File: rfc8900.html

package info (click to toggle)
doc-rfc 20230121-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 1,609,944 kB
file content (2746 lines) | stat: -rw-r--r-- 147,784 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
<!DOCTYPE html>
<html lang="en" class="RFC BCP">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8900: IP Fragmentation Considered Fragile</title>
<meta content="Ron Bonica" name="author">
<meta content="Fred Baker" name="author">
<meta content="Geoff Huston" name="author">
<meta content="Robert M. Hinden" name="author">
<meta content="Ole Troan" name="author">
<meta content="Fernando Gont" name="author">
<meta content="
       This document describes IP fragmentation and explains how it
      introduces fragility to Internet communication. 
       This document also proposes alternatives to IP fragmentation and
      provides recommendations for developers and network operators. 
    " name="description">
<meta content="xml2rfc 3.0.0" name="generator">
<meta content="IPv6" name="keyword">
<meta content="Fragmentation" name="keyword">
<meta content="8900" name="rfc.number">
<link href="rfc8900.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*

  NOTE: Changes at the bottom of this file overrides some earlier settings.

  Once the style has stabilized and has been adopted as an official RFC style,
  this can be consolidated so that style settings occur only in one place, but
  for now the contents of this file consists first of the initial CSS work as
  provided to the RFC Formatter (xml2rfc) work, followed by itemized and
  commented changes found necssary during the development of the v3
  formatters.

*/

/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */

@viewport {
  zoom: 1.0;
  width: extend-to-zoom;
}
@-ms-viewport {
  width: extend-to-zoom;
  zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
  max-width: 90%;
  margin: 1.5em auto;
  color: #222;
  background-color: #fff;
  font-size: 14px;
  font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
  line-height: 1.6;
  scroll-behavior: smooth;
}
.ears {
  display: none;
}

/* headings */
#title, h1, h2, h3, h4, h5, h6 {
  margin: 1em 0 0.5em;
  font-weight: bold;
  line-height: 1.3;
}
#title {
  clear: both;
  border-bottom: 1px solid #ddd;
  margin: 0 0 0.5em 0;
  padding: 1em 0 0.5em;
}
.author {
  padding-bottom: 4px;
}
h1 {
  font-size: 26px;
  margin: 1em 0;
}
h2 {
  font-size: 22px;
  margin-top: -20px;  /* provide offset for in-page anchors */
  padding-top: 33px;
}
h3 {
  font-size: 18px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h4 {
  font-size: 16px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h5, h6 {
  font-size: 14px;
}
#n-copyright-notice {
  border-bottom: 1px solid #ddd;
  padding-bottom: 1em;
  margin-bottom: 1em;
}
/* general structure */
p {
  padding: 0;
  margin: 0 0 1em 0;
  text-align: left;
}
div, span {
  position: relative;
}
div {
  margin: 0;
}
.alignRight.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignRight.art-text pre {
  padding: 0;
}
.alignRight {
  margin: 1em 0;
}
.alignRight > *:first-child {
  border: none;
  margin: 0;
  float: right;
  clear: both;
}
.alignRight > *:nth-child(2) {
  clear: both;
  display: block;
  border: none;
}
svg {
  display: block;
}
.alignCenter.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
  padding: 0;
}
.alignCenter {
  margin: 1em 0;
}
.alignCenter > *:first-child {
  border: none;
  /* this isn't optimal, but it's an existence proof.  PrinceXML doesn't
     support flexbox yet.
  */
  display: table;
  margin: 0 auto;
}

/* lists */
ol, ul {
  padding: 0;
  margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
  margin-left: 1em;
}
li {
  margin: 0 0 0.25em 0;
}
.ulCompact li {
  margin: 0;
}
ul.empty, .ulEmpty {
  list-style-type: none;
}
ul.empty li, .ulEmpty li {
  margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
  line-height: 100%;
  margin: 0 0 0 2em;
}

/* definition lists */
dl {
}
dl > dt {
  float: left;
  margin-right: 1em;
}
/* 
dl.nohang > dt {
  float: none;
}
*/
dl > dd {
  margin-bottom: .8em;
  min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
  margin-bottom: 0em;
}
dl > dd > dl {
  margin-top: 0.5em;
  margin-bottom: 0em;
}

/* links */
a {
  text-decoration: none;
}
a[href] {
  color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
  background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
  color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
  background-color: transparent;
  cursor: default;
} */

/* Figures */
tt, code, pre, code {
  background-color: #f9f9f9;
  font-family: 'Roboto Mono', monospace;
}
pre {
  border: 1px solid #eee;
  margin: 0;
  padding: 1em;
}
img {
  max-width: 100%;
}
figure {
  margin: 0;
}
figure blockquote {
  margin: 0.8em 0.4em 0.4em;
}
figcaption {
  font-style: italic;
  margin: 0 0 1em 0;
}
@media screen {
  pre {
    overflow-x: auto;
    max-width: 100%;
    max-width: calc(100% - 22px);
  }
}

/* aside, blockquote */
aside, blockquote {
  margin-left: 0;
  padding: 1.2em 2em;
}
blockquote {
  background-color: #f9f9f9;
  color: #111; /* Arlen: WCAG 2019 */
  border: 1px solid #ddd;
  border-radius: 3px;
  margin: 1em 0;
}
cite {
  display: block;
  text-align: right;
  font-style: italic;
}

/* tables */
table {
  width: 100%;
  margin: 0 0 1em;
  border-collapse: collapse;
  border: 1px solid #eee;
}
th, td {
  text-align: left;
  vertical-align: top;
  padding: 0.5em 0.75em;
}
th {
  text-align: left;
  background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
  background-color: #f5f5f5;
}
table caption {
  font-style: italic;
  margin: 0;
  padding: 0;
  text-align: left;
}
table p {
  /* XXX to avoid bottom margin on table row signifiers. If paragraphs should
     be allowed within tables more generally, it would be far better to select on a class. */
  margin: 0;
}

/* pilcrow */
a.pilcrow {
  color: #666; /* Arlen: AHDJ 2019 */
  text-decoration: none;
  visibility: hidden;
  user-select: none;
  -ms-user-select: none;
  -o-user-select:none;
  -moz-user-select: none;
  -khtml-user-select: none;
  -webkit-user-select: none;
  -webkit-touch-callout: none;
}
@media screen {
  aside:hover > a.pilcrow,
  p:hover > a.pilcrow,
  blockquote:hover > a.pilcrow,
  div:hover > a.pilcrow,
  li:hover > a.pilcrow,
  pre:hover > a.pilcrow {
    visibility: visible;
  }
  a.pilcrow:hover {
    background-color: transparent;
  }
}

/* misc */
hr {
  border: 0;
  border-top: 1px solid #eee;
}
.bcp14 {
  font-variant: small-caps;
}

.role {
  font-variant: all-small-caps;
}

/* info block */
#identifiers {
  margin: 0;
  font-size: 0.9em;
}
#identifiers dt {
  width: 3em;
  clear: left;
}
#identifiers dd {
  float: left;
  margin-bottom: 0;
}
#identifiers .authors .author {
  display: inline-block;
  margin-right: 1.5em;
}
#identifiers .authors .org {
  font-style: italic;
}

/* The prepared/rendered info at the very bottom of the page */
.docInfo {
  color: #666; /* Arlen: WCAG 2019 */
  font-size: 0.9em;
  font-style: italic;
  margin-top: 2em;
}
.docInfo .prepared {
  float: left;
}
.docInfo .prepared {
  float: right;
}

/* table of contents */
#toc  {
  padding: 0.75em 0 2em 0;
  margin-bottom: 1em;
}
nav.toc ul {
  margin: 0 0.5em 0 0;
  padding: 0;
  list-style: none;
}
nav.toc li {
  line-height: 1.3em;
  margin: 0.75em 0;
  padding-left: 1.2em;
  text-indent: -1.2em;
}
/* references */
.references dt {
  text-align: right;
  font-weight: bold;
  min-width: 7em;
}
.references dd {
  margin-left: 8em;
  overflow: auto;
}

.refInstance {
  margin-bottom: 1.25em;
}

.references .ascii {
  margin-bottom: 0.25em;
}

/* index */
.index ul {
  margin: 0 0 0 1em;
  padding: 0;
  list-style: none;
}
.index ul ul {
  margin: 0;
}
.index li {
  margin: 0;
  text-indent: -2em;
  padding-left: 2em;
  padding-bottom: 5px;
}
.indexIndex {
  margin: 0.5em 0 1em;
}
.index a {
  font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
  .index ul {
    -moz-column-count: 2;
    -moz-column-gap: 20px;
  }
  .index ul ul {
    -moz-column-count: 1;
    -moz-column-gap: 0;
  }
}

/* authors */
address.vcard {
  font-style: normal;
  margin: 1em 0;
}

address.vcard .nameRole {
  font-weight: 700;
  margin-left: 0;
}
address.vcard .label {
  font-family: "Noto Sans",Arial,Helvetica,sans-serif;
  margin: 0.5em 0;
}
address.vcard .type {
  display: none;
}
.alternative-contact {
  margin: 1.5em 0 1em;
}
hr.addr {
  border-top: 1px dashed;
  margin: 0;
  color: #ddd;
  max-width: calc(100% - 16px);
}

