File: rfc8698.html

package info (click to toggle)
doc-rfc 20230121-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 1,609,944 kB
file content (2992 lines) | stat: -rw-r--r-- 145,600 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8698: Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control Scheme for Real-Time Media</title>
<meta content="Xiaoqing Zhu" name="author">
<meta content="Rong Pan" name="author">
<meta content="Michael A. Ramalho" name="author">
<meta content="Sergio Mena" name="author">
<meta content="
       This document describes Network-Assisted Dynamic Adaptation (NADA), a
      novel congestion control scheme for interactive real-time media
      applications such as video conferencing. In the proposed scheme, the
      sender regulates its sending rate, based on either implicit or explicit
      congestion signaling, in a unified approach. The scheme can benefit from
      Explicit Congestion Notification (ECN) markings from network nodes. It
      also maintains consistent sender behavior in the absence of such
      markings by reacting to queuing delays and packet losses instead.  
    " name="description">
<meta content="xml2rfc 2.39.0" name="generator">
<meta content="Multimedia" name="keyword">
<meta content="Congestion Control" name="keyword">
<meta content="8698" name="rfc.number">
<link href="rfc8698.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*

  NOTE: Changes at the bottom of this file overrides some earlier settings.

  Once the style has stabilized and has been adopted as an official RFC style,
  this can be consolidated so that style settings occur only in one place, but
  for now the contents of this file consists first of the initial CSS work as
  provided to the RFC Formatter (xml2rfc) work, followed by itemized and
  commented changes found necssary during the development of the v3
  formatters.

*/

/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */

@viewport {
  zoom: 1.0;
  width: extend-to-zoom;
}
@-ms-viewport {
  width: extend-to-zoom;
  zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
  max-width: 90%;
  margin: 1.5em auto;
  color: #222;
  background-color: #fff;
  font-size: 14px;
  font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
  line-height: 1.6;
  scroll-behavior: smooth;
}
.ears {
  display: none;
}

/* headings */
#title, h1, h2, h3, h4, h5, h6 {
  margin: 1em 0 0.5em;
  font-weight: bold;
  line-height: 1.3;
}
#title {
  clear: both;
  border-bottom: 1px solid #ddd;
  margin: 0 0 0.5em 0;
  padding: 1em 0 0.5em;
}
.author {
  padding-bottom: 4px;
}
h1 {
  font-size: 26px;
  margin: 1em 0;
}
h2 {
  font-size: 22px;
  margin-top: -20px;  /* provide offset for in-page anchors */
  padding-top: 33px;
}
h3 {
  font-size: 18px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h4 {
  font-size: 16px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h5, h6 {
  font-size: 14px;
}
#n-copyright-notice {
  border-bottom: 1px solid #ddd;
  padding-bottom: 1em;
  margin-bottom: 1em;
}
/* general structure */
p {
  padding: 0;
  margin: 0 0 1em 0;
  text-align: left;
}
div, span {
  position: relative;
}
div {
  margin: 0;
}
.alignRight.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignRight.art-text pre {
  padding: 0;
}
.alignRight {
  margin: 1em 0;
}
.alignRight > *:first-child {
  border: none;
  margin: 0;
  float: right;
  clear: both;
}
.alignRight > *:nth-child(2) {
  clear: both;
  display: block;
  border: none;
}
svg {
  display: block;
}
.alignCenter.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
  padding: 0;
}
.alignCenter {
  margin: 1em 0;
}
.alignCenter > *:first-child {
  border: none;
  /* this isn't optimal, but it's an existence proof.  PrinceXML doesn't
     support flexbox yet.
  */
  display: table;
  margin: 0 auto;
}

/* lists */
ol, ul {
  padding: 0;
  margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
  margin-left: 1em;
}
li {
  margin: 0 0 0.25em 0;
}
.ulCompact li {
  margin: 0;
}
ul.empty, .ulEmpty {
  list-style-type: none;
}
ul.empty li, .ulEmpty li {
  margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
  line-height: 100%;
  margin: 0 0 0 2em;
}

/* definition lists */
dl {
}
dl > dt {
  float: left;
  margin-right: 1em;
}
/* 
dl.nohang > dt {
  float: none;
}
*/
dl > dd {
  margin-bottom: .8em;
  min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
  margin-bottom: 0em;
}
dl > dd > dl {
  margin-top: 0.5em;
  margin-bottom: 0em;
}

/* links */
a {
  text-decoration: none;
}
a[href] {
  color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
  background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
  color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
  background-color: transparent;
  cursor: default;
} */

/* Figures */
tt, code, pre, code {
  background-color: #f9f9f9;
  font-family: 'Roboto Mono', monospace;
}
pre {
  border: 1px solid #eee;
  margin: 0;
  padding: 1em;
}
img {
  max-width: 100%;
}
figure {
  margin: 0;
}
figure blockquote {
  margin: 0.8em 0.4em 0.4em;
}
figcaption {
  font-style: italic;
  margin: 0 0 1em 0;
}
@media screen {
  pre {
    overflow-x: auto;
    max-width: 100%;
    max-width: calc(100% - 22px);
  }
}

/* aside, blockquote */
aside, blockquote {
  margin-left: 0;
  padding: 1.2em 2em;
}
blockquote {
  background-color: #f9f9f9;
  color: #111; /* Arlen: WCAG 2019 */
  border: 1px solid #ddd;
  border-radius: 3px;
  margin: 1em 0;
}
cite {
  display: block;
  text-align: right;
  font-style: italic;
}

/* tables */
table {
  width: 100%;
  margin: 0 0 1em;
  border-collapse: collapse;
  border: 1px solid #eee;
}
th, td {
  text-align: left;
  vertical-align: top;
  padding: 0.5em 0.75em;
}
th {
  text-align: left;
  background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
  background-color: #f5f5f5;
}
table caption {
  font-style: italic;
  margin: 0;
  padding: 0;
  text-align: left;
}
table p {
  /* XXX to avoid bottom margin on table row signifiers. If paragraphs should
     be allowed within tables more generally, it would be far better to select on a class. */
  margin: 0;
}

/* pilcrow */
a.pilcrow {
  color: #666; /* Arlen: AHDJ 2019 */
  text-decoration: none;
  visibility: hidden;
  user-select: none;
  -ms-user-select: none;
  -o-user-select:none;
  -moz-user-select: none;
  -khtml-user-select: none;
  -webkit-user-select: none;
  -webkit-touch-callout: none;
}
@media screen {
  aside:hover > a.pilcrow,
  p:hover > a.pilcrow,
  blockquote:hover > a.pilcrow,
  div:hover > a.pilcrow,
  li:hover > a.pilcrow,
  pre:hover > a.pilcrow {
    visibility: visible;
  }
  a.pilcrow:hover {
    background-color: transparent;
  }
}

/* misc */
hr {
  border: 0;
  border-top: 1px solid #eee;
}
.bcp14 {
  font-variant: small-caps;
}

.role {
  font-variant: all-small-caps;
}

/* info block */
#identifiers {
  margin: 0;
  font-size: 0.9em;
}
#identifiers dt {
  width: 3em;
  clear: left;
}
#identifiers dd {
  float: left;
  margin-bottom: 0;
}
#identifiers .authors .author {
  display: inline-block;
  margin-right: 1.5em;
}
#identifiers .authors .org {
  font-style: italic;
}

/* The prepared/rendered info at the very bottom of the page */
.docInfo {
  color: #666; /* Arlen: WCAG 2019 */
  font-size: 0.9em;
  font-style: italic;
  margin-top: 2em;
}
.docInfo .prepared {
  float: left;
}
.docInfo .prepared {
  float: right;
}

/* table of contents */
#toc  {
  padding: 0.75em 0 2em 0;
  margin-bottom: 1em;
}
nav.toc ul {
  margin: 0 0.5em 0 0;
  padding: 0;
  list-style: none;
}
nav.toc li {
  line-height: 1.3em;
  margin: 0.75em 0;
  padding-left: 1.2em;
  text-indent: -1.2em;
}
/* references */
.references dt {
  text-align: right;
  font-weight: bold;
  min-width: 7em;
}
.references dd {
  margin-left: 8em;
  overflow: auto;
}

.refInstance {
  margin-bottom: 1.25em;
}

.references .ascii {
  margin-bottom: 0.25em;
}

/* index */
.index ul {
  margin: 0 0 0 1em;
  padding: 0;
  list-style: none;
}
.index ul ul {
  margin: 0;
}
.index li {
  margin: 0;
  text-indent: -2em;
  padding-left: 2em;
  padding-bottom: 5px;
}
.indexIndex {
  margin: 0.5em 0 1em;
}
.index a {
  font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
  .index ul {
    -moz-column-count: 2;
    -moz-column-gap: 20px;
  }
  .index ul ul {
    -moz-column-count: 1;
    -moz-column-gap: 0;
  }
}

/* authors */
address.vcard {
  font-style: normal;
  margin: 1em 0;
}

address.vcard .nameRole {
  font-weight: 700;
  margin-left: 0;
}
address.vcard .label {
  font-family: "Noto Sans",Arial,Helvetica,sans-serif;
  margin: 0.5em 0;
}
address.vcard .type {
  display: none;
}
.alternative-contact {
  margin: 1.5em 0 1em;
}
hr.addr {
  border-top: 1px dashed;
  margin: 0;
  color: #ddd;
  max-width: calc(100% - 16px);
}

/* temporary notes */
.rfcEditorRemove::before {
  position: absolute;
  top: 0.2em;
  right: 0.2em;
  padding: 0.2em;
  content: "The RFC Editor will remove this note";
  color: #9e2a00; /* Arlen: WCAG 2019 */
  background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
  position: relative;
  padding-top: 1.8em;
  background-color: #ffd; /* Arlen: WCAG 2019 */
  border-radius: 3px;
}
.cref {
  background-color: #ffd; /* Arlen: WCAG 2019 */
  padding: 2px 4px;
}
.crefSource {
  font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
  body {
    padding-top: 2em;
  }
  #title {
    padding: 1em 0;
  }
  h1 {
    font-size: 24px;
  }
  h2 {
    font-size: 20px;
    margin-top: -18px;  /* provide offset for in-page anchors */
    padding-top: 38px;
  }
  #identifiers dd {
    max-width: 60%;
  }
  #toc {
    position: fixed;
    z-index: 2;
    top: 0;
    right: 0;
    padding: 0;
    margin: 0;
    background-color: inherit;
    border-bottom: 1px solid #ccc;
  }
  #toc h2 {
    margin: -1px 0 0 0;
    padding: 4px 0 4px 6px;
    padding-right: 1em;
    min-width: 190px;
    font-size: 1.1em;
    text-align: right;
    background-color: #444;
    color: white;
    cursor: pointer;
  }
  #toc h2::before { /* css hamburger */
    float: right;
    position: relative;
    width: 1em;
    height: 1px;
    left: -164px;
    margin: 6px 0 0 0;
    background: white none repeat scroll 0 0;
    box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
    content: "";
  }
  #toc nav {
    display: none;
    padding: 0.5em 1em 1em;
    overflow: auto;
    height: calc(100vh - 48px);
    border-left: 1px solid #ddd;
  }
}

/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
  body {
    max-width: 724px;
    margin: 42px auto;
    padding-left: 1.5em;
    padding-right: 29em;
  }
  #toc {
    position: fixed;
    top: 42px;
    right: 42px;
    width: 25%;
    margin: 0;
    padding: 0 1em;
    z-index: 1;
  }
  #toc h2 {
    border-top: none;
    border-bottom: 1px solid #ddd;
    font-size: 1em;
    font-weight: normal;
    margin: 0;
    padding: 0.25em 1em 1em 0;
  }
  #toc nav {
    display: block;
    height: calc(90vh - 84px);
    bottom: 0;
    padding: 0.5em 0 0;
    overflow: auto;
  }
  img { /* future proofing */
    max-width: 100%;
    height: auto;
  }
}

/* pagination */
@media print {
  body {

    width: 100%;
  }
  p {
    orphans: 3;
    widows: 3;
  }
  #n-copyright-notice {
    border-bottom: none;
  }
  #toc, #n-introduction {
    page-break-before: always;
  }
  #toc {
    border-top: none;
    padding-top: 0;
  }
  figure, pre {
    page-break-inside: avoid;
  }
  figure {
    overflow: scroll;
  }
  h1, h2, h3, h4, h5, h6 {
    page-break-after: avoid;
  }
  h2+*, h3+*, h4+*, h5+*, h6+* {
    page-break-before: avoid;
  }
  pre {
    white-space: pre-wrap;
    word-wrap: break-word;
    font-size: 10pt;
  }
  table {
    border: 1px solid #ddd;
  }
  td {
    border-top: 1px solid #ddd;
  }
}

/* This is commented out here, as the string-set: doesn't
   pass W3C validation currently */
/*
.ears thead .left {
  string-set: ears-top-left content();
}

.ears thead .center {
  string-set: ears-top-center content();
}

.ears thead .right {
  string-set: ears-top-right content();
}

.ears tfoot .left {
  string-set: ears-bottom-left content();
}

.ears tfoot .center {
  string-set: ears-bottom-center content();
}

.ears tfoot .right {
  string-set: ears-bottom-right content();
}
*/

@page :first {
  padding-top: 0;
  @top-left {
    content: normal;
    border: none;
  }
  @top-center {
    content: normal;
    border: none;
  }
  @top-right {
    content: normal;
    border: none;
  }
}

@page {
  size: A4;
  margin-bottom: 45mm;
  padding-top: 20px;
  /* The follwing is commented out here, but set appropriately by in code, as
     the content depends on the document */
  /*
  @top-left {
    content: 'Internet-Draft';
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-left {
    content: string(ears-top-left);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-center {
    content: string(ears-top-center);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-right {
    content: string(ears-top-right);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @bottom-left {
    content: string(ears-bottom-left);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-center {
    content: string(ears-bottom-center);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-right {
      content: '[Page ' counter(page) ']';
      vertical-align: top;
      border-top: solid 1px #ccc;
  }
  */

}

/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
  z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
  clear: both;
}


/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
  vertical-align: top;
}

/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
  width: 8em;
}

/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
  margin-left: 1em;
}

/* Give floating toc a background color (needed when it's a div inside section */
#toc {
  background-color: white;
}

/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
  #toc h2 a,
  #toc h2 a:link,
  #toc h2 a:focus,
  #toc h2 a:hover,
  #toc a.toplink,
  #toc a.toplink:hover {
    color: white;
    background-color: #444;
    text-decoration: none;
  }
}

/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
  #toc {
    padding: 0 0 1em 1em;
  }
}

/* Style section numbers with more space between number and title */
.section-number {
  padding-right: 0.5em;
}

/* prevent monospace from becoming overly large */
tt, code, pre, code {
  font-size: 95%;
}

/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
  line-height: 1.12;
}


/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
  float: right;
  margin-right: 0.5em;
}

