1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8698: Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control Scheme for Real-Time Media</title>
<meta content="Xiaoqing Zhu" name="author">
<meta content="Rong Pan" name="author">
<meta content="Michael A. Ramalho" name="author">
<meta content="Sergio Mena" name="author">
<meta content="
This document describes Network-Assisted Dynamic Adaptation (NADA), a
novel congestion control scheme for interactive real-time media
applications such as video conferencing. In the proposed scheme, the
sender regulates its sending rate, based on either implicit or explicit
congestion signaling, in a unified approach. The scheme can benefit from
Explicit Congestion Notification (ECN) markings from network nodes. It
also maintains consistent sender behavior in the absence of such
markings by reacting to queuing delays and packet losses instead.
" name="description">
<meta content="xml2rfc 2.39.0" name="generator">
<meta content="Multimedia" name="keyword">
<meta content="Congestion Control" name="keyword">
<meta content="8698" name="rfc.number">
<link href="rfc8698.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Avoid wrapping of URLs in references */
@media screen {
.references a {
white-space: nowrap;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin: 0 0 0.25em 0;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/*
The margin-left: 0 on <dd> removes all distinction
between levels from nested <dl>s. Undo that.
*/
dl.olPercent > dd,
dd {
margin-left: revert;
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc8698" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-rmcat-nada-13" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8698</td>
<td class="center">NADA</td>
<td class="right">February 2020</td>
</tr></thead>
<tfoot><tr>
<td class="left">Zhu, et al.</td>
<td class="center">Experimental</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8698" class="eref">8698</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Experimental</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2020-02" class="published">February 2020</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">X. Zhu</div>
<div class="org">Cisco Systems</div>
</div>
<div class="author">
<div class="author-name">R. Pan</div>
<div class="org">Intel Corporation</div>
</div>
<div class="author">
<div class="author-name">M. Ramalho</div>
<div class="org">AcousticComms</div>
</div>
<div class="author">
<div class="author-name">S. Mena</div>
<div class="org">Cisco Systems</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8698</h1>
<h1 id="title">Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control Scheme for Real-Time Media</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This document describes Network-Assisted Dynamic Adaptation (NADA), a
novel congestion control scheme for interactive real-time media
applications such as video conferencing. In the proposed scheme, the
sender regulates its sending rate, based on either implicit or explicit
congestion signaling, in a unified approach. The scheme can benefit from
Explicit Congestion Notification (ECN) markings from network nodes. It
also maintains consistent sender behavior in the absence of such
markings by reacting to queuing delays and packet losses instead.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF community.
It has received public review and has been approved for publication
by the Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc8698">https://www.rfc-editor.org/info/rfc8698</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-terminology" class="xref">Terminology</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-system-overview" class="xref">System Overview</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-core-congestion-control-alg" class="xref">Core Congestion Control Algorithm</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-mathematical-notations" class="xref">Mathematical Notations</a><a href="#section-toc.1-1.4.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-receiver-side-algorithm" class="xref">Receiver-Side Algorithm</a><a href="#section-toc.1-1.4.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-sender-side-algorithm" class="xref">Sender-Side Algorithm</a><a href="#section-toc.1-1.4.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-practical-implementation-of" class="xref">Practical Implementation of NADA</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>. <a href="#name-receiver-side-operation" class="xref">Receiver-Side Operation</a><a href="#section-toc.1-1.5.2.1.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.5.2.1.2.1">
<p id="section-toc.1-1.5.2.1.2.1.1"><a href="#section-5.1.1" class="xref">5.1.1</a>. <a href="#name-estimation-of-one-way-delay" class="xref">Estimation of One-Way Delay and Queuing Delay</a><a href="#section-toc.1-1.5.2.1.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.1.2.2">
<p id="section-toc.1-1.5.2.1.2.2.1"><a href="#section-5.1.2" class="xref">5.1.2</a>. <a href="#name-estimation-of-packet-loss-m" class="xref">Estimation of Packet Loss/Marking Ratio</a><a href="#section-toc.1-1.5.2.1.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.1.2.3">
<p id="section-toc.1-1.5.2.1.2.3.1"><a href="#section-5.1.3" class="xref">5.1.3</a>. <a href="#name-estimation-of-receiving-rat" class="xref">Estimation of Receiving Rate</a><a href="#section-toc.1-1.5.2.1.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>. <a href="#name-sender-side-operation" class="xref">Sender-Side Operation</a><a href="#section-toc.1-1.5.2.2.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.5.2.2.2.1">
<p id="section-toc.1-1.5.2.2.2.1.1"><a href="#section-5.2.1" class="xref">5.2.1</a>. <a href="#name-rate-shaping-buffer" class="xref">Rate-Shaping Buffer</a><a href="#section-toc.1-1.5.2.2.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.2.2.2">
<p id="section-toc.1-1.5.2.2.2.2.1"><a href="#section-5.2.2" class="xref">5.2.2</a>. <a href="#name-adjusting-video-target-rate" class="xref">Adjusting Video Target Rate and Sending Rate</a><a href="#section-toc.1-1.5.2.2.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.3">
<p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>. <a href="#name-feedback-message-requiremen" class="xref">Feedback Message Requirements</a><a href="#section-toc.1-1.5.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-discussions-and-further-inv" class="xref">Discussions and Further Investigations</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-choice-of-delay-metrics" class="xref">Choice of Delay Metrics</a><a href="#section-toc.1-1.6.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-method-for-delay-loss-and-m" class="xref">Method for Delay, Loss, and Marking Ratio Estimation</a><a href="#section-toc.1-1.6.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6.2.3">
<p id="section-toc.1-1.6.2.3.1"><a href="#section-6.3" class="xref">6.3</a>. <a href="#name-impact-of-parameter-values" class="xref">Impact of Parameter Values</a><a href="#section-toc.1-1.6.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6.2.4">
<p id="section-toc.1-1.6.2.4.1"><a href="#section-6.4" class="xref">6.4</a>. <a href="#name-sender-based-vs-receiver-ba" class="xref">Sender-Based vs. Receiver-Based Calculation</a><a href="#section-toc.1-1.6.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6.2.5">
<p id="section-toc.1-1.6.2.5.1"><a href="#section-6.5" class="xref">6.5</a>. <a href="#name-incremental-deployment" class="xref">Incremental Deployment</a><a href="#section-toc.1-1.6.2.5.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-reference-implementations" class="xref">Reference Implementations</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-suggested-experiments" class="xref">Suggested Experiments</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>. <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.11.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.11.2.1">
<p id="section-toc.1-1.11.2.1.1"><a href="#section-11.1" class="xref">11.1</a>. <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.11.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.11.2.2">
<p id="section-toc.1-1.11.2.2.1"><a href="#section-11.2" class="xref">11.2</a>. <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.11.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-appendix.a" class="xref">Appendix A</a>. <a href="#name-network-node-operations" class="xref">Network Node Operations</a><a href="#section-toc.1-1.12.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.12.2.1">
<p id="section-toc.1-1.12.2.1.1"><a href="#section-a.1" class="xref">A.1</a>. <a href="#name-default-behavior-of-drop-ta" class="xref">Default Behavior of Drop-Tail Queues</a><a href="#section-toc.1-1.12.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.12.2.2">
<p id="section-toc.1-1.12.2.2.1"><a href="#section-a.2" class="xref">A.2</a>. <a href="#name-red-based-ecn-marking" class="xref">RED-Based ECN Marking</a><a href="#section-toc.1-1.12.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.12.2.3">
<p id="section-toc.1-1.12.2.3.1"><a href="#section-a.3" class="xref">A.3</a>. <a href="#name-random-early-marking-with-v" class="xref">Random Early Marking with Virtual Queues</a><a href="#section-toc.1-1.12.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a><a href="#section-toc.1-1.13.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#section-appendix.c" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a><a href="#section-toc.1-1.14.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.15">
<p id="section-toc.1-1.15.1"><a href="#section-appendix.d" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.15.1" class="pilcrow">¶</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="sec-intro">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">Interactive real-time media applications introduce a unique set of
challenges for congestion control. Unlike TCP, the mechanism used for
real-time media needs to adapt quickly to instantaneous bandwidth
changes, accommodate fluctuations in the output of video encoder rate
control, and cause low queuing delay over the network. An ideal scheme
should also make effective use of all types of congestion signals,
including packet loss, queuing delay, and explicit congestion
notification (ECN) <span>[<a href="#RFC3168" class="xref">RFC3168</a>]</span>
markings. The requirements for the congestion control algorithm are
outlined in <span>[<a href="#I-D.ietf-rmcat-cc-requirements" class="xref">RMCAT-CC</a>]</span>.
The requirements highlight that the desired congestion control scheme
should 1) avoid flow starvation and attain a reasonable fair share of
bandwidth when competing against other flows, 2) adapt quickly, and 3)
operate in a stable manner.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">This document describes an experimental congestion control scheme
called Network-Assisted Dynamic Adaptation (NADA). The design of NADA
benefits from explicit congestion control signals (e.g., ECN markings)
from the network, yet also operates when only implicit congestion
indicators (delay and/or loss) are available. Such a unified sender
behavior distinguishes NADA from other congestion control schemes for
real-time media. In addition, its core congestion control algorithm is
designed to guarantee stability for path round-trip times (RTTs) below
a prescribed bound (e.g., 250 ms with default parameter choices). It
further supports weighted bandwidth sharing among competing video flows
with different priorities. The signaling mechanism consists of standard
Real-time Transport Protocol (RTP) timestamp <span>[<a href="#RFC3550" class="xref">RFC3550</a>]</span> and Real-time
Transport Control Protocol (RTCP) feedback reports.