/* temporary notes */
.rfcEditorRemove::before {
  position: absolute;
  top: 0.2em;
  right: 0.2em;
  padding: 0.2em;
  content: "The RFC Editor will remove this note";
  color: #9e2a00; /* Arlen: WCAG 2019 */
  background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
  position: relative;
  padding-top: 1.8em;
  background-color: #ffd; /* Arlen: WCAG 2019 */
  border-radius: 3px;
}
.cref {
  background-color: #ffd; /* Arlen: WCAG 2019 */
  padding: 2px 4px;
}
.crefSource {
  font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
  body {
    padding-top: 2em;
  }
  #title {
    padding: 1em 0;
  }
  h1 {
    font-size: 24px;
  }
  h2 {
    font-size: 20px;
    margin-top: -18px;  /* provide offset for in-page anchors */
    padding-top: 38px;
  }
  #identifiers dd {
    max-width: 60%;
  }
  #toc {
    position: fixed;
    z-index: 2;
    top: 0;
    right: 0;
    padding: 0;
    margin: 0;
    background-color: inherit;
    border-bottom: 1px solid #ccc;
  }
  #toc h2 {
    margin: -1px 0 0 0;
    padding: 4px 0 4px 6px;
    padding-right: 1em;
    min-width: 190px;
    font-size: 1.1em;
    text-align: right;
    background-color: #444;
    color: white;
    cursor: pointer;
  }
  #toc h2::before { /* css hamburger */
    float: right;
    position: relative;
    width: 1em;
    height: 1px;
    left: -164px;
    margin: 6px 0 0 0;
    background: white none repeat scroll 0 0;
    box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
    content: "";
  }
  #toc nav {
    display: none;
    padding: 0.5em 1em 1em;
    overflow: auto;
    height: calc(100vh - 48px);
    border-left: 1px solid #ddd;
  }
}

/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
  body {
    max-width: 724px;
    margin: 42px auto;
    padding-left: 1.5em;
    padding-right: 29em;
  }
  #toc {
    position: fixed;
    top: 42px;
    right: 42px;
    width: 25%;
    margin: 0;
    padding: 0 1em;
    z-index: 1;
  }
  #toc h2 {
    border-top: none;
    border-bottom: 1px solid #ddd;
    font-size: 1em;
    font-weight: normal;
    margin: 0;
    padding: 0.25em 1em 1em 0;
  }
  #toc nav {
    display: block;
    height: calc(90vh - 84px);
    bottom: 0;
    padding: 0.5em 0 0;
    overflow: auto;
  }
  img { /* future proofing */
    max-width: 100%;
    height: auto;
  }
}

/* pagination */
@media print {
  body {

    width: 100%;
  }
  p {
    orphans: 3;
    widows: 3;
  }
  #n-copyright-notice {
    border-bottom: none;
  }
  #toc, #n-introduction {
    page-break-before: always;
  }
  #toc {
    border-top: none;
    padding-top: 0;
  }
  figure, pre {
    page-break-inside: avoid;
  }
  figure {
    overflow: scroll;
  }
  h1, h2, h3, h4, h5, h6 {
    page-break-after: avoid;
  }
  h2+*, h3+*, h4+*, h5+*, h6+* {
    page-break-before: avoid;
  }
  pre {
    white-space: pre-wrap;
    word-wrap: break-word;
    font-size: 10pt;
  }
  table {
    border: 1px solid #ddd;
  }
  td {
    border-top: 1px solid #ddd;
  }
}

/* This is commented out here, as the string-set: doesn't
   pass W3C validation currently */
/*
.ears thead .left {
  string-set: ears-top-left content();
}

.ears thead .center {
  string-set: ears-top-center content();
}

.ears thead .right {
  string-set: ears-top-right content();
}

.ears tfoot .left {
  string-set: ears-bottom-left content();
}

.ears tfoot .center {
  string-set: ears-bottom-center content();
}

.ears tfoot .right {
  string-set: ears-bottom-right content();
}
*/

@page :first {
  padding-top: 0;
  @top-left {
    content: normal;
    border: none;
  }
  @top-center {
    content: normal;
    border: none;
  }
  @top-right {
    content: normal;
    border: none;
  }
}

@page {
  size: A4;
  margin-bottom: 45mm;
  padding-top: 20px;
  /* The follwing is commented out here, but set appropriately by in code, as
     the content depends on the document */
  /*
  @top-left {
    content: 'Internet-Draft';
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-left {
    content: string(ears-top-left);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-center {
    content: string(ears-top-center);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-right {
    content: string(ears-top-right);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @bottom-left {
    content: string(ears-bottom-left);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-center {
    content: string(ears-bottom-center);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-right {
      content: '[Page ' counter(page) ']';
      vertical-align: top;
      border-top: solid 1px #ccc;
  }
  */

}

/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
  z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
  clear: both;
}


/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
  vertical-align: top;
}

/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
  width: 8em;
}

/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
  margin-left: 1em;
}

/* Give floating toc a background color (needed when it's a div inside section */
#toc {
  background-color: white;
}

/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
  #toc h2 a,
  #toc h2 a:link,
  #toc h2 a:focus,
  #toc h2 a:hover,
  #toc a.toplink,
  #toc a.toplink:hover {
    color: white;
    background-color: #444;
    text-decoration: none;
  }
}

/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
  #toc {
    padding: 0 0 1em 1em;
  }
}

/* Style section numbers with more space between number and title */
.section-number {
  padding-right: 0.5em;
}

/* prevent monospace from becoming overly large */
tt, code, pre, code {
  font-size: 95%;
}

/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
  line-height: 1.12;
}


/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
  float: right;
  margin-right: 0.5em;
}

/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
  float: left;
  margin-right: 1em;
}
dl.dlNewline > dt {
  float: none;
}

/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
  text-align: left;
}
table td.text-center,
table th.text-center {
  text-align: center;
}
table td.text-right,
table th.text-right {
  text-align: right;
}

/* Make the alternative author contact informatio look less like just another
   author, and group it closer with the primary author contact information */
.alternative-contact {
  margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
  margin: 0 0 0 2em;
}

/* With it being possible to set tables with alignment
  left, center, and right, { width: 100%; } does not make sense */
table {
  width: auto;
}

/* Avoid reference text that sits in a block with very wide left margin,
   because of a long floating dt label.*/
.references dd {
  overflow: visible;
}

/* Control caption placement */
caption {
  caption-side: bottom;
}

/* Limit the width of the author address vcard, so names in right-to-left
   script don't end up on the other side of the page. */

address.vcard {
  max-width: 30em;
  margin-right: auto;
}

/* For address alignment dependent on LTR or RTL scripts */
address div.left {
  text-align: left;
}
address div.right {
  text-align: right;
}

/* Provide table alignment support.  We can't use the alignX classes above
   since they do unwanted things with caption and other styling. */
table.right {
 margin-left: auto;
 margin-right: 0;
}
table.center {
 margin-left: auto;
 margin-right: auto;
}
table.left {
 margin-left: 0;
 margin-right: auto;
}

/* Give the table caption label the same styling as the figcaption */
caption a[href] {
  color: #222;
}

@media print {
  .toplink {
    display: none;
  }

  /* avoid overwriting the top border line with the ToC header */
  #toc {
    padding-top: 1px;
  }

  /* Avoid page breaks inside dl and author address entries */
  .vcard {
    page-break-inside: avoid;
  }