/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
  float: left;
  margin-right: 1em;
}
dl.dlNewline > dt {
  float: none;
}

/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
  text-align: left;
}
table td.text-center,
table th.text-center {
  text-align: center;
}
table td.text-right,
table th.text-right {
  text-align: right;
}

/* Make the alternative author contact informatio look less like just another
   author, and group it closer with the primary author contact information */
.alternative-contact {
  margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
  margin: 0 0 0 2em;
}

/* With it being possible to set tables with alignment
  left, center, and right, { width: 100%; } does not make sense */
table {
  width: auto;
}

/* Avoid reference text that sits in a block with very wide left margin,
   because of a long floating dt label.*/
.references dd {
  overflow: visible;
}

/* Control caption placement */
caption {
  caption-side: bottom;
}

/* Limit the width of the author address vcard, so names in right-to-left
   script don't end up on the other side of the page. */

address.vcard {
  max-width: 30em;
  margin-right: auto;
}

/* For address alignment dependent on LTR or RTL scripts */
address div.left {
  text-align: left;
}
address div.right {
  text-align: right;
}

/* Provide table alignment support.  We can't use the alignX classes above
   since they do unwanted things with caption and other styling. */
table.right {
 margin-left: auto;
 margin-right: 0;
}
table.center {
 margin-left: auto;
 margin-right: auto;
}
table.left {
 margin-left: 0;
 margin-right: auto;
}

/* Give the table caption label the same styling as the figcaption */
caption a[href] {
  color: #222;
}

@media print {
  .toplink {
    display: none;
  }

  /* avoid overwriting the top border line with the ToC header */
  #toc {
    padding-top: 1px;
  }

  /* Avoid page breaks inside dl and author address entries */
  .vcard {
    page-break-inside: avoid;
  }

}
/* Avoid wrapping of URLs in references */
@media screen {
  .references a {
    white-space: nowrap;
  }
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
  font-variant: small-caps;
  font-weight: bold;
  font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
 h2 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 31px;
 }
 h3 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
 h4 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
/* Float artwork pilcrow to the right */
@media screen {
  .artwork a.pilcrow {
    display: block;
    line-height: 0.7;
    margin-top: 0.15em;
  }
}
/* Make pilcrows on dd visible */
@media screen {
  dd:hover > a.pilcrow {
    visibility: visible;
  }
}
/* Make the placement of figcaption match that of a table's caption
   by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
   margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
  margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
   possibly even requiring a new line */
@media print {
  a.pilcrow {
    display: none;
  }
}
/* Styling for the external metadata */
div#external-metadata {
  background-color: #eee;
  padding: 0.5em;
  margin-bottom: 0.5em;
  display: none;
}
div#internal-metadata {
  padding: 0.5em;                       /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
  clear: both;
  margin: 0 0 -1em;
  padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
  margin: 0 0 0.25em 0;
  min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
  border-left: 1px solid #ddd;
  margin: 1em 0 1em 2em;
  padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
  margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
  figcaption, table caption {
    page-break-before: avoid;
  }
}
/* Font size adjustments for print */
@media print {
  body  { font-size: 10pt;      line-height: normal; max-width: 96%; }
  h1    { font-size: 1.72em;    padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
  h2    { font-size: 1.44em;    padding-top: 1.5em; } /* 1*1.2*1.2 */
  h3    { font-size: 1.2em;     padding-top: 1.5em; } /* 1*1.2 */
  h4    { font-size: 1em;       padding-top: 1.5em; }
  h5, h6 { font-size: 1em;      margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
  .artwork,
  .sourcecode {
    margin-bottom: 1em;
  }
}
/*
  The margin-left: 0 on <dd> removes all distinction
  between levels from nested <dl>s.  Undo that.
*/
dl.olPercent > dd,
dd {
  margin-left: revert;
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
  min-width: 20em;
}</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc8698" rel="alternate">
  <link href="urn:issn:2070-1721" rel="alternate">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-rmcat-nada-13" rel="prev">
  </head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8698</td>
<td class="center">NADA</td>
<td class="right">February 2020</td>
</tr></thead>
<tfoot><tr>
<td class="left">Zhu, et al.</td>
<td class="center">Experimental</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8698" class="eref">8698</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Experimental</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2020-02" class="published">February 2020</time>
    </dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
      <div class="author-name">X. Zhu</div>
<div class="org">Cisco Systems</div>
</div>
<div class="author">
      <div class="author-name">R. Pan</div>
<div class="org">Intel Corporation</div>
</div>
<div class="author">
      <div class="author-name">M. Ramalho</div>
<div class="org">AcousticComms</div>
</div>
<div class="author">
      <div class="author-name">S. Mena</div>
<div class="org">Cisco Systems</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8698</h1>
<h1 id="title">Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control Scheme for Real-Time Media</h1>
<section id="section-abstract">
      <h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This document describes Network-Assisted Dynamic Adaptation (NADA), a
      novel congestion control scheme for interactive real-time media
      applications such as video conferencing. In the proposed scheme, the
      sender regulates its sending rate, based on either implicit or explicit
      congestion signaling, in a unified approach. The scheme can benefit from
      Explicit Congestion Notification (ECN) markings from network nodes. It
      also maintains consistent sender behavior in the absence of such
      markings by reacting to queuing delays and packet losses instead.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
        <h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
        </h2>
<p id="section-boilerplate.1-1">
            This document is not an Internet Standards Track specification; it is
            published for examination, experimental implementation, and
            evaluation.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
            This document defines an Experimental Protocol for the Internet
            community.  This document is a product of the Internet Engineering
            Task Force (IETF).  It represents the consensus of the IETF community.
            It has received public review and has been approved for publication
            by the Internet Engineering Steering Group (IESG).  Not all documents
            approved by the IESG are candidates for any level of Internet
            Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <span><a href="https://www.rfc-editor.org/info/rfc8698">https://www.rfc-editor.org/info/rfc8698</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
        <h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
        </h2>
<p id="section-boilerplate.2-1">
            Copyright (c) 2020 IETF Trust and the persons identified as the
            document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
        <a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
        </h2>
<nav class="toc"><ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.1">
            <p id="section-toc.1-1.1.1"><a href="#section-1" class="xref">1</a>.  <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2">
            <p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>.  <a href="#name-terminology" class="xref">Terminology</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3">
            <p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>.  <a href="#name-system-overview" class="xref">System Overview</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4">
            <p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.  <a href="#name-core-congestion-control-alg" class="xref">Core Congestion Control Algorithm</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.4.2.1">
                <p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>.  <a href="#name-mathematical-notations" class="xref">Mathematical Notations</a><a href="#section-toc.1-1.4.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.2">
                <p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>.  <a href="#name-receiver-side-algorithm" class="xref">Receiver-Side Algorithm</a><a href="#section-toc.1-1.4.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4.2.3">
                <p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>.  <a href="#name-sender-side-algorithm" class="xref">Sender-Side Algorithm</a><a href="#section-toc.1-1.4.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5">
            <p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.  <a href="#name-practical-implementation-of" class="xref">Practical Implementation of NADA</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.5.2.1">
                <p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>.  <a href="#name-receiver-side-operation" class="xref">Receiver-Side Operation</a><a href="#section-toc.1-1.5.2.1.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.5.2.1.2.1">
                    <p id="section-toc.1-1.5.2.1.2.1.1"><a href="#section-5.1.1" class="xref">5.1.1</a>.  <a href="#name-estimation-of-one-way-delay" class="xref">Estimation of One-Way Delay and Queuing Delay</a><a href="#section-toc.1-1.5.2.1.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.1.2.2">
                    <p id="section-toc.1-1.5.2.1.2.2.1"><a href="#section-5.1.2" class="xref">5.1.2</a>.  <a href="#name-estimation-of-packet-loss-m" class="xref">Estimation of Packet Loss/Marking Ratio</a><a href="#section-toc.1-1.5.2.1.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.1.2.3">
                    <p id="section-toc.1-1.5.2.1.2.3.1"><a href="#section-5.1.3" class="xref">5.1.3</a>.  <a href="#name-estimation-of-receiving-rat" class="xref">Estimation of Receiving Rate</a><a href="#section-toc.1-1.5.2.1.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.2">
                <p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>.  <a href="#name-sender-side-operation" class="xref">Sender-Side Operation</a><a href="#section-toc.1-1.5.2.2.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.5.2.2.2.1">
                    <p id="section-toc.1-1.5.2.2.2.1.1"><a href="#section-5.2.1" class="xref">5.2.1</a>.  <a href="#name-rate-shaping-buffer" class="xref">Rate-Shaping Buffer</a><a href="#section-toc.1-1.5.2.2.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.2.2.2">
                    <p id="section-toc.1-1.5.2.2.2.2.1"><a href="#section-5.2.2" class="xref">5.2.2</a>.  <a href="#name-adjusting-video-target-rate" class="xref">Adjusting Video Target Rate and Sending Rate</a><a href="#section-toc.1-1.5.2.2.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.3">
                <p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>.  <a href="#name-feedback-message-requiremen" class="xref">Feedback Message Requirements</a><a href="#section-toc.1-1.5.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6">
            <p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.  <a href="#name-discussions-and-further-inv" class="xref">Discussions and Further Investigations</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.6.2.1">
                <p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>.  <a href="#name-choice-of-delay-metrics" class="xref">Choice of Delay Metrics</a><a href="#section-toc.1-1.6.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6.2.2">
                <p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>.  <a href="#name-method-for-delay-loss-and-m" class="xref">Method for Delay, Loss, and Marking Ratio Estimation</a><a href="#section-toc.1-1.6.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6.2.3">
                <p id="section-toc.1-1.6.2.3.1"><a href="#section-6.3" class="xref">6.3</a>.  <a href="#name-impact-of-parameter-values" class="xref">Impact of Parameter Values</a><a href="#section-toc.1-1.6.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6.2.4">
                <p id="section-toc.1-1.6.2.4.1"><a href="#section-6.4" class="xref">6.4</a>.  <a href="#name-sender-based-vs-receiver-ba" class="xref">Sender-Based vs. Receiver-Based Calculation</a><a href="#section-toc.1-1.6.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6.2.5">
                <p id="section-toc.1-1.6.2.5.1"><a href="#section-6.5" class="xref">6.5</a>.  <a href="#name-incremental-deployment" class="xref">Incremental Deployment</a><a href="#section-toc.1-1.6.2.5.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7">
            <p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>.  <a href="#name-reference-implementations" class="xref">Reference Implementations</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.8">
            <p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>.  <a href="#name-suggested-experiments" class="xref">Suggested Experiments</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.9">
            <p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>.  <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.10">
            <p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.11">
            <p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>. <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.11.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.11.2.1">
                <p id="section-toc.1-1.11.2.1.1"><a href="#section-11.1" class="xref">11.1</a>.  <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.11.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.11.2.2">
                <p id="section-toc.1-1.11.2.2.1"><a href="#section-11.2" class="xref">11.2</a>.  <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.11.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.12">
            <p id="section-toc.1-1.12.1"><a href="#section-appendix.a" class="xref">Appendix A</a>.  <a href="#name-network-node-operations" class="xref">Network Node Operations</a><a href="#section-toc.1-1.12.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.12.2.1">
                <p id="section-toc.1-1.12.2.1.1"><a href="#section-a.1" class="xref">A.1</a>.  <a href="#name-default-behavior-of-drop-ta" class="xref">Default Behavior of Drop-Tail Queues</a><a href="#section-toc.1-1.12.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.12.2.2">
                <p id="section-toc.1-1.12.2.2.1"><a href="#section-a.2" class="xref">A.2</a>.  <a href="#name-red-based-ecn-marking" class="xref">RED-Based ECN Marking</a><a href="#section-toc.1-1.12.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.12.2.3">
                <p id="section-toc.1-1.12.2.3.1"><a href="#section-a.3" class="xref">A.3</a>.  <a href="#name-random-early-marking-with-v" class="xref">Random Early Marking with Virtual Queues</a><a href="#section-toc.1-1.12.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.13">
            <p id="section-toc.1-1.13.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a><a href="#section-toc.1-1.13.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.14">
            <p id="section-toc.1-1.14.1"><a href="#section-appendix.c" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a><a href="#section-toc.1-1.14.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.15">
            <p id="section-toc.1-1.15.1"><a href="#section-appendix.d" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.15.1" class="pilcrow">¶</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="sec-intro">
<section id="section-1">
      <h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
      </h2>
<p id="section-1-1">Interactive real-time media applications introduce a unique set of
      challenges for congestion control. Unlike TCP, the mechanism used for
      real-time media needs to adapt quickly to instantaneous bandwidth
      changes, accommodate fluctuations in the output of video encoder rate
      control, and cause low queuing delay over the network. An ideal scheme
      should also make effective use of all types of congestion signals,
      including packet loss, queuing delay, and explicit congestion
      notification (ECN) <span>[<a href="#RFC3168" class="xref">RFC3168</a>]</span>
      markings. The requirements for the congestion control algorithm are
      outlined in <span>[<a href="#I-D.ietf-rmcat-cc-requirements" class="xref">RMCAT-CC</a>]</span>.

