1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8699: Coupled Congestion Control for RTP Media</title>
<meta content="Safiqul Islam" name="author">
<meta content="Michael Welzl" name="author">
<meta content="Stein Gjessing" name="author">
<meta content="
When multiple congestion-controlled Real-time Transport Protocol
(RTP) sessions traverse the same network bottleneck, combining their
controls can improve the total on-the-wire behavior in terms of delay,
loss, and fairness. This document describes such a method for flows that
have the same sender, in a way that is as flexible and simple as
possible while minimizing the number of changes needed to existing RTP
applications. This document also specifies how to apply the method for the
Network-Assisted Dynamic Adaptation (NADA) congestion control algorithm
and provides suggestions on how to apply it to other congestion control
algorithms.
" name="description">
<meta content="xml2rfc 2.39.0" name="generator">
<meta content="tcp" name="keyword">
<meta content="8699" name="rfc.number">
<link href="rfc8699.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Avoid wrapping of URLs in references */
@media screen {
.references a {
white-space: nowrap;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin: 0 0 0.25em 0;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/*
The margin-left: 0 on <dd> removes all distinction
between levels from nested <dl>s. Undo that.
*/
dl.olPercent > dd,
dd {
margin-left: revert;
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc8699" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-rmcat-coupled-cc-09" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8699</td>
<td class="center">Coupled Congestion Control for RTP Media</td>
<td class="right">January 2020</td>
</tr></thead>
<tfoot><tr>
<td class="left">Islam, et al.</td>
<td class="center">Experimental</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8699" class="eref">8699</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Experimental</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2020-01" class="published">January 2020</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">S. Islam</div>
<div class="org">University of Oslo</div>
</div>
<div class="author">
<div class="author-name">M. Welzl</div>
<div class="org">University of Oslo</div>
</div>
<div class="author">
<div class="author-name">S. Gjessing</div>
<div class="org">University of Oslo</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8699</h1>
<h1 id="title">Coupled Congestion Control for RTP Media</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">When multiple congestion-controlled Real-time Transport Protocol
(RTP) sessions traverse the same network bottleneck, combining their
controls can improve the total on-the-wire behavior in terms of delay,
loss, and fairness. This document describes such a method for flows that
have the same sender, in a way that is as flexible and simple as
possible while minimizing the number of changes needed to existing RTP
applications. This document also specifies how to apply the method for the
Network-Assisted Dynamic Adaptation (NADA) congestion control algorithm
and provides suggestions on how to apply it to other congestion control
algorithms.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF community.
It has received public review and has been approved for publication
by the Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc8699">https://www.rfc-editor.org/info/rfc8699</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-definitions" class="xref">Definitions</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-limitations" class="xref">Limitations</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-architectural-overview" class="xref">Architectural Overview</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-roles" class="xref">Roles</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>. <a href="#name-sbd" class="xref">SBD</a><a href="#section-toc.1-1.5.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>. <a href="#name-fse" class="xref">FSE</a><a href="#section-toc.1-1.5.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.3">
<p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>. <a href="#name-flows" class="xref">Flows</a><a href="#section-toc.1-1.5.2.3.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.5.2.3.2.1">
<p id="section-toc.1-1.5.2.3.2.1.1"><a href="#section-5.3.1" class="xref">5.3.1</a>. <a href="#name-example-algorithm-1-active-" class="xref">Example Algorithm 1 - Active FSE</a><a href="#section-toc.1-1.5.2.3.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5.2.3.2.2">
<p id="section-toc.1-1.5.2.3.2.2.1"><a href="#section-5.3.2" class="xref">5.3.2</a>. <a href="#name-example-algorithm-2-conserv" class="xref">Example Algorithm 2 - Conservative Active FSE</a><a href="#section-toc.1-1.5.2.3.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-application" class="xref">Application</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-nada" class="xref">NADA</a><a href="#section-toc.1-1.6.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-general-recommendations" class="xref">General Recommendations</a><a href="#section-toc.1-1.6.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-expected-feedback-from-expe" class="xref">Expected Feedback from Experiments</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.10.2.1">
<p id="section-toc.1-1.10.2.1.1"><a href="#section-10.1" class="xref">10.1</a>. <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.10.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.10.2.2">
<p id="section-toc.1-1.10.2.2.1"><a href="#section-10.2" class="xref">10.2</a>. <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.10.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-appendix.a" class="xref">Appendix A</a>. <a href="#name-application-to-gcc" class="xref">Application to GCC</a><a href="#section-toc.1-1.11.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-appendix.b" class="xref">Appendix B</a>. <a href="#name-scheduling" class="xref">Scheduling</a><a href="#section-toc.1-1.12.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#section-appendix.c" class="xref">Appendix C</a>. <a href="#name-example-algorithm-passive-f" class="xref">Example Algorithm - Passive FSE</a><a href="#section-toc.1-1.13.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.13.2.1">
<p id="section-toc.1-1.13.2.1.1"><a href="#section-c.1" class="xref">C.1</a>. <a href="#name-example-operation-passive" class="xref">Example Operation (Passive)</a><a href="#section-toc.1-1.13.2.1.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#section-appendix.d" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a><a href="#section-toc.1-1.14.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.15">
<p id="section-toc.1-1.15.1"><a href="#section-appendix.e" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.15.1" class="pilcrow">¶</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="sec-intro">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">When there is enough data to send, a congestion controller attempts
to increase its sending rate until the path's capacity has been reached.
Some controllers detect path capacity by increasing the sending rate
further, until packets are
ECN-marked <span>[<a href="#RFC8087" class="xref">RFC8087</a>]</span> or dropped, and
then decreasing the sending rate until that stops happening. This
process inevitably creates undesirable queuing delay when multiple
congestion-controlled connections traverse the same network bottleneck,
and each connection overshoots the path capacity as it determines its
sending rate.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">The Congestion Manager (CM) <span>[<a href="#RFC3124" class="xref">RFC3124</a>]</span>
couples flows by providing a single congestion controller. It is hard to
implement because it requires an additional congestion controller and
removes all per-connection congestion control functionality, which is
quite a significant change to existing RTP-based applications. This
document presents a method to combine the behavior of congestion control
mechanisms that is easier to implement than the Congestion Manager <span>[<a href="#RFC3124" class="xref">RFC3124</a>]</span> and also requires fewer significant
changes to existing RTP-based applications. It attempts to roughly
approximate the CM behavior by sharing information between existing
congestion controllers. It is able to honor user-specified priorities,
which is required by WebRTC <span>[<a href="#I-D.ietf-rtcweb-overview" class="xref">RTCWEB-OVERVIEW</a>]</span> <span>[<a href="#RFC7478" class="xref">RFC7478</a>]</span>.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">The described mechanisms are believed safe to use, but they are
experimental and are presented for wider review and operational
evaluation.<a href="#section-1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-def">
<section id="section-2">
<h2 id="name-definitions">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-definitions" class="section-name selfRef">Definitions</a>
</h2>
<p id="section-2-1">The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
"<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>",
"<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are
to be interpreted as described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span>
<span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when, they appear in all
capitals, as shown here.<a href="#section-2-1" class="pilcrow">¶</a></p>
<dl class="dlNewline" id="section-2-2">
<dt id="section-2-2.1">Available Bandwidth:</dt>
<dd style="margin-left: 3.0em" id="section-2-2.2">
The available bandwidth is the nominal link capacity minus the
amount of traffic that traversed the link during a certain time
interval, divided by that time interval.<a href="#section-2-2.2" class="pilcrow">¶</a>
</dd>
<dt id="section-2-2.3">Bottleneck:</dt>
<dd style="margin-left: 3.0em" id="section-2-2.4">
The first link with the smallest available bandwidth along the path between a sender and receiver.<a href="#section-2-2.4" class="pilcrow">¶</a>
</dd>
<dt id="section-2-2.5">Flow:</dt>
<dd style="margin-left: 3.0em" id="section-2-2.6">
A flow is the entity that congestion control is operating on. It
could, for example, be a transport-layer connection or an RTP