}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
  font-variant: small-caps;
  font-weight: bold;
  font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
 h2 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 31px;
 }
 h3 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
 h4 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
/* Float artwork pilcrow to the right */
@media screen {
  .artwork a.pilcrow {
    display: block;
    line-height: 0.7;
    margin-top: 0.15em;
  }
}
/* Make pilcrows on dd visible */
@media screen {
  dd:hover > a.pilcrow {
    visibility: visible;
  }
}
/* Make the placement of figcaption match that of a table's caption
   by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
   margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
  margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
   possibly even requiring a new line */
@media print {
  a.pilcrow {
    display: none;
  }
}
/* Styling for the external metadata */
div#external-metadata {
  background-color: #eee;
  padding: 0.5em;
  margin-bottom: 0.5em;
  display: none;
}
div#internal-metadata {
  padding: 0.5em;                       /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
  clear: both;
  margin: 0 0 -1em;
  padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
  margin-bottom: 0.25em;
  min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
  border-left: 1px solid #ddd;
  margin: 1em 0 1em 2em;
  padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
  margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
  figcaption, table caption {
    page-break-before: avoid;
  }
}
/* Font size adjustments for print */
@media print {
  body  { font-size: 10pt;      line-height: normal; max-width: 96%; }
  h1    { font-size: 1.72em;    padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
  h2    { font-size: 1.44em;    padding-top: 1.5em; } /* 1*1.2*1.2 */
  h3    { font-size: 1.2em;     padding-top: 1.5em; } /* 1*1.2 */
  h4    { font-size: 1em;       padding-top: 1.5em; }
  h5, h6 { font-size: 1em;      margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
  .artwork,
  .sourcecode {
    margin-bottom: 1em;
  }
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
  min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
  border: 1px solid #ddd;
}
td {
  border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
  background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
  #toc nav { display: none; }
  #toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
  break-after: avoid-page;
  break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
  break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode  {
  break-before: avoid-page;
  break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
  break-before: auto;
  break-inside: auto;
}
dt {
  break-before: auto;
  break-after: avoid-page;
}
dd {
  break-before: avoid-page;
  break-after: auto;
  orphans: 3;
  widows: 3
}
span.break, dd.break {
  margin-bottom: 0;
  min-height: 0;
  break-before: auto;
  break-inside: auto;
  break-after: auto;
}
/* Undo break-before ToC */
@media print {
  #toc {
    break-before: auto;
  }
}
/* Text in compact lists should not get extra bottim margin space,
   since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
 margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
  margin-bottom: 1em;                    /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
   backgrounds.  Changed to something a bit more selective. */
tt, code {
  background-color: transparent;
}
p tt, p code, li tt, li code {
  background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
   margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
  line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
  margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
  clear: left;
}</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc8900" rel="alternate">
  <link href="urn:issn:2070-1721" rel="alternate">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-intarea-frag-fragile-17" rel="prev">
  </head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8900</td>
<td class="center">IP Fragmentation Fragile</td>
<td class="right">September 2020</td>
</tr></thead>
<tfoot><tr>
<td class="left">Bonica, et al.</td>
<td class="center">Best Current Practice</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8900" class="eref">8900</a></dd>
<dt class="label-bcp">BCP:</dt>
<dd class="bcp">230</dd>
<dt class="label-category">Category:</dt>
<dd class="category">Best Current Practice</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2020-09" class="published">September 2020</time>
    </dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
      <div class="author-name">R. Bonica</div>
<div class="org">Juniper Networks</div>
</div>
<div class="author">
      <div class="author-name">F. Baker</div>
<div class="org">Unaffiliated</div>
</div>
<div class="author">
      <div class="author-name">G. Huston</div>
<div class="org">APNIC</div>
</div>
<div class="author">
      <div class="author-name">R. Hinden</div>
<div class="org">Check Point Software</div>
</div>
<div class="author">
      <div class="author-name">O. Troan</div>
<div class="org">Cisco</div>
</div>
<div class="author">
      <div class="author-name">F. Gont</div>
<div class="org">SI6 Networks</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8900</h1>
<h1 id="title">IP Fragmentation Considered Fragile</h1>
<section id="section-abstract">
      <h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This document describes IP fragmentation and explains how it
      introduces fragility to Internet communication.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
<p id="section-abstract-2">This document also proposes alternatives to IP fragmentation and
      provides recommendations for developers and network operators.<a href="#section-abstract-2" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
        <h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
        </h2>
<p id="section-boilerplate.1-1">
            This memo documents an Internet Best Current Practice.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further information
            on BCPs is available in Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <span><a href="https://www.rfc-editor.org/info/rfc8900">https://www.rfc-editor.org/info/rfc8900</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
        <h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
        </h2>
<p id="section-boilerplate.2-1">
            Copyright (c) 2020 IETF Trust and the persons identified as the
            document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
        <a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
        </h2>
<nav class="toc"><ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.1">
            <p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>.  <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.1.2.1">
                <p id="section-toc.1-1.1.2.1.1" class="keepWithNext"><a href="#section-1.1" class="xref">1.1</a>.  <a href="#name-requirements-language" class="xref">Requirements Language</a><a href="#section-toc.1-1.1.2.1.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="toc compact ulEmpty" id="section-toc.1-1.2">
            <p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>.  <a href="#name-ip-fragmentation" class="xref">IP Fragmentation</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.2.2.1">
                <p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="xref">2.1</a>.  <a href="#name-links-paths-mtu-and-pmtu" class="xref">Links, Paths, MTU, and PMTU</a><a href="#section-toc.1-1.2.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.2.2.2">
                <p id="section-toc.1-1.2.2.2.1"><a href="#section-2.2" class="xref">2.2</a>.  <a href="#name-fragmentation-procedures" class="xref">Fragmentation Procedures</a><a href="#section-toc.1-1.2.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.2.2.3">
                <p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="xref">2.3</a>.  <a href="#name-upper-layer-reliance-on-ip-" class="xref">Upper-Layer Reliance on IP Fragmentation</a><a href="#section-toc.1-1.2.2.3.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="toc compact ulEmpty" id="section-toc.1-1.3">
            <p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>.  <a href="#name-increased-fragility" class="xref">Increased Fragility</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.1">
                <p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>.  <a href="#name-virtual-reassembly" class="xref">Virtual Reassembly</a><a href="#section-toc.1-1.3.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.3.2.2">
                <p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>.  <a href="#name-policy-based-routing" class="xref">Policy-Based Routing</a><a href="#section-toc.1-1.3.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.3.2.3">
                <p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>.  <a href="#name-network-address-translation" class="xref">Network Address Translation (NAT)</a><a href="#section-toc.1-1.3.2.3.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.3.2.4">
                <p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="xref">3.4</a>.  <a href="#name-stateless-firewalls" class="xref">Stateless Firewalls</a><a href="#section-toc.1-1.3.2.4.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.3.2.5">
                <p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="xref">3.5</a>.  <a href="#name-equal-cost-multipath-link-a" class="xref">Equal-Cost Multipath, Link Aggregate Groups, and Stateless Load Balancers</a><a href="#section-toc.1-1.3.2.5.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.3.2.6">
                <p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="xref">3.6</a>.  <a href="#name-ipv4-reassembly-errors-at-h" class="xref">IPv4 Reassembly Errors at High Data Rates</a><a href="#section-toc.1-1.3.2.6.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.3.2.7">
                <p id="section-toc.1-1.3.2.7.1"><a href="#section-3.7" class="xref">3.7</a>.  <a href="#name-security-vulnerabilities" class="xref">Security Vulnerabilities</a><a href="#section-toc.1-1.3.2.7.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.3.2.8">
                <p id="section-toc.1-1.3.2.8.1"><a href="#section-3.8" class="xref">3.8</a>.  <a href="#name-pmtu-black-holing-due-to-ic" class="xref">PMTU Black-Holing Due to ICMP Loss</a><a href="#section-toc.1-1.3.2.8.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.8.2.1">
                    <p id="section-toc.1-1.3.2.8.2.1.1"><a href="#section-3.8.1" class="xref">3.8.1</a>.  <a href="#name-transient-loss" class="xref">Transient Loss</a><a href="#section-toc.1-1.3.2.8.2.1.1" class="pilcrow">¶</a></p>
</li>
                  <li class="toc compact ulEmpty" id="section-toc.1-1.3.2.8.2.2">
                    <p id="section-toc.1-1.3.2.8.2.2.1"><a href="#section-3.8.2" class="xref">3.8.2</a>.  <a href="#name-incorrect-implementation-of" class="xref">Incorrect Implementation of Security Policy</a><a href="#section-toc.1-1.3.2.8.2.2.1" class="pilcrow">¶</a></p>
</li>
                  <li class="toc compact ulEmpty" id="section-toc.1-1.3.2.8.2.3">