    The requirements highlight that the desired congestion control scheme
    should 1) avoid flow starvation and attain a reasonable fair share of
    bandwidth when competing against other flows, 2) adapt quickly, and 3)
    operate in a stable manner.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">This document describes an experimental congestion control scheme
    called Network-Assisted Dynamic Adaptation (NADA). The design of NADA
    benefits from explicit congestion control signals (e.g., ECN markings)
    from the network, yet also operates when only implicit congestion
    indicators (delay and/or loss) are available. Such a unified sender
    behavior distinguishes NADA from other congestion control schemes for
    real-time media. In addition, its core congestion control algorithm is
    designed to guarantee stability for path round-trip times (RTTs) below
    a prescribed bound (e.g., 250 ms with default parameter choices). It
    further supports weighted bandwidth sharing among competing video flows
    with different priorities. The signaling mechanism consists of standard
    Real-time Transport Protocol (RTP) timestamp <span>[<a href="#RFC3550" class="xref">RFC3550</a>]</span> and Real-time
    Transport Control Protocol (RTCP) feedback reports.
    The definition of the desired RTCP feedback message is described in
    detail in <span>[<a href="#I-D.ietf-avtcore-cc-feedback-message" class="xref">RTCP-FEEDBACK</a>]</span>
    so as to support the successful operation of several congestion control
    schemes for real-time interactive media.<a href="#section-1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-term">
<section id="section-2">
      <h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
      </h2>
<p id="section-2-1">
    The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
    "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>",
    "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
    "<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are
    to be interpreted as described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span>
        <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when, they appear in all capitals,
    as shown here.<a href="#section-2-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-system-overview">
<section id="section-3">
      <h2 id="name-system-overview">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-system-overview" class="section-name selfRef">System Overview</a>
      </h2>
<p id="section-3-1"><a href="#fig-system-overview" class="xref">Figure 1</a> shows the
      end-to-end
    system for real-time media transport that NADA operates in. Note that
    there also exist network nodes along the reverse (potentially uncongested)
    path that the RTCP feedback reports traverse. Those network nodes are not
    shown in the figure for the sake of brevity.<a href="#section-3-1" class="pilcrow">¶</a></p>
<span id="name-system-overview-2"></span><div id="fig-system-overview">
<figure id="figure-1">
        <div class="artwork art-text alignLeft" id="section-3-2.1">
<pre>
  +---------+  r_vin  +--------+        +--------+     +----------+
  |  Media  |&lt;--------|  RTP   |        |Network |     |   RTP    |
  | Encoder |========&gt;| Sender |=======&gt;|  Node  |====&gt;| Receiver |  
  +---------+  r_vout +--------+ r_send +--------+     +----------+
                          /|\                                |
                           |                                 |
                           +---------------------------------+
                                 RTCP Feedback Report
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-system-overview-2" class="selfRef">System Overview</a>
        </figcaption></figure>
</div>
<dl class="dlParallel" id="section-3-3">
        <dt id="section-3-3.1">Media encoder with rate control capabilities:
</dt>
<dd id="section-3-3.2">Encodes raw media (audio and video) frames into a compressed bitstream
that is later packetized into RTP packets. As discussed in <span>[<a href="#RFC8593" class="xref">RFC8593</a>]</span>, the
actual output rate from the encoder r_vout may fluctuate around the target
r_vin. Furthermore, it is possible that the encoder can only react to bit rate
changes at rather coarse time intervals, e.g., once every 0.5 seconds.<a href="#section-3-3.2" class="pilcrow">¶</a>
</dd>
<dt id="section-3-3.3">RTP sender:
</dt>
<dd id="section-3-3.4">Responsible for calculating the NADA reference rate based on network
congestion indicators (delay, loss, or ECN marking reports from the receiver),
for updating the video encoder with a new target rate r_vin and for
regulating the actual sending rate r_send accordingly. The RTP sender also
generates a sending timestamp for each outgoing packet.<a href="#section-3-3.4" class="pilcrow">¶</a>
</dd>
<dt id="section-3-3.5">RTP receiver:
</dt>
<dd id="section-3-3.6">Responsible for measuring and estimating end-to-end delay (based on sender
timestamp), packet loss (based on RTP sequence number), ECN marking ratios
(based on <span>[<a href="#RFC6679" class="xref">RFC6679</a>]</span>), and receiving rate (r_recv) of the
flow. It calculates
the aggregated congestion signal (x_curr) that accounts for queuing delay, ECN
markings, and packet losses. The receiver also determines the mode for sender
rate adaptation (rmode) based on whether the flow has encountered any standing
non-zero congestion. The receiver sends periodic RTCP reports back to the
sender, containing values of x_curr, rmode, and r_recv.<a href="#section-3-3.6" class="pilcrow">¶</a>
</dd>
<dt id="section-3-3.7">Network node with several modes of operation:
</dt>
<dd id="section-3-3.8">The system can work with the default behavior of a simple drop-tail
queue. It can also benefit from advanced Active Queue Management (AQM)
features such as Proportional Integral Controller Enhanced <span><a href="#RFC8033" class="xref">(PIE)</a> [<a href="#RFC8033" class="xref">RFC8033</a>]</span>, Flow Queue Controlling Queue Delay <span><a href="#RFC8290" class="xref">(FQ-CoDel)</a> [<a href="#RFC8290" class="xref">RFC8290</a>]</span>, ECN
marking based on <span><a href="#RFC7567" class="xref">Random Early Detection (RED)</a> [<a href="#RFC7567" class="xref">RFC7567</a>]</span>,
and Pre-Congestion Notification (PCN) marking using a
token bucket algorithm <span>[<a href="#RFC6660" class="xref">RFC6660</a>]</span>. Note that network node
operation is out of scope for the design of NADA.<a href="#section-3-3.8" class="pilcrow">¶</a>
</dd>
</dl>
</section>
</div>
<div id="sec-algorithm">
<section id="section-4">
      <h2 id="name-core-congestion-control-alg">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-core-congestion-control-alg" class="section-name selfRef">Core Congestion Control Algorithm</a>
      </h2>
<p id="section-4-1">Like TCP-Friendly Rate Control (TFRC) <span>[<a href="#FLOYD-CCR00" class="xref">FLOYD-CCR00</a>]</span>
        <span>[<a href="#RFC5348" class="xref">RFC5348</a>]</span>, NADA is a rate-based
 congestion
  control algorithm. In its simplest form, the sender reacts to the
  collection of network congestion indicators in the form of an
  aggregated congestion signal and operates in one of two modes:<a href="#section-4-1" class="pilcrow">¶</a></p>
<dl class="dlParallel" id="section-4-2">
        <dt id="section-4-2.1">Accelerated ramp up:
</dt>
<dd id="section-4-2.2">When the bottleneck is deemed to be underutilized, the rate increases
multiplicatively with respect to the rate of previously successful
transmissions.  The rate increase multiplier (gamma) is calculated based on
the observed round-trip time and target feedback interval, so as to limit
self-inflicted queuing delay.<a href="#section-4-2.2" class="pilcrow">¶</a>
</dd>
<dt id="section-4-2.3">Gradual rate update:
</dt>
<dd id="section-4-2.4">In the presence of a non-zero aggregate congestion signal, the sending
rate
is adjusted in reaction to both its value (x_curr) and its change in value
(x_diff).<a href="#section-4-2.4" class="pilcrow">¶</a>
</dd>
</dl>
<p id="section-4-3">This section introduces the list of mathematical notations and
  describes the core congestion control algorithm at the sender and
  receiver, respectively. Additional details on recommended practical
  implementations are described in Sections <a href="#sec-receiver" class="xref">5.1</a>
  and <a href="#sec-sender" class="xref">5.2</a>.<a href="#section-4-3" class="pilcrow">¶</a></p>
<div id="sec-notation">
<section id="section-4.1">
        <h3 id="name-mathematical-notations">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-mathematical-notations" class="section-name selfRef">Mathematical Notations</a>
        </h3>
<p id="section-4.1-1">This section summarizes the list of variables and parameters used
        in the NADA algorithm. <a href="#tab-parameters" class="xref">Table 2</a> also includes the default values for choosing the
        algorithm parameters to represent either a typical setting in
        practical applications or a setting based on theoretical and
        simulation studies.  See <a href="#sec-discussion-c" class="xref">Section 6.3</a> for some of the discussions on the impact of
        parameter values. Additional studies in real-world settings suggested
        in <a href="#sec-experiments" class="xref">Section 8</a> could gather
        further insight on how to choose and adapt these parameter values in
        practical deployment.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<span id="name-list-of-variables"></span><div id="tab-variables">
<table class="left" id="table-1">
          <caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-list-of-variables" class="selfRef">List of Variables</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">Notation</th>
              <th class="text-left" rowspan="1" colspan="1">Variable Name</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">t_curr</td>
              <td class="text-left" rowspan="1" colspan="1">Current timestamp</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">t_last</td>
              <td class="text-left" rowspan="1" colspan="1">Last time sending/receiving a feedback message</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">delta</td>
              <td class="text-left" rowspan="1" colspan="1">Observed interval between current and previous
      feedback reports: delta = t_curr-t_last</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">r_ref</td>
              <td class="text-left" rowspan="1" colspan="1">Reference rate based on network congestion</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">r_send</td>
              <td class="text-left" rowspan="1" colspan="1">Sending rate</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">r_recv</td>
              <td class="text-left" rowspan="1" colspan="1">Receiving rate</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">r_vin</td>
              <td class="text-left" rowspan="1" colspan="1">Target rate for video encoder</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">r_vout</td>
              <td class="text-left" rowspan="1" colspan="1">Output rate from video encoder</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">d_base</td>
              <td class="text-left" rowspan="1" colspan="1">Estimated baseline delay</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">d_fwd</td>
              <td class="text-left" rowspan="1" colspan="1">Measured and filtered one-way delay</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">d_queue</td>
              <td class="text-left" rowspan="1" colspan="1">Estimated queuing delay</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">d_tilde</td>
              <td class="text-left" rowspan="1" colspan="1">Equivalent delay after non-linear warping</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">p_mark</td>
              <td class="text-left" rowspan="1" colspan="1">Estimated packet ECN marking ratio</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">p_loss</td>
              <td class="text-left" rowspan="1" colspan="1">Estimated packet loss ratio</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">x_curr</td>
              <td class="text-left" rowspan="1" colspan="1">Aggregate congestion signal</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">x_prev</td>
              <td class="text-left" rowspan="1" colspan="1">Previous value of aggregate congestion signal</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">x_diff</td>
              <td class="text-left" rowspan="1" colspan="1">Change in aggregate congestion signal w.r.t. its
      previous value: x_diff = x_curr - x_prev</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">rmode</td>
              <td class="text-left" rowspan="1" colspan="1">Rate update mode: (0 = accelerated ramp up; 1 =
      gradual update)</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">gamma</td>
              <td class="text-left" rowspan="1" colspan="1">Rate increase multiplier in accelerated ramp-up
      mode</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">loss_int</td>
              <td class="text-left" rowspan="1" colspan="1">Measured average loss interval in packet count</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">loss_exp</td>
              <td class="text-left" rowspan="1" colspan="1">Threshold value for setting the last observed packet
      loss to expiration</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">rtt</td>
              <td class="text-left" rowspan="1" colspan="1">Estimated round-trip time at sender</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">buffer_len</td>
              <td class="text-left" rowspan="1" colspan="1">Rate-shaping buffer occupancy measured in bytes</td>
            </tr>
          </tbody>
        </table>
</div>
<span id="name-list-of-algorithm-parameter"></span><div id="tab-parameters">
<table class="left" id="table-2">
          <caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-list-of-algorithm-parameter" class="selfRef">List of Algorithm Parameters and Their Default Values</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">Notation</th>
              <th class="text-left" rowspan="1" colspan="1">Parameter Name</th>
              <th class="text-left" rowspan="1" colspan="1">Default Value</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">PRIO</td>
              <td class="text-left" rowspan="1" colspan="1">Weight of priority of the flow</td>
              <td class="text-left" rowspan="1" colspan="1">1.0</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">RMIN</td>
              <td class="text-left" rowspan="1" colspan="1">Minimum rate of application supported by media
      encoder</td>
              <td class="text-left" rowspan="1" colspan="1">150 Kbps</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">RMAX</td>
              <td class="text-left" rowspan="1" colspan="1">Maximum rate of application supported by media
      encoder</td>
              <td class="text-left" rowspan="1" colspan="1">1.5 Mbps</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">XREF</td>
              <td class="text-left" rowspan="1" colspan="1">Reference congestion level</td>
              <td class="text-left" rowspan="1" colspan="1">10 ms</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">KAPPA</td>
              <td class="text-left" rowspan="1" colspan="1">Scaling parameter for gradual rate update
      calculation</td>
              <td class="text-left" rowspan="1" colspan="1">0.5</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">ETA</td>
              <td class="text-left" rowspan="1" colspan="1">Scaling parameter for gradual rate update
      calculation</td>
              <td class="text-left" rowspan="1" colspan="1">2.0</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">TAU</td>
              <td class="text-left" rowspan="1" colspan="1">Upper bound of RTT in gradual rate update
      calculation</td>
              <td class="text-left" rowspan="1" colspan="1">500 ms</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">DELTA</td>
              <td class="text-left" rowspan="1" colspan="1">Target feedback interval</td>
              <td class="text-left" rowspan="1" colspan="1">100 ms</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">LOGWIN</td>
              <td class="text-left" rowspan="1" colspan="1">Observation window in time for calculating packet
      summary statistics at receiver</td>
              <td class="text-left" rowspan="1" colspan="1">500 ms</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">QEPS</td>
              <td class="text-left" rowspan="1" colspan="1">Threshold for determining queuing delay buildup at
      receiver</td>
              <td class="text-left" rowspan="1" colspan="1">10 ms</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">DFILT</td>
              <td class="text-left" rowspan="1" colspan="1">Bound on filtering delay</td>
              <td class="text-left" rowspan="1" colspan="1">120 ms</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">GAMMA_MAX</td>
              <td class="text-left" rowspan="1" colspan="1">Upper bound on rate increase ratio for accelerated ramp
      up</td>
              <td class="text-left" rowspan="1" colspan="1">0.5</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">QBOUND</td>
              <td class="text-left" rowspan="1" colspan="1">Upper bound on self-inflicted queuing delay during ramp
      up</td>
              <td class="text-left" rowspan="1" colspan="1">50 ms</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">MULTILOSS</td>
              <td class="text-left" rowspan="1" colspan="1">Multiplier for self-scaling the expiration threshold of
      the last observed loss (loss_exp) based on measured average loss
      interval (loss_int)</td>
              <td class="text-left" rowspan="1" colspan="1">7.0</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">QTH</td>
              <td class="text-left" rowspan="1" colspan="1">Delay threshold for invoking non-linear warping</td>
              <td class="text-left" rowspan="1" colspan="1">50 ms</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">LAMBDA</td>
              <td class="text-left" rowspan="1" colspan="1">Scaling parameter in the exponent of non-linear
      warping</td>
              <td class="text-left" rowspan="1" colspan="1">0.5</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">PLRREF</td>
              <td class="text-left" rowspan="1" colspan="1">Reference packet loss ratio</td>
              <td class="text-left" rowspan="1" colspan="1">0.01</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">PMRREF</td>
              <td class="text-left" rowspan="1" colspan="1">Reference packet marking ratio</td>
              <td class="text-left" rowspan="1" colspan="1">0.01</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">DLOSS</td>
              <td class="text-left" rowspan="1" colspan="1">Reference delay penalty for loss when packet loss ratio
      is at PLRREF</td>
              <td class="text-left" rowspan="1" colspan="1">10 ms</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">DMARK</td>
              <td class="text-left" rowspan="1" colspan="1">Reference delay penalty for ECN marking when packet
      marking is at PMRREF</td>
              <td class="text-left" rowspan="1" colspan="1">2 ms</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">FPS</td>
              <td class="text-left" rowspan="1" colspan="1">Frame rate of incoming video</td>
              <td class="text-left" rowspan="1" colspan="1">30</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">BETA_S</td>
              <td class="text-left" rowspan="1" colspan="1">Scaling parameter for modulating outgoing sending
      rate</td>
              <td class="text-left" rowspan="1" colspan="1">0.1</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">BETA_V</td>
              <td class="text-left" rowspan="1" colspan="1">Scaling parameter for modulating video encoder target
      rate</td>
              <td class="text-left" rowspan="1" colspan="1">0.1</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">ALPHA</td>
              <td class="text-left" rowspan="1" colspan="1">Smoothing factor in exponential smoothing of packet
      loss and marking ratios</td>
              <td class="text-left" rowspan="1" colspan="1">0.1</td>
            </tr>
          </tbody>
        </table>
</div>
</section>
</div>
<div id="subsec-receiver-algorithm">
<section id="section-4.2">
        <h3 id="name-receiver-side-algorithm">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-receiver-side-algorithm" class="section-name selfRef">Receiver-Side Algorithm</a>
        </h3>
<p id="section-4.2-1">The receiver-side algorithm can be outlined as below:<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2-2.1">On initialization:<a href="#section-4.2-2.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.2">
            <ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2-2.2.1.1">set d_base = +INFINITY<a href="#section-4.2-2.2.1.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.2.1.2">set p_loss = 0<a href="#section-4.2-2.2.1.2" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.2.1.3">set p_mark = 0<a href="#section-4.2-2.2.1.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.2.1.4">set r_recv = 0<a href="#section-4.2-2.2.1.4" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.2.1.5">set both t_last and t_curr as current time in milliseconds<a href="#section-4.2-2.2.1.5" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="ulEmpty" id="section-4.2-2.3">On receiving a media packet:<a href="#section-4.2-2.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4">
            <ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2-2.4.1.1">obtain current timestamp t_curr from system clock<a href="#section-4.2-2.4.1.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.2">obtain from packet header sending time stamp t_sent<a href="#section-4.2-2.4.1.2" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.3">obtain one-way delay measurement: d_fwd = t_curr - t_sent<a href="#section-4.2-2.4.1.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.4">update baseline delay: d_base = min(d_base, d_fwd)<a href="#section-4.2-2.4.1.4" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.5">update queuing delay:  d_queue = d_fwd - d_base<a href="#section-4.2-2.4.1.5" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.6">update packet loss ratio estimate p_loss<a href="#section-4.2-2.4.1.6" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.7">update packet marking ratio estimate p_mark<a href="#section-4.2-2.4.1.7" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.4.1.8">update measurement of receiving rate r_recv<a href="#section-4.2-2.4.1.8" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="ulEmpty" id="section-4.2-2.5">On time to send a new feedback report (t_curr - t_last &gt; DELTA):<a href="#section-4.2-2.5" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.6">
            <ul class="ulEmpty">
<li class="ulEmpty" id="section-4.2-2.6.1.1">calculate non-linear warping of delay d_tilde if packet loss exists<a href="#section-4.2-2.6.1.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.6.1.2">calculate current aggregate congestion signal x_curr<a href="#section-4.2-2.6.1.2" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.6.1.3">determine mode of rate adaptation for sender: rmode<a href="#section-4.2-2.6.1.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.6.1.4">send feedback containing values of: rmode, x_curr, and r_recv<a href="#section-4.2-2.6.1.4" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.2-2.6.1.5">update t_last = t_curr<a href="#section-4.2-2.6.1.5" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-4.2-3">In order for a delay-based flow to hold its ground when competing
   against loss-based flows (e.g., loss-based TCP), it is important
   to distinguish between different levels of observed queuing delay.
   For instance, over wired connections, a moderate queuing delay value
   on the order of tens of milliseconds is likely self-inflicted or
   induced by other delay-based flows, whereas a high queuing delay
   value of several hundreds of milliseconds may indicate the presence
   of a loss-based flow that does not refrain from increased delay.<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<p id="section-4.2-4"> If the last observed packet loss is within the expiration 
window of loss_exp (measured in terms of packet counts), the
estimated queuing delay follows a non-linear warping:<a href="#section-4.2-4" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.2-5">
<pre>
           / d_queue,                   if d_queue &lt; QTH
           |
d_tilde = &lt;                                           (1)
           |                  (d_queue-QTH)  
           \ QTH exp(-LAMBDA ---------------) , otherwise
                                 QTH    </pre><a href="#section-4.2-5" class="pilcrow">¶</a>
</div>
<p id="section-4.2-6">
In Equation (1), the queuing delay value is unchanged when it is below
the first threshold QTH; otherwise, it is scaled down following
a non-linear curve. This non-linear warping is inspired by
the delay-adaptive congestion window backoff policy in
<span>[<a href="#BUDZISZ-AIMD-CC" class="xref">BUDZISZ-AIMD-CC</a>]</span> so as to "gradually nudge"
the controller to operate based on loss-induced congestion
signals when competing against loss-based flows. The exact form
of the non-linear function has been simplified with respect to
<span>[<a href="#BUDZISZ-AIMD-CC" class="xref">BUDZISZ-AIMD-CC</a>]</span>. The value of the threshold
QTH should be carefully tuned for different operational environments
so as to avoid potential risks of prematurely discounting the congestion
signal level. Typically, a higher value of QTH is required in a
noisier environment (e.g., over wireless connections or where the
video stream encounters many time-varying background competing traffic)
so as to stay robust against occasional non-congestion-induced delay
spikes. Additional insights on how this value can be tuned or auto-tuned
should be gathered from carrying out experimental studies in different
real-world deployment scenarios.<a href="#section-4.2-6" class="pilcrow">¶</a></p>
<p id="section-4.2-7">The value of loss_exp is configured to self-scale with the average
  packet loss interval loss_int with a multiplier MULTILOSS:<a href="#section-4.2-7" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.2-8">
<pre> loss_exp = MULTILOSS *
loss_int.  </pre><a href="#section-4.2-8" class="pilcrow">¶</a>
</div>
<p id="section-4.2-9">Estimation of the average loss interval loss_int, in turn, follows
 <span><a href="https://www.rfc-editor.org/rfc/rfc5348#section-5.4" class="relref">Section 5.4</a> of "TCP Friendly Rate Control
   (TFRC): Protocol Specification" [<a href="#RFC5348" class="xref">RFC5348</a>]</span>.<a href="#section-4.2-9" class="pilcrow">¶</a></p>
<p id="section-4.2-10">In practice, it is recommended to linearly interpolate between the
warped (d_tilde) and non-warped (d_queue) values of the queuing delay
during the transitional period lasting for the duration of loss_int.<a href="#section-4.2-10" class="pilcrow">¶</a></p>
<p id="section-4.2-11">The aggregate congestion signal is:<a href="#section-4.2-11" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.2-12">
<pre>
                         / p_mark \^2        / p_loss \^2 
x_curr = d_tilde + DMARK*|--------|  + DLOSS*|--------|   (2) 
                         \ PMRREF /          \ PLRREF /         </pre><a href="#section-4.2-12" class="pilcrow">¶</a>
</div>
<p id="section-4.2-13">Here, DMARK is prescribed a reference delay penalty associated with
        ECN markings at the reference marking ratio of PMRREF; DLOSS is
        prescribed a reference delay penalty associated with packet losses at
        the reference packet loss ratio of PLRREF.  The value of DLOSS and
        DMARK does not depend on configurations at the network node. Since
        ECN-enabled active queue management schemes typically mark a packet
        before dropping it, the value of DLOSS <span class="bcp14">SHOULD</span> be higher
        than that of DMARK. Furthermore, the values of DLOSS and DMARK need to
        be set consistently across all NADA flows sharing the same bottleneck
        link so that they can compete fairly.<a href="#section-4.2-13" class="pilcrow">¶</a></p>
<p id="section-4.2-14">In the absence of packet marking and losses, the value of x_curr
        reduces to the observed queuing delay d_queue. In that case, the NADA
        algorithm operates in the regime of delay-based adaptation.<a href="#section-4.2-14" class="pilcrow">¶</a></p>
<p id="section-4.2-15">Given observed per-packet delay and loss information, the receiver
        is also in a good position to determine whether or not the network is
        underutilized and then recommend the corresponding rate adaptation
 mode for
        the sender. The criteria for operating in accelerated ramp-up mode
        are:<a href="#section-4.2-15" class="pilcrow">¶</a></p>
<ul>
<li id="section-4.2-16.1"> No recent packet losses within the observation window LOGWIN;
          and<a href="#section-4.2-16.1" class="pilcrow">¶</a>
</li>
<li id="section-4.2-16.2"> No buildup of queuing delay: d_fwd-d_base &lt; QEPS
          for all previous delay samples within the observation window
          LOGWIN.<a href="#section-4.2-16.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.2-17">Otherwise, the algorithm operates in graduate update mode.<a href="#section-4.2-17" class="pilcrow">¶</a></p>
</section>
</div>
<div id="subsec-sender-algorithm">
<section id="section-4.3">
        <h3 id="name-sender-side-algorithm">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-sender-side-algorithm" class="section-name selfRef">Sender-Side Algorithm</a>
        </h3>
<p id="section-4.3-1">The sender-side algorithm is outlined as follows:<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<ul class="ulEmpty">
<li class="ulEmpty" id="section-4.3-2.1">On initialization:<a href="#section-4.3-2.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.2">
            <ul class="ulEmpty">
<li class="ulEmpty" id="section-4.3-2.2.1.1">set r_ref = RMIN<a href="#section-4.3-2.2.1.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.2.1.2">set rtt = 0<a href="#section-4.3-2.2.1.2" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.2.1.3">set x_prev = 0<a href="#section-4.3-2.2.1.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.2.1.4">set t_last and t_curr as current system clock time<a href="#section-4.3-2.2.1.4" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="ulEmpty" id="section-4.3-2.3">On receiving feedback report:<a href="#section-4.3-2.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4">
            <ul class="ulEmpty">
<li class="ulEmpty" id="section-4.3-2.4.1.1">obtain current timestamp from system clock: t_curr<a href="#section-4.3-2.4.1.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.2">obtain values of rmode, x_curr, and r_recv from feedback report<a href="#section-4.3-2.4.1.2" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.3">update estimation of rtt<a href="#section-4.3-2.4.1.3" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.4">measure feedback interval: delta = t_curr - t_last<a href="#section-4.3-2.4.1.4" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.5">if rmode == 0:<a href="#section-4.3-2.4.1.5" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.6">
                <ul class="ulEmpty">
<li class="ulEmpty" id="section-4.3-2.4.1.6.1.1">update r_ref following accelerated ramp-up rules<a href="#section-4.3-2.4.1.6.1.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.7">else:<a href="#section-4.3-2.4.1.7" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.8">
                <ul class="ulEmpty">
<li class="ulEmpty" id="section-4.3-2.4.1.8.1.1">update r_ref following gradual update rules<a href="#section-4.3-2.4.1.8.1.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.9">clip rate r_ref within the range of minimum rate (RMIN) and maximum rate
(RMAX).<a href="#section-4.3-2.4.1.9" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.10">set x_prev = x_curr<a href="#section-4.3-2.4.1.10" class="pilcrow">¶</a>
</li>
<li class="ulEmpty" id="section-4.3-2.4.1.11">set t_last = t_curr<a href="#section-4.3-2.4.1.11" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-4.3-3">In accelerated ramp-up mode, the rate r_ref is updated as
 follows:<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.3-4">
<pre>
                                QBOUND
    gamma = min(GAMMA_MAX, ------------------)       (3)
                            rtt+DELTA+DFILT