The definition of the desired RTCP feedback message is described in
detail in <span>[<a href="#I-D.ietf-avtcore-cc-feedback-message" class="xref">RTCP-FEEDBACK</a>]</span>
so as to support the successful operation of several congestion control
schemes for real-time interactive media.<a href="#section-1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-term">
<section id="section-2">
<h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h2>
<p id="section-2-1">
The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
"<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>",
"<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are
to be interpreted as described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span>
<span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when, they appear in all capitals,
as shown here.<a href="#section-2-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-system-overview">
<section id="section-3">
<h2 id="name-system-overview">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-system-overview" class="section-name selfRef">System Overview</a>
</h2>
<p id="section-3-1"><a href="#fig-system-overview" class="xref">Figure 1</a> shows the
end-to-end
system for real-time media transport that NADA operates in. Note that
there also exist network nodes along the reverse (potentially uncongested)
path that the RTCP feedback reports traverse. Those network nodes are not
shown in the figure for the sake of brevity.<a href="#section-3-1" class="pilcrow">¶</a></p>
<span id="name-system-overview-2"></span><div id="fig-system-overview">
<figure id="figure-1">
<div class="artwork art-text alignLeft" id="section-3-2.1">
<pre>
+---------+ r_vin +--------+ +--------+ +----------+
| Media |<--------| RTP | |Network | | RTP |
| Encoder |========>| Sender |=======>| Node |====>| Receiver |
+---------+ r_vout +--------+ r_send +--------+ +----------+
/|\ |
| |
+---------------------------------+
RTCP Feedback Report
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-system-overview-2" class="selfRef">System Overview</a>
</figcaption></figure>
</div>
<dl class="dlParallel" id="section-3-3">
<dt id="section-3-3.1">Media encoder with rate control capabilities:
</dt>
<dd id="section-3-3.2">Encodes raw media (audio and video) frames into a compressed bitstream
that is later packetized into RTP packets. As discussed in <span>[<a href="#RFC8593" class="xref">RFC8593</a>]</span>, the
actual output rate from the encoder r_vout may fluctuate around the target
r_vin. Furthermore, it is possible that the encoder can only react to bit rate
changes at rather coarse time intervals, e.g., once every 0.5 seconds.<a href="#section-3-3.2" class="pilcrow">¶</a>
</dd>
<dt id="section-3-3.3">RTP sender:
</dt>
<dd id="section-3-3.4">Responsible for calculating the NADA reference rate based on network
congestion indicators (delay, loss, or ECN marking reports from the receiver),
for updating the video encoder with a new target rate r_vin and for
regulating the actual sending rate r_send accordingly. The RTP sender also
generates a sending timestamp for each outgoing packet.<a href="#section-3-3.4" class="pilcrow">¶</a>
</dd>
<dt id="section-3-3.5">RTP receiver:
</dt>
<dd id="section-3-3.6">Responsible for measuring and estimating end-to-end delay (based on sender
timestamp), packet loss (based on RTP sequence number), ECN marking ratios
(based on <span>[<a href="#RFC6679" class="xref">RFC6679</a>]</span>), and receiving rate (r_recv) of the
flow. It calculates
the aggregated congestion signal (x_curr) that accounts for queuing delay, ECN
markings, and packet losses. The receiver also determines the mode for sender
rate adaptation (rmode) based on whether the flow has encountered any standing
non-zero congestion. The receiver sends periodic RTCP reports back to the
sender, containing values of x_curr, rmode, and r_recv.<a href="#section-3-3.6" class="pilcrow">¶</a>
</dd>
<dt id="section-3-3.7">Network node with several modes of operation:
</dt>
<dd id="section-3-3.8">The system can work with the default behavior of a simple drop-tail
queue. It can also benefit from advanced Active Queue Management (AQM)
features such as Proportional Integral Controller Enhanced <span><a href="#RFC8033" class="xref">(PIE)</a> [<a href="#RFC8033" class="xref">RFC8033</a>]</span>, Flow Queue Controlling Queue Delay <span><a href="#RFC8290" class="xref">(FQ-CoDel)</a> [<a href="#RFC8290" class="xref">RFC8290</a>]</span>, ECN
marking based on <span><a href="#RFC7567" class="xref">Random Early Detection (RED)</a> [<a href="#RFC7567" class="xref">RFC7567</a>]</span>,
and Pre-Congestion Notification (PCN) marking using a
token bucket algorithm <span>[<a href="#RFC6660" class="xref">RFC6660</a>]</span>. Note that network node
operation is out of scope for the design of NADA.<a href="#section-3-3.8" class="pilcrow">¶</a>
</dd>
</dl>
</section>
</div>
<div id="sec-algorithm">
<section id="section-4">
<h2 id="name-core-congestion-control-alg">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-core-congestion-control-alg" class="section-name selfRef">Core Congestion Control Algorithm</a>
</h2>
<p id="section-4-1">Like TCP-Friendly Rate Control (TFRC) <span>[<a href="#FLOYD-CCR00" class="xref">FLOYD-CCR00</a>]</span>
<span>[<a href="#RFC5348" class="xref">RFC5348</a>]</span>, NADA is a rate-based
congestion
control algorithm. In its simplest form, the sender reacts to the
collection of network congestion indicators in the form of an
aggregated congestion signal and operates in one of two modes:<a href="#section-4-1" class="pilcrow">¶</a></p>
<dl class="dlParallel" id="section-4-2">
<dt id="section-4-2.1">Accelerated ramp up:
</dt>
<dd id="section-4-2.2">When the bottleneck is deemed to be underutilized, the rate increases
multiplicatively with respect to the rate of previously successful
transmissions. The rate increase multiplier (gamma) is calculated based on
the observed round-trip time and target feedback interval, so as to limit
self-inflicted queuing delay.<a href="#section-4-2.2" class="pilcrow">¶</a>
</dd>
<dt id="section-4-2.3">Gradual rate update:
</dt>
<dd id="section-4-2.4">In the presence of a non-zero aggregate congestion signal, the sending
rate
is adjusted in reaction to both its value (x_curr) and its change in value
(x_diff).<a href="#section-4-2.4" class="pilcrow">¶</a>
</dd>
</dl>
<p id="section-4-3">This section introduces the list of mathematical notations and
describes the core congestion control algorithm at the sender and
receiver, respectively. Additional details on recommended practical
implementations are described in Sections <a href="#sec-receiver" class="xref">5.1</a>
and <a href="#sec-sender" class="xref">5.2</a>.<a href="#section-4-3" class="pilcrow">¶</a></p>
<div id="sec-notation">
<section id="section-4.1">
<h3 id="name-mathematical-notations">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-mathematical-notations" class="section-name selfRef">Mathematical Notations</a>
</h3>
<p id="section-4.1-1">This section summarizes the list of variables and parameters used
in the NADA algorithm. <a href="#tab-parameters" class="xref">Table 2</a> also includes the default values for choosing the
algorithm parameters to represent either a typical setting in
practical applications or a setting based on theoretical and
simulation studies. See <a href="#sec-discussion-c" class="xref">Section 6.3</a> for some of the discussions on the impact of
parameter values. Additional studies in real-world settings suggested
in <a href="#sec-experiments" class="xref">Section 8</a> could gather
further insight on how to choose and adapt these parameter values in
practical deployment.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<span id="name-list-of-variables"></span><div id="tab-variables">
<table class="left" id="table-1">
<caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-list-of-variables" class="selfRef">List of Variables</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Notation</th>
<th class="text-left" rowspan="1" colspan="1">Variable Name</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">t_curr</td>
<td class="text-left" rowspan="1" colspan="1">Current timestamp</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">t_last</td>
<td class="text-left" rowspan="1" colspan="1">Last time sending/receiving a feedback message</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">delta</td>
<td class="text-left" rowspan="1" colspan="1">Observed interval between current and previous
feedback reports: delta = t_curr-t_last</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">r_ref</td>
<td class="text-left" rowspan="1" colspan="1">Reference rate based on network congestion</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">r_send</td>
<td class="text-left" rowspan="1" colspan="1">Sending rate</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">r_recv</td>
<td class="text-left" rowspan="1" colspan="1">Receiving rate</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">r_vin</td>
<td class="text-left" rowspan="1" colspan="1">Target rate for video encoder</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">r_vout</td>
<td class="text-left" rowspan="1" colspan="1">Output rate from video encoder</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">d_base</td>
<td class="text-left" rowspan="1" colspan="1">Estimated baseline delay</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">d_fwd</td>
<td class="text-left" rowspan="1" colspan="1">Measured and filtered one-way delay</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">d_queue</td>
<td class="text-left" rowspan="1" colspan="1">Estimated queuing delay</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">d_tilde</td>
<td class="text-left" rowspan="1" colspan="1">Equivalent delay after non-linear warping</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">p_mark</td>
<td class="text-left" rowspan="1" colspan="1">Estimated packet ECN marking ratio</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">p_loss</td>
<td class="text-left" rowspan="1" colspan="1">Estimated packet loss ratio</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">x_curr</td>
<td class="text-left" rowspan="1" colspan="1">Aggregate congestion signal</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">x_prev</td>
<td class="text-left" rowspan="1" colspan="1">Previous value of aggregate congestion signal</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">x_diff</td>
<td class="text-left" rowspan="1" colspan="1">Change in aggregate congestion signal w.r.t. its
previous value: x_diff = x_curr - x_prev</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">rmode</td>
<td class="text-left" rowspan="1" colspan="1">Rate update mode: (0 = accelerated ramp up; 1 =
gradual update)</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">gamma</td>
<td class="text-left" rowspan="1" colspan="1">Rate increase multiplier in accelerated ramp-up
mode</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">loss_int</td>
<td class="text-left" rowspan="1" colspan="1">Measured average loss interval in packet count</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">loss_exp</td>
<td class="text-left" rowspan="1" colspan="1">Threshold value for setting the last observed packet
loss to expiration</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">rtt</td>
<td class="text-left" rowspan="1" colspan="1">Estimated round-trip time at sender</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">buffer_len</td>
<td class="text-left" rowspan="1" colspan="1">Rate-shaping buffer occupancy measured in bytes</td>
</tr>
</tbody>
</table>
</div>
<span id="name-list-of-algorithm-parameter"></span><div id="tab-parameters">
<table class="left" id="table-2">
<caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-list-of-algorithm-parameter" class="selfRef">List of Algorithm Parameters and Their Default Values</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Notation</th>
<th class="text-left" rowspan="1" colspan="1">Parameter Name</th>
<th class="text-left" rowspan="1" colspan="1">Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">PRIO</td>
<td class="text-left" rowspan="1" colspan="1">Weight of priority of the flow</td>
<td class="text-left" rowspan="1" colspan="1">1.0</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">RMIN</td>
<td class="text-left" rowspan="1" colspan="1">Minimum rate of application supported by media
encoder</td>
<td class="text-left" rowspan="1" colspan="1">150 Kbps</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">RMAX</td>
<td class="text-left" rowspan="1" colspan="1">Maximum rate of application supported by media
encoder</td>
<td class="text-left" rowspan="1" colspan="1">1.5 Mbps</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">XREF</td>
<td class="text-left" rowspan="1" colspan="1">Reference congestion level</td>
<td class="text-left" rowspan="1" colspan="1">10 ms</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">KAPPA</td>
<td class="text-left" rowspan="1" colspan="1">Scaling parameter for gradual rate update
calculation</td>
<td class="text-left" rowspan="1" colspan="1">0.5</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ETA</td>
<td class="text-left" rowspan="1" colspan="1">Scaling parameter for gradual rate update
calculation</td>
<td class="text-left" rowspan="1" colspan="1">2.0</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">TAU</td>
<td class="text-left" rowspan="1" colspan="1">Upper bound of RTT in gradual rate update
calculation</td>
<td class="text-left" rowspan="1" colspan="1">500 ms</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">DELTA</td>
<td class="text-left" rowspan="1" colspan="1">Target feedback interval</td>
<td class="text-left" rowspan="1" colspan="1">100 ms</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">LOGWIN</td>
<td class="text-left" rowspan="1" colspan="1">Observation window in time for calculating packet
summary statistics at receiver</td>
<td class="text-left" rowspan="1" colspan="1">500 ms</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">QEPS</td>
<td class="text-left" rowspan="1" colspan="1">Threshold for determining queuing delay buildup at
receiver</td>
<td class="text-left" rowspan="1" colspan="1">10 ms</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">DFILT</td>
<td class="text-left" rowspan="1" colspan="1">Bound on filtering delay</td>
<td class="text-left" rowspan="1" colspan="1">120 ms</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">GAMMA_MAX</td>
<td class="text-left" rowspan="1" colspan="1">Upper bound on rate increase ratio for accelerated ramp
up</td>
<td class="text-left" rowspan="1" colspan="1">0.5</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">QBOUND</td>
<td class="text-left" rowspan="1" colspan="1">Upper bound on self-inflicted queuing delay during ramp
up</td>
<td class="text-left" rowspan="1" colspan="1">50 ms</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">MULTILOSS</td>
<td class="text-left" rowspan="1" colspan="1">Multiplier for self-scaling the expiration threshold of
the last observed loss (loss_exp) based on measured average loss
interval (loss_int)</td>
<td class="text-left" rowspan="1" colspan="1">7.0</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">QTH</td>
<td class="text-left" rowspan="1" colspan="1">Delay threshold for invoking non-linear warping</td>
<td class="text-left" rowspan="1" colspan="1">50 ms</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">LAMBDA</td>
<td class="text-left" rowspan="1" colspan="1">Scaling parameter in the exponent of non-linear
warping</td>
<td class="text-left" rowspan="1" colspan="1">0.5</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">PLRREF</td>
<td class="text-left" rowspan="1" colspan="1">Reference packet loss ratio</td>
<td class="text-left" rowspan="1" colspan="1">0.01</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">PMRREF</td>
<td class="text-left" rowspan="1" colspan="1">Reference packet marking ratio</td>
<td class="text-left" rowspan="1" colspan="1">0.01</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">DLOSS</td>
<td class="text-left" rowspan="1" colspan="1">Reference delay penalty for loss when packet loss ratio
is at PLRREF</td>
<td class="text-left" rowspan="1" colspan="1">10 ms</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">DMARK</td>
<td class="text-left" rowspan="1" colspan="1">Reference delay penalty for ECN marking when packet
marking is at PMRREF</td>
<td class="text-left" rowspan="1" colspan="1">2 ms</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">FPS</td>
<td class="text-left" rowspan="1" colspan="1">Frame rate of incoming video</td>
<td class="text-left" rowspan="1" colspan="1">30</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">BETA_S</td>
<td class="text-left" rowspan="1" colspan="1">Scaling parameter for modulating outgoing sending
rate</td>
<td class="text-left" rowspan="1" colspan="1">0.1</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">BETA_V</td>
<td class="text-left" rowspan="1" colspan="1">Scaling parameter for modulating video encoder target
rate</td>
<td class="text-left" rowspan="1" colspan="1">0.1</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ALPHA</td>
<td class="text-left" rowspan="1" colspan="1">Smoothing factor in exponential smoothing of packet
loss and marking ratios</td>
<td class="text-left" rowspan="1" colspan="1">0.1</td>
</tr>
</tbody>
</table>
</div>
</section>
</div>
<div id="subsec-receiver-algorithm">
<section id="section-4.2">
<h3 id="name-receiver-side-algorithm">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-receiver-side-algorithm" class="section-name selfRef">Receiver-Side Algorithm</a>
</h3>
<p id="section-4.2-1">The receiver-side algorithm can be outlined as below:<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2-2.1">On initialization:<a href="#section-4.2-2.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.2">
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2-2.2.1.1">set d_base = +INFINITY<a href="#section-4.2-2.2.1.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.2.1.2">set p_loss = 0<a href="#section-4.2-2.2.1.2" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.2.1.3">set p_mark = 0<a href="#section-4.2-2.2.1.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.2.1.4">set r_recv = 0<a href="#section-4.2-2.2.1.4" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.2.1.5">set both t_last and t_curr as current time in milliseconds<a href="#section-4.2-2.2.1.5" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="ulEmpty" id="section-4.2-2.3">On receiving a media packet:<a href="#section-4.2-2.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4">
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2-2.4.1.1">obtain current timestamp t_curr from system clock<a href="#section-4.2-2.4.1.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.2">obtain from packet header sending time stamp t_sent<a href="#section-4.2-2.4.1.2" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.3">obtain one-way delay measurement: d_fwd = t_curr - t_sent<a href="#section-4.2-2.4.1.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.4">update baseline delay: d_base = min(d_base, d_fwd)<a href="#section-4.2-2.4.1.4" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.5">update queuing delay: d_queue = d_fwd - d_base<a href="#section-4.2-2.4.1.5" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.6">update packet loss ratio estimate p_loss<a href="#section-4.2-2.4.1.6" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.7">update packet marking ratio estimate p_mark<a href="#section-4.2-2.4.1.7" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.8">update measurement of receiving rate r_recv<a href="#section-4.2-2.4.1.8" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="ulEmpty" id="section-4.2-2.5">On time to send a new feedback report (t_curr - t_last > DELTA):<a href="#section-4.2-2.5" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.6">
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2-2.6.1.1">calculate non-linear warping of delay d_tilde if packet loss exists<a href="#section-4.2-2.6.1.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.6.1.2">calculate current aggregate congestion signal x_curr<a href="#section-4.2-2.6.1.2" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.6.1.3">determine mode of rate adaptation for sender: rmode<a href="#section-4.2-2.6.1.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.6.1.4">send feedback containing values of: rmode, x_curr, and r_recv<a href="#section-4.2-2.6.1.4" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.6.1.5">update t_last = t_curr<a href="#section-4.2-2.6.1.5" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-4.2-3">In order for a delay-based flow to hold its ground when competing
against loss-based flows (e.g., loss-based TCP), it is important
to distinguish between different levels of observed queuing delay.