                    <p id="section-toc.1-1.3.2.8.2.3.1"><a href="#section-3.8.3" class="xref">3.8.3</a>.  <a href="#name-persistent-loss-caused-by-a" class="xref">Persistent Loss Caused by Anycast</a><a href="#section-toc.1-1.3.2.8.2.3.1" class="pilcrow">¶</a></p>
</li>
                  <li class="toc compact ulEmpty" id="section-toc.1-1.3.2.8.2.4">
                    <p id="section-toc.1-1.3.2.8.2.4.1"><a href="#section-3.8.4" class="xref">3.8.4</a>.  <a href="#name-persistent-loss-caused-by-u" class="xref">Persistent Loss Caused by Unidirectional Routing</a><a href="#section-toc.1-1.3.2.8.2.4.1" class="pilcrow">¶</a></p>
</li>
                </ul>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.3.2.9">
                <p id="section-toc.1-1.3.2.9.1"><a href="#section-3.9" class="xref">3.9</a>.  <a href="#name-black-holing-due-to-filteri" class="xref">Black-Holing Due to Filtering or Loss</a><a href="#section-toc.1-1.3.2.9.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="toc compact ulEmpty" id="section-toc.1-1.4">
            <p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.  <a href="#name-alternatives-to-ip-fragment" class="xref">Alternatives to IP Fragmentation</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.4.2.1">
                <p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>.  <a href="#name-transport-layer-solutions" class="xref">Transport-Layer Solutions</a><a href="#section-toc.1-1.4.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.4.2.2">
                <p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>.  <a href="#name-application-layer-solutions" class="xref">Application-Layer Solutions</a><a href="#section-toc.1-1.4.2.2.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="toc compact ulEmpty" id="section-toc.1-1.5">
            <p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.  <a href="#name-applications-that-rely-on-i" class="xref">Applications That Rely on IPv6 Fragmentation</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.5.2.1">
                <p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>.  <a href="#name-domain-name-service-dns" class="xref">Domain Name Service (DNS)</a><a href="#section-toc.1-1.5.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.5.2.2">
                <p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>.  <a href="#name-open-shortest-path-first-os" class="xref">Open Shortest Path First (OSPF)</a><a href="#section-toc.1-1.5.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.5.2.3">
                <p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>.  <a href="#name-packet-in-packet-encapsulat" class="xref">Packet-in-Packet Encapsulations</a><a href="#section-toc.1-1.5.2.3.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.5.2.4">
                <p id="section-toc.1-1.5.2.4.1"><a href="#section-5.4" class="xref">5.4</a>.  <a href="#name-udp-applications-enhancing-" class="xref">UDP Applications Enhancing Performance</a><a href="#section-toc.1-1.5.2.4.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="toc compact ulEmpty" id="section-toc.1-1.6">
            <p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.  <a href="#name-recommendations" class="xref">Recommendations</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.6.2.1">
                <p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>.  <a href="#name-for-application-and-protoco" class="xref">For Application and Protocol Developers</a><a href="#section-toc.1-1.6.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.6.2.2">
                <p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>.  <a href="#name-for-system-developers" class="xref">For System Developers</a><a href="#section-toc.1-1.6.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.6.2.3">
                <p id="section-toc.1-1.6.2.3.1"><a href="#section-6.3" class="xref">6.3</a>.  <a href="#name-for-middlebox-developers" class="xref">For Middlebox Developers</a><a href="#section-toc.1-1.6.2.3.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.6.2.4">
                <p id="section-toc.1-1.6.2.4.1"><a href="#section-6.4" class="xref">6.4</a>.  <a href="#name-for-ecmp-lag-and-load-balan" class="xref">For ECMP, LAG, and Load-Balancer Developers And Operators</a><a href="#section-toc.1-1.6.2.4.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.6.2.5">
                <p id="section-toc.1-1.6.2.5.1"><a href="#section-6.5" class="xref">6.5</a>.  <a href="#name-for-network-operators" class="xref">For Network Operators</a><a href="#section-toc.1-1.6.2.5.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="toc compact ulEmpty" id="section-toc.1-1.7">
            <p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>.  <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
</li>
          <li class="toc compact ulEmpty" id="section-toc.1-1.8">
            <p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>.  <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
</li>
          <li class="toc compact ulEmpty" id="section-toc.1-1.9">
            <p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>.  <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.9.2.1">
                <p id="section-toc.1-1.9.2.1.1"><a href="#section-9.1" class="xref">9.1</a>.  <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.9.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc compact ulEmpty" id="section-toc.1-1.9.2.2">
                <p id="section-toc.1-1.9.2.2.1"><a href="#section-9.2" class="xref">9.2</a>.  <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.9.2.2.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="toc compact ulEmpty" id="section-toc.1-1.10">
            <p id="section-toc.1-1.10.1"><a href="#section-appendix.a" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
</li>
          <li class="toc compact ulEmpty" id="section-toc.1-1.11">
            <p id="section-toc.1-1.11.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.11.1" class="pilcrow">¶</a></p>
</li>
        </ul>
</nav>
</section>
</div>
<section id="section-1">
      <h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
      </h2>
<p id="section-1-1">Operational experience <span>[<a href="#Kent" class="xref">Kent</a>]</span>
        <span>[<a href="#Huston" class="xref">Huston</a>]</span> <span>[<a href="#RFC7872" class="xref">RFC7872</a>]</span> 
      reveals that IP fragmentation
      introduces fragility to Internet communication. This document describes
      IP fragmentation and explains the fragility it introduces. It also
      proposes alternatives to IP fragmentation and provides recommendations
      for developers and network operators.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">While this document identifies issues associated with IP
      fragmentation, it does not recommend deprecation. Legacy protocols that
      depend upon IP fragmentation would do well to be updated to remove that dependency.
      However, some applications and environments (see <a href="#rely" class="xref">Section 5</a>)
      require IP fragmentation.  In these cases, the protocol will continue 
      to rely on IP fragmentation, but the designer should be aware that 
      fragmented packets may result in black holes.  A design should include 
      appropriate safeguards.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">Rather than deprecating IP fragmentation, this document recommends
      that upper-layer protocols address the problem of fragmentation at their
      layer, reducing their reliance on IP fragmentation to the greatest
      degree possible.<a href="#section-1-3" class="pilcrow">¶</a></p>
<section id="section-1.1">
        <h3 id="name-requirements-language">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
        </h3>
<p id="section-1.1-1">
    The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
    "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>",
    "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>",
    "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
    "<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be
    interpreted as described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when, they appear in all capitals, as
    shown here.<a href="#section-1.1-1" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-2">
      <h2 id="name-ip-fragmentation">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-ip-fragmentation" class="section-name selfRef">IP Fragmentation</a>
      </h2>
<div id="pmtu">
<section id="section-2.1">
        <h3 id="name-links-paths-mtu-and-pmtu">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-links-paths-mtu-and-pmtu" class="section-name selfRef">Links, Paths, MTU, and PMTU</a>
        </h3>
<p id="section-2.1-1">An Internet path connects a source node to a destination node. A
        path may contain links and routers. If a path contains more than one
        link, the links are connected in series, and a router connects each
        link to the next.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">Internet paths are dynamic. Assume that the path from one node
        to another contains a set of links and routers. If a link or a
        router fails, the path can also change so that it includes a
        different set of links and routers.<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<p id="section-2.1-3">
    Each link is constrained by the number of octets that it can convey in
    a single IP packet.  This constraint is called the link Maximum
    Transmission Unit (MTU). <span><a href="#RFC0791" class="xref">IPv4</a> [<a href="#RFC0791" class="xref">RFC0791</a>]</span> 
    requires every link to support an MTU of 68 octets or greater (see <a href="#note-1" class="xref">NOTE 1</a>). 
    <span><a href="#RFC8200" class="xref">IPv6</a> [<a href="#RFC8200" class="xref">RFC8200</a>]</span> similarly requires every link to 
    support an MTU of 1280 octets or greater. These are called the IPv4 and IPv6 minimum link MTUs.<a href="#section-2.1-3" class="pilcrow">¶</a></p>
<p id="section-2.1-4">Some links, and some ways of using links, result in
 additional variable overhead. For the simple case of tunnels,
 this document defers to other documents.  For other cases,
 such as MPLS, this document considers the link MTU to include
 appropriate allowance for any such overhead.<a href="#section-2.1-4" class="pilcrow">¶</a></p>
<p id="section-2.1-5">Likewise, each Internet path is constrained by the number of octets
        that it can convey in a single IP packet. This constraint is called
        the Path MTU (PMTU). For any given path, the PMTU is equal to the
        smallest of its link MTUs. Because Internet paths are dynamic, PMTU
        is also dynamic.<a href="#section-2.1-5" class="pilcrow">¶</a></p>
<p id="section-2.1-6">For reasons described below, source nodes estimate the PMTU between
        themselves and destination nodes. A source node can produce extremely
        conservative PMTU estimates in which:<a href="#section-2.1-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-7.1">The estimate for each IPv4 path is equal to the IPv4 minimum
            link MTU.<a href="#section-2.1-7.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.1-7.2">The estimate for each IPv6 path is equal to the IPv6 minimum
            link MTU.<a href="#section-2.1-7.2" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-2.1-8">While these conservative estimates are guaranteed to be less
        than or equal to the actual PMTU, they are likely to be much less than