stream <span>[<a href="#RFC7656" class="xref">RFC7656</a>]</span>, regardless of
whether or not this RTP stream is multiplexed onto an RTP session
with other RTP streams.<a href="#section-2-2.6" class="pilcrow">¶</a>
</dd>
<dt id="section-2-2.7">Flow Group Identifier (FGI):</dt>
<dd style="margin-left: 3.0em" id="section-2-2.8">
A unique identifier for each subset of flows that is limited by a common bottleneck.<a href="#section-2-2.8" class="pilcrow">¶</a>
</dd>
<dt id="section-2-2.9">Flow State Exchange (FSE):</dt>
<dd style="margin-left: 3.0em" id="section-2-2.10">
The entity that maintains information that is exchanged between flows.<a href="#section-2-2.10" class="pilcrow">¶</a>
</dd>
<dt id="section-2-2.11">Flow Group (FG):</dt>
<dd style="margin-left: 3.0em" id="section-2-2.12">
A group of flows having the same FGI.<a href="#section-2-2.12" class="pilcrow">¶</a>
</dd>
<dt id="section-2-2.13">Shared Bottleneck Detection (SBD):</dt>
<dd style="margin-left: 3.0em" id="section-2-2.14">
The entity that determines which flows traverse the same
bottleneck in the network or the process of doing so.<a href="#section-2-2.14" class="pilcrow">¶</a>
</dd>
</dl>
</section>
</div>
<div id="sec-limits">
<section id="section-3">
<h2 id="name-limitations">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-limitations" class="section-name selfRef">Limitations</a>
</h2>
<dl class="dlNewline" id="section-3-1">
<dt id="section-3-1.1">Sender-side only:</dt>
<dd style="margin-left: 3.0em" id="section-3-1.2">
Shared bottlenecks can exist when multiple flows originate from the same
sender or when flows from different senders reach the same receiver (see
<span><a href="https://www.rfc-editor.org/rfc/rfc8382#section-3" class="relref">Section 3</a> of [<a href="#RFC8382" class="xref">RFC8382</a>]</span>). Coupled
congestion control, as described here, only supports the former case, not
the latter, as it operates inside a single host on the sender side.<a href="#section-3-1.2" class="pilcrow">¶</a>
</dd>
<dt id="section-3-1.3">Shared bottlenecks do not change quickly:</dt>
<dd style="margin-left: 3.0em" id="section-3-1.4">
As per the definition above, a bottleneck depends on cross traffic, and
since such traffic can heavily fluctuate, bottlenecks can change at a
high frequency (e.g., there can be oscillation between two or more
links). This means that, when flows are partially routed along different
paths, they may quickly change between sharing and not sharing a
bottleneck. For simplicity, here it is assumed that a shared bottleneck
is valid for a time interval that is significantly longer than the
interval at which congestion controllers operate. Note that, for the only
SBD mechanism defined in this document (multiplexing on the same
five-tuple), the notion of a shared bottleneck stays correct even in the
presence of fast traffic fluctuations; since all flows that are assumed
to share a bottleneck are routed in the same way, if the bottleneck
changes, it will still be shared.<a href="#section-3-1.4" class="pilcrow">¶</a>
</dd>
</dl>
</section>
</div>
<div id="sec-arch">
<section id="section-4">
<h2 id="name-architectural-overview">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-architectural-overview" class="section-name selfRef">Architectural Overview</a>
</h2>
<p id="section-4-1"><a href="#fig_1" class="xref">Figure 1</a> shows the elements of the architecture for coupled
congestion control: the Flow State Exchange (FSE), Shared Bottleneck
Detection (SBD), and Flows. The FSE is a storage element that can be
implemented in two ways: active and passive. In the active version, it
initiates communication with flows and SBD. However, in the passive
version, it does not actively initiate communication with flows and SBD;
its only active role is internal state maintenance (e.g., an
implementation could use soft state to remove a flow's data after long
periods of inactivity). Every time a flow's congestion control mechanism
would normally update its sending rate, the flow instead updates
information in the FSE and performs a query on the FSE, leading to a
sending rate that can be different from what the congestion controller
originally determined. Using information about/from the currently active
flows, SBD updates the FSE with the correct Flow Group Identifiers
(FGIs).<a href="#section-4-1" class="pilcrow">¶</a></p>
<p id="section-4-2"> This document describes both active and passive versions. While the
passive algorithm works better for congestion controls with
RTT-independent convergence, it can still produce oscillations on short
time scales. The passive algorithm, described in <a href="#example-alg-pas" class="xref">Appendix C</a>, is therefore considered
highly experimental and not safe to deploy outside of testbed
environments. <a href="#fig_2" class="xref">Figure 2</a> shows the interaction between flows
and the FSE using the variable names defined in <a href="#fse-variables" class="xref">Section 5.2</a>.<a href="#section-4-2" class="pilcrow">¶</a></p>
<span id="name-coupled-congestion-control-"></span><div id="fig_1">
<figure id="figure-1">
<div class="artwork art-text alignCenter" id="section-4-3.1">
<pre>------- <--- Flow 1
| FSE | <--- Flow 2 ..
------- <--- .. Flow N
^
| |
------- |
| SBD | <-------|
------- </pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-coupled-congestion-control-" class="selfRef">Coupled congestion control architecture</a>
</figcaption></figure>
</div>
<span id="name-flow-fse-interactions"></span><div id="fig_2">
<figure id="figure-2">
<div class="artwork art-text alignCenter" id="section-4-4.1">
<pre>Flow#1(cc) FSE Flow#2(cc)
---------- --- ----------
#1 JOIN ----register--> REGISTER
REGISTER <--register-- JOIN #1
#2 CC_R(1) ----UPDATE----> UPDATE (in)
#3 NEW RATE <---FSE_R(1)-- UPDATE (out) --FSE_R(2)-> #3 NEW RATE
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-flow-fse-interactions" class="selfRef">Flow-FSE interactions</a>
</figcaption></figure>
</div>
<p id="section-4-5">Since everything shown in <a href="#fig_1" class="xref">Figure 1</a> is assumed to operate on a single
host (the sender) only, this document only describes aspects that have
an influence on the resulting on-the-wire behavior. It does not, for
instance, define how many bits must be used to represent FGIs or in
which way the entities communicate.<a href="#section-4-5" class="pilcrow">¶</a></p>
<p id="section-4-6">Implementations can take various forms; for instance, all the
elements in the figure could be implemented within a single application,
thereby operating on flows generated by that application only. Another
alternative could be to implement both the FSE and SBD together in a
separate process that different applications communicate with via some
form of Inter-Process Communication (IPC). Such an implementation would
extend the scope to flows generated by multiple applications. The FSE
and SBD could also be included in the Operating System kernel. However,
only one type of coupling algorithm should be used for all
flows. Combinations of multiple algorithms at different aggregation
levels (e.g., the Operating System coupling application aggregates with
one algorithm, and applications coupling their flows with another) have
not been tested and are therefore not recommended.<a href="#section-4-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="roles">
<section id="section-5">
<h2 id="name-roles">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-roles" class="section-name selfRef">Roles</a>
</h2>
<p id="section-5-1">This section gives an overview of the roles of the elements of
coupled congestion control and provides an example of how coupled
congestion control can operate.<a href="#section-5-1" class="pilcrow">¶</a></p>
<section id="section-5.1">
<h3 id="name-sbd">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-sbd" class="section-name selfRef">SBD</a>
</h3>
<p id="section-5.1-1">SBD uses knowledge about the flows to determine which flows belong
in the same Flow Group (FG) and assigns FGIs accordingly. This
knowledge can be derived in three basic ways:<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal" id="section-5.1-2">
<li id="section-5.1-2.1">From multiplexing: It can be based on the simple assumption that
packets sharing the same five-tuple (IP source and destination
address, protocol, and transport-layer port number pair) and having
the same values for the Differentiated Services Code Point (DSCP)
and the ECN field in the IP header are typically treated in the same
way along the path. This method is the only one specified in this
document; SBD <span class="bcp14">MAY</span> consider all flows that use the
same five-tuple, DSCP, and ECN field value to belong to the same
FG. This classification applies to certain tunnels or RTP flows
that are multiplexed over one transport (cf. <span>[<a href="#TRANSPORT-MULTIPLEX" class="xref">TRANSPORT-MULTIPLEX</a>]</span>). Such multiplexing
is also a recommended usage of RTP in WebRTC <span>[<a href="#I-D.ietf-rtcweb-rtp-usage" class="xref">RTCWEB-RTP-USAGE</a>]</span>.<a href="#section-5.1-2.1" class="pilcrow">¶</a>
</li>
<li id="section-5.1-2.2">Via configuration: e.g., by assuming that a common wireless uplink is also a shared bottleneck.<a href="#section-5.1-2.2" class="pilcrow">¶</a>
</li>
<li id="section-5.1-2.3">From measurements: e.g., by considering correlations among
measured delay and loss as an indication of a shared
bottleneck.<a href="#section-5.1-2.3" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-5.1-3">The methods above have some essential trade-offs. For example,
multiplexing is a completely reliable measure, but it is limited
in scope to two endpoints (i.e., it cannot be applied to couple
congestion controllers of one sender talking to multiple receivers). A
measurement-based SBD mechanism is described in <span>[<a href="#RFC8382" class="xref">RFC8382</a>]</span>. Measurements can never be 100% reliable, in
particular because they are based on the past, but applying coupled
congestion control involves making an assumption about the future; it is
therefore recommended to implement cautionary measures, e.g., by
disabling coupled congestion control if enabling it causes a
significant increase in delay and/or packet loss. Measurements also
take time, which entails a certain delay for turning on coupling
(refer to <span>[<a href="#RFC8382" class="xref">RFC8382</a>]</span> for details).
