#privacy-opaque-iid" class="xref">Section 5.1.1</a>). If
semantically opaque IIDs are needed, they
may be generated using the method for generating
semantically opaque IIDs with IPv6
Stateless Address Autoconfiguration given in <span>[<a href="#RFC7217" class="xref">RFC7217</a>]</span>. Typically, an opaque IID is formed starting from identifiers different
from the MAC addresses and from cryptographically strong
material. Thus, privacy-sensitive information is absent
from Interface IDs because it is impossible to calculate
back the initial value from which the Interface ID was first
generated.<a href="#section-4.4-4" class="pilcrow">¶</a></p>
<p id="section-4.4-5">
Some applications that use IPv6 packets on 802.11-OCB links
(among other link types) may benefit from IPv6 addresses
whose IIDs don't change too often. It is
<span class="bcp14">RECOMMENDED</span> to use the mechanisms described in <span>[<a href="#RFC7217" class="xref">RFC7217</a>]</span> to
permit the use of stable IIDs that do not
change within one subnet prefix. A possible source for the
Net_Iface parameter is a virtual interface name or logical
interface name that is decided by a local administrator.<a href="#section-4.4-5" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.5">
<h3 id="name-address-mapping">
<a href="#section-4.5" class="section-number selfRef">4.5. </a><a href="#name-address-mapping" class="section-name selfRef">Address Mapping</a>
</h3>
<p id="section-4.5-1">
Unicast and multicast address mapping <span class="bcp14">MUST</span> follow the
procedures specified for Ethernet interfaces described in Sections <a href="https://www.rfc-editor.org/rfc/rfc2464#section-6" class="relref">6</a> and <a href="https://www.rfc-editor.org/rfc/rfc2464#section-7" class="relref">7</a> of <span>[<a href="#RFC2464" class="xref">RFC2464</a>]</span>.<a href="#section-4.5-1" class="pilcrow">¶</a></p>
<section id="section-4.5.1">
<h4 id="name-address-mapping-unicast">
<a href="#section-4.5.1" class="section-number selfRef">4.5.1. </a><a href="#name-address-mapping-unicast" class="section-name selfRef">Address Mapping -- Unicast</a>
</h4>
<p id="section-4.5.1-1">
This document is scoped for Address Resolution (AR) and Duplicate Address Detection (DAD) per <span>[<a href="#RFC4862" class="xref">RFC4862</a>]</span>.<a href="#section-4.5.1-1" class="pilcrow">¶</a></p>
</section>
<div id="address-mapping-multicast">
<section id="section-4.5.2">
<h4 id="name-address-mapping-multicast">
<a href="#section-4.5.2" class="section-number selfRef">4.5.2. </a><a href="#name-address-mapping-multicast" class="section-name selfRef">Address Mapping -- Multicast</a>
</h4>
<p id="section-4.5.2-1">
The multicast address mapping is performed according to
the method specified in <span><a href="https://www.rfc-editor.org/rfc/rfc2464#section-7" class="relref">Section 7</a> of [<a href="#RFC2464" class="xref">RFC2464</a>]</span>. The meaning of the value "33-33"
mentioned there is
defined in <span><a href="https://www.rfc-editor.org/rfc/rfc7042#section-2.3.1" class="relref">Section 2.3.1</a> of [<a href="#RFC7042" class="xref">RFC7042</a>]</span>.<a href="#section-4.5.2-1" class="pilcrow">¶</a></p>
<p id="section-4.5.2-2">
Transmitting IPv6 packets to multicast destinations over
802.11 links proved to have some performance issues <span>[<a href="#I-D.ietf-mboned-ieee802-mcast-problems" class="xref">IEEE802-MCAST</a>]</span>. These
issues may be exacerbated in OCB mode.
Future improvement to this specification should consider solutions for these problems.<a href="#section-4.5.2-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<div id="subnet-structure">
<section id="section-4.6">
<h3 id="name-subnet-structure">
<a href="#section-4.6" class="section-number selfRef">4.6. </a><a href="#name-subnet-structure" class="section-name selfRef">Subnet Structure</a>
</h3>
<p id="section-4.6-1">
When vehicles are in close range, a subnet may be formed over
802.11-OCB interfaces (not by their in-vehicle interfaces).
A Prefix List conceptual data structure (<span>[<a href="#RFC4861" class="xref">RFC4861</a>], <a href="https://www.rfc-editor.org/rfc/rfc4861#section-5.1" class="relref">Section 5.1</a></span>) is maintained for each
802.11-OCB interface.<a href="#section-4.6-1" class="pilcrow">¶</a></p>
<p id="section-4.6-2">
The IPv6 Neighbor Discovery protocol (ND) requires reflexive properties
(bidirectional connectivity), which is generally, though not always, the case for P2P OCB links.
IPv6 ND also requires transitive properties for DAD and AR, so an IPv6 subnet can be mapped
on an OCB network only if all nodes in the network share a single
physical broadcast domain. The extension to IPv6 ND operating on a
subnet that covers multiple OCB links and does not fully overlap
(i.e., non-broadcast multi-access (NBMA)) is not in scope of this document.
Finally, IPv6 ND requires permanent connectivity of all nodes in the subnet
to defend their addresses -- in other words, very stable network conditions.<a href="#section-4.6-2" class="pilcrow">¶</a></p>
<p id="section-4.6-3">
The structure of this subnet is ephemeral in that it is
strongly influenced by the mobility of vehicles: the hidden
terminal effects appear, and the 802.11 networks in OCB mode may
be considered ad hoc networks with an addressing model,
as described in <span>[<a href="#RFC5889" class="xref">RFC5889</a>]</span>. On the other hand,
the structure of the internal subnets in each vehicle is
relatively stable.<a href="#section-4.6-3" class="pilcrow">¶</a></p>
<p id="section-4.6-4">
As recommended in <span>[<a href="#RFC5889" class="xref">RFC5889</a>]</span>, when the timing
requirements are very strict (e.g., fast-drive-through IP-RSU
coverage), no on-link subnet prefix should be configured on
an 802.11-OCB interface. In such cases, the exclusive use
of IPv6 link-local addresses is <span class="bcp14">RECOMMENDED</span>.<a href="#section-4.6-4" class="pilcrow">¶</a></p>
<p id="section-4.6-5">
Additionally, even if the timing requirements are not very
strict (e.g., the moving subnet formed by two following
vehicles is stable, a fixed IP-RSU is absent), the subnet is
disconnected from the Internet (i.e., a default route is absent),
and the addressing peers are equally qualified (that is, it is impossible
to determine whether some vehicle owns and distributes
addresses to others), the use of link-local addresses is
<span class="bcp14">RECOMMENDED</span>.<a href="#section-4.6-5" class="pilcrow">¶</a></p>
<p id="section-4.6-6">
The baseline ND protocol <span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span> <span class="bcp14">MUST</span> be supported over 802.11-OCB links.
Transmitting ND packets may prove to have some performance
issues, as mentioned in <a href="#address-mapping-multicast" class="xref">Section 4.5.2</a> and
<a href="#nd-wireless" class="xref">Appendix I</a>.
These issues may be exacerbated in OCB mode.
Solutions for these problems should consider the OCB mode
of operation. Future solutions to OCB should consider solutions
for avoiding broadcast. The best of current knowledge
indicates the kinds of issues that may arise with ND in
OCB mode; they are described in <a href="#nd-wireless" class="xref">Appendix I</a>.<a href="#section-4.6-6" class="pilcrow">¶</a></p>
<p id="section-4.6-7">
Protocols like Mobile IPv6 <span>[<a href="#RFC6275" class="xref">RFC6275</a>]</span>
<span>[<a href="#RFC3963" class="xref">RFC3963</a>]</span> and
DNAv6 <span>[<a href="#RFC6059" class="xref">RFC6059</a>]</span>, which depend on timely
movement detection, might need additional tuning work to
handle the lack of link-layer notifications during handover.
This topic is left for further study.<a href="#section-4.6-7" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<div id="Security">
<section id="section-5">
<h2 id="name-security-considerations">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-5-1">
Any security mechanism at the IP layer or above that may be
implemented for the general case of IPv6 may also be implemented
for IPv6 operating over 802.11-OCB.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">
The OCB operation does not use existing 802.11
link-layer security mechanisms. There is no encryption
applied below the network layer running on 802.11-OCB. At
the application layer, the IEEE 1609.2 document <span>[<a href="#IEEE-1609.2" class="xref">IEEE-1609.2</a>]</span> provides security services for
certain applications to use; application-layer mechanisms are
out of scope of this document. On the other hand, a security
mechanism provided at the networking layer, such as IPsec <span>[<a href="#RFC4301" class="xref">RFC4301</a>]</span>, may provide data security protection to a
wider range of applications.<a href="#section-5-2" class="pilcrow">¶</a></p>
<p id="section-5-3">
802.11-OCB does not provide any cryptographic protection because it operates outside the context of a BSS (no
Association Request/Response or Challenge messages).
Therefore, an attacker can sniff or inject traffic while within
range of a vehicle or IP-RSU (by setting an interface card's frequency to the proper range).
Also, an attacker may not adhere to the legal limits
for radio power and can use a very sensitive directional antenna;
if attackers wish to attack a given exchange, they do not necessarily
need to be in close physical proximity. Hence, such a link is less protected than
commonly used links (a wired link or the aforementioned 802.11 links with link-layer security).<a href="#section-5-3" class="pilcrow">¶</a></p>
<p id="section-5-4">Therefore, any node can join a subnet and directly communicate with any
nodes on the subset, including potentially impersonating another node. This
design allows for a number of threats outlined in <span><a href="https://www.rfc-editor.org/rfc/rfc6959#section-3" class="relref">Section 3</a> of [<a href="#RFC6959" class="xref">RFC6959</a>]</span>.
While not widely deployed, SEND <span>[<a href="#RFC3971" class="xref">RFC3971</a>]</span> <span>[<a href="#RFC3972" class="xref">RFC3972</a>]</span> is a solution
that can address spoof-based attack vectors.<a href="#section-5-4" class="pilcrow">¶</a></p>
<div id="Privacy">
<section id="section-5.1">
<h3 id="name-privacy-considerations">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-privacy-considerations" class="section-name selfRef">Privacy Considerations</a>
</h3>
<p id="section-5.1-1">
As with all Ethernet and 802.11 interface identifiers <span>[<a href="#RFC7721" class="xref">RFC7721</a>]</span>, the identifier of an 802.11-OCB
interface may involve privacy, MAC address spoofing, and IP
hijacking risks. A vehicle embarking an IP-OBU
whose egress interface is 802.11-OCB may expose itself to
eavesdropping and subsequent correlation of data. This may
reveal data considered private by the vehicle owner; there
is a risk of being tracked. In outdoor public
environments, where vehicles typically circulate, the
privacy risks are greater than in indoor settings.
It is highly likely that attacker sniffers are deployed
along routes that listen for IEEE frames, including IP
packets, of vehicles passing by. For this reason, in 802.11-OCB deployments, there is a strong necessity to use
protection tools such as dynamically changing MAC addresses
(<a href="#mac-change" class="xref">Section 5.2</a>), semantically opaque Interface
Identifiers, and stable Interface Identifiers (<a href="#slaac" class="xref">Section 4.4</a>). An example of a change policy is to change the MAC
address of the OCB interface each time the system boots up.
