File: rfc8816.html

package info (click to toggle)
doc-rfc 20230121-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 1,609,944 kB
file content (2585 lines) | stat: -rw-r--r-- 132,799 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8816: Secure Telephone Identity Revisited (STIR) Out-of-Band Architecture and Use Cases</title>
<meta content="Eric Rescorla" name="author">
<meta content="Jon Peterson" name="author">
<meta content="
       The Personal Assertion Token (PASSporT) format defines
a token that can be carried by signaling protocols, including SIP,
to cryptographically attest the identity of callers.
However, not all telephone calls use Internet signaling protocols,
and some calls use them for only part of their signaling
path, while some cannot reliably deliver SIP header fields end-to-end.
This document describes use cases that require the delivery of
PASSporT objects outside of the signaling path, and defines
architectures and semantics to provide
this functionality.
       
    " name="description">
<meta content="xml2rfc 3.5.0" name="generator">
<meta content="SIP" name="keyword">
<meta content="8816" name="rfc.number">
<!-- Generator version information:
  xml2rfc 3.5.0
    Python 3.6.10
    appdirs 1.4.4
    ConfigArgParse 1.2.3
    google-i18n-address 2.3.5
    html5lib 1.0.1
    intervaltree 3.0.2
    Jinja2 2.11.2
    kitchen 1.2.6
    lxml 4.4.2
    pycairo 1.19.0
    pycountry 19.8.18
    pyflakes 2.1.1
    PyYAML 5.3.1
    requests 2.22.0
    setuptools 40.6.2
    six 1.14.0
    WeasyPrint 51
-->
<link href="rfc8816.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*

  NOTE: Changes at the bottom of this file overrides some earlier settings.

  Once the style has stabilized and has been adopted as an official RFC style,
  this can be consolidated so that style settings occur only in one place, but
  for now the contents of this file consists first of the initial CSS work as
  provided to the RFC Formatter (xml2rfc) work, followed by itemized and
  commented changes found necssary during the development of the v3
  formatters.

*/

/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */

@viewport {
  zoom: 1.0;
  width: extend-to-zoom;
}
@-ms-viewport {
  width: extend-to-zoom;
  zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
  max-width: 90%;
  margin: 1.5em auto;
  color: #222;
  background-color: #fff;
  font-size: 14px;
  font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
  line-height: 1.6;
  scroll-behavior: smooth;
}
.ears {
  display: none;
}

/* headings */
#title, h1, h2, h3, h4, h5, h6 {
  margin: 1em 0 0.5em;
  font-weight: bold;
  line-height: 1.3;
}
#title {
  clear: both;
  border-bottom: 1px solid #ddd;
  margin: 0 0 0.5em 0;
  padding: 1em 0 0.5em;
}
.author {
  padding-bottom: 4px;
}
h1 {
  font-size: 26px;
  margin: 1em 0;
}
h2 {
  font-size: 22px;
  margin-top: -20px;  /* provide offset for in-page anchors */
  padding-top: 33px;
}
h3 {
  font-size: 18px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h4 {
  font-size: 16px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h5, h6 {
  font-size: 14px;
}
#n-copyright-notice {
  border-bottom: 1px solid #ddd;
  padding-bottom: 1em;
  margin-bottom: 1em;
}
/* general structure */
p {
  padding: 0;
  margin: 0 0 1em 0;
  text-align: left;
}
div, span {
  position: relative;
}
div {
  margin: 0;
}
.alignRight.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignRight.art-text pre {
  padding: 0;
}
.alignRight {
  margin: 1em 0;
}
.alignRight > *:first-child {
  border: none;
  margin: 0;
  float: right;
  clear: both;
}
.alignRight > *:nth-child(2) {
  clear: both;
  display: block;
  border: none;
}
svg {
  display: block;
}
.alignCenter.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
  padding: 0;
}
.alignCenter {
  margin: 1em 0;
}
.alignCenter > *:first-child {
  border: none;
  /* this isn't optimal, but it's an existence proof.  PrinceXML doesn't
     support flexbox yet.
  */
  display: table;
  margin: 0 auto;
}

/* lists */
ol, ul {
  padding: 0;
  margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
  margin-left: 1em;
}
li {
  margin: 0 0 0.25em 0;
}
.ulCompact li {
  margin: 0;
}
ul.empty, .ulEmpty {
  list-style-type: none;
}
ul.empty li, .ulEmpty li {
  margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
  line-height: 100%;
  margin: 0 0 0 2em;
}

/* definition lists */
dl {
}
dl > dt {
  float: left;
  margin-right: 1em;
}
/* 
dl.nohang > dt {
  float: none;
}
*/
dl > dd {
  margin-bottom: .8em;
  min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
  margin-bottom: 0em;
}
dl > dd > dl {
  margin-top: 0.5em;
  margin-bottom: 0em;
}

/* links */
a {
  text-decoration: none;
}
a[href] {
  color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
  background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
  color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
  background-color: transparent;
  cursor: default;
} */

/* Figures */
tt, code, pre, code {
  background-color: #f9f9f9;
  font-family: 'Roboto Mono', monospace;
}
pre {
  border: 1px solid #eee;
  margin: 0;
  padding: 1em;
}
img {
  max-width: 100%;
}
figure {
  margin: 0;
}
figure blockquote {
  margin: 0.8em 0.4em 0.4em;
}
figcaption {
  font-style: italic;
  margin: 0 0 1em 0;
}
@media screen {
  pre {
    overflow-x: auto;
    max-width: 100%;
    max-width: calc(100% - 22px);
  }
}

/* aside, blockquote */
aside, blockquote {
  margin-left: 0;
  padding: 1.2em 2em;
}
blockquote {
  background-color: #f9f9f9;
  color: #111; /* Arlen: WCAG 2019 */
  border: 1px solid #ddd;
  border-radius: 3px;
  margin: 1em 0;
}
cite {
  display: block;
  text-align: right;
  font-style: italic;
}

/* tables */
table {
  width: 100%;
  margin: 0 0 1em;
  border-collapse: collapse;
  border: 1px solid #eee;
}
th, td {
  text-align: left;
  vertical-align: top;
  padding: 0.5em 0.75em;
}
th {
  text-align: left;
  background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
  background-color: #f5f5f5;
}
table caption {
  font-style: italic;
  margin: 0;
  padding: 0;
  text-align: left;
}
table p {
  /* XXX to avoid bottom margin on table row signifiers. If paragraphs should
     be allowed within tables more generally, it would be far better to select on a class. */
  margin: 0;
}

/* pilcrow */
a.pilcrow {
  color: #666; /* Arlen: AHDJ 2019 */
  text-decoration: none;
  visibility: hidden;
  user-select: none;
  -ms-user-select: none;
  -o-user-select:none;
  -moz-user-select: none;
  -khtml-user-select: none;
  -webkit-user-select: none;
  -webkit-touch-callout: none;
}
@media screen {
  aside:hover > a.pilcrow,
  p:hover > a.pilcrow,
  blockquote:hover > a.pilcrow,
  div:hover > a.pilcrow,
  li:hover > a.pilcrow,
  pre:hover > a.pilcrow {
    visibility: visible;
  }
  a.pilcrow:hover {
    background-color: transparent;
  }
}

/* misc */
hr {
  border: 0;
  border-top: 1px solid #eee;
}
.bcp14 {
  font-variant: small-caps;
}

.role {
  font-variant: all-small-caps;
}

/* info block */
#identifiers {
  margin: 0;
  font-size: 0.9em;
}
#identifiers dt {
  width: 3em;
  clear: left;
}
#identifiers dd {
  float: left;
  margin-bottom: 0;
}
#identifiers .authors .author {
  display: inline-block;
  margin-right: 1.5em;
}
#identifiers .authors .org {
  font-style: italic;
}

/* The prepared/rendered info at the very bottom of the page */
.docInfo {
  color: #666; /* Arlen: WCAG 2019 */
  font-size: 0.9em;
  font-style: italic;
  margin-top: 2em;
}
.docInfo .prepared {
  float: left;
}
.docInfo .prepared {
  float: right;
}

/* table of contents */
#toc  {
  padding: 0.75em 0 2em 0;
  margin-bottom: 1em;
}
nav.toc ul {
  margin: 0 0.5em 0 0;
  padding: 0;
  list-style: none;
}
nav.toc li {
  line-height: 1.3em;
  margin: 0.75em 0;
  padding-left: 1.2em;
  text-indent: -1.2em;
}
/* references */
.references dt {
  text-align: right;
  font-weight: bold;
  min-width: 7em;
}
.references dd {
  margin-left: 8em;
  overflow: auto;
}

.refInstance {
  margin-bottom: 1.25em;
}

.references .ascii {
  margin-bottom: 0.25em;
}

/* index */
.index ul {
  margin: 0 0 0 1em;
  padding: 0;
  list-style: none;
}
.index ul ul {
  margin: 0;
}
.index li {
  margin: 0;
  text-indent: -2em;
  padding-left: 2em;
  padding-bottom: 5px;
}
.indexIndex {
  margin: 0.5em 0 1em;
}
.index a {
  font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
  .index ul {
    -moz-column-count: 2;
    -moz-column-gap: 20px;
  }
  .index ul ul {
    -moz-column-count: 1;
    -moz-column-gap: 0;
  }
}

/* authors */
address.vcard {
  font-style: normal;
  margin: 1em 0;
}

address.vcard .nameRole {
  font-weight: 700;
  margin-left: 0;
}
address.vcard .label {
  font-family: "Noto Sans",Arial,Helvetica,sans-serif;
  margin: 0.5em 0;
}
address.vcard .type {
  display: none;
}
.alternative-contact {
  margin: 1.5em 0 1em;
}
hr.addr {
  border-top: 1px dashed;
  margin: 0;
  color: #ddd;
  max-width: calc(100% - 16px);
}

/* temporary notes */
.rfcEditorRemove::before {
  position: absolute;
  top: 0.2em;
  right: 0.2em;
  padding: 0.2em;
  content: "The RFC Editor will remove this note";
  color: #9e2a00; /* Arlen: WCAG 2019 */
  background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
  position: relative;
  padding-top: 1.8em;
  background-color: #ffd; /* Arlen: WCAG 2019 */
  border-radius: 3px;
}
.cref {
  background-color: #ffd; /* Arlen: WCAG 2019 */
  padding: 2px 4px;
}
.crefSource {
  font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
  body {
    padding-top: 2em;
  }
  #title {
    padding: 1em 0;
  }
  h1 {
    font-size: 24px;
  }
  h2 {
    font-size: 20px;
    margin-top: -18px;  /* provide offset for in-page anchors */
    padding-top: 38px;
  }
  #identifiers dd {
    max-width: 60%;
  }
  #toc {
    position: fixed;
    z-index: 2;
    top: 0;
    right: 0;
    padding: 0;
    margin: 0;
    background-color: inherit;
    border-bottom: 1px solid #ccc;
  }
  #toc h2 {
    margin: -1px 0 0 0;
    padding: 4px 0 4px 6px;
    padding-right: 1em;
    min-width: 190px;
    font-size: 1.1em;
    text-align: right;
    background-color: #444;
    color: white;
    cursor: pointer;
  }
  #toc h2::before { /* css hamburger */
    float: right;
    position: relative;
    width: 1em;
    height: 1px;
    left: -164px;
    margin: 6px 0 0 0;
    background: white none repeat scroll 0 0;
    box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
    content: "";
  }
  #toc nav {
    display: none;
    padding: 0.5em 1em 1em;
    overflow: auto;
    height: calc(100vh - 48px);
    border-left: 1px solid #ddd;
  }
}

/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
  body {
    max-width: 724px;
    margin: 42px auto;
    padding-left: 1.5em;
    padding-right: 29em;
  }
  #toc {
    position: fixed;
    top: 42px;
    right: 42px;
    width: 25%;
    margin: 0;
    padding: 0 1em;
    z-index: 1;
  }
  #toc h2 {
    border-top: none;
    border-bottom: 1px solid #ddd;
    font-size: 1em;
    font-weight: normal;
    margin: 0;
    padding: 0.25em 1em 1em 0;
  }
  #toc nav {
    display: block;
    height: calc(90vh - 84px);
    bottom: 0;
    padding: 0.5em 0 0;
    overflow: auto;
  }
  img { /* future proofing */
    max-width: 100%;
    height: auto;
  }
}

/* pagination */
@media print {
  body {

    width: 100%;
  }
  p {
    orphans: 3;
    widows: 3;
  }
  #n-copyright-notice {
    border-bottom: none;
  }
  #toc, #n-introduction {
    page-break-before: always;
  }
  #toc {
    border-top: none;
    padding-top: 0;
  }
  figure, pre {
    page-break-inside: avoid;
  }
  figure {
    overflow: scroll;
  }
  h1, h2, h3, h4, h5, h6 {
    page-break-after: avoid;
  }
  h2+*, h3+*, h4+*, h5+*, h6+* {
    page-break-before: avoid;
  }
  pre {
    white-space: pre-wrap;
    word-wrap: break-word;
    font-size: 10pt;
  }
  table {
    border: 1px solid #ddd;
  }
  td {
    border-top: 1px solid #ddd;
  }
}

/* This is commented out here, as the string-set: doesn't
   pass W3C validation currently */
/*
.ears thead .left {
  string-set: ears-top-left content();
}