When this is possible, it can be more efficient to statically configure shared
bottlenecks (e.g., via a system configuration or user input) based on
assumptions about the network environment.<a href="#section-5.1-3" class="pilcrow">¶</a></p>
</section>
<div id="fse-variables">
<section id="section-5.2">
<h3 id="name-fse">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-fse" class="section-name selfRef">FSE</a>
</h3>
<p id="section-5.2-1">The FSE contains a list of all flows that have registered with
it. For each flow, the FSE stores the following:<a href="#section-5.2-1" class="pilcrow">¶</a></p>
<ul>
<li id="section-5.2-2.1">a unique flow number f to identify the flow.<a href="#section-5.2-2.1" class="pilcrow">¶</a>
</li>
<li id="section-5.2-2.2">the FGI of the FG that it belongs to (based on the definitions
in this document, a flow has only one bottleneck and can therefore
be in only one FG).<a href="#section-5.2-2.2" class="pilcrow">¶</a>
</li>
<li id="section-5.2-2.3">a priority P(f), which is a number greater than zero.<a href="#section-5.2-2.3" class="pilcrow">¶</a>
</li>
<li id="section-5.2-2.4">The rate used by the flow in bits per second, FSE_R(f).<a href="#section-5.2-2.4" class="pilcrow">¶</a>
</li>
<li id="section-5.2-2.5">The desired rate DR(f) of flow f. This can be smaller than
FSE_R(f) if the application feeding into the flow has less data to
send than FSE_R(f) would allow or if a maximum value is imposed on
the rate. In the absence of such limits, DR(f) must be set to the
sending rate provided by the congestion control module of flow
f.<a href="#section-5.2-2.5" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5.2-3">
Note that the absolute range of priorities does not matter; the algorithm
works with a flow's priority portion of the sum of all priority
values. For example, if there are two flows, flow 1 with priority 1 and
flow 2 with priority 2, the sum of the priorities is 3. Then, flow 1 will
be assigned 1/3 of the aggregate sending rate, and flow 2 will be assigned
2/3 of the aggregate sending rate. Priorities can be mapped to the
"very-low", "low", "medium", or "high" priority levels described in <span>[<a href="#I-D.ietf-rtcweb-transports" class="xref">WEBRTC-TRANS</a>]</span> by simply using the
values 1, 2, 4, and 8, respectively.<a href="#section-5.2-3" class="pilcrow">¶</a></p>
<p id="section-5.2-4">In the FSE, each FG contains one static variable, S_CR, which is the
sum of the calculated rates of all flows in the same FG. This value is
used to calculate the sending rate.<a href="#section-5.2-4" class="pilcrow">¶</a></p>
<p id="section-5.2-5">The information listed here is enough to implement the sample flow
algorithm given below. FSE implementations could easily be extended to
store, e.g., a flow's current sending rate for statistics gathering or
future potential optimizations.<a href="#section-5.2-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="flows">
<section id="section-5.3">
<h3 id="name-flows">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-flows" class="section-name selfRef">Flows</a>
</h3>
<p id="section-5.3-1">Flows register themselves with SBD and FSE when they start,
deregister from the FSE when they stop, and carry out an UPDATE
function call every time their congestion controller calculates a new
sending rate. Via UPDATE, they provide the newly calculated rate and,
optionally (if the algorithm supports it), the desired rate. The
desired rate is less than the calculated rate in case of
application-limited flows; otherwise, it is the same as the calculated
rate.<a href="#section-5.3-1" class="pilcrow">¶</a></p>
<p id="section-5.3-2">Below, two example algorithms are described. While other algorithms
could be used instead, the same algorithm must be applied to all
flows. Names of variables used in the algorithms are explained below.<a href="#section-5.3-2" class="pilcrow">¶</a></p>
<dl class="dlParallel" id="section-5.3-3">
<dt id="section-5.3-3.1">CC_R(f)</dt>
<dd style="margin-left: 5.0em" id="section-5.3-3.2">The rate received from the congestion controller of
flow f when it calls UPDATE.<a href="#section-5.3-3.2" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-3.3">FSE_R(f)</dt>
<dd style="margin-left: 5.0em" id="section-5.3-3.4">The rate calculated by the FSE for flow f.<a href="#section-5.3-3.4" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-3.5">DR(f)</dt>
<dd style="margin-left: 5.0em" id="section-5.3-3.6">The desired rate of flow f.<a href="#section-5.3-3.6" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-3.7">S_CR</dt>
<dd style="margin-left: 5.0em" id="section-5.3-3.8">The sum of the calculated rates of all flows in the same
FG; this value is used to calculate the sending rate.<a href="#section-5.3-3.8" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-3.9">FG</dt>
<dd style="margin-left: 5.0em" id="section-5.3-3.10">A group of flows having the same FGI and hence, sharing the same bottleneck.<a href="#section-5.3-3.10" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-3.11">P(f)</dt>
<dd style="margin-left: 5.0em" id="section-5.3-3.12">The priority of flow f, which is received from the flow's congestion controller; the FSE uses this variable for calculating FSE_R(f).<a href="#section-5.3-3.12" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-3.13">S_P</dt>
<dd style="margin-left: 5.0em" id="section-5.3-3.14">The sum of all the priorities.<a href="#section-5.3-3.14" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-3.15">TLO</dt>
<dd style="margin-left: 5.0em" id="section-5.3-3.16">The total leftover rate; the sum of rates that could not be assigned to
flows that were limited by their desired rate.<a href="#section-5.3-3.16" class="pilcrow">¶</a>
</dd>
<dt id="section-5.3-3.17">AR</dt>
<dd style="margin-left: 5.0em" id="section-5.3-3.18">The aggregate rate that is assigned to flows that are not limited by their desired rate.<a href="#section-5.3-3.18" class="pilcrow">¶</a>
</dd>
</dl>
<div id="example-alg-act">
<section id="section-5.3.1">
<h4 id="name-example-algorithm-1-active-">
<a href="#section-5.3.1" class="section-number selfRef">5.3.1. </a><a href="#name-example-algorithm-1-active-" class="section-name selfRef">Example Algorithm 1 - Active FSE</a>
</h4>
<p id="section-5.3.1-1">This algorithm was designed to be the simplest possible method to
assign rates according to the priorities of flows. Simulation
results in <span>[<a href="#FSE" class="xref">FSE</a>]</span> indicate that it
does not, however, significantly reduce queuing delay and packet
loss.<a href="#section-5.3.1-1" class="pilcrow">¶</a></p>
<dl class="olPercent" id="section-5.3.1-2">
<dt>(1)</dt>
<dd id="section-5.3.1-2.1">When a flow f starts, it registers itself with SBD and the
FSE. FSE_R(f) is initialized with the congestion controller's
initial rate. SBD will assign the correct FGI. When a flow is
assigned an FGI, it adds its FSE_R(f) to S_CR.<a href="#section-5.3.1-2.1" class="pilcrow">¶</a>
</dd>
<dt>(2)</dt>
<dd id="section-5.3.1-2.2">When a flow f stops or pauses, its entry is removed from the list.<a href="#section-5.3.1-2.2" class="pilcrow">¶</a>
</dd>
<dt>(3)</dt>
<dd id="section-5.3.1-2.3">
<p id="section-5.3.1-2.3.1">Every time the congestion controller of the flow f determines
a new sending rate CC_R(f), the flow calls UPDATE, which carries
out the tasks listed below to derive the new sending rates for
all the flows in the FG. A flow's UPDATE function uses three
local (i.e., per-flow) temporary variables: S_P, TLO, and AR.<a href="#section-5.3.1-2.3.1" class="pilcrow">¶</a></p>
<dl class="olPercent" id="section-5.3.1-2.3.2">
<dt>(a)</dt>
<dd id="section-5.3.1-2.3.2.1">
<p id="section-5.3.1-2.3.2.1.1"> It updates S_CR.<a href="#section-5.3.1-2.3.2.1.1" class="pilcrow">¶</a></p>
<div id="section-5.3.1-2.3.2.1.2">
<pre class="sourcecode lang-pseudocode">
S_CR = S_CR + CC_R(f) - FSE_R(f) </pre><a href="#section-5.3.1-2.3.2.1.2" class="pilcrow">¶</a>
</div>
</dd>
<dt>(b)</dt>
<dd id="section-5.3.1-2.3.2.2">
<p id="section-5.3.1-2.3.2.2.1"> It calculates the sum of all the priorities, S_P, and initializes FSE_R.<a href="#section-5.3.1-2.3.2.2.1" class="pilcrow">¶</a></p>
<div id="section-5.3.1-2.3.2.2.2">
<pre class="sourcecode lang-pseudocode">
S_P = 0
for all flows i in FG do
S_P = S_P + P(i)
FSE_R(i) = 0
end for </pre><a href="#section-5.3.1-2.3.2.2.2" class="pilcrow">¶</a>
</div>
</dd>
<dt>(c)</dt>
<dd id="section-5.3.1-2.3.2.3">
<p id="section-5.3.1-2.3.2.3.1"> It distributes S_CR among all flows, ensuring that each flow's desired rate
is not exceeded.<a href="#section-5.3.1-2.3.2.3.1" class="pilcrow">¶</a></p>
<div id="section-5.3.1-2.3.2.3.2">
<pre class="sourcecode lang-pseudocode">
TLO = S_CR
while(TLO-AR>0 and S_P>0)
AR = 0
for all flows i in FG do
if FSE_R[i] < DR[i] then
if TLO * P[i] / S_P >= DR[i] then
TLO = TLO - DR[i]
FSE_R[i] = DR[i]