This may help mitigate privacy risks to a
certain level. Furthermore, for privacy concerns, <span>[<a href="#RFC8065" class="xref">RFC8065</a>]</span> recommends using an address-generation scheme
rather than generating addresses from a fixed link-layer address.
However, there are some specificities related to vehicles. Since roaming is an important
characteristic of moving vehicles, the use of the same Link-Local Address over time
can indicate the presence of the same vehicle in different places and thus lead to location tracking.
Hence, a vehicle should get hints about a change of environment (e.g., engine running, GPS, etc.)
and renew the IID in its LLAs.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<div id="privacy-opaque-iid">
<section id="section-5.1.1">
<h4 id="name-privacy-risks-of-meaningful">
<a href="#section-5.1.1" class="section-number selfRef">5.1.1. </a><a href="#name-privacy-risks-of-meaningful" class="section-name selfRef">Privacy Risks of Meaningful Information in Interface IDs</a>
</h4>
<p id="section-5.1.1-1">
The privacy risks of using MAC addresses displayed in
Interface Identifiers are important. IPv6 packets can
be captured easily on the Internet and on-link on public
roads. For this reason, an attacker may realize many
attacks on privacy. One such attack on 802.11-OCB is to
capture, store, and correlate company ID information
present in the MAC addresses of a large number of cars (e.g., listening for
Router Advertisements or other IPv6 application data
packets, and recording the value of the source address in
these packets). Further correlation of this information
with other data captured by other means or other visual
information (e.g., car color) may constitute privacy
risks.<a href="#section-5.1.1-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="mac-change">
<section id="section-5.2">
<h3 id="name-mac-address-and-interface-i">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-mac-address-and-interface-i" class="section-name selfRef">MAC Address and Interface ID Generation</a>
</h3>
<p id="section-5.2-1">
In 802.11-OCB networks, the MAC addresses may change during
well-defined renumbering events. At the moment the MAC
address is changed on an 802.11-OCB interface, all the
Interface Identifiers of IPv6 addresses assigned to that
interface <span class="bcp14">MUST</span> change.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
<p id="section-5.2-2">
Implementations should use a policy dictating when the MAC address is changed on the 802.11-OCB interface.
For more information on the motivation of this policy, please refer to
the privacy discussion in <a href="#introduced-by-OCB" class="xref">Appendix B</a>.<a href="#section-5.2-2" class="pilcrow">¶</a></p>
<p id="section-5.2-3">
A 'randomized' MAC address has the following
characteristics:<a href="#section-5.2-3" class="pilcrow">¶</a></p>
<ul>
<li id="section-5.2-4.1">
The "Local/Global" bit is set to "locally administered".<a href="#section-5.2-4.1" class="pilcrow">¶</a>
</li>
<li id="section-5.2-4.2">
The "Unicast/Multicast" bit is set to "Unicast".<a href="#section-5.2-4.2" class="pilcrow">¶</a>
</li>
<li id="section-5.2-4.3">
The 46 remaining bits are set to a random value using a
random number generator that meets the requirements of
<span>[<a href="#RFC4086" class="xref">RFC4086</a>]</span>.<a href="#section-5.2-4.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5.2-5">
To meet the randomization requirements for the 46 remaining
bits, a hash function may be used. For example, the hash function
defined in <span>[<a href="#SHA256" class="xref">SHA256</a>]</span>
may be used with the input of a 256-bit local secret, the 'nominal'
MAC address of the interface, and a representation of the date and
time of the renumbering event.<a href="#section-5.2-5" class="pilcrow">¶</a></p>
<p id="section-5.2-6">
A randomized Interface ID has the same characteristics of a
randomized MAC address except for the length in bits.<a href="#section-5.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="pseudonym">
<section id="section-5.3">
<h3 id="name-pseudonymization-impact-on-">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-pseudonymization-impact-on-" class="section-name selfRef">Pseudonymization Impact on Confidentiality and Trust</a>
</h3>
<p id="section-5.3-1">
Vehicle and drivers privacy relies on pseudonymization mechanisms
such as the ones described in <a href="#mac-change" class="xref">Section 5.2</a>.
This pseudonymization means that upper-layer protocols and applications
<span class="bcp14">SHOULD NOT</span> rely on layer-2 or layer-3 addresses to assume that the other participant can be trusted.<a href="#section-5.3-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="IANA">
<section id="section-6">
<h2 id="name-iana-considerations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-6-1">
This document has no IANA actions.<a href="#section-6-1" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-7">
<h2 id="name-references">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-7.1">
<h3 id="name-normative-references">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="IEEE-802.11-2016">[IEEE-802.11-2016]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Information technology - Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications"</span>, <span class="seriesInfo">IEEE Standard 802.11-2016</span>, <time datetime="2016-12">December 2016</time>, <span><<a href="https://standards.ieee.org/findstds/standard/802.11-2016.html">https://standards.ieee.org/findstds/standard/802.11-2016.html</a>></span>. </dd>
<dt id="RFC1042">[RFC1042]</dt>
<dd>
<span class="refAuthor">Postel, J.</span><span class="refAuthor"> and J. Reynolds</span>, <span class="refTitle">"Standard for the transmission of IP datagrams over IEEE 802 networks"</span>, <span class="seriesInfo">STD 43</span>, <span class="seriesInfo">RFC 1042</span>, <span class="seriesInfo">DOI 10.17487/RFC1042</span>, <time datetime="1988-02">February 1988</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1042">https://www.rfc-editor.org/info/rfc1042</a>></span>. </dd>
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dt id="RFC2464">[RFC2464]</dt>
<dd>
<span class="refAuthor">Crawford, M.</span>, <span class="refTitle">"Transmission of IPv6 Packets over Ethernet Networks"</span>, <span class="seriesInfo">RFC 2464</span>, <span class="seriesInfo">DOI 10.17487/RFC2464</span>, <time datetime="1998-12">December 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2464">https://www.rfc-editor.org/info/rfc2464</a>></span>. </dd>
<dt id="RFC4086">[RFC4086]</dt>
<dd>
<span class="refAuthor">Eastlake 3rd, D.</span><span class="refAuthor">, Schiller, J.</span><span class="refAuthor">, and S. Crocker</span>, <span class="refTitle">"Randomness Requirements for Security"</span>, <span class="seriesInfo">BCP 106</span>, <span class="seriesInfo">RFC 4086</span>, <span class="seriesInfo">DOI 10.17487/RFC4086</span>, <time datetime="2005-06">June 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4086">https://www.rfc-editor.org/info/rfc4086</a>></span>. </dd>
<dt id="RFC4191">[RFC4191]</dt>
<dd>
<span class="refAuthor">Draves, R.</span><span class="refAuthor"> and D. Thaler</span>, <span class="refTitle">"Default Router Preferences and More-Specific Routes"</span>, <span class="seriesInfo">RFC 4191</span>, <span class="seriesInfo">DOI 10.17487/RFC4191</span>, <time datetime="2005-11">November 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4191">https://www.rfc-editor.org/info/rfc4191</a>></span>. </dd>
<dt id="RFC4193">[RFC4193]</dt>
<dd>
<span class="refAuthor">Hinden, R.</span><span class="refAuthor"> and B. Haberman</span>, <span class="refTitle">"Unique Local IPv6 Unicast Addresses"</span>, <span class="seriesInfo">RFC 4193</span>, <span class="seriesInfo">DOI 10.17487/RFC4193</span>, <time datetime="2005-10">October 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4193">https://www.rfc-editor.org/info/rfc4193</a>></span>. </dd>
<dt id="RFC4291">[RFC4291]</dt>
<dd>
<span class="refAuthor">Hinden, R.</span><span class="refAuthor"> and S. Deering</span>, <span class="refTitle">"IP Version 6 Addressing Architecture"</span>, <span class="seriesInfo">RFC 4291</span>, <span class="seriesInfo">DOI 10.17487/RFC4291</span>, <time datetime="2006-02">February 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4291">https://www.rfc-editor.org/info/rfc4291</a>></span>. </dd>
<dt id="RFC4301">[RFC4301]</dt>
<dd>
<span class="refAuthor">Kent, S.</span><span class="refAuthor"> and K. Seo</span>, <span class="refTitle">"Security Architecture for the Internet Protocol"</span>, <span class="seriesInfo">RFC 4301</span>, <span class="seriesInfo">DOI 10.17487/RFC4301</span>, <time datetime="2005-12">December 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4301">https://www.rfc-editor.org/info/rfc4301</a>></span>. </dd>
<dt id="RFC4861">[RFC4861]</dt>
<dd>
<span class="refAuthor">Narten, T.</span><span class="refAuthor">, Nordmark, E.</span><span class="refAuthor">, Simpson, W.</span><span class="refAuthor">, and H. Soliman</span>, <span class="refTitle">"Neighbor Discovery for IP version 6 (IPv6)"</span>, <span class="seriesInfo">RFC 4861</span>, <span class="seriesInfo">DOI 10.17487/RFC4861</span>, <time datetime="2007-09">September 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4861">https://www.rfc-editor.org/info/rfc4861</a>></span>. </dd>
<dt id="RFC4862">[RFC4862]</dt>
<dd>
<span class="refAuthor">Thomson, S.</span><span class="refAuthor">, Narten, T.</span><span class="refAuthor">, and T. Jinmei</span>, <span class="refTitle">"IPv6 Stateless Address Autoconfiguration"</span>, <span class="seriesInfo">RFC 4862</span>, <span class="seriesInfo">DOI 10.17487/RFC4862</span>, <time datetime="2007-09">September 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4862">https://www.rfc-editor.org/info/rfc4862</a>></span>. </dd>
<dt id="RFC5415">[RFC5415]</dt>
<dd>
<span class="refAuthor">Calhoun, P., Ed.</span><span class="refAuthor">, Montemurro, M., Ed.</span><span class="refAuthor">, and D. Stanley, Ed.</span>, <span class="refTitle">"Control And Provisioning of Wireless Access Points (CAPWAP) Protocol Specification"</span>, <span class="seriesInfo">RFC 5415</span>, <span class="seriesInfo">DOI 10.17487/RFC5415</span>, <time datetime="2009-03">March 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5415">https://www.rfc-editor.org/info/rfc5415</a>></span>. </dd>
<dt id="RFC6059">[RFC6059]</dt>
<dd>