        the actual PMTU. This may adversely affect upper-layer protocol
        performance.<a href="#section-2.1-8" class="pilcrow">¶</a></p>
<p id="section-2.1-9">By executing Path MTU Discovery (PMTUD) procedures <span>[<a href="#RFC1191" class="xref">RFC1191</a>]</span>
          <span>[<a href="#RFC8201" class="xref">RFC8201</a>]</span>, a source node can
        maintain a less conservative estimate of the PMTU between itself and a
        destination node. In PMTUD, the source node produces an initial PMTU
        estimate. This initial estimate is equal to the MTU of the first link
        along the path to the destination node. It can be greater than the
        actual PMTU.<a href="#section-2.1-9" class="pilcrow">¶</a></p>
<p id="section-2.1-10">Having produced an initial PMTU estimate, the source node sends
        non-fragmentable IP packets to the destination node (see <a href="#note-2" class="xref">NOTE 2</a>). If
        one of these packets is larger than the actual PMTU, a downstream
        router will not be able to forward the packet through the next link
        along the path. Therefore, the downstream router drops the packet and
        sends an Internet Control Message Protocol (ICMP)
        <span>[<a href="#RFC0792" class="xref">RFC0792</a>]</span> <span>[<a href="#RFC4443" class="xref">RFC4443</a>]</span> Packet Too Big (PTB) message to
        the source node (see <a href="#note-3" class="xref">NOTE 3</a>). The ICMP PTB message indicates the MTU
        of the link through which the packet could not be forwarded. The
        source node uses this information to refine its PMTU estimate.<a href="#section-2.1-10" class="pilcrow">¶</a></p>
<p id="section-2.1-11">PMTUD produces a running estimate of the PMTU between a source node
        and a destination node. Because PMTU is dynamic, the PMTU estimate can
        be larger than the actual PMTU. In order to detect PMTU increases,
        PMTUD occasionally resets the PMTU estimate to its initial value and
        repeats the procedure described above.<a href="#section-2.1-11" class="pilcrow">¶</a></p>
<p id="section-2.1-12">Ideally, PMTUD operates as described above. However, in some
        scenarios, PMTUD fails. For example:<a href="#section-2.1-12" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-13.1">PMTUD relies on the network's ability to deliver ICMP PTB
            messages to the source node. If the network cannot deliver ICMP
            PTB messages to the source node, PMTUD fails.<a href="#section-2.1-13.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.1-13.2">PMTUD is susceptible to attack because ICMP messages are easily
            <span><a href="#RFC5927" class="xref">forged</a> [<a href="#RFC5927" class="xref">RFC5927</a>]</span> and not authenticated by the
            receiver. Such attacks can cause PMTUD to produce unnecessarily
            conservative PMTU estimates.<a href="#section-2.1-13.2" class="pilcrow">¶</a>
</li>
        </ul>
<span class="break"></span><dl class="dlParallel" id="section-2.1-14">
          <dt id="section-2.1-14.1">
<div id="note-1">NOTE 1:</div>
          </dt>
<dd style="margin-left: 1.5em" id="section-2.1-14.2">In IPv4, every host must be able to reassemble a packet 
        whose length is less than or equal to 576 octets. However, the IPv4 minimum 
        link MTU is not 576. Section <a href="https://www.rfc-editor.org/rfc/rfc791#section-3.2" class="relref">3.2</a>
        of <span><a href="#RFC0791" class="xref">RFC 791</a> [<a href="#RFC0791" class="xref">RFC0791</a>]</span> explicitly states 
        that the IPv4 minimum link MTU is 68 octets.<a href="#section-2.1-14.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-2.1-14.3">
<div id="note-2">NOTE 2:</div>
          </dt>
<dd style="margin-left: 1.5em" id="section-2.1-14.4">A non-fragmentable packet can be fragmented at its source.
        However, it cannot be fragmented by a downstream node. An IPv4 packet
        whose Don't Fragment (DF) bit is set to 0 is fragmentable. An IPv4 packet whose
        DF bit is set to 1 is non-fragmentable. All IPv6 packets are also
        non-fragmentable.<a href="#section-2.1-14.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-2.1-14.5">
<div id="note-3">NOTE 3:</div>
          </dt>
<dd style="margin-left: 1.5em" id="section-2.1-14.6">The ICMP PTB message has two instantiations. In <span><a href="#RFC0792" class="xref">ICMPv4</a> [<a href="#RFC0792" class="xref">RFC0792</a>]</span>, the ICMP PTB message is a Destination
        Unreachable message with Code equal to 4 (fragmentation needed and DF 
        set). This message was augmented by <span>[<a href="#RFC1191" class="xref">RFC1191</a>]</span> to
        indicate the MTU of the link through which the packet could not be
        forwarded. In <span><a href="#RFC4443" class="xref">ICMPv6</a> [<a href="#RFC4443" class="xref">RFC4443</a>]</span>, the ICMP PTB
        message is a Packet Too Big Message with Code equal to 0. This
        message also indicates the MTU of the link through which the packet
        could not be forwarded.<a href="#section-2.1-14.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
</section>
</div>
<section id="section-2.2">
        <h3 id="name-fragmentation-procedures">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-fragmentation-procedures" class="section-name selfRef">Fragmentation Procedures</a>
        </h3>
<p id="section-2.2-1">When an upper-layer protocol submits data to the underlying IP
        module, and the resulting IP packet's length is greater than the PMTU,
        the packet is divided into fragments. Each fragment includes an IP
        header and a portion of the original packet.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2"><span>[<a href="#RFC0791" class="xref">RFC0791</a>]</span> describes IPv4 fragmentation procedures.
        An IPv4 packet whose DF bit is set to 1 may be fragmented by the
        source node, but may not be fragmented by a downstream router. An IPv4
        packet whose DF bit is set to 0 may be fragmented by the source
        node or by a downstream router. When an IPv4 packet is fragmented, all
        IP options (which are within the IPv4 header) appear in the first fragment, but only options whose "copy"
        bit is set to 1 appear in subsequent fragments.<a href="#section-2.2-2" class="pilcrow">¶</a></p>
<p id="section-2.2-3"><span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span>, notably in 
        Section <a href="https://www.rfc-editor.org/rfc/rfc8200#section-4.5" class="relref">4.5</a>, describes
 IPv6 fragmentation procedures.  An IPv6 packet may be
 fragmented only at the source node. When an IPv6 packet is
 fragmented, all extension headers appear in the first
 fragment, but only per-fragment headers appear in subsequent
 fragments. Per-fragment headers include the following:<a href="#section-2.2-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.2-4.1">The IPv6 header.<a href="#section-2.2-4.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.2-4.2">The Hop-by-Hop Options header (if present).<a href="#section-2.2-4.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.2-4.3">The Destination Options header (if present and if it precedes a
            Routing header).<a href="#section-2.2-4.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.2-4.4">The Routing header (if present).<a href="#section-2.2-4.4" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.2-4.5">The Fragment header.<a href="#section-2.2-4.5" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-2.2-5">In IPv4, the upper-layer header usually appears in the 
        first fragment, due to the sizes of the headers involved. 
        In IPv6, the upper-layer header must appear in the first fragment.<a href="#section-2.2-5" class="pilcrow">¶</a></p>
</section>
<div id="upper">
<section id="section-2.3">
        <h3 id="name-upper-layer-reliance-on-ip-">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-upper-layer-reliance-on-ip-" class="section-name selfRef">Upper-Layer Reliance on IP Fragmentation</a>
        </h3>
<p id="section-2.3-1">Upper-layer protocols can operate in the following modes:<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.3-2.1">Do not rely on IP fragmentation.<a href="#section-2.3-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.3-2.2">Rely on IP fragmentation by the source node only.<a href="#section-2.3-2.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.3-2.3">Rely on IP fragmentation by any node.<a href="#section-2.3-2.3" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-2.3-3">Upper-layer protocols running over IPv4 can operate in all of the
        above-mentioned modes. Upper-layer protocols running over IPv6 can
        operate in the first and second modes only.<a href="#section-2.3-3" class="pilcrow">¶</a></p>
<p id="section-2.3-4">Upper-layer protocols that operate in the first two modes (above)
        require access to the PMTU estimate. In order to fulfill this
        requirement, they can:<a href="#section-2.3-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.3-5.1">Estimate the PMTU to be equal to the IPv4 or IPv6 minimum link
            MTU.<a href="#section-2.3-5.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.3-5.2">Access the estimate that PMTUD produced.<a href="#section-2.3-5.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.3-5.3">Execute PMTUD procedures themselves.<a href="#section-2.3-5.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.3-5.4">Execute Packetization Layer PMTUD (PLPMTUD) procedures
            <span>[<a href="#RFC4821" class="xref">RFC4821</a>]</span>
            <span>[<a href="#RFC8899" class="xref">RFC8899</a>]</span>.<a href="#section-2.3-5.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-2.3-6">According to PLPMTUD procedures, the upper-layer protocol
        maintains a running PMTU estimate. It does so by sending probe packets
        of various sizes to its upper-layer peer and receiving
        acknowledgements. This strategy differs from PMTUD in that it relies
        on acknowledgement of received messages, as opposed to ICMP PTB
        messages concerning dropped messages. Therefore, PLPMTUD does not rely
        on the network's ability to deliver ICMP PTB messages to the
        source.<a href="#section-2.3-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<section id="section-3">
      <h2 id="name-increased-fragility">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-increased-fragility" class="section-name selfRef">Increased Fragility</a>
      </h2>
<p id="section-3-1">This section explains how IP fragmentation introduces fragility to
      Internet communication.<a href="#section-3-1" class="pilcrow">¶</a></p>
<div id="virtualreassembly">
<section id="section-3.1">
        <h3 id="name-virtual-reassembly">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-virtual-reassembly" class="section-name selfRef">Virtual Reassembly</a>
        </h3>
<p id="section-3.1-1">Virtual reassembly is a procedure in which a device
 conceptually reassembles a packet, forwards its fragments, and discards
 the reassembled copy. In <span><a href="#RFC6346" class="xref">Address plus Port (A+P)</a> [<a href="#RFC6346" class="xref">RFC6346</a>]</span> 
        and <span><a href="#RFC6888" class="xref">Carrier Grade NAT (CGN)</a> [<a href="#RFC6888" class="xref">RFC6888</a>]</span>, virtual reassembly
 is required in order to correctly translate fragment