S_P = S_P - P[i]
else
FSE_R[i] = TLO * P[i] / S_P
AR = AR + TLO * P[i] / S_P
end if
end if
end for
end while </pre><a href="#section-5.3.1-2.3.2.3.2" class="pilcrow">¶</a>
</div>
</dd>
<dt>(d)</dt>
<dd id="section-5.3.1-2.3.2.4">
<p id="section-5.3.1-2.3.2.4.1"> It distributes FSE_R to all the flows.<a href="#section-5.3.1-2.3.2.4.1" class="pilcrow">¶</a></p>
<div id="section-5.3.1-2.3.2.4.2">
<pre class="sourcecode lang-pseudocode">
for all flows i in FG do
send FSE_R(i) to the flow i
end for </pre><a href="#section-5.3.1-2.3.2.4.2" class="pilcrow">¶</a>
</div>
</dd>
</dl>
</dd>
</dl>
</section>
</div>
<div id="example-alg-act-cons">
<section id="section-5.3.2">
<h4 id="name-example-algorithm-2-conserv">
<a href="#section-5.3.2" class="section-number selfRef">5.3.2. </a><a href="#name-example-algorithm-2-conserv" class="section-name selfRef">Example Algorithm 2 - Conservative Active FSE</a>
</h4>
<p id="section-5.3.2-1">This algorithm changes algorithm 1 to conservatively emulate the
behavior of a single flow by proportionally reducing the aggregate
rate on congestion. Simulation results in <span>[<a href="#FSE" class="xref">FSE</a>]</span> indicate that it can significantly reduce queuing
delay and packet loss.<a href="#section-5.3.2-1" class="pilcrow">¶</a></p>
<p id="section-5.3.2-2">Step (a) of the UPDATE function is changed as described
below. This also introduces a local variable DELTA, which is used to
calculate the difference between CC_R(f) and the previously stored
FSE_R(f). To prevent flows from either ignoring congestion or
overreacting, a timer keeps them from changing their rates
immediately after the common rate reduction that follows a
congestion event. This timer is set to two RTTs of the flow that
experienced congestion because it is assumed that a congestion event
can persist for up to one RTT of that flow, with another RTT added
to compensate for fluctuations in the measured RTT value.<a href="#section-5.3.2-2" class="pilcrow">¶</a></p>
<dl class="olPercent" id="section-5.3.2-3">
<dt>(a)</dt>
<dd id="section-5.3.2-3.1">
<p id="section-5.3.2-3.1.1"> It updates S_CR based on DELTA.<a href="#section-5.3.2-3.1.1" class="pilcrow">¶</a></p>
<div id="section-5.3.2-3.1.2">
<pre class="sourcecode lang-pseudocode">
if Timer has expired or was not set then
DELTA = CC_R(f) - FSE_R(f)
if DELTA < 0 then // Reduce S_CR proportionally
S_CR = S_CR * CC_R(f) / FSE_R(f)
Set Timer for 2 RTTs
else
S_CR = S_CR + DELTA
end if
end if </pre><a href="#section-5.3.2-3.1.2" class="pilcrow">¶</a>
</div>
</dd>
</dl>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="Application">
<section id="section-6">
<h2 id="name-application">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-application" class="section-name selfRef">Application</a>
</h2>
<p id="section-6-1">This section specifies how the FSE can be applied to specific
congestion control mechanisms and makes general recommendations that
facilitate applying the FSE to future congestion controls.<a href="#section-6-1" class="pilcrow">¶</a></p>
<div id="app-NADA">
<section id="section-6.1">
<h3 id="name-nada">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-nada" class="section-name selfRef">NADA</a>
</h3>
<p id="section-6.1-1">Network-Assisted Dynamic Adaptation (NADA) <span>[<a href="#RFC8698" class="xref">RFC8698</a>]</span> is a congestion
control scheme for WebRTC. It calculates a reference rate r_ref upon
receiving an acknowledgment and then, based on the reference rate,
calculates a video target rate r_vin and a sending rate for the flows,
r_send.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">When applying the FSE to NADA, the UPDATE function call described in <a href="#flows" class="xref">Section 5.3</a> gives the FSE NADA's reference rate
r_ref. The recommended algorithm for NADA is the Active FSE in <a href="#example-alg-act" class="xref">Section 5.3.1</a>. In step 3 (d), when the FSE_R(i) is "sent" to
the flow i, r_ref (r_vin and r_send) of flow i is updated with the value of FSE_R(i).<a href="#section-6.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="app-general">
<section id="section-6.2">
<h3 id="name-general-recommendations">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-general-recommendations" class="section-name selfRef">General Recommendations</a>
</h3>
<p id="section-6.2-1">This section provides general advice for applying the FSE to congestion control mechanisms.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<dl class="dlNewline" id="section-6.2-2">
<dt id="section-6.2-2.1">Receiver-side calculations:</dt>
<dd style="margin-left: 3.0em" id="section-6.2-2.2">
When receiver-side calculations make assumptions about the rate of the
sender, the calculations need to be synchronized, or the receiver needs
to be updated accordingly. This applies to TCP Friendly Rate Control
(TFRC) <span>[<a href="#RFC5348" class="xref">RFC5348</a>]</span>, for example, where
simulations showed somewhat less favorable results when using the FSE
without a receiver-side change <span>[<a href="#FSE" class="xref">FSE</a>]</span>.<a href="#section-6.2-2.2" class="pilcrow">¶</a>
</dd>
<dt id="section-6.2-2.3">Stateful algorithms:</dt>
<dd style="margin-left: 3.0em" id="section-6.2-2.4">
When a congestion control algorithm is stateful (e.g., during the TCP slow
start, congestion avoidance, or fast recovery phase), these states should
be carefully considered such that the overall state of the aggregate
flow is correct. This may require sharing more information in the
UPDATE call.<a href="#section-6.2-2.4" class="pilcrow">¶</a>
</dd>
<dt id="section-6.2-2.5">Rate jumps:</dt>
<dd style="margin-left: 3.0em" id="section-6.2-2.6">
The FSE-based coupling algorithms can let a flow quickly increase its
rate to its fair share, e.g., when a new flow joins or after a
quiescent period. In case of window-based congestion controls, this
may produce a burst that should be mitigated in some way. An example
of how this could be done without using a timer is presented in <span>[<a href="#ANRW2016" class="xref">ANRW2016</a>]</span>, using TCP as an example.<a href="#section-6.2-2.6" class="pilcrow">¶</a>
</dd>
</dl>
</section>
</div>
</section>
</div>
<div id="expected-feedback">
<section id="section-7">
<h2 id="name-expected-feedback-from-expe">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-expected-feedback-from-expe" class="section-name selfRef">Expected Feedback from Experiments</a>
</h2>
<p id="section-7-1">The algorithm described in this memo has so far been evaluated using
simulations covering all the tests for more than one flow from <span>[<a href="#I-D.ietf-rmcat-eval-test" class="xref">RMCAT-PROPOSALS</a>]</span> (see <span>[<a href="#IETF-93" class="xref">IETF-93</a>]</span> and <span>[<a href="#IETF-94" class="xref">IETF-94</a>]</span>). Experiments should confirm these results using at
least the NADA congestion control algorithm with real-life code (e.g.,
browsers communicating over an emulated network covering the conditions
in <span>[<a href="#I-D.ietf-rmcat-eval-test" class="xref">RMCAT-PROPOSALS</a>]</span>). The
tests with real-life code should be repeated afterwards in real network
environments and monitored. Experiments should investigate cases where
the media coder's output rate is below the rate that is calculated by
the coupling algorithm (FSE_R(i) in algorithms 1 (<a href="#example-alg-act" class="xref">Section 5.3.1</a>) and 2 (<a href="#example-alg-act-cons" class="xref">Section 5.3.2</a>)). Implementers and testers are invited
to document their findings in an Internet-Draft.<a href="#section-7-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="IANA">
<section id="section-8">
<h2 id="name-iana-considerations">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-8-1">This document has no IANA actions.<a href="#section-8-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Security">
<section id="section-9">
<h2 id="name-security-considerations">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-9-1">In scenarios where the architecture described in this document is
applied across applications, various cheating possibilities arise, e.g.,
supporting wrong values for the calculated rate, desired rate, or
priority of a flow. In the worst case, such cheating could either
prevent other flows from sending or make them send at a rate that is
unreasonably large. The end result would be unfair behavior at the
network bottleneck, akin to what could be achieved with any UDP-based
application. Hence, since this is no worse than UDP in general, there
seems to be no significant harm in using this in the absence of UDP rate
limiters.<a href="#section-9-1" class="pilcrow">¶</a></p>
<p id="section-9-2">In the case of a single-user system, it should also be in the
interest of any application programmer to give the user the best
possible experience by using reasonable flow priorities or even letting