For instance, over wired connections, a moderate queuing delay value
on the order of tens of milliseconds is likely self-inflicted or
induced by other delay-based flows, whereas a high queuing delay
value of several hundreds of milliseconds may indicate the presence
of a loss-based flow that does not refrain from increased delay.<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<p id="section-4.2-4"> If the last observed packet loss is within the expiration
window of loss_exp (measured in terms of packet counts), the
estimated queuing delay follows a non-linear warping:<a href="#section-4.2-4" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.2-5">
<pre>
/ d_queue, if d_queue < QTH
|
d_tilde = < (1)
| (d_queue-QTH)
\ QTH exp(-LAMBDA ---------------) , otherwise
QTH </pre><a href="#section-4.2-5" class="pilcrow">¶</a>
</div>
<p id="section-4.2-6">
In Equation (1), the queuing delay value is unchanged when it is below
the first threshold QTH; otherwise, it is scaled down following
a non-linear curve. This non-linear warping is inspired by
the delay-adaptive congestion window backoff policy in
<span>[<a href="#BUDZISZ-AIMD-CC" class="xref">BUDZISZ-AIMD-CC</a>]</span> so as to "gradually nudge"
the controller to operate based on loss-induced congestion
signals when competing against loss-based flows. The exact form
of the non-linear function has been simplified with respect to
<span>[<a href="#BUDZISZ-AIMD-CC" class="xref">BUDZISZ-AIMD-CC</a>]</span>. The value of the threshold
QTH should be carefully tuned for different operational environments
so as to avoid potential risks of prematurely discounting the congestion
signal level. Typically, a higher value of QTH is required in a
noisier environment (e.g., over wireless connections or where the
video stream encounters many time-varying background competing traffic)
so as to stay robust against occasional non-congestion-induced delay
spikes. Additional insights on how this value can be tuned or auto-tuned
should be gathered from carrying out experimental studies in different
real-world deployment scenarios.<a href="#section-4.2-6" class="pilcrow">¶</a></p>
<p id="section-4.2-7">The value of loss_exp is configured to self-scale with the average
packet loss interval loss_int with a multiplier MULTILOSS:<a href="#section-4.2-7" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.2-8">
<pre> loss_exp = MULTILOSS *
loss_int. </pre><a href="#section-4.2-8" class="pilcrow">¶</a>
</div>
<p id="section-4.2-9">Estimation of the average loss interval loss_int, in turn, follows
<span><a href="https://www.rfc-editor.org/rfc/rfc5348#section-5.4" class="relref">Section 5.4</a> of "TCP Friendly Rate Control
(TFRC): Protocol Specification" [<a href="#RFC5348" class="xref">RFC5348</a>]</span>.<a href="#section-4.2-9" class="pilcrow">¶</a></p>
<p id="section-4.2-10">In practice, it is recommended to linearly interpolate between the
warped (d_tilde) and non-warped (d_queue) values of the queuing delay
during the transitional period lasting for the duration of loss_int.<a href="#section-4.2-10" class="pilcrow">¶</a></p>
<p id="section-4.2-11">The aggregate congestion signal is:<a href="#section-4.2-11" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.2-12">
<pre>
/ p_mark \^2 / p_loss \^2
x_curr = d_tilde + DMARK*|--------| + DLOSS*|--------| (2)
\ PMRREF / \ PLRREF / </pre><a href="#section-4.2-12" class="pilcrow">¶</a>
</div>
<p id="section-4.2-13">Here, DMARK is prescribed a reference delay penalty associated with
ECN markings at the reference marking ratio of PMRREF; DLOSS is
prescribed a reference delay penalty associated with packet losses at
the reference packet loss ratio of PLRREF. The value of DLOSS and
DMARK does not depend on configurations at the network node. Since
ECN-enabled active queue management schemes typically mark a packet
before dropping it, the value of DLOSS <span class="bcp14">SHOULD</span> be higher
than that of DMARK. Furthermore, the values of DLOSS and DMARK need to
be set consistently across all NADA flows sharing the same bottleneck
link so that they can compete fairly.<a href="#section-4.2-13" class="pilcrow">¶</a></p>
<p id="section-4.2-14">In the absence of packet marking and losses, the value of x_curr
reduces to the observed queuing delay d_queue. In that case, the NADA
algorithm operates in the regime of delay-based adaptation.<a href="#section-4.2-14" class="pilcrow">¶</a></p>
<p id="section-4.2-15">Given observed per-packet delay and loss information, the receiver
is also in a good position to determine whether or not the network is
underutilized and then recommend the corresponding rate adaptation
mode for
the sender. The criteria for operating in accelerated ramp-up mode
are:<a href="#section-4.2-15" class="pilcrow">¶</a></p>
<ul>
<li id="section-4.2-16.1"> No recent packet losses within the observation window LOGWIN;
and<a href="#section-4.2-16.1" class="pilcrow">¶</a>
</li>
<li id="section-4.2-16.2"> No buildup of queuing delay: d_fwd-d_base < QEPS
for all previous delay samples within the observation window
LOGWIN.<a href="#section-4.2-16.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.2-17">Otherwise, the algorithm operates in graduate update mode.<a href="#section-4.2-17" class="pilcrow">¶</a></p>
</section>
</div>
<div id="subsec-sender-algorithm">
<section id="section-4.3">
<h3 id="name-sender-side-algorithm">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-sender-side-algorithm" class="section-name selfRef">Sender-Side Algorithm</a>
</h3>
<p id="section-4.3-1">The sender-side algorithm is outlined as follows:<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.3-2.1">On initialization:<a href="#section-4.3-2.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.2">
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.3-2.2.1.1">set r_ref = RMIN<a href="#section-4.3-2.2.1.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.2.1.2">set rtt = 0<a href="#section-4.3-2.2.1.2" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.2.1.3">set x_prev = 0<a href="#section-4.3-2.2.1.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.2.1.4">set t_last and t_curr as current system clock time<a href="#section-4.3-2.2.1.4" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="ulEmpty" id="section-4.3-2.3">On receiving feedback report:<a href="#section-4.3-2.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4">
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.3-2.4.1.1">obtain current timestamp from system clock: t_curr<a href="#section-4.3-2.4.1.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.2">obtain values of rmode, x_curr, and r_recv from feedback report<a href="#section-4.3-2.4.1.2" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.3">update estimation of rtt<a href="#section-4.3-2.4.1.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.4">measure feedback interval: delta = t_curr - t_last<a href="#section-4.3-2.4.1.4" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.5">if rmode == 0:<a href="#section-4.3-2.4.1.5" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.6">
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.3-2.4.1.6.1.1">update r_ref following accelerated ramp-up rules<a href="#section-4.3-2.4.1.6.1.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.7">else:<a href="#section-4.3-2.4.1.7" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.8">
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.3-2.4.1.8.1.1">update r_ref following gradual update rules<a href="#section-4.3-2.4.1.8.1.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.9">clip rate r_ref within the range of minimum rate (RMIN) and maximum rate
(RMAX).<a href="#section-4.3-2.4.1.9" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.10">set x_prev = x_curr<a href="#section-4.3-2.4.1.10" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.11">set t_last = t_curr<a href="#section-4.3-2.4.1.11" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-4.3-3">In accelerated ramp-up mode, the rate r_ref is updated as
follows:<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.3-4">
<pre>
QBOUND
gamma = min(GAMMA_MAX, ------------------) (3)
rtt+DELTA+DFILT
r_ref = max(r_ref, (1+gamma) r_recv)
(4)
</pre><a href="#section-4.3-4" class="pilcrow">¶</a>
</div>
<p id="section-4.3-5">The rate increase multiplier gamma is calculated as a function of
the upper bound of self-inflicted queuing delay (QBOUND), round-trip
time (rtt), and target feedback interval (DELTA); it is bound on the
filtering delay for calculating d_queue (DFILT). It has a maximum
value of GAMMA_MAX. The rationale behind Equations (3)-(4) is that the
longer it takes for the sender to observe self-inflicted queuing delay
buildup, the more conservative the sender should be in increasing its
rate and, hence, the smaller the rate increase multiplier.<a href="#section-4.3-5" class="pilcrow">¶</a></p>
<p id="section-4.3-6">In gradual update mode, the rate r_ref is updated as:<a href="#section-4.3-6" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.3-7">
<pre>
x_offset = x_curr - PRIO*XREF*RMAX/r_ref (5)
x_diff = x_curr - x_prev (6)
delta x_offset
r_ref = r_ref - KAPPA*-------*------------*r_ref
TAU TAU
x_diff
- KAPPA*ETA*---------*r_ref (7)
TAU
</pre><a href="#section-4.3-7" class="pilcrow">¶</a>
</div>
<p id="section-4.3-8">The rate changes in proportion to the previous rate decision.