.ears thead .center {
  string-set: ears-top-center content();
}

.ears thead .right {
  string-set: ears-top-right content();
}

.ears tfoot .left {
  string-set: ears-bottom-left content();
}

.ears tfoot .center {
  string-set: ears-bottom-center content();
}

.ears tfoot .right {
  string-set: ears-bottom-right content();
}
*/

@page :first {
  padding-top: 0;
  @top-left {
    content: normal;
    border: none;
  }
  @top-center {
    content: normal;
    border: none;
  }
  @top-right {
    content: normal;
    border: none;
  }
}

@page {
  size: A4;
  margin-bottom: 45mm;
  padding-top: 20px;
  /* The follwing is commented out here, but set appropriately by in code, as
     the content depends on the document */
  /*
  @top-left {
    content: 'Internet-Draft';
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-left {
    content: string(ears-top-left);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-center {
    content: string(ears-top-center);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-right {
    content: string(ears-top-right);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @bottom-left {
    content: string(ears-bottom-left);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-center {
    content: string(ears-bottom-center);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-right {
      content: '[Page ' counter(page) ']';
      vertical-align: top;
      border-top: solid 1px #ccc;
  }
  */

}

/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
  z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
  clear: both;
}


/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
  vertical-align: top;
}

/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
  width: 8em;
}

/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
  margin-left: 1em;
}

/* Give floating toc a background color (needed when it's a div inside section */
#toc {
  background-color: white;
}

/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
  #toc h2 a,
  #toc h2 a:link,
  #toc h2 a:focus,
  #toc h2 a:hover,
  #toc a.toplink,
  #toc a.toplink:hover {
    color: white;
    background-color: #444;
    text-decoration: none;
  }
}

/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
  #toc {
    padding: 0 0 1em 1em;
  }
}

/* Style section numbers with more space between number and title */
.section-number {
  padding-right: 0.5em;
}

/* prevent monospace from becoming overly large */
tt, code, pre, code {
  font-size: 95%;
}

/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
  line-height: 1.12;
}


/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
  float: right;
  margin-right: 0.5em;
}

/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
  float: left;
  margin-right: 1em;
}
dl.dlNewline > dt {
  float: none;
}

/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
  text-align: left;
}
table td.text-center,
table th.text-center {
  text-align: center;
}
table td.text-right,
table th.text-right {
  text-align: right;
}

/* Make the alternative author contact informatio look less like just another
   author, and group it closer with the primary author contact information */
.alternative-contact {
  margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
  margin: 0 0 0 2em;
}

/* With it being possible to set tables with alignment
  left, center, and right, { width: 100%; } does not make sense */
table {
  width: auto;
}

/* Avoid reference text that sits in a block with very wide left margin,
   because of a long floating dt label.*/
.references dd {
  overflow: visible;
}

/* Control caption placement */
caption {
  caption-side: bottom;
}

/* Limit the width of the author address vcard, so names in right-to-left
   script don't end up on the other side of the page. */

address.vcard {
  max-width: 30em;
  margin-right: auto;
}

/* For address alignment dependent on LTR or RTL scripts */
address div.left {
  text-align: left;
}
address div.right {
  text-align: right;
}

/* Provide table alignment support.  We can't use the alignX classes above
   since they do unwanted things with caption and other styling. */
table.right {
 margin-left: auto;
 margin-right: 0;
}
table.center {
 margin-left: auto;
 margin-right: auto;
}
table.left {
 margin-left: 0;
 margin-right: auto;
}

/* Give the table caption label the same styling as the figcaption */
caption a[href] {
  color: #222;
}

@media print {
  .toplink {
    display: none;
  }

  /* avoid overwriting the top border line with the ToC header */
  #toc {
    padding-top: 1px;
  }

  /* Avoid page breaks inside dl and author address entries */
  .vcard {
    page-break-inside: avoid;
  }