<span class="refAuthor">Krishnan, S.</span><span class="refAuthor"> and G. Daley</span>, <span class="refTitle">"Simple Procedures for Detecting Network Attachment in IPv6"</span>, <span class="seriesInfo">RFC 6059</span>, <span class="seriesInfo">DOI 10.17487/RFC6059</span>, <time datetime="2010-11">November 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6059">https://www.rfc-editor.org/info/rfc6059</a>></span>. </dd>
<dt id="RFC6275">[RFC6275]</dt>
<dd>
<span class="refAuthor">Perkins, C., Ed.</span><span class="refAuthor">, Johnson, D.</span><span class="refAuthor">, and J. Arkko</span>, <span class="refTitle">"Mobility Support in IPv6"</span>, <span class="seriesInfo">RFC 6275</span>, <span class="seriesInfo">DOI 10.17487/RFC6275</span>, <time datetime="2011-07">July 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6275">https://www.rfc-editor.org/info/rfc6275</a>></span>. </dd>
<dt id="RFC7042">[RFC7042]</dt>
<dd>
<span class="refAuthor">Eastlake 3rd, D.</span><span class="refAuthor"> and J. Abley</span>, <span class="refTitle">"IANA Considerations and IETF Protocol and Documentation Usage for IEEE 802 Parameters"</span>, <span class="seriesInfo">BCP 141</span>, <span class="seriesInfo">RFC 7042</span>, <span class="seriesInfo">DOI 10.17487/RFC7042</span>, <time datetime="2013-10">October 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7042">https://www.rfc-editor.org/info/rfc7042</a>></span>. </dd>
<dt id="RFC7136">[RFC7136]</dt>
<dd>
<span class="refAuthor">Carpenter, B.</span><span class="refAuthor"> and S. Jiang</span>, <span class="refTitle">"Significance of IPv6 Interface Identifiers"</span>, <span class="seriesInfo">RFC 7136</span>, <span class="seriesInfo">DOI 10.17487/RFC7136</span>, <time datetime="2014-02">February 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7136">https://www.rfc-editor.org/info/rfc7136</a>></span>. </dd>
<dt id="RFC7217">[RFC7217]</dt>
<dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"A Method for Generating Semantically Opaque Interface Identifiers with IPv6 Stateless Address Autoconfiguration (SLAAC)"</span>, <span class="seriesInfo">RFC 7217</span>, <span class="seriesInfo">DOI 10.17487/RFC7217</span>, <time datetime="2014-04">April 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7217">https://www.rfc-editor.org/info/rfc7217</a>></span>. </dd>
<dt id="RFC8064">[RFC8064]</dt>
<dd>
<span class="refAuthor">Gont, F.</span><span class="refAuthor">, Cooper, A.</span><span class="refAuthor">, Thaler, D.</span><span class="refAuthor">, and W. Liu</span>, <span class="refTitle">"Recommendation on Stable IPv6 Interface Identifiers"</span>, <span class="seriesInfo">RFC 8064</span>, <span class="seriesInfo">DOI 10.17487/RFC8064</span>, <time datetime="2017-02">February 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8064">https://www.rfc-editor.org/info/rfc8064</a>></span>. </dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dt id="RFC8200">[RFC8200]</dt>
<dd>
<span class="refAuthor">Deering, S.</span><span class="refAuthor"> and R. Hinden</span>, <span class="refTitle">"Internet Protocol, Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">STD 86</span>, <span class="seriesInfo">RFC 8200</span>, <span class="seriesInfo">DOI 10.17487/RFC8200</span>, <time datetime="2017-07">July 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8200">https://www.rfc-editor.org/info/rfc8200</a>></span>. </dd>
</dl>
</section>
<section id="section-7.2">
<h3 id="name-informative-references">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="CFR-90">[CFR-90]</dt>
<dd>
<span class="refAuthor">e-CFR</span>, <span class="refTitle">"Electronic Code of Federal Regulations"</span>, <span class="refContent">Title 47, Part 90 - PRIVATE LAND MOBILE RADIO SERVICES</span>, <span><<a href="https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.90&rgn=div5">https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.90&rgn=div5</a>></span>. </dd>
<dt id="CFR-90.7">[CFR-90.7]</dt>
<dd>
<span class="refAuthor">e-CFR</span>, <span class="refTitle">"Electronic Code of Federal Regulations"</span>, <span class="refContent">Title 47, CFR 90.7 - Definitions</span>, <span><<a href="https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.90&rgn=div5#se47.5.90_17">https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.90&rgn=div5#se47.5.90_17</a>></span>. </dd>
<dt id="CFR-95">[CFR-95]</dt>
<dd>
<span class="refAuthor">e-CFR</span>, <span class="refTitle">"Electronic Code of Federal Regulations"</span>, <span class="refContent">Title 47, CFR 95 - PERSONAL RADIO SERVICES</span>, <span><<a href="https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.95&rgn=div5">https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.95&rgn=div5</a>></span>. </dd>
<dt id="ETSI-sec-archi">[ETSI-sec-archi]</dt>
<dd>
<span class="refTitle">"Intelligent Transport Systems (ITS); Security; ITS communications security architecture and security management"</span>, <span class="seriesInfo">ETSI TS 102 940 V1.2.1</span>, <time datetime="2016-11">November 2016</time>, <span><<a href="http://www.etsi.org/deliver/etsi_ts/102900_102999/102940/01.02.01_60/ts_102940v010201p.pdf">http://www.etsi.org/deliver/etsi_ts/102900_102999/102940/01.02.01_60/ts_102940v010201p.pdf</a>></span>. </dd>
<dt id="IEEE-1609.2">[IEEE-1609.2]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Wireless Access in Vehicular Environments--Security Services for Applications and Management Messages"</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2016.7426684</span>, <span class="seriesInfo">IEEE Standard 1609.2-2016</span>, <time datetime="2016-03">March 2016</time>, <span><<a href="http://ieeexplore.ieee.org/document/7426684">http://ieeexplore.ieee.org/document/7426684</a>></span>. </dd>
<dt id="IEEE-1609.3">[IEEE-1609.3]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Wireless Access in Vehicular Environments (WAVE) -- Networking Services"</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2016.7458115</span>, <span class="seriesInfo">IEEE Standard 1609.3-2016</span>, <time datetime="2016-04">April 2016</time>, <span><<a href="http://ieeexplore.ieee.org/document/7458115">http://ieeexplore.ieee.org/document/7458115</a>></span>. </dd>
<dt id="IEEE-1609.4">[IEEE-1609.4]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Wireless Access in Vehicular Environments (WAVE) -- Multi-Channel Operation"</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2016.7435228</span>, <span class="seriesInfo">IEEE Standard 1609.4-2016</span>, <time datetime="2016-03">March 2016</time>, <span><<a href="http://ieeexplore.ieee.org/document/7435228">http://ieeexplore.ieee.org/document/7435228</a>></span>. </dd>
<dt id="IEEE-802.11-2007">[IEEE-802.11-2007]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications"</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2007.373646</span>, <span class="seriesInfo">IEEE Standard 802.11-2007</span>, <time datetime="2007-06">June 2007</time>, <span><<a href="https://ieeexplore.ieee.org/document/4248378">https://ieeexplore.ieee.org/document/4248378</a>></span>. </dd>
<dt id="IEEE-802.11-2012">[IEEE-802.11-2012]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications"</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2012.6178212</span>, <span class="seriesInfo">IEEE Standard 802.11-2012</span>, <time datetime="2012-03">March 2012</time>, <span><<a href="https://ieeexplore.ieee.org/document/6419735">https://ieeexplore.ieee.org/document/6419735</a>></span>. </dd>
<dt id="IEEE-802.11p-2010">[IEEE-802.11p-2010]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 6: Wireless Access in Vehicular Environments"</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2010.5514475</span>, <span class="seriesInfo">IEEE Standard 802.11p-2010</span>, <time datetime="2010-07">July 2010</time>, <span><<a href="https://standards.ieee.org/standard/802_11p-2010.html">https://standards.ieee.org/standard/802_11p-2010.html</a>></span>. </dd>
<dt id="IEEE-802.3-2012">[IEEE-802.3-2012]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Ethernet"</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2012.6419735</span>, <span class="seriesInfo">IEEE Standard 802.3-2012</span>, <time datetime="2012-12">December 2012</time>, <span><<a href="https://ieeexplore.ieee.org/document/6419735">https://ieeexplore.ieee.org/document/6419735</a>></span>. </dd>
<dt id="I-D.ietf-mboned-ieee802-mcast-problems">[IEEE802-MCAST]</dt>
<dd>
<span class="refAuthor">Perkins, C.</span><span class="refAuthor">, McBride, M.</span><span class="refAuthor">, Stanley, D.</span><span class="refAuthor">, Kumari, W.</span><span class="refAuthor">, and J. Zuniga</span>, <span class="refTitle">"Multicast Considerations over IEEE 802 Wireless Media"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-mboned-ieee802-mcast-problems-11</span>, <time datetime="2019-12-11">11 December 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-mboned-ieee802-mcast-problems-11">https://tools.ietf.org/html/draft-ietf-mboned-ieee802-mcast-problems-11</a>></span>. </dd>
<dt id="I-D.ietf-ipwave-vehicular-networking">[IPWAVE]</dt>
<dd>
<span class="refAuthor">Jeong, J.</span>, <span class="refTitle">"IP Wireless Access in Vehicular Environments (IPWAVE): Problem Statement and Use Cases"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-ipwave-vehicular-networking-12</span>, <time datetime="2019-10-03">3 October 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-ipwave-vehicular-networking-12">https://tools.ietf.org/html/draft-ietf-ipwave-vehicular-networking-12</a>></span>. </dd>
<dt id="RFC3753">[RFC3753]</dt>
<dd>
<span class="refAuthor">Manner, J., Ed.</span><span class="refAuthor"> and M. Kojo, Ed.</span>, <span class="refTitle">"Mobility Related Terminology"</span>, <span class="seriesInfo">RFC 3753</span>, <span class="seriesInfo">DOI 10.17487/RFC3753</span>, <time datetime="2004-06">June 2004</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3753">https://www.rfc-editor.org/info/rfc3753</a>></span>. </dd>
<dt id="RFC3963">[RFC3963]</dt>
<dd>
<span class="refAuthor">Devarapalli, V.</span><span class="refAuthor">, Wakikawa, R.</span><span class="refAuthor">, Petrescu, A.</span><span class="refAuthor">, and P. Thubert</span>, <span class="refTitle">"Network Mobility (NEMO) Basic Support Protocol"</span>, <span class="seriesInfo">RFC 3963</span>, <span class="seriesInfo">DOI 10.17487/RFC3963</span>, <time datetime="2005-01">January 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3963">https://www.rfc-editor.org/info/rfc3963</a>></span>. </dd>
<dt id="RFC3971">[RFC3971]</dt>
<dd>