It is affected by two terms: the offset of the aggregate congestion
signal from its value at equilibrium (x_offset) and its change
(x_diff). The calculation of x_offset depends on the maximum rate
of the flow (RMAX), its weight of priority (PRIO), as well
as a reference congestion signal (XREF). The value of
XREF is chosen so that the maximum rate of RMAX can be achieved
when the observed congestion signal level is below PRIO*XREF.<a href="#section-4.3-8" class="pilcrow">¶</a></p>
<p id="section-4.3-9">
At equilibrium, the aggregated congestion signal stabilizes at
x_curr = PRIO*XREF*RMAX/r_ref. This ensures that when multiple
flows share the same bottleneck and observe a common value of
x_curr, their rates at equilibrium will be proportional to their
respective priority levels (PRIO) and the range between minimum
and maximum rate. Values of the minimum rate (RMIN) and
maximum rate (RMAX) will be provided by the media codec,
for instance, as outlined by <span>[<a href="#I-D.ietf-rmcat-cc-codec-interactions" class="xref">RMCAT-CC-RTP</a>]</span>. In the absence of such information, the NADA sender will
choose a default value of 0 for RMIN and 3 Mbps for RMAX.<a href="#section-4.3-9" class="pilcrow">¶</a></p>
<p id="section-4.3-10"> As mentioned in the sender-side algorithm, the final rate
is always clipped within the dynamic range specified by the
application:<a href="#section-4.3-10" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.3-11">
<pre>
r_ref = min(r_ref, RMAX) (8)
r_ref = max(r_ref, RMIN) (9)
</pre><a href="#section-4.3-11" class="pilcrow">¶</a>
</div>
<p id="section-4.3-12">The above operations ignore many practical issues such as clock
synchronization between sender and receiver, the filtering of noise in
delay measurements, and base delay expiration. These will be addressed
in <a href="#sec-practical-nada" class="xref">Section 5</a>.<a href="#section-4.3-12" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-practical-nada">
<section id="section-5">
<h2 id="name-practical-implementation-of">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-practical-implementation-of" class="section-name selfRef">Practical Implementation of NADA</a>
</h2>
<div id="sec-receiver">
<section id="section-5.1">
<h3 id="name-receiver-side-operation">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-receiver-side-operation" class="section-name selfRef">Receiver-Side Operation</a>
</h3>
<p id="section-5.1-1">The receiver continuously monitors end-to-end per-packet
statistics in terms of delay, loss, and/or ECN marking ratios.
It then aggregates all forms of congestion indicators into the
form of an equivalent delay and periodically reports this back
to the sender. In addition, the receiver tracks the receiving
rate of the flow and includes that in the feedback message.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<div id="sec-receiver-a">
<section id="section-5.1.1">
<h4 id="name-estimation-of-one-way-delay">
<a href="#section-5.1.1" class="section-number selfRef">5.1.1. </a><a href="#name-estimation-of-one-way-delay" class="section-name selfRef">Estimation of One-Way Delay and Queuing Delay</a>
</h4>
<p id="section-5.1.1-1">
The delay estimation process in NADA follows an approach similar to that of
earlier
delay-based congestion control schemes, such as Low Extra Delay Background
Transport (LEDBAT) <span>[<a href="#RFC6817" class="xref">RFC6817</a>]</span>. For
experimental implementations, instead of relying on RTP timestamps and the
transmission time offset RTP header extension <span>[<a href="#RFC5450" class="xref">RFC5450</a>]</span>, the NADA sender can generate its own timestamp based on
the local system clock and embed that information in the transport packet
header. The NADA receiver estimates the forward delay as having a constant
base delay component plus a time-varying queuing delay component. The base
delay is estimated as the minimum value of one-way delay observed over a
relatively long period (e.g., tens of minutes), whereas the individual
queuing delay value is taken to be the difference between one-way delay and
base delay. By re-estimating the base delay periodically, one can avoid the
potential issue of base delay expiration, whereby an earlier measured base
delay value is no longer valid due to underlying route changes or a cumulative
timing difference introduced by the clock-rate skew between sender and
receiver. All delay estimations are based on sender timestamps with a
recommended granularity of 100 microseconds or finer.<a href="#section-5.1.1-1" class="pilcrow">¶</a></p>
<p id="section-5.1.1-2">
The individual sample values of queuing delay should be further
filtered against various non-congestion-induced noise, such as
spikes due to a processing "hiccup" at the network nodes. Therefore,
in addition to calculating the value of queuing delay using
d_queue = d_fwd - d_base, as expressed in <a href="#sec-receiver" class="xref">Section 5.1</a>,
the current implementation further employs a minimum filter with
a window size of 15 samples over per-packet queuing delay values.<a href="#section-5.1.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-receiver-b">
<section id="section-5.1.2">
<h4 id="name-estimation-of-packet-loss-m">
<a href="#section-5.1.2" class="section-number selfRef">5.1.2. </a><a href="#name-estimation-of-packet-loss-m" class="section-name selfRef">Estimation of Packet Loss/Marking Ratio</a>
</h4>
<p id="section-5.1.2-1">The receiver detects packet losses via gaps in the
RTP sequence numbers of received packets. For interactive
real-time media applications with stringent latency
constraints (e.g., video conferencing), the receiver avoids
the packet reordering delay by treating out-of-order packets
as losses. The instantaneous packet loss ratio p_inst is estimated
as the ratio between the number of missing packets over
the number of total transmitted packets within the
recent observation window LOGWIN. The packet loss ratio
p_loss is obtained after exponential smoothing:<a href="#section-5.1.2-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-5.1.2-2">
<pre>
p_loss = ALPHA*p_inst + (1-ALPHA)*p_loss (10)
</pre><a href="#section-5.1.2-2" class="pilcrow">¶</a>
</div>
<p id="section-5.1.2-3">The filtered result is reported back to the sender as
the observed packet loss ratio p_loss.<a href="#section-5.1.2-3" class="pilcrow">¶</a></p>
<p id="section-5.1.2-4">
The estimation of the packet marking ratio p_mark follows the same procedure
as above. It is assumed that ECN marking information at the IP header
can be passed to the receiving endpoint, e.g., by following the mechanism
described in <span>[<a href="#RFC6679" class="xref">RFC6679</a>]</span>.<a href="#section-5.1.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-receiver-c">
<section id="section-5.1.3">
<h4 id="name-estimation-of-receiving-rat">
<a href="#section-5.1.3" class="section-number selfRef">5.1.3. </a><a href="#name-estimation-of-receiving-rat" class="section-name selfRef">Estimation of Receiving Rate</a>
</h4>
<p id="section-5.1.3-1">
It is fairly straightforward to estimate the receiving rate r_recv. NADA
maintains a recent observation window with a time span of LOGWIN and simply
divides the total size of packets arriving during that window over the time
span. The receiving rate (r_recv) can be either calculated at the sender side
based on the per-packet feedback from the receiver or included as part of the
feedback report.<a href="#section-5.1.3-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-sender">
<section id="section-5.2">
<h3 id="name-sender-side-operation">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-sender-side-operation" class="section-name selfRef">Sender-Side Operation</a>
</h3>
<p id="section-5.2-1">
<a href="#fig-nada-sender" class="xref">Figure 2</a> provides a detailed
view of the NADA sender. Upon receipt of an RTCP feedback
report from the receiver, the NADA sender calculates the
reference rate r_ref as specified in
<a href="#subsec-sender-algorithm" class="xref">Section 4.3</a>.
It further adjusts both the target rate for the live video
encoder r_vin and the sending rate r_send over the network
based on the updated value of r_ref and rate-shaping buffer
occupancy buffer_len.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
<p id="section-5.2-2">
The NADA sender behavior stays the same in the presence
of all types of congestion indicators: delay, loss, and
ECN marking. This unified approach allows a graceful
transition of the scheme as the network shifts dynamically
between light and heavy congestion levels.<a href="#section-5.2-2" class="pilcrow">¶</a></p>
<span id="name-nada-sender-structure"></span><div id="fig-nada-sender">
<figure id="figure-2">
<div class="artwork art-text alignLeft" id="section-5.2-3.1">
<pre>
+----------------+
| Calculate | <---- RTCP report
| Reference Rate |
-----------------+
| r_ref
+------------+-------------+
| |
\|/ \|/
+-----------------+ +---------------+
| Calculate Video | | Calculate |
| Target Rate | | Sending Rate |
+-----------------+ +---------------+
| /|\ /|\ |
r_vin | | | |
\|/ +-------------------+ |
+----------+ | buffer_len | r_send
| Video | r_vout -----------+ \|/
| Encoder |--------> |||||||||=================>
+----------+ -----------+ RTP packets
Rate-Shaping Buffer
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-nada-sender-structure" class="selfRef">NADA Sender Structure</a>
</figcaption></figure>
</div>
<div id="sec-sender-c">
<section id="section-5.2.1">
<h4 id="name-rate-shaping-buffer">
<a href="#section-5.2.1" class="section-number selfRef">5.2.1. </a><a href="#name-rate-shaping-buffer" class="section-name selfRef">Rate-Shaping Buffer</a>
</h4>
<p id="section-5.2.1-1">
The operation of the live video encoder is out of the scope
of the design for the congestion control scheme in NADA.