}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
  font-variant: small-caps;
  font-weight: bold;
  font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
 h2 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 31px;
 }
 h3 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
 h4 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
/* Float artwork pilcrow to the right */
@media screen {
  .artwork a.pilcrow {
    display: block;
    line-height: 0.7;
    margin-top: 0.15em;
  }
}
/* Make pilcrows on dd visible */
@media screen {
  dd:hover > a.pilcrow {
    visibility: visible;
  }
}
/* Make the placement of figcaption match that of a table's caption
   by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
   margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
  margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
   possibly even requiring a new line */
@media print {
  a.pilcrow {
    display: none;
  }
}
/* Styling for the external metadata */
div#external-metadata {
  background-color: #eee;
  padding: 0.5em;
  margin-bottom: 0.5em;
  display: none;
}
div#internal-metadata {
  padding: 0.5em;                       /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
  clear: both;
  margin: 0 0 -1em;
  padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
  margin-bottom: 0.25em;
  min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
  border-left: 1px solid #ddd;
  margin: 1em 0 1em 2em;
  padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
  margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
  figcaption, table caption {
    page-break-before: avoid;
  }
}
/* Font size adjustments for print */
@media print {
  body  { font-size: 10pt;      line-height: normal; max-width: 96%; }
  h1    { font-size: 1.72em;    padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
  h2    { font-size: 1.44em;    padding-top: 1.5em; } /* 1*1.2*1.2 */
  h3    { font-size: 1.2em;     padding-top: 1.5em; } /* 1*1.2 */
  h4    { font-size: 1em;       padding-top: 1.5em; }
  h5, h6 { font-size: 1em;      margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
  .artwork,
  .sourcecode {
    margin-bottom: 1em;
  }
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
  min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
  border: 1px solid #ddd;
}
td {
  border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
  background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
  #toc nav { display: none; }
  #toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
  break-after: avoid-page;
  break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
  break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode  {
  break-before: avoid-page;
  break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
  break-before: auto;
  break-inside: auto;
}
dt {
  break-before: auto;
  break-after: avoid-page;
}
dd {
  break-before: avoid-page;
  break-after: auto;
  orphans: 3;
  widows: 3
}
span.break, dd.break {
  margin-bottom: 0;
  min-height: 0;
  break-before: auto;
  break-inside: auto;
  break-after: auto;
}
/* Undo break-before ToC */
@media print {
  #toc {
    break-before: auto;
  }
}
/* Text in compact lists should not get extra bottim margin space,
   since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
 margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
  margin-bottom: 1em;                    /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
   backgrounds.  Changed to something a bit more selective. */
tt, code {
  background-color: transparent;
}
p tt, p code, li tt, li code {
  background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
   margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
  line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
  margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
  clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
  content: "\00a0";
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc8816" rel="alternate">
  <link href="urn:issn:2070-1721" rel="alternate">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-stir-oob-07" rel="prev">
  </head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8816</td>
<td class="center">STIR Out-of-Band</td>
<td class="right">February 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Rescorla &amp; Peterson</td>
<td class="center">Informational</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8816" class="eref">8816</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Informational</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-02" class="published">February 2021</time>
    </dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
      <div class="author-name">E. Rescorla</div>
<div class="org">Mozilla</div>
</div>
<div class="author">
      <div class="author-name">J. Peterson</div>
<div class="org">Neustar</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8816</h1>
<h1 id="title">Secure Telephone Identity Revisited (STIR) Out-of-Band Architecture and Use Cases</h1>
<section id="section-abstract">
      <h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">The Personal Assertion Token (PASSporT) format defines
a token that can be carried by signaling protocols, including SIP,
to cryptographically attest the identity of callers.
However, not all telephone calls use Internet signaling protocols,
and some calls use them for only part of their signaling
path, while some cannot reliably deliver SIP header fields end-to-end.
This document describes use cases that require the delivery of
PASSporT objects outside of the signaling path, and defines
architectures and semantics to provide
this functionality.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
        <h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
        </h2>
<p id="section-boilerplate.1-1">
            This document is not an Internet Standards Track specification; it is
            published for informational purposes.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by the
            Internet Engineering Steering Group (IESG).  Not all documents
            approved by the IESG are candidates for any level of Internet
            Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <span><a href="https://www.rfc-editor.org/info/rfc8816">https://www.rfc-editor.org/info/rfc8816</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
        <h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
        </h2>
<p id="section-boilerplate.2-1">
            Copyright (c) 2021 IETF Trust and the persons identified as the
            document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
        <a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
        </h2>
<nav class="toc"><ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.1">
            <p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>.  <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.2">
            <p id="section-toc.1-1.2.1" class="keepWithNext"><a href="#section-2" class="xref">2</a>.  <a href="#name-terminology" class="xref">Terminology</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.3">
            <p id="section-toc.1-1.3.1" class="keepWithNext"><a href="#section-3" class="xref">3</a>.  <a href="#name-operating-environments" class="xref">Operating Environments</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.4">
            <p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.  <a href="#name-dataflows" class="xref">Dataflows</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.5">
            <p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.  <a href="#name-use-cases" class="xref">Use Cases</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.5.2.1">
                <p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>.  <a href="#name-case-1-voip-to-pstn-call" class="xref">Case 1: VoIP to PSTN Call</a><a href="#section-toc.1-1.5.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="ulEmpty compact toc" id="section-toc.1-1.5.2.2">
                <p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>.  <a href="#name-case-2-two-smart-pstn-endpo" class="xref">Case 2: Two Smart PSTN Endpoints</a><a href="#section-toc.1-1.5.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="ulEmpty compact toc" id="section-toc.1-1.5.2.3">
                <p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>.  <a href="#name-case-3-pstn-to-voip-call" class="xref">Case 3: PSTN to VoIP Call</a><a href="#section-toc.1-1.5.2.3.1" class="pilcrow">¶</a></p>
</li>
              <li class="ulEmpty compact toc" id="section-toc.1-1.5.2.4">
                <p id="section-toc.1-1.5.2.4.1"><a href="#section-5.4" class="xref">5.4</a>.  <a href="#name-case-4-gateway-out-of-band" class="xref">Case 4: Gateway Out-of-Band</a><a href="#section-toc.1-1.5.2.4.1" class="pilcrow">¶</a></p>
</li>
              <li class="ulEmpty compact toc" id="section-toc.1-1.5.2.5">
                <p id="section-toc.1-1.5.2.5.1"><a href="#section-5.5" class="xref">5.5</a>.  <a href="#name-case-5-enterprise-call-cent" class="xref">Case 5: Enterprise Call Center</a><a href="#section-toc.1-1.5.2.5.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.6">
            <p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.  <a href="#name-storing-and-retrieving-pass" class="xref">Storing and Retrieving PASSporTs</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.6.2.1">
                <p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>.  <a href="#name-storage" class="xref">Storage</a><a href="#section-toc.1-1.6.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="ulEmpty compact toc" id="section-toc.1-1.6.2.2">
                <p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>.  <a href="#name-retrieval" class="xref">Retrieval</a><a href="#section-toc.1-1.6.2.2.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.7">
            <p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>.  <a href="#name-solution-architecture" class="xref">Solution Architecture</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.7.2.1">
                <p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>.  <a href="#name-credentials-and-phone-numbe" class="xref">Credentials and Phone Numbers</a><a href="#section-toc.1-1.7.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="ulEmpty compact toc" id="section-toc.1-1.7.2.2">
                <p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>.  <a href="#name-call-flow" class="xref">Call Flow</a><a href="#section-toc.1-1.7.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="ulEmpty compact toc" id="section-toc.1-1.7.2.3">
                <p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="xref">7.3</a>.  <a href="#name-security-analysis" class="xref">Security Analysis</a><a href="#section-toc.1-1.7.2.3.1" class="pilcrow">¶</a></p>
</li>
              <li class="ulEmpty compact toc" id="section-toc.1-1.7.2.4">
                <p id="section-toc.1-1.7.2.4.1"><a href="#section-7.4" class="xref">7.4</a>.  <a href="#name-substitution-attacks" class="xref">Substitution Attacks</a><a href="#section-toc.1-1.7.2.4.1" class="pilcrow">¶</a></p>
</li>
              <li class="ulEmpty compact toc" id="section-toc.1-1.7.2.5">
                <p id="section-toc.1-1.7.2.5.1"><a href="#section-7.5" class="xref">7.5</a>.  <a href="#name-rate-control-for-cps-storag" class="xref">Rate Control for CPS Storage</a><a href="#section-toc.1-1.7.2.5.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.8">
            <p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>.  <a href="#name-authentication-and-verifica" class="xref">Authentication and Verification Service Behavior for Out-of-Band</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.8.2.1">
                <p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="xref">8.1</a>.  <a href="#name-authentication-service-as" class="xref">Authentication Service (AS)</a><a href="#section-toc.1-1.8.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="ulEmpty compact toc" id="section-toc.1-1.8.2.2">
                <p id="section-toc.1-1.8.2.2.1"><a href="#section-8.2" class="xref">8.2</a>.  <a href="#name-verification-service-vs" class="xref">Verification Service (VS)</a><a href="#section-toc.1-1.8.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="ulEmpty compact toc" id="section-toc.1-1.8.2.3">
                <p id="section-toc.1-1.8.2.3.1"><a href="#section-8.3" class="xref">8.3</a>.  <a href="#name-gateway-placement-services" class="xref">Gateway Placement Services</a><a href="#section-toc.1-1.8.2.3.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.9">
            <p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>.  <a href="#name-example-https-interface-to-" class="xref">Example HTTPS Interface to the CPS</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.10">
            <p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-cps-discovery" class="xref">CPS Discovery</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.11">
            <p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>. <a href="#name-encryption-key-lookup" class="xref">Encryption Key Lookup</a><a href="#section-toc.1-1.11.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.12">
            <p id="section-toc.1-1.12.1"><a href="#section-12" class="xref">12</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.12.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.13">
            <p id="section-toc.1-1.13.1"><a href="#section-13" class="xref">13</a>. <a href="#name-privacy-considerations" class="xref">Privacy Considerations</a><a href="#section-toc.1-1.13.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.14">
            <p id="section-toc.1-1.14.1"><a href="#section-14" class="xref">14</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.14.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.15">
            <p id="section-toc.1-1.15.1"><a href="#section-15" class="xref">15</a>. <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.15.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.16">
            <p id="section-toc.1-1.16.1"><a href="#section-appendix.a" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a><a href="#section-toc.1-1.16.1" class="pilcrow">¶</a></p>
</li>
          <li class="ulEmpty compact toc" id="section-toc.1-1.17">
            <p id="section-toc.1-1.17.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.17.1" class="pilcrow">¶</a></p>
</li>
        </ul>
</nav>
</section>
</div>
<section id="section-1">
      <h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
      </h2>
<p id="section-1-1">The STIR problem statement <span>[<a href="#RFC7340" class="xref">RFC7340</a>]</span>
describes widespread problems enabled by impersonation in the telephone network,
including illegal robocalling, voicemail hacking, and swatting.
As telephone services are increasingly migrating onto the Internet,
and using Voice over IP (VoIP) protocols such as <span><a href="#RFC3261" class="xref">SIP</a> [<a href="#RFC3261" class="xref">RFC3261</a>]</span>,
it is necessary for these protocols to support stronger identity mechanisms to prevent impersonation.
For example, <span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span> defines a SIP Identity header field
capable of carrying <span><a href="#RFC8225" class="xref">PASSporT objects</a> [<a href="#RFC8225" class="xref">RFC8225</a>]</span>
in SIP as a means to cryptographically attest that the originator of a
telephone call is authorized to use the calling party number (or, for native SIP cases,
SIP URI) associated with the originator of the call.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">Not all telephone calls use SIP today, however, and even those that do use SIP do not always carry SIP signaling end-to-end.
   Calls from telephone numbers still routinely traverse the Public Switched Telephone Network (PSTN) at some
   point.  Broadly, calls fall into one of three categories:<a href="#section-1-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-1-3">
        <li id="section-1-3.1">
        One or both of the endpoints is actually a PSTN endpoint.<a href="#section-1-3.1" class="pilcrow">¶</a>
</li>
        <li id="section-1-3.2">Both of the endpoints are non-PSTN (SIP, Jingle, etc.) but the call transits the PSTN at some point.<a href="#section-1-3.2" class="pilcrow">¶</a>
</li>
        <li id="section-1-3.3">Non-PSTN calls that do not transit the PSTN at all (such as native SIP end-to-end calls).<a href="#section-1-3.3" class="pilcrow">¶</a>
</li>
      </ol>
<p id="section-1-4">The first two categories represent the  majority of telephone calls associated with problems like illegal robocalling: many robocalls today originate on the Internet but terminate at PSTN endpoints.
   However, the core network elements that operate the PSTN are legacy devices that
   are unlikely to be upgradable at this point to support an in-band authentication system.
   As such, those devices largely cannot be modified to pass signatures originating on the Internet -- or indeed any in-band signaling
   data -- intact.  Even if fields for tunneling arbitrary data can be found in traditional PSTN signaling, in some cases legacy elements would strip the signatures from those fields; in
   others, they might damage them to the point where they cannot be
   verified.  For those first two categories above, any in-band authentication scheme does not
   seem practical in the current environment.<a href="#section-1-4" class="pilcrow">¶</a></p>
<p id="section-1-5">While the core network of the PSTN remains fixed, the endpoints of
   the telephone network are becoming increasingly programmable and
   sophisticated.  Landline "plain old telephone service" deployments,
   especially in the developed world, are shrinking, and increasingly
   being replaced by three classes of intelligent devices:  smart
   phones, IP Private Branch Exchanges (PBXs), and terminal adapters.  All three are general
   purpose computers, and typically all three have Internet access as
   well as access to the PSTN; they may be used for residential, mobile, or enterprise telephone services.
   Additionally, various kinds of gateways increasingly front for
   deployments of legacy PBX and PSTN switches. All of this provides a potential avenue for
   building an authentication system that implements stronger identity while leaving PSTN systems intact.<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6"> This capability also provides an ideal transitional technology while in-band STIR adoption is ramping up. It permits early adopters to use the technology even when intervening network
elements are not yet STIR-aware, and through various kinds of gateways, it may allow providers with a significant PSTN investment to still secure their calls with STIR.<a href="#section-1-6" class="pilcrow">¶</a></p>
<p id="section-1-7">The techniques described in this document therefore build on the
<span><a href="#RFC8225" class="xref">PASSporT</a> [<a href="#RFC8225" class="xref">RFC8225</a>]</span> mechanism and the work of <span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span> to describe a way that
a PASSporT object created in the originating network of a call can reach the terminating network even when it cannot be carried end-to-end in-band in the call signaling. This relies on
a new service defined in this document called a Call Placement Service (CPS) that permits the PASSporT object to be stored during call processing and retrieved for verification purposes.<a href="#section-1-7" class="pilcrow">¶</a></p>
<p id="section-1-8">Potential implementors should note that this document merely defines the operating environments in which this
       out-of-band STIR mechanism is intended to operate.  It provides use cases, gives a broad description of the components, and a potential solution architecture.
Various environments may have their own security requirements: a public deployment of out-of-band STIR faces far greater challenges than a constrained intra-network deployment.
        To flesh out the storage and retrieval of PASSporTs in the CPS within this
        context, this document includes a strawman protocol suitable for that purpose. Deploying this framework in any given environment
        would require additional specification outside the scope of this document.<a href="#section-1-8" class="pilcrow">¶</a></p>
</section>
<section id="section-2">
      <h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
      </h2>
<p id="section-2-1">
    The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
    "<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as
    described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span>
    when, and only when, they appear in all capitals, as shown here.<a href="#section-2-1" class="pilcrow">¶</a></p>
</section>
<section id="section-3">
      <h2 id="name-operating-environments">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-operating-environments" class="section-name selfRef">Operating Environments</a>
      </h2>
<p id="section-3-1">This section describes the environments in which the proposed out-of-band STIR mechanism is intended to operate.  In the simplest setting, Alice
   calls Bob, and her call is routed through some set of gateways and/or the PSTN
   that do not support end-to-end delivery of STIR.  Both Alice
   and Bob have smart devices that can access the Internet (perhaps enterprise devices, or even end-user ones), but they do not have
   a clear telephone signaling connection between them:  Alice cannot inject any data into
   signaling that Bob can read, with the exception of the asserted destination and origination
   E.164 numbers. The calling party number might originate from her own device or from the network.  These numbers are effectively the only data that can be used for coordination between the endpoints.<a href="#section-3-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-3-2">
<pre>
                            +---------+
                           /           \
                       +---             +---+
  +----------+        /                      \        +----------+
  |          |       |        Gateways        |       |          |
  |   Alice  |&lt;-----&gt;|         and/or         |&lt;-----&gt;|    Bob   |
  | (caller) |       |          PSTN          |       | (callee) |
  +----------+        \                      /        +----------+
                       +---             +---+
                           \           /
                            +---------+
</pre><a href="#section-3-2" class="pilcrow">¶</a>
</div>
<p id="section-3-3">In a more complicated setting, Alice and/or Bob may not have a smart or
   programmable device, but instead just a traditional telephone. However, one or both of them are behind a STIR-aware gateway that can participate in out-of-band coordination, as shown below:<a href="#section-3-3" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-3-4">
<pre>
                           +---------+
                          /           \
                      +---             +---+
+----------+  +--+   /                      \   +--+  +----------+
|          |  |  |  |        Gateways        |  |  |  |          |
|   Alice  |&lt;-|GW|-&gt;|         and/or         |&lt;-|GW|-&gt;|    Bob   |
| (caller) |  |  |  |          PSTN          |  |  |  | (callee) |
+----------+  +--+   \                      /   +--+  +----------+
                      +---             +---+
                          \           /
                           +---------+
</pre><a href="#section-3-4" class="pilcrow">¶</a>
</div>
<p id="section-3-5">In such a case, Alice might have an analog (e.g., PSTN) connection to her
   gateway or switch that is responsible for her identity.  Similarly, the gateway
   would verify Alice's identity, generate the right calling party number
   information, and provide that number to Bob using ordinary
   Plain Old Telephone Service (POTS) mechanisms.<a href="#section-3-5" class="pilcrow">¶</a></p>
</section>
<div id="data">
<section id="section-4">
      <h2 id="name-dataflows">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-dataflows" class="section-name selfRef">Dataflows</a>
      </h2>
<p id="section-4-1">Because in these operating environments, endpoints cannot pass cryptographic information to one another directly