 addresses.  It could be useful to address the problems in Sections
 <a href="#mb" class="xref">3.2</a>, <a href="#nat" class="xref">3.3</a>, 
        <a href="#statelessfirewall" class="xref">3.4</a>, and <a href="#ecmp" class="xref">3.5</a>.<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<p id="section-3.1-2">Virtual reassembly is computationally expensive and holds 
        state for indeterminate periods of time. Therefore, it is prone 
        to errors and <span><a href="#at" class="xref">attacks</a> (<a href="#at" class="xref">Section 3.7</a>)</span>.<a href="#section-3.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="mb">
<section id="section-3.2">
        <h3 id="name-policy-based-routing">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-policy-based-routing" class="section-name selfRef">Policy-Based Routing</a>
        </h3>
<p id="section-3.2-1">IP fragmentation causes problems for routers that implement
        policy-based routing.<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2-2">When a router receives a packet, it identifies the next hop on
        route to the packet's destination and forwards the packet to that
        next hop. In order to identify the next hop, the router interrogates a
        local data structure called the Forwarding Information Base (FIB).<a href="#section-3.2-2" class="pilcrow">¶</a></p>
<p id="section-3.2-3">Normally, the FIB contains destination-based entries that map a
        destination prefix to a next hop. Policy-based routing allows
        destination-based and policy-based entries to coexist in the same FIB.
        A policy-based FIB entry maps multiple fields, drawn from either the
        IP or transport-layer header, to a next hop.<a href="#section-3.2-3" class="pilcrow">¶</a></p>
<p id="section-3.2-4"></p>
<span id="name-policy-based-routing-fib"></span><div id="FIB">
<table class="center" id="table-1">
          <caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-policy-based-routing-fib" class="selfRef">Policy-Based Routing FIB</a>
          </caption>
<thead>
            <tr>
              <th class="text-center" rowspan="1" colspan="1">Entry</th>
              <th class="text-left" rowspan="1" colspan="1">Type</th>
              <th class="text-left" rowspan="1" colspan="1">Dest. Prefix</th>
              <th class="text-left" rowspan="1" colspan="1">Next Hdr / Dest. Port</th>
              <th class="text-left" rowspan="1" colspan="1">Next Hop</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-center" rowspan="1" colspan="1">1</td>
              <td class="text-left" rowspan="1" colspan="1">Destination-based</td>
              <td class="text-left" rowspan="1" colspan="1">2001:db8::1/128</td>
              <td class="text-left" rowspan="1" colspan="1">Any / Any</td>
              <td class="text-left" rowspan="1" colspan="1">2001:db8:2::2</td>
            </tr>
            <tr>
              <td class="text-center" rowspan="1" colspan="1">2</td>
              <td class="text-left" rowspan="1" colspan="1">Policy-based</td>
              <td class="text-left" rowspan="1" colspan="1">2001:db8::1/128</td>
              <td class="text-left" rowspan="1" colspan="1">TCP / 80</td>
              <td class="text-left" rowspan="1" colspan="1">2001:db8:3::3</td>
            </tr>
          </tbody>
        </table>
</div>
<p id="section-3.2-6">Assume that a router maintains the FIB in <a href="#FIB" class="xref">Table 1</a>. The
        first FIB entry is destination-based. It maps a destination prefix
        2001:db8::1/128 to a next hop 2001:db8:2::2. The second FIB entry is
        policy-based. It maps the same destination prefix 2001:db8::1/128
        and a destination port (TCP / 80) to a different next hop
        (2001:db8:3::3). The second entry is more specific than the first.<a href="#section-3.2-6" class="pilcrow">¶</a></p>
<p id="section-3.2-7">When the router receives the first fragment of a packet that is
        destined for TCP port 80 on 2001:db8::1, it interrogates the FIB. Both
        FIB entries satisfy the query. The router selects the second FIB entry
        because it is more specific and forwards the packet to
        2001:db8:3::3.<a href="#section-3.2-7" class="pilcrow">¶</a></p>
<p id="section-3.2-8">When the router receives the second fragment of the packet, it
        interrogates the FIB again. This time, only the first FIB entry
        satisfies the query, because the second fragment contains no
        indication that the packet is destined for TCP port 80. Therefore, the
        router selects the first FIB entry and forwards the packet to
        2001:db8:2::2.<a href="#section-3.2-8" class="pilcrow">¶</a></p>
<p id="section-3.2-9">Policy-based routing is also known as filter-based forwarding.<a href="#section-3.2-9" class="pilcrow">¶</a></p>
</section>
</div>
<div id="nat">
<section id="section-3.3">
        <h3 id="name-network-address-translation">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-network-address-translation" class="section-name selfRef">Network Address Translation (NAT)</a>
        </h3>
<p id="section-3.3-1">IP fragmentation causes problems for Network Address Translation
        (NAT) devices. When a NAT device detects a new, outbound flow, it maps
        that flow's source port and IP address to another source port and IP
        address. Having created that mapping, the NAT device translates:<a href="#section-3.3-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.3-2.1">The source IP address and source port on each outbound
            packet.<a href="#section-3.3-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.3-2.2">The destination IP address and destination port on each inbound
            packet.<a href="#section-3.3-2.2" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.3-3"></p>
<p id="section-3.3-4"><span><a href="#RFC6346" class="xref">A+P</a> [<a href="#RFC6346" class="xref">RFC6346</a>]</span> and 
        <span><a href="#RFC6888" class="xref">Carrier Grade NAT (CGN)</a> [<a href="#RFC6888" class="xref">RFC6888</a>]</span> 
        are two common NAT strategies. In both approaches, the NAT device must virtually
        reassemble fragmented packets in order to translate and forward each
        fragment.<a href="#section-3.3-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="statelessfirewall">
<section id="section-3.4">
        <h3 id="name-stateless-firewalls">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-stateless-firewalls" class="section-name selfRef">Stateless Firewalls</a>
        </h3>
<p id="section-3.4-1">As discussed in more detail in <a href="#at" class="xref">Section 3.7</a>, IP
        fragmentation causes problems for stateless firewalls whose rules
        include TCP and UDP ports. Because port information is only
 available in the first fragment and not available
        in the subsequent fragments, the firewall is limited to the following
        options:<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.4-2.1">Accept all subsequent fragments, possibly admitting certain
            classes of attack.<a href="#section-3.4-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.4-2.2">Block all subsequent fragments, possibly blocking legitimate
            traffic.<a href="#section-3.4-2.2" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.4-3">Neither option is attractive.<a href="#section-3.4-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ecmp">
<section id="section-3.5">
        <h3 id="name-equal-cost-multipath-link-a">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-equal-cost-multipath-link-a" class="section-name selfRef">Equal-Cost Multipath, Link Aggregate Groups, and Stateless Load Balancers</a>
        </h3>
<p id="section-3.5-1">IP fragmentation causes problems for Equal-Cost Multipath (ECMP),
        Link Aggregate Groups (LAG), and other stateless load-distribution
        technologies. In order to assign a packet or packet fragment to a
        link, an intermediate node executes a hash (i.e., load-distributing)
        algorithm. The following paragraphs describe a commonly deployed hash
        algorithm.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
<p id="section-3.5-2">If the packet or packet fragment contains a transport-layer header,
        the algorithm accepts the following 5-tuple as input:<a href="#section-3.5-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5-3.1">IP Source Address.<a href="#section-3.5-3.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.5-3.2">IP Destination Address.<a href="#section-3.5-3.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.5-3.3">IPv4 Protocol or IPv6 Next Header.<a href="#section-3.5-3.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.5-3.4">transport-layer source port.<a href="#section-3.5-3.4" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.5-3.5">transport-layer destination port.<a href="#section-3.5-3.5" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.5-4">If the packet or packet fragment does not contain a
        transport-layer header, the algorithm accepts only the following
        3-tuple as input:<a href="#section-3.5-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5-5.1">IP Source Address.<a href="#section-3.5-5.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.5-5.2">IP Destination Address.<a href="#section-3.5-5.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.5-5.3">IPv4 Protocol or IPv6 Next Header.<a href="#section-3.5-5.3" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.5-6">Therefore, non-fragmented packets belonging to a flow can be
        assigned to one link while fragmented packets belonging to the same
        flow can be divided between that link and another. This can cause
        suboptimal load distribution.<a href="#section-3.5-6" class="pilcrow">¶</a></p>
<p id="section-3.5-7"><span>[<a href="#RFC6438" class="xref">RFC6438</a>]</span> offers a partial solution to this problem
        for IPv6 devices only. According to <span>[<a href="#RFC6438" class="xref">RFC6438</a>]</span>:<a href="#section-3.5-7" class="pilcrow">¶</a></p>
<blockquote id="section-3.5-8">At intermediate routers that perform load distribution, the hash
        algorithm used to determine the outgoing component-link in an ECMP
        and/or LAG toward the next hop <span class="bcp14">MUST</span> minimally include the 3-tuple
        {dest addr, source addr, flow label} and <span class="bcp14">MAY</span> also include the
        remaining components of the 5-tuple.<a href="#section-3.5-8" class="pilcrow">¶</a>
</blockquote>
<p id="section-3.5-9">If the algorithm includes only the 3-tuple {dest addr, source addr,
        flow label}, it will assign all fragments belonging to a packet to the
        same link. (See <span>[<a href="#RFC6437" class="xref">RFC6437</a>]</span> and <span>[<a href="#RFC7098" class="xref">RFC7098</a>]</span>).<a href="#section-3.5-9" class="pilcrow">¶</a></p>
<p id="section-3.5-10">In order to avoid the problem described above, implementations
        <span class="bcp14">SHOULD</span> implement the recommendations provided in <a href="#lagrec" class="xref">Section 6.4</a> of this document.<a href="#section-3.5-10" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.6">
        <h3 id="name-ipv4-reassembly-errors-at-h">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-ipv4-reassembly-errors-at-h" class="section-name selfRef">IPv4 Reassembly Errors at High Data Rates</a>
        </h3>