Instead, its behavior is treated as a black box.<a href="#section-5.2.1-1" class="pilcrow">¶</a></p>
<p id="section-5.2.1-2">
A rate-shaping buffer is employed to absorb any instantaneous
mismatch between the encoder rate output r_vout and the regulated sending
rate r_send. Its current level of occupancy is measured in bytes
and is denoted as buffer_len.<a href="#section-5.2.1-2" class="pilcrow">¶</a></p>
<p id="section-5.2.1-3">A large rate-shaping buffer contributes to higher
end-to-end delay, which may harm the performance of
real-time media communications. Therefore, the sender
has a strong incentive to prevent the rate-shaping
buffer from building up. The mechanisms adopted are:<a href="#section-5.2.1-3" class="pilcrow">¶</a></p>
<ul>
<li id="section-5.2.1-4.1">To deplete the rate-shaping buffer faster by
increasing the sending rate r_send; and<a href="#section-5.2.1-4.1" class="pilcrow">¶</a>
</li>
<li id="section-5.2.1-4.2">To limit incoming packets of the rate-shaping
buffer by reducing the video encoder target rate
r_vin.<a href="#section-5.2.1-4.2" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="sec-sender-d">
<section id="section-5.2.2">
<h4 id="name-adjusting-video-target-rate">
<a href="#section-5.2.2" class="section-number selfRef">5.2.2. </a><a href="#name-adjusting-video-target-rate" class="section-name selfRef">Adjusting Video Target Rate and Sending Rate</a>
</h4>
<p id="section-5.2.2-1">
If the level of occupancy in the rate-shaping buffer is accessible
at the sender, such information can be leveraged to further adjust
the target rate of the live video encoder r_vin as well as the
actual sending rate r_send. The purpose of such adjustments is to
mitigate the additional latencies introduced by the rate-shaping
buffer. The amount of rate adjustment can be calculated as follows:<a href="#section-5.2.2-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-5.2.2-2">
<pre>
r_diff_v = min(0.05*r_ref, BETA_V*8*buffer_len*FPS) (11)
r_diff_s = min(0.05*r_ref, BETA_S*8*buffer_len*FPS) (12)
r_vin = max(RMIN, r_ref - r_diff_v) (13)
r_send = min(RMAX, r_ref + r_diff_s) (14)
</pre><a href="#section-5.2.2-2" class="pilcrow">¶</a>
</div>
<p id="section-5.2.2-3"> In Equations (11) and (12), the amount of adjustment is calculated
as proportional to the size of the rate-shaping buffer but is
bounded by 5% of the reference rate r_ref calculated from network
congestion feedback alone. This ensures that the adjustment
introduced by the rate-shaping buffer will not counteract with the core
congestion control process. Equations (13) and (14) indicate
the influence of the rate-shaping buffer. A large
rate-shaping buffer nudges the encoder target rate slightly
below (and the sending rate slightly above) the reference
rate r_ref. The final video target rate (r_vin) and sending
rate (r_send) are further bounded within the original range of
[RMIN, RMAX].<a href="#section-5.2.2-3" class="pilcrow">¶</a></p>
<p id="section-5.2.2-4">
Intuitively, the amount of extra rate offset needed to completely
drain the rate-shaping buffer within the duration of a single
video frame is given by 8*buffer_len*FPS, where FPS stands
for the reference frame rate of the video. The scaling parameters
BETA_V and BETA_S can be tuned to balance between the competing
goals of maintaining a small rate-shaping buffer and deviating
from the reference rate point. Empirical observations show that
the rate-shaping buffer for a responsive live video encoder typically
stays empty and only occasionally holds a large frame (e.g., when
an intra-frame is produced) in transit. Therefore, the rate adjustment
introduced by this mechanism is expected to be minor. For instance,
a rate-shaping buffer of 2000 bytes will lead to a rate adjustment
of 48 Kbps given the recommended scaling parameters of BETA_V = 0.1
and BETA_S = 0.1, and the reference frame rate of FPS = 30.<a href="#section-5.2.2-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-feedback">
<section id="section-5.3">
<h3 id="name-feedback-message-requiremen">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-feedback-message-requiremen" class="section-name selfRef">Feedback Message Requirements</a>
</h3>
<p id="section-5.3-1">The following list of information is required for
NADA congestion control to function properly:<a href="#section-5.3-1" class="pilcrow">¶</a></p>
<dl class="dlParallel" id="section-5.3-2">
<dt id="section-5.3-2.1">Recommended rate adaptation mode (rmode):
</dt>
<dd id="section-5.3-2.2">A 1-bit flag indicating whether the sender should operate in accelerated
ramp-up mode (rmode=0) or gradual update mode (rmode=1).<a href="#section-5.3-2.2" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-2.3">Aggregated congestion signal (x_curr):
</dt>
<dd id="section-5.3-2.4">The most recently updated value, calculated by the receiver according to
<a href="#subsec-receiver-algorithm" class="xref">Section 4.2</a>. This information
can be expressed with a unit of 100 microseconds (i.e., 1/10 of a millisecond)
in 15 bits. This allows a maximum value of x_curr at approximately 3.27
seconds.<a href="#section-5.3-2.4" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-2.5">Receiving rate (r_recv):
</dt>
<dd id="section-5.3-2.6">The most recently measured receiving rate according to <a href="#sec-receiver-c" class="xref">Section 5.1.3</a>. This information is
expressed with a unit of bits per second (bps) in 32 bits (unsigned int). This
allows a maximum rate of approximately 4.3 Gbps, approximately 1000 times the
streaming rate of a typical high-definition (HD) video conferencing session
today. This field can be expanded further by a few more bytes if an even
higher rate needs to be specified.<a href="#section-5.3-2.6" class="pilcrow">¶</a>
</dd>
</dl>
<p id="section-5.3-3">
The above list of information can be accommodated by 48 bits,
or 6 bytes, in total. They can be either included in the
feedback report from the receiver or, in the case where all
receiver-side calculations are moved to the sender, derived
from per-packet information from the feedback message as defined
in <span>[<a href="#I-D.ietf-avtcore-cc-feedback-message" class="xref">RTCP-FEEDBACK</a>]</span>.
Choosing the feedback message interval DELTA is discussed in
<a href="#sec-discussion-c" class="xref">Section 6.3</a>. A target feedback
interval
of DELTA = 100 ms is recommended.<a href="#section-5.3-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-discussions">
<section id="section-6">
<h2 id="name-discussions-and-further-inv">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-discussions-and-further-inv" class="section-name selfRef">Discussions and Further Investigations</a>
</h2>
<p id="section-6-1">This section discusses the various design choices
made by NADA, potential alternative variants of its
implementation, and guidelines on how the key algorithm
parameters can be chosen. <a href="#sec-experiments" class="xref">Section 8</a>
recommends additional experimental setups to
further explore these topics.<a href="#section-6-1" class="pilcrow">¶</a></p>
<div id="sec-discussion-a">
<section id="section-6.1">
<h3 id="name-choice-of-delay-metrics">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-choice-of-delay-metrics" class="section-name selfRef">Choice of Delay Metrics</a>
</h3>
<p id="section-6.1-1">
The current design works with relative one-way delay (OWD) as the main
indication of congestion. The value of the relative OWD is obtained by
maintaining the minimum value of observed OWD over a relatively long time
horizon and subtracting that out from the observed absolute OWD value. Such an
approach cancels out the fixed difference between the sender and receiver
clocks. It has been widely adopted by other delay-based congestion control
approaches such as <span>[<a href="#RFC6817" class="xref">RFC6817</a>]</span>. As discussed in
<span>[<a href="#RFC6817" class="xref">RFC6817</a>]</span>, the time horizon for tracking the
minimum OWD needs to be chosen with care; it must be long enough for an
opportunity to observe the minimum OWD with zero standing queue along the
path,
and it must be sufficiently short enough to timely reflect "true" changes in
minimum OWD introduced by route changes and other rare events and
to mitigate the cumulative impact of clock rate skew over time.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">
The potential drawback in relying on relative OWD as the congestion
signal is that when multiple flows share the same bottleneck, the
flow arriving late at the network experiencing a non-empty queue may
mistakenly consider the standing queuing delay as part of the fixed
path propagation delay. This will lead to slightly unfair bandwidth
sharing among the flows.<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1-3">Alternatively, one could move the per-packet statistical handling
to the sender instead and use relative round-trip time (RTT) in lieu
of relative OWD, assuming that per-packet acknowledgments are available.
The main drawback of an RTT-based approach is the noise in the measured delay
in the reverse direction.<a href="#section-6.1-3" class="pilcrow">¶</a></p>
<p id="section-6.1-4">
Note that the choice of either delay metric (relative OWD vs. RTT) involves no
change in the proposed rate adaptation algorithm. Therefore, comparing the
pros and cons regarding which delay metric to adopt can be kept as an
orthogonal direction of investigation.<a href="#section-6.1-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-discussion-b">
<section id="section-6.2">
<h3 id="name-method-for-delay-loss-and-m">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-method-for-delay-loss-and-m" class="section-name selfRef">Method for Delay, Loss, and Marking Ratio Estimation</a>
</h3>
<p id="section-6.2-1">Like other delay-based congestion control schemes, performance of
NADA depends on the accuracy of its delay measurement and estimation
module. <span><a href="https://www.rfc-editor.org/rfc/rfc6817#appendix-A" class="relref">Appendix A</a> of [<a href="#RFC6817" class="xref">RFC6817</a>]</span>
provides an extensive discussion on this aspect.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<p id="section-6.2-2">The current recommended practice of applying minimum filter with a
window size of 15 samples suffices in guarding against processing
delay outliers observed in wired connections. For wireless connections
with a higher packet delay variation (PDV), more sophisticated
techniques on denoising, outlier rejection, and trend analysis may be
needed.<a href="#section-6.2-2" class="pilcrow">¶</a></p>
<p id="section-6.2-3">
More sophisticated methods in packet loss ratio calculation,
such as that adopted by <span>[<a href="#FLOYD-CCR00" class="xref">FLOYD-CCR00</a>]</span>,
will likely be beneficial. These alternatives are part of
the experiments this document proposes.<a href="#section-6.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-discussion-c">
<section id="section-6.3">
<h3 id="name-impact-of-parameter-values">
<a href="#section-6.3" class="section-number selfRef">6.3. </a><a href="#name-impact-of-parameter-values" class="section-name selfRef">Impact of Parameter Values</a>
</h3>
<p id="section-6.3-1">In the gradual rate update mode, the parameter TAU indicates the
upper bound of round-trip time (RTT) in the feedback control loop.
Typically, the observed feedback interval delta is close to the target
feedback interval DELTA, and the relative ratio of delta/TAU versus
ETA dictates the relative strength of influence from the aggregate
congestion signal offset term (x_offset) versus its recent change
(x_diff), respectively. These two terms are analogous to the integral
and proportional terms in a proportional-integral (PI) controller. The
recommended choice of TAU = 500 ms, DELTA = 100 ms, and ETA = 2.0
corresponds
to a relative ratio of 1:10 between the gains of the integral and
proportional terms. Consequently, the rate adaptation is mostly driven
by the change in the congestion signal with a long-term shift towards
its equilibrium value driven by the offset term. Finally, the scaling
parameter KAPPA determines the overall speed of the adaptation and
needs to strike a balance between responsiveness and stability.<a href="#section-6.3-1" class="pilcrow">¶</a></p>
<p id="section-6.3-2">
The choice of the target feedback interval DELTA needs to strike the right
balance between timely feedback and low RTCP feedback message counts. A target
feedback interval of DELTA = 100 ms is recommended, corresponding to a
feedback
bandwidth of 16 Kbps with 200 bytes per feedback message -- approximately 1.6%
overhead for a 1 Mbps flow. Furthermore, both simulation studies and
frequency-domain analysis in <span>[<a href="#IETF-95" class="xref">IETF-95</a>]</span> have
established that a feedback interval below 250 ms (i.e., more frequently than
4
feedback messages per second) will not break up the feedback control loop of
NADA congestion control.<a href="#section-6.3-2" class="pilcrow">¶</a></p>
<p id="section-6.3-3">In calculating the non-linear warping of delay in Equation (1),
the current design uses fixed values of QTH for determining
whether to perform the non-linear warping. Its value should be
carefully tuned for different operational environments (e.g.,
over wired vs. wireless connections) so as to avoid the potential
risk of prematurely discounting the congestion signal level.
It is possible to adapt its value based on past observed patterns
of queuing delay in the presence of packet losses. It needs to be
noted that the non-linear warping mechanism may lead to multiple
NADA streams stuck in loss-based mode when competing against
each other.<a href="#section-6.3-3" class="pilcrow">¶</a></p>
<p id="section-6.3-4">In calculating the aggregate congestion signal x_curr, the
choice of DMARK and DLOSS influence the steady-state packet
loss/marking ratio experienced by the flow at a given
available bandwidth. Higher values of DMARK and DLOSS result
in lower steady-state loss/marking ratios but are more
susceptible to the impact of individual packet loss/marking
events. While the value of DMARK and DLOSS are fixed and
predetermined in the current design, this document also encourages
further explorations of a scheme for automatically
tuning these values based on desired bandwidth sharing behavior
in the presence of other competing loss-based flows (e.g.,
loss-based TCP).<a href="#section-6.3-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-discussion-d">
<section id="section-6.4">
<h3 id="name-sender-based-vs-receiver-ba">
<a href="#section-6.4" class="section-number selfRef">6.4. </a><a href="#name-sender-based-vs-receiver-ba" class="section-name selfRef">Sender-Based vs. Receiver-Based Calculation</a>
</h3>
<p id="section-6.4-1">In the current design, the aggregated congestion
signal x_curr is calculated at the receiver, keeping
the sender operation completely independent of the
form of actual network congestion indications (delay,
loss, or marking) in use.<a href="#section-6.4-1" class="pilcrow">¶</a></p>
<p id="section-6.4-2">Alternatively, one can shift receiver-side calculations
to the sender, whereby the receiver simply reports on per-packet
information via periodic feedback messages as defined in
<span>[<a href="#I-D.ietf-avtcore-cc-feedback-message" class="xref">RTCP-FEEDBACK</a>]</span>.