  through signaling, any solution must
   involve some rendezvous mechanism to allow endpoints to communicate.
   We call this rendezvous service a Call Placement Service (CPS), a service where a record of call placement,
   in this case a PASSporT, can be stored for future retrieval.  In
   principle, this service could communicate any information, but minimally we
   expect it to include a full-form PASSporT that attests
   the caller, callee, and the time of the call.  The callee can use the
   existence of a PASSporT for a given incoming call as rough validation of
   the asserted origin of that call.  (See <a href="#lookup" class="xref">Section 11</a> for limitations of
   this design.)<a href="#section-4-1" class="pilcrow">¶</a></p>
<p id="section-4-2">This architecture does not mandate that any particular sort
of entity operate a CPS or mandate any means to discover a CPS. A CPS
could be run internally within a network or made publicly available.
One or more CPSes could be run by a carrier, as repositories for PASSporTs
for calls sent to its customers, or a CPS could be built into an enterprise
PBX or even a smartphone. To the degree possible, it is
specified here generically as an idea that may have applicability to a variety of STIR deployments.<a href="#section-4-2" class="pilcrow">¶</a></p>
<p id="section-4-3">There are roughly two plausible dataflow architectures for the CPS:<a href="#section-4-3" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4-4">
        <li id="section-4-4.1">The callee registers with the CPS.  When the caller wishes to
      place a call to the callee, it sends the PASSporT to the CPS, which immediately
      forwards it to the callee.<a href="#section-4-4.1" class="pilcrow">¶</a>
</li>
        <li id="section-4-4.2">The caller stores the PASSporT with the CPS at the time of call
      placement.  When the callee receives the call, it contacts the CPS
      and retrieves the PASSporT.<a href="#section-4-4.2" class="pilcrow">¶</a>
</li>
      </ol>
<p id="section-4-5">While the first architecture is roughly isomorphic to current VoIP
   protocols, it shares their drawbacks.  Specifically, the callee must
   maintain a full-time connection to the CPS to serve as a notification
   channel.  This comes with the usual networking costs to the callee
   and is especially problematic for mobile endpoints. Indeed, if the endpoints had the capabilities
   to implement such an architecture, they could surely just use SIP or some other
   protocol to set up a secure session; even if the media were going through the traditional PSTN, a
   "shadow" SIP session could convey the PASSporT. Thus, we focus
   on the second architecture in which the PSTN incoming call serves as
   the notification channel, and the callee can then contact the CPS to
   retrieve the PASSporT. In specialized environments, for example, a call center that receives a large volume of
   incoming calls that originated in the PSTN, the notification channel approach might be viable.<a href="#section-4-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="uses">
<section id="section-5">
      <h2 id="name-use-cases">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-use-cases" class="section-name selfRef">Use Cases</a>
      </h2>
<p id="section-5-1">The following are the motivating use cases for this mechanism. Bear in mind that,
just as in <span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span>, there may be multiple Identity header fields in a single SIP
INVITE, so there may be multiple PASSporTs in this out-of-band mechanism associated with a single call. For example, a SIP user agent might create a PASSporT for a call with an end-user
credential, and as the call exits the originating administrative domain,
the network authentication service might create its own PASSporT for the same call. As such, these use cases may overlap
in the processing of a single call.<a href="#section-5-1" class="pilcrow">¶</a></p>
<div id="case-ip-pstn">
<section id="section-5.1">
        <h3 id="name-case-1-voip-to-pstn-call">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-case-1-voip-to-pstn-call" class="section-name selfRef">Case 1: VoIP to PSTN Call</a>
        </h3>
<p id="section-5.1-1">A call originates in a SIP environment in a STIR-aware administrative domain. The local authentication service for that administrative domain creates a PASSporT that is carried
in band in the call per <span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span>. The call is routed out of the originating administrative domain and reaches a gateway to the PSTN.
Eventually, the call will terminate on a mobile smartphone that supports this out-of-band mechanism.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<p id="section-5.1-2">In this use case, the originating authentication service
can store the PASSporT with the appropriate CPS (per the practices of
<a href="#cps" class="xref">Section 10</a>) for the target telephone number
as a fallback in case SIP signaling will not reach end-to-end. When
the destination mobile smartphone receives the call over the PSTN, it
consults the CPS and discovers a PASSporT from the originating telephone number waiting for it.
It uses this PASSporT to verify the calling party number.<a href="#section-5.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="case-pstn-pstn-gw">
<section id="section-5.2">
        <h3 id="name-case-2-two-smart-pstn-endpo">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-case-2-two-smart-pstn-endpo" class="section-name selfRef">Case 2: Two Smart PSTN Endpoints</a>
        </h3>
<p id="section-5.2-1">A call originates with an enterprise PBX that has both
Internet access and a built-in gateway to the PSTN, which communicates
through traditional telephone signaling protocols.
The PBX immediately routes the call to the PSTN, but before it does,
it provisions a PASSporT on the CPS associated with the target telephone number.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
<p id="section-5.2-2">After normal PSTN routing, the call lands on a smart mobile handset that supports the STIR out-of-band mechanism. It queries the appropriate CPS over the Internet to determine if a call has been placed to it
by a STIR-aware device. It finds the PASSporT provisioned by the
enterprise PBX and uses it to verify the calling party number.<a href="#section-5.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="case-pstn-ip">
<section id="section-5.3">
        <h3 id="name-case-3-pstn-to-voip-call">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-case-3-pstn-to-voip-call" class="section-name selfRef">Case 3: PSTN to VoIP Call</a>
        </h3>
<p id="section-5.3-1">A call originates with an enterprise PBX that has both
Internet access and a built-in gateway to the PSTN. It will immediately
route the call to the PSTN, but before it does, it provisions
a PASSporT with the CPS associated with the target telephone number.
However, it turns out that the call will eventually route through
the PSTN to an Internet gateway, which will translate this into a SIP
call and deliver it to an administrative domain with a STIR verification service.<a href="#section-5.3-1" class="pilcrow">¶</a></p>
<p id="section-5.3-2">In this case, there are two subcases for how the PASSporT
might be retrieved. In subcase 1, the Internet gateway that receives
the call from the PSTN could query the appropriate CPS to determine
if the original caller created and provisioned a PASSporT for this call. If so,
it can retrieve the PASSporT and, when it creates a SIP INVITE for
this call, add a corresponding Identity header field per
<span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span>. When the SIP INVITE reaches
the destination administrative domain, it will be able to verify the
PASSporT normally. Note that to avoid discrepancies with the Date
header field value, only a full-form PASSporT should be used for this purpose. In
subcase 2, the gateway does not retrieve the PASSporT itself, but
instead the verification service at the destination administrative
domain does so. Subcase 1 would perhaps be valuable for deployments where
the destination administrative domain supports in-band STIR but not out-of-band STIR.<a href="#section-5.3-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="case-gateways">
<section id="section-5.4">
        <h3 id="name-case-4-gateway-out-of-band">
<a href="#section-5.4" class="section-number selfRef">5.4. </a><a href="#name-case-4-gateway-out-of-band" class="section-name selfRef">Case 4: Gateway Out-of-Band</a>
        </h3>
<p id="section-5.4-1">A call originates in the SIP world in a STIR-aware administrative domain.
The local authentication service for that administrative domain creates a PASSporT that is carried
in band in the call per <span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span>. The call is routed
out of the originating administrative domain and eventually reaches a gateway to the PSTN.<a href="#section-5.4-1" class="pilcrow">¶</a></p>
<p id="section-5.4-2">In this case, the originating authentication service does not support the out-of-band mechanism, so instead the gateway to the PSTN extracts the PASSporT from the SIP request and provisions it to the CPS. (When the call reaches the gateway to the PSTN, the gateway might first check the CPS to see if a PASSporT object had already been provisioned for this call, and only provision a PASSporT if none is present).<a href="#section-5.4-2" class="pilcrow">¶</a></p>
<p id="section-5.4-3">Ultimately, the call may terminate on the PSTN or be routed back to a SIP environment. In the former case, perhaps the destination endpoint queries the CPS to retrieve the PASSporT provisioned by the first gateway. If the call ultimately returns to a SIP environment, it might be the gateway from the PSTN back to the Internet that retrieves the PASSporT from the CPS and attaches it to the new SIP INVITE it creates, or it might be the terminating administrative domain's verification service that checks the CPS when an INVITE arrives with no Identity header field. Either way, the PASSporT can survive the gap in SIP coverage caused by the PSTN leg of the call.<a href="#section-5.4-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="case-enterprise">
<section id="section-5.5">
        <h3 id="name-case-5-enterprise-call-cent">
<a href="#section-5.5" class="section-number selfRef">5.5. </a><a href="#name-case-5-enterprise-call-cent" class="section-name selfRef">Case 5: Enterprise Call Center</a>
        </h3>
<p id="section-5.5-1">A call originates from a mobile user, and a STIR authentication service operated by their carrier creates a PASSporT for the call. As the carrier forwards the call via SIP, it attaches the PASSporT to the SIP call with an Identity header field. As a fallback in case the call will not go end-to-end over SIP, the carrier also stores the PASSporT in a CPS.<a href="#section-5.5-1" class="pilcrow">¶</a></p>
<p id="section-5.5-2">The call is then routed over SIP for a time, before it
transitions to the PSTN and ultimately is handled by a legacy PBX at a
high-volume call center. The call center supports the out-of-band service,
and has a high-volume interface to a CPS to retrieve PASSporTs for incoming
calls; agents at the call center use a general purpose computer to manage
inbound calls and can receive STIR notifications through it. When the PASSporT
arrives at the CPS, it is sent through a subscription/notification interface
to a system that can correlate incoming calls with valid PASSporTs. The call
center agent sees that a valid call from the originating number has arrived.<a href="#section-5.5-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="authz">
<section id="section-6">
      <h2 id="name-storing-and-retrieving-pass">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-storing-and-retrieving-pass" class="section-name selfRef">Storing and Retrieving PASSporTs</a>
      </h2>
<p id="section-6-1">The use cases show a variety of entities accessing the CPS to
store and retrieve PASSporTs. The question of how the CPS authorizes the
storage and retrieval of PASSporTs is thus a key design decision in the architecture.
The STIR architecture assumes that service providers and, in some cases,
end-user devices will have credentials suitable for attesting authority
over telephone numbers per <span>[<a href="#RFC8226" class="xref">RFC8226</a>]</span>.
These credentials provide the most obvious way that a CPS can authorize
the storage and retrieval of PASSporTs. However, as use cases 3, 4, and 5
in <a href="#uses" class="xref">Section 5</a> show, it may sometimes make sense
for the entity storing or retrieving PASSporTs to be an intermediary rather
than a device associated with either the originating or terminating side of
a call; those intermediaries often would not have access to STIR
credentials covering the telephone numbers in question. Requiring authorization
based on a credential to store PASSporTs is therefore undesirable, though
potentially acceptable if sufficient steps are taken to mitigate any privacy
risk of leaking data.<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2">It is an explicit design goal of this mechanism to minimize
the potential privacy exposure of using a CPS. Ideally, the out-of-band
 mechanism should not result in a worse privacy situation than in-band
STIR <span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span>: for in-band, we might say
that a SIP entity is authorized to receive a PASSporT if it is an intermediate
or final target of the routing of a SIP request. As the originator of a
call cannot necessarily predict the routing path a call will follow, an
out-of-band mechanism could conceivably even improve on the privacy story.<a href="#section-6-2" class="pilcrow">¶</a></p>
<p id="section-6-3">Broadly, the architecture recommended here thus is one focused
on permitting any entity to store encrypted PASSporTs at the CPS, indexed
under the called number. PASSporTs will be encrypted with a public key
associated with the called number, so these PASSporTs may safely be retrieved
by any entity because only holders of the corresponding private key will be
able to decrypt the PASSporT.  This also prevents the CPS itself from
learning the contents of PASSporTs, and thus metadata about calls in
progress, which makes the CPS a less attractive target for pervasive
monitoring (see <span>[<a href="#RFC7258" class="xref">RFC7258</a>]</span>). As a first
step, transport-level security can provide confidentiality from eavesdroppers
for both the storing and retrieval of PASSporTs. To bolster the privacy story,
to prevent denial-of-service flooding of the CPS, and to complicate traffic
analysis, a few additional mechanisms are also recommended below.<a href="#section-6-3" class="pilcrow">¶</a></p>
<div id="stor">
<section id="section-6.1">
        <h3 id="name-storage">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-storage" class="section-name selfRef">Storage</a>
        </h3>
<p id="section-6.1-1">There are a few dimensions to authorizing the storage of PASSporTs.
Encrypting PASSporTs prior to storage entails that a CPS has no way to tell
if a PASSporT is valid; it simply conveys encrypted blocks that it cannot
access itself and can make no authorization decision based on the PASSporT
contents. There is certainly no prospect for the CPS to verify the PASSporTs itself.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">Note that this architecture requires clients that store PASSporTs
to have access to an encryption key associated with the intended called party
to be used to encrypt the PASSporT. Discovering this key requires the existence
of a key lookup service (see <a href="#lookup" class="xref">Section 11</a>),
depending on how the CPS is architected; however, some kind of key store or
repository could be implemented adjacent to it and perhaps even incorporated
into its operation. Key discovery is made more complicated by the fact that
there can potentially be multiple entities that have
 authority over a telephone number: a carrier, a reseller, an enterprise,
and an end user might all have credentials permitting them to attest that they
are allowed to originate calls from a number, say. PASSporTs for out-of-band use
therefore might need to be encrypted with multiple keys in the hopes that one
will be decipherable by the relying party.<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1-3">Again, the most obvious way to authorize storage is to require
the originator to authenticate themselves to the CPS with their STIR credential.
However, since the call is indexed at the CPS under the called number,
this can weaken the privacy story of the architecture, as it reveals to
the CPS both the identity of the caller and the callee. Moreover, it does not work
for the gateway use cases described above; to support those use cases, we must
effectively allow any entity to store PASSporTs at a CPS. This does not degrade
the anti-impersonation security of STIR, because entities who do not possess
the necessary credentials to sign the PASSporT will not be able to create
PASSporTs that will be treated as valid by verifiers. In this architecture,
it does not matter whether the CPS received a PASSporT from the authentication
service that created it or from an intermediary gateway downstream in the
routing path as in case 4 above. However, if literally anyone can store
PASSporTs in the CPS, an attacker could easily flood the CPS with millions
of bogus PASSporTs indexed under a calling number, and thereby prevent the called
party from finding a valid PASSporT for an incoming call buried in a haystack of fake entries.<a href="#section-6.1-3" class="pilcrow">¶</a></p>
<p id="section-6.1-4">The solution architecture must therefore include some sort of traffic
control system to prevent flooding. Preferably, this should not require
authenticating the source, as this will reveal to the CPS both the source and
destination of traffic. A potential solution is discussed below in <a href="#rate-control" class="xref">Section 7.5</a>.<a href="#section-6.1-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="retr">
<section id="section-6.2">
        <h3 id="name-retrieval">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-retrieval" class="section-name selfRef">Retrieval</a>
        </h3>
<p id="section-6.2-1">For retrieval of PASSporTs, this architecture assumes that clients will
contact the CPS through some sort of polling or notification interface to receive all
 current PASSporTs for calls destined to a particular telephone number, or block of numbers.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<p id="section-6.2-2">As PASSporTs stored at the CPS are encrypted with a key belonging
to the intended destination, the CPS can safely allow anyone to download PASSporTs
for a called number without much fear of compromising private information
about calls in progress -- provided that the CPS always returns at least one
encrypted blob in response to a request, even if there was no call in progress.
Otherwise, entities could poll the CPS constantly, or eavesdrop on traffic,
to learn whether or not calls were in progress. The CPS <span class="bcp14">MUST</span> generate
at least one unique and plausible encrypted response to all retrieval requests,
and these dummy encrypted PASSporTs <span class="bcp14">MUST NOT</span> be repeated for
later calls. An encryption scheme needs to be carefully chosen to make messages
look indistinguishable from random when encrypted, so that information about the
called party is not discoverable from legitimate encrypted PASSporTs.<a href="#section-6.2-2" class="pilcrow">¶</a></p>
<p id="section-6.2-3">Because the entity placing a call may discover multiple keys
associated with the called party number, multiple valid PASSporTs may be
stored in the CPS. A particular called party who retrieves PASSporTs from
the CPS may have access to only one of those keys. Thus, the presence of
one or more PASSporTs that the called party cannot decrypt -- which would
be indistinguishable from the "dummy" PASSporTs created by the CPS when
no calls are in progress - does not entail that there is no call in progress.
A retriever likely will need to decrypt all PASSporTs retrieved from the CPS,
and may find only one that is valid.<a href="#section-6.2-3" class="pilcrow">¶</a></p>
<p id="section-6.2-4">In order to prevent the CPS from learning the numbers that a callee
controls, callees might also request PASSporTs for numbers that they do not own,
that they have no hope of decrypting. Implementations could even allow a callee
to request PASSporTs for a range or prefix of numbers: a trade-off where that
callee is willing to sift through bulk quantities of undecryptable PASSporTs
for the sake of hiding from the CPS which numbers it controls.<a href="#section-6.2-4" class="pilcrow">¶</a></p>
<p id="section-6.2-5">Note that in out-of-band call forwarding cases, special behavior is
required to manage the relationship between PASSporTs using the diversion
extension <span>[<a href="#I-D.ietf-stir-passport-divert" class="xref">PASSPORT-DIVERT</a>]</span>.
The originating authentication service encrypts the initial PASSporT with the
public encryption key of the intended destination, but once a call is forwarded,
it may go to a destination that does not possess the corresponding private key
and thus could not decrypt the original PASSporT. This requires the retargeting
entity to generate encrypted PASSporTs that show a secure chain of diversion:
a retargeting storer <span class="bcp14">SHOULD</span> use the "div-o" PASSporT type,
with its "opt" extension, as specified in
<span>[<a href="#I-D.ietf-stir-passport-divert" class="xref">PASSPORT-DIVERT</a>]</span>, in order to nest
the original PASSporT within the encrypted diversion PASSporT.<a href="#section-6.2-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="arch">
<section id="section-7">
      <h2 id="name-solution-architecture">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-solution-architecture" class="section-name selfRef">Solution Architecture</a>
      </h2>
<p id="section-7-1">In this section, we discuss a high-level architecture for providing the service
   described in the previous sections.  This discussion is deliberately
   sketchy, focusing on broad concepts and skipping over details.  The
   intent here is merely to provide an overall architecture, not an implementable
   specification. A more concrete example of how this might be specified is given in <a href="#web" class="xref">Section 9</a>.<a href="#section-7-1" class="pilcrow">¶</a></p>
<div id="phone">
<section id="section-7.1">
        <h3 id="name-credentials-and-phone-numbe">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-credentials-and-phone-numbe" class="section-name selfRef">Credentials and Phone Numbers</a>
        </h3>
<p id="section-7.1-1">We start from the premise of the
   <span><a href="#RFC7340" class="xref">STIR problem statement</a> [<a href="#RFC7340" class="xref">RFC7340</a>]</span> that phone numbers can be
   associated with credentials that can be used to attest
   ownership of numbers.  For purposes of exposition, we will assume
   that ownership is associated with the endpoint (e.g., a smartphone),
   but it might well be associated with a provider or gateway acting for the
   endpoint instead.  It might be the case that multiple entities are
   able to act for a given number, provided that they have the
   appropriate authority. <span>[<a href="#RFC8226" class="xref">RFC8226</a>]</span> describes
   a credential system suitable for this purpose; the question of how an entity is determined
   to have control of a given number is out of scope for this document.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="solve">
<section id="section-7.2">
        <h3 id="name-call-flow">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-call-flow" class="section-name selfRef">Call Flow</a>
        </h3>
<p id="section-7.2-1">An overview of the basic calling and verification process is shown
   below.  In this diagram, we assume that Alice has the number
   +1.111.555.1111 and Bob has the number +2.222.555.2222.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-7.2-2">
<pre>
Alice                    Call Placement Service                  Bob
--------------------------------------------------------------------

