File: rfc8704.html

package info (click to toggle)
doc-rfc 20230121-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 1,609,944 kB
file content (2087 lines) | stat: -rw-r--r-- 99,315 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
<!DOCTYPE html>
<html lang="en" class="RFC BCP">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8704: Enhanced Feasible-Path Unicast Reverse Path Forwarding</title>
<meta content="Kotikalapudi Sriram" name="author">
<meta content="Doug Montgomery" name="author">
<meta content="Jeffrey Haas" name="author">
<meta content="
       
This document identifies a need for and proposes improvement of the unicast
Reverse Path Forwarding (uRPF) techniques (see RFC 3704) for detection and
mitigation of source address spoofing (see BCP 38). Strict uRPF is
inflexible about directionality, the loose uRPF is oblivious to
directionality, and the current feasible-path uRPF attempts to strike a
balance between the two (see RFC 3704). However, as shown in this document,
the existing feasible-path uRPF still has shortcomings. This document
describes enhanced feasible-path uRPF (EFP-uRPF) techniques that are more flexible (in a meaningful way) about directionality than the feasible-path uRPF (RFC 3704). The proposed EFP-uRPF methods aim to significantly reduce false positives regarding invalid detection in source address validation (SAV). Hence, they can potentially alleviate ISPs' concerns about the possibility of disrupting service for their customers and encourage greater deployment of uRPF techniques. This document updates RFC 3704.      
       
    " name="description">
<meta content="xml2rfc 2.39.0" name="generator">
<meta content="BGP, source address spoofing, source address validation (SAV), Reverse Path Forwarding (RPF), unicast RPF (uRPF), DDoS mitigation, BCP 38, BCP 84" name="keyword">
<meta content="8704" name="rfc.number">
<link href="rfc8704.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*

  NOTE: Changes at the bottom of this file overrides some earlier settings.

  Once the style has stabilized and has been adopted as an official RFC style,
  this can be consolidated so that style settings occur only in one place, but
  for now the contents of this file consists first of the initial CSS work as
  provided to the RFC Formatter (xml2rfc) work, followed by itemized and
  commented changes found necssary during the development of the v3
  formatters.

*/

/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */

@viewport {
  zoom: 1.0;
  width: extend-to-zoom;
}
@-ms-viewport {
  width: extend-to-zoom;
  zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
  max-width: 90%;
  margin: 1.5em auto;
  color: #222;
  background-color: #fff;
  font-size: 14px;
  font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
  line-height: 1.6;
  scroll-behavior: smooth;
}
.ears {
  display: none;
}

/* headings */
#title, h1, h2, h3, h4, h5, h6 {
  margin: 1em 0 0.5em;
  font-weight: bold;
  line-height: 1.3;
}
#title {
  clear: both;
  border-bottom: 1px solid #ddd;
  margin: 0 0 0.5em 0;
  padding: 1em 0 0.5em;
}
.author {
  padding-bottom: 4px;
}
h1 {
  font-size: 26px;
  margin: 1em 0;
}
h2 {
  font-size: 22px;
  margin-top: -20px;  /* provide offset for in-page anchors */
  padding-top: 33px;
}
h3 {
  font-size: 18px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h4 {
  font-size: 16px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h5, h6 {
  font-size: 14px;
}
#n-copyright-notice {
  border-bottom: 1px solid #ddd;
  padding-bottom: 1em;
  margin-bottom: 1em;
}
/* general structure */
p {
  padding: 0;
  margin: 0 0 1em 0;
  text-align: left;
}
div, span {
  position: relative;
}
div {
  margin: 0;
}
.alignRight.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignRight.art-text pre {
  padding: 0;
}
.alignRight {
  margin: 1em 0;
}
.alignRight > *:first-child {
  border: none;
  margin: 0;
  float: right;
  clear: both;
}
.alignRight > *:nth-child(2) {
  clear: both;
  display: block;
  border: none;
}
svg {
  display: block;
}
.alignCenter.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
  padding: 0;
}
.alignCenter {
  margin: 1em 0;
}
.alignCenter > *:first-child {
  border: none;
  /* this isn't optimal, but it's an existence proof.  PrinceXML doesn't
     support flexbox yet.
  */
  display: table;
  margin: 0 auto;
}

/* lists */
ol, ul {
  padding: 0;
  margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
  margin-left: 1em;
}
li {
  margin: 0 0 0.25em 0;
}
.ulCompact li {
  margin: 0;
}
ul.empty, .ulEmpty {
  list-style-type: none;
}
ul.empty li, .ulEmpty li {
  margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
  line-height: 100%;
  margin: 0 0 0 2em;
}

/* definition lists */
dl {
}
dl > dt {
  float: left;
  margin-right: 1em;
}
/* 
dl.nohang > dt {
  float: none;
}
*/
dl > dd {
  margin-bottom: .8em;
  min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
  margin-bottom: 0em;
}
dl > dd > dl {
  margin-top: 0.5em;
  margin-bottom: 0em;
}

/* links */
a {
  text-decoration: none;
}
a[href] {
  color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
  background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
  color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
  background-color: transparent;
  cursor: default;
} */

/* Figures */
tt, code, pre, code {
  background-color: #f9f9f9;
  font-family: 'Roboto Mono', monospace;
}
pre {
  border: 1px solid #eee;
  margin: 0;
  padding: 1em;
}
img {
  max-width: 100%;
}
figure {
  margin: 0;
}
figure blockquote {
  margin: 0.8em 0.4em 0.4em;
}
figcaption {
  font-style: italic;
  margin: 0 0 1em 0;
}
@media screen {
  pre {
    overflow-x: auto;
    max-width: 100%;
    max-width: calc(100% - 22px);
  }
}

/* aside, blockquote */
aside, blockquote {
  margin-left: 0;
  padding: 1.2em 2em;
}
blockquote {
  background-color: #f9f9f9;
  color: #111; /* Arlen: WCAG 2019 */
  border: 1px solid #ddd;
  border-radius: 3px;
  margin: 1em 0;
}
cite {
  display: block;
  text-align: right;
  font-style: italic;
}

/* tables */
table {
  width: 100%;
  margin: 0 0 1em;
  border-collapse: collapse;
  border: 1px solid #eee;
}
th, td {
  text-align: left;
  vertical-align: top;
  padding: 0.5em 0.75em;
}
th {
  text-align: left;
  background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
  background-color: #f5f5f5;
}
table caption {
  font-style: italic;
  margin: 0;
  padding: 0;
  text-align: left;
}
table p {
  /* XXX to avoid bottom margin on table row signifiers. If paragraphs should
     be allowed within tables more generally, it would be far better to select on a class. */
  margin: 0;
}

/* pilcrow */
a.pilcrow {
  color: #666; /* Arlen: AHDJ 2019 */
  text-decoration: none;
  visibility: hidden;
  user-select: none;
  -ms-user-select: none;
  -o-user-select:none;
  -moz-user-select: none;
  -khtml-user-select: none;
  -webkit-user-select: none;
  -webkit-touch-callout: none;
}
@media screen {
  aside:hover > a.pilcrow,
  p:hover > a.pilcrow,
  blockquote:hover > a.pilcrow,
  div:hover > a.pilcrow,
  li:hover > a.pilcrow,
  pre:hover > a.pilcrow {
    visibility: visible;
  }
  a.pilcrow:hover {
    background-color: transparent;
  }
}

/* misc */
hr {
  border: 0;
  border-top: 1px solid #eee;
}
.bcp14 {
  font-variant: small-caps;
}

.role {
  font-variant: all-small-caps;
}

/* info block */
#identifiers {
  margin: 0;
  font-size: 0.9em;
}
#identifiers dt {
  width: 3em;
  clear: left;
}
#identifiers dd {
  float: left;
  margin-bottom: 0;
}
#identifiers .authors .author {
  display: inline-block;
  margin-right: 1.5em;
}
#identifiers .authors .org {
  font-style: italic;
}

/* The prepared/rendered info at the very bottom of the page */
.docInfo {
  color: #666; /* Arlen: WCAG 2019 */
  font-size: 0.9em;
  font-style: italic;
  margin-top: 2em;
}
.docInfo .prepared {
  float: left;
}
.docInfo .prepared {
  float: right;
}

/* table of contents */
#toc  {
  padding: 0.75em 0 2em 0;
  margin-bottom: 1em;
}
nav.toc ul {
  margin: 0 0.5em 0 0;
  padding: 0;
  list-style: none;
}
nav.toc li {
  line-height: 1.3em;
  margin: 0.75em 0;
  padding-left: 1.2em;
  text-indent: -1.2em;
}
/* references */
.references dt {
  text-align: right;
  font-weight: bold;
  min-width: 7em;
}
.references dd {
  margin-left: 8em;
  overflow: auto;
}

.refInstance {
  margin-bottom: 1.25em;
}

.references .ascii {
  margin-bottom: 0.25em;
}

/* index */
.index ul {
  margin: 0 0 0 1em;
  padding: 0;
  list-style: none;
}
.index ul ul {
  margin: 0;
}
.index li {
  margin: 0;
  text-indent: -2em;
  padding-left: 2em;
  padding-bottom: 5px;
}
.indexIndex {
  margin: 0.5em 0 1em;
}
.index a {
  font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
  .index ul {
    -moz-column-count: 2;
    -moz-column-gap: 20px;
  }
  .index ul ul {
    -moz-column-count: 1;
    -moz-column-gap: 0;
  }
}

/* authors */
address.vcard {
  font-style: normal;
  margin: 1em 0;
}

address.vcard .nameRole {
  font-weight: 700;
  margin-left: 0;
}
address.vcard .label {
  font-family: "Noto Sans",Arial,Helvetica,sans-serif;
  margin: 0.5em 0;
}
address.vcard .type {
  display: none;
}
.alternative-contact {
  margin: 1.5em 0 1em;
}
hr.addr {
  border-top: 1px dashed;
  margin: 0;
  color: #ddd;
  max-width: calc(100% - 16px);
}