<p id="section-3.6-1">IPv4 fragmentation is not sufficiently robust for use under some
        conditions in today's Internet. At high data rates, the 16-bit IP
        identification field is not large enough to prevent duplicate IDs, resulting in frequent
        incorrectly assembled IP fragments, and the TCP and UDP checksums are
        insufficient to prevent the resulting corrupted datagrams from being
        delivered to upper-layer protocols. <span>[<a href="#RFC4963" class="xref">RFC4963</a>]</span>
        describes some easily reproduced experiments demonstrating the
        problem and discusses some of the operational implications of these
        observations.<a href="#section-3.6-1" class="pilcrow">¶</a></p>
<p id="section-3.6-2">These reassembly issues do not occur as frequently in IPv6 because
        the IPv6 identification field is 32 bits long.<a href="#section-3.6-2" class="pilcrow">¶</a></p>
</section>
<div id="at">
<section id="section-3.7">
        <h3 id="name-security-vulnerabilities">
<a href="#section-3.7" class="section-number selfRef">3.7. </a><a href="#name-security-vulnerabilities" class="section-name selfRef">Security Vulnerabilities</a>
        </h3>
<p id="section-3.7-1">Security researchers have documented several attacks that exploit
        IP fragmentation. The following are examples:<a href="#section-3.7-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.7-2.1">Overlapping fragment attacks <span>[<a href="#RFC1858" class="xref">RFC1858</a>]</span>
            <span>[<a href="#RFC3128" class="xref">RFC3128</a>]</span> <span>[<a href="#RFC5722" class="xref">RFC5722</a>]</span>.<a href="#section-3.7-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.7-2.2">Resource exhaustion attacks.<a href="#section-3.7-2.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.7-2.3">Attacks based on predictable fragment identification values
            <span>[<a href="#RFC7739" class="xref">RFC7739</a>]</span>.<a href="#section-3.7-2.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.7-2.4">Evasion of Network Intrusion Detection Systems (NIDS) <span>[<a href="#Ptacek1998" class="xref">Ptacek1998</a>]</span>.<a href="#section-3.7-2.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.7-3">In the overlapping fragment attack, an attacker constructs a series
        of packet fragments. The first fragment contains an IP header, a
        transport-layer header, and some transport-layer payload. This
        fragment complies with local security policy and is allowed to pass
        through a stateless firewall. A second fragment, having a nonzero
        offset, overlaps with the first fragment. The second fragment also
        passes through the stateless firewall. When the packet is reassembled,
        the transport-layer header from the first fragment is overwritten by
        data from the second fragment. The reassembled packet does not comply
        with local security policy. Had it traversed the firewall in one
        piece, the firewall would have rejected it.<a href="#section-3.7-3" class="pilcrow">¶</a></p>
<p id="section-3.7-4">A stateless firewall cannot protect against the overlapping
        fragment attack. However, destination nodes can protect against the
        overlapping fragment attack by implementing the procedures described
        in RFC 1858, RFC 3128, and RFC 8200. These reassembly procedures detect
        the overlap and discard the packet.<a href="#section-3.7-4" class="pilcrow">¶</a></p>
<p id="section-3.7-5">The fragment reassembly algorithm is a stateful procedure in an
        otherwise stateless protocol. Therefore, it can be exploited by
        resource exhaustion attacks. An attacker can construct a series of
        fragmented packets with one fragment missing from each packet so that
        the reassembly is impossible. Thus, this attack causes resource
        exhaustion on the destination node, possibly denying reassembly
        services to other flows. This type of attack can be mitigated by
        flushing fragment reassembly buffers when necessary, at the expense of
        possibly dropping legitimate fragments.<a href="#section-3.7-5" class="pilcrow">¶</a></p>
<p id="section-3.7-6">Each IP fragment contains an "Identification" field that
        destination nodes use to reassemble fragmented packets. Some
        implementations set the Identification field to a predictable value,
        thus making it easy for an attacker to forge malicious IP fragments
        that would cause the reassembly procedure for legitimate packets to
        fail.<a href="#section-3.7-6" class="pilcrow">¶</a></p>
<p id="section-3.7-7">NIDS aims at identifying malicious activity by analyzing network
        traffic. Ambiguity in the possible result of the fragment reassembly
        process may allow an attacker to evade these systems. Many of these
        systems try to mitigate some of these evasion techniques (e.g., by
        computing all possible outcomes of the fragment reassembly process, at
        the expense of increased processing requirements).<a href="#section-3.7-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="PTB">
<section id="section-3.8">
        <h3 id="name-pmtu-black-holing-due-to-ic">
<a href="#section-3.8" class="section-number selfRef">3.8. </a><a href="#name-pmtu-black-holing-due-to-ic" class="section-name selfRef">PMTU Black-Holing Due to ICMP Loss</a>
        </h3>
<p id="section-3.8-1">As mentioned in <a href="#upper" class="xref">Section 2.3</a>, upper-layer protocols can
        be configured to rely on PMTUD. Because PMTUD relies upon the network
        to deliver ICMP PTB messages, those protocols also rely on the
        networks to deliver ICMP PTB messages.<a href="#section-3.8-1" class="pilcrow">¶</a></p>
<p id="section-3.8-2">According to <span>[<a href="#RFC4890" class="xref">RFC4890</a>]</span>, ICMPv6 PTB messages must not
        be filtered. However, ICMP PTB delivery is not reliable. It is subject
        to both transient and persistent loss.<a href="#section-3.8-2" class="pilcrow">¶</a></p>
<p id="section-3.8-3">Transient loss of ICMP PTB messages can cause transient PMTU black
        holes. When the conditions contributing to transient loss abate, the
        network regains its ability to deliver ICMP PTB messages and
        connectivity between the source and destination nodes is restored.
        <a href="#transLoss" class="xref">Section 3.8.1</a> of this document describes conditions that
        lead to transient loss of ICMP PTB messages.<a href="#section-3.8-3" class="pilcrow">¶</a></p>
<p id="section-3.8-4">Persistent loss of ICMP PTB messages can cause persistent black
        holes. Sections <a href="#CPE" class="xref">3.8.2</a>, <a href="#Anycast" class="xref">3.8.3</a>, 
        and <a href="#unidirectional" class="xref">3.8.4</a> of this document describe conditions that
        lead to persistent loss of ICMP PTB messages.<a href="#section-3.8-4" class="pilcrow">¶</a></p>
<p id="section-3.8-5">The problem described in this section is specific to PMTUD. It does
        not occur when the upper-layer protocol obtains its PMTU estimate from
        PLPMTUD or from any other source.<a href="#section-3.8-5" class="pilcrow">¶</a></p>
<div id="transLoss">
<section id="section-3.8.1">
          <h4 id="name-transient-loss">
<a href="#section-3.8.1" class="section-number selfRef">3.8.1. </a><a href="#name-transient-loss" class="section-name selfRef">Transient Loss</a>
          </h4>
<p id="section-3.8.1-1">The following factors can contribute to transient loss of ICMP
          PTB messages:<a href="#section-3.8.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.8.1-2.1">Network congestion.<a href="#section-3.8.1-2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.8.1-2.2">Packet corruption.<a href="#section-3.8.1-2.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.8.1-2.3">Transient routing loops.<a href="#section-3.8.1-2.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.8.1-2.4">ICMP rate limiting.<a href="#section-3.8.1-2.4" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.8.1-3">The effect of rate limiting may be severe, as RFC 4443 recommends
          strict rate limiting of ICMPv6 traffic.<a href="#section-3.8.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="CPE">
<section id="section-3.8.2">
          <h4 id="name-incorrect-implementation-of">
<a href="#section-3.8.2" class="section-number selfRef">3.8.2. </a><a href="#name-incorrect-implementation-of" class="section-name selfRef">Incorrect Implementation of Security Policy</a>
          </h4>
<p id="section-3.8.2-1">Incorrect implementation of security policy can cause persistent
          loss of ICMP PTB messages.<a href="#section-3.8.2-1" class="pilcrow">¶</a></p>
<p id="section-3.8.2-2">For example, assume that a Customer Premises Equipment (CPE) router implements
          the following zone-based security policy:<a href="#section-3.8.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.8.2-3.1">Allow any traffic to flow from the inside zone to the outside
              zone.<a href="#section-3.8.2-3.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.8.2-3.2">Do not allow any traffic to flow from the outside zone to the
              inside zone unless it is part of an existing flow (i.e., it was
              elicited by an outbound packet).<a href="#section-3.8.2-3.2" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.8.2-4">When a correct implementation of the above-mentioned
          security policy receives an ICMP PTB message, it examines the ICMP
          PTB payload in order to determine whether the original packet (i.e.,
          the packet that elicited the ICMP PTB message) belonged to an
          existing flow. If the original packet belonged to an existing flow,
          the implementation allows the ICMP PTB to flow from the outside zone
          to the inside zone. If not, the implementation discards the ICMP PTB
          message.<a href="#section-3.8.2-4" class="pilcrow">¶</a></p>
<p id="section-3.8.2-5">When an incorrect implementation of the above-mentioned security
          policy receives an ICMP PTB message, it discards the packet because
          its source address is not associated with an existing flow.<a href="#section-3.8.2-5" class="pilcrow">¶</a></p>
<p id="section-3.8.2-6">The security policy described above has been implemented incorrectly on
             many consumer CPE routers.<a href="#section-3.8.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Anycast">
<section id="section-3.8.3">
          <h4 id="name-persistent-loss-caused-by-a">
<a href="#section-3.8.3" class="section-number selfRef">3.8.3. </a><a href="#name-persistent-loss-caused-by-a" class="section-name selfRef">Persistent Loss Caused by Anycast</a>
          </h4>
<p id="section-3.8.3-1">Anycast can cause persistent loss of ICMP PTB messages. Consider
          the example below:<a href="#section-3.8.3-1" class="pilcrow">¶</a></p>
<p id="section-3.8.3-2">A DNS client sends a request to an anycast address. The network
          routes that DNS request to the nearest instance of that anycast
          address (i.e., a DNS server). The DNS server generates a response
          and sends it back to the DNS client. While the response does not
          exceed the DNS server's PMTU estimate, it does exceed the actual
          PMTU.<a href="#section-3.8.3-2" class="pilcrow">¶</a></p>