<span class="refAuthor">Arkko, J., Ed.</span><span class="refAuthor">, Kempf, J.</span><span class="refAuthor">, Zill, B.</span><span class="refAuthor">, and P. Nikander</span>, <span class="refTitle">"SEcure Neighbor Discovery (SEND)"</span>, <span class="seriesInfo">RFC 3971</span>, <span class="seriesInfo">DOI 10.17487/RFC3971</span>, <time datetime="2005-03">March 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3971">https://www.rfc-editor.org/info/rfc3971</a>></span>. </dd>
<dt id="RFC3972">[RFC3972]</dt>
<dd>
<span class="refAuthor">Aura, T.</span>, <span class="refTitle">"Cryptographically Generated Addresses (CGA)"</span>, <span class="seriesInfo">RFC 3972</span>, <span class="seriesInfo">DOI 10.17487/RFC3972</span>, <time datetime="2005-03">March 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3972">https://www.rfc-editor.org/info/rfc3972</a>></span>. </dd>
<dt id="RFC5889">[RFC5889]</dt>
<dd>
<span class="refAuthor">Baccelli, E., Ed.</span><span class="refAuthor"> and M. Townsley, Ed.</span>, <span class="refTitle">"IP Addressing Model in Ad Hoc Networks"</span>, <span class="seriesInfo">RFC 5889</span>, <span class="seriesInfo">DOI 10.17487/RFC5889</span>, <time datetime="2010-09">September 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5889">https://www.rfc-editor.org/info/rfc5889</a>></span>. </dd>
<dt id="RFC6959">[RFC6959]</dt>
<dd>
<span class="refAuthor">McPherson, D.</span><span class="refAuthor">, Baker, F.</span><span class="refAuthor">, and J. Halpern</span>, <span class="refTitle">"Source Address Validation Improvement (SAVI) Threat Scope"</span>, <span class="seriesInfo">RFC 6959</span>, <span class="seriesInfo">DOI 10.17487/RFC6959</span>, <time datetime="2013-05">May 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6959">https://www.rfc-editor.org/info/rfc6959</a>></span>. </dd>
<dt id="RFC7721">[RFC7721]</dt>
<dd>
<span class="refAuthor">Cooper, A.</span><span class="refAuthor">, Gont, F.</span><span class="refAuthor">, and D. Thaler</span>, <span class="refTitle">"Security and Privacy Considerations for IPv6 Address Generation Mechanisms"</span>, <span class="seriesInfo">RFC 7721</span>, <span class="seriesInfo">DOI 10.17487/RFC7721</span>, <time datetime="2016-03">March 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7721">https://www.rfc-editor.org/info/rfc7721</a>></span>. </dd>
<dt id="RFC8065">[RFC8065]</dt>
<dd>
<span class="refAuthor">Thaler, D.</span>, <span class="refTitle">"Privacy Considerations for IPv6 Adaptation-Layer Mechanisms"</span>, <span class="seriesInfo">RFC 8065</span>, <span class="seriesInfo">DOI 10.17487/RFC8065</span>, <time datetime="2017-02">February 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8065">https://www.rfc-editor.org/info/rfc8065</a>></span>. </dd>
<dt id="RFC8505">[RFC8505]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span><span class="refAuthor">, Nordmark, E.</span><span class="refAuthor">, Chakrabarti, S.</span><span class="refAuthor">, and C. Perkins</span>, <span class="refTitle">"Registration Extensions for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery"</span>, <span class="seriesInfo">RFC 8505</span>, <span class="seriesInfo">DOI 10.17487/RFC8505</span>, <time datetime="2018-11">November 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8505">https://www.rfc-editor.org/info/rfc8505</a>></span>. </dd>
<dt id="SHA256">[SHA256]</dt>
<dd>
<span class="refAuthor">National Institute of Standards and Technology</span>, <span class="refTitle">"Secure Hash Standard (SHS)"</span>, <span class="seriesInfo">DOI 10.6028/NIST.FIPS.180-4</span>, <span class="seriesInfo">FIPS 180-4</span>, <time datetime="2015-08">August 2015</time>, <span><<a href="https://csrc.nist.gov/publications/detail/fips/180/4/final">https://csrc.nist.gov/publications/detail/fips/180/4/final</a>></span>. </dd>
</dl>
</section>
</section>
<div id="i802.11p">
<section id="section-appendix.a">
<h2 id="name-80211p">
<a href="#section-appendix.a" class="section-number selfRef">Appendix A. </a><a href="#name-80211p" class="section-name selfRef">802.11p</a>
</h2>
<p id="section-appendix.a-1">
The term "802.11p" is an earlier definition. The behavior of
"802.11p" networks is rolled in <span>[<a href="#IEEE-802.11-2016" class="xref">IEEE-802.11-2016</a>]</span>. In that document, the term "802.11p" disappears.
Instead, each 802.11p feature is conditioned by the IEEE
Management Information Base (MIB) attribute "OCBActivated"
<span>[<a href="#IEEE-802.11-2016" class="xref">IEEE-802.11-2016</a>]</span>. Whenever OCBActivated is
set to "true", the IEEE Std 802.11-OCB state is activated. For
example, an 802.11 STAtion operating outside the context of a
BSS has the OCBActivated flag set. Such a
station, when it has the flag set, uses a BSS identifier equal
to ff:ff:ff:ff:ff:ff.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="introduced-by-OCB">
<section id="section-appendix.b">
<h2 id="name-aspects-introduced-by-ocb-m">
<a href="#section-appendix.b" class="section-number selfRef">Appendix B. </a><a href="#name-aspects-introduced-by-ocb-m" class="section-name selfRef">Aspects Introduced by OCB Mode to 802.11</a>
</h2>
<p id="section-appendix.b-1">
In IEEE 802.11-OCB mode, all nodes in the wireless range
can directly communicate with each other without involving
authentication or association procedures. In OCB mode, the
manner in which channels are selected and used is simplified
compared to when in BSS mode. Contrary to BSS mode, at the link
layer, it is necessary to statically set the same channel
number (or frequency) on two stations that need to communicate
with each other (in BSS mode, this channel set operation is
performed automatically during 'scanning'). The manner in
which stations set their channel number in OCB mode is not
specified in this document. Stations STA1 and STA2 can
exchange IP packets only if they are set to the same channel.
At the IP layer, they then discover each other by using the IPv6
Neighbor Discovery protocol. The allocation of a particular
channel for a particular use is defined statically in
standards authored by ETSI in Europe, the FCC in the United States of America, and
similar organizations in South Korea, Japan, and other parts of
the world.<a href="#section-appendix.b-1" class="pilcrow">¶</a></p>
<p id="section-appendix.b-2">
Briefly, the IEEE 802.11-OCB mode has the following
properties:<a href="#section-appendix.b-2" class="pilcrow">¶</a></p>
<ul>
<li id="section-appendix.b-3.1">
The use by each node of a 'wildcard' BSS identifier (BSSID) (i.e., each bit
of the BSSID is set to 1).<a href="#section-appendix.b-3.1" class="pilcrow">¶</a>
</li>
<li id="section-appendix.b-3.2"> No IEEE 802.11 beacon frames are transmitted.<a href="#section-appendix.b-3.2" class="pilcrow">¶</a>
</li>
<li id="section-appendix.b-3.3"> No authentication is required in order to be able to communicate.<a href="#section-appendix.b-3.3" class="pilcrow">¶</a>
</li>
<li id="section-appendix.b-3.4"> No association is needed in order to be able to communicate.<a href="#section-appendix.b-3.4" class="pilcrow">¶</a>
</li>
<li id="section-appendix.b-3.5"> No encryption is provided in order to be able to communicate.<a href="#section-appendix.b-3.5" class="pilcrow">¶</a>
</li>
<li id="section-appendix.b-3.6"> Flag dot11OCBActivated is set to "true".<a href="#section-appendix.b-3.6" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-appendix.b-4">
All the nodes in the radio communication range (IP-OBU and IP-RSU)
receive all the messages transmitted (IP-OBU and IP-RSU) within the
radio communication range. The MAC CDMA function resolves any
eventual conflict(s).<a href="#section-appendix.b-4" class="pilcrow">¶</a></p>
<p id="section-appendix.b-5">
The message exchange diagram in <a href="#fig_mess-exch" class="xref">Figure 1</a>
illustrates a comparison between traditional 802.11 and 802.11
in OCB mode. The 'Data' messages can be IP packets such as
HTTP or others. Other 802.11 management and control frames
(non-IP) may be transmitted, as specified in the 802.11
standard. The names of these messages as
currently specified by the 802.11 standard are listed in <a href="#OCB-messages" class="xref">Appendix F</a>.<a href="#section-appendix.b-5" class="pilcrow">¶</a></p>
<span id="name-difference-between-messages"></span><div id="fig_mess-exch">
<figure id="figure-1">
<div class="artwork art-text alignCenter" id="section-appendix.b-6.1">
<pre>
STA AP STA1 STA2
| | | |
|<------ Beacon -------| |<------ Data -------->|
| | | |
|---- Probe Req. ----->| |<------ Data -------->|
|<--- Probe Res. ------| | |
| | |<------ Data -------->|
|---- Auth Req. ------>| | |
|<--- Auth Res. -------| |<------ Data -------->|
| | | |
|---- Asso Req. ------>| |<------ Data -------->|
|<--- Asso Res. -------| | |
| | |<------ Data -------->|
|<------ Data -------->| | |
|<------ Data -------->| |<------ Data -------->|
(i) 802.11 Infrastructure mode (ii) 802.11-OCB mode </pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-difference-between-messages" class="selfRef">Difference between Messages Exchanged on 802.11 (Left) and 802.11-OCB (Right)</a>
</figcaption></figure>
</div>
<p id="section-appendix.b-7">
The 802.11-OCB interface was specified in <span>[<a href="#IEEE-802.11p-2010" class="xref">IEEE-802.11p-2010</a>]</span>, Amendment 6: Wireless
Access in Vehicular Environments, as an amendment
to <span>[<a href="#IEEE-802.11-2007" class="xref">IEEE-802.11-2007</a>]</span>. Since then, this amendment
has been integrated into <span>[<a href="#IEEE-802.11-2012" class="xref">IEEE-802.11-2012</a>]</span> and <span>[<a href="#IEEE-802.11-2016" class="xref">IEEE-802.11-2016</a>]</span>.<a href="#section-appendix.b-7" class="pilcrow">¶</a></p>
<p id="section-appendix.b-8">
In <span>[<a href="#IEEE-802.11p-2010" class="xref">IEEE-802.11p-2010</a>]</span>, anything qualified specifically as
"OCBActivated" or "outside the context of a basic service"
that is set to be "true" actually refers to OCB aspects
introduced to 802.11.<a href="#section-appendix.b-8" class="pilcrow">¶</a></p>
<p id="section-appendix.b-9">
In order to delineate the aspects introduced by 802.11-OCB to
802.11, we refer to the earlier <span>[<a href="#IEEE-802.11p-2010" class="xref">IEEE-802.11p-2010</a>]</span>. The amendment is concerned with
vehicular communications, where the wireless link is similar
to that of Wireless LAN (using a PHY layer specified by
802.11a/b/g/n) but needs to cope with the high mobility
factor inherent in scenarios of communications between moving
vehicles and between vehicles and fixed infrastructure
deployed along roads. While 'p' is a letter identifying the
Amendment, just like 'a', 'b', 'g', and 'n' are, 'p' is concerned
more with MAC modifications and is slightly concerned with PHY
modifications; the others are mainly about PHY modifications.