/* temporary notes */
.rfcEditorRemove::before {
  position: absolute;
  top: 0.2em;
  right: 0.2em;
  padding: 0.2em;
  content: "The RFC Editor will remove this note";
  color: #9e2a00; /* Arlen: WCAG 2019 */
  background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
  position: relative;
  padding-top: 1.8em;
  background-color: #ffd; /* Arlen: WCAG 2019 */
  border-radius: 3px;
}
.cref {
  background-color: #ffd; /* Arlen: WCAG 2019 */
  padding: 2px 4px;
}
.crefSource {
  font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
  body {
    padding-top: 2em;
  }
  #title {
    padding: 1em 0;
  }
  h1 {
    font-size: 24px;
  }
  h2 {
    font-size: 20px;
    margin-top: -18px;  /* provide offset for in-page anchors */
    padding-top: 38px;
  }
  #identifiers dd {
    max-width: 60%;
  }
  #toc {
    position: fixed;
    z-index: 2;
    top: 0;
    right: 0;
    padding: 0;
    margin: 0;
    background-color: inherit;
    border-bottom: 1px solid #ccc;
  }
  #toc h2 {
    margin: -1px 0 0 0;
    padding: 4px 0 4px 6px;
    padding-right: 1em;
    min-width: 190px;
    font-size: 1.1em;
    text-align: right;
    background-color: #444;
    color: white;
    cursor: pointer;
  }
  #toc h2::before { /* css hamburger */
    float: right;
    position: relative;
    width: 1em;
    height: 1px;
    left: -164px;
    margin: 6px 0 0 0;
    background: white none repeat scroll 0 0;
    box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
    content: "";
  }
  #toc nav {
    display: none;
    padding: 0.5em 1em 1em;
    overflow: auto;
    height: calc(100vh - 48px);
    border-left: 1px solid #ddd;
  }
}

/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
  body {
    max-width: 724px;
    margin: 42px auto;
    padding-left: 1.5em;
    padding-right: 29em;
  }
  #toc {
    position: fixed;
    top: 42px;
    right: 42px;
    width: 25%;
    margin: 0;
    padding: 0 1em;
    z-index: 1;
  }
  #toc h2 {
    border-top: none;
    border-bottom: 1px solid #ddd;
    font-size: 1em;
    font-weight: normal;
    margin: 0;
    padding: 0.25em 1em 1em 0;
  }
  #toc nav {
    display: block;
    height: calc(90vh - 84px);
    bottom: 0;
    padding: 0.5em 0 0;
    overflow: auto;
  }
  img { /* future proofing */
    max-width: 100%;
    height: auto;
  }
}

/* pagination */
@media print {
  body {

    width: 100%;
  }
  p {
    orphans: 3;
    widows: 3;
  }
  #n-copyright-notice {
    border-bottom: none;
  }
  #toc, #n-introduction {
    page-break-before: always;
  }
  #toc {
    border-top: none;
    padding-top: 0;
  }
  figure, pre {
    page-break-inside: avoid;
  }
  figure {
    overflow: scroll;
  }
  h1, h2, h3, h4, h5, h6 {
    page-break-after: avoid;
  }
  h2+*, h3+*, h4+*, h5+*, h6+* {
    page-break-before: avoid;
  }
  pre {
    white-space: pre-wrap;
    word-wrap: break-word;
    font-size: 10pt;
  }
  table {
    border: 1px solid #ddd;
  }
  td {
    border-top: 1px solid #ddd;
  }
}

/* This is commented out here, as the string-set: doesn't
   pass W3C validation currently */
/*
.ears thead .left {
  string-set: ears-top-left content();
}

.ears thead .center {
  string-set: ears-top-center content();
}

.ears thead .right {
  string-set: ears-top-right content();
}

.ears tfoot .left {
  string-set: ears-bottom-left content();
}

.ears tfoot .center {
  string-set: ears-bottom-center content();
}

.ears tfoot .right {
  string-set: ears-bottom-right content();
}
*/

@page :first {
  padding-top: 0;
  @top-left {
    content: normal;
    border: none;
  }
  @top-center {
    content: normal;
    border: none;
  }
  @top-right {
    content: normal;
    border: none;
  }
}

@page {
  size: A4;
  margin-bottom: 45mm;
  padding-top: 20px;
  /* The follwing is commented out here, but set appropriately by in code, as
     the content depends on the document */
  /*
  @top-left {
    content: 'Internet-Draft';
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-left {
    content: string(ears-top-left);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-center {
    content: string(ears-top-center);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-right {
    content: string(ears-top-right);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @bottom-left {
    content: string(ears-bottom-left);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-center {
    content: string(ears-bottom-center);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-right {
      content: '[Page ' counter(page) ']';
      vertical-align: top;
      border-top: solid 1px #ccc;
  }
  */

}

/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
  z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
  clear: both;
}


/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
  vertical-align: top;
}

/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
  width: 8em;
}

/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
  margin-left: 1em;
}

/* Give floating toc a background color (needed when it's a div inside section */
#toc {
  background-color: white;
}

/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
  #toc h2 a,
  #toc h2 a:link,
  #toc h2 a:focus,
  #toc h2 a:hover,
  #toc a.toplink,
  #toc a.toplink:hover {
    color: white;
    background-color: #444;
    text-decoration: none;
  }
}

/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
  #toc {
    padding: 0 0 1em 1em;
  }
}

/* Style section numbers with more space between number and title */
.section-number {
  padding-right: 0.5em;
}

/* prevent monospace from becoming overly large */
tt, code, pre, code {
  font-size: 95%;
}

/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
  line-height: 1.12;
}


/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
  float: right;
  margin-right: 0.5em;
}

/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
  float: left;
  margin-right: 1em;
}
dl.dlNewline > dt {
  float: none;
}

/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
  text-align: left;
}
table td.text-center,
table th.text-center {
  text-align: center;
}
table td.text-right,
table th.text-right {
  text-align: right;
}

/* Make the alternative author contact informatio look less like just another
   author, and group it closer with the primary author contact information */
.alternative-contact {
  margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
  margin: 0 0 0 2em;
}

/* With it being possible to set tables with alignment
  left, center, and right, { width: 100%; } does not make sense */
table {
  width: auto;
}

/* Avoid reference text that sits in a block with very wide left margin,
   because of a long floating dt label.*/
.references dd {
  overflow: visible;
}

/* Control caption placement */
caption {
  caption-side: bottom;
}

/* Limit the width of the author address vcard, so names in right-to-left
   script don't end up on the other side of the page. */

address.vcard {
  max-width: 30em;
  margin-right: auto;
}

/* For address alignment dependent on LTR or RTL scripts */
address div.left {
  text-align: left;
}
address div.right {
  text-align: right;
}

/* Provide table alignment support.  We can't use the alignX classes above
   since they do unwanted things with caption and other styling. */
table.right {
 margin-left: auto;
 margin-right: 0;
}
table.center {
 margin-left: auto;
 margin-right: auto;
}
table.left {
 margin-left: 0;
 margin-right: auto;
}

/* Give the table caption label the same styling as the figcaption */
caption a[href] {
  color: #222;
}

@media print {
  .toplink {
    display: none;
  }

  /* avoid overwriting the top border line with the ToC header */
  #toc {
    padding-top: 1px;
  }

  /* Avoid page breaks inside dl and author address entries */
  .vcard {
    page-break-inside: avoid;
  }