Store Encrypted PASSporT for 2.222.555.2222 -&gt;

Call from 1.111.555.1111 ------------------------------------------&gt;


                                 &lt;-------------- Request PASSporT(s)
                                  for 2.222.555.2222

                                 Obtain Encrypted PASSporT --------&gt;
                                    (2.222.555.2222, 1.111.555.1111)

                                  [Ring phone with verified callerid
                                                   = 1.111.555.1111]
</pre><a href="#section-7.2-2" class="pilcrow">¶</a>
</div>
<p id="section-7.2-3">When Alice wishes to make a call to Bob, she contacts the CPS and
   stores an encrypted PASSporT on
   the CPS indexed under Bob's number. The CPS then awaits retrievals for
   that number.<a href="#section-7.2-3" class="pilcrow">¶</a></p>
<p id="section-7.2-4">When Alice places the call, Bob's phone would usually ring and display
   Alice's number (+1.111.555.1111), which is informed by the existing
   PSTN mechanisms for relaying a calling party number (e.g., the
   Calling Party's Number (CIN) field of
   the Initial Address Message (IAM)).  Instead,
   Bob's phone transparently contacts the CPS and requests any current
   PASSporTs for calls to his number.  The CPS responds with any such PASSporTs
   (or dummy PASSporTs if no relevant ones are currently stored).
If such a PASSporT exists, and the verification service in Bob's phone decrypts it using
   his private key, validates it, then
   Bob's phone can present the calling party number
   information as valid.  Otherwise, the call is unverifiable.  Note
   that this does not necessarily mean that the call is bogus; because
   we expect incremental deployment, many legitimate calls will be
   unverifiable.<a href="#section-7.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec">
<section id="section-7.3">
        <h3 id="name-security-analysis">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-security-analysis" class="section-name selfRef">Security Analysis</a>
        </h3>
<p id="section-7.3-1">The primary attack we seek to prevent is an attacker convincing the
   callee that a given call is from some other caller C. There are two
   scenarios to be concerned with:<a href="#section-7.3-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-7.3-2">
          <li id="section-7.3-2.1">The attacker wishes to impersonate a target when no call from that
         target is in progress.<a href="#section-7.3-2.1" class="pilcrow">¶</a>
</li>
          <li id="section-7.3-2.2">The attacker wishes to substitute himself for an existing call setup.<a href="#section-7.3-2.2" class="pilcrow">¶</a>
</li>
        </ol>
<p id="section-7.3-3">If an attacker can inject fake PASSporTs into the CPS or in the
   communication from the CPS to the callee, he can mount either attack.
   As PASSporTs should be
   digitally signed by an appropriate authority for the number and verified by the callee
   (see <a href="#phone" class="xref">Section 7.1</a>), this should not arise in ordinary operations.
   Any attacker who is aware of calls in progress can attempt to mount a race to substitute themselves
   as described in <a href="#sub" class="xref">Section 7.4</a>. For privacy and robustness reasons,
   using <span><a href="#RFC8446" class="xref">TLS</a> [<a href="#RFC8446" class="xref">RFC8446</a>]</span> on the originating
   side when storing the PASSporT at the CPS is <span class="bcp14">RECOMMENDED</span>.<a href="#section-7.3-3" class="pilcrow">¶</a></p>
<p id="section-7.3-4">The entire system depends on the security of the credential
   infrastructure.  If the authentication credentials for a given number
   are compromised, then an attacker can impersonate calls from that
   number. However, that is no different from in-band STIR <span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span>.<a href="#section-7.3-4" class="pilcrow">¶</a></p>
<p id="section-7.3-5">A secondary attack we must also prevent is denial-of-service against the CPS, which requires some form of rate control solution that will not degrade the privacy properties of the architecture.<a href="#section-7.3-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sub">
<section id="section-7.4">
        <h3 id="name-substitution-attacks">
<a href="#section-7.4" class="section-number selfRef">7.4. </a><a href="#name-substitution-attacks" class="section-name selfRef">Substitution Attacks</a>
        </h3>
<p id="section-7.4-1">All that the receipt of the PASSporT from the CPS proves to the called party
   is that Alice is trying to call
   Bob (or at least was as of very recently) -- it does not prove that
   any particular incoming call is from Alice.  Consider the scenario
   in which we have a service that provides an automatic callback to a
   user-provided number.  In that case, the attacker can try to arrange for a
   false caller-id value, as shown below:<a href="#section-7.4-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-7.4-2">
<pre>
 Attacker            Callback Service           CPS               Bob
 --------------------------------------------------------------------
 Place call to Bob ----------&gt;
  (from 111.555.1111)
                             Store PASSporT for
                             CS:Bob -------------&gt;

 Call from Attacker (forged CS caller-id info)  --------------------&gt;

                             Call from CS ------------------------&gt; X


                                                &lt;-- Retrieve PASSporT
                                                           for CS:Bob

                        PASSporT for CS:Bob ------------------------&gt;

                                         [Ring phone with callerid =
                                            111.555.1111]
</pre><a href="#section-7.4-2" class="pilcrow">¶</a>
</div>
<p id="section-7.4-3">In order to mount this attack, the attacker contacts the Callback
   Service (CS) and provides it with Bob's number.  This causes the CS
   to initiate a call to Bob. As before, the CS contacts the CPS to
   insert an appropriate PASSporT and then initiates a call to Bob. Because
   it is a valid CS injecting the PASSporT, none of the security checks
   mentioned above help.  However, the attacker simultaneously initiates
   a call to Bob using forged caller-id information corresponding to the
   CS.  If he wins the race with the CS, then Bob's phone will attempt
   to verify the attacker's call (and succeed since they are
   indistinguishable), and the CS's call will go to busy/voice mail/call
   waiting.<a href="#section-7.4-3" class="pilcrow">¶</a></p>
<p id="section-7.4-4">
   In order to prevent a passive attacker from using traffic analysis or
   similar means to learn precisely when a call is placed, it is essential
   that the connection between the caller and the CPS be encrypted as recommended above.
   Authentication services could store dummy PASSporTs at the CPS at random intervals in order
   to make it more difficult for an eavesdropper to use traffic analysis to determine
   that a call was about to be placed.<a href="#section-7.4-4" class="pilcrow">¶</a></p>
<p id="section-7.4-5">
   Note that in a SIP environment, the callee might notice that
   there were multiple INVITEs and thus detect this attack, but in some PSTN
   interworking scenarios, or highly intermediated networks, only one call setup
   attempt will reach the target. Also note that the success of this substitution
   attack depends on the attacker landing their call within the narrow window
   that the PASSporT is retained in the CPS, so
   shortening that window will reduce the
   opportunity for the attack. Finally, smart endpoints could implement some sort of
   state coordination to ensure that both sides believe the call is in progress, though
   methods of supporting that are outside the scope of this document.<a href="#section-7.4-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="rate-control">
<section id="section-7.5">
        <h3 id="name-rate-control-for-cps-storag">
<a href="#section-7.5" class="section-number selfRef">7.5. </a><a href="#name-rate-control-for-cps-storag" class="section-name selfRef">Rate Control for CPS Storage</a>
        </h3>
<p id="section-7.5-1">In order to prevent the flooding of a CPS with bogus PASSporTs,
we propose the use of "blind signatures" (see <span>[<a href="#RFC5636" class="xref">RFC5636</a>]</span>).
A sender will initially authenticate to the CPS using its STIR credentials
and acquire a signed token from the CPS that will be presented later
when storing a PASSporT. The flow looks as follows:<a href="#section-7.5-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-7.5-2">
<pre>
    Sender                                 CPS

    Authenticate to CPS ---------------------&gt;
    Blinded(K_temp) -------------------------&gt;
    &lt;------------- Sign(K_cps, Blinded(K_temp))
    [Disconnect]