It is possible in practice to combine a 'p' MAC with an 'a'
PHY by operating outside the context of a BSS with Orthogonal
Frequency Division
Multiplexing (OFDM) at
5.4 GHz and 5.9 GHz.<a href="#section-appendix.b-9" class="pilcrow">¶</a></p>
<p id="section-appendix.b-10">
The 802.11-OCB links are specified to be as compatible as
possible with the behavior of 802.11a/b/g/n and future
generation IEEE WLAN links. From the IP perspective, an
802.11-OCB MAC layer offers practically the same interface to
IP as 802.11a/b/g/n and 802.3. A packet sent by an IP-OBU
may be received by one or multiple IP-RSUs. The link-layer
resolution is performed by using the IPv6 Neighbor Discovery
protocol.<a href="#section-appendix.b-10" class="pilcrow">¶</a></p>
<p id="section-appendix.b-11">
To support this similarity statement (IPv6 is layered on top
of LLC on top of 802.11-OCB in the same way that IPv6 is
layered on top of LLC on top of 802.11a/b/g/n (for WLAN) or
on top of LLC on top of 802.3 (for Ethernet)), it is
useful to analyze the differences between the 802.11-OCB and
802.11 specifications. During this analysis, we note that
whereas 802.11-OCB lists relatively complex and numerous
changes to the MAC layer (and very few to the PHY layer),
there are only a few characteristics that may be important
for an implementation transmitting IPv6 packets on 802.11-OCB
links.<a href="#section-appendix.b-11" class="pilcrow">¶</a></p>
<p id="section-appendix.b-12">
The most important 802.11-OCB aspect that influences the IPv6
functioning is the OCB characteristic; an additional, less
direct influence is the maximum bandwidth afforded by the PHY
modulation/demodulation methods and channel access specified
by 802.11-OCB. The maximum bandwidth theoretically possible
in 802.11-OCB is 54 Mbit/s (when using, for example, the
following parameters: a 20 MHz channel; modulation of 64-QAM;
a coding rate R of 3/4). With regard to IP over 802.11-OCB, in
practice, a commonly observed figure is 12 Mbit/s; this bandwidth allows
the operation of a wide range of protocols relying on IPv6.<a href="#section-appendix.b-12" class="pilcrow">¶</a></p>
<ul>
<li id="section-appendix.b-13.1">
Operation outside the context of a BSS (OCB): The 802.11-OCB links
(previously 802.11p) are operated without a BSS. This means that IEEE 802.11
beacon, Association Request/Response, Authentication
Request/Response, and similar frames are not used. The used
identifier of BSS (BSSID) always has a hexadecimal value of
0xffffffffffff (48 '1' bits, represented as MAC address
ff:ff:ff:ff:ff:ff; otherwise, the 'wildcard' BSSID), as
opposed to an arbitrary BSSID value set by an administrator
(e.g., 'My-Home-AccessPoint'). The OCB operation -- namely,
the lack of beacon-based scanning and lack of
authentication -- should be taken into account when the
Mobile IPv6 protocol <span>[<a href="#RFC6275" class="xref">RFC6275</a>]</span> and the
protocols for IP layer security <span>[<a href="#RFC4301" class="xref">RFC4301</a>]</span>
are used. The way these protocols adapt to OCB is not
described in this document.<a href="#section-appendix.b-13.1" class="pilcrow">¶</a>
</li>
<li id="section-appendix.b-13.2">
Timing Advertisement: This is a new message defined in
802.11-OCB that does not exist in 802.11a/b/g/n. This
message is used by stations to inform other stations about
the value of time. It is similar to the time delivered
by a Global Navigation Satellite System (GNSS) (e.g., Galileo, GPS, etc.) or by a cellular
system. This message is optional for implementation.<a href="#section-appendix.b-13.2" class="pilcrow">¶</a>
</li>
<li id="section-appendix.b-13.3">
Frequency range: This is a characteristic of the PHY layer; it has
almost no impact on the interface between MAC and IP. However, it is worth considering that the
frequency range is regulated by a regional authority
(ARCEP, ECC/CEPT based on ENs from ETSI, FCC, etc.); as
part of the regulation process, specific applications are
associated with specific frequency ranges.
In the case of 802.11-OCB, the regulator associates a set of frequency
ranges or slots within a band to the use of applications of vehicular
communications in a band known as "5.9 GHz".
The 5.9 GHz band is different from the 2.4 GHz and 5 GHz
bands used by Wireless LAN. However, as with Wireless LAN, the
operation of 802.11-OCB in 5.9 GHz bands does not require a
license in the EU (in the US, the 5.9 GHz is a licensed band of
spectrum; for the fixed infrastructure, explicit FCC authorization
is required; for an on-board device, a 'licensed-by-rule' concept
applies, where rule certification conformity is required). Technical
conditions are different from those of the "2.4 GHz"
or "5 GHz" bands. The allowed power levels and, implicitly, the
maximum allowed distance between vehicles is 33 dBm for
802.11-OCB (in Europe) compared to 20 dBm for Wireless
LAN 802.11a/b/g/n; this leads to a maximum distance of
approximately 1 km compared to approximately 50 m.
Additionally, specific conditions related to congestion
avoidance, jamming avoidance, and radar detection are
imposed on the use of DSRC (in the US) and on the use of
frequencies for Intelligent Transportation Systems (in
the EU) compared to Wireless LAN (802.11a/b/g/n).<a href="#section-appendix.b-13.3" class="pilcrow">¶</a>
</li>
<li id="section-appendix.b-13.4">
'Half-rate' encoding: As the frequency range, this
parameter is related to PHY and thus does not have much
impact on the interface between the IP layer and the
MAC layer.<a href="#section-appendix.b-13.4" class="pilcrow">¶</a>
</li>
<li id="section-appendix.b-13.5">
In vehicular communications using 802.11-OCB links, there
are strong privacy requirements with respect to
addressing. While the 802.11-OCB standard does not
specify anything in particular with respect to MAC
addresses, in these settings, there is a strong need
for a dynamic change of these addresses (as opposed to the
non-vehicular settings -- real wall protection -- where
fixed MAC addresses do not currently pose privacy
risks). This is further described in <a href="#Security" class="xref">Section 5</a>. A relevant function is described in
<span>[<a href="#IEEE-1609.3" class="xref">IEEE-1609.3</a>]</span>
and <span>[<a href="#IEEE-1609.4" class="xref">IEEE-1609.4</a>]</span>.<a href="#section-appendix.b-13.5" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="software-changes">
<section id="section-appendix.c">
<h2 id="name-changes-needed-on-an-80211a">
<a href="#section-appendix.c" class="section-number selfRef">Appendix C. </a><a href="#name-changes-needed-on-an-80211a" class="section-name selfRef">Changes Needed on an 802.11a Software Driver to Become an 802.11-OCB Driver</a>
</h2>
<p id="section-appendix.c-1">
The 802.11p amendment modifies both the 802.11 stack's
physical and MAC layers, but all the induced modifications
can be quite easily obtained by modifying an existing
802.11a ad hoc stack.<a href="#section-appendix.c-1" class="pilcrow">¶</a></p>
<p id="section-appendix.c-2">
The conditions for 802.11a hardware to be compliant with 802.11-OCB are as
follows:<a href="#section-appendix.c-2" class="pilcrow">¶</a></p>
<ul>
<li id="section-appendix.c-3.1">
The PHY entity shall be an OFDM system. It must support the frequency
bands on which the regulator recommends the use of ITS
communications -- for example, using an IEEE 802.11-OCB layer of
5875 MHz to 5925 MHz in France.<a href="#section-appendix.c-3.1" class="pilcrow">¶</a>
</li>
<li id="section-appendix.c-3.2">
The OFDM system must provide a "half-clocked" operation
using 10 MHz channel spacings.<a href="#section-appendix.c-3.2" class="pilcrow">¶</a>
</li>
<li id="section-appendix.c-3.3">
The chip transmit spectrum mask must be compliant with the
"Transmit spectrum mask" from the IEEE 802.11p amendment
(but experimental environments do not require compliance).<a href="#section-appendix.c-3.3" class="pilcrow">¶</a>
</li>
<li id="section-appendix.c-3.4">
The chip should be able to transmit up to 44.8 dBm when
used in the United States and up to
33 dBm in Europe; other regional conditions apply.<a href="#section-appendix.c-3.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-appendix.c-4">
Changes needed on the network stack in OCB mode are as follows:<a href="#section-appendix.c-4" class="pilcrow">¶</a></p>
<ul>
<li id="section-appendix.c-5.1">
<p id="section-appendix.c-5.1.1">
Physical layer:<a href="#section-appendix.c-5.1.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-appendix.c-5.1.2.1">
Orthogonal frequency-division multiple access
The chip must use the Orthogonal Frequency Division Multiple
Access (OFDMA) encoding mode.<a href="#section-appendix.c-5.1.2.1" class="pilcrow">¶</a>
</li>
<li id="section-appendix.c-5.1.2.2">
The chip must be set to half-mode rate mode (the
internal clock frequency is divided by two).<a href="#section-appendix.c-5.1.2.2" class="pilcrow">¶</a>
</li>
<li id="section-appendix.c-5.1.2.3">
The chip must use dedicated channels and should allow
the use of higher emission powers. This may require
modifications to the local computer file that
describes regulatory domains rules if used by the
kernel to enforce local specific restrictions. Such
modifications to the local computer file must respect
the location-specific regulatory rules.<a href="#section-appendix.c-5.1.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="section-appendix.c-5.2">
<p id="section-appendix.c-5.2.1">
MAC layer:<a href="#section-appendix.c-5.2.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-appendix.c-5.2.2.1">
All management frames (beacons, join, leave, and
others) emission and reception must be disabled,
except for frames of subtype Action and Timing
Advertisement (defined below).<a href="#section-appendix.c-5.2.2.1" class="pilcrow">¶</a>
</li>
<li id="section-appendix.c-5.2.2.2">
No encryption key or method must be used.<a href="#section-appendix.c-5.2.2.2" class="pilcrow">¶</a>
</li>
<li id="section-appendix.c-5.2.2.3">
Packet emission and reception must be performed as in
ad hoc mode using the wildcard BSSID
(ff:ff:ff:ff:ff:ff).<a href="#section-appendix.c-5.2.2.3" class="pilcrow">¶</a>
</li>
<li id="section-appendix.c-5.2.2.4">
The functions related to joining a BSS (Association
Request/Response) and authentication
(Authentication Request/Reply, Challenge) are not
called.<a href="#section-appendix.c-5.2.2.4" class="pilcrow">¶</a>
</li>
<li id="section-appendix.c-5.2.2.5">
The beacon interval is always set to 0 (zero).<a href="#section-appendix.c-5.2.2.5" class="pilcrow">¶</a>
</li>
<li id="section-appendix.c-5.2.2.6">
Timing Advertisement frames, defined in the
amendment, should be supported. The upper layer
should be able to trigger such frames emission and retrieve
information contained in the received Timing
Advertisements.<a href="#section-appendix.c-5.2.2.6" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</section>
</div>
<div id="epd">
<section id="section-appendix.d">
<h2 id="name-protocol-layering">
<a href="#section-appendix.d" class="section-number selfRef">Appendix D. </a><a href="#name-protocol-layering" class="section-name selfRef">Protocol Layering</a>
</h2>
<p id="section-appendix.d-1">
A more theoretical and detailed view of layer stacking and
interfaces between the IP layer and 802.11-OCB layers is
illustrated in <a href="#fig_epd" class="xref">Figure 2</a>. The IP layer
operates on top of EtherType Protocol Discrimination
(EPD). This discrimination layer is described in <span>[<a href="#IEEE-802.3-2012" class="xref">IEEE-802.3-2012</a>]</span>. The interface between IPv6 and EPD is the LLC_SAP
(Link Layer Control Service Access Point).<a href="#section-appendix.d-1" class="pilcrow">¶</a></p>
<span id="name-ethertype-protocol-discrimi"></span><div id="fig_epd">
<figure id="figure-2">
<div class="artwork art-text alignCenter" id="section-appendix.d-2.1">
<pre>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 |
+-+-+-+-+-+-{ }+-+-+-+-+-+-+-+
{ LLC_SAP } 802.11-OCB
+-+-+-+-+-+-{ }+-+-+-+-+-+-+-+ Boundary
| EPD | | |
| | MLME | |
+-+-+-{ MAC_SAP }+-+-+-| MLME_SAP |
| MAC Sublayer | | | 802.11-OCB
| and ch. coord. | | SME | Services
+-+-+-{ PHY_SAP }+-+-+-+-+-+-+-| |
| | PLME | |
| PHY Layer | PLME_SAP |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ </pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-ethertype-protocol-discrimi" class="selfRef">EtherType Protocol Discrimination</a>
</figcaption></figure>
</div>
</section>
</div>
<div id="design-considerations">
<section id="section-appendix.e">
<h2 id="name-design-considerations">
<a href="#section-appendix.e" class="section-number selfRef">Appendix E. </a><a href="#name-design-considerations" class="section-name selfRef">Design Considerations</a>
</h2>
<p id="section-appendix.e-1">
The networks defined by 802.11-OCB are in many ways similar to
other networks of the 802.11 family. In theory, the
transportation of IPv6 over 802.11-OCB could be very similar to
the operation of IPv6 over other networks of the 802.11
family. However, the high mobility, strong link asymmetry, and
very short connection makes the 802.11-OCB link significantly
different from other 802.11 networks. Also, automotive