}
/* Avoid wrapping of URLs in references */
@media screen {
  .references a {
    white-space: nowrap;
  }
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
  font-variant: small-caps;
  font-weight: bold;
  font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
 h2 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 31px;
 }
 h3 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
 h4 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
/* Float artwork pilcrow to the right */
@media screen {
  .artwork a.pilcrow {
    display: block;
    line-height: 0.7;
    margin-top: 0.15em;
  }
}
/* Make pilcrows on dd visible */
@media screen {
  dd:hover > a.pilcrow {
    visibility: visible;
  }
}
/* Make the placement of figcaption match that of a table's caption
   by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
   margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
  margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
   possibly even requiring a new line */
@media print {
  a.pilcrow {
    display: none;
  }
}
/* Styling for the external metadata */
div#external-metadata {
  background-color: #eee;
  padding: 0.5em;
  margin-bottom: 0.5em;
  display: none;
}
div#internal-metadata {
  padding: 0.5em;                       /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
  clear: both;
  margin: 0 0 -1em;
  padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
  margin: 0 0 0.25em 0;
  min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
  border-left: 1px solid #ddd;
  margin: 1em 0 1em 2em;
  padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
  margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
  figcaption, table caption {
    page-break-before: avoid;
  }
}
/* Font size adjustments for print */
@media print {
  body  { font-size: 10pt;      line-height: normal; max-width: 96%; }
  h1    { font-size: 1.72em;    padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
  h2    { font-size: 1.44em;    padding-top: 1.5em; } /* 1*1.2*1.2 */
  h3    { font-size: 1.2em;     padding-top: 1.5em; } /* 1*1.2 */
  h4    { font-size: 1em;       padding-top: 1.5em; }
  h5, h6 { font-size: 1em;      margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
  .artwork,
  .sourcecode {
    margin-bottom: 1em;
  }
}
/*
  The margin-left: 0 on <dd> removes all distinction
  between levels from nested <dl>s.  Undo that.
*/
dl.olPercent > dd,
dd {
  margin-left: revert;
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
  min-width: 20em;
}</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc8704" rel="alternate">
  <link href="urn:issn:2070-1721" rel="alternate">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-opsec-urpf-improvements-04" rel="prev">
  </head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8704</td>
<td class="center">Enhanced FP-uRPF</td>
<td class="right">February 2020</td>
</tr></thead>
<tfoot><tr>
<td class="left">Sriram, et al.</td>
<td class="center">Best Current Practice</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8704" class="eref">8704</a></dd>
<dt class="label-bcp">BCP:</dt>
<dd class="bcp">84</dd>
<dt class="label-updates">Updates:</dt>
<dd class="updates">
<a href="https://www.rfc-editor.org/rfc/rfc3704" class="eref">3704</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Best Current Practice</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2020-02" class="published">February 2020</time>
    </dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
      <div class="author-name">K. Sriram</div>
<div class="org">USA NIST</div>
</div>
<div class="author">
      <div class="author-name">D. Montgomery</div>
<div class="org">USA NIST</div>
</div>
<div class="author">
      <div class="author-name">J. Haas</div>
<div class="org">Juniper Networks, Inc.</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8704</h1>
<h1 id="title">Enhanced Feasible-Path Unicast Reverse Path Forwarding</h1>
<section id="section-abstract">
      <h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">
This document identifies a need for and proposes improvement of the unicast
Reverse Path Forwarding (uRPF) techniques (see RFC 3704) for detection and
mitigation of source address spoofing (see BCP 38). Strict uRPF is
inflexible about directionality, the loose uRPF is oblivious to
directionality, and the current feasible-path uRPF attempts to strike a
balance between the two (see RFC 3704). However, as shown in this document,
the existing feasible-path uRPF still has shortcomings. This document
describes enhanced feasible-path uRPF (EFP-uRPF) techniques that are more flexible (in a meaningful way) about directionality than the feasible-path uRPF (RFC 3704). The proposed EFP-uRPF methods aim to significantly reduce false positives regarding invalid detection in source address validation (SAV). Hence, they can potentially alleviate ISPs' concerns about the possibility of disrupting service for their customers and encourage greater deployment of uRPF techniques. This document updates RFC 3704.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
        <h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
        </h2>
<p id="section-boilerplate.1-1">
            This memo documents an Internet Best Current Practice.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further information
            on BCPs is available in Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <span><a href="https://www.rfc-editor.org/info/rfc8704">https://www.rfc-editor.org/info/rfc8704</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
        <h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
        </h2>
<p id="section-boilerplate.2-1">
            Copyright (c) 2020 IETF Trust and the persons identified as the
            document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
        <a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
        </h2>
<nav class="toc"><ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.1">
            <p id="section-toc.1-1.1.1"><a href="#section-1" class="xref">1</a>.  <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.1.2.1">
                <p id="section-toc.1-1.1.2.1.1"><a href="#section-1.1" class="xref">1.1</a>.  <a href="#name-terminology" class="xref">Terminology</a><a href="#section-toc.1-1.1.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.1.2.2">
                <p id="section-toc.1-1.1.2.2.1"><a href="#section-1.2" class="xref">1.2</a>.  <a href="#name-requirements-language" class="xref">Requirements Language</a><a href="#section-toc.1-1.1.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2">
            <p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>.  <a href="#name-review-of-existing-source-a" class="xref">Review of Existing Source Address Validation Techniques</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.2.2.1">
                <p id="section-toc.1-1.2.2.1.1"><a href="#section-2.1" class="xref">2.1</a>.  <a href="#name-sav-using-access-control-li" class="xref">SAV Using Access Control List</a><a href="#section-toc.1-1.2.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.2">
                <p id="section-toc.1-1.2.2.2.1"><a href="#section-2.2" class="xref">2.2</a>.  <a href="#name-sav-using-strict-unicast-re" class="xref">SAV Using Strict Unicast Reverse Path Forwarding</a><a href="#section-toc.1-1.2.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.3">
                <p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="xref">2.3</a>.  <a href="#name-sav-using-feasible-path-uni" class="xref">SAV Using Feasible-Path Unicast Reverse Path Forwarding</a><a href="#section-toc.1-1.2.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.4">
                <p id="section-toc.1-1.2.2.4.1"><a href="#section-2.4" class="xref">2.4</a>.  <a href="#name-sav-using-loose-unicast-rev" class="xref">SAV Using Loose Unicast Reverse Path Forwarding</a><a href="#section-toc.1-1.2.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.2.2.5">
                <p id="section-toc.1-1.2.2.5.1"><a href="#section-2.5" class="xref">2.5</a>.  <a href="#name-sav-using-vrf-table" class="xref">SAV Using VRF Table</a><a href="#section-toc.1-1.2.2.5.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3">
            <p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>.  <a href="#name-sav-using-enhanced-feasible" class="xref">SAV Using Enhanced Feasible-Path uRPF</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.3.2.1">
                <p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>.  <a href="#name-description-of-the-method" class="xref">Description of the Method</a><a href="#section-toc.1-1.3.2.1.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.3.2.1.2.1">
                    <p id="section-toc.1-1.3.2.1.2.1.1"><a href="#section-3.1.1" class="xref">3.1.1</a>.  <a href="#name-algorithm-a-enhanced-feasib" class="xref">Algorithm A: Enhanced Feasible-Path uRPF</a><a href="#section-toc.1-1.3.2.1.2.1.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3.2.2">
                <p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>.  <a href="#name-operational-recommendations" class="xref">Operational Recommendations</a><a href="#section-toc.1-1.3.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3.2.3">
                <p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>.  <a href="#name-a-challenging-scenario" class="xref">A Challenging Scenario</a><a href="#section-toc.1-1.3.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3.2.4">
                <p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="xref">3.4</a>.  <a href="#name-algorithm-b-enhanced-feasib" class="xref">Algorithm B: Enhanced Feasible-Path uRPF with Additional Flexibility across Customer Cone</a><a href="#section-toc.1-1.3.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3.2.5">
                <p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="xref">3.5</a>.  <a href="#name-augmenting-rpf-lists-with-r" class="xref">Augmenting RPF Lists with ROA and IRR Data</a><a href="#section-toc.1-1.3.2.5.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3.2.6">
                <p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="xref">3.6</a>.  <a href="#name-implementation-and-operatio" class="xref">Implementation and Operations Considerations</a><a href="#section-toc.1-1.3.2.6.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.3.2.6.2.1">
                    <p id="section-toc.1-1.3.2.6.2.1.1"><a href="#section-3.6.1" class="xref">3.6.1</a>.  <a href="#name-impact-on-fib-memory-size-r" class="xref">Impact on FIB Memory Size Requirement</a><a href="#section-toc.1-1.3.2.6.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3.2.6.2.2">
                    <p id="section-toc.1-1.3.2.6.2.2.1"><a href="#section-3.6.2" class="xref">3.6.2</a>.  <a href="#name-coping-with-bgps-transient-" class="xref">Coping with BGP's Transient Behavior</a><a href="#section-toc.1-1.3.2.6.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.3.2.7">
                <p id="section-toc.1-1.3.2.7.1"><a href="#section-3.7" class="xref">3.7</a>.  <a href="#name-summary-of-recommendations" class="xref">Summary of Recommendations</a><a href="#section-toc.1-1.3.2.7.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.3.2.7.2.1">
                    <p id="section-toc.1-1.3.2.7.2.1.1"><a href="#section-3.7.1" class="xref">3.7.1</a>.  <a href="#name-applicability-of-the-efp-ur" class="xref">Applicability of the EFP-uRPF Method with Algorithm A</a><a href="#section-toc.1-1.3.2.7.2.1.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.4">
            <p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.  <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.5">
            <p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.  <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6">
            <p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.  <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty">
<li class="toc ulEmpty" id="section-toc.1-1.6.2.1">
                <p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>.  <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.6.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.6.2.2">
                <p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>.  <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.6.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.7">
            <p id="section-toc.1-1.7.1"><a href="#section-appendix.a" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty" id="section-toc.1-1.8">
            <p id="section-toc.1-1.8.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="intro">
<section id="section-1">
      <h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
      </h2>
<p id="section-1-1">
Source address validation (SAV) refers to the detection and mitigation of source address (SA) spoofing <span>[<a href="#RFC2827" class="xref">RFC2827</a>]</span>. This document identifies a need for and proposes improvement of the unicast Reverse Path Forwarding (uRPF) techniques <span>[<a href="#RFC3704" class="xref">RFC3704</a>]</span> for SAV. Strict uRPF is inflexible about directionality (see <span>[<a href="#RFC3704" class="xref">RFC3704</a>]</span> for definitions), the loose uRPF is oblivious to directionality, and the current feasible-path uRPF attempts to strike a balance between the two <span>[<a href="#RFC3704" class="xref">RFC3704</a>]</span>. However, as shown in this document, the existing feasible-path uRPF still has shortcomings. Even with the feasible-path uRPF, ISPs are often apprehensive that they may be dropping customers' data packets with legitimate source addresses.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">