Such an approach enables interoperability amongst senders operating
on different congestion control schemes but requires slightly
higher overhead in the feedback messages. See additional discussions
in <span>[<a href="#I-D.ietf-avtcore-cc-feedback-message" class="xref">RTCP-FEEDBACK</a>]</span>
regarding the desired format of the feedback messages and the
recommended feedback intervals.<a href="#section-6.4-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-discussion-e">
<section id="section-6.5">
<h3 id="name-incremental-deployment">
<a href="#section-6.5" class="section-number selfRef">6.5. </a><a href="#name-incremental-deployment" class="section-name selfRef">Incremental Deployment</a>
</h3>
<p id="section-6.5-1">
One nice property of NADA is the consistent video endpoint
behavior irrespective of network node variations. This facilitates
gradual, incremental adoption of the scheme.<a href="#section-6.5-1" class="pilcrow">¶</a></p>
<p id="section-6.5-2">
Initially, the proposed congestion control mechanism can
be implemented without any explicit support from the network and
relies solely on observed relative one-way delay measurements
and packet loss ratios as implicit congestion signals.<a href="#section-6.5-2" class="pilcrow">¶</a></p>
<p id="section-6.5-3">
When ECN is enabled at the network nodes with RED-based marking,
the receiver can fold its observations of ECN markings into the
calculation of the equivalent delay. The sender can react to these
explicit congestion signals without any modification.<a href="#section-6.5-3" class="pilcrow">¶</a></p>
<p id="section-6.5-4">
Ultimately, networks equipped with proactive marking based on the level of
token bucket metering can reap the additional benefits of
zero standing queues and lower end-to-end delay and work
seamlessly with existing senders and receivers.<a href="#section-6.5-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-implementations">
<section id="section-7">
<h2 id="name-reference-implementations">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-reference-implementations" class="section-name selfRef">Reference Implementations</a>
</h2>
<p id="section-7-1">
The NADA scheme has been implemented in both ns-2 <span>[<a href="#NS-2" class="xref">NS-2</a>]</span>
and ns-3 <span>[<a href="#NS-3" class="xref">NS-3</a>]</span> simulation platforms. The
implementation
in ns-2 hosts the calculations as described in
<a href="#subsec-receiver-algorithm" class="xref">Section 4.2</a> at the receiver
side,
whereas the implementation in ns-3 hosts these receiver-side calculations
at the sender for the sake of interoperability. Extensive ns-2 simulation
evaluations of an earlier draft version of this document are recorded in
<span>[<a href="#ZHU-PV13" class="xref">ZHU-PV13</a>]</span>.
An open-source implementation of NADA as part of an ns-3 module is
available at <span>[<a href="#NS3-RMCAT" class="xref">NS3-RMCAT</a>]</span>.
Evaluation results of this document based on ns-3 are presented
in <span>[<a href="#IETF-90" class="xref">IETF-90</a>]</span> and <span>[<a href="#IETF-91" class="xref">IETF-91</a>]</span>
for wired test cases as documented in <span>[<a href="#I-D.ietf-rmcat-eval-test" class="xref">RMCAT-EVAL-TEST</a>]</span>.
Evaluation results of NADA over Wi-Fi-based test cases as defined in
<span>[<a href="#I-D.ietf-rmcat-wireless-tests" class="xref">WIRELESS-TESTS</a>]</span> are
presented in <span>[<a href="#IETF-93" class="xref">IETF-93</a>]</span>. These simulation-based
evaluations have shown that NADA flows can obtain their fair share of
bandwidth when competing against each other. They typically adapt fast
in reaction to the arrival and departure of other flows and can sustain
a reasonable throughput when competing against loss-based TCP flows.<a href="#section-7-1" class="pilcrow">¶</a></p>
<p id="section-7-2">
<span>[<a href="#IETF-90" class="xref">IETF-90</a>]</span> describes the implementation and
evaluation of NADA in a lab setting. Preliminary evaluation
results of NADA in single-flow and multi-flow test scenarios
are presented in <span>[<a href="#IETF-91" class="xref">IETF-91</a>]</span>.<a href="#section-7-2" class="pilcrow">¶</a></p>
<p id="section-7-3">
A reference implementation of NADA has been carried out by
modifying the WebRTC module embedded in the Mozilla open-source
browser. Presentations from <span>[<a href="#IETF-103" class="xref">IETF-103</a>]</span>
and <span>[<a href="#IETF-105" class="xref">IETF-105</a>]</span> document real-world evaluations
of the modified browser driven by NADA. The experimental setting
involves remote connections with endpoints over either home or enterprise
wireless networks. These evaluations validate the effectiveness of
NADA flows in recovering quickly from throughput drops caused by
intermittent delay spikes over the last-hop wireless connections.<a href="#section-7-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-experiments">
<section id="section-8">
<h2 id="name-suggested-experiments">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-suggested-experiments" class="section-name selfRef">Suggested Experiments</a>
</h2>
<p id="section-8-1">
NADA has been extensively evaluated under various test scenarios, including
the collection of test cases specified by <span>[<a href="#I-D.ietf-rmcat-eval-test" class="xref">RMCAT-EVAL-TEST</a>]</span> and the subset of
Wi-Fi-based test cases in <span>[<a href="#I-D.ietf-rmcat-wireless-tests" class="xref">WIRELESS-TESTS</a>]</span>. Additional evaluations have been carried out to
characterize how NADA interacts with various AQM
schemes such as RED, Controlling Queue Delay (CoDel), and Proportional
Integral Controller Enhanced (PIE). Most of these evaluations have been
carried out in simulators. A few key test cases have been evaluated in lab
environments with implementations embedded in video conferencing clients. It
is strongly recommended to carry out implementation and experimentation of
NADA in real-world settings. Such exercises will provide insights on how to
choose or automatically adapt the values of the key algorithm parameters (see
list in <a href="#tab-parameters" class="xref">Table 2</a>) as discussed in
<a href="#sec-discussions" class="xref">Section 6</a>.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">Additional experiments are suggested for the following scenarios,
preferably over real-world networks:<a href="#section-8-2" class="pilcrow">¶</a></p>
<ul>
<li id="section-8-3.1">Experiments reflecting the setup of a typical WAN
connection.<a href="#section-8-3.1" class="pilcrow">¶</a>
</li>
<li id="section-8-3.2">Experiments with ECN marking capability turned on at the network
for existing test cases.<a href="#section-8-3.2" class="pilcrow">¶</a>
</li>
<li id="section-8-3.3">Experiments with multiple NADA streams bearing different
user-specified priorities.<a href="#section-8-3.3" class="pilcrow">¶</a>
</li>
<li id="section-8-3.4">Experiments with additional access technologies, especially
over cellular networks such as 3G/LTE.<a href="#section-8-3.4" class="pilcrow">¶</a>
</li>
<li id="section-8-3.5">Experiments with various media source contents, including audio
only,
audio and video, and application content sharing (e.g., slideshows).<a href="#section-8-3.5" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="sec-iana">
<section id="section-9">
<h2 id="name-iana-considerations">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-9-1">This document has no IANA actions.<a href="#section-9-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-security">
<section id="section-10">
<h2 id="name-security-considerations">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-10-1">The rate adaptation mechanism in NADA relies on feedback from the
receiver. As such, it is vulnerable to attacks where feedback messages
are hijacked, replaced, or intentionally injected with misleading
information resulting in denial of service, similar to those that can
affect TCP. Therefore, it is <span class="bcp14">RECOMMENDED</span> that the RTCP
feedback message is at least integrity checked. In addition, <span>[<a href="#I-D.ietf-avtcore-cc-feedback-message" class="xref">RTCP-FEEDBACK</a>]</span>
discusses the potential risk of a receiver providing misleading
congestion feedback information and the mechanisms for mitigating such
risks.<a href="#section-10-1" class="pilcrow">¶</a></p>
<p id="section-10-2">The modification of the sending rate based on the sender-side
rate-shaping
buffer may lead to temporary excessive congestion over the network in
the presence of an unresponsive video encoder. However, this effect can
be mitigated by limiting the amount of rate modification introduced by
the rate-shaping buffer, bounding the size of the rate-shaping buffer at
the sender, and maintaining a maximum allowed sending rate by NADA.<a href="#section-10-2" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-11">
<h2 id="name-references">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-11.1">
<h3 id="name-normative-references">
<a href="#section-11.1" class="section-number selfRef">11.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dt id="RFC3168">[RFC3168]</dt>
<dd>
<span class="refAuthor">Ramakrishnan, K.</span><span class="refAuthor">, Floyd, S.</span><span class="refAuthor">, and D. Black</span>, <span class="refTitle">"The Addition of Explicit Congestion Notification (ECN) to IP"</span>, <span class="seriesInfo">RFC 3168</span>, <span class="seriesInfo">DOI 10.17487/RFC3168</span>, <time datetime="2001-09">September 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3168">https://www.rfc-editor.org/info/rfc3168</a>></span>. </dd>
<dt id="RFC3550">[RFC3550]</dt>
<dd>
<span class="refAuthor">Schulzrinne, H.</span><span class="refAuthor">, Casner, S.</span><span class="refAuthor">, Frederick, R.</span><span class="refAuthor">, and V. Jacobson</span>, <span class="refTitle">"RTP: A Transport Protocol for Real-Time Applications"</span>, <span class="seriesInfo">STD 64</span>, <span class="seriesInfo">RFC 3550</span>, <span class="seriesInfo">DOI 10.17487/RFC3550</span>, <time datetime="2003-07">July 2003</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3550">https://www.rfc-editor.org/info/rfc3550</a>></span>. </dd>
<dt id="RFC5348">[RFC5348]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span><span class="refAuthor">, Handley, M.</span><span class="refAuthor">, Padhye, J.</span><span class="refAuthor">, and J. Widmer</span>, <span class="refTitle">"TCP Friendly Rate Control (TFRC): Protocol Specification"</span>, <span class="seriesInfo">RFC 5348</span>, <span class="seriesInfo">DOI 10.17487/RFC5348</span>, <time datetime="2008-09">September 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5348">https://www.rfc-editor.org/info/rfc5348</a>></span>. </dd>
<dt id="RFC6679">[RFC6679]</dt>
<dd>
<span class="refAuthor">Westerlund, M.</span><span class="refAuthor">, Johansson, I.</span><span class="refAuthor">, Perkins, C.</span><span class="refAuthor">, O'Hanlon, P.</span><span class="refAuthor">, and K. Carlberg</span>, <span class="refTitle">"Explicit Congestion Notification (ECN) for RTP over UDP"</span>, <span class="seriesInfo">RFC 6679</span>, <span class="seriesInfo">DOI 10.17487/RFC6679</span>, <time datetime="2012-08">August 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6679">https://www.rfc-editor.org/info/rfc6679</a>></span>. </dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
</dl>
</section>
<section id="section-11.2">
<h3 id="name-informative-references">
<a href="#section-11.2" class="section-number selfRef">11.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="BUDZISZ-AIMD-CC">[BUDZISZ-AIMD-CC]</dt>
<dd>
<span class="refAuthor">Budzisz, L.</span><span class="refAuthor">, Stanojevic, R.</span><span class="refAuthor">, Schlote, A.</span><span class="refAuthor">, Baker, F.</span><span class="refAuthor">, and R. Shorten</span>, <span class="refTitle">"On the Fair Coexistence of Loss- and Delay-Based TCP"</span>, <span class="refContent">IEEE/ACM Transactions on Networking, vol. 19, no. 6,
pp. 1811-1824
</span>, <span class="seriesInfo">DOI 10.1109/TNET.2011.2159736</span>, <time datetime="2011-12">December 2011</time>, <span><<a href="https://doi.org/10.1109/TNET.2011.2159736">https://doi.org/10.1109/TNET.2011.2159736</a>></span>. </dd>
<dt id="FLOYD-CCR00">[FLOYD-CCR00]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span><span class="refAuthor">, Handley, M.</span><span class="refAuthor">, Padhye, J.</span><span class="refAuthor">, and J. Widmer</span>, <span class="refTitle">"Equation-based congestion control for unicast applications"</span>, <span class="refContent">ACM SIGCOMM Computer Communications Review, vol. 30,