applications have specific requirements for reliability,
security, and privacy, which further add to the particularity
of the 802.11-OCB link.<a href="#section-appendix.e-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="OCB-messages">
<section id="section-appendix.f">
<h2 id="name-ieee-80211-messages-transmi">
<a href="#section-appendix.f" class="section-number selfRef">Appendix F. </a><a href="#name-ieee-80211-messages-transmi" class="section-name selfRef">IEEE 802.11 Messages Transmitted in OCB Mode</a>
</h2>
<p id="section-appendix.f-1">
At the time of writing, this is the list of
IEEE 802.11 messages that may be transmitted in OCB mode,
i.e., when dot11OCBActivated is true in a STA:<a href="#section-appendix.f-1" class="pilcrow">¶</a></p>
<ul>
<li id="section-appendix.f-2.1">
The STA may send management frames of subtype Action and,
if the STA maintains a TSF Timer, subtype Timing
Advertisement.<a href="#section-appendix.f-2.1" class="pilcrow">¶</a>
</li>
<li id="section-appendix.f-2.2">
The STA may send control frames except those of subtype
PS-Poll, CF-End, and CF-End plus CFAck.<a href="#section-appendix.f-2.2" class="pilcrow">¶</a>
</li>
<li id="section-appendix.f-2.3">
The STA <span class="bcp14">MUST</span> send data frames of subtype QoS
Data.<a href="#section-appendix.f-2.3" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="example-packets">
<section id="section-appendix.g">
<h2 id="name-examples-of-packet-formats">
<a href="#section-appendix.g" class="section-number selfRef">Appendix G. </a><a href="#name-examples-of-packet-formats" class="section-name selfRef">Examples of Packet Formats</a>
</h2>
<p id="section-appendix.g-1">
This section describes an example of an IPv6 packet captured
over an IEEE 802.11-OCB link.<a href="#section-appendix.g-1" class="pilcrow">¶</a></p>
<p id="section-appendix.g-2">
By way of example, we show that there is no modification in the
headers when transmitted over 802.11-OCB networks -- they are
transmitted like any other 802.11 and Ethernet packets.<a href="#section-appendix.g-2" class="pilcrow">¶</a></p>
<p id="section-appendix.g-3">
We describe an experiment for capturing an IPv6 packet on an
802.11-OCB link. In the topology depicted in <a href="#topo" class="xref">Figure 3</a>, the packet is an IPv6 Router Advertisement.
This packet is emitted by a router on its 802.11-OCB
interface. The packet is captured on the host using a
network protocol analyzer (e.g., Wireshark). The capture is
performed in two different modes: direct mode and monitor
mode. The topology used during the capture is depicted below.<a href="#section-appendix.g-3" class="pilcrow">¶</a></p>
<p id="section-appendix.g-4">
The packet is captured on the host. The host is an IP-OBU
containing an 802.11 interface in Peripheral Component Interconnect
(PCI) Express format (an Industrial Technology Research Institute
(ITRI) product). The kernel runs the ath5k software driver with
modifications for OCB mode. The capture tool is Wireshark.
The file format for saving and analyzing is .pcap. The packet is
generated by the router, which is an IP-RSU (an ITRI
product).<a href="#section-appendix.g-4" class="pilcrow">¶</a></p>
<span id="name-topology-for-capturing-ip-p"></span><div id="topo">
<figure id="figure-3">
<div class="artwork art-text alignCenter" id="section-appendix.g-5.1">
<pre>
+--------+ +-------+
| | 802.11-OCB Link | |
---| Router |--------------------------------| Host |
| | | |
+--------+ +-------+ </pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-topology-for-capturing-ip-p" class="selfRef">Topology for Capturing IP Packets on 802.11-OCB</a>
</figcaption></figure>
</div>
<p id="section-appendix.g-6">
During several capture operations running from a few moments
to several hours, no messages relevant to the BSSID contexts
were captured (Association Request/Response, Authentication
Req/Resp, or beacon). This shows that the operation of
802.11-OCB is outside the context of a BSSID.<a href="#section-appendix.g-6" class="pilcrow">¶</a></p>
<p id="section-appendix.g-7">
Overall, the captured message is identical to a capture of
an IPv6 packet emitted on an 802.11b interface. The contents
are exactly the same.<a href="#section-appendix.g-7" class="pilcrow">¶</a></p>
<section id="section-g.1">
<h2 id="name-capture-in-monitor-mode">
<a href="#section-g.1" class="section-number selfRef">G.1. </a><a href="#name-capture-in-monitor-mode" class="section-name selfRef">Capture in Monitor Mode</a>
</h2>
<p id="section-g.1-1">
The IPv6 RA packet captured in monitor mode is illustrated
below. The Radiotap header provides more flexibility for
reporting the characteristics of frames. The Radiotap header
is prepended by this particular stack and operating system on
the host machine to the RA packet received from the network
(the Radiotap header is not present on the air). The
implementation-dependent Radiotap header is useful for
piggybacking PHY information from the chip's registers as data
in a packet that is understandable by userland applications using
socket interfaces (the PHY interface can be, for example,
power levels, data rate, or the ratio of signal to noise).<a href="#section-g.1-1" class="pilcrow">¶</a></p>
<p id="section-g.1-2">
The packet present on the air is formed by the IEEE 802.11 Data
header, Logical Link Control header, IPv6 Base header, and
ICMPv6 header.<a href="#section-g.1-2" class="pilcrow">¶</a></p>
<span id="name-radiotap-header-v0"></span><div id="figA">
<figure id="figure-4">
<div class="artwork art-text alignCenter" id="section-g.1-3.1">
<pre>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Header Revision| Header Pad | Header Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Present Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data Rate | Pad |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-radiotap-header-v0" class="selfRef">Radiotap Header v0</a>
</figcaption></figure>
</div>
<span id="name-ieee-80211-data-header"></span><div id="figB">
<figure id="figure-5">
<div class="artwork art-text alignCenter" id="section-g.1-4.1">
<pre>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type/Subtype and Frame Ctrl | Duration |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiver Address...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... Receiver Address | Transmitter Address...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... Transmitter Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BSS ID...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... BSS ID | Frag Number and Seq Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-ieee-80211-data-header" class="selfRef">IEEE 802.11 Data Header</a>
</figcaption></figure>
</div>
<span id="name-logical-link-control-header"></span><div id="figC">
<figure id="figure-6">
<div class="artwork art-text alignCenter" id="section-g.1-5.1">
<pre>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DSAP |I| SSAP |C| Control Field | Org. Code...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... Organizational Code | Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-6" class="selfRef">Figure 6</a>:
<a href="#name-logical-link-control-header" class="selfRef">Logical Link Control Header</a>
</figcaption></figure>
</div>
<span id="name-ipv6-base-header"></span><div id="figD">
<figure id="figure-7">
<div class="artwork art-text alignCenter" id="section-g.1-6.1">
<pre>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| Traffic Class | Flow Label |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Length | Next Header | Hop Limit |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Source Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Destination Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-7" class="selfRef">Figure 7</a>:
<a href="#name-ipv6-base-header" class="selfRef">IPv6 Base Header</a>
</figcaption></figure>
</div>
<span id="name-router-advertisement"></span><div id="figE">
<figure id="figure-8">
<div class="artwork art-text alignCenter" id="section-g.1-7.1">
<pre>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cur Hop Limit |M|O| Reserved | Router Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reachable Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Retrans Timer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+- </pre>
</div>
<figcaption><a href="#figure-8" class="selfRef">Figure 8</a>:
<a href="#name-router-advertisement" class="selfRef">Router Advertisement</a>
</figcaption></figure>
</div>
<p id="section-g.1-8">
The value of the Data Rate field in the Radiotap header is set
to 6 Mb/s. This indicates the rate at which this RA was
received.<a href="#section-g.1-8" class="pilcrow">¶</a></p>
<p id="section-g.1-9">
The value of the Transmitter Address in the IEEE 802.11 Data
header is set to a 48-bit value. The value of the destination
address is 33:33:00:00:00:1 (all-nodes multicast address).
The value of the BSS ID field is ff:ff:ff:ff:ff:ff, which is
recognized by the network protocol analyzer as being
"broadcast". The Fragment number and Sequence number fields
together are set to 0x90C6.<a href="#section-g.1-9" class="pilcrow">¶</a></p>
<p id="section-g.1-10">
The value of the Organization Code field in the
Logical Link Control header is set to 0x0, recognized as
"Encapsulated Ethernet". The value of the Type field is
0x86DD (hexadecimal 86DD; otherwise, #86DD), recognized
as "IPv6".<a href="#section-g.1-10" class="pilcrow">¶</a></p>
<p id="section-g.1-11">
A Router Advertisement is periodically sent by the router to
multicast group address ff02::1. It is ICMP packet type
134. The IPv6 Neighbor Discovery's Router Advertisement
message contains an 8-bit field reserved for single-bit flags,
as described in <span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span>.<a href="#section-g.1-11" class="pilcrow">¶</a></p>
<p id="section-g.1-12">
The IPv6 header contains the link-local address of the router
(source) configured via the EUI-64 algorithm, and the destination
address is set to ff02::1.<a href="#section-g.1-12" class="pilcrow">¶</a></p>
<p id="section-g.1-13">
The Ethernet Type field in the Logical Link Control header
is set to 0x86dd, which indicates that the frame transports
an IPv6 packet. In the IEEE 802.11 data, the destination
address is 33:33:00:00:00:01, which is the corresponding
multicast MAC address. The BSS ID is a broadcast address of
ff:ff:ff:ff:ff:ff. Due to the short link duration between
vehicles and the roadside infrastructure, there is no need in IEEE 802.11-OCB
to wait for the completion of association
and authentication procedures before exchanging data. IEEE
802.11-OCB enabled nodes use the wildcard BSSID (a value of
all 1s) and may start communicating as soon as they arrive
on the communication channel.<a href="#section-g.1-13" class="pilcrow">¶</a></p>
</section>
<section id="section-g.2">
<h2 id="name-capture-in-normal-mode">
<a href="#section-g.2" class="section-number selfRef">G.2. </a><a href="#name-capture-in-normal-mode" class="section-name selfRef">Capture in Normal Mode</a>
</h2>
<p id="section-g.2-1">
The same IPv6 Router Advertisement packet described above
(monitor mode) is captured on the host in normal mode and is
depicted below.<a href="#section-g.2-1" class="pilcrow">¶</a></p>
<span id="name-ethernet-ii-header"></span><div id="figF">
<figure id="figure-9">
<div class="artwork art-text alignCenter" id="section-g.2-2.1">
<pre>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
...Destination | Source...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
...Source |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-9" class="selfRef">Figure 9</a>:
<a href="#name-ethernet-ii-header" class="selfRef">Ethernet II Header</a>
</figcaption></figure>
</div>
<span id="name-ipv6-base-header-2"></span><div id="figG">
<figure id="figure-10">
<div class="artwork art-text alignCenter" id="section-g.2-3.1">
<pre>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| Traffic Class | Flow Label |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Length | Next Header | Hop Limit |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Source Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Destination Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-10" class="selfRef">Figure 10</a>:
<a href="#name-ipv6-base-header-2" class="selfRef">IPv6 Base Header</a>
</figcaption></figure>
</div>
<span id="name-router-advertisement-2"></span><div id="figH">
<figure id="figure-11">
<div class="artwork art-text alignCenter" id="section-g.2-4.1">
<pre>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cur Hop Limit |M|O| Reserved | Router Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reachable Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Retrans Timer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+- </pre>
</div>
<figcaption><a href="#figure-11" class="selfRef">Figure 11</a>:
<a href="#name-router-advertisement-2" class="selfRef">Router Advertisement</a>
</figcaption></figure>
</div>
<p id="section-g.2-5">
One notices that the Radiotap header, the IEEE 802.11 Data
header, and the Logical Link Control headers are not present.