This document describes enhanced feasible-path uRPF (EFP-uRPF)
techniques that aim to be more flexible (in a meaningful way) about
directionality than the feasible-path uRPF. It is based on the
principle that if BGP updates for multiple prefixes with the same
origin AS were received on different interfaces (at border routers), then incoming data packets with source addresses in any of those prefixes should be accepted on any of those interfaces (presented in <a href="#newtech" class="xref">Section 3</a>). For some challenging ISP-customer scenarios (see <a href="#challenge" class="xref">Section 3.3</a>), this document also describes a more relaxed version of the enhanced feasible-path uRPF technique (presented in <a href="#algB" class="xref">Section 3.4</a>). Implementation and operations considerations are discussed in <a href="#impl" class="xref">Section 3.6</a>.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">
Throughout this document, the routes under consideration are assumed to have been vetted based on prefix filtering <span>[<a href="#RFC7454" class="xref">RFC7454</a>]</span> and possibly origin validation <span>[<a href="#RFC6811" class="xref">RFC6811</a>]</span>.<a href="#section-1-3" class="pilcrow">¶</a></p>
<p id="section-1-4">
The EFP-uRPF methods aim to significantly reduce false positives regarding invalid detection in SAV. They are expected to add greater operational robustness and efficacy to uRPF while minimizing ISPs' concerns about accidental service disruption for their customers. It is expected that this will encourage more deployment of uRPF to help realize its Denial of Service (DoS) and Distributed DoS (DDoS) prevention benefits network wide.<a href="#section-1-4" class="pilcrow">¶</a></p>
<section id="section-1.1">
        <h3 id="name-terminology">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
        </h3>
<p id="section-1.1-1">
The Reverse Path Forwarding (RPF) list is the list of permissible source-address prefixes for incoming data packets on a given interface.<a href="#section-1.1-1" class="pilcrow">¶</a></p>
<p id="section-1.1-2">
Peering relationships considered in this document are provider-to-customer
(P2C), customer-to-provider (C2P), and peer-to-peer (P2P). Here,
"provider" refers to a transit provider. The first two are transit relationships. A peer connected via a P2P link is known as a lateral peer (non-transit).<a href="#section-1.1-2" class="pilcrow">¶</a></p>
<p id="section-1.1-3">
AS A's customer cone is A plus all the ASes that can be reached from A following only P2C links <span>[<a href="#Luckie" class="xref">Luckie</a>]</span>.<a href="#section-1.1-3" class="pilcrow">¶</a></p>
<p id="section-1.1-4">
A stub AS is an AS that does not have any customers or lateral peers. In this document, a single-homed stub AS is one that has a single transit provider and a multihomed stub AS is one that has multiple (two or more) transit providers.<a href="#section-1.1-4" class="pilcrow">¶</a></p>
</section>
<section id="section-1.2">
        <h3 id="name-requirements-language">
<a href="#section-1.2" class="section-number selfRef">1.2. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
        </h3>
<p id="section-1.2-1">
    The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
    "<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as
    described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> 
    when, and only when, they appear in all capitals, as shown here.<a href="#section-1.2-1" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="review">
<section id="section-2">
      <h2 id="name-review-of-existing-source-a">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-review-of-existing-source-a" class="section-name selfRef">Review of Existing Source Address Validation Techniques</a>
      </h2>
<p id="section-2-1">
There are various existing techniques for the mitigation of DoS/DDoS
attacks with spoofed addresses <span>[<a href="#RFC2827" class="xref">RFC2827</a>]</span> <span>[<a href="#RFC3704" class="xref">RFC3704</a>]</span>.  SAV is performed in network edge devices, such as
border routers, Cable Modem Termination Systems (CMTS) <span>[<a href="#RFC4036" class="xref">RFC4036</a>]</span>, and Packet Data Network Gateways (PDN-GWs) in mobile
networks <span>[<a href="#Firmin" class="xref">Firmin</a>]</span>.  Ingress Access Control List (ACL) and uRPF are techniques employed for implementing SAV <span>[<a href="#RFC2827" class="xref">RFC2827</a>]</span> <span>[<a href="#RFC3704" class="xref">RFC3704</a>]</span> <span>[<a href="#ISOC" class="xref">ISOC</a>]</span>.<a href="#section-2-1" class="pilcrow">¶</a></p>
<div id="acl">
<section id="section-2.1">
        <h3 id="name-sav-using-access-control-li">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-sav-using-access-control-li" class="section-name selfRef">SAV Using Access Control List</a>
        </h3>
<p id="section-2.1-1">
Ingress/egress ACLs are maintained to list acceptable
(or alternatively, unacceptable) prefixes for the source addresses in the
incoming/outgoing Internet Protocol (IP) packets. Any packet with a source
address that fails the filtering criteria is dropped. The ACLs for the
ingress/egress filters need to be maintained to keep them up to
date. Updating the ACLs is an operator-driven manual process; hence,
it is operationally difficult or infeasible.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">
Typically, the egress ACLs in access aggregation devices (e.g., CMTS, PDN-GW)
permit source addresses only from the address spaces (prefixes) that are
associated with the interface on which the customer network is connected. Ingress ACLs are typically deployed on border routers and drop ingress packets when the source address is spoofed (e.g., belongs to obviously disallowed prefix blocks, IANA special-purpose prefixes <span>[<a href="#SPAR-v4" class="xref">SPAR-v4</a>]</span><span>[<a href="#SPAR-v6" class="xref">SPAR-v6</a>]</span>, provider's own prefixes, etc.).<a href="#section-2.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="surpf">
<section id="section-2.2">
        <h3 id="name-sav-using-strict-unicast-re">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-sav-using-strict-unicast-re" class="section-name selfRef">SAV Using Strict Unicast Reverse Path Forwarding</a>
        </h3>
<p id="section-2.2-1">
Note: In the figures (scenarios) in this section and the subsequent sections,
the following terminology is used:<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<ul>
<li id="section-2.2-2.1">
"fails" means drops packets with legitimate
source addresses.<a href="#section-2.2-2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.2-2.2">
 "works (but not desirable)" means passes all packets with
legitimate source addresses but is oblivious to directionality.<a href="#section-2.2-2.2" class="pilcrow">¶</a>
</li>
<li id="section-2.2-2.3">
"works best" means passes all packets with legitimate source addresses with no
(or minimal) compromise of directionality.<a href="#section-2.2-2.3" class="pilcrow">¶</a>
</li>
<li id="section-2.2-2.4">
The notation Pi[ASn ASm ...] denotes a BGP update with prefix Pi and an
AS_PATH as shown in the square brackets.<a href="#section-2.2-2.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.2-3">
In the strict uRPF method, an ingress packet
at a border router is accepted only if the Forwarding Information Base (FIB)
contains a prefix that encompasses the source address and forwarding
information for that prefix points back to the interface over which the packet
was received. In other words, the reverse path for routing to the source
address (if it were used as a destination address) should use the same
interface over which the packet was received. It is well known that this
method has limitations when networks are multihomed, routes are not
symmetrically announced to all transit providers, and there is asymmetric
routing of data packets. Asymmetric routing occurs (see <a href="#fig1" class="xref">Figure 1</a>) when a customer AS announces one prefix (P1) to one
transit provider (ISP-a) and a different prefix (P2) to another transit
provider (ISP-b) but routes data packets with source addresses in the second
prefix (P2) to the first transit provider (ISP-a) or vice versa. Then, data
packets with a source address in prefix P2 that are received at AS2
directly from AS1
will get dropped.  Further, data packets with a source address in prefix P1 that originate from AS1 and traverse via AS3 to AS2 will also get dropped at AS2.<a href="#section-2.2-3" class="pilcrow">¶</a></p>
<span id="name-scenario-1-for-illustration"></span><div id="fig1">
<figure id="figure-1">
          <div class="artwork art-text alignLeft" id="section-2.2-4.1">
<pre>
           +------------+ ---- P1[AS2 AS1] ---&gt; +------------+
           | AS2(ISP-a) | &lt;----P2[AS3 AS1] ---- | AS3(ISP-b) |
           +------------+                       +------------+ 
                    /\                             /\
                     \                             /
                      \                           /
                       \                         /
                 P1[AS1]\                       /P2[AS1]
                         \                     /
                        +-----------------------+
                        |      AS1(customer)    |
                        +-----------------------+
                          P1, P2 (prefixes originated)

          Consider data packets received at AS2
          (1) from AS1 with a source address (SA) in P2, or
          (2) from AS3 that originated from AS1 with a SA in P1:
                    * Strict uRPF fails
                    * Feasible-path uRPF fails
                    * Loose uRPF works (but not desirable)
                    * Enhanced feasible-path uRPF works best 
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-scenario-1-for-illustration" class="selfRef">Scenario 1 for Illustration of Efficacy of uRPF Schemes</a>
          </figcaption></figure>
</div>
</section>
</div>
<div id="fp-urpf">
<section id="section-2.3">
        <h3 id="name-sav-using-feasible-path-uni">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-sav-using-feasible-path-uni" class="section-name selfRef">SAV Using Feasible-Path Unicast Reverse Path Forwarding</a>
        </h3>
<p id="section-2.3-1">
The feasible-path uRPF technique helps partially overcome the problem
identified with the strict uRPF in the multihoming case. The feasible-path
uRPF is similar to the strict uRPF, but in addition to inserting the best-path
prefix, additional prefixes from alternative announced routes are also
included in the RPF list. This method relies on either (a) announcements for
the same prefixes (albeit some may be prepended to effect lower
preference) propagating to all transit providers performing feasible-path uRPF checks or
(b) announcement of an aggregate less-specific prefix to all transit providers
while announcing more-specific prefixes (covered by the less-specific prefix)
to different transit providers as needed for traffic engineering.<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<p id="section-2.3-2">As an
example, in the multihoming scenario (see Scenario 2 in <a href="#fig2" class="xref">Figure 2</a>), if the customer AS announces routes for both prefixes
(P1, P2) to both transit providers (with suitable prepends if needed for
traffic engineering), then the feasible-path uRPF method works. It should be
mentioned that the feasible-path uRPF works in this scenario only if customer
routes are preferred at AS2 and AS3 over a shorter non-customer
route. However, the feasible-path uRPF method has limitations as well. One
form of limitation naturally occurs when the recommendation (a) or (b)
mentioned above regarding propagation of prefixes is not followed.<a href="#section-2.3-2" class="pilcrow">¶</a></p>
<p id="section-2.3-3">Another
form of limitation can be described as follows. In Scenario 2 (described here,
illustrated in <a href="#fig2" class="xref">Figure 2</a>), it is possible that
the second transit provider (ISP-b or AS3) does not propagate the prepended
route for prefix P1 to the first transit provider (ISP-a or AS2). This is
because AS3's decision policy permits giving priority to a shorter route to
prefix P1 via a lateral peer (AS2) over a longer route learned directly from
the customer (AS1). In such a scenario, AS3 would not send any route
announcement for prefix P1 to AS2 (over the P2P link). Then, a data packet
with a source address in prefix P1 that originates from AS1 and traverses via AS3 to AS2 will get dropped at AS2.<a href="#section-2.3-3" class="pilcrow">¶</a></p>
<span id="name-scenario-2-for-illustration"></span><div id="fig2">
<figure id="figure-2">
          <div class="artwork art-text alignLeft" id="section-2.3-4.1">
<pre>                   
          +------------+  routes for P1, P2   +------------+
          | AS2(ISP-a) |&lt;--------------------&gt;| AS3(ISP-b) |
          +------------+        (P2P)         +------------+
                    /\                            /\
                     \                            /
               P1[AS1]\                          /P2[AS1]
                       \                        /
         P2[AS1 AS1 AS1]\                      /P1[AS1 AS1 AS1]
                         \                    /
                        +-----------------------+
                        |      AS1(customer)    |
                        +-----------------------+
                          P1, P2 (prefixes originated)