the user choose them. In a multi-user system, this interest may not be
given, and one could imagine the worst case of an "arms race" situation
where applications end up setting their priorities to the maximum
value. If all applications do this, the end result is a fair allocation
in which the priority mechanism is implicitly eliminated and no major
harm is done.<a href="#section-9-2" class="pilcrow">¶</a></p>
<p id="section-9-3"> Implementers should also be aware of the Security Considerations
sections of <span>[<a href="#RFC3124" class="xref">RFC3124</a>]</span>, <span>[<a href="#RFC5348" class="xref">RFC5348</a>]</span>, and <span>[<a href="#RFC7478" class="xref">RFC7478</a>]</span>.<a href="#section-9-3" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-10">
<h2 id="name-references">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-10.1">
<h3 id="name-normative-references">
<a href="#section-10.1" class="section-number selfRef">10.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dt id="RFC3124">[RFC3124]</dt>
<dd>
<span class="refAuthor">Balakrishnan, H.</span><span class="refAuthor"> and S. Seshan</span>, <span class="refTitle">"The Congestion Manager"</span>, <span class="seriesInfo">RFC 3124</span>, <span class="seriesInfo">DOI 10.17487/RFC3124</span>, <time datetime="2001-06">June 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3124">https://www.rfc-editor.org/info/rfc3124</a>></span>. </dd>
<dt id="RFC5348">[RFC5348]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span><span class="refAuthor">, Handley, M.</span><span class="refAuthor">, Padhye, J.</span><span class="refAuthor">, and J. Widmer</span>, <span class="refTitle">"TCP Friendly Rate Control (TFRC): Protocol Specification"</span>, <span class="seriesInfo">RFC 5348</span>, <span class="seriesInfo">DOI 10.17487/RFC5348</span>, <time datetime="2008-09">September 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5348">https://www.rfc-editor.org/info/rfc5348</a>></span>. </dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dt id="RFC8698">[RFC8698]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span><span class="refAuthor">, Pan, R.</span><span class="refAuthor">, Ramalho, M.</span><span class="refAuthor">, and S. Mena</span>, <span class="refTitle">"Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control Scheme for Real-Time Media"</span>, <span class="seriesInfo">RFC 8698</span>, <span class="seriesInfo">DOI 10.17487/RFC8698</span>, <time datetime="2020-01">January 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8698">https://www.rfc-editor.org/info/rfc8698</a>></span>. </dd>
</dl>
</section>
<section id="section-10.2">
<h3 id="name-informative-references">
<a href="#section-10.2" class="section-number selfRef">10.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="ANRW2016">[ANRW2016]</dt>
<dd>
<span class="refAuthor">Islam, S.</span><span class="refAuthor"> and M. Welzl</span>, <span class="refTitle">"Start Me Up: Determining and Sharing TCP's Initial Congestion Window"</span>, <span class="refContent">ACM, IRTF, ISOC Applied Networking Research Workshop 2016 (ANRW 2016)
</span>, <span class="seriesInfo">DOI 10.1145/2959424.2959440</span>, <span class="seriesInfo">Proceedings of the 2016 Applied Networking Research Workshop Pages 52-54</span>, <time datetime="2016-07">July 2016</time>, <span><<a href="https://doi.org/10.1145/2959424.2959440">https://doi.org/10.1145/2959424.2959440</a>></span>. </dd>
<dt id="FSE">[FSE]</dt>
<dd>
<span class="refAuthor">Islam, S.</span><span class="refAuthor">, Welzl, M.</span><span class="refAuthor">, Gjessing, S.</span><span class="refAuthor">, and N. Khademi</span>, <span class="refTitle">"Coupled Congestion Control for RTP Media"</span>, <span class="refContent">ACM SIGCOMM Capacity Sharing Workshop (CSWS 2014) and ACM SIGCOMM
CCR 44(4) 2014
</span>, <time datetime="2014-03">March 2014</time>, <span><<a href="http://safiquli.at.ifi.uio.no/paper/fse-tech-report.pdf">http://safiquli.at.ifi.uio.no/paper/fse-tech-report.pdf</a>></span>. </dd>
<dt id="FSE-NOMS">[FSE-NOMS]</dt>
<dd>
<span class="refAuthor">Islam, S.</span><span class="refAuthor">, Welzl, M.</span><span class="refAuthor">, Hayes, D.</span><span class="refAuthor">, and S. Gjessing</span>, <span class="refTitle">"Managing real-time media flows through a flow state exchange"</span>, <span class="refContent">IEEE NOMS 2016
</span>, <span class="seriesInfo">DOI 10.1109/NOMS.2016.7502803</span>, <span><<a href="https://doi.org/10.1109/NOMS.2016.7502803">https://doi.org/10.1109/NOMS.2016.7502803</a>></span>. </dd>
<dt id="I-D.ietf-rmcat-gcc">[GCC-RTCWEB]</dt>
<dd>
<span class="refAuthor">Holmer, S.</span><span class="refAuthor">, Lundin, H.</span><span class="refAuthor">, Carlucci, G.</span><span class="refAuthor">, Cicco, L.</span><span class="refAuthor">, and S. Mascolo</span>, <span class="refTitle">"A Google Congestion Control Algorithm for Real-Time Communication"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rmcat-gcc-02</span>, <time datetime="2016-07-08">8 July 2016</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-rmcat-gcc-02">https://tools.ietf.org/html/draft-ietf-rmcat-gcc-02</a>></span>. </dd>
<dt id="IETF-93">[IETF-93]</dt>
<dd>
<span class="refAuthor">Islam, S.</span><span class="refAuthor">, Welzl, M.</span><span class="refAuthor">, and S. Gjessing</span>, <span class="refTitle">"Updates on 'Coupled Congestion Control for RTP Media'"</span>, <span class="refContent">RTP Media Congestion Avoidance Techniques (rmcat) Working Group</span>, <span class="seriesInfo">IETF 93</span>, <time datetime="2015-07">July 2015</time>, <span><<a href="https://www.ietf.org/proceedings/93/rmcat.html">https://www.ietf.org/proceedings/93/rmcat.html</a>></span>. </dd>
<dt id="IETF-94">[IETF-94]</dt>
<dd>
<span class="refAuthor">Islam, S.</span><span class="refAuthor">, Welzl, M.</span><span class="refAuthor">, and S. Gjessing</span>, <span class="refTitle">"Updates on 'Coupled Congestion Control for RTP Media'"</span>, <span class="refContent">RTP Media Congestion Avoidance Techniques (rmcat) Working Group</span>, <span class="seriesInfo">IETF 94</span>, <time datetime="2015-11">November 2015</time>, <span><<a href="https://www.ietf.org/proceedings/94/rmcat.html">https://www.ietf.org/proceedings/94/rmcat.html</a>></span>. </dd>
<dt id="RFC7478">[RFC7478]</dt>
<dd>
<span class="refAuthor">Holmberg, C.</span><span class="refAuthor">, Hakansson, S.</span><span class="refAuthor">, and G. Eriksson</span>, <span class="refTitle">"Web Real-Time Communication Use Cases and Requirements"</span>, <span class="seriesInfo">RFC 7478</span>, <span class="seriesInfo">DOI 10.17487/RFC7478</span>, <time datetime="2015-03">March 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7478">https://www.rfc-editor.org/info/rfc7478</a>></span>. </dd>
<dt id="RFC7656">[RFC7656]</dt>
<dd>
<span class="refAuthor">Lennox, J.</span><span class="refAuthor">, Gross, K.</span><span class="refAuthor">, Nandakumar, S.</span><span class="refAuthor">, Salgueiro, G.</span><span class="refAuthor">, and B. Burman, Ed.</span>, <span class="refTitle">"A Taxonomy of Semantics and Mechanisms for Real-Time Transport Protocol (RTP) Sources"</span>, <span class="seriesInfo">RFC 7656</span>, <span class="seriesInfo">DOI 10.17487/RFC7656</span>, <time datetime="2015-11">November 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7656">https://www.rfc-editor.org/info/rfc7656</a>></span>. </dd>
<dt id="RFC8087">[RFC8087]</dt>
<dd>
<span class="refAuthor">Fairhurst, G.</span><span class="refAuthor"> and M. Welzl</span>, <span class="refTitle">"The Benefits of Using Explicit Congestion Notification (ECN)"</span>, <span class="seriesInfo">RFC 8087</span>, <span class="seriesInfo">DOI 10.17487/RFC8087</span>, <time datetime="2017-03">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8087">https://www.rfc-editor.org/info/rfc8087</a>></span>. </dd>
<dt id="RFC8382">[RFC8382]</dt>
<dd>
<span class="refAuthor">Hayes, D., Ed.</span><span class="refAuthor">, Ferlin, S.</span><span class="refAuthor">, Welzl, M.</span><span class="refAuthor">, and K. Hiorth</span>, <span class="refTitle">"Shared Bottleneck Detection for Coupled Congestion Control for RTP Media"</span>, <span class="seriesInfo">RFC 8382</span>, <span class="seriesInfo">DOI 10.17487/RFC8382</span>, <time datetime="2018-06">June 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8382">https://www.rfc-editor.org/info/rfc8382</a>></span>. </dd>
<dt id="I-D.ietf-rmcat-eval-test">[RMCAT-PROPOSALS]</dt>
<dd>
<span class="refAuthor">Sarker, Z.</span><span class="refAuthor">, Singh, V.</span><span class="refAuthor">, Zhu, X.</span><span class="refAuthor">, and M. Ramalho</span>, <span class="refTitle">"Test Cases for Evaluating RMCAT Proposals"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rmcat-eval-test-10</span>, <time datetime="2019-05-23">23 May 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-rmcat-eval-test-10">https://tools.ietf.org/html/draft-ietf-rmcat-eval-test-10</a>></span>. </dd>