On the other hand, a new header named the Ethernet II header is
present.<a href="#section-g.2-5" class="pilcrow">¶</a></p>
<p id="section-g.2-6">
The Destination and Source addresses in the Ethernet II header
contain the same values as the Receiver Address and
Transmitter Address fields present in the IEEE 802.11 Data header in
the monitor mode capture.<a href="#section-g.2-6" class="pilcrow">¶</a></p>
<p id="section-g.2-7">
The value of the Type field in the Ethernet II header is
0x86DD (recognized as "IPv6"); this value is the same as
the value of the Type field in the Logical Link Control header
in the monitor mode capture.<a href="#section-g.2-7" class="pilcrow">¶</a></p>
<p id="section-g.2-8">
The knowledgeable experimenter will no doubt notice the
similarity of this Ethernet II header with a capture in normal
mode on a pure Ethernet cable interface.<a href="#section-g.2-8" class="pilcrow">¶</a></p>
<p id="section-g.2-9">
A frame translation is inserted on top of a pure IEEE 802.11
MAC layer in order to adapt packets before delivering the
payload data to the applications. It adapts 802.11 LLC/MAC
headers to Ethernet II headers. Specifically, this
adaptation consists of the elimination of the Radiotap,
802.11, and LLC headers and the insertion of the Ethernet
II header. In this way, IPv6 runs straight over LLC over
the 802.11-OCB MAC layer; this is further confirmed by the
use of the unique Type 0x86DD.<a href="#section-g.2-9" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="extra-terminology">
<section id="section-appendix.h">
<h2 id="name-extra-terminology">
<a href="#section-appendix.h" class="section-number selfRef">Appendix H. </a><a href="#name-extra-terminology" class="section-name selfRef">Extra Terminology</a>
</h2>
<p id="section-appendix.h-1">
The following terms are defined outside the IETF. They are
used to define the main terms in the terminology section (<a href="#terminology" class="xref">Section 2</a>).<a href="#section-appendix.h-1" class="pilcrow">¶</a></p>
<dl class="dlNewline" id="section-appendix.h-2">
<dt id="section-appendix.h-2.1">DSRC (Dedicated Short Range Communication):</dt>
<dd id="section-appendix.h-2.2">The US Federal Communications Commission
(FCC) Dedicated Short Range Communication (DSRC) is defined in
the Code of Federal Regulations (CFR) 47, Parts 90 <span>[<a href="#CFR-90" class="xref">CFR-90</a>]</span> and 95 <span>[<a href="#CFR-95" class="xref">CFR-95</a>]</span>.
This Code is referenced in the definitions below. At the time
of the writing of this document, the last update of this
Code was dated December 6, 2019.<a href="#section-appendix.h-2.2" class="pilcrow">¶</a>
</dd>
<dt id="section-appendix.h-2.3">DSRCS (Dedicated Short-Range Communications Services):</dt>
<dd id="section-appendix.h-2.4">
Radio techniques are used to transfer data over short distances between
roadside and mobile units, between mobile units, and between portable and
mobile units to perform operations related to the improvement of traffic
flow, traffic safety, and other intelligent transportation service
applications in a variety of environments. DSRCS systems may also transmit status and
instructional messages related to the units involved. <span>[<a href="#CFR-90.7" class="xref">CFR-90.7</a>]</span><a href="#section-appendix.h-2.4" class="pilcrow">¶</a>
</dd>
<dt id="section-appendix.h-2.5">OBU (On-Board Unit):</dt>
<dd id="section-appendix.h-2.6">An
On-Board Unit is a DSRCS transceiver that is normally mounted
in or on a vehicle or may be a portable unit in some instances. An OBU can be operational while a vehicle or
person is either mobile or stationary. The OBUs receive and
contend for time to transmit on one or more radio frequency
(RF) channels. Except where specifically excluded, OBU
operation is permitted wherever vehicle operation or human
passage is permitted. The OBUs mounted in vehicles are
licensed by rule under part 95 of <span>[<a href="#CFR-95" class="xref">CFR-95</a>]</span> and
communicate with Roadside Units (RSUs) and other OBUs.
Portable OBUs are also licensed by rule under part 95 of <span>[<a href="#CFR-95" class="xref">CFR-95</a>]</span>. OBU operations in the Unlicensed National
Information Infrastructure (U-NII) Bands follow the rules in
those bands. <span>[<a href="#CFR-90.7" class="xref">CFR-90.7</a>]</span><a href="#section-appendix.h-2.6" class="pilcrow">¶</a>
</dd>
<dt id="section-appendix.h-2.7">RSU (Roadside Unit):</dt>
<dd id="section-appendix.h-2.8">A
Roadside Unit is a DSRC transceiver that is mounted along a
road or pedestrian passageway. An RSU may also be mounted on
a vehicle or may be hand carried, but it may only operate when the
vehicle or hand-carried unit is stationary. Perhaps
Furthermore, an RSU is restricted to the location where it is licensed
to operate. However, portable
or handheld RSUs are permitted to operate where they do not
interfere with a site-licensed operation. An RSU broadcasts
data to OBUs or exchanges data with OBUs in its communications
zone. An RSU also provides channel assignments and operating
instructions to OBUs in its communications zone when
required. <span>[<a href="#CFR-90.7" class="xref">CFR-90.7</a>]</span><a href="#section-appendix.h-2.8" class="pilcrow">¶</a>
</dd>
</dl>
</section>
</div>
<div id="nd-wireless">
<section id="section-appendix.i">
<h2 id="name-neighbor-discovery-nd-poten">
<a href="#section-appendix.i" class="section-number selfRef">Appendix I. </a><a href="#name-neighbor-discovery-nd-poten" class="section-name selfRef">Neighbor Discovery (ND) Potential Issues in Wireless Links</a>
</h2>
<p id="section-appendix.i-1">
IPv6 Neighbor Discovery (IPv6 ND) <span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span> <span>[<a href="#RFC4862" class="xref">RFC4862</a>]</span> was
designed for point-to-point and transit links, such as
Ethernet, with the expectation of cheap and reliable support
for multicast from the lower layer. <span><a href="https://www.rfc-editor.org/rfc/rfc4861#section-3.2" class="relref">Section 3.2</a> of [<a href="#RFC4861" class="xref">RFC4861</a>]</span> indicates that the operation on shared media and on
NBMA networks require additional
support, e.g., for AR and DAD, which depend on multicast. An
infrastructureless radio network such as OCB shares properties
with both shared media and NBMA networks and then adds its
own complexity, e.g., from movement and interference that
allow only transient and non-transitive reachability between
any set of peers.<a href="#section-appendix.i-1" class="pilcrow">¶</a></p>
<p id="section-appendix.i-2">
The uniqueness of an address within a scoped domain is a key
pillar of IPv6 and is the basis for unicast IP communication. <span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span> details the DAD method to prevent an address from
being duplicated. For a link-local address, the scope is the link,
whereas for a globally reachable address, the scope is much
larger. The underlying assumption for DAD to operate
correctly is that the node that owns an IPv6 address can reach
any other node within the scope at the time it claims its
address, which is done by sending a Neighbor Solicitation (NS) multicast message, and
can hear any future claim for that address by another party
within the scope for the duration of the address ownership.<a href="#section-appendix.i-2" class="pilcrow">¶</a></p>
<p id="section-appendix.i-3">
In the case of OCB, there is a potentially a need to define a scope that is
compatible with DAD. The scope cannot be the set of nodes that a transmitter
can reach at a particular time because that set varies all the time and
does not meet the DAD requirements for a link-local address that can be
used anytime and anywhere. The generic expectation of a reliable
multicast is not ensured, and the operation of DAD and AR
as specified by <span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span> cannot be
guaranteed. Moreover, multicast transmissions that rely on
broadcast are not only unreliable but are also often
detrimental to unicast traffic (see <span>[<a href="#I-D.ietf-mboned-ieee802-mcast-problems" class="xref">IEEE802-MCAST</a>]</span>).<a href="#section-appendix.i-3" class="pilcrow">¶</a></p>
<p id="section-appendix.i-4">
Early experience indicates that it should be possible to
exchange IPv6 packets over OCB while relying on IPv6 ND alone
for DAD and AR (Address Resolution) in good conditions. In the absence
of a correct DAD operation, a node that relies only on IPv6 ND
for AR and DAD over OCB should ensure that the addresses that
it uses are unique by means other than DAD. It must be noted
that deriving an IPv6 address from a globally unique MAC
address has this property but may yield privacy issues.<a href="#section-appendix.i-4" class="pilcrow">¶</a></p>
<p id="section-appendix.i-5"><span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> provides a more recent approach to IPv6 ND, in
particular DAD. <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> is designed to fit wireless and
otherwise constrained networks whereby multicast and/or
continuous access to the medium may not be guaranteed. <span>[<a href="#RFC8505" class="xref">RFC8505</a>], <a href="https://www.rfc-editor.org/rfc/rfc8505#section-5.6" class="relref">Section 5.6</a></span> ("Link-Local Addresses and Registration")
indicates that the scope of uniqueness for a link-local
address is restricted to a pair of nodes that uses it to
communicate and provides a method to assert the uniqueness
and resolve the link-layer address using a unicast exchange.<a href="#section-appendix.i-5" class="pilcrow">¶</a></p>
<p id="section-appendix.i-6"><span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> also enables a router (acting as a 6LR) to own a
prefix and act as a registrar (acting as a 6LBR) for addresses
within the associated subnet. A peer host (acting as a 6LN)
registers an address derived from that prefix and can use it
for the lifetime of the registration. The prefix is advertised
as not on-link, which means that the 6LN uses the 6LR to relay
its packets within the subnet, and participation to the subnet
is constrained to the time of reachability to the 6LR. Note
that an RSU that provides internet connectivity <span class="bcp14">MAY</span> announce a
default router preference <span>[<a href="#RFC4191" class="xref">RFC4191</a>]</span>, whereas a car that does
not provide that connectivity <span class="bcp14">MUST NOT</span> do so. This operation
presents similarities to that of an access point, but at
Layer 3. This is why <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> is well suited for wireless in
general.<a href="#section-appendix.i-6" class="pilcrow">¶</a></p>
<p id="section-appendix.i-7">
Support of <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> may be implemented on OCB. OCB nodes