                            r_ref = max(r_ref, (1+gamma) r_recv)
                            (4)    
</pre><a href="#section-4.3-4" class="pilcrow">¶</a>
</div>
<p id="section-4.3-5">The rate increase multiplier gamma is calculated as a function of
        the upper bound of self-inflicted queuing delay (QBOUND), round-trip
        time (rtt), and target feedback interval (DELTA); it is bound on the
        filtering delay for calculating d_queue (DFILT). It has a maximum
        value of GAMMA_MAX. The rationale behind Equations (3)-(4) is that the
        longer it takes for the sender to observe self-inflicted queuing delay
        buildup, the more conservative the sender should be in increasing its
        rate and, hence, the smaller the rate increase multiplier.<a href="#section-4.3-5" class="pilcrow">¶</a></p>
<p id="section-4.3-6">In gradual update mode, the rate r_ref is updated as:<a href="#section-4.3-6" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.3-7">
<pre>
    x_offset = x_curr - PRIO*XREF*RMAX/r_ref          (5)

    x_diff   = x_curr - x_prev                        (6) 

                           delta    x_offset
    r_ref = r_ref - KAPPA*-------*------------*r_ref
                            TAU       TAU

                                x_diff
                  - KAPPA*ETA*---------*r_ref         (7)
                                 TAU    
</pre><a href="#section-4.3-7" class="pilcrow">¶</a>
</div>
<p id="section-4.3-8">The rate changes in proportion to the previous rate decision.
It is affected by two terms: the offset of the aggregate congestion
signal from its value at equilibrium (x_offset) and its change
(x_diff). The calculation of x_offset depends on the maximum rate
of the flow (RMAX), its weight of priority (PRIO), as well
as a reference congestion signal (XREF). The value of
XREF is chosen so that the maximum rate of RMAX can be achieved
when the observed congestion signal level is below PRIO*XREF.<a href="#section-4.3-8" class="pilcrow">¶</a></p>
<p id="section-4.3-9">
At equilibrium, the aggregated congestion signal stabilizes at
x_curr = PRIO*XREF*RMAX/r_ref. This ensures that when multiple
flows share the same bottleneck and observe a common value of
x_curr, their rates at equilibrium will be proportional to their
respective priority levels (PRIO) and the range between minimum
and maximum rate. Values of the minimum rate (RMIN) and 
maximum rate (RMAX) will be provided by the media codec,
for instance, as outlined by <span>[<a href="#I-D.ietf-rmcat-cc-codec-interactions" class="xref">RMCAT-CC-RTP</a>]</span>. In the absence of such information, the NADA sender will
choose a default value of 0 for RMIN and 3 Mbps for RMAX.<a href="#section-4.3-9" class="pilcrow">¶</a></p>
<p id="section-4.3-10"> As mentioned in the sender-side algorithm, the final rate
is always clipped within the dynamic range specified by the
application:<a href="#section-4.3-10" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.3-11">
<pre>
    r_ref = min(r_ref, RMAX)                         (8)