    Sign(K_cps, K_temp)
    Sign(K_temp, E(K_receiver, PASSporT)) ---&gt;
</pre><a href="#section-7.5-2" class="pilcrow">¶</a>
</div>
<p id="section-7.5-3">At an initial time when no call is yet in progress, a potential client connects to the CPS, authenticates,
and sends a blinded version of a freshly generated public key. The
CPS returns a signed version of that blinded key. The sender can
then unblind the key and get a signature on K_temp from the CPS.<a href="#section-7.5-3" class="pilcrow">¶</a></p>
<p id="section-7.5-4">
Then later, when a client wants to store a PASSporT, it connects
to the CPS anonymously (preferably over a network connection that cannot be correlated with the token acquisition) and
sends both the signed K_temp and its own signature over the
encrypted PASSporT. The CPS verifies both signatures and, if they
verify, stores the encrypted passport (discarding the signatures).<a href="#section-7.5-4" class="pilcrow">¶</a></p>
<p id="section-7.5-5">
This design lets the CPS rate limit how many PASSporTs a given
sender can store just by counting how many times K_temp appears;
perhaps CPS policy might reject storage attempts and require acquisition
of a new K_temp after storing more than a certain number of PASSporTs
indexed under the same destination number in a short interval.
This does not, of course, allow the CPS to tell when bogus data
is being provisioned by an attacker,
simply the rate at which data is being provisioned. Potentially,
feedback mechanisms could be developed that would allow the called
parties to tell the CPS when they are receiving unusual or bogus
PASSporTs.<a href="#section-7.5-5" class="pilcrow">¶</a></p>
<p id="section-7.5-6">
This architecture also assumes that the CPS will age out PASSporTs.
A CPS <span class="bcp14">SHOULD NOT</span> keep any stored PASSporT for longer
than the recommended freshness
policy for the "iat" value as described in
<span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span> (i.e., sixty seconds)
unless some local policy for a CPS deployment requires a longer or shorter interval.
Any reduction in this window makes substitution attacks
(see <a href="#sub" class="xref">Section 7.4</a>) harder to mount,
but making the window too small might conceivably age PASSporTs out
while a heavily redirected call is still alerting.<a href="#section-7.5-6" class="pilcrow">¶</a></p>
<p id="section-7.5-7">
An alternative potential approach to blind signatures would be
the use of verifiable oblivious pseudorandom functions (VOPRFs, per
<span>[<a href="#I-D.privacy-pass" class="xref">PRIVACY-PASS</a>]</span>), which may prove faster.<a href="#section-7.5-7" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="u8224">
<section id="section-8">
      <h2 id="name-authentication-and-verifica">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-authentication-and-verifica" class="section-name selfRef">Authentication and Verification Service Behavior for Out-of-Band</a>
      </h2>
<p id="section-8-1">
<span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span> defines an authentication service and a verification service as functions that act in the context of SIP requests and responses. This specification thus provides a more generic description of authentication service and verification service behavior that might or might not involve any SIP transactions, but depends only on placing a request for communications from
an originating identity to one or more destination identities.<a href="#section-8-1" class="pilcrow">¶</a></p>
<div id="as">
<section id="section-8.1">
        <h3 id="name-authentication-service-as">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-authentication-service-as" class="section-name selfRef">Authentication Service (AS)</a>
        </h3>
<p id="section-8.1-1">
Out-of-band authentication services perform steps similar to those defined in <span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span> with some exceptions:<a href="#section-8.1-1" class="pilcrow">¶</a></p>
<p id="section-8.1-2">
Step 1: The authentication service <span class="bcp14">MUST</span> determine whether it is
    authoritative for the identity of the originator of the request, that is, the identity it will populate in the "orig" claim of the PASSporT.
It can do so only if it possesses the private key of one or more credentials that can be used
    to sign for that identity, be it a domain or a telephone number or some other identifier. For example, the authentication service could hold the private key associated with a <span><a href="#RFC8225" class="xref">STIR certificate</a> [<a href="#RFC8225" class="xref">RFC8225</a>]</span>.<a href="#section-8.1-2" class="pilcrow">¶</a></p>
<p id="section-8.1-3">
Step 2: The authentication service <span class="bcp14">MUST</span> determine that the
originator of communications can claim the originating identity. This is a policy
decision made by the authentication service that depends on its relationship to
the originator. For an out-of-band application built into the
calling device, for example, this is the same check performed in Step 1: does the
calling device hold a private key, one corresponding to a STIR certificate,
that can sign for the originating identity?<a href="#section-8.1-3" class="pilcrow">¶</a></p>
<div id="as-step3">
<p id="section-8.1-4">
Step 3: The authentication service <span class="bcp14">MUST</span> acquire the public encryption key
of the destination, which will be used to encrypt the PASSporT (see <a href="#lookup" class="xref">Section 11</a>).
It <span class="bcp14">MUST</span> also discover (see <a href="#cps" class="xref">Section 10</a>)
the CPS associated with the destination. The authentication service
may already have the encryption key and destination CPS cached, or may need
to query a service to acquire the key. Note that per <a href="#rate-control" class="xref">Section 7.5</a>,
the authentication service may also need to acquire a token for PASSporT
storage from the CPS upon CPS discovery. It is anticipated that the discovery mechanism
(see <a href="#cps" class="xref">Section 10</a>) used to find the appropriate
CPS will also find the proper key server for the public key of the destination.
In some cases, a destination may have multiple public encryption keys associated with it.
In that case, the authentication service <span class="bcp14">MUST</span> collect all of those keys.<a href="#section-8.1-4" class="pilcrow">¶</a></p>
</div>
<p id="section-8.1-5">
Step 4: The authentication service <span class="bcp14">MUST</span> create the PASSporT object. This includes acquiring the system time to populate the "iat" claim, and populating the "orig" and "dest" claims as
described in <span>[<a href="#RFC8225" class="xref">RFC8225</a>]</span>. The authentication service <span class="bcp14">MUST</span> then encrypt the PASSporT. If in Step 3 the authentication service discovered multiple public keys for the destination, it
        <span class="bcp14">MUST</span> create one encrypted copy for each public key it discovered.<a href="#section-8.1-5" class="pilcrow">¶</a></p>
<p id="section-8.1-6">
Finally, the authentication service stores the encrypted PASSporT(s) at the CPS
discovered in Step 3. Only after that is completed should any call be initiated.
Note that a call might be initiated over SIP, and the authentication
service would place the same PASSporT in the Identity header field value of the SIP request --
though SIP would carry a cleartext version rather than an encrypted version
sent to the CPS. In that case, out-of-band would serve as a fallback mechanism
if the request was not conveyed over SIP end-to-end. Also, note that the
authentication service <span class="bcp14">MAY</span> use a compact form of the PASSporT
for a SIP request, whereas the version stored at the CPS <span class="bcp14">MUST</span>
always be a full-form PASSporT.<a href="#section-8.1-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="vs">
<section id="section-8.2">
        <h3 id="name-verification-service-vs">
<a href="#section-8.2" class="section-number selfRef">8.2. </a><a href="#name-verification-service-vs" class="section-name selfRef">Verification Service (VS)</a>
        </h3>
<p id="section-8.2-1">
When a call arrives, an out-of-band verification service performs steps similar to those defined in <span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span> with some exceptions:<a href="#section-8.2-1" class="pilcrow">¶</a></p>
<div id="vs-step1">
<p id="section-8.2-2">
Step 1: The verification service contacts the CPS and requests all current PASSporTs for its destination number; or alternatively it may receive PASSporTs through a push interface from the CPS in some deployments. The verification service <span class="bcp14">MUST</span> then decrypt all PASSporTs using its private key. Some PASSporTs may not be decryptable for any number of reasons: they may be intended for a different verification service, or they may be "dummy" values inserted by the CPS for privacy purposes. The next few steps will narrow down the set of PASSporTs that the verification service will examine from that initial decryptable set.<a href="#section-8.2-2" class="pilcrow">¶</a></p>
</div>
<p id="section-8.2-3">
Step 2: The verification service <span class="bcp14">MUST</span> determine if any "ppt" extensions in the PASSporTs are unsupported. It takes only the set of supported PASSporTs and applies the next step to them.<a href="#section-8.2-3" class="pilcrow">¶</a></p>
<p id="section-8.2-4">
Step 3: The verification service <span class="bcp14">MUST</span> determine if there is an overlap between the calling party number presented in call signaling and the "orig" field of any decrypted PASSporTs. It takes the set of matching PASSporTs and applies the next step to them.<a href="#section-8.2-4" class="pilcrow">¶</a></p>
<p id="section-8.2-5">
Step 4: The verification service <span class="bcp14">MUST</span> determine if the credentials that signed each PASSporT are valid, and if the verification service trusts the CA that issued the credentials. It takes the set
of trusted PASSporTs to the next step.<a href="#section-8.2-5" class="pilcrow">¶</a></p>
<p id="section-8.2-6">
Step 5: The verification service <span class="bcp14">MUST</span> check the freshness of the "iat" claim of each PASSporT. The exact interval of time that determines freshness is left to local policy. It takes the set of fresh PASSporTs to the next step.<a href="#section-8.2-6" class="pilcrow">¶</a></p>
<p id="section-8.2-7">
Step 6: The verification service <span class="bcp14">MUST</span> check the validity of the signature over each PASSporT, as described in <span>[<a href="#RFC8225" class="xref">RFC8225</a>]</span>.<a href="#section-8.2-7" class="pilcrow">¶</a></p>
<p id="section-8.2-8">
Finally, the verification service will end up with one or more valid PASSporTs corresponding to the call it has received. In keeping with baseline STIR, this document does not dictate any particular treatment of calls that have valid PASSporTs associated with them; the handling of the call
   after the verification process depends on how the verification
   service is implemented and on local policy. However, it is anticipated that local policies could involve
   making different forwarding decisions in intermediary
   implementations, or changing how the user is alerted or how identity
   is rendered in user agent implementations.<a href="#section-8.2-8" class="pilcrow">¶</a></p>
</section>
</div>
<div id="hybrid">
<section id="section-8.3">
        <h3 id="name-gateway-placement-services">
<a href="#section-8.3" class="section-number selfRef">8.3. </a><a href="#name-gateway-placement-services" class="section-name selfRef">Gateway Placement Services</a>
        </h3>
<p id="section-8.3-1">
The STIR out-of-band mechanism also supports the presence of gateway placement services, which do not create PASSporTs themselves, but instead take PASSporTs out of signaling protocols and store them at a CPS before gatewaying to a protocol that cannot carry PASSporTs itself. For example, a SIP gateway that sends calls to the PSTN could receive a call with an Identity header field, extract a PASSporT from the Identity header field, and store that PASSporT at a CPS.<a href="#section-8.3-1" class="pilcrow">¶</a></p>
<p id="section-8.3-2">
To place a PASSporT at a CPS, a gateway <span class="bcp14">MUST</span> perform
<a href="#as-step3" class="xref">Step 3</a> of <a href="#as" class="xref">Section 8.1</a> above:
that is, it must discover the CPS and public key associated with the
destination of the call, and may need to acquire a PASSporT storage token
(see <a href="#stor" class="xref">Section 6.1</a>). Per <a href="#as-step3" class="xref">Step 3</a>
of <a href="#as" class="xref">Section 8.1</a>, this may entail discovering several keys.
The gateway then collects the in-band PASSporT(s) from the in-band signaling,
encrypts the PASSporT(s), and stores them at the CPS.<a href="#section-8.3-2" class="pilcrow">¶</a></p>
<p id="section-8.3-3">
A similar service could be performed by a gateway that retrieves PASSporTs from a CPS and inserts them into signaling protocols that support carrying PASSporTs in-band. This behavior may be defined by future specifications.<a href="#section-8.3-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="web">
<section id="section-9">
      <h2 id="name-example-https-interface-to-">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-example-https-interface-to-" class="section-name selfRef">Example HTTPS Interface to the CPS</a>
      </h2>
<p id="section-9-1">
As a rough example, we show a CPS implementation here that uses a
Representational State Transfer (REST) API <span>[<a href="#REST" class="xref">REST</a>]</span> to store and retrieve objects at the CPS.
The calling party stores the PASSporT at the CPS prior to initiating the call; the
PASSporT is stored at a location at the CPS that corresponds to the called number.
Note that it is possible for multiple parties to be calling a number at the same time, and that for called
numbers such as large call centers, many PASSporTs could legitimately be stored
simultaneously, and it might prove difficult to correlate these with incoming calls.<a href="#section-9-1" class="pilcrow">¶</a></p>
<p id="section-9-2">
Assume that an authentication service has created the following PASSporT for a call to the telephone number 2.222.555.2222 (note that these are dummy values):<a href="#section-9-2" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-9-3">
<pre>
   eyJhbGciOiJFUzI1NiIsInR5cCI6InBhc3Nwb3J0IiwieDV1IjoiaHR0cHM6Ly9
   jZXJ0LmV4YW1wbGUub3JnL3Bhc3Nwb3J0LmNlciJ9.eyJkZXN0Ijp7InRuIjpbI
   jIyMjI1NTUyMjIyIl19LCJpYXQiOiIxNTgzMjUxODEwIiwib3JpZyI6eyJ0biI6
   IjExMTE1NTUxMTExIn19.pnij4IlLHoR4vxID0u3CT1e9Hq4xLngZUTv45Vbxmd
   3IVyZug4KOSa378yfP4x6twY0KTdiDypsereS438ZHaQ
</pre><a href="#section-9-3" class="pilcrow">¶</a>
</div>
<p id="section-9-4">
Through some discovery mechanism (see <a href="#cps" class="xref">Section 10</a>), the authentication service discovers the network location of a web service that acts as the CPS for 2.222.555.2222. Through the same mechanism, we will say that it has also discovered one public encryption key for that destination. It uses that encryption key to encrypt the PASSporT, resulting in the encrypted PASSporT:<a href="#section-9-4" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-9-5">
<pre>
   rlWuoTpvBvWSHmV1AvVfVaE5pPV6VaOup3Ajo3W0VvjvrQI1VwbvnUE0pUZ6Yl9w
   MKW0YzI4LJ1joTHho3WaY3Oup3Ajo3W0YzAypvW9rlWxMKA0Vwc7VaIlnFV6JlWm
   nKN6LJkcL2INMKuuoKOfMF5wo20vKK0fVzyuqPV6VwR0AQZlZQtmAQHvYPWipzyaV
   wc7VaEhVwbvZGVkAGH1AGRlZGVvsK0ed3cwG1ubEjnxRTwUPaJFjHafuq0-mW6S1
   IBtSJFwUOe8Dwcwyx-pcSLcSLfbwAPcGmB3DsCBypxTnF6uRpx7j
</pre><a href="#section-9-5" class="pilcrow">¶</a>
</div>
<p id="section-9-6">
Having concluded the numbered steps in <a href="#as" class="xref">Section 8.1</a>, including acquiring any token (per <a href="#stor" class="xref">Section 6.1</a>) needed to store the PASSporT at the CPS, the authentication service then stores the encrypted PASSporT:<a href="#section-9-6" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-9-7">
<pre>
   POST /cps/2.222.555.2222/ppts HTTP/1.1
   Host: cps.example.com
   Content-Type: application/passport

   rlWuoTpvBvWSHmV1AvVfVaE5pPV6VaOup3Ajo3W0VvjvrQI1VwbvnUE0pUZ6Yl9w
   MKW0YzI4LJ1joTHho3WaY3Oup3Ajo3W0YzAypvW9rlWxMKA0Vwc7VaIlnFV6JlWm
   nKN6LJkcL2INMKuuoKOfMF5wo20vKK0fVzyuqPV6VwR0AQZlZQtmAQHvYPWipzyaV
   wc7VaEhVwbvZGVkAGH1AGRlZGVvsK0ed3cwG1ubEjnxRTwUPaJFjHafuq0-mW6S1
   IBtSJFwUOe8Dwcwyx-pcSLcSLfbwAPcGmB3DsCBypxTnF6uRpx7j
</pre><a href="#section-9-7" class="pilcrow">¶</a>
</div>
<p id="section-9-8">
The web service assigns a new location for this encrypted PASSporT in the collection, returning a 201 OK with the location of /cps/2.222.222.2222/ppts/ppt1.
Now the authentication service can place the call, which may be signaled by various protocols. Once the call arrives at the terminating side, a verification service
contacts its CPS to ask for the set of incoming calls for its telephone number (2.222.222.2222).<a href="#section-9-8" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-9-9">
<pre>
   GET /cps/2.222.555.2222/ppts
   Host: cps.example.com
</pre><a href="#section-9-9" class="pilcrow">¶</a>
</div>
<p id="section-9-10">
 This returns to the verification service a list of the PASSporTs currently in the collection, which currently consists of only /cps/2.222.222.2222/ppts/ppt1. The verification
 service then sends a new GET for /cps/2.222.555.2222/ppts/ppt1/ which yields:<a href="#section-9-10" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-9-11">
<pre>
   HTTP/1.1 200 OK
   Content-Type: application/passport
   Link: &lt;https://cps.example.com/cps/2.222.555.2222/ppts&gt;