        Consider data packets received at AS2 via AS3
        that originated from AS1 and have a source address in P1:
        * Feasible-path uRPF works (if the customer route to P1
          is preferred at AS3 over the shorter path)
        * Feasible-path uRPF fails (if the shorter path to P1
          is preferred at AS3 over the customer route)
        * Loose uRPF works (but not desirable)
        * Enhanced feasible-path uRPF works best
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-scenario-2-for-illustration" class="selfRef">Scenario 2 for Illustration of Efficacy of uRPF Schemes</a>
          </figcaption></figure>
</div>
</section>
</div>
<div id="lurpf">
<section id="section-2.4">
        <h3 id="name-sav-using-loose-unicast-rev">
<a href="#section-2.4" class="section-number selfRef">2.4. </a><a href="#name-sav-using-loose-unicast-rev" class="section-name selfRef">SAV Using Loose Unicast Reverse Path Forwarding</a>
        </h3>
<p id="section-2.4-1">
In the loose uRPF method, an ingress packet
at the border router is accepted only if the FIB has one or more prefixes that
encompass the source address. That is, a packet is dropped if no route exists
in the FIB for the source address. Loose uRPF sacrifices directionality.  It only drops packets if the source address is unreachable in the current FIB (e.g., IANA special-purpose prefixes <span>[<a href="#SPAR-v4" class="xref">SPAR-v4</a>]</span><span>[<a href="#SPAR-v6" class="xref">SPAR-v6</a>]</span>, unallocated, allocated but currently not routed).<a href="#section-2.4-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="vrf">
<section id="section-2.5">
        <h3 id="name-sav-using-vrf-table">
<a href="#section-2.5" class="section-number selfRef">2.5. </a><a href="#name-sav-using-vrf-table" class="section-name selfRef">SAV Using VRF Table</a>
        </h3>
<p id="section-2.5-1">
The Virtual Routing and Forwarding (VRF) technology <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span> <span>[<a href="#Juniper" class="xref">Juniper</a>]</span> allows a router
to maintain multiple routing table instances separate from the global Routing
Information Base (RIB). External BGP (eBGP) peering sessions send specific
routes to be stored in a dedicated VRF table. The uRPF process queries the VRF
table (instead of the FIB) for source address validation. A VRF table can be dedicated per eBGP peer and used for uRPF for only that peer, resulting in strict mode operation.  For implementing loose uRPF on an interface, the corresponding VRF table would be global, i.e., contains the same routes as in the FIB.<a href="#section-2.5-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="newtech">
<section id="section-3">
      <h2 id="name-sav-using-enhanced-feasible">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-sav-using-enhanced-feasible" class="section-name selfRef">SAV Using Enhanced Feasible-Path uRPF</a>
      </h2>
<div id="descrip">
<section id="section-3.1">
        <h3 id="name-description-of-the-method">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-description-of-the-method" class="section-name selfRef">Description of the Method</a>
        </h3>
<p id="section-3.1-1"> 
The enhanced feasible-path uRPF (EFP-uRPF) method adds greater operational robustness and efficacy to existing uRPF methods discussed in <a href="#review" class="xref">Section 2</a>. That is because it avoids dropping legitimate data packets and compromising directionality. The method is based on the principle that if BGP updates for multiple prefixes with the same origin AS were received on different interfaces (at border routers), then incoming data packets with source addresses in any of those prefixes should be accepted on any of those interfaces. The EFP-uRPF method can be best explained with an example, as follows:<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<p id="section-3.1-2">
Let us say, in its Adj-RIBs-In <span>[<a href="#RFC4271" class="xref">RFC4271</a>]</span>, a border router of ISP-A has the set of prefixes {Q1, Q2, Q3}, each of which has AS-x as its origin and AS-x is in ISP-A's customer cone. In this set, the border router received the route for prefix Q1 over a customer-facing interface while it learned the routes for prefixes Q2 and Q3 from a lateral peer and an upstream transit provider, respectively. In this example scenario, the enhanced feasible-path uRPF method requires Q1, Q2, and Q3 be included in the RPF list for the customer interface under consideration.<a href="#section-3.1-2" class="pilcrow">¶</a></p>
<p id="section-3.1-3">
Thus, the EFP-uRPF method gathers feasible paths
for customer interfaces in a more precise way (as compared to the feasible-path uRPF) so that all legitimate packets are accepted while the directionality property is not compromised.<a href="#section-3.1-3" class="pilcrow">¶</a></p>
<p id="section-3.1-4">
The above-described EFP-uRPF method is recommended to be applied on customer
interfaces. It can also 
be extended to create the RPF lists for lateral peer
interfaces. That is, the EFP-uRPF method can be applied (and loose uRPF
avoided) on lateral peer interfaces. That will help to avoid compromising directionality for lateral peer interfaces (which is inevitable with loose uRPF; see <a href="#lurpf" class="xref">Section 2.4</a>).<a href="#section-3.1-4" class="pilcrow">¶</a></p>
<p id="section-3.1-5"> 
Looking back at Scenarios 1 and 2 (Figures <a href="#fig1" class="xref">1</a> and <a href="#fig2" class="xref">2</a>), the EFP-uRPF method works better than the other uRPF
methods. Scenario 3 (<a href="#fig3" class="xref">Figure 3</a>) further
illustrates the enhanced feasible-path uRPF method with a more concrete
example. In this scenario, the focus is on operation of the EFP-uRPF
at ISP4 (AS4). ISP4 learns a route for prefix P1 via a
C2P interface from customer ISP2 (AS2). This route for P1 has origin
AS1. ISP4 also learns a route for P2 via another C2P interface from customer
ISP3 (AS3). Additionally, AS4 learns a route for P3 via a lateral P2P interface from ISP5 (AS5). Routes for all three prefixes have the same
origin AS (i.e., AS1). Using the enhanced feasible-path uRPF scheme and given the
commonality of the origin AS across the routes for P1, P2, and P3, AS4 includes
all of these prefixes in the RPF list for the customer interfaces (from AS2
and AS3).<a href="#section-3.1-5" class="pilcrow">¶</a></p>
<span id="name-scenario-3-for-illustration"></span><div id="fig3">
<figure id="figure-3">
          <div class="artwork art-text alignLeft" id="section-3.1-6.1">
<pre>
                 +----------+   P3[AS5 AS1]  +------------+
                 | AS4(ISP4)|&lt;---------------|  AS5(ISP5) |
                 +----------+      (P2P)     +------------+
                     /\   /\                        /\
                     /     \                        /
         P1[AS2 AS1]/       \P2[AS3 AS1]           /
              (C2P)/         \(C2P)               /
                  /           \                  /
           +----------+    +----------+         /
           | AS2(ISP2)|    | AS3(ISP3)|        /
           +----------+    +----------+       /
                    /\           /\          /
                     \           /          /
               P1[AS1]\         /P2[AS1]   /P3[AS1]
                  (C2P)\       /(C2P)     /(C2P)
                        \     /          /
                     +----------------+ /
                     |  AS1(customer) |/
                     +----------------+
                          P1, P2, P3 (prefixes originated)

         Consider that data packets (sourced from AS1)
         may be received at AS4 with a source address
         in P1, P2, or P3 via any of the neighbors (AS2, AS3, AS5):
         * Feasible-path uRPF fails
         * Loose uRPF works (but not desirable)
         * Enhanced feasible-path uRPF works best
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-scenario-3-for-illustration" class="selfRef">Scenario 3 for Illustration of Efficacy of uRPF Schemes</a>
          </figcaption></figure>
</div>
<div id="algA">
<section id="section-3.1.1">
          <h4 id="name-algorithm-a-enhanced-feasib">
<a href="#section-3.1.1" class="section-number selfRef">3.1.1. </a><a href="#name-algorithm-a-enhanced-feasib" class="section-name selfRef">Algorithm A: Enhanced Feasible-Path uRPF</a>
          </h4>
<p id="section-3.1.1-1">
The underlying algorithm in the solution method described above (<a href="#descrip" class="xref">Section 3.1</a>) can be specified as follows (to be implemented in a transit AS):<a href="#section-3.1.1-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal" id="section-3.1.1-2">
            <li id="section-3.1.1-2.1">
Create the set of unique origin ASes considering only the routes in the Adj-RIBs-In of customer interfaces. Call it Set A = {AS1, AS2, ...,  ASn}.<a href="#section-3.1.1-2.1" class="pilcrow">¶</a>
</li>
<li id="section-3.1.1-2.2">
Considering all routes in Adj-RIBs-In for all interfaces (customer, lateral peer, and transit provider), form the set of unique prefixes that have a common origin AS1. Call it Set X1.<a href="#section-3.1.1-2.2" class="pilcrow">¶</a>
</li>
<li id="section-3.1.1-2.3">
Include Set X1 in the RPF list on all customer interfaces on which one or more of the prefixes in Set X1 were received.<a href="#section-3.1.1-2.3" class="pilcrow">¶</a>
</li>
<li id="section-3.1.1-2.4">
Repeat Steps 2 and 3 for each of the remaining ASes in Set A (i.e., for ASi, where i = 2, ..., n).<a href="#section-3.1.1-2.4" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-3.1.1-3">
The above algorithm can also be extended to apply the EFP-uRPF method to
lateral peer interfaces. However, it is left up to the operator to decide
whether they should apply the EFP-uRPF or loose uRPF method on lateral peer interfaces. The loose uRPF method is recommended to be applied on transit provider interfaces.<a href="#section-3.1.1-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="recomm">
<section id="section-3.2">
        <h3 id="name-operational-recommendations">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-operational-recommendations" class="section-name selfRef">Operational Recommendations</a>
        </h3>
<p id="section-3.2-1">
The following operational recommendations will make the operation of the enhanced feasible-path uRPF robust:<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2-2"> 
For multihomed stub AS:<a href="#section-3.2-2" class="pilcrow">¶</a></p>
<ul>
<li id="section-3.2-3.1"> 
A multihomed stub AS should announce at least one of the prefixes it originates to each of its transit provider ASes. 
(It is understood that a single-homed stub AS would announce all prefixes it originates to its sole transit provider AS.)<a href="#section-3.2-3.1" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2-4"> 
For non-stub AS:<a href="#section-3.2-4" class="pilcrow">¶</a></p>
<ul>
<li id="section-3.2-5.1"> 
A non-stub AS should also announce at least one of the prefixes it originates to each of its transit provider ASes.<a href="#section-3.2-5.1" class="pilcrow">¶</a>
</li>
<li id="section-3.2-5.2"> 
Additionally, from the routes it has learned from customers, a non-stub AS <span class="bcp14">SHOULD</span> announce at least one route per origin AS to each of its transit provider ASes.<a href="#section-3.2-5.2" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="challenge">
<section id="section-3.3">
        <h3 id="name-a-challenging-scenario">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-a-challenging-scenario" class="section-name selfRef">A Challenging Scenario</a>
        </h3>
<p id="section-3.3-1"> 
It should be observed that in the absence of ASes adhering to above
recommendations, the following example scenario, which poses
a challenge for the enhanced feasible-path uRPF (as well as for traditional
feasible-path uRPF), may be constructed. In the scenario illustrated in <a href="#fig4" class="xref">Figure 4</a>, since routes for neither P1 nor P2 are propagated on the AS2-AS4 interface (due to the presence of NO_EXPORT Community), the enhanced feasible-path uRPF at AS4 will reject data packets received on that interface with source addresses in P1 or P2. (For a little more complex example scenario, see slide #10 in <span>[<a href="#Sriram-URPF" class="xref">Sriram-URPF</a>]</span>.)<a href="#section-3.3-1" class="pilcrow">¶</a></p>
<span id="name-illustration-of-a-challengi"></span><div id="fig4">
<figure id="figure-4">
          <div class="artwork art-text alignLeft" id="section-3.3-2.1">
<pre>
                 +----------+  
                 | AS4(ISP4)|                       
                 +----------+       
                     /\   /\                        
                     /     \  P1[AS3 AS1]                                  
      P1 and P2 not /       \ P2[AS3 AS1]           
        propagated /         \ (C2P)                
          (C2P)   /           \                  
           +----------+    +----------+         
           | AS2(ISP2)|    | AS3(ISP3)|                        
           +----------+    +----------+       
                    /\           /\          
                     \           / P1[AS1]          
    P1[AS1] NO_EXPORT \         / P2[AS1]              
    P2[AS1] NO_EXPORT  \       / (C2P)     
                 (C2P)  \     /          
                     +----------------+ 
                     |  AS1(customer) |
                     +----------------+
                          P1, P2 (prefixes originated)
         