    r_ref = max(r_ref, RMIN)                         (9)
</pre><a href="#section-4.3-11" class="pilcrow">¶</a>
</div>
<p id="section-4.3-12">The above operations ignore many practical issues such as clock
synchronization between sender and receiver, the filtering of noise in
delay measurements, and base delay expiration. These will be addressed
in <a href="#sec-practical-nada" class="xref">Section 5</a>.<a href="#section-4.3-12" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-practical-nada">
<section id="section-5">
      <h2 id="name-practical-implementation-of">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-practical-implementation-of" class="section-name selfRef">Practical Implementation of NADA</a>
      </h2>
<div id="sec-receiver">
<section id="section-5.1">
        <h3 id="name-receiver-side-operation">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-receiver-side-operation" class="section-name selfRef">Receiver-Side Operation</a>
        </h3>
<p id="section-5.1-1">The receiver continuously monitors end-to-end per-packet
statistics in terms of delay, loss, and/or ECN marking ratios.
It then aggregates all forms of congestion indicators into the
form of an equivalent delay and periodically reports this back
to the sender. In addition, the receiver tracks the receiving
rate of the flow and includes that in the feedback message.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<div id="sec-receiver-a">
<section id="section-5.1.1">
          <h4 id="name-estimation-of-one-way-delay">
<a href="#section-5.1.1" class="section-number selfRef">5.1.1. </a><a href="#name-estimation-of-one-way-delay" class="section-name selfRef">Estimation of One-Way Delay and Queuing Delay</a>
          </h4>
<p id="section-5.1.1-1">
The delay estimation process in NADA follows an approach similar to that of
earlier
delay-based congestion control schemes, such as Low Extra Delay Background
Transport (LEDBAT) <span>[<a href="#RFC6817" class="xref">RFC6817</a>]</span>. For
experimental implementations, instead of relying on RTP timestamps and the
transmission time offset RTP header extension <span>[<a href="#RFC5450" class="xref">RFC5450</a>]</span>, the NADA sender can generate its own timestamp based on
the local system clock and embed that information in the transport packet
header. The NADA receiver estimates the forward delay as having a constant
base delay component plus a time-varying queuing delay component. The base
delay is estimated as the minimum value of one-way delay observed over a
relatively long period (e.g., tens of minutes), whereas the individual
queuing delay value is taken to be the difference between one-way delay and
base delay. By re-estimating the base delay periodically, one can avoid the
potential issue of base delay expiration, whereby an earlier measured base
delay value is no longer valid due to underlying route changes or a cumulative
timing difference introduced by the clock-rate skew between sender and
receiver. All delay estimations are based on sender timestamps with a
recommended granularity of 100 microseconds or finer.<a href="#section-5.1.1-1" class="pilcrow">¶</a></p>
<p id="section-5.1.1-2">
The individual sample values of queuing delay should be further
filtered against various non-congestion-induced noise, such as
spikes due to a processing "hiccup" at the network nodes. Therefore,
in addition to calculating the value of queuing delay using
d_queue = d_fwd - d_base, as expressed in <a href="#sec-receiver" class="xref">Section 5.1</a>, 
the current implementation further employs a minimum filter with
a window size of 15 samples over per-packet queuing delay values.<a href="#section-5.1.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-receiver-b">
<section id="section-5.1.2">
          <h4 id="name-estimation-of-packet-loss-m">
<a href="#section-5.1.2" class="section-number selfRef">5.1.2. </a><a href="#name-estimation-of-packet-loss-m" class="section-name selfRef">Estimation of Packet Loss/Marking Ratio</a>
          </h4>
<p id="section-5.1.2-1">The receiver detects packet losses via gaps in the
RTP sequence numbers of received packets. For interactive
real-time media applications with stringent latency
constraints (e.g., video conferencing), the receiver avoids
the packet reordering delay by treating out-of-order packets
as losses. The instantaneous packet loss ratio p_inst is estimated
as the ratio between the number of missing packets over
the number of total transmitted packets within the
recent observation window LOGWIN. The packet loss ratio
p_loss is obtained after exponential smoothing:<a href="#section-5.1.2-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-5.1.2-2">
<pre>    
            p_loss = ALPHA*p_inst + (1-ALPHA)*p_loss        (10)
            </pre><a href="#section-5.1.2-2" class="pilcrow">¶</a>
</div>
<p id="section-5.1.2-3">The filtered result is reported back to the sender as
the observed packet loss ratio p_loss.<a href="#section-5.1.2-3" class="pilcrow">¶</a></p>
<p id="section-5.1.2-4">
The estimation of the packet marking ratio p_mark follows the same procedure
as above.  It is assumed that ECN marking information at the IP header
can be passed to the receiving endpoint, e.g., by following the mechanism
described in <span>[<a href="#RFC6679" class="xref">RFC6679</a>]</span>.<a href="#section-5.1.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-receiver-c">
<section id="section-5.1.3">
          <h4 id="name-estimation-of-receiving-rat">
<a href="#section-5.1.3" class="section-number selfRef">5.1.3. </a><a href="#name-estimation-of-receiving-rat" class="section-name selfRef">Estimation of Receiving Rate</a>
          </h4>
<p id="section-5.1.3-1">
It is fairly straightforward to estimate the receiving rate r_recv. NADA
maintains a recent observation window with a time span of LOGWIN and simply
divides the total size of packets arriving during that window over the time
span. The receiving rate (r_recv) can be either calculated at the sender side
based on the per-packet feedback from the receiver or included as part of the
feedback report.<a href="#section-5.1.3-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-sender">
<section id="section-5.2">
        <h3 id="name-sender-side-operation">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-sender-side-operation" class="section-name selfRef">Sender-Side Operation</a>
        </h3>
<p id="section-5.2-1">
<a href="#fig-nada-sender" class="xref">Figure 2</a> provides a detailed
view of the NADA sender. Upon receipt of an RTCP feedback
report from the receiver, the NADA sender calculates the
reference rate r_ref as specified in
<a href="#subsec-sender-algorithm" class="xref">Section 4.3</a>.
It further adjusts both the target rate for the live video
encoder r_vin and the sending rate r_send over the network
based on the updated value of r_ref and rate-shaping buffer
occupancy buffer_len.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
<p id="section-5.2-2">
The NADA sender behavior stays the same in the presence
of all types of congestion indicators: delay, loss, and
ECN marking. This unified approach allows a graceful
transition of the scheme as the network shifts dynamically
between light and heavy congestion levels.<a href="#section-5.2-2" class="pilcrow">¶</a></p>
<span id="name-nada-sender-structure"></span><div id="fig-nada-sender">
<figure id="figure-2">
          <div class="artwork art-text alignLeft" id="section-5.2-3.1">
<pre>
                   +----------------+             
                   |  Calculate     | &lt;---- RTCP report
                   | Reference Rate | 
                   -----------------+
                           | r_ref
              +------------+-------------+
              |                          |
             \|/                        \|/
      +-----------------+           +---------------+
      | Calculate Video |           |   Calculate   |
      |  Target Rate    |           | Sending Rate  |
      +-----------------+           +---------------+
          |        /|\                 /|\      |   
    r_vin |         |                   |       |
         \|/        +-------------------+       |       
      +----------+          | buffer_len        |  r_send
      |  Video   | r_vout  -----------+        \|/
      |  Encoder |--------&gt;   |||||||||=================&gt;  
      +----------+         -----------+    RTP packets     
      Rate-Shaping Buffer         
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-nada-sender-structure" class="selfRef">NADA Sender Structure</a>
          </figcaption></figure>
</div>
<div id="sec-sender-c">
<section id="section-5.2.1">
          <h4 id="name-rate-shaping-buffer">
<a href="#section-5.2.1" class="section-number selfRef">5.2.1. </a><a href="#name-rate-shaping-buffer" class="section-name selfRef">Rate-Shaping Buffer</a>
          </h4>
<p id="section-5.2.1-1">
The operation of the live video encoder is out of the scope
of the design for the congestion control scheme in NADA.
Instead, its behavior is treated as a black box.<a href="#section-5.2.1-1" class="pilcrow">¶</a></p>
<p id="section-5.2.1-2">
A rate-shaping buffer is employed to absorb any instantaneous
mismatch between the encoder rate output r_vout and the regulated sending
rate r_send. Its current level of occupancy is measured in bytes
and is denoted as buffer_len.<a href="#section-5.2.1-2" class="pilcrow">¶</a></p>
<p id="section-5.2.1-3">A large rate-shaping buffer contributes to higher
end-to-end delay, which may harm the performance of
real-time media communications. Therefore, the sender
has a strong incentive to prevent the rate-shaping
buffer from building up. The mechanisms adopted are:<a href="#section-5.2.1-3" class="pilcrow">¶</a></p>
<ul>
<li id="section-5.2.1-4.1">To deplete the rate-shaping buffer faster by
     increasing the sending rate r_send; and<a href="#section-5.2.1-4.1" class="pilcrow">¶</a>
</li>
<li id="section-5.2.1-4.2">To limit incoming packets of the rate-shaping
     buffer by reducing the video encoder target rate
     r_vin.<a href="#section-5.2.1-4.2" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="sec-sender-d">
<section id="section-5.2.2">
          <h4 id="name-adjusting-video-target-rate">
<a href="#section-5.2.2" class="section-number selfRef">5.2.2. </a><a href="#name-adjusting-video-target-rate" class="section-name selfRef">Adjusting Video Target Rate and Sending Rate</a>
          </h4>
<p id="section-5.2.2-1">
If the level of occupancy in the rate-shaping buffer is accessible
at the sender, such information can be leveraged to further adjust
the target rate of the live video encoder r_vin as well as the
actual sending rate r_send. The purpose of such adjustments is to
mitigate the additional latencies introduced by the rate-shaping
buffer. The amount of rate adjustment can be calculated as follows:<a href="#section-5.2.2-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-5.2.2-2">
<pre>
    r_diff_v = min(0.05*r_ref, BETA_V*8*buffer_len*FPS)     (11) 
    r_diff_s = min(0.05*r_ref, BETA_S*8*buffer_len*FPS)     (12) 
    r_vin  = max(RMIN, r_ref - r_diff_v)                    (13) 
    r_send = min(RMAX, r_ref + r_diff_s)                    (14)
</pre><a href="#section-5.2.2-2" class="pilcrow">¶</a>
</div>
<p id="section-5.2.2-3"> In Equations (11) and (12), the amount of adjustment is calculated
as proportional to the size of the rate-shaping buffer but is
bounded by 5% of the reference rate r_ref calculated from network
congestion feedback alone. This ensures that the adjustment
introduced by the rate-shaping buffer will not counteract with the core
congestion control process. Equations (13) and (14) indicate
the influence of the rate-shaping buffer. A large
rate-shaping buffer nudges the encoder target rate slightly
below (and the sending rate slightly above) the reference
rate r_ref. The final video target rate (r_vin) and sending
rate (r_send) are further bounded within the original range of
[RMIN, RMAX].<a href="#section-5.2.2-3" class="pilcrow">¶</a></p>
<p id="section-5.2.2-4">
Intuitively, the amount of extra rate offset needed to completely
drain the rate-shaping buffer within the duration of a single
video frame is given by 8*buffer_len*FPS, where FPS stands
for the reference frame rate of the video. The scaling parameters
BETA_V and BETA_S can be tuned to balance between the competing
goals of maintaining a small rate-shaping buffer and deviating
from the reference rate point. Empirical observations show that
the rate-shaping buffer for a responsive live video encoder typically
stays empty and only occasionally holds a large frame (e.g., when
an intra-frame is produced) in transit. Therefore, the rate adjustment
introduced by this mechanism is expected to be minor. For instance,
a rate-shaping buffer of 2000 bytes will lead to a rate adjustment
of 48 Kbps given the recommended scaling parameters of BETA_V = 0.1
and BETA_S = 0.1, and the reference frame rate of FPS = 30.<a href="#section-5.2.2-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-feedback">
<section id="section-5.3">
        <h3 id="name-feedback-message-requiremen">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-feedback-message-requiremen" class="section-name selfRef">Feedback Message Requirements</a>
        </h3>
<p id="section-5.3-1">The following list of information is required for
NADA congestion control to function properly:<a href="#section-5.3-1" class="pilcrow">¶</a></p>
<dl class="dlParallel" id="section-5.3-2">
          <dt id="section-5.3-2.1">Recommended rate adaptation mode (rmode):
</dt>
<dd id="section-5.3-2.2">A 1-bit flag indicating whether the sender should operate in accelerated
ramp-up mode (rmode=0) or gradual update mode (rmode=1).<a href="#section-5.3-2.2" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-2.3">Aggregated congestion signal (x_curr):
</dt>
<dd id="section-5.3-2.4">The most recently updated value, calculated by the receiver according to
<a href="#subsec-receiver-algorithm" class="xref">Section 4.2</a>. This information
can be expressed with a unit of 100 microseconds (i.e., 1/10 of a millisecond)
in 15 bits. This allows a maximum value of x_curr at approximately 3.27
seconds.<a href="#section-5.3-2.4" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-2.5">Receiving rate (r_recv):
</dt>
<dd id="section-5.3-2.6">The most recently measured receiving rate according to <a href="#sec-receiver-c" class="xref">Section 5.1.3</a>. This information is
expressed with a unit of bits per second (bps) in 32 bits (unsigned int). This
allows a maximum rate of approximately 4.3 Gbps, approximately 1000 times the
streaming rate of a typical high-definition (HD) video conferencing session
today. This field can be expanded further by a few more bytes if an even
higher rate needs to be specified.<a href="#section-5.3-2.6" class="pilcrow">¶</a>
</dd>
</dl>
<p id="section-5.3-3">
  The above list of information can be accommodated by 48 bits,
  or 6 bytes, in total. They can be either included in the
  feedback report from the receiver or, in the case where all
  receiver-side calculations are moved to the sender, derived
  from per-packet information from the feedback message as defined
  in <span>[<a href="#I-D.ietf-avtcore-cc-feedback-message" class="xref">RTCP-FEEDBACK</a>]</span>. 
  Choosing the feedback message interval DELTA is discussed in
  <a href="#sec-discussion-c" class="xref">Section 6.3</a>. A target feedback
  interval
  of DELTA = 100 ms is recommended.<a href="#section-5.3-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-discussions">
<section id="section-6">
      <h2 id="name-discussions-and-further-inv">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-discussions-and-further-inv" class="section-name selfRef">Discussions and Further Investigations</a>