   rlWuoTpvBvWSHmV1AvVfVaE5pPV6VaOup3Ajo3W0VvjvrQI1VwbvnUE0pUZ6Yl9w
   MKW0YzI4LJ1joTHho3WaY3Oup3Ajo3W0YzAypvW9rlWxMKA0Vwc7VaIlnFV6JlWm
   nKN6LJkcL2INMKuuoKOfMF5wo20vKK0fVzyuqPV6VwR0AQZlZQtmAQHvYPWipzyaV
   wc7VaEhVwbvZGVkAGH1AGRlZGVvsK0ed3cwG1ubEjnxRTwUPaJFjHafuq0-mW6S1
   IBtSJFwUOe8Dwcwyx-pcSLcSLfbwAPcGmB3DsCBypxTnF6uRpx7j
</pre><a href="#section-9-11" class="pilcrow">¶</a>
</div>
<p id="section-9-12">
 That concludes <a href="#vs-step1" class="xref">Step 1</a> of <a href="#vs" class="xref">Section 8.2</a>; the verification service then goes on to the next step, processing that PASSporT through its various checks. A complete protocol description for CPS interactions is left to future work.<a href="#section-9-12" class="pilcrow">¶</a></p>
</section>
</div>
<div id="cps">
<section id="section-10">
      <h2 id="name-cps-discovery">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-cps-discovery" class="section-name selfRef">CPS Discovery</a>
      </h2>
<p id="section-10-1">
In order for the two ends of the out-of-band dataflow to coordinate, they must agree on a way to discover a CPS and retrieve PASSporT objects from it
based solely on the rendezvous information available: the calling party number and the called number. Because the storage of PASSporTs in this architecture is indexed
by the called party number, it makes sense to discover a CPS based on the called party number as well.
There are a number of potential service discovery mechanisms that could be used for
this purpose. The means of service discovery may vary by use case.<a href="#section-10-1" class="pilcrow">¶</a></p>
<p id="section-10-2">
 Although the discussion above is written largely in terms of a single CPS, having a significant fraction of all telephone calls result in storing and retrieving PASSporTs at a single monolithic CPS
    has obvious scaling problems, and would as well allow the CPS to
    gather metadata about a very wide set of callers and callees.  These issues can be alleviated by operational models with a
   federated CPS; any service discovery mechanism for out-of-band STIR
should enable federation of the CPS function. Likely models include ones
   where a carrier operates one or more CPS instances on behalf of its customers,
an enterprise runs a CPS instance on behalf of its PBX users, or a third-party service provider
offers a CPS as a cloud service.<a href="#section-10-2" class="pilcrow">¶</a></p>
<p id="section-10-3">
   Some service discovery possibilities under consideration include the following:<a href="#section-10-3" class="pilcrow">¶</a></p>
<ul class="ulEmpty normal">
<li class="ulEmpty normal" id="section-10-4.1">
   For some deployments in closed (e.g., intra-network) environments, the CPS location can simply
   be provisioned in implementations, obviating the need for a discovery protocol.<a href="#section-10-4.1" class="pilcrow">¶</a>
</li>
        <li class="ulEmpty normal" id="section-10-4.2">
   If a credential lookup service is already available (see <a href="#lookup" class="xref">Section 11</a>),
   the CPS location can also be recorded in the callee's credentials;
an extension to <span>[<a href="#RFC8226" class="xref">RFC8226</a>]</span> could, for example,
provide a link to the location of the CPS
   where PASSporTs should be stored for a destination.<a href="#section-10-4.2" class="pilcrow">¶</a>
</li>
        <li class="ulEmpty normal" id="section-10-4.3">
There exist a number of common directory systems that might be used to translate
telephone numbers into the URIs of a CPS.
<span><a href="#RFC6116" class="xref">ENUM</a> [<a href="#RFC6116" class="xref">RFC6116</a>]</span> is commonly implemented,
though no "golden root" central ENUM administration exists that could be easily
reused today to help the endpoints discover a common CPS. Other protocols associated
with queries for telephone numbers, such as the
<span><a href="#I-D.ietf-modern-teri" class="xref">Telephone-Related Information (TeRI) protocol</a> [<a href="#I-D.ietf-modern-teri" class="xref">MODERN-TERI</a>]</span>,
could also serve for this application.<a href="#section-10-4.3" class="pilcrow">¶</a>
</li>
        <li class="ulEmpty normal" id="section-10-4.4">
Another possibility is to use a single distributed service for this function.
<span><a href="#I-D.jennings-vipr-overview" class="xref">Verification Involving PSTN Reachability (VIPR)</a> [<a href="#I-D.jennings-vipr-overview" class="xref">VIPR-OVERVIEW</a>]</span> proposed a
<span><a href="#RFC6940" class="xref">REsource LOcation And Discovery (RELOAD)</a> [<a href="#RFC6940" class="xref">RFC6940</a>]</span> usage for telephone numbers to help direct calls to enterprises on the Internet. It would be possible to describe a similar RELOAD usage
to identify the CPS where calls for a particular telephone number should be stored.
One advantage that the STIR architecture has over VIPR is that it assumes a credential system
that proves authority over telephone numbers; those credentials could be used to determine
whether or not a CPS could legitimately claim to be the proper store for a given telephone
number.<a href="#section-10-4.4" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-10-5">
This document does not prescribe any single way to do service discovery for a CPS;
it is envisioned that initial deployments will provision the location of the CPS
at the authentication service and verification service.<a href="#section-10-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="lookup">
<section id="section-11">
      <h2 id="name-encryption-key-lookup">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-encryption-key-lookup" class="section-name selfRef">Encryption Key Lookup</a>
      </h2>
<p id="section-11-1">
   In order to encrypt a PASSporT (see <a href="#stor" class="xref">Section 6.1</a>), the caller needs access to the callee's
   public encryption key. Note that because STIR uses the Elliptic Curve Digital Signature Algorithm (ECDSA)
   for signing PASSporTs, the public key used to
   verify PASSporTs is not suitable for this function, and thus the encryption key
   must be discovered separately. This requires some sort
   of directory/lookup system.<a href="#section-11-1" class="pilcrow">¶</a></p>
<p id="section-11-2">
   Some initial STIR deployments have fielded certificate repositories so that verification services
can acquire the signing credentials for PASSporTs, which are linked through a URI in the "x5u" element of the PASSporT.
These certificate repositories could clearly be repurposed for allowing authentication services to download
the public encryption key for the called party -- provided they can be discovered by calling parties.
   This document does not specify any
   particular discovery scheme, but instead offers some general guidance about potential approaches.<a href="#section-11-2" class="pilcrow">¶</a></p>
<p id="section-11-3">
   It is a desirable property that the public encryption key for a given party
be linked to their STIR credential. An <span><a href="#RFC7748" class="xref">Elliptic Curve Diffie-Hellman (ECDH)</a> [<a href="#RFC7748" class="xref">RFC7748</a>]</span>
public-private key pair might be generated for a
<span><a href="#I-D.ietf-tls-subcerts" class="xref">subcert</a> [<a href="#I-D.ietf-tls-subcerts" class="xref">TLS-SUBCERTS</a>]</span> of the STIR credential.
That subcert could be looked up along with the STIR credential of the called party.
Further details of this subcert, and the exact lookup mechanism involved, are deferred for future protocol work.<a href="#section-11-3" class="pilcrow">¶</a></p>
<p id="section-11-4">
   Obviously, if there is a single central database that the caller and
   callee each access in real time to download the other's
   keys, then this represents a real privacy risk, as the central
   key database learns about each call.  A number of mechanisms are
   potentially available to mitigate this:<a href="#section-11-4" class="pilcrow">¶</a></p>
<ul class="ulEmpty normal">
<li class="ulEmpty normal" id="section-11-5.1">
 Have endpoints pre-fetch keys for potential counterparties
      (e.g., their address book or the entire database).<a href="#section-11-5.1" class="pilcrow">¶</a>
</li>
        <li class="ulEmpty normal" id="section-11-5.2">
  Have caching servers in the user's network that proxy their
      fetches and thus conceal the relationship between the user and the
      keys they are fetching.<a href="#section-11-5.2" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-11-6">
  Clearly, there is a privacy/timeliness trade-off in that getting
    up-to-date knowledge about credential validity requires
   contacting the credential directory in real-time (e.g., via the
   <span><a href="#RFC6960" class="xref">Online Certificate Status Protocol (OCSP)</a> [<a href="#RFC6960" class="xref">RFC6960</a>]</span>).
   This is somewhat mitigated for the caller's credentials in that he
   can get short-term credentials right before placing a call which only
   reveals his calling rate, but not who he is calling.  Alternately,
   the CPS can verify the caller's credentials via OCSP, though of
   course this requires the callee to trust the CPS's verification.
   This approach does not work as well for the callee's credentials, but
   the risk there is more modest since an attacker would need to both
   have the callee's credentials and regularly poll the database for
   every potential caller.<a href="#section-11-6" class="pilcrow">¶</a></p>
<p id="section-11-7">
   We consider the exact best point in the trade-off space to be an open
   issue.<a href="#section-11-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="IANA">
<section id="section-12">
      <h2 id="name-iana-considerations">
<a href="#section-12" class="section-number selfRef">12. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
      </h2>
<p id="section-12-1">This document has no IANA actions.<a href="#section-12-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="priv">
<section id="section-13">
      <h2 id="name-privacy-considerations">
<a href="#section-13" class="section-number selfRef">13. </a><a href="#name-privacy-considerations" class="section-name selfRef">Privacy Considerations</a>
      </h2>
<p id="section-13-1">
    Delivering PASSporTs out-of-band offers a different set of privacy properties
than traditional in-band STIR. In-band operations convey
PASSporTs as headers in SIP messages in cleartext, which any
forwarding intermediaries can potentially inspect. By contrast, out-of-band
    STIR stores these PASSporTs at a service after encrypting them
as described in <a href="#authz" class="xref">Section 6</a>, effectively creating a path
    between the authentication and verification service in which the CPS
is the sole intermediary, but the CPS cannot read the PASSporTs.
    Potentially, out-of-band PASSporT delivery could thus improve on the privacy story of STIR.<a href="#section-13-1" class="pilcrow">¶</a></p>
<p id="section-13-2">
    The principle actors in the operation of out-of-band are the
AS, VS, and CPS. The
AS and VS functions differ from baseline behavior <span>[<a href="#RFC8224" class="xref">RFC8224</a>]</span>,
in that they interact with a CPS over a non-SIP interface,
of which the REST interface in <a href="#web" class="xref">Section 9</a> serves as an example.
Some out-of-band deployments may also require a discovery service for the
CPS itself (<a href="#cps" class="xref">Section 10</a>) and/or encryption keys
(<a href="#lookup" class="xref">Section 11</a>). Even with encrypted PASSporTs,
the network interactions by which the AS and VS interact with the CPS, and
to a lesser extent any discovery services, thus create potential opportunities
for data leakage about calling and called parties.<a href="#section-13-2" class="pilcrow">¶</a></p>
<p id="section-13-3">
    The process of storing and retrieving PASSporTs at a CPS can itself
reveal information about calls being placed. The mechanism takes
    care not to require that the AS authenticate itself to the CPS,
relying instead on a blind signature mechanism for flood control prevention.
<a href="#sub" class="xref">Section 7.4</a>
    discusses the practice of storing "dummy" PASSporTs at random intervals
to thwart traffic analysis, and as <a href="#vs" class="xref">Section 8.2</a> notes, a CPS is required to
    return a dummy PASSporT even if there is no PASSporT indexed for
that calling number, which similarly enables the retrieval side to
randomly request PASSporTs when there are no calls in progress.
Note that the caller's IP address itself leaks information about the caller.
Proxying the storage of the CPS through some third party could help prevent
this attack. It might also be possible to use a more sophisticated system
such as Riposte <span>[<a href="#RIPOSTE" class="xref">RIPOSTE</a>]</span>.
These measures can help to mitigate information disclosure in the system.
In implementations that require service discovery
(see <a href="#cps" class="xref">Section 10</a>), perhaps through key discovery
(<a href="#lookup" class="xref">Section 11</a>), similar measures could be used
to make sure that service discovery does not itself disclose information about calls.<a href="#section-13-3" class="pilcrow">¶</a></p>
<p id="section-13-4">
    Ultimately, this document only provides a framework for future implementation
of out-of-band systems, and the privacy properties of a given implementation will
depend on architectural assumptions made in those environments. More closed
systems for intranet operations may adopt a weaker security posture but
otherwise mitigate the risks of information disclosure, whereas more open environments
will require careful implementation of the practices described here.<a href="#section-13-4" class="pilcrow">¶</a></p>
<p id="section-13-5">
    For general privacy risks associated with the operations of STIR,
also see the privacy considerations covered in <span><a href="https://www.rfc-editor.org/rfc/rfc8224#section-11" class="relref">Section 11</a> of [<a href="#RFC8224" class="xref">RFC8224</a>]</span>.<a href="#section-13-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Security">
<section id="section-14">