that support <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> <span class="bcp14">SHOULD</span> support the 6LN operation in order
to act as a host and may support the 6LR and 6LBR operations
in order to act as a router and in particular to own a prefix
that can be used by hosts that are compliant with <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> for address
autoconfiguration and registration.<a href="#section-appendix.i-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Acknowledgements">
<section id="section-appendix.j">
<h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
</h2>
<p id="section-appendix.j-1">
The authors would like to thank <span class="contact-name">Alexandre Petrescu</span> for
initiating this work and for being the lead author up to draft version 43 of
this document.<a href="#section-appendix.j-1" class="pilcrow">¶</a></p>
<p id="section-appendix.j-2">
The authors would like to thank <span class="contact-name">Pascal Thubert</span> for reviewing,
proofreading, and suggesting modifications for this document.<a href="#section-appendix.j-2" class="pilcrow">¶</a></p>
<p id="section-appendix.j-3">
The authors would like to thank <span class="contact-name">Mohamed Boucadair</span> for
proofreading and suggesting modifications for this document.<a href="#section-appendix.j-3" class="pilcrow">¶</a></p>
<p id="section-appendix.j-4">
The authors would like to thank <span class="contact-name">Eric Vyncke</span> for
reviewing the suggesting modifications of this document.<a href="#section-appendix.j-4" class="pilcrow">¶</a></p>
<p id="section-appendix.j-5">
The authors would like to thank <span class="contact-name">Witold Klaudel</span>, <span class="contact-name">Ryuji Wakikawa</span>, <span class="contact-name">Emmanuel Baccelli</span>, <span class="contact-name">John Kenney</span>, <span class="contact-name">John Moring</span>,
<span class="contact-name">Francois Simon</span>, <span class="contact-name">Dan Romascanu</span>, <span class="contact-name">Konstantin Khait</span>, <span class="contact-name">Ralph Droms</span>,
<span class="contact-name">Richard 'Dick' Roy</span>, <span class="contact-name">Ray Hunter</span>, <span class="contact-name">Tom Kurihara</span>, <span class="contact-name">Michal Sojka</span>,
<span class="contact-name">Jan de Jongh</span>, <span class="contact-name">Suresh Krishnan</span>, <span class="contact-name">Dino Farinacci</span>, <span class="contact-name">Vincent Park</span>,
<span class="contact-name">Jaehoon Paul Jeong</span>, <span class="contact-name">Gloria Gwynne</span>, <span class="contact-name">Hans-Joachim Fischer</span>, <span class="contact-name">Russ Housley</span>, <span class="contact-name">Rex Buddenberg</span>, <span class="contact-name">Erik Nordmark</span>, <span class="contact-name">Bob Moskowitz</span>, <span class="contact-name">Andrew Dryden</span>, <span class="contact-name">Georg Mayer</span>, <span class="contact-name">Dorothy Stanley</span>, <span class="contact-name">Sandra Cespedes</span>, <span class="contact-name">Mariano Falcitelli</span>, <span class="contact-name">Sri Gundavelli</span>, <span class="contact-name">Abdussalam Baryun</span>, <span class="contact-name">Margaret Cullen</span>, <span class="contact-name">Erik Kline</span>, <span class="contact-name">Carlos Jesus Bernardos Cano</span>,
<span class="contact-name">Ronald in 't Velt</span>, <span class="contact-name">Katrin Sjoberg</span>, <span class="contact-name">Roland Bless</span>, <span class="contact-name">Tijink Jasja</span>, <span class="contact-name">Kevin Smith</span>,
<span class="contact-name">Brian Carpenter</span>, <span class="contact-name">Julian Reschke</span>, <span class="contact-name">Mikael Abrahamsson</span>, <span class="contact-name">Dirk von Hugo</span>, <span class="contact-name">Lorenzo Colitti</span>, <span class="contact-name">Pascal Thubert</span>, <span class="contact-name">Ole Troan</span>, <span class="contact-name">Jinmei Tatuya</span>, <span class="contact-name">Joel Halpern</span>, <span class="contact-name">Eric Gray</span>, and <span class="contact-name">William Whyte</span>. Their
valuable comments clarified particular issues and generally
helped to improve the document.<a href="#section-appendix.j-5" class="pilcrow">¶</a></p>
<p id="section-appendix.j-6"><span class="contact-name">Pierre Pfister</span>, <span class="contact-name">Rostislav Lisovy</span>, and others wrote 802.11-OCB
drivers for Linux.<a href="#section-appendix.j-6" class="pilcrow">¶</a></p>
<p id="section-appendix.j-7">
For the multicast discussion, the authors would like to thank
<span class="contact-name">Owen DeLong</span>, <span class="contact-name">Joe Touch</span>,
<span class="contact-name">Jen Linkova</span>, <span class="contact-name">Erik Kline</span>, <span class="contact-name">Brian Haberman</span>, and participants to discussions in network working
groups.<a href="#section-appendix.j-7" class="pilcrow">¶</a></p>
<p id="section-appendix.j-8">
The authors would like to thank the participants of the
Birds-of-a-Feather "Intelligent Transportation Systems"
meetings held at IETF in 2016.<a href="#section-appendix.j-8" class="pilcrow">¶</a></p>
<p id="section-appendix.j-9">
The human rights protocol considerations review was done by <span class="contact-name">Amelia Andersdotter</span>.<a href="#section-appendix.j-9" class="pilcrow">¶</a></p>
<p id="section-appendix.j-10">The work of <span class="contact-name">Jong-Hyouk Lee</span> was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1A4A1025632).<a href="#section-appendix.j-10" class="pilcrow">¶</a></p>
<p id="section-appendix.j-11">The work of <span class="contact-name">Jérôme Härri</span> was supported by EURECOM industrial members,
namely BMW Group, IABG, Monaco Telecom, Orange, SAP and Symantec. This RFC
reflects the view of the IPWAVE WG and does not necessarily reflect the
official policy or position of EURECOM industrial members.<a href="#section-appendix.j-11" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Contributors">
<section id="section-appendix.k">
<h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
</h2>
<p id="section-appendix.k-1"><span class="contact-name">Christian Huitema</span> and <span class="contact-name">Tony Li</span> contributed to this document.<a href="#section-appendix.k-1" class="pilcrow">¶</a></p>
<p id="section-appendix.k-2"><span class="contact-name">Romain Kuntz</span> contributed extensively regarding IPv6 handovers
between links running outside the context of a BSS (802.11-OCB
links).<a href="#section-appendix.k-2" class="pilcrow">¶</a></p>
<p id="section-appendix.k-3"><span class="contact-name">Tim Leinmueller</span> contributed the idea of the use of IPv6 over
802.11-OCB for the distribution of certificates.<a href="#section-appendix.k-3" class="pilcrow">¶</a></p>
<p id="section-appendix.k-4"><span class="contact-name">Marios Makassikis</span>, <span class="contact-name">Jose Santa Lozano</span>, <span class="contact-name">Albin Severinson</span>, and
<span class="contact-name">Alexey Voronov</span> provided significant feedback on the experience
of using IP messages over 802.11-OCB in initial trials.<a href="#section-appendix.k-4" class="pilcrow">¶</a></p>
<p id="section-appendix.k-5"><span class="contact-name">Michelle Wetterwald</span> contributed extensively to the MTU
discussion, offered the ETSI ITS perspective, and reviewed
other parts of the document.<a href="#section-appendix.k-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="section-appendix.l">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Nabil Benamar</span></div>
<div dir="auto" class="left"><span class="org">Moulay Ismail University of Meknes</span></div>
<div dir="auto" class="left"><span class="country-name">Morocco</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+212670832236" class="tel">+212670832236</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:n.benamar@est.umi.ac.ma" class="email">n.benamar@est.umi.ac.ma</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Jérôme Härri</span></div>
<div dir="auto" class="left"><span class="org">EURECOM</span></div>
<div dir="auto" class="left">
<span class="postal-code">06904</span> <span class="locality">Sophia-Antipolis</span>
</div>
<div dir="auto" class="left"><span class="country-name">France</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+33493008134" class="tel">+33493008134</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:Jerome.Haerri@eurecom.fr" class="email">Jerome.Haerri@eurecom.fr</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Jong-Hyouk Lee</span></div>
<div dir="auto" class="left"><span class="org">Sangmyung University</span></div>
<div dir="auto" class="left"><span class="street-address">31, Sangmyeongdae-gil, Dongnam-gu</span></div>
<div dir="auto" class="left"><span class="locality">
Cheonan
</span></div>
<div dir="auto" class="left"><span class="postal-code">31066</span></div>
<div dir="auto" class="left"><span class="country-name">Republic of Korea</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jonghyouk@smu.ac.kr" class="email">jonghyouk@smu.ac.kr</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Thierry ERNST</span></div>
<div dir="auto" class="left"><span class="org">YoGoKo</span></div>
<div dir="auto" class="left"><span class="street-address">1137A Avenue des Champs-Blancs</span></div>
<div dir="auto" class="left">
<span class="postal-code">35510</span> <span class="locality">CESON-SEVIGNE</span>
</div>
<div dir="auto" class="left"><span class="country-name">France</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:thierry.ernst@yogoko.fr" class="email">thierry.ernst@yogoko.fr</a>
</div>
</address>
</section>
</div>
<script>var toc = document.getElementById("toc");
var tocToggle = toc.querySelector("h2");
var tocNav = toc.querySelector("nav");
// mobile menu toggle
tocToggle.onclick = function(event) {
if (window.innerWidth < 1024) {
var tocNavDisplay = tocNav.currentStyle ? tocNav.currentStyle.display : getComputedStyle(tocNav, null).display;
if (tocNavDisplay == "none") {
tocNav.style.display = "block";
} else {
tocNav.style.display = "none";
}
}
}
// toc anchor scroll to anchor
tocNav.addEventListener("click", function (event) {
event.preventDefault();
if (event.target.nodeName == 'A') {
if (window.innerWidth < 1024) {
tocNav.style.display = "none";
}
var href = event.target.getAttribute("href");
var anchorId = href.substr(1);
var anchor = document.getElementById(anchorId);
anchor.scrollIntoView(true);
window.history.pushState("","",href);
}
});
// switch toc mode when window resized
window.onresize = function () {
if (window.innerWidth < 1024) {
tocNav.style.display = "none";
} else {
tocNav.style.display = "block";
}
}
</script>
</body>
</html>
|