      </h2>
<p id="section-6-1">This section discusses the various design choices
made by NADA, potential alternative variants of its
implementation, and guidelines on how the key algorithm
parameters can be chosen. <a href="#sec-experiments" class="xref">Section 8</a>
recommends additional experimental setups to 
further explore these topics.<a href="#section-6-1" class="pilcrow">¶</a></p>
<div id="sec-discussion-a">
<section id="section-6.1">
        <h3 id="name-choice-of-delay-metrics">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-choice-of-delay-metrics" class="section-name selfRef">Choice of Delay Metrics</a>
        </h3>
<p id="section-6.1-1">
The current design works with relative one-way delay (OWD) as the main
indication of congestion. The value of the relative OWD is obtained by
maintaining the minimum value of observed OWD over a relatively long time
horizon and subtracting that out from the observed absolute OWD value. Such an
approach cancels out the fixed difference between the sender and receiver
clocks.  It has been widely adopted by other delay-based congestion control
approaches such as <span>[<a href="#RFC6817" class="xref">RFC6817</a>]</span>.  As discussed in
<span>[<a href="#RFC6817" class="xref">RFC6817</a>]</span>, the time horizon for tracking the
minimum OWD needs to be chosen with care; it must be long enough for an
opportunity to observe the minimum OWD with zero standing queue along the
path,
and it must be sufficiently short enough to timely reflect "true" changes in
minimum OWD introduced by route changes and other rare events and
to mitigate the cumulative impact of clock rate skew over time.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">
The potential drawback in relying on relative OWD as the congestion
signal is that when multiple flows share the same bottleneck, the
flow arriving late at the network experiencing a non-empty queue may
mistakenly consider the standing queuing delay as part of the fixed
path propagation delay. This will lead to slightly unfair bandwidth
sharing among the flows.<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1-3">Alternatively, one could move the per-packet statistical handling
to the sender instead and use relative round-trip time (RTT) in lieu
of relative OWD, assuming that per-packet acknowledgments are available.
The main drawback of an RTT-based approach is the noise in the measured delay
in the reverse direction.<a href="#section-6.1-3" class="pilcrow">¶</a></p>
<p id="section-6.1-4">
Note that the choice of either delay metric (relative OWD vs. RTT) involves no
change in the proposed rate adaptation algorithm.  Therefore, comparing the
pros and cons regarding which delay metric to adopt can be kept as an
orthogonal direction of investigation.<a href="#section-6.1-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-discussion-b">
<section id="section-6.2">
        <h3 id="name-method-for-delay-loss-and-m">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-method-for-delay-loss-and-m" class="section-name selfRef">Method for Delay, Loss, and Marking Ratio Estimation</a>
        </h3>
<p id="section-6.2-1">Like other delay-based congestion control schemes, performance of
        NADA depends on the accuracy of its delay measurement and estimation
        module. <span><a href="https://www.rfc-editor.org/rfc/rfc6817#appendix-A" class="relref">Appendix A</a> of [<a href="#RFC6817" class="xref">RFC6817</a>]</span>
        provides an extensive discussion on this aspect.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<p id="section-6.2-2">The current recommended practice of applying minimum filter with a
        window size of 15 samples suffices in guarding against processing
        delay outliers observed in wired connections. For wireless connections
        with a higher packet delay variation (PDV), more sophisticated
        techniques on denoising, outlier rejection, and trend analysis may be
        needed.<a href="#section-6.2-2" class="pilcrow">¶</a></p>
<p id="section-6.2-3">
More sophisticated methods in packet loss ratio calculation,
such as that adopted by <span>[<a href="#FLOYD-CCR00" class="xref">FLOYD-CCR00</a>]</span>,
will likely be beneficial. These alternatives are part of
the experiments this document proposes.<a href="#section-6.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-discussion-c">
<section id="section-6.3">
        <h3 id="name-impact-of-parameter-values">
<a href="#section-6.3" class="section-number selfRef">6.3. </a><a href="#name-impact-of-parameter-values" class="section-name selfRef">Impact of Parameter Values</a>
        </h3>
<p id="section-6.3-1">In the gradual rate update mode, the parameter TAU indicates the
        upper bound of round-trip time (RTT) in the feedback control loop.
        Typically, the observed feedback interval delta is close to the target
        feedback interval DELTA, and the relative ratio of delta/TAU versus
        ETA dictates the relative strength of influence from the aggregate
        congestion signal offset term (x_offset) versus its recent change
        (x_diff), respectively. These two terms are analogous to the integral
        and proportional terms in a proportional-integral (PI) controller. The
        recommended choice of TAU = 500 ms, DELTA = 100 ms, and ETA = 2.0
 corresponds
        to a relative ratio of 1:10 between the gains of the integral and
        proportional terms. Consequently, the rate adaptation is mostly driven
        by the change in the congestion signal with a long-term shift towards
        its equilibrium value driven by the offset term. Finally, the scaling
        parameter KAPPA determines the overall speed of the adaptation and
        needs to strike a balance between responsiveness and stability.<a href="#section-6.3-1" class="pilcrow">¶</a></p>
<p id="section-6.3-2">                                         
The choice of the target feedback interval DELTA needs to strike the right
balance between timely feedback and low RTCP feedback message counts. A target
feedback interval of DELTA = 100 ms is recommended, corresponding to a
feedback
bandwidth of 16 Kbps with 200 bytes per feedback message -- approximately 1.6%
overhead for a 1 Mbps flow. Furthermore, both simulation studies and
frequency-domain analysis in <span>[<a href="#IETF-95" class="xref">IETF-95</a>]</span> have
established that a feedback interval below 250 ms (i.e., more frequently than
4
feedback messages per second) will not break up the feedback control loop of
NADA congestion control.<a href="#section-6.3-2" class="pilcrow">¶</a></p>
<p id="section-6.3-3">In calculating the non-linear warping of delay in Equation (1), 
the current design uses fixed values of QTH for determining
whether to perform the non-linear warping. Its value should be
carefully tuned for different operational environments (e.g.,
over wired vs. wireless connections) so as to avoid the potential
risk of prematurely discounting the congestion signal level.
It is possible to adapt its value based on past observed patterns
of queuing delay in the presence of packet losses. It needs to be
noted that the non-linear warping mechanism may lead to multiple
NADA streams stuck in loss-based mode when competing against
each other.<a href="#section-6.3-3" class="pilcrow">¶</a></p>
<p id="section-6.3-4">In calculating the aggregate congestion signal x_curr, the
choice of DMARK and DLOSS influence the steady-state packet
loss/marking ratio experienced by the flow at a given
available bandwidth. Higher values of DMARK and DLOSS result
in lower steady-state loss/marking ratios but are more 
susceptible to the impact of individual packet loss/marking
events.  While the value of DMARK and DLOSS are fixed and
predetermined in the current design, this document also encourages
further explorations of a scheme for automatically
tuning these values based on desired bandwidth sharing behavior
in the presence of other competing loss-based flows (e.g.,
loss-based TCP).<a href="#section-6.3-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-discussion-d">
<section id="section-6.4">
        <h3 id="name-sender-based-vs-receiver-ba">
<a href="#section-6.4" class="section-number selfRef">6.4. </a><a href="#name-sender-based-vs-receiver-ba" class="section-name selfRef">Sender-Based vs. Receiver-Based Calculation</a>
        </h3>
<p id="section-6.4-1">In the current design, the aggregated congestion
signal x_curr is calculated at the receiver, keeping
the sender operation completely independent of the
form of actual network congestion indications (delay, 
loss, or marking) in use.<a href="#section-6.4-1" class="pilcrow">¶</a></p>
<p id="section-6.4-2">Alternatively, one can shift receiver-side calculations
to the sender, whereby the receiver simply reports on per-packet
information via periodic feedback messages as defined in
<span>[<a href="#I-D.ietf-avtcore-cc-feedback-message" class="xref">RTCP-FEEDBACK</a>]</span>. 
Such an approach enables interoperability amongst senders operating
on different congestion control schemes but requires slightly
higher overhead in the feedback messages. See additional discussions
in <span>[<a href="#I-D.ietf-avtcore-cc-feedback-message" class="xref">RTCP-FEEDBACK</a>]</span>
regarding the desired format of the feedback messages and the
recommended feedback intervals.<a href="#section-6.4-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-discussion-e">
<section id="section-6.5">
        <h3 id="name-incremental-deployment">
<a href="#section-6.5" class="section-number selfRef">6.5. </a><a href="#name-incremental-deployment" class="section-name selfRef">Incremental Deployment</a>
        </h3>
<p id="section-6.5-1">
One nice property of NADA is the consistent video endpoint
behavior irrespective of network node variations. This facilitates
gradual, incremental adoption of the scheme.<a href="#section-6.5-1" class="pilcrow">¶</a></p>
<p id="section-6.5-2">
Initially, the proposed congestion control mechanism can
be implemented without any explicit support from the network and
relies solely on observed relative one-way delay measurements
and packet loss ratios as implicit congestion signals.<a href="#section-6.5-2" class="pilcrow">¶</a></p>
<p id="section-6.5-3">
When ECN is enabled at the network nodes with RED-based marking,
the receiver can fold its observations of ECN markings into the
calculation of the equivalent delay. The sender can react to these
explicit congestion signals without any modification.<a href="#section-6.5-3" class="pilcrow">¶</a></p>
<p id="section-6.5-4">
Ultimately, networks equipped with proactive marking based on the level of
token bucket metering can reap the additional benefits of
zero standing queues and lower end-to-end delay and work
seamlessly with existing senders and receivers.<a href="#section-6.5-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-implementations">
<section id="section-7">
      <h2 id="name-reference-implementations">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-reference-implementations" class="section-name selfRef">Reference Implementations</a>
      </h2>
<p id="section-7-1">
The NADA scheme has been implemented in both ns-2 <span>[<a href="#NS-2" class="xref">NS-2</a>]</span>
and ns-3 <span>[<a href="#NS-3" class="xref">NS-3</a>]</span> simulation platforms.  The
implementation
in ns-2 hosts the calculations as described in
<a href="#subsec-receiver-algorithm" class="xref">Section 4.2</a> at the receiver
side,
whereas the implementation in ns-3 hosts these receiver-side calculations
at the sender for the sake of interoperability. Extensive ns-2 simulation
evaluations of an earlier draft version of this document are recorded in
<span>[<a href="#ZHU-PV13" class="xref">ZHU-PV13</a>]</span>. 
An open-source implementation of NADA as part of an ns-3 module is
available at <span>[<a href="#NS3-RMCAT" class="xref">NS3-RMCAT</a>]</span>.
Evaluation results of this document based on ns-3 are presented
in <span>[<a href="#IETF-90" class="xref">IETF-90</a>]</span> and <span>[<a href="#IETF-91" class="xref">IETF-91</a>]</span>
for wired test cases as documented in <span>[<a href="#I-D.ietf-rmcat-eval-test" class="xref">RMCAT-EVAL-TEST</a>]</span>.
Evaluation results of NADA over Wi-Fi-based test cases as defined in
<span>[<a href="#I-D.ietf-rmcat-wireless-tests" class="xref">WIRELESS-TESTS</a>]</span> are
presented in <span>[<a href="#IETF-93" class="xref">IETF-93</a>]</span>. These simulation-based
evaluations have shown that NADA flows can obtain their fair share of
bandwidth when competing against each other. They typically adapt fast
in reaction to the arrival and departure of other flows and can sustain
a reasonable throughput when competing against loss-based TCP flows.<a href="#section-7-1" class="pilcrow">¶</a></p>
<p id="section-7-2"> 
<span>[<a href="#IETF-90" class="xref">IETF-90</a>]</span> describes the  implementation and
evaluation of NADA in a lab setting. Preliminary evaluation
results of NADA in single-flow and multi-flow test scenarios
are presented in <span>[<a href="#IETF-91" class="xref">IETF-91</a>]</span>.<a href="#section-7-2" class="pilcrow">¶</a></p>
<p id="section-7-3">
A reference implementation of NADA has been carried out by
modifying the WebRTC module embedded in the Mozilla open-source
browser. Presentations from <span>[<a href="#IETF-103" class="xref">IETF-103</a>]</span>
and <span>[<a href="#IETF-105" class="xref">IETF-105</a>]</span> document real-world evaluations
of the modified browser driven by NADA. The experimental setting
involves remote connections with endpoints over either home or enterprise
wireless networks. These evaluations validate the effectiveness of
NADA flows in recovering quickly from throughput drops caused by
intermittent delay spikes over the last-hop wireless connections.<a href="#section-7-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-experiments">
<section id="section-8">
      <h2 id="name-suggested-experiments">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-suggested-experiments" class="section-name selfRef">Suggested Experiments</a>
      </h2>
<p id="section-8-1">
NADA has been extensively evaluated under various test scenarios, including
the collection of test cases specified by <span>[<a href="#I-D.ietf-rmcat-eval-test" class="xref">RMCAT-EVAL-TEST</a>]</span> and the subset of
Wi-Fi-based test cases in <span>[<a href="#I-D.ietf-rmcat-wireless-tests" class="xref">WIRELESS-TESTS</a>]</span>.  Additional evaluations have been carried out to
characterize how NADA interacts with various AQM
schemes such as RED, Controlling Queue Delay (CoDel), and Proportional
Integral Controller Enhanced (PIE). Most of these evaluations have been
carried out in simulators. A few key test cases have been evaluated in lab
environments with implementations embedded in video conferencing clients. It
is strongly recommended to carry out implementation and experimentation of
NADA in real-world settings. Such exercises will provide insights on how to
choose or automatically adapt the values of the key algorithm parameters (see
list in <a href="#tab-parameters" class="xref">Table 2</a>) as discussed in
<a href="#sec-discussions" class="xref">Section 6</a>.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">Additional experiments are suggested for the following scenarios,
      preferably over real-world networks:<a href="#section-8-2" class="pilcrow">¶</a></p>
<ul>
<li id="section-8-3.1">Experiments reflecting the setup of a typical WAN
 connection.<a href="#section-8-3.1" class="pilcrow">¶</a>
</li>
<li id="section-8-3.2">Experiments with ECN marking capability turned on at the network
  for existing test cases.<a href="#section-8-3.2" class="pilcrow">¶</a>