no. 4, pp. 43-56
</span>, <span class="seriesInfo">DOI 10.1145/347057.347397</span>, <time datetime="2000-10">October 2000</time>, <span><<a href="https://doi.org/10.1145/347057.347397">https://doi.org/10.1145/347057.347397</a>></span>. </dd>
<dt id="IETF-103">[IETF-103]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Pan, R.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, Fu, J.</span><span class="refAuthor">, and S. D'Aronco</span>, <span class="refTitle">"NADA Implementation in Mozilla Browser"</span>, <span class="refContent">IETF 103
</span>, <time datetime="2018-11">November 2018</time>, <span><<a href="https://datatracker.ietf.org/meeting/103/materials/slides-103-rmcat-nada-implementation-in-mozilla-browser-00">https://datatracker.ietf.org/meeting/103/materials/slides-103-rmcat-nada-implementation-in-mozilla-browser-00</a>></span>. </dd>
<dt id="IETF-105">[IETF-105]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Pan, R.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, Fu, J.</span><span class="refAuthor">, and S. D'Aronco</span>, <span class="refTitle">"NADA Implementation in Mozilla Browser and Draft Update"</span>, <span class="refContent">IETF 105
</span>, <time datetime="2019-07">July 2019</time>, <span><<a href="https://datatracker.ietf.org/meeting/105/materials/slides-105-rmcat-nada-update-02.pdf">https://datatracker.ietf.org/meeting/105/materials/slides-105-rmcat-nada-update-02.pdf</a>></span>. </dd>
<dt id="IETF-90">[IETF-90]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Ganzhorn, C.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, and R. Pan</span>, <span class="refTitle">"NADA Update: Algorithm, Implementation, and Test Case Evaluation Results"</span>, <span class="refContent">IETF 90
</span>, <time datetime="2014-07">July 2014</time>, <span><<a href="https://tools.ietf.org/agenda/90/slides/slides-90-rmcat-6.pdf">https://tools.ietf.org/agenda/90/slides/slides-90-rmcat-6.pdf</a>></span>. </dd>
<dt id="IETF-91">[IETF-91]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Pan, R.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, Ganzhorn, C.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, and S. D'Aronco</span>, <span class="refTitle">"NADA Algorithm Update and Test Case Evaluations"</span>, <span class="refContent">IETF 91
</span>, <time datetime="2014-11">November 2014</time>, <span><<a href="https://www.ietf.org/proceedings/interim/2014/11/09/rmcat/slides/slides-interim-2014-rmcat-1-2.pdf">https://www.ietf.org/proceedings/interim/2014/11/09/rmcat/slides/slides-interim-2014-rmcat-1-2.pdf</a>></span>. </dd>
<dt id="IETF-93">[IETF-93]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Pan, R.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, Ganzhorn, C.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, D'Aronco, S.</span><span class="refAuthor">, and J. Fu</span>, <span class="refTitle">"Updates on NADA"</span>, <span class="refContent">IETF 93
</span>, <time datetime="2015-07">July 2015</time>, <span><<a href="https://www.ietf.org/proceedings/93/slides/slides-93-rmcat-0.pdf">https://www.ietf.org/proceedings/93/slides/slides-93-rmcat-0.pdf</a>></span>. </dd>
<dt id="IETF-95">[IETF-95]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Pan, R.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, Fu, J.</span><span class="refAuthor">, D'Aronco, S.</span><span class="refAuthor">, and C. Ganzhorn</span>, <span class="refTitle">"Updates on NADA: Stability Analysis and Impact of Feedback Intervals"</span>, <span class="refContent">IETF 95
</span>, <time datetime="2016-04">April 2016</time>, <span><<a href="https://www.ietf.org/proceedings/95/slides/slides-95-rmcat-5.pdf">https://www.ietf.org/proceedings/95/slides/slides-95-rmcat-5.pdf</a>></span>. </dd>
<dt id="NS-2">[NS-2]</dt>
<dd>
<span class="refTitle">"ns-2"</span>, <time datetime="2014-12">December 2014</time>, <span><<a href="http://nsnam.sourceforge.net/wiki/index.php/Main_Page">http://nsnam.sourceforge.net/wiki/index.php/Main_Page</a>></span>. </dd>
<dt id="NS-3">[NS-3]</dt>
<dd>
<span class="refTitle">"ns-3 Network Simulator"</span>, <span><<a href="https://www.nsnam.org/">https://www.nsnam.org/</a>></span>. </dd>
<dt id="NS3-RMCAT">[NS3-RMCAT]</dt>
<dd>
<span class="refAuthor">Fu, J.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, and X. Zhu</span>, <span class="refTitle">"Simulator of IETF RMCAT congestion control protocols"</span>, <time datetime="2017-11">November 2017</time>, <span><<a href="https://github.com/cisco/ns3-rmcat">https://github.com/cisco/ns3-rmcat</a>></span>. </dd>
<dt id="RFC5450">[RFC5450]</dt>
<dd>
<span class="refAuthor">Singer, D.</span><span class="refAuthor"> and H. Desineni</span>, <span class="refTitle">"Transmission Time Offsets in RTP Streams"</span>, <span class="seriesInfo">RFC 5450</span>, <span class="seriesInfo">DOI 10.17487/RFC5450</span>, <time datetime="2009-03">March 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5450">https://www.rfc-editor.org/info/rfc5450</a>></span>. </dd>
<dt id="RFC6660">[RFC6660]</dt>
<dd>
<span class="refAuthor">Briscoe, B.</span><span class="refAuthor">, Moncaster, T.</span><span class="refAuthor">, and M. Menth</span>, <span class="refTitle">"Encoding Three Pre-Congestion Notification (PCN) States in the IP Header Using a Single Diffserv Codepoint (DSCP)"</span>, <span class="seriesInfo">RFC 6660</span>, <span class="seriesInfo">DOI 10.17487/RFC6660</span>, <time datetime="2012-07">July 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6660">https://www.rfc-editor.org/info/rfc6660</a>></span>. </dd>
<dt id="RFC6817">[RFC6817]</dt>
<dd>
<span class="refAuthor">Shalunov, S.</span><span class="refAuthor">, Hazel, G.</span><span class="refAuthor">, Iyengar, J.</span><span class="refAuthor">, and M. Kuehlewind</span>, <span class="refTitle">"Low Extra Delay Background Transport (LEDBAT)"</span>, <span class="seriesInfo">RFC 6817</span>, <span class="seriesInfo">DOI 10.17487/RFC6817</span>, <time datetime="2012-12">December 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6817">https://www.rfc-editor.org/info/rfc6817</a>></span>. </dd>
<dt id="RFC7567">[RFC7567]</dt>
<dd>
<span class="refAuthor">Baker, F., Ed.</span><span class="refAuthor"> and G. Fairhurst, Ed.</span>, <span class="refTitle">"IETF Recommendations Regarding Active Queue Management"</span>, <span class="seriesInfo">BCP 197</span>, <span class="seriesInfo">RFC 7567</span>, <span class="seriesInfo">DOI 10.17487/RFC7567</span>, <time datetime="2015-07">July 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7567">https://www.rfc-editor.org/info/rfc7567</a>></span>. </dd>
<dt id="RFC8033">[RFC8033]</dt>
<dd>
<span class="refAuthor">Pan, R.</span><span class="refAuthor">, Natarajan, P.</span><span class="refAuthor">, Baker, F.</span><span class="refAuthor">, and G. White</span>, <span class="refTitle">"Proportional Integral Controller Enhanced (PIE): A Lightweight Control Scheme to Address the Bufferbloat Problem"</span>, <span class="seriesInfo">RFC 8033</span>, <span class="seriesInfo">DOI 10.17487/RFC8033</span>, <time datetime="2017-02">February 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8033">https://www.rfc-editor.org/info/rfc8033</a>></span>. </dd>
<dt id="RFC8290">[RFC8290]</dt>
<dd>
<span class="refAuthor">Hoeiland-Joergensen, T.</span><span class="refAuthor">, McKenney, P.</span><span class="refAuthor">, Taht, D.</span><span class="refAuthor">, Gettys, J.</span><span class="refAuthor">, and E. Dumazet</span>, <span class="refTitle">"The Flow Queue CoDel Packet Scheduler and Active Queue Management Algorithm"</span>, <span class="seriesInfo">RFC 8290</span>, <span class="seriesInfo">DOI 10.17487/RFC8290</span>, <time datetime="2018-01">January 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8290">https://www.rfc-editor.org/info/rfc8290</a>></span>. </dd>
<dt id="RFC8593">[RFC8593]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, and Z. Sarker</span>, <span class="refTitle">"Video Traffic Models for RTP Congestion Control Evaluations"</span>, <span class="seriesInfo">RFC 8593</span>, <span class="seriesInfo">DOI 10.17487/RFC8593</span>, <time datetime="2019-05">May 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8593">https://www.rfc-editor.org/info/rfc8593</a>></span>. </dd>
<dt id="I-D.ietf-rmcat-cc-requirements">[RMCAT-CC]</dt>
<dd>
<span class="refAuthor">Jesup, R.</span><span class="refAuthor"> and Z. Sarker</span>, <span class="refTitle">"Congestion Control Requirements for Interactive Real-Time Media"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rmcat-cc-requirements-09</span>, <time datetime="2014-12-12">12 December 2014</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-rmcat-cc-requirements-09">https://tools.ietf.org/html/draft-ietf-rmcat-cc-requirements-09</a>></span>. </dd>
<dt id="I-D.ietf-rmcat-cc-codec-interactions">[RMCAT-CC-RTP]</dt>
<dd>
<span class="refAuthor">Zanaty, M.</span><span class="refAuthor">, Singh, V.</span><span class="refAuthor">, Nandakumar, S.</span><span class="refAuthor">, and Z. Sarker</span>, <span class="refTitle">"Congestion Control and Codec interactions in RTP Applications"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rmcat-cc-codec-interactions-02</span>, <time datetime="2016-03-18">18 March 2016</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-rmcat-cc-codec-interactions-02">https://tools.ietf.org/html/draft-ietf-rmcat-cc-codec-interactions-02</a>></span>. </dd>
<dt id="I-D.ietf-rmcat-eval-test">[RMCAT-EVAL-TEST]</dt>
<dd>
<span class="refAuthor">Sarker, Z.</span><span class="refAuthor">, Singh, V.</span><span class="refAuthor">, Zhu, X.</span><span class="refAuthor">, and M. Ramalho</span>, <span class="refTitle">"Test Cases for Evaluating RMCAT Proposals"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rmcat-eval-test-10</span>, <time datetime="2019-05-23">23 May 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-rmcat-eval-test-10">https://tools.ietf.org/html/draft-ietf-rmcat-eval-test-10</a>></span>. </dd>
<dt id="I-D.ietf-avtcore-cc-feedback-message">[RTCP-FEEDBACK]</dt>
<dd>
<span class="refAuthor">Sarker, Z.</span><span class="refAuthor">, Perkins, C.</span><span class="refAuthor">, Singh, V.</span><span class="refAuthor">, and M. Ramalho</span>, <span class="refTitle">"RTP Control Protocol (RTCP) Feedback for Congestion Control"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-avtcore-cc-feedback-message-05</span>, <time datetime="2019-11-04">4 November 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-avtcore-cc-feedback-message-05">https://tools.ietf.org/html/draft-ietf-avtcore-cc-feedback-message-05</a>></span>. </dd>
<dt id="I-D.ietf-rmcat-wireless-tests">[WIRELESS-TESTS]</dt>
<dd>
<span class="refAuthor">Sarker, Z.</span><span class="refAuthor">, Johansson, I.</span><span class="refAuthor">, Zhu, X.</span><span class="refAuthor">, Fu, J.</span><span class="refAuthor">, Tan, W.</span><span class="refAuthor">, and M. Ramalho</span>, <span class="refTitle">"Evaluation Test Cases for Interactive Real-Time Media over Wireless Networks"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rmcat-wireless-tests-08</span>, <time datetime="2019-07-05">5 July 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-rmcat-wireless-tests-08">https://tools.ietf.org/html/draft-ietf-rmcat-wireless-tests-08</a>></span>. </dd>
<dt id="ZHU-PV13">[ZHU-PV13]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor"> and R. Pan</span>, <span class="refTitle">"NADA: A Unified Congestion Control Scheme for Low-Latency Interactive Video"</span>, <span class="refContent">Proc. IEEE International Packet Video Workshop, San
Jose, CA, USA
</span>, <span class="seriesInfo">DOI 10.1109/PV.2013.6691448</span>, <time datetime="2013-12">December 2013</time>, <span><<a href="https://doi.org/10.1109/PV.2013.6691448">https://doi.org/10.1109/PV.2013.6691448</a>></span>. </dd>
</dl>
</section>
</section>
<div id="sec-network-nodes">
<section id="section-appendix.a">
<h2 id="name-network-node-operations">
<a href="#section-appendix.a" class="section-number selfRef">Appendix A. </a><a href="#name-network-node-operations" class="section-name selfRef">Network Node Operations</a>
</h2>
<p id="section-appendix.a-1">NADA can work with different network queue management
schemes and does not assume any specific network node operation.