       Consider that data packets (sourced from AS1) 
       may be received at AS4 with a source address 
       in P1 or P2 via AS2:       
       * Feasible-path uRPF fails
       * Loose uRPF works (but not desirable)
       * Enhanced feasible-path uRPF with Algorithm A fails
       * Enhanced feasible-path uRPF with Algorithm B works best
</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-illustration-of-a-challengi" class="selfRef">Illustration of a Challenging Scenario</a>
          </figcaption></figure>
</div>
</section>
</div>
<div id="algB">
<section id="section-3.4">
        <h3 id="name-algorithm-b-enhanced-feasib">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-algorithm-b-enhanced-feasib" class="section-name selfRef">Algorithm B: Enhanced Feasible-Path uRPF with Additional Flexibility across Customer Cone</a>
        </h3>
<p id="section-3.4-1">
Adding further flexibility to the enhanced feasible-path uRPF method can help address the potential limitation identified above using the scenario in <a href="#fig4" class="xref">Figure 4</a> (<a href="#challenge" class="xref">Section 3.3</a>). In the following, "route" refers to a route currently existing in the Adj-RIBs-In. Including the additional degree of flexibility, the modified algorithm called Algorithm B (implemented in a transit AS) can be described as follows:<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal" id="section-3.4-2">
          <li id="section-3.4-2.1"> 
Create the set of all directly connected customer interfaces. Call it Set I = {I1, I2, ..., Ik}.<a href="#section-3.4-2.1" class="pilcrow">¶</a>
</li>
<li id="section-3.4-2.2"> 
Create the set of all unique prefixes for which routes exist in Adj-RIBs-In for the interfaces in Set I. Call it Set P = {P1, P2, ..., Pm}.<a href="#section-3.4-2.2" class="pilcrow">¶</a>
</li>
<li id="section-3.4-2.3"> 
Create the set of all unique origin ASes seen in the routes that exist in Adj-RIBs-In for the interfaces in Set I. Call it Set A = {AS1, AS2, ..., ASn}.<a href="#section-3.4-2.3" class="pilcrow">¶</a>
</li>
<li id="section-3.4-2.4"> 
Create the set of all unique prefixes for which routes exist in Adj-RIBs-In of all lateral peer and transit provider interfaces such that each of the routes has its origin AS belonging in Set A. Call it Set Q = {Q1, Q2, ..., Qj}.<a href="#section-3.4-2.4" class="pilcrow">¶</a>
</li>
<li id="section-3.4-2.5"> 
Then, Set Z = Union(P,Q) is the RPF list that is applied for every customer interface in Set I.<a href="#section-3.4-2.5" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-3.4-3"> 
When Algorithm B (which is more flexible than Algorithm A) is employed on
customer interfaces, the type of limitation identified in <a href="#fig4" class="xref">Figure 4</a> (<a href="#challenge" class="xref">Section 3.3</a>) is overcome
and the method works. The directionality property is minimally compromised,
but the proposed EFP-uRPF method with Algorithm B is still a much better choice (for the scenario under consideration) than applying the loose uRPF method, which is oblivious to directionality.<a href="#section-3.4-3" class="pilcrow">¶</a></p>
<p id="section-3.4-4"> 
So, applying the EFP-uRPF method with Algorithm B is recommended on customer interfaces for the challenging scenarios, such as those described in <a href="#challenge" class="xref">Section 3.3</a>.<a href="#section-3.4-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="augment">
<section id="section-3.5">
        <h3 id="name-augmenting-rpf-lists-with-r">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-augmenting-rpf-lists-with-r" class="section-name selfRef">Augmenting RPF Lists with ROA and IRR Data</a>
        </h3>
<p id="section-3.5-1">
It is worth emphasizing that an indirect part of the proposal in this document
is that RPF filters may be augmented from secondary sources. Hence, the
construction of RPF lists using a method proposed in this document (Algorithm
A or B) can be augmented with data from Route Origin Authorization (ROA) <span>[<a href="#RFC6482" class="xref">RFC6482</a>]</span>, as well as Internet Routing Registry
(IRR) data. Special care should be exercised when using IRR data because it is
not always accurate or trusted.  In the EFP-uRPF method with Algorithm A (see <a href="#algA" class="xref">Section 3.1.1</a>), if a ROA includes prefix Pi and ASj, then augment
the RPF list of each customer interface on which at least one route with
origin ASj was received with prefix Pi. In the EFP-uRPF method with Algorithm B, if ASj
belongs in Set A (see Step #3 <a href="#algB" class="xref">Section 3.4</a>) and if a ROA includes prefix Pi and ASj,
then augment the RPF list Z in Step 5 of Algorithm B with prefix Pi. Similar procedures can be followed with reliable IRR data as well. This will help make the RPF lists more robust about source addresses that may be legitimately used by customers of the ISP.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="impl">
<section id="section-3.6">
        <h3 id="name-implementation-and-operatio">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-implementation-and-operatio" class="section-name selfRef">Implementation and Operations Considerations</a>
        </h3>
<div id="rpfsize">
<section id="section-3.6.1">
          <h4 id="name-impact-on-fib-memory-size-r">
<a href="#section-3.6.1" class="section-number selfRef">3.6.1. </a><a href="#name-impact-on-fib-memory-size-r" class="section-name selfRef">Impact on FIB Memory Size Requirement</a>
          </h4>
<p id="section-3.6.1-1">
The existing RPF checks in edge routers take advantage of existing
line card implementations to perform the RPF functions. For
implementation of the enhanced feasible-path uRPF, the general
necessary feature would be to extend the line cards to take arbitrary
RPF lists that are not necessarily the same as the existing FIB
contents. In the algorithms (Sections <a href="#algA" class="xref">3.1.1</a> and <a href="#algB" class="xref">3.4</a>) described here, the RPF lists are constructed by applying a set of rules to all received BGP routes (not just those selected as best path and installed in the FIB). The concept of uRPF querying an RPF list (instead of the FIB) is similar to uRPF querying a VRF table (see <a href="#vrf" class="xref">Section 2.5</a>).<a href="#section-3.6.1-1" class="pilcrow">¶</a></p>
<p id="section-3.6.1-2">
The techniques described in this document require that there should be additional memory (i.e., ternary content-addressable memory (TCAM)) available to store the RPF lists in line cards. For an ISP's AS, the RPF list size for each line card will roughly equal the total number of originated prefixes from ASes in its customer cone (assuming Algorithm B in <a href="#algB" class="xref">Section 3.4</a> is used). (Note: EFP-uRPF with Algorithm A (see <a href="#algA" class="xref">Section 3.1.1</a>) requires much less memory than EFP-uRPF with Algorithm B.)<a href="#section-3.6.1-2" class="pilcrow">¶</a></p>
<p id="section-3.6.1-3">
The following table shows the measured customer cone sizes in number of prefixes originated (from all ASes in the customer cone) for various types of ISPs <span>[<a href="#Sriram-RIPE63" class="xref">Sriram-RIPE63</a>]</span>:<a href="#section-3.6.1-3" class="pilcrow">¶</a></p>
<span id="name-customer-cone-sizes-prefixe"></span><div id="ccsize">
<table class="center" id="table-1">
            <caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-customer-cone-sizes-prefixe" class="selfRef">Customer Cone Sizes (# Prefixes) for Various Types of ISPs</a>
            </caption>
<thead>
              <tr>
                <th class="text-left" rowspan="1" colspan="1">Type of ISP</th>
                <th class="text-left" rowspan="1" colspan="1">Measured Customer Cone Size in # Prefixes (in turn this is an
      estimate for RPF list size on the line card)</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">Very Large Global ISP #1</td>
                <td class="text-left" rowspan="1" colspan="1">32393</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">Very Large Global ISP #2</td>
                <td class="text-left" rowspan="1" colspan="1">29528</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">Large Global ISP</td>
                <td class="text-left" rowspan="1" colspan="1">20038</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">Mid-size Global ISP</td>
                <td class="text-left" rowspan="1" colspan="1">8661</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">Regional ISP (in Asia)</td>
                <td class="text-left" rowspan="1" colspan="1">1101</td>
              </tr>
            </tbody>
          </table>
</div>
<p id="section-3.6.1-5">
For some super large global ISPs that are at the core of the Internet, the customer cone size (# prefixes) can be as high as a few hundred thousand <span>[<a href="#CAIDA" class="xref">CAIDA</a>]</span>, but uRPF is most effective when deployed at ASes at the edges of the Internet where the customer cone sizes are smaller, as shown in <a href="#ccsize" class="xref">Table 1</a>.<a href="#section-3.6.1-5" class="pilcrow">¶</a></p>
<p id="section-3.6.1-6">
A very large global ISP's router line card is likely to have a FIB size large enough to accommodate 2 million routes <span>[<a href="#Cisco1" class="xref">Cisco1</a>]</span>. Similarly, the line cards in routers corresponding to a large global ISP, a midsize global ISP, and a regional ISP are likely to have FIB sizes large enough to accommodate about 1 million, 0.5 million, and 100k routes, respectively <span>[<a href="#Cisco2" class="xref">Cisco2</a>]</span>. Comparing these FIB size numbers with the corresponding RPF list size numbers in <a href="#ccsize" class="xref">Table 1</a>, it can be surmised that the conservatively estimated RPF list size is only a small fraction of the anticipated FIB memory size under relevant ISP scenarios. What is meant here by relevant ISP scenarios is that only smaller ISPs (and possibly some midsize and regional ISPs) are expected to implement the proposed EFP-uRPF method since it is most effective closer to the edges of the Internet.<a href="#section-3.6.1-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="hyst">
<section id="section-3.6.2">
          <h4 id="name-coping-with-bgps-transient-">