</li>
<li id="section-8-3.3">Experiments with multiple NADA streams bearing different
  user-specified priorities.<a href="#section-8-3.3" class="pilcrow">¶</a>
</li>
<li id="section-8-3.4">Experiments with additional access technologies, especially
over cellular networks such as 3G/LTE.<a href="#section-8-3.4" class="pilcrow">¶</a>
</li>
<li id="section-8-3.5">Experiments with various media source contents, including audio
 only,
  audio and video, and application content sharing (e.g., slideshows).<a href="#section-8-3.5" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="sec-iana">
<section id="section-9">
      <h2 id="name-iana-considerations">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
      </h2>
<p id="section-9-1">This document has no IANA actions.<a href="#section-9-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-security">
<section id="section-10">
      <h2 id="name-security-considerations">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
      </h2>
<p id="section-10-1">The rate adaptation mechanism in NADA relies on feedback from the
      receiver. As such, it is vulnerable to attacks where feedback messages
      are hijacked, replaced, or intentionally injected with misleading
      information resulting in denial of service, similar to those that can
      affect TCP. Therefore, it is <span class="bcp14">RECOMMENDED</span> that the RTCP
      feedback message is at least integrity checked. In addition, <span>[<a href="#I-D.ietf-avtcore-cc-feedback-message" class="xref">RTCP-FEEDBACK</a>]</span>
      discusses the potential risk of a receiver providing misleading
      congestion feedback information and the mechanisms for mitigating such
      risks.<a href="#section-10-1" class="pilcrow">¶</a></p>
<p id="section-10-2">The modification of the sending rate based on the sender-side
      rate-shaping
      buffer may lead to temporary excessive congestion over the network in
      the presence of an unresponsive video encoder. However, this effect can
      be mitigated by limiting the amount of rate modification introduced by
      the rate-shaping buffer, bounding the size of the rate-shaping buffer at
      the sender, and maintaining a maximum allowed sending rate by NADA.<a href="#section-10-2" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-11">
      <h2 id="name-references">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-references" class="section-name selfRef">References</a>
      </h2>
<section id="section-11.1">
        <h3 id="name-normative-references">
<a href="#section-11.1" class="section-number selfRef">11.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
        </h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03">March 1997</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>&gt;</span>. </dd>
<dt id="RFC3168">[RFC3168]</dt>
<dd>
<span class="refAuthor">Ramakrishnan, K.</span><span class="refAuthor">, Floyd, S.</span><span class="refAuthor">, and D. Black</span>, <span class="refTitle">"The Addition of Explicit Congestion Notification (ECN) to IP"</span>, <span class="seriesInfo">RFC 3168</span>, <span class="seriesInfo">DOI 10.17487/RFC3168</span>, <time datetime="2001-09">September 2001</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3168">https://www.rfc-editor.org/info/rfc3168</a>&gt;</span>. </dd>
<dt id="RFC3550">[RFC3550]</dt>
<dd>
<span class="refAuthor">Schulzrinne, H.</span><span class="refAuthor">, Casner, S.</span><span class="refAuthor">, Frederick, R.</span><span class="refAuthor">, and V. Jacobson</span>, <span class="refTitle">"RTP: A Transport Protocol for Real-Time Applications"</span>, <span class="seriesInfo">STD 64</span>, <span class="seriesInfo">RFC 3550</span>, <span class="seriesInfo">DOI 10.17487/RFC3550</span>, <time datetime="2003-07">July 2003</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3550">https://www.rfc-editor.org/info/rfc3550</a>&gt;</span>. </dd>
<dt id="RFC5348">[RFC5348]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span><span class="refAuthor">, Handley, M.</span><span class="refAuthor">, Padhye, J.</span><span class="refAuthor">, and J. Widmer</span>, <span class="refTitle">"TCP Friendly Rate Control (TFRC): Protocol Specification"</span>, <span class="seriesInfo">RFC 5348</span>, <span class="seriesInfo">DOI 10.17487/RFC5348</span>, <time datetime="2008-09">September 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5348">https://www.rfc-editor.org/info/rfc5348</a>&gt;</span>. </dd>
<dt id="RFC6679">[RFC6679]</dt>
<dd>
<span class="refAuthor">Westerlund, M.</span><span class="refAuthor">, Johansson, I.</span><span class="refAuthor">, Perkins, C.</span><span class="refAuthor">, O'Hanlon, P.</span><span class="refAuthor">, and K. Carlberg</span>, <span class="refTitle">"Explicit Congestion Notification (ECN) for RTP over UDP"</span>, <span class="seriesInfo">RFC 6679</span>, <span class="seriesInfo">DOI 10.17487/RFC6679</span>, <time datetime="2012-08">August 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6679">https://www.rfc-editor.org/info/rfc6679</a>&gt;</span>. </dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>&gt;</span>. </dd>
</dl>
</section>
<section id="section-11.2">
        <h3 id="name-informative-references">
<a href="#section-11.2" class="section-number selfRef">11.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
        </h3>
<dl class="references">
<dt id="BUDZISZ-AIMD-CC">[BUDZISZ-AIMD-CC]</dt>
<dd>
<span class="refAuthor">Budzisz, L.</span><span class="refAuthor">, Stanojevic, R.</span><span class="refAuthor">, Schlote, A.</span><span class="refAuthor">, Baker, F.</span><span class="refAuthor">, and R. Shorten</span>, <span class="refTitle">"On the Fair Coexistence of Loss- and Delay-Based TCP"</span>, <span class="refContent">IEEE/ACM Transactions on Networking, vol. 19, no. 6,
   pp. 1811-1824
          </span>, <span class="seriesInfo">DOI 10.1109/TNET.2011.2159736</span>, <time datetime="2011-12">December 2011</time>, <span>&lt;<a href="https://doi.org/10.1109/TNET.2011.2159736">https://doi.org/10.1109/TNET.2011.2159736</a>&gt;</span>. </dd>
<dt id="FLOYD-CCR00">[FLOYD-CCR00]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span><span class="refAuthor">, Handley, M.</span><span class="refAuthor">, Padhye, J.</span><span class="refAuthor">, and J. Widmer</span>, <span class="refTitle">"Equation-based congestion control for unicast applications"</span>, <span class="refContent">ACM SIGCOMM Computer Communications Review, vol. 30,
     no. 4, pp. 43-56 
          </span>, <span class="seriesInfo">DOI 10.1145/347057.347397</span>, <time datetime="2000-10">October 2000</time>, <span>&lt;<a href="https://doi.org/10.1145/347057.347397">https://doi.org/10.1145/347057.347397</a>&gt;</span>. </dd>
<dt id="IETF-103">[IETF-103]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Pan, R.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, Fu, J.</span><span class="refAuthor">, and S. D'Aronco</span>, <span class="refTitle">"NADA Implementation in Mozilla Browser"</span>, <span class="refContent">IETF 103
          </span>, <time datetime="2018-11">November 2018</time>, <span>&lt;<a href="https://datatracker.ietf.org/meeting/103/materials/slides-103-rmcat-nada-implementation-in-mozilla-browser-00">https://datatracker.ietf.org/meeting/103/materials/slides-103-rmcat-nada-implementation-in-mozilla-browser-00</a>&gt;</span>. </dd>
<dt id="IETF-105">[IETF-105]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Pan, R.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, Fu, J.</span><span class="refAuthor">, and S. D'Aronco</span>, <span class="refTitle">"NADA Implementation in Mozilla Browser and Draft Update"</span>, <span class="refContent">IETF 105
          </span>, <time datetime="2019-07">July 2019</time>, <span>&lt;<a href="https://datatracker.ietf.org/meeting/105/materials/slides-105-rmcat-nada-update-02.pdf">https://datatracker.ietf.org/meeting/105/materials/slides-105-rmcat-nada-update-02.pdf</a>&gt;</span>. </dd>
<dt id="IETF-90">[IETF-90]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Ganzhorn, C.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, and R. Pan</span>, <span class="refTitle">"NADA Update: Algorithm, Implementation, and Test Case Evaluation Results"</span>, <span class="refContent">IETF 90
          </span>, <time datetime="2014-07">July 2014</time>, <span>&lt;<a href="https://tools.ietf.org/agenda/90/slides/slides-90-rmcat-6.pdf">https://tools.ietf.org/agenda/90/slides/slides-90-rmcat-6.pdf</a>&gt;</span>. </dd>
<dt id="IETF-91">[IETF-91]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Pan, R.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, Ganzhorn, C.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, and S. D'Aronco</span>, <span class="refTitle">"NADA Algorithm Update and Test Case Evaluations"</span>, <span class="refContent">IETF 91
          </span>, <time datetime="2014-11">November 2014</time>, <span>&lt;<a href="https://www.ietf.org/proceedings/interim/2014/11/09/rmcat/slides/slides-interim-2014-rmcat-1-2.pdf">https://www.ietf.org/proceedings/interim/2014/11/09/rmcat/slides/slides-interim-2014-rmcat-1-2.pdf</a>&gt;</span>. </dd>
<dt id="IETF-93">[IETF-93]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Pan, R.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, Ganzhorn, C.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, D'Aronco, S.</span><span class="refAuthor">, and J. Fu</span>, <span class="refTitle">"Updates on NADA"</span>, <span class="refContent">IETF 93
          </span>, <time datetime="2015-07">July 2015</time>, <span>&lt;<a href="https://www.ietf.org/proceedings/93/slides/slides-93-rmcat-0.pdf">https://www.ietf.org/proceedings/93/slides/slides-93-rmcat-0.pdf</a>&gt;</span>. </dd>
<dt id="IETF-95">[IETF-95]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Pan, R.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, Jones, P.</span><span class="refAuthor">, Fu, J.</span><span class="refAuthor">, D'Aronco, S.</span><span class="refAuthor">, and C. Ganzhorn</span>, <span class="refTitle">"Updates on NADA: Stability Analysis and Impact of Feedback Intervals"</span>, <span class="refContent">IETF 95
          </span>, <time datetime="2016-04">April 2016</time>, <span>&lt;<a href="https://www.ietf.org/proceedings/95/slides/slides-95-rmcat-5.pdf">https://www.ietf.org/proceedings/95/slides/slides-95-rmcat-5.pdf</a>&gt;</span>. </dd>
<dt id="NS-2">[NS-2]</dt>
<dd>
<span class="refTitle">"ns-2"</span>, <time datetime="2014-12">December 2014</time>, <span>&lt;<a href="http://nsnam.sourceforge.net/wiki/index.php/Main_Page">http://nsnam.sourceforge.net/wiki/index.php/Main_Page</a>&gt;</span>. </dd>
<dt id="NS-3">[NS-3]</dt>
<dd>
<span class="refTitle">"ns-3 Network Simulator"</span>, <span>&lt;<a href="https://www.nsnam.org/">https://www.nsnam.org/</a>&gt;</span>. </dd>
<dt id="NS3-RMCAT">[NS3-RMCAT]</dt>
<dd>
<span class="refAuthor">Fu, J.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, and X. Zhu</span>, <span class="refTitle">"Simulator of IETF RMCAT congestion control protocols"</span>, <time datetime="2017-11">November 2017</time>, <span>&lt;<a href="https://github.com/cisco/ns3-rmcat">https://github.com/cisco/ns3-rmcat</a>&gt;</span>. </dd>
<dt id="RFC5450">[RFC5450]</dt>
<dd>
<span class="refAuthor">Singer, D.</span><span class="refAuthor"> and H. Desineni</span>, <span class="refTitle">"Transmission Time Offsets in RTP Streams"</span>, <span class="seriesInfo">RFC 5450</span>, <span class="seriesInfo">DOI 10.17487/RFC5450</span>, <time datetime="2009-03">March 2009</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5450">https://www.rfc-editor.org/info/rfc5450</a>&gt;</span>. </dd>
<dt id="RFC6660">[RFC6660]</dt>
<dd>
<span class="refAuthor">Briscoe, B.</span><span class="refAuthor">, Moncaster, T.</span><span class="refAuthor">, and M. Menth</span>, <span class="refTitle">"Encoding Three Pre-Congestion Notification (PCN) States in the IP Header Using a Single Diffserv Codepoint (DSCP)"</span>, <span class="seriesInfo">RFC 6660</span>, <span class="seriesInfo">DOI 10.17487/RFC6660</span>, <time datetime="2012-07">July 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6660">https://www.rfc-editor.org/info/rfc6660</a>&gt;</span>. </dd>
<dt id="RFC6817">[RFC6817]</dt>
<dd>
<span class="refAuthor">Shalunov, S.</span><span class="refAuthor">, Hazel, G.</span><span class="refAuthor">, Iyengar, J.</span><span class="refAuthor">, and M. Kuehlewind</span>, <span class="refTitle">"Low Extra Delay Background Transport (LEDBAT)"</span>, <span class="seriesInfo">RFC 6817</span>, <span class="seriesInfo">DOI 10.17487/RFC6817</span>, <time datetime="2012-12">December 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6817">https://www.rfc-editor.org/info/rfc6817</a>&gt;</span>. </dd>
<dt id="RFC7567">[RFC7567]</dt>
<dd>
<span class="refAuthor">Baker, F., Ed.</span><span class="refAuthor"> and G. Fairhurst, Ed.</span>, <span class="refTitle">"IETF Recommendations Regarding Active Queue Management"</span>, <span class="seriesInfo">BCP 197</span>, <span class="seriesInfo">RFC 7567</span>, <span class="seriesInfo">DOI 10.17487/RFC7567</span>, <time datetime="2015-07">July 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7567">https://www.rfc-editor.org/info/rfc7567</a>&gt;</span>. </dd>
<dt id="RFC8033">[RFC8033]</dt>
<dd>
<span class="refAuthor">Pan, R.</span><span class="refAuthor">, Natarajan, P.</span><span class="refAuthor">, Baker, F.</span><span class="refAuthor">, and G. White</span>, <span class="refTitle">"Proportional Integral Controller Enhanced (PIE): A Lightweight Control Scheme to Address the Bufferbloat Problem"</span>, <span class="seriesInfo">RFC 8033</span>, <span class="seriesInfo">DOI 10.17487/RFC8033</span>, <time datetime="2017-02">February 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8033">https://www.rfc-editor.org/info/rfc8033</a>&gt;</span>. </dd>
<dt id="RFC8290">[RFC8290]</dt>
<dd>
<span class="refAuthor">Hoeiland-Joergensen, T.</span><span class="refAuthor">, McKenney, P.</span><span class="refAuthor">, Taht, D.</span><span class="refAuthor">, Gettys, J.</span><span class="refAuthor">, and E. Dumazet</span>, <span class="refTitle">"The Flow Queue CoDel Packet Scheduler and Active Queue Management Algorithm"</span>, <span class="seriesInfo">RFC 8290</span>, <span class="seriesInfo">DOI 10.17487/RFC8290</span>, <time datetime="2018-01">January 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8290">https://www.rfc-editor.org/info/rfc8290</a>&gt;</span>. </dd>
<dt id="RFC8593">[RFC8593]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Mena, S.</span><span class="refAuthor">, and Z. Sarker</span>, <span class="refTitle">"Video Traffic Models for RTP Congestion Control Evaluations"</span>, <span class="seriesInfo">RFC 8593</span>, <span class="seriesInfo">DOI 10.17487/RFC8593</span>, <time datetime="2019-05">May 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8593">https://www.rfc-editor.org/info/rfc8593</a>&gt;</span>. </dd>
<dt id="I-D.ietf-rmcat-cc-requirements">[RMCAT-CC]</dt>
<dd>
<span class="refAuthor">Jesup, R.</span><span class="refAuthor"> and Z. Sarker</span>, <span class="refTitle">"Congestion Control Requirements for Interactive Real-Time Media"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rmcat-cc-requirements-09</span>, <time datetime="2014-12-12">12 December 2014</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-rmcat-cc-requirements-09">https://tools.ietf.org/html/draft-ietf-rmcat-cc-requirements-09</a>&gt;</span>. </dd>
<dt id="I-D.ietf-rmcat-cc-codec-interactions">[RMCAT-CC-RTP]</dt>
<dd>