As an example, this appendix describes three variants of queue
management behavior at the network node, leading to either
implicit or explicit congestion signals. It needs to be
acknowledged that NADA has not yet been tested with non-probabilistic
ECN marking behaviors.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
<p id="section-appendix.a-2">
In all three flavors described below, the network queue
operates with the simple First In, First Out (FIFO) principle.
There is no need to maintain per-flow state. The system
can scale easily with a large number of video flows and
at high link capacity.<a href="#section-appendix.a-2" class="pilcrow">¶</a></p>
<div id="sec-network-droptail">
<section id="section-a.1">
<h2 id="name-default-behavior-of-drop-ta">
<a href="#section-a.1" class="section-number selfRef">A.1. </a><a href="#name-default-behavior-of-drop-ta" class="section-name selfRef">Default Behavior of Drop-Tail Queues</a>
</h2>
<p id="section-a.1-1">
In a conventional network with drop-tail or RED queues,
congestion is inferred from the estimation of end-to-end
delay and/or packet loss. Packet drops at the queue are
detected at the receiver and contribute to the calculation
of the aggregated congestion signal x_curr. No special
action is required at the network node.<a href="#section-a.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-network-ecn">
<section id="section-a.2">
<h2 id="name-red-based-ecn-marking">
<a href="#section-a.2" class="section-number selfRef">A.2. </a><a href="#name-red-based-ecn-marking" class="section-name selfRef">RED-Based ECN Marking</a>
</h2>
<p id="section-a.2-1">In this mode, the network node randomly marks
the ECN field in the IP packet header following
the <span><a href="#RFC7567" class="xref">Random Early Detection
(RED) algorithm</a> [<a href="#RFC7567" class="xref">RFC7567</a>]</span>. Calculation of the marking
probability involves the following steps on packet arrival:<a href="#section-a.2-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal" id="section-a.2-2">
<li id="section-a.2-2.1">
<p id="section-a.2-2.1.1">update smoothed queue size q_avg as:<a href="#section-a.2-2.1.1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-a.2-2.1.2">
<pre>
q_avg = w*q + (1-w)*q_avg
</pre><a href="#section-a.2-2.1.2" class="pilcrow">¶</a>
</div>
</li>
<li id="section-a.2-2.2">
<p id="section-a.2-2.2.1">calculate marking probability p as:<a href="#section-a.2-2.2.1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-a.2-2.2.2">
<pre>
/ 0, if q < q_lo
|
| q_avg - q_lo
p= < p_max*--------------, if q_lo <= q < q_hi
| q_hi - q_lo
|
\ p = 1, if q >= q_hi
</pre><a href="#section-a.2-2.2.2" class="pilcrow">¶</a>
</div>
</li>
</ol>
<p id="section-a.2-3">
Here, q_lo and q_hi correspond to the low
and high thresholds of queue occupancy.
The maximum marking probability is p_max.<a href="#section-a.2-3" class="pilcrow">¶</a></p>
<p id="section-a.2-4">
The ECN marking events will contribute
to the calculation of an equivalent delay
x_curr at the receiver. No changes are required
at the sender.<a href="#section-a.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-network-pcn">
<section id="section-a.3">
<h2 id="name-random-early-marking-with-v">
<a href="#section-a.3" class="section-number selfRef">A.3. </a><a href="#name-random-early-marking-with-v" class="section-name selfRef">Random Early Marking with Virtual Queues</a>
</h2>
<p id="section-a.3-1">
Advanced network nodes may support random early marking
based on a token bucket algorithm originally designed for
<span><a href="#RFC6660" class="xref">Pre-Congestion Notification
(PCN)</a> [<a href="#RFC6660" class="xref">RFC6660</a>]</span>.
The early congestion notification (ECN) bit in the
IP header of packets is marked randomly.
The marking probability is calculated based on a
token bucket algorithm originally designed for
<span><a href="#RFC6660" class="xref">PCN</a> [<a href="#RFC6660" class="xref">RFC6660</a>]</span>.
The target link utilization is set as 90%; the marking
probability is designed to grow linearly with the token
bucket size when it varies between 1/3 and 2/3 of the
full token bucket limit.<a href="#section-a.3-1" class="pilcrow">¶</a></p>
<p id="section-a.3-2">Calculation of the marking probability involves
the following steps upon packet arrival:<a href="#section-a.3-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal" id="section-a.3-3">
<li id="section-a.3-3.1">
<p id="section-a.3-3.1.1">meter packet against token bucket (r,b)<a href="#section-a.3-3.1.1" class="pilcrow">¶</a></p>
</li>
<li id="section-a.3-3.2">
<p id="section-a.3-3.2.1">update token level b_tk<a href="#section-a.3-3.2.1" class="pilcrow">¶</a></p>
</li>
<li id="section-a.3-3.3">
<p id="section-a.3-3.3.1">calculate the marking probability as:<a href="#section-a.3-3.3.1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-a.3-3.3.2">
<pre>
/ 0, if b-b_tk < b_lo
|
| b-b_tk-b_lo
p = < p_max* --------------, if b_lo <= b-b_tk < b_hi
| b_hi-b_lo
|
\ 1, if b-b_tk >= b_hi
</pre><a href="#section-a.3-3.3.2" class="pilcrow">¶</a>
</div>
</li>
</ol>
<p id="section-a.3-4">
Here, the token bucket lower and upper limits are denoted by
b_lo and b_hi, respectively. The parameter b indicates the size
of the token bucket. The parameter r is chosen to be below
capacity, resulting in slight underutilization of the link.
The maximum marking probability is p_max.<a href="#section-a.3-4" class="pilcrow">¶</a></p>
<p id="section-a.3-5">The ECN marking events will contribute to the calculation
of an equivalent delay x_curr at the receiver. No changes are
required at the sender. The virtual queuing mechanism from
the PCN-based marking algorithm will lead to additional
benefits such as zero standing queues.<a href="#section-a.3-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-acknowledgments">
<section id="section-appendix.b">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<p id="section-appendix.b-1">
The authors would like to thank <span class="contact-name">Randell Jesup</span>, <span class="contact-name">Luca De Cicco</span>, <span class="contact-name">Piers O'Hanlon</span>, <span class="contact-name">Ingemar Johansson</span>, <span class="contact-name">Stefan Holmer</span>, <span class="contact-name">Cesar Ilharco Magalhaes</span>, <span class="contact-name">Safiqul Islam</span>,
<span class="contact-name">Michael Welzl</span>, <span class="contact-name">Mirja Kühlewind</span>,
<span class="contact-name">Karen Elisabeth Egede Nielsen</span>, <span class="contact-name">Julius Flohr</span>, <span class="contact-name">Roland Bless</span>, <span class="contact-name">Andreas Smas</span>, and <span class="contact-name">Martin Stiemerling</span> for their valuable
review comments and helpful input to this specification.<a href="#section-appendix.b-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-contributors">
<section id="section-appendix.c">
<h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
</h2>
<p id="section-appendix.c-1">The following individuals contributed to the implementation
and evaluation of the proposed scheme and, therefore, helped
to validate and substantially improve this specification.<a href="#section-appendix.c-1" class="pilcrow">¶</a></p>
<p id="section-appendix.c-2"><span class="contact-name">Paul E. Jones</span>
<paulej@packetizer.com> of Cisco Systems implemented
an early version of the NADA congestion control scheme and helped with its
lab-based testbed evaluations.<a href="#section-appendix.c-2" class="pilcrow">¶</a></p>
<p id="section-appendix.c-3"><span class="contact-name">Jiantao Fu</span> <jianfu@cisco.com> of Cisco
Systems helped with the
implementation and extensive evaluation of NADA both in Mozilla web browsers
and in earlier simulation-based evaluation efforts.<a href="#section-appendix.c-3" class="pilcrow">¶</a></p>
<p id="section-appendix.c-4"><span class="contact-name">Stefano D'Aronco</span>
<stefano.daronco@geod.baug.ethz.ch> of ETH Zurich
(previously at Ecole Polytechnique Federale de Lausanne when contributing
to this work) helped with the implementation and evaluation of an early
version
of NADA in <span>[<a href="#NS-3" class="xref">NS-3</a>]</span>.<a href="#section-appendix.c-4" class="pilcrow">¶</a></p>
<p id="section-appendix.c-5"><span class="contact-name">Charles Ganzhorn</span>
<charles.ganzhorn@gmail.com> contributed to the
testbed-based evaluation of NADA during an early stage of its development.<a href="#section-appendix.c-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="section-appendix.d">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Xiaoqing Zhu</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems</span></div>
<div dir="auto" class="left"><span class="street-address">12515 Research Blvd., Building 4</span></div>
<div dir="auto" class="left">
<span class="locality">Austin</span>, <span class="region">TX</span> <span class="postal-code">78759</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:xiaoqzhu@cisco.com" class="email">xiaoqzhu@cisco.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Rong Pan</span></div>
<div dir="auto" class="left"><span class="org">Intel Corporation</span></div>
<div dir="auto" class="left"><span class="street-address">2200 Mission College Blvd</span></div>
<div dir="auto" class="left">
<span class="locality">Santa Clara</span>, <span class="region">CA</span> <span class="postal-code">95054</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:rong.pan@intel.com" class="email">rong.pan@intel.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Michael A. Ramalho</span></div>
<div dir="auto" class="left"><span class="org">AcousticComms Consulting</span></div>
<div dir="auto" class="left"><span class="street-address">6310 Watercrest Way Unit 203</span></div>
<div dir="auto" class="left">
<span class="locality">Lakewood Ranch</span>, <span class="region">FL</span> <span class="postal-code">34202-5211</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+1%20732%20832%209723" class="tel">+1 732 832 9723</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:mar42@cornell.edu" class="email">mar42@cornell.edu</a>
</div>
<div class="url">
<span>URI:</span>
<a href="http://ramalho.webhop.info/" class="url">http://ramalho.webhop.info/</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Sergio Mena</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems</span></div>
<div dir="auto" class="left"><span class="street-address">EPFL, Quartier de l'Innovation, Batiment E</span></div>
<div dir="auto" class="left">
<span class="postal-code">1015</span> <span class="locality">Ecublens</span>
</div>
<div dir="auto" class="left"><span class="country-name">Switzerland</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:semena@cisco.com" class="email">semena@cisco.com</a>
</div>
</address>
</section>
</div>
<script>var toc = document.getElementById("toc");
var tocToggle = toc.querySelector("h2");
var tocNav = toc.querySelector("nav");
// mobile menu toggle
tocToggle.onclick = function(event) {
if (window.innerWidth < 1024) {
var tocNavDisplay = tocNav.currentStyle ? tocNav.currentStyle.display : getComputedStyle(tocNav, null).display;
if (tocNavDisplay == "none") {
tocNav.style.display = "block";
} else {
tocNav.style.display = "none";
}
}
}
// toc anchor scroll to anchor
tocNav.addEventListener("click", function (event) {
event.preventDefault();
if (event.target.nodeName == 'A') {
if (window.innerWidth < 1024) {
tocNav.style.display = "none";
}
var href = event.target.getAttribute("href");
var anchorId = href.substr(1);
var anchor = document.getElementById(anchorId);
anchor.scrollIntoView(true);
window.history.pushState("","",href);
}
});
// switch toc mode when window resized
window.onresize = function () {
if (window.innerWidth < 1024) {
tocNav.style.display = "none";
} else {
tocNav.style.display = "block";
}
}
</script>
</body>
</html>
|