<a href="#section-3.6.2" class="section-number selfRef">3.6.2. </a><a href="#name-coping-with-bgps-transient-" class="section-name selfRef">Coping with BGP's Transient Behavior</a>
          </h4>
<p id="section-3.6.2-1">
BGP routing announcements can exhibit transient behavior. Routes may be
withdrawn temporarily and then reannounced due to transient conditions, such
as BGP session reset or link failure recovery. To cope with this, hysteresis should be introduced in the maintenance of the RPF lists. Deleting entries from the RPF lists <span class="bcp14">SHOULD</span> be delayed by a predetermined amount (the value based on operational experience) when responding to route withdrawals. This should help suppress the effects due to the transients in BGP.<a href="#section-3.6.2-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="summ_recomm">
<section id="section-3.7">
        <h3 id="name-summary-of-recommendations">
<a href="#section-3.7" class="section-number selfRef">3.7. </a><a href="#name-summary-of-recommendations" class="section-name selfRef">Summary of Recommendations</a>
        </h3>
<p id="section-3.7-1">
Depending on the scenario, an ISP or enterprise AS operator should follow one of the following recommendations concerning uRPF/SAV:<a href="#section-3.7-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal" id="section-3.7-2">
          <li id="section-3.7-2.1"> 
For directly connected networks, i.e., subnets directly connected to the AS, the AS under consideration <span class="bcp14">SHOULD</span> perform ACL-based SAV.<a href="#section-3.7-2.1" class="pilcrow">¶</a>
</li>
<li id="section-3.7-2.2"> 
For a directly connected single-homed stub AS (customer), the AS under consideration <span class="bcp14">SHOULD</span> perform SAV based on the strict uRPF method.<a href="#section-3.7-2.2" class="pilcrow">¶</a>
</li>
<li id="section-3.7-2.3">
            <p id="section-3.7-2.3.1"> 
For all other scenarios:<a href="#section-3.7-2.3.1" class="pilcrow">¶</a></p>
<ul>
<li id="section-3.7-2.3.2.1">
The EFP-uRPF method with Algorithm B (see <a href="#algB" class="xref">Section 3.4</a>) <span class="bcp14">SHOULD</span> be applied on customer interfaces.<a href="#section-3.7-2.3.2.1" class="pilcrow">¶</a>
</li>
<li id="section-3.7-2.3.2.2">
The loose uRPF method <span class="bcp14">SHOULD</span> be applied on lateral peer and transit provider interfaces.<a href="#section-3.7-2.3.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ol>
<p id="section-3.7-3">
It is also recommended that prefixes from registered ROAs and IRR route objects that include ASes in an ISP's customer cone <span class="bcp14">SHOULD</span> be used to augment the pertaining RPF lists (see <a href="#augment" class="xref">Section 3.5</a> for details).<a href="#section-3.7-3" class="pilcrow">¶</a></p>
<div id="discuss">
<section id="section-3.7.1">
          <h4 id="name-applicability-of-the-efp-ur">
<a href="#section-3.7.1" class="section-number selfRef">3.7.1. </a><a href="#name-applicability-of-the-efp-ur" class="section-name selfRef">Applicability of the EFP-uRPF Method with Algorithm A</a>
          </h4>
<p id="section-3.7.1-1">The EFP-uRPF method with Algorithm A is not mentioned in the above set of recommendations. It is an alternative to EFP-uRPF with Algorithm B and can be used in limited circumstances. The EFP-uRPF method with Algorithm A is expected to work fine if an ISP deploying it has only multihomed stub customers. It is trivially equivalent to strict uRPF if an ISP deploys it for a single-homed stub customer. More generally, it is also expected to work fine when there is absence of limitations, such as those described in <a href="#challenge" class="xref">Section 3.3</a>. However, caution is required for use of EFP-uRPF with Algorithm A because even if the limitations are not expected at the time of deployment, the vulnerability to change in conditions exists. It may be difficult for an ISP to know or track the extent of use of NO_EXPORT (see <a href="#challenge" class="xref">Section 3.3</a>) on routes within its customer cone. If an ISP decides to use EFP-uRPF with Algorithm A, it should make its direct customers aware of the operational recommendations in <a href="#recomm" class="xref">Section 3.2</a>. This means that the ISP notifies direct customers that at least one prefix originated by each AS in the direct customer's customer cone must propagate to the ISP.<a href="#section-3.7.1-1" class="pilcrow">¶</a></p>
<p id="section-3.7.1-2">
On a lateral peer interface, an ISP may choose to apply the EFP-uRPF method with Algorithm A (with appropriate modification of the algorithm). This is because stricter forms of uRPF (than the loose uRPF) may be considered applicable by some ISPs on interfaces with lateral peers.<a href="#section-3.7.1-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="seccon">
<section id="section-4">
      <h2 id="name-security-considerations">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
      </h2>
<p id="section-4-1">
The security considerations in BCP 38 <span>[<a href="#RFC2827" class="xref">RFC2827</a>]</span> and RFC 3704 <span>[<a href="#RFC3704" class="xref">RFC3704</a>]</span> apply
for this document as well. In addition, if considering using the EFP-uRPF method with Algorithm A, an ISP or AS operator should be aware of the applicability considerations and potential vulnerabilities discussed in <a href="#discuss" class="xref">Section 3.7.1</a>.<a href="#section-4-1" class="pilcrow">¶</a></p>
<p id="section-4-2"> 
In augmenting RPF lists with ROA (and possibly reliable IRR) information (see
<a href="#augment" class="xref">Section 3.5</a>), a trade-off is made in favor of
reducing false positives (regarding invalid detection in SAV) at the expense
of another slight risk. The other risk being that a malicious actor at another
AS in the neighborhood within the customer cone might take advantage (of the
augmented prefix) to some extent. This risk also exists even with normal
announced prefixes (i.e., without ROA augmentation) for any uRPF method other
than the strict uRPF. However, the risk is mitigated if the transit provider of the other AS in question is performing SAV.<a href="#section-4-2" class="pilcrow">¶</a></p>
<p id="section-4-3"> 
Though not within the scope of this document, security hardening of routers and other supporting systems (e.g., Resource PKI (RPKI) and ROA management systems) against compromise is extremely important. The compromise of those systems can affect the operation and performance of the SAV methods described in this document.<a href="#section-4-3" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-5">
      <h2 id="name-iana-considerations">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
      </h2>
<p id="section-5-1">This document has no IANA actions.<a href="#section-5-1" class="pilcrow">¶</a></p>
</section>
<section id="section-6">
      <h2 id="name-references">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-references" class="section-name selfRef">References</a>
      </h2>
<section id="section-6.1">
        <h3 id="name-normative-references">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
        </h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03">March 1997</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>&gt;</span>. </dd>
<dt id="RFC2827">[RFC2827]</dt>
<dd>
<span class="refAuthor">Ferguson, P.</span><span class="refAuthor"> and D. Senie</span>, <span class="refTitle">"Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing"</span>, <span class="seriesInfo">BCP 38</span>, <span class="seriesInfo">RFC 2827</span>, <span class="seriesInfo">DOI 10.17487/RFC2827</span>, <time datetime="2000-05">May 2000</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2827">https://www.rfc-editor.org/info/rfc2827</a>&gt;</span>. </dd>
<dt id="RFC3704">[RFC3704]</dt>
<dd>
<span class="refAuthor">Baker, F.</span><span class="refAuthor"> and P. Savola</span>, <span class="refTitle">"Ingress Filtering for Multihomed Networks"</span>, <span class="seriesInfo">BCP 84</span>, <span class="seriesInfo">RFC 3704</span>, <span class="seriesInfo">DOI 10.17487/RFC3704</span>, <time datetime="2004-03">March 2004</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3704">https://www.rfc-editor.org/info/rfc3704</a>&gt;</span>. </dd>
<dt id="RFC4271">[RFC4271]</dt>
<dd>
<span class="refAuthor">Rekhter, Y., Ed.</span><span class="refAuthor">, Li, T., Ed.</span><span class="refAuthor">, and S. Hares, Ed.</span>, <span class="refTitle">"A Border Gateway Protocol 4 (BGP-4)"</span>, <span class="seriesInfo">RFC 4271</span>, <span class="seriesInfo">DOI 10.17487/RFC4271</span>, <time datetime="2006-01">January 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4271">https://www.rfc-editor.org/info/rfc4271</a>&gt;</span>. </dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>&gt;</span>. </dd>
</dl>
</section>
<section id="section-6.2">
        <h3 id="name-informative-references">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
        </h3>
<dl class="references">
<dt id="CAIDA">[CAIDA]</dt>
<dd>
<span class="refAuthor">CAIDA</span>, <span class="refTitle">"Information for AS 174 (COGENT-174)"</span>, <time datetime="2019-10">October 2019</time>, <span>&lt;<a href="https://spoofer.caida.org/as.php?asn=174">https://spoofer.caida.org/as.php?asn=174</a>&gt;</span>. </dd>
<dt id="Cisco1">[Cisco1]</dt>
<dd>
<span class="refAuthor">Cisco</span>, <span class="refTitle">"Internet Routing Table Growth Causes %ROUTING-FIB-4-RSRC_LOW Message on Trident-Based Line Cards"</span>, <time datetime="2014-01">January 2014</time>, <span>&lt;<a href="https://www.cisco.com/c/en/us/support/docs/routers/asr-9000-series-aggregation-services-routers/116999-problem-line-card-00.html">https://www.cisco.com/c/en/us/support/docs/routers/asr-9000-series-aggregation-services-routers/116999-problem-line-card-00.html</a>&gt;</span>. </dd>
<dt id="Cisco2">[Cisco2]</dt>
<dd>
<span class="refAuthor">Cisco</span>, <span class="refTitle">"Cisco Nexus 7000 Series NX-OS Unicast Routing Configuration Guide, Release 5.x (Chapter 15: 'Managing the Unicast RIB and FIB')"</span>, <time datetime="2018-03">March 2018</time>, <span>&lt;<a href="https://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/nx-os/unicast/configuration/guide/l3_cli_nxos/l3_NewChange.html">https://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/nx-os/unicast/configuration/guide/l3_cli_nxos/l3_NewChange.html</a>&gt;</span>. </dd>