<span class="refAuthor">Zanaty, M.</span><span class="refAuthor">, Singh, V.</span><span class="refAuthor">, Nandakumar, S.</span><span class="refAuthor">, and Z. Sarker</span>, <span class="refTitle">"Congestion Control and Codec interactions in RTP Applications"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rmcat-cc-codec-interactions-02</span>, <time datetime="2016-03-18">18 March 2016</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-rmcat-cc-codec-interactions-02">https://tools.ietf.org/html/draft-ietf-rmcat-cc-codec-interactions-02</a>&gt;</span>. </dd>
<dt id="I-D.ietf-rmcat-eval-test">[RMCAT-EVAL-TEST]</dt>
<dd>
<span class="refAuthor">Sarker, Z.</span><span class="refAuthor">, Singh, V.</span><span class="refAuthor">, Zhu, X.</span><span class="refAuthor">, and M. Ramalho</span>, <span class="refTitle">"Test Cases for Evaluating RMCAT Proposals"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rmcat-eval-test-10</span>, <time datetime="2019-05-23">23 May 2019</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-rmcat-eval-test-10">https://tools.ietf.org/html/draft-ietf-rmcat-eval-test-10</a>&gt;</span>. </dd>
<dt id="I-D.ietf-avtcore-cc-feedback-message">[RTCP-FEEDBACK]</dt>
<dd>
<span class="refAuthor">Sarker, Z.</span><span class="refAuthor">, Perkins, C.</span><span class="refAuthor">, Singh, V.</span><span class="refAuthor">, and M. Ramalho</span>, <span class="refTitle">"RTP Control Protocol (RTCP) Feedback for Congestion Control"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-avtcore-cc-feedback-message-05</span>, <time datetime="2019-11-04">4 November 2019</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-avtcore-cc-feedback-message-05">https://tools.ietf.org/html/draft-ietf-avtcore-cc-feedback-message-05</a>&gt;</span>. </dd>
<dt id="I-D.ietf-rmcat-wireless-tests">[WIRELESS-TESTS]</dt>
<dd>
<span class="refAuthor">Sarker, Z.</span><span class="refAuthor">, Johansson, I.</span><span class="refAuthor">, Zhu, X.</span><span class="refAuthor">, Fu, J.</span><span class="refAuthor">, Tan, W.</span><span class="refAuthor">, and M. Ramalho</span>, <span class="refTitle">"Evaluation Test Cases for Interactive Real-Time Media over Wireless Networks"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rmcat-wireless-tests-08</span>, <time datetime="2019-07-05">5 July 2019</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-rmcat-wireless-tests-08">https://tools.ietf.org/html/draft-ietf-rmcat-wireless-tests-08</a>&gt;</span>. </dd>
<dt id="ZHU-PV13">[ZHU-PV13]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor"> and R. Pan</span>, <span class="refTitle">"NADA: A Unified Congestion Control Scheme for Low-Latency Interactive Video"</span>, <span class="refContent">Proc. IEEE International Packet Video Workshop, San
   Jose, CA, USA
          </span>, <span class="seriesInfo">DOI 10.1109/PV.2013.6691448</span>, <time datetime="2013-12">December 2013</time>, <span>&lt;<a href="https://doi.org/10.1109/PV.2013.6691448">https://doi.org/10.1109/PV.2013.6691448</a>&gt;</span>. </dd>
</dl>
</section>
</section>
<div id="sec-network-nodes">
<section id="section-appendix.a">
      <h2 id="name-network-node-operations">
<a href="#section-appendix.a" class="section-number selfRef">Appendix A. </a><a href="#name-network-node-operations" class="section-name selfRef">Network Node Operations</a>
      </h2>
<p id="section-appendix.a-1">NADA can work with different network queue management
schemes and does not assume any specific network node operation.
As an example, this appendix describes three variants of queue
management behavior at the network node, leading to either
implicit or explicit congestion signals. It needs to be
acknowledged that NADA has not yet been tested with non-probabilistic
ECN marking behaviors.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
<p id="section-appendix.a-2">
In all three flavors described below, the network queue
operates with the simple First In, First Out (FIFO) principle.
There is no need to maintain per-flow state. The system
can scale easily with a large number of video flows and
at high link capacity.<a href="#section-appendix.a-2" class="pilcrow">¶</a></p>
<div id="sec-network-droptail">
<section id="section-a.1">
        <h2 id="name-default-behavior-of-drop-ta">
<a href="#section-a.1" class="section-number selfRef">A.1. </a><a href="#name-default-behavior-of-drop-ta" class="section-name selfRef">Default Behavior of Drop-Tail Queues</a>
        </h2>
<p id="section-a.1-1">
In a conventional network with drop-tail or RED queues,
congestion is inferred from the estimation of end-to-end
delay and/or packet loss. Packet drops at the queue are
detected at the receiver and contribute to the calculation
of the aggregated congestion signal x_curr. No special
action is required at the network node.<a href="#section-a.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-network-ecn">
<section id="section-a.2">
        <h2 id="name-red-based-ecn-marking">
<a href="#section-a.2" class="section-number selfRef">A.2. </a><a href="#name-red-based-ecn-marking" class="section-name selfRef">RED-Based ECN Marking</a>
        </h2>
<p id="section-a.2-1">In this mode, the network node randomly marks
the ECN field in the IP packet header following
the <span><a href="#RFC7567" class="xref">Random Early Detection
(RED) algorithm</a> [<a href="#RFC7567" class="xref">RFC7567</a>]</span>. Calculation of the marking
probability involves the following steps on packet arrival:<a href="#section-a.2-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal" id="section-a.2-2">
          <li id="section-a.2-2.1">
            <p id="section-a.2-2.1.1">update smoothed queue size q_avg as:<a href="#section-a.2-2.1.1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-a.2-2.1.2">
<pre>
   q_avg = w*q + (1-w)*q_avg
</pre><a href="#section-a.2-2.1.2" class="pilcrow">¶</a>
</div>
</li>
<li id="section-a.2-2.2">
            <p id="section-a.2-2.2.1">calculate marking probability p as:<a href="#section-a.2-2.2.1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-a.2-2.2.2">
<pre>
        / 0,                    if q &lt; q_lo
        |
        |        q_avg - q_lo
    p= &lt;  p_max*--------------, if q_lo &lt;= q &lt; q_hi
        |         q_hi - q_lo
        |
        \ p = 1,                if q &gt;= q_hi
</pre><a href="#section-a.2-2.2.2" class="pilcrow">¶</a>
</div>
</li>
</ol>
<p id="section-a.2-3">
Here, q_lo and q_hi correspond to the low
and high thresholds of queue occupancy.
The maximum marking probability is p_max.<a href="#section-a.2-3" class="pilcrow">¶</a></p>
<p id="section-a.2-4">
The ECN marking events will contribute
to the calculation of an equivalent delay
x_curr at the receiver. No changes are required
at the sender.<a href="#section-a.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-network-pcn">
<section id="section-a.3">
        <h2 id="name-random-early-marking-with-v">
<a href="#section-a.3" class="section-number selfRef">A.3. </a><a href="#name-random-early-marking-with-v" class="section-name selfRef">Random Early Marking with Virtual Queues</a>
        </h2>
<p id="section-a.3-1">
Advanced network nodes may support random early marking
based on a token bucket algorithm originally designed for
<span><a href="#RFC6660" class="xref">Pre-Congestion Notification
(PCN)</a> [<a href="#RFC6660" class="xref">RFC6660</a>]</span>. 
The early congestion notification (ECN) bit in the
IP header of packets is marked randomly.
The marking probability is calculated based on a
token bucket algorithm originally designed for
<span><a href="#RFC6660" class="xref">PCN</a> [<a href="#RFC6660" class="xref">RFC6660</a>]</span>.
The target link utilization is set as 90%; the marking
probability is designed to grow linearly with the token
bucket size when it varies between 1/3 and 2/3 of the
full token bucket limit.<a href="#section-a.3-1" class="pilcrow">¶</a></p>
<p id="section-a.3-2">Calculation of the marking probability involves
the following steps upon packet arrival:<a href="#section-a.3-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal" id="section-a.3-3">
          <li id="section-a.3-3.1">
            <p id="section-a.3-3.1.1">meter packet against token bucket (r,b)<a href="#section-a.3-3.1.1" class="pilcrow">¶</a></p>
</li>
<li id="section-a.3-3.2">
            <p id="section-a.3-3.2.1">update token level b_tk<a href="#section-a.3-3.2.1" class="pilcrow">¶</a></p>
</li>
<li id="section-a.3-3.3">
            <p id="section-a.3-3.3.1">calculate the marking probability as:<a href="#section-a.3-3.3.1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-a.3-3.3.2">
<pre>
         / 0,                     if b-b_tk &lt; b_lo 
         |
         |          b-b_tk-b_lo
    p = &lt;  p_max* --------------, if b_lo &lt;= b-b_tk &lt; b_hi
         |           b_hi-b_lo
         |
         \ 1,                     if b-b_tk &gt;= b_hi 
</pre><a href="#section-a.3-3.3.2" class="pilcrow">¶</a>
</div>
</li>
</ol>
<p id="section-a.3-4">
Here, the token bucket lower and upper limits are denoted by
b_lo and b_hi, respectively. The parameter b indicates the size
of the token bucket. The parameter r is chosen to be below
capacity, resulting in slight underutilization of the link.
The maximum marking probability is p_max.<a href="#section-a.3-4" class="pilcrow">¶</a></p>
<p id="section-a.3-5">The ECN marking events will contribute to the calculation
of an equivalent delay x_curr at the receiver. No changes are
required at the sender. The virtual queuing mechanism from
the PCN-based marking algorithm will lead to additional
benefits such as zero standing queues.<a href="#section-a.3-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-acknowledgments">
<section id="section-appendix.b">
      <h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
      </h2>
<p id="section-appendix.b-1">
The authors would like to thank <span class="contact-name">Randell Jesup</span>, <span class="contact-name">Luca De Cicco</span>, <span class="contact-name">Piers O'Hanlon</span>, <span class="contact-name">Ingemar Johansson</span>, <span class="contact-name">Stefan Holmer</span>, <span class="contact-name">Cesar Ilharco Magalhaes</span>, <span class="contact-name">Safiqul Islam</span>,
<span class="contact-name">Michael Welzl</span>, <span class="contact-name">Mirja Kühlewind</span>,
<span class="contact-name">Karen Elisabeth Egede Nielsen</span>, <span class="contact-name">Julius Flohr</span>, <span class="contact-name">Roland Bless</span>, <span class="contact-name">Andreas Smas</span>, and <span class="contact-name">Martin Stiemerling</span> for their valuable
review comments and helpful input to this specification.<a href="#section-appendix.b-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-contributors">
<section id="section-appendix.c">
      <h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
      </h2>
<p id="section-appendix.c-1">The following individuals contributed to the implementation
  and evaluation of the proposed scheme and, therefore, helped
  to validate and substantially improve this specification.<a href="#section-appendix.c-1" class="pilcrow">¶</a></p>
<p id="section-appendix.c-2"><span class="contact-name">Paul E. Jones</span>
 &lt;paulej@packetizer.com&gt; of Cisco Systems implemented
    an early version of the NADA congestion control scheme and helped with its
    lab-based testbed evaluations.<a href="#section-appendix.c-2" class="pilcrow">¶</a></p>
<p id="section-appendix.c-3"><span class="contact-name">Jiantao Fu</span> &lt;jianfu@cisco.com&gt; of Cisco
 Systems helped with the
  implementation and extensive evaluation of NADA both in Mozilla web browsers
  and in earlier simulation-based evaluation efforts.<a href="#section-appendix.c-3" class="pilcrow">¶</a></p>
<p id="section-appendix.c-4"><span class="contact-name">Stefano D'Aronco</span>
 &lt;stefano.daronco@geod.baug.ethz.ch&gt; of ETH Zurich
  (previously at Ecole Polytechnique Federale de Lausanne when contributing
   to this work) helped with the implementation and evaluation of an early
   version
   of NADA in <span>[<a href="#NS-3" class="xref">NS-3</a>]</span>.<a href="#section-appendix.c-4" class="pilcrow">¶</a></p>
<p id="section-appendix.c-5"><span class="contact-name">Charles Ganzhorn</span>
 &lt;charles.ganzhorn@gmail.com&gt; contributed to the
    testbed-based evaluation of NADA during an early stage of its development.<a href="#section-appendix.c-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="section-appendix.d">
      <h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Xiaoqing Zhu</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems</span></div>
<div dir="auto" class="left"><span class="street-address">12515 Research Blvd., Building 4</span></div>
<div dir="auto" class="left">
<span class="locality">Austin</span>, <span class="region">TX</span> <span class="postal-code">78759</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:xiaoqzhu@cisco.com" class="email">xiaoqzhu@cisco.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Rong Pan</span></div>
<div dir="auto" class="left"><span class="org">Intel Corporation</span></div>
<div dir="auto" class="left"><span class="street-address">2200 Mission College Blvd</span></div>
<div dir="auto" class="left">
<span class="locality">Santa Clara</span>, <span class="region">CA</span> <span class="postal-code">95054</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:rong.pan@intel.com" class="email">rong.pan@intel.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Michael A. Ramalho</span></div>
<div dir="auto" class="left"><span class="org">AcousticComms Consulting</span></div>
<div dir="auto" class="left"><span class="street-address">6310 Watercrest Way Unit 203</span></div>
<div dir="auto" class="left">
<span class="locality">Lakewood Ranch</span>, <span class="region">FL</span> <span class="postal-code">34202-5211</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+1%20732%20832%209723" class="tel">+1 732 832 9723</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:mar42@cornell.edu" class="email">mar42@cornell.edu</a>
</div>
<div class="url">
<span>URI:</span>
<a href="http://ramalho.webhop.info/" class="url">http://ramalho.webhop.info/</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Sergio Mena</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems</span></div>
<div dir="auto" class="left"><span class="street-address">EPFL, Quartier de l'Innovation, Batiment E</span></div>
<div dir="auto" class="left">
<span class="postal-code">1015</span> <span class="locality">Ecublens</span>
</div>
<div dir="auto" class="left"><span class="country-name">Switzerland</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:semena@cisco.com" class="email">semena@cisco.com</a>
</div>
</address>
</section>
</div>
<script>var toc = document.getElementById("toc");
var tocToggle = toc.querySelector("h2");
var tocNav = toc.querySelector("nav");

// mobile menu toggle
tocToggle.onclick = function(event) {
    if (window.innerWidth < 1024) {
 var tocNavDisplay = tocNav.currentStyle ? tocNav.currentStyle.display : getComputedStyle(tocNav, null).display;
 if (tocNavDisplay == "none") {
     tocNav.style.display = "block";
 } else {
     tocNav.style.display = "none";
 }
    }
}

// toc anchor scroll to anchor
tocNav.addEventListener("click", function (event) {
    event.preventDefault();
    if (event.target.nodeName == 'A') {
 if (window.innerWidth < 1024) {
     tocNav.style.display = "none";
 }
 var href = event.target.getAttribute("href");
 var anchorId = href.substr(1);
 var anchor =  document.getElementById(anchorId);
 anchor.scrollIntoView(true);
 window.history.pushState("","",href);
    }
});

// switch toc mode when window resized
window.onresize = function () {
    if (window.innerWidth < 1024) {
 tocNav.style.display = "none";
    } else {
 tocNav.style.display = "block";
    }
}
</script>
</body>
</html>