      <h2 id="name-security-considerations">
<a href="#section-14" class="section-number selfRef">14. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
      </h2>
<p id="section-14-1">This entire document is about security, but the detailed security
   properties will vary depending on how the framework is applied and deployed. General guidance for dealing
      with the most obvious security challenges posed by this framework is given in
Sections <a href="#sec" class="xref">7.3</a> and <a href="#sub" class="xref">7.4</a>,
along proposed solutions for problems like denial-of-service attacks or traffic analysis against the CPS.<a href="#section-14-1" class="pilcrow">¶</a></p>
<p id="section-14-2">Although there are considerable security challenges associated with
widespread deployment of a public CPS, those must be weighed against the
potential usefulness of a service that delivers a STIR assurance without
requiring the passage of end-to-end SIP. Ultimately, the security properties
of this mechanism are at least comparable to in-band
  STIR: the substitution attack documented in <a href="#sub" class="xref">Section 7.4</a>
could be implemented by any in-band SIP intermediary or eavesdropper who
happened to see the PASSporT in transit, say, and launched its own call with a
copy of that PASSporT to race against the original to the destination.<a href="#section-14-2" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-15">
      <h2 id="name-informative-references">
<a href="#section-15" class="section-number selfRef">15. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
      </h2>
<dl class="references">
<dt id="I-D.ietf-modern-teri">[MODERN-TERI]</dt>
      <dd>
<span class="refAuthor">Peterson, J.</span>, <span class="refTitle">"An Architecture and Information Model for Telephone-Related Information (TeRI)"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-modern-teri-00</span>, <time datetime="2018-07-02" class="refDate">2 July 2018</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-modern-teri-00">https://tools.ietf.org/html/draft-ietf-modern-teri-00</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-stir-passport-divert">[PASSPORT-DIVERT]</dt>
      <dd>
<span class="refAuthor">Peterson, J.</span>, <span class="refTitle">"PASSporT Extension for Diverted Calls"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-stir-passport-divert-09</span>, <time datetime="2020-07-13" class="refDate">13 July 2020</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-stir-passport-divert-09">https://tools.ietf.org/html/draft-ietf-stir-passport-divert-09</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.privacy-pass">[PRIVACY-PASS]</dt>
      <dd>
<span class="refAuthor">Davidson, A.</span><span class="refAuthor"> and N. Sullivan</span>, <span class="refTitle">"The Privacy Pass Protocol"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-privacy-pass-00</span>, <time datetime="2019-11-03" class="refDate">3 November 2019</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-privacy-pass-00">https://tools.ietf.org/html/draft-privacy-pass-00</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="REST">[REST]</dt>
      <dd>
<span class="refAuthor">Fielding, R.</span>, <span class="refTitle">"Architectural Styles and the Design of Network-based Software Architectures, Chapter 5: Representational State Transfer"</span>, <span class="seriesInfo">Ph.D. Dissertation, University of California, Irvine</span>, <time datetime="2010" class="refDate">2010</time>. </dd>
<dd class="break"></dd>
<dt id="RFC2119">[RFC2119]</dt>
      <dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3261">[RFC3261]</dt>
      <dd>
<span class="refAuthor">Rosenberg, J.</span><span class="refAuthor">, Schulzrinne, H.</span><span class="refAuthor">, Camarillo, G.</span><span class="refAuthor">, Johnston, A.</span><span class="refAuthor">, Peterson, J.</span><span class="refAuthor">, Sparks, R.</span><span class="refAuthor">, Handley, M.</span><span class="refAuthor">, and E. Schooler</span>, <span class="refTitle">"SIP: Session Initiation Protocol"</span>, <span class="seriesInfo">RFC 3261</span>, <span class="seriesInfo">DOI 10.17487/RFC3261</span>, <time datetime="2002-06" class="refDate">June 2002</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3261">https://www.rfc-editor.org/info/rfc3261</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5636">[RFC5636]</dt>
      <dd>
<span class="refAuthor">Park, S.</span><span class="refAuthor">, Park, H.</span><span class="refAuthor">, Won, Y.</span><span class="refAuthor">, Lee, J.</span><span class="refAuthor">, and S. Kent</span>, <span class="refTitle">"Traceable Anonymous Certificate"</span>, <span class="seriesInfo">RFC 5636</span>, <span class="seriesInfo">DOI 10.17487/RFC5636</span>, <time datetime="2009-08" class="refDate">August 2009</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5636">https://www.rfc-editor.org/info/rfc5636</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6116">[RFC6116]</dt>
      <dd>
<span class="refAuthor">Bradner, S.</span><span class="refAuthor">, Conroy, L.</span><span class="refAuthor">, and K. Fujiwara</span>, <span class="refTitle">"The E.164 to Uniform Resource Identifiers (URI) Dynamic Delegation Discovery System (DDDS) Application (ENUM)"</span>, <span class="seriesInfo">RFC 6116</span>, <span class="seriesInfo">DOI 10.17487/RFC6116</span>, <time datetime="2011-03" class="refDate">March 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6116">https://www.rfc-editor.org/info/rfc6116</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6940">[RFC6940]</dt>
      <dd>
<span class="refAuthor">Jennings, C.</span><span class="refAuthor">, Lowekamp, B., Ed.</span><span class="refAuthor">, Rescorla, E.</span><span class="refAuthor">, Baset, S.</span><span class="refAuthor">, and H. Schulzrinne</span>, <span class="refTitle">"REsource LOcation And Discovery (RELOAD) Base Protocol"</span>, <span class="seriesInfo">RFC 6940</span>, <span class="seriesInfo">DOI 10.17487/RFC6940</span>, <time datetime="2014-01" class="refDate">January 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6940">https://www.rfc-editor.org/info/rfc6940</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6960">[RFC6960]</dt>
      <dd>
<span class="refAuthor">Santesson, S.</span><span class="refAuthor">, Myers, M.</span><span class="refAuthor">, Ankney, R.</span><span class="refAuthor">, Malpani, A.</span><span class="refAuthor">, Galperin, S.</span><span class="refAuthor">, and C. Adams</span>, <span class="refTitle">"X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP"</span>, <span class="seriesInfo">RFC 6960</span>, <span class="seriesInfo">DOI 10.17487/RFC6960</span>, <time datetime="2013-06" class="refDate">June 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6960">https://www.rfc-editor.org/info/rfc6960</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7258">[RFC7258]</dt>
      <dd>
<span class="refAuthor">Farrell, S.</span><span class="refAuthor"> and H. Tschofenig</span>, <span class="refTitle">"Pervasive Monitoring Is an Attack"</span>, <span class="seriesInfo">BCP 188</span>, <span class="seriesInfo">RFC 7258</span>, <span class="seriesInfo">DOI 10.17487/RFC7258</span>, <time datetime="2014-05" class="refDate">May 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7258">https://www.rfc-editor.org/info/rfc7258</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7340">[RFC7340]</dt>
      <dd>
<span class="refAuthor">Peterson, J.</span><span class="refAuthor">, Schulzrinne, H.</span><span class="refAuthor">, and H. Tschofenig</span>, <span class="refTitle">"Secure Telephone Identity Problem Statement and Requirements"</span>, <span class="seriesInfo">RFC 7340</span>, <span class="seriesInfo">DOI 10.17487/RFC7340</span>, <time datetime="2014-09" class="refDate">September 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7340">https://www.rfc-editor.org/info/rfc7340</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7748">[RFC7748]</dt>
      <dd>
<span class="refAuthor">Langley, A.</span><span class="refAuthor">, Hamburg, M.</span><span class="refAuthor">, and S. Turner</span>, <span class="refTitle">"Elliptic Curves for Security"</span>, <span class="seriesInfo">RFC 7748</span>, <span class="seriesInfo">DOI 10.17487/RFC7748</span>, <time datetime="2016-01" class="refDate">January 2016</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7748">https://www.rfc-editor.org/info/rfc7748</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
      <dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8224">[RFC8224]</dt>
      <dd>
<span class="refAuthor">Peterson, J.</span><span class="refAuthor">, Jennings, C.</span><span class="refAuthor">, Rescorla, E.</span><span class="refAuthor">, and C. Wendt</span>, <span class="refTitle">"Authenticated Identity Management in the Session Initiation Protocol (SIP)"</span>, <span class="seriesInfo">RFC 8224</span>, <span class="seriesInfo">DOI 10.17487/RFC8224</span>, <time datetime="2018-02" class="refDate">February 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8224">https://www.rfc-editor.org/info/rfc8224</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8225">[RFC8225]</dt>
      <dd>
<span class="refAuthor">Wendt, C.</span><span class="refAuthor"> and J. Peterson</span>, <span class="refTitle">"PASSporT: Personal Assertion Token"</span>, <span class="seriesInfo">RFC 8225</span>, <span class="seriesInfo">DOI 10.17487/RFC8225</span>, <time datetime="2018-02" class="refDate">February 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8225">https://www.rfc-editor.org/info/rfc8225</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8226">[RFC8226]</dt>
      <dd>
<span class="refAuthor">Peterson, J.</span><span class="refAuthor"> and S. Turner</span>, <span class="refTitle">"Secure Telephone Identity Credentials: Certificates"</span>, <span class="seriesInfo">RFC 8226</span>, <span class="seriesInfo">DOI 10.17487/RFC8226</span>, <time datetime="2018-02" class="refDate">February 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8226">https://www.rfc-editor.org/info/rfc8226</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8446">[RFC8446]</dt>
      <dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refTitle">"The Transport Layer Security (TLS) Protocol Version 1.3"</span>, <span class="seriesInfo">RFC 8446</span>, <span class="seriesInfo">DOI 10.17487/RFC8446</span>, <time datetime="2018-08" class="refDate">August 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8446">https://www.rfc-editor.org/info/rfc8446</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RIPOSTE">[RIPOSTE]</dt>
      <dd>
<span class="refAuthor">Corrigan-Gibbs, H.</span><span class="refAuthor">, Boneh, D.</span><span class="refAuthor">, and D. Mazières</span>, <span class="refTitle">"Riposte: An Anonymous Messaging System Handling Millions of Users"</span>, <time datetime="2015-05" class="refDate">May 2015</time>, <span>&lt;<a href="https://people.csail.mit.edu/henrycg/pubs/oakland15riposte/">https://people.csail.mit.edu/henrycg/pubs/oakland15riposte/</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-tls-subcerts">[TLS-SUBCERTS]</dt>
      <dd>
<span class="refAuthor">Barnes, R.</span><span class="refAuthor">, Iyengar, S.</span><span class="refAuthor">, Sullivan, N.</span><span class="refAuthor">, and E. Rescorla</span>, <span class="refTitle">"Delegated Credentials for TLS"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-tls-subcerts-10</span>, <time datetime="2021-01-24" class="refDate">24 January 2021</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-tls-subcerts-10">https://tools.ietf.org/html/draft-ietf-tls-subcerts-10</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.jennings-vipr-overview">[VIPR-OVERVIEW]</dt>
    <dd>
<span class="refAuthor">Barnes, M.</span><span class="refAuthor">, Jennings, C.</span><span class="refAuthor">, Rosenberg, J.</span><span class="refAuthor">, and M. Petit-Huguenin</span>, <span class="refTitle">"Verification Involving PSTN Reachability: Requirements and Architecture Overview"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-jennings-vipr-overview-06</span>, <time datetime="2013-12-09" class="refDate">9 December 2013</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-jennings-vipr-overview-06">https://tools.ietf.org/html/draft-jennings-vipr-overview-06</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<div id="Acknowledgments">
<section id="section-appendix.a">
      <h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
      </h2>
<p id="section-appendix.a-1">The ideas
   in this document came out of discussions with <span class="contact-name">Richard Barnes</span> and
   <span class="contact-name">Cullen Jennings</span>. We'd also like to thank
   <span class="contact-name">Russ Housley</span>, <span class="contact-name">Chris Wendt</span>,
   <span class="contact-name">Eric Burger</span>, <span class="contact-name">Mary Barnes</span>,
   <span class="contact-name">Ben Campbell</span>, <span class="contact-name">Ted Huang</span>,
   <span class="contact-name">Jonathan Rosenberg</span>, and <span class="contact-name">Robert Sparks</span>
   for helpful suggestions.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="section-appendix.b">
      <h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Eric Rescorla</span></div>
<div dir="auto" class="left"><span class="org">Mozilla</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ekr@rtfm.com" class="email">ekr@rtfm.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Jon Peterson</span></div>
<div dir="auto" class="left"><span class="org">Neustar, Inc.</span></div>
<div dir="auto" class="left"><span class="street-address">1800 Sutter St Suite 570</span></div>
<div dir="auto" class="left">
<span class="locality">Concord</span>, <span class="region">CA</span> <span class="postal-code">94520</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jon.peterson@team.neustar" class="email">jon.peterson@team.neustar</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
  toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
  toc.classList.remove("active");
});
</script>
</body>
</html>