<dt id="I-D.ietf-rtcweb-overview">[RTCWEB-OVERVIEW]</dt>
<dd>
<span class="refAuthor">Alvestrand, H.</span>, <span class="refTitle">"Overview: Real Time Protocols for Browser-based Applications"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rtcweb-overview-19</span>, <time datetime="2017-11-11">11 November 2017</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-rtcweb-overview-19">https://tools.ietf.org/html/draft-ietf-rtcweb-overview-19</a>></span>. </dd>
<dt id="I-D.ietf-rtcweb-rtp-usage">[RTCWEB-RTP-USAGE]</dt>
<dd>
<span class="refAuthor">Perkins, C.</span><span class="refAuthor">, Westerlund, M.</span><span class="refAuthor">, and J. Ott</span>, <span class="refTitle">"Web Real-Time Communication (WebRTC): Media Transport and Use of RTP"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rtcweb-rtp-usage-26</span>, <time datetime="2016-03-17">17 March 2016</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-rtcweb-rtp-usage-26">https://tools.ietf.org/html/draft-ietf-rtcweb-rtp-usage-26</a>></span>. </dd>
<dt id="TRANSPORT-MULTIPLEX">[TRANSPORT-MULTIPLEX]</dt>
<dd>
<span class="refAuthor">Westerlund, M.</span><span class="refAuthor"> and C. Perkins</span>, <span class="refTitle">"Multiple RTP Sessions on a Single Lower-Layer Transport"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-westerlund-avtcore-transport-multiplexing-07</span>, <time datetime="2013-10">October 2013</time>, <span><<a href="https://tools.ietf.org/html/draft-westerlund-avtcore-transport-multiplexing-07">https://tools.ietf.org/html/draft-westerlund-avtcore-transport-multiplexing-07</a>></span>. </dd>
<dt id="I-D.ietf-rtcweb-transports">[WEBRTC-TRANS]</dt>
<dd>
<span class="refAuthor">Alvestrand, H.</span>, <span class="refTitle">"Transports for WebRTC"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-rtcweb-transports-17</span>, <time datetime="2016-10-26">26 October 2016</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-rtcweb-transports-17">https://tools.ietf.org/html/draft-ietf-rtcweb-transports-17</a>></span>. </dd>
</dl>
</section>
</section>
<div id="app-GCC">
<section id="section-appendix.a">
<h2 id="name-application-to-gcc">
<a href="#section-appendix.a" class="section-number selfRef">Appendix A. </a><a href="#name-application-to-gcc" class="section-name selfRef">Application to GCC</a>
</h2>
<p id="section-appendix.a-1">Google Congestion Control (GCC) <span>[<a href="#I-D.ietf-rmcat-gcc" class="xref">GCC-RTCWEB</a>]</span> is another congestion control scheme for RTP flows
that is under development. GCC is not yet finalized, but at the time of
this writing, the rate control of GCC employs two parts: controlling the
bandwidth estimate based on delay and controlling the bandwidth
estimate based on loss. Both are designed to estimate the available
bandwidth, A_hat.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
<p id="section-appendix.a-2">When applying the FSE to GCC, the UPDATE function call described in
<a href="#flows" class="xref">Section 5.3</a> gives the FSE GCC's estimate of
available bandwidth A_hat. The recommended algorithm for GCC is the
Active FSE in <a href="#example-alg-act" class="xref">Section 5.3.1</a>. In
step 3 (d) of this algorithm, when the FSE_R(i) is "sent" to the flow i,
A_hat of flow i is updated with the value of FSE_R(i).<a href="#section-appendix.a-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="scheduling">
<section id="section-appendix.b">
<h2 id="name-scheduling">
<a href="#section-appendix.b" class="section-number selfRef">Appendix B. </a><a href="#name-scheduling" class="section-name selfRef">Scheduling</a>
</h2>
<p id="section-appendix.b-1"> When flows originate from the same host, it would be possible to use
only one sender-side congestion controller that determines the
overall allowed sending rate and then use a local scheduler to assign a
proportion of this rate to each RTP session. This way, priorities could
also be implemented as a function of the scheduler. The Congestion
Manager (CM) <span>[<a href="#RFC3124" class="xref">RFC3124</a>]</span> also uses such a
scheduling function.<a href="#section-appendix.b-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="example-alg-pas">
<section id="section-appendix.c">
<h2 id="name-example-algorithm-passive-f">
<a href="#section-appendix.c" class="section-number selfRef">Appendix C. </a><a href="#name-example-algorithm-passive-f" class="section-name selfRef">Example Algorithm - Passive FSE</a>
</h2>
<p id="section-appendix.c-1">Active algorithms calculate the rates for all the flows in the FG and
actively distribute them. In a passive algorithm, UPDATE returns a rate
that should be used instead of the rate that the congestion controller
has determined. This can make a passive algorithm easier to implement;
however, when round-trip times of flows are unequal, flows with shorter RTTs
may (depending on the congestion control algorithm) update and react to
the overall FSE state more often than flows with longer RTTs, which can
produce unwanted side effects. This problem is more significant when the
congestion control convergence depends on the RTT. While the passive
algorithm works better for congestion controls with RTT-independent
convergence, it can still produce oscillations on short time scales. The
algorithm described below is therefore considered highly experimental
and not safe to deploy outside of testbed environments. Results of a
simplified passive FSE algorithm with both NADA and GCC can be found in
<span>[<a href="#FSE-NOMS" class="xref">FSE-NOMS</a>]</span>.<a href="#section-appendix.c-1" class="pilcrow">¶</a></p>
<p id="section-appendix.c-2">In the passive version of the FSE, TLO (Total Leftover Rate) is a
static variable per FG that is initialized to 0. Additionally, S_CR is
limited to increase or decrease as conservatively as a flow's congestion
controller decides in order to prohibit sudden rate jumps.<a href="#section-appendix.c-2" class="pilcrow">¶</a></p>
<dl class="olPercent" id="section-appendix.c-3">
<dt>(1)</dt>
<dd id="section-appendix.c-3.1">When a flow f starts, it registers itself with SBD and the
FSE. FSE_R(f) and DR(f) are initialized with the congestion
controller's initial rate. SBD will assign the correct FGI. When a
flow is assigned an FGI, it adds its FSE_R(f) to S_CR.<a href="#section-appendix.c-3.1" class="pilcrow">¶</a>
</dd>
<dt>(2)</dt>
<dd id="section-appendix.c-3.2">When a flow f stops or pauses, it sets its DR(f) to 0 and sets P(f) to -1.<a href="#section-appendix.c-3.2" class="pilcrow">¶</a>
</dd>
<dt>(3)</dt>
<dd id="section-appendix.c-3.3">
<p id="section-appendix.c-3.3.1">Every time the congestion controller of the flow f determines a
new sending rate CC_R(f), assuming the flow's new desired rate
new_DR(f) to be "infinity" in case of a bulk data transfer with an
unknown maximum rate, the flow calls UPDATE, which carries out the
tasks listed below to derive the flow's new sending rate, Rate(f). A
flow's UPDATE function uses a few local (i.e., per-flow) temporary
variables, which are all initialized to 0: DELTA, new_S_CR, and S_P.<a href="#section-appendix.c-3.3.1" class="pilcrow">¶</a></p>
<dl class="olPercent" id="section-appendix.c-3.3.2">
<dt>(a)</dt>
<dd id="section-appendix.c-3.3.2.1">
<p id="section-appendix.c-3.3.2.1.1">For all the flows in its FG (including itself), it calculates
the sum of all the calculated rates, new_S_CR. Then, it
calculates DELTA: the difference between FSE_R(f) and CC_R(f).<a href="#section-appendix.c-3.3.2.1.1" class="pilcrow">¶</a></p>
<div id="section-appendix.c-3.3.2.1.2">
<pre class="sourcecode lang-pseudocode">
for all flows i in FG do
new_S_CR = new_S_CR + FSE_R(i)
end for
DELTA = CC_R(f) - FSE_R(f) </pre><a href="#section-appendix.c-3.3.2.1.2" class="pilcrow">¶</a>
</div>
</dd>
<dt>(b)</dt>
<dd id="section-appendix.c-3.3.2.2">
<p id="section-appendix.c-3.3.2.2.1">It updates S_CR, FSE_R(f), and DR(f).<a href="#section-appendix.c-3.3.2.2.1" class="pilcrow">¶</a></p>
<div id="section-appendix.c-3.3.2.2.2">
<pre class="sourcecode lang-pseudocode">
FSE_R(f) = CC_R(f)
if DELTA > 0 then // the flow's rate has increased
S_CR = S_CR + DELTA
else if DELTA < 0 then
S_CR = new_S_CR + DELTA
end if
DR(f) = min(new_DR(f),FSE_R(f)) </pre><a href="#section-appendix.c-3.3.2.2.2" class="pilcrow">¶</a>
</div>
</dd>
<dt>(c)</dt>
<dd id="section-appendix.c-3.3.2.3">
<p id="section-appendix.c-3.3.2.3.1">It calculates the leftover rate TLO, removes the terminated
flows from the FSE, and calculates the sum of all the priorities,
S_P.<a href="#section-appendix.c-3.3.2.3.1" class="pilcrow">¶</a></p>
<div id="section-appendix.c-3.3.2.3.2">
<pre class="sourcecode lang-pseudocode">