<dt id="Firmin">[Firmin]</dt>
<dd>
<span class="refAuthor">Firmin, F.</span>, <span class="refTitle">"The Evolved Packet Core"</span>, <span>&lt;<a href="https://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core">https://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core</a>&gt;</span>. </dd>
<dt id="ISOC">[ISOC]</dt>
<dd>
<span class="refAuthor">Internet Society</span>, <span class="refTitle">"Addressing the challenge of IP spoofing"</span>, <time datetime="2015-09">September 2015</time>, <span>&lt;<a href="https://www.internetsociety.org/resources/doc/2015/addressing-the-challenge-of-ip-spoofing/">https://www.internetsociety.org/resources/doc/2015/addressing-the-challenge-of-ip-spoofing/</a>&gt;</span>. </dd>
<dt id="Juniper">[Juniper]</dt>
<dd>
<span class="refAuthor">Juniper Networks</span>, <span class="refTitle">"Creating Unique VPN Routes Using VRF Tables"</span>, <time datetime="2019-05">May 2019</time>, <span>&lt;<a href="https://www.juniper.net/documentation/en_US/junos/topics/topic-map/l3-vpns-routes-vrf-tables.html#id-understanding-virtual-routing-and-forwarding-tables">https://www.juniper.net/documentation/en_US/junos/topics/topic-map/l3-vpns-routes-vrf-tables.html#id-understanding-virtual-routing-and-forwarding-tables</a>&gt;</span>. </dd>
<dt id="Luckie">[Luckie]</dt>
<dd>
<span class="refAuthor">Luckie, M.</span><span class="refAuthor">, Huffaker, B.</span><span class="refAuthor">, Dhamdhere, A.</span><span class="refAuthor">, Giotsas, V.</span><span class="refAuthor">, and kc. claffy</span>, <span class="refTitle">"AS Relationships, customer cones, and validation"</span>, <span class="refContent">In Proceedings of the 2013 Internet Measurement Conference</span>, <span class="seriesInfo">DOI 10.1145/2504730.2504735</span>, <time datetime="2013-10">October 2013</time>, <span>&lt;<a href="https://dl.acm.org/doi/10.1145/2504730.2504735">https://dl.acm.org/doi/10.1145/2504730.2504735</a>&gt;</span>. </dd>
<dt id="RFC4036">[RFC4036]</dt>
<dd>
<span class="refAuthor">Sawyer, W.</span>, <span class="refTitle">"Management Information Base for Data Over Cable Service Interface Specification (DOCSIS) Cable Modem Termination Systems for Subscriber Management"</span>, <span class="seriesInfo">RFC 4036</span>, <span class="seriesInfo">DOI 10.17487/RFC4036</span>, <time datetime="2005-04">April 2005</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4036">https://www.rfc-editor.org/info/rfc4036</a>&gt;</span>. </dd>
<dt id="RFC4364">[RFC4364]</dt>
<dd>
<span class="refAuthor">Rosen, E.</span><span class="refAuthor"> and Y. Rekhter</span>, <span class="refTitle">"BGP/MPLS IP Virtual Private Networks (VPNs)"</span>, <span class="seriesInfo">RFC 4364</span>, <span class="seriesInfo">DOI 10.17487/RFC4364</span>, <time datetime="2006-02">February 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4364">https://www.rfc-editor.org/info/rfc4364</a>&gt;</span>. </dd>
<dt id="RFC6482">[RFC6482]</dt>
<dd>
<span class="refAuthor">Lepinski, M.</span><span class="refAuthor">, Kent, S.</span><span class="refAuthor">, and D. Kong</span>, <span class="refTitle">"A Profile for Route Origin Authorizations (ROAs)"</span>, <span class="seriesInfo">RFC 6482</span>, <span class="seriesInfo">DOI 10.17487/RFC6482</span>, <time datetime="2012-02">February 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6482">https://www.rfc-editor.org/info/rfc6482</a>&gt;</span>. </dd>
<dt id="RFC6811">[RFC6811]</dt>
<dd>
<span class="refAuthor">Mohapatra, P.</span><span class="refAuthor">, Scudder, J.</span><span class="refAuthor">, Ward, D.</span><span class="refAuthor">, Bush, R.</span><span class="refAuthor">, and R. Austein</span>, <span class="refTitle">"BGP Prefix Origin Validation"</span>, <span class="seriesInfo">RFC 6811</span>, <span class="seriesInfo">DOI 10.17487/RFC6811</span>, <time datetime="2013-01">January 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6811">https://www.rfc-editor.org/info/rfc6811</a>&gt;</span>. </dd>
<dt id="RFC7454">[RFC7454]</dt>
<dd>
<span class="refAuthor">Durand, J.</span><span class="refAuthor">, Pepelnjak, I.</span><span class="refAuthor">, and G. Doering</span>, <span class="refTitle">"BGP Operations and Security"</span>, <span class="seriesInfo">BCP 194</span>, <span class="seriesInfo">RFC 7454</span>, <span class="seriesInfo">DOI 10.17487/RFC7454</span>, <time datetime="2015-02">February 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7454">https://www.rfc-editor.org/info/rfc7454</a>&gt;</span>. </dd>
<dt id="SPAR-v4">[SPAR-v4]</dt>
<dd>
<span class="refAuthor">IANA</span>, <span class="refTitle">"IANA IPv4 Special-Purpose Address Registry"</span>, <span>&lt;<a href="https://www.iana.org/assignments/iana-ipv4-special-registry/">https://www.iana.org/assignments/iana-ipv4-special-registry/</a>&gt;</span>. </dd>
<dt id="SPAR-v6">[SPAR-v6]</dt>
<dd>
<span class="refAuthor">IANA</span>, <span class="refTitle">"IANA IPv6 Special-Purpose Address Registry"</span>, <span>&lt;<a href="https://www.iana.org/assignments/iana-ipv6-special-registry/">https://www.iana.org/assignments/iana-ipv6-special-registry/</a>&gt;</span>. </dd>
<dt id="Sriram-RIPE63">[Sriram-RIPE63]</dt>
<dd>
<span class="refAuthor">Sriram, K.</span><span class="refAuthor"> and R. Bush</span>, <span class="refTitle">"Estimating CPU Cost of BGPSEC on a Router"</span>, <span class="refContent">Presented at RIPE 63 and at the SIDR WG meeting at
     IETF 83</span>, <time datetime="2012-03">March 2012</time>, <span>&lt;<a href="http://www.ietf.org/proceedings/83/slides/slides-83-sidr-7.pdf">http://www.ietf.org/proceedings/83/slides/slides-83-sidr-7.pdf</a>&gt;</span>. </dd>
<dt id="Sriram-URPF">[Sriram-URPF]</dt>
<dd>
<span class="refAuthor">Sriram, K.</span><span class="refAuthor">, Montgomery, D.</span><span class="refAuthor">, and J. Haas</span>, <span class="refTitle">"Enhanced Feasible-Path Unicast Reverse Path Filtering"</span>, <span class="refContent">Presented at the OPSEC WG meeting at IETF 101</span>, <time datetime="2018-03">March 2018</time>, <span>&lt;<a href="https://datatracker.ietf.org/meeting/101/materials/slides-101-opsec-draft-sriram-opsec-urpf-improvements-00">https://datatracker.ietf.org/meeting/101/materials/slides-101-opsec-draft-sriram-opsec-urpf-improvements-00</a>&gt;</span>. </dd>
</dl>
</section>
</section>
<section id="section-appendix.a">
      <h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
      </h2>
<p id="section-appendix.a-1">The authors would like to thank 
<span class="contact-name">Sandy Murphy</span>,
<span class="contact-name">Alvaro Retana</span>,
<span class="contact-name">Job Snijders</span>,
<span class="contact-name">Marco Marzetti</span>,
<span class="contact-name">Marco d'Itri</span>,
<span class="contact-name">Nick Hilliard</span>,
<span class="contact-name">Gert Doering</span>,
<span class="contact-name">Fred Baker</span>,
<span class="contact-name">Igor Gashinsky</span>,
<span class="contact-name">Igor Lubashev</span>,
<span class="contact-name">Andrei Robachevsky</span>,
<span class="contact-name">Barry Greene</span>,
<span class="contact-name">Amir Herzberg</span>,
<span class="contact-name">Ruediger Volk</span>,
<span class="contact-name">Jared Mauch</span>,
<span class="contact-name">Oliver Borchert</span>,
<span class="contact-name">Mehmet Adalier</span>, and
<span class="contact-name">Joel Jaeggli</span> for comments and suggestions. The comments and suggestions received from the IESG reviewers are also much appreciated.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
</section>
<div id="authors-addresses">
<section id="section-appendix.b">
      <h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Kotikalapudi Sriram</span></div>
<div dir="auto" class="left"><span class="org">USA National Institute of Standards and Technology</span></div>
<div dir="auto" class="left"><span class="street-address">100 Bureau Drive</span></div>
<div dir="auto" class="left">
<span class="locality">Gaithersburg</span>, <span class="region">MD</span> <span class="postal-code">20899</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ksriram@nist.gov" class="email">ksriram@nist.gov</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Doug Montgomery</span></div>
<div dir="auto" class="left"><span class="org">USA National Institute of Standards and Technology</span></div>
<div dir="auto" class="left"><span class="street-address">100 Bureau Drive</span></div>
<div dir="auto" class="left">
<span class="locality">Gaithersburg</span>, <span class="region">MD</span> <span class="postal-code">20899</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:dougm@nist.gov" class="email">dougm@nist.gov</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Jeffrey Haas</span></div>
<div dir="auto" class="left"><span class="org">Juniper Networks, Inc.</span></div>
<div dir="auto" class="left"><span class="street-address">1133 Innovation Way</span></div>
<div dir="auto" class="left">
<span class="locality">Sunnyvale</span>, <span class="region">CA</span> <span class="postal-code">94089</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jhaas@juniper.net" class="email">jhaas@juniper.net</a>
</div>
</address>
</section>
</div>
<script>var toc = document.getElementById("toc");
var tocToggle = toc.querySelector("h2");
var tocNav = toc.querySelector("nav");

// mobile menu toggle
tocToggle.onclick = function(event) {
    if (window.innerWidth < 1024) {
 var tocNavDisplay = tocNav.currentStyle ? tocNav.currentStyle.display : getComputedStyle(tocNav, null).display;
 if (tocNavDisplay == "none") {
     tocNav.style.display = "block";
 } else {
     tocNav.style.display = "none";
 }
    }
}

// toc anchor scroll to anchor
tocNav.addEventListener("click", function (event) {
    event.preventDefault();
    if (event.target.nodeName == 'A') {
 if (window.innerWidth < 1024) {
     tocNav.style.display = "none";
 }
 var href = event.target.getAttribute("href");
 var anchorId = href.substr(1);
 var anchor =  document.getElementById(anchorId);
 anchor.scrollIntoView(true);
 window.history.pushState("","",href);
    }
});

// switch toc mode when window resized
window.onresize = function () {
    if (window.innerWidth < 1024) {
 tocNav.style.display = "none";
    } else {
 tocNav.style.display = "block";
    }
}
</script>
</body>
</html>