for all flows i in FG do
if P(i)<0 then
delete flow
else
S_P = S_P + P(i)
end if
end for
if DR(f) < FSE_R(f) then
TLO = TLO + (P(f)/S_P) * S_CR - DR(f))
end if </pre><a href="#section-appendix.c-3.3.2.3.2" class="pilcrow">¶</a>
</div>
</dd>
<dt>(d)</dt>
<dd id="section-appendix.c-3.3.2.4">
<p id="section-appendix.c-3.3.2.4.1">It calculates the sending rate, Rate(f).<a href="#section-appendix.c-3.3.2.4.1" class="pilcrow">¶</a></p>
<div id="section-appendix.c-3.3.2.4.2">
<pre class="sourcecode lang-pseudocode">
Rate(f) = min(new_DR(f), (P(f)*S_CR)/S_P + TLO)
if Rate(f) != new_DR(f) and TLO > 0 then
TLO = 0 // f has 'taken' TLO
end if </pre><a href="#section-appendix.c-3.3.2.4.2" class="pilcrow">¶</a>
</div>
</dd>
<dt>(e)</dt>
<dd id="section-appendix.c-3.3.2.5">
<p id="section-appendix.c-3.3.2.5.1">It updates DR(f) and FSE_R(f) with Rate(f).<a href="#section-appendix.c-3.3.2.5.1" class="pilcrow">¶</a></p>
<div id="section-appendix.c-3.3.2.5.2">
<pre class="sourcecode lang-pseudocode">
if Rate(f) > DR(f) then
DR(f) = Rate(f)
end if
FSE_R(f) = Rate(f) </pre><a href="#section-appendix.c-3.3.2.5.2" class="pilcrow">¶</a>
</div>
</dd>
</dl>
</dd>
</dl>
<p id="section-appendix.c-4">The goals of the flow algorithm are to achieve prioritization,
improve network utilization in the face of application-limited flows,
and impose limits on the increase behavior such that the negative impact
of multiple flows trying to increase their rate together is
minimized. It does that by assigning a flow a sending rate that may not
be what the flow's congestion controller expected. It therefore builds
on the assumption that no significant inefficiencies arise from
temporary application-limited behavior or from quickly jumping to a rate
that is higher than the congestion controller intended. How problematic
these issues really are depends on the controllers in use and requires
careful per-controller experimentation. The coupled congestion control
mechanism described here also does not require all controllers to be
equal; effects of heterogeneous controllers, or homogeneous controllers
being in different states, are also subject to experimentation.<a href="#section-appendix.c-4" class="pilcrow">¶</a></p>
<p id="section-appendix.c-5">This algorithm gives the leftover rate of application-limited
flows to the first flow that updates its sending rate, provided that
this flow needs it all (otherwise, its own leftover rate can be taken by
the next flow that updates its rate). Other policies could be applied,
e.g., to divide the leftover rate of a flow equally among all other flows
in the FGI.<a href="#section-appendix.c-5" class="pilcrow">¶</a></p>
<div id="example-op">
<section id="section-c.1">
<h2 id="name-example-operation-passive">
<a href="#section-c.1" class="section-number selfRef">C.1. </a><a href="#name-example-operation-passive" class="section-name selfRef">Example Operation (Passive)</a>
</h2>
<p id="section-c.1-1">In order to illustrate the operation of the passive coupled
congestion control algorithm, this section presents a toy example of
two flows that use it. Let us assume that both flows traverse a common
10 Mbit/s bottleneck and use a simplistic congestion controller that
starts out with 1 Mbit/s, increases its rate by 1 Mbit/s in the
absence of congestion, and decreases it by 2 Mbit/s in the presence of
congestion. For simplicity, flows are assumed to always operate in a
round-robin fashion. Rate numbers below without units are assumed to
be in Mbit/s. For illustration purposes, the actual sending rate is
also shown for every flow in FSE diagrams even though it is not really
stored in the FSE.<a href="#section-c.1-1" class="pilcrow">¶</a></p>
<p id="section-c.1-2">Flow #1 begins. It is a bulk data transfer and considers itself to
have top priority. This is the FSE after the flow algorithm's step
1:<a href="#section-c.1-2" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-c.1-3">
<pre>----------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 1 | 1 | 1 |
----------------------------------------
S_CR = 1, TLO = 0 </pre><a href="#section-c.1-3" class="pilcrow">¶</a>
</div>
<p id="section-c.1-4">Its congestion controller gradually increases its rate. Eventually,
at some point, the FSE should look like this:<a href="#section-c.1-4" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-c.1-5">
<pre>-----------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 10 | 10 | 10 |
-----------------------------------------
S_CR = 10, TLO = 0 </pre><a href="#section-c.1-5" class="pilcrow">¶</a>
</div>
<p id="section-c.1-6">Now, another flow joins. It is also a bulk data transfer and has a
lower priority (0.5):<a href="#section-c.1-6" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-c.1-7">
<pre>------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 10 | 10 | 10 |
| 2 | 1 | 0.5 | 1 | 1 | 1 |
------------------------------------------
S_CR = 11, TLO = 0 </pre><a href="#section-c.1-7" class="pilcrow">¶</a>
</div>
<p id="section-c.1-8">Now, assume that the first flow updates its rate to 8, because the
total sending rate of 11 exceeds the total capacity. Let us take a
closer look at what happens in step 3 of the flow algorithm.<a href="#section-c.1-8" class="pilcrow">¶</a></p>
<p id="section-c.1-9">CC_R(1) = 8. new_DR(1) = infinity.<a href="#section-c.1-9" class="pilcrow">¶</a></p>
<dl class="olPercent" id="section-c.1-10">
<dt>(3a)</dt>
<dd id="section-c.1-10.1">new_S_CR = 11; DELTA = 8 - 10 = -2.<a href="#section-c.1-10.1" class="pilcrow">¶</a>
</dd>
<dt>(3b)</dt>
<dd id="section-c.1-10.2">FSE_R(1) = 8. DELTA is negative, hence S_CR = 9; DR(1) = 8<a href="#section-c.1-10.2" class="pilcrow">¶</a>
</dd>
<dt>(3c)</dt>
<dd id="section-c.1-10.3">S_P = 1.5.<a href="#section-c.1-10.3" class="pilcrow">¶</a>
</dd>
<dt>(3d)</dt>
<dd id="section-c.1-10.4">new sending rate Rate(1) = min(infinity, 1/1.5 * 9 + 0) = 6.<a href="#section-c.1-10.4" class="pilcrow">¶</a>
</dd>
<dt>(3e)</dt>
<dd id="section-c.1-10.5">FSE_R(1) = 6.<a href="#section-c.1-10.5" class="pilcrow">¶</a>
</dd>
</dl>
<p id="section-c.1-11">The resulting FSE looks as follows:<a href="#section-c.1-11" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-c.1-12">
<pre>
-------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 6 | 8 | 6 |
| 2 | 1 | 0.5 | 1 | 1 | 1 |
-------------------------------------------
S_CR = 9, TLO = 0 </pre><a href="#section-c.1-12" class="pilcrow">¶</a>
</div>
<p id="section-c.1-13">The effect is that flow #1 is sending with 6 Mbit/s instead of the
8 Mbit/s that the congestion controller derived. Let us now assume
that flow #2 updates its rate. Its congestion controller detects that
the network is not fully saturated (the actual total sending rate is
6+1=7) and increases its rate.<a href="#section-c.1-13" class="pilcrow">¶</a></p>
<p id="section-c.1-14">CC_R(2) = 2. new_DR(2) = infinity.<a href="#section-c.1-14" class="pilcrow">¶</a></p>
<dl class="olPercent" id="section-c.1-15">
<dt>(3a)</dt>
<dd id="section-c.1-15.1">new_S_CR = 7; DELTA = 2 - 1 = 1.<a href="#section-c.1-15.1" class="pilcrow">¶</a>
</dd>
<dt>(3b)</dt>
<dd id="section-c.1-15.2">FSE_R(2) = 2. DELTA is positive, hence S_CR = 9 + 1 = 10; DR(2) = 2.<a href="#section-c.1-15.2" class="pilcrow">¶</a>
</dd>
<dt>(3c)</dt>
<dd id="section-c.1-15.3">S_P = 1.5.<a href="#section-c.1-15.3" class="pilcrow">¶</a>
</dd>
<dt>(3d)</dt>
<dd id="section-c.1-15.4">Rate(2) = min(infinity, 0.5/1.5 * 10 + 0) = 3.33.<a href="#section-c.1-15.4" class="pilcrow">¶</a>
</dd>
<dt>(3e)</dt>
<dd id="section-c.1-15.5">DR(2) = FSE_R(2) = 3.33.<a href="#section-c.1-15.5" class="pilcrow">¶</a>
</dd>
</dl>
<p id="section-c.1-16">The resulting FSE looks as follows:<a href="#section-c.1-16" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-c.1-17">
<pre>
-------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 6 | 8 | 6 |
| 2 | 1 | 0.5 | 3.33 | 3.33 | 3.33 |
-------------------------------------------
S_CR = 10, TLO = 0 </pre><a href="#section-c.1-17" class="pilcrow">¶</a>
</div>
<p id="section-c.1-18">The effect is that flow #2 is now sending with 3.33 Mbit/s, which
is close to half of the rate of flow #1 and leads to a total
utilization of 6(#1) + 3.33(#2) = 9.33 Mbit/s. Flow #2's congestion
controller has increased its rate faster than the controller actually
expected. Now, flow #1 updates its rate. Its congestion controller
detects that the network is not fully saturated and increases its
rate. Additionally, the application feeding into flow #1 limits the
flow's sending rate to at most 2 Mbit/s.<a href="#section-c.1-18" class="pilcrow">¶</a></p>
<p id="section-c.1-19">CC_R(1) = 7. new_DR(1) = 2.<a href="#section-c.1-19" class="pilcrow">¶</a></p>
<dl class="olPercent" id="section-c.1-20">
<dt>(3a)</dt>
<dd id="section-c.1-20.1">new_S_CR = 9.33; DELTA = 1.<a href="#section-c.1-20.1" class="pilcrow">¶</a>
</dd>
<dt>(3b)</dt>
<dd id="section-c.1-20.2">FSE_R(1) = 7, DELTA is positive, hence S_CR = 10 + 1 = 11; DR(1) = min(2, 7) = 2.<a href="#section-c.1-20.2" class="pilcrow">¶</a>
</dd>
<dt>(3c)</dt>
<dd id="section-c.1-20.3">S_P = 1.5; DR(1) < FSE_R(1), hence TLO = 1/1.5 * 11 - 2 = 5.33.<a href="#section-c.1-20.3" class="pilcrow">¶</a>
</dd>
<dt>(3d)</dt>
<dd id="section-c.1-20.4">Rate(1) = min(2, 1/1.5 * 11 + 5.33) = 2.<a href="#section-c.1-20.4" class="pilcrow">¶</a>
</dd>
<dt>(3e)</dt>
<dd id="section-c.1-20.5">FSE_R(1) = 2.<a href="#section-c.1-20.5" class="pilcrow">¶</a>
</dd>
</dl>
<p id="section-c.1-21">The resulting FSE looks as follows:<a href="#section-c.1-21" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-c.1-22">
<pre>
-------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 2 | 2 | 2 |
| 2 | 1 | 0.5 | 3.33 | 3.33 | 3.33 |
-------------------------------------------
S_CR = 11, TLO = 5.33 </pre><a href="#section-c.1-22" class="pilcrow">¶</a>
</div>
<p id="section-c.1-23">Now, the total rate of the two flows is 2 + 3.33 = 5.33 Mbit/s,
i.e., the network is significantly underutilized due to the limitation
of flow #1. Flow #2 updates its rate. Its congestion controller
detects that the network is not fully saturated and increases its
rate.<a href="#section-c.1-23" class="pilcrow">¶</a></p>
<p id="section-c.1-24">CC_R(2) = 4.33. new_DR(2) = infinity.<a href="#section-c.1-24" class="pilcrow">¶</a></p>
<dl class="olPercent" id="section-c.1-25">
<dt>(3a)</dt>
<dd id="section-c.1-25.1">new_S_CR = 5.33; DELTA = 1.<a href="#section-c.1-25.1" class="pilcrow">¶</a>
</dd>
<dt>(3b)</dt>
<dd id="section-c.1-25.2">FSE_R(2) = 4.33. DELTA is positive, hence S_CR = 12; DR(2) = 4.33.<a href="#section-c.1-25.2" class="pilcrow">¶</a>
</dd>
<dt>(3c)</dt>
<dd id="section-c.1-25.3">S_P = 1.5.<a href="#section-c.1-25.3" class="pilcrow">¶</a>
</dd>
<dt>(3d)</dt>
<dd id="section-c.1-25.4">Rate(2) = min(infinity, 0.5/1.5 * 12 + 5.33 ) = 9.33.<a href="#section-c.1-25.4" class="pilcrow">¶</a>
</dd>
<dt>(3e)</dt>
<dd id="section-c.1-25.5">FSE_R(2) = 9.33, DR(2) = 9.33.<a href="#section-c.1-25.5" class="pilcrow">¶</a>
</dd>
</dl>
<p id="section-c.1-26">The resulting FSE looks as follows:<a href="#section-c.1-26" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-c.1-27">
<pre>
-------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 2 | 2 | 2 |
| 2 | 1 | 0.5 | 9.33 | 9.33 | 9.33 |
-------------------------------------------
S_CR = 12, TLO = 0 </pre><a href="#section-c.1-27" class="pilcrow">¶</a>
</div>
<p id="section-c.1-28">Now, the total rate of the two flows is 2 + 9.33 = 11.33
Mbit/s. Finally, flow #1 terminates. It sets P(1) to -1 and DR(1) to
0. Let us assume that it terminated late enough for flow #2 to still
experience the network in a congested state, i.e., flow #2 decreases
its rate in the next iteration.<a href="#section-c.1-28" class="pilcrow">¶</a></p>
<p id="section-c.1-29">CC_R(2) = 7.33. new_DR(2) = infinity.<a href="#section-c.1-29" class="pilcrow">¶</a></p>
<dl class="olPercent" id="section-c.1-30">
<dt>(3a)</dt>
<dd id="section-c.1-30.1">new_S_CR = 11.33; DELTA = -2.<a href="#section-c.1-30.1" class="pilcrow">¶</a>
</dd>
<dt>(3b)</dt>
<dd id="section-c.1-30.2">FSE_R(2) = 7.33. DELTA is negative, hence S_CR = 9.33; DR(2) = 7.33.<a href="#section-c.1-30.2" class="pilcrow">¶</a>
</dd>
<dt>(3c)</dt>
<dd id="section-c.1-30.3">Flow 1 has P(1) = -1, hence it is deleted from the FSE. S_P = 0.5.<a href="#section-c.1-30.3" class="pilcrow">¶</a>
</dd>
<dt>(3d)</dt>
<dd id="section-c.1-30.4">Rate(2) = min(infinity, 0.5/0.5*9.33 + 0) = 9.33.<a href="#section-c.1-30.4" class="pilcrow">¶</a>
</dd>
<dt>(3e)</dt>
<dd id="section-c.1-30.5">FSE_R(2) = DR(2) = 9.33.<a href="#section-c.1-30.5" class="pilcrow">¶</a>
</dd>
</dl>
<p id="section-c.1-31">The resulting FSE looks as follows:<a href="#section-c.1-31" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-c.1-32">
<pre>
-------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 2 | 1 | 0.5 | 9.33 | 9.33 | 9.33 |
-------------------------------------------
S_CR = 9.33, TLO = 0 </pre><a href="#section-c.1-32" class="pilcrow">¶</a>
</div>
</section>
</div>
</section>
</div>
<div id="Acknowledgements">
<section id="section-appendix.d">
<h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
</h2>
<p id="section-appendix.d-1">This document benefited from discussions with and feedback from
<span class="contact-name">Andreas Petlund</span>,
<span class="contact-name">Anna Brunstrom</span>,
<span class="contact-name">Colin Perkins</span>,
<span class="contact-name">David Hayes</span>,
<span class="contact-name">David Ros</span>
(who also gave the FSE its name),
<span class="contact-name">Ingemar Johansson</span>,
<span class="contact-name">Karen Nielsen</span>,
<span class="contact-name">Kristian Hiorth</span>,
<span class="contact-name">Martin Stiemerling</span>,
<span class="contact-name">Mirja Kühlewind</span>,
<span class="contact-name">Spencer Dawkins</span>,
<span class="contact-name">Varun Singh</span>,
<span class="contact-name">Xiaoqing Zhu</span>, and
<span class="contact-name">Zaheduzzaman Sarker</span>. The authors would
like to especially thank <span class="contact-name">Xiaoqing Zhu</span> and <span class="contact-name">Stefan Holmer</span> for helping with
NADA and GCC, and <span class="contact-name">Anna Brunstrom</span> as well as <span class="contact-name">Julius Flohr</span> for helping us
correct the active algorithm for the case of application-limited
flows.<a href="#section-appendix.d-1" class="pilcrow">¶</a></p>
<p id="section-appendix.d-2">This work was partially funded by the European Community under its
Seventh Framework Program through the Reducing Internet Transport
Latency (RITE) project (ICT-317700).<a href="#section-appendix.d-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="section-appendix.e">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Safiqul Islam</span></div>
<div dir="auto" class="left"><span class="org">University of Oslo</span></div>
<div dir="auto" class="left"><span class="street-address">PO Box 1080 Blindern</span></div>
<div dir="auto" class="left">
<span class="postal-code">N-0316</span> <span class="locality">Oslo</span>
</div>
<div dir="auto" class="left"><span class="country-name">Norway</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+47%2022%2084%2008%2037" class="tel">+47 22 84 08 37</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:safiquli@ifi.uio.no" class="email">safiquli@ifi.uio.no</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Michael Welzl</span></div>
<div dir="auto" class="left"><span class="org">University of Oslo</span></div>
<div dir="auto" class="left"><span class="street-address">PO Box 1080 Blindern</span></div>
<div dir="auto" class="left">
<span class="postal-code">N-0316</span> <span class="locality">Oslo</span>
</div>
<div dir="auto" class="left"><span class="country-name">Norway</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+47%2022%2085%2024%2020" class="tel">+47 22 85 24 20</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:michawe@ifi.uio.no" class="email">michawe@ifi.uio.no</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Stein Gjessing</span></div>
<div dir="auto" class="left"><span class="org">University of Oslo</span></div>
<div dir="auto" class="left"><span class="street-address">PO Box 1080 Blindern</span></div>
<div dir="auto" class="left">
<span class="postal-code">N-0316</span> <span class="locality">Oslo</span>
</div>
<div dir="auto" class="left"><span class="country-name">Norway</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+47%2022%2085%2024%2044" class="tel">+47 22 85 24 44</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:steing@ifi.uio.no" class="email">steing@ifi.uio.no</a>
</div>
</address>
</section>
</div>
<script>var toc = document.getElementById("toc");
var tocToggle = toc.querySelector("h2");
var tocNav = toc.querySelector("nav");
// mobile menu toggle
tocToggle.onclick = function(event) {
if (window.innerWidth < 1024) {
var tocNavDisplay = tocNav.currentStyle ? tocNav.currentStyle.display : getComputedStyle(tocNav, null).display;
if (tocNavDisplay == "none") {
tocNav.style.display = "block";
} else {
tocNav.style.display = "none";
}
}
}
// toc anchor scroll to anchor
tocNav.addEventListener("click", function (event) {
event.preventDefault();
if (event.target.nodeName == 'A') {
if (window.innerWidth < 1024) {
tocNav.style.display = "none";
}
var href = event.target.getAttribute("href");
var anchorId = href.substr(1);
var anchor = document.getElementById(anchorId);
anchor.scrollIntoView(true);
window.history.pushState("","",href);
}
});
// switch toc mode when window resized
window.onresize = function () {
if (window.innerWidth < 1024) {
tocNav.style.display = "none";
} else {
tocNav.style.display = "block";
}
}
</script>
</body>
</html>
|