<p id="section-3.8.3-3">A downstream router drops the packet and sends an ICMP PTB
          message the packet's source (i.e., the anycast address). The network
          routes the ICMP PTB message to the anycast instance closest to the
          downstream router. That anycast instance may not be the DNS server
          that originated the DNS response. It may be another DNS server with
          the same anycast address. The DNS server that originated the
          response may never receive the ICMP PTB message and may never update
          its PMTU estimate.<a href="#section-3.8.3-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="unidirectional">
<section id="section-3.8.4">
          <h4 id="name-persistent-loss-caused-by-u">
<a href="#section-3.8.4" class="section-number selfRef">3.8.4. </a><a href="#name-persistent-loss-caused-by-u" class="section-name selfRef">Persistent Loss Caused by Unidirectional Routing</a>
          </h4>
<p id="section-3.8.4-1">Unidirectional routing can cause persistent loss of ICMP PTB
          messages. Consider the example below:<a href="#section-3.8.4-1" class="pilcrow">¶</a></p>
<p id="section-3.8.4-2">A source node sends a packet to a destination node. All
          intermediate nodes maintain a route to the destination node but do
          not maintain a route to the source node. In this case, when an
          intermediate node encounters an MTU issue, it cannot send an ICMP
          PTB message to the source node.<a href="#section-3.8.4-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<section id="section-3.9">
        <h3 id="name-black-holing-due-to-filteri">
<a href="#section-3.9" class="section-number selfRef">3.9. </a><a href="#name-black-holing-due-to-filteri" class="section-name selfRef">Black-Holing Due to Filtering or Loss</a>
        </h3>
<p id="section-3.9-1">In RFC 7872, researchers sampled Internet paths to determine
        whether they would convey packets that contain IPv6 extension headers.
        Sampled paths terminated at popular Internet sites (e.g., popular web,
        mail, and DNS servers).<a href="#section-3.9-1" class="pilcrow">¶</a></p>
<p id="section-3.9-2">The study revealed that at least 28% of the sampled paths did not
        convey packets containing the IPv6 Fragment extension header. In most
        cases, fragments were dropped in the destination autonomous system. In
        other cases, the fragments were dropped in transit autonomous
        systems.<a href="#section-3.9-2" class="pilcrow">¶</a></p>
<p id="section-3.9-3">Another <span><a href="#Huston" class="xref">study</a> [<a href="#Huston" class="xref">Huston</a>]</span> confirmed this
        finding. It reported that 37% of sampled endpoints used IPv6-capable
        DNS resolvers that were incapable of receiving a fragmented IPv6
        response.<a href="#section-3.9-3" class="pilcrow">¶</a></p>
<p id="section-3.9-4">It is difficult to determine why network operators drop fragments.
        Possible causes follow:<a href="#section-3.9-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.9-5.1">Hardware inability to process fragmented packets.<a href="#section-3.9-5.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.9-5.2">Failure to change vendor defaults.<a href="#section-3.9-5.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.9-5.3">Unintentional misconfiguration.<a href="#section-3.9-5.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.9-5.4">Intentional configuration (e.g., network operators consciously
            chooses to drop IPv6 fragments in order to address the issues
            raised in Sections <a href="#mb" class="xref">3.2</a> through <a href="#PTB" class="xref">3.8</a>,
            above.)<a href="#section-3.9-5.4" class="pilcrow">¶</a>
</li>
        </ul>
</section>
</section>
<section id="section-4">
      <h2 id="name-alternatives-to-ip-fragment">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-alternatives-to-ip-fragment" class="section-name selfRef">Alternatives to IP Fragmentation</a>
      </h2>
<p id="section-4-1"></p>
<section id="section-4.1">
        <h3 id="name-transport-layer-solutions">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-transport-layer-solutions" class="section-name selfRef">Transport-Layer Solutions</a>
        </h3>
<p id="section-4.1-1">The <span><a href="#RFC0793" class="xref">Transport Control Protocol (TCP)</a> [<a href="#RFC0793" class="xref">RFC0793</a>]</span>)
        can be operated in a mode that does not require IP fragmentation.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">Applications submit a stream of data to TCP. TCP divides that
        stream of data into segments, with no segment exceeding the TCP
        Maximum Segment Size (MSS). Each segment is encapsulated in a TCP
        header and submitted to the underlying IP module. The underlying IP
        module prepends an IP header and forwards the resulting packet.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">If the TCP MSS is sufficiently small, then the underlying IP module
        never produces a packet whose length is greater than the actual PMTU.
        Therefore, IP fragmentation is not required.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1-4">TCP offers the following mechanisms for MSS management:<a href="#section-4.1-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.1">Manual configuration.<a href="#section-4.1-5.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.1-5.2">PMTUD.<a href="#section-4.1-5.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.1-5.3">PLPMTUD.<a href="#section-4.1-5.3" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-4.1-6">Manual configuration is always applicable. If the MSS is configured
        to a sufficiently low value, the IP layer will never produce a packet
        whose length is greater than the protocol minimum link MTU. However,
        manual configuration prevents TCP from taking advantage of larger link
        MTUs.<a href="#section-4.1-6" class="pilcrow">¶</a></p>
<p id="section-4.1-7">Upper-layer protocols can implement PMTUD in order to discover and
        take advantage of larger Path MTUs. However, as mentioned in 
        <a href="#pmtu" class="xref">Section 2.1</a>, PMTUD relies upon the network to deliver ICMP PTB
        messages. Therefore, PMTUD can only provide an estimate of the PMTU in
        environments where the risk of ICMP PTB loss is acceptable (e.g.,
        known to not be filtered).<a href="#section-4.1-7" class="pilcrow">¶</a></p>
<p id="section-4.1-8">By contrast, PLPMTUD does not rely upon the network's ability to
        deliver ICMP PTB messages. It utilizes probe messages sent as TCP
        segments to determine whether the probed PMTU can be successfully used
        across the network path. In PLPMTUD, probing is separated from
        congestion control, so that loss of a TCP probe segment does not cause
        a reduction of the congestion control window. <span>[<a href="#RFC4821" class="xref">RFC4821</a>]</span>
        defines PLPMTUD procedures for TCP.<a href="#section-4.1-8" class="pilcrow">¶</a></p>
<p id="section-4.1-9">While TCP will never knowingly cause the underlying IP module to
        emit a packet that is larger than the PMTU estimate, it can cause the
        underlying IP module to emit a packet that is larger than the actual
        PMTU. For example, if routing changes and as a result the PMTU becomes
        smaller, TCP will not know until the ICMP PTB message arrives. If this
        occurs, the packet is dropped, the PMTU estimate is updated, the
        segment is divided into smaller segments, and each smaller segment is
        submitted to the underlying IP module.<a href="#section-4.1-9" class="pilcrow">¶</a></p>
<p id="section-4.1-10">The <span><a href="#RFC4340" class="xref">Datagram Congestion Control Protocol
        (DCCP)</a> [<a href="#RFC4340" class="xref">RFC4340</a>]</span> and the <span><a href="#RFC4960" class="xref">Stream Control Transmission
        Protocol (SCTP)</a> [<a href="#RFC4960" class="xref">RFC4960</a>]</span> also can be operated in a mode that does not
        require IP fragmentation. They both accept data from an application
        and divide that data into segments, with no segment exceeding a
        maximum size.<a href="#section-4.1-10" class="pilcrow">¶</a></p>
<p id="section-4.1-11">DCCP offers manual configuration,
        PMTUD, and PLPMTUD as mechanisms for managing that maximum size.
        Datagram protocols can also implement PLPMTUD to estimate the PMTU
        via <span>[<a href="#RFC8899" class="xref">RFC8899</a>]</span>. This proposes
        procedures for performing PLPMTUD with UDP, UDP options, SCTP, QUIC,
        and other datagram protocols.<a href="#section-4.1-11" class="pilcrow">¶</a></p>
<p id="section-4.1-12">Currently, <span><a href="#RFC0768" class="xref">User Datagram Protocol (UDP)</a> [<a href="#RFC0768" class="xref">RFC0768</a>]</span>
        lacks a fragmentation mechanism of its own and relies on IP
        fragmentation. However, <span>[<a href="#I-D.ietf-tsvwg-udp-options" class="xref">UDP-OPTIONS</a>]</span>
        proposes a fragmentation mechanism for UDP.<a href="#section-4.1-12" class="pilcrow">¶</a></p>
</section>
<section id="section-4.2">
        <h3 id="name-application-layer-solutions">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-application-layer-solutions" class="section-name selfRef">Application-Layer Solutions</a>
        </h3>
<p id="section-4.2-1"><span>[<a href="#RFC8085" class="xref">RFC8085</a>]</span> recognizes that IP fragmentation reduces
        the reliability of Internet communication. It also recognizes that UDP
        lacks a fragmentation mechanism of its own and relies on IP
        fragmentation. Therefore, <span>[<a href="#RFC8085" class="xref">RFC8085</a>]</span> offers the
        following advice regarding applications the run over the UDP:<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<blockquote id="section-4.2-2">An application <span class="bcp14">SHOULD NOT</span> send UDP datagrams that result in IP
        packets that exceed the Maximum Transmission Unit (MTU) along the path
        to the destination. Consequently, an application <span class="bcp14">SHOULD</span> either use the
        path MTU information provided by the IP layer or implement Path MTU
        Discovery (PMTUD) itself <span>[<a href="#RFC1191" class="xref">RFC1191</a>]</span>
          <span>[<a href="#RFC1981" class="xref">RFC1981</a>]</span> <span>[<a href="#RFC4821" class="xref">RFC4821</a>]</span> to determine whether the path to a
        destination will support its desired message size without
        fragmentation.<a href="#section-4.2-2" class="pilcrow">¶</a>
</blockquote>
<p id="section-4.2-3">RFC 8085 continues:<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<blockquote id="section-4.2-4">Applications that do not follow the recommendation to do
        PMTU/PLPMTUD discovery <span class="bcp14">SHOULD</span> still avoid sending UDP datagrams that
        would result in IP packets that exceed the path MTU. Because the
        actual path MTU is unknown, such applications <span class="bcp14">SHOULD</span> fall back to
        sending messages that are shorter than the default effective MTU for
        sending (EMTU_S in <span>[<a href="#RFC1122" class="xref">RFC1122</a>]</span>). For IPv4, EMTU_S is the
        smaller of 576 bytes and the first-hop MTU <span>[<a href="#RFC1122" class="xref">RFC1122</a>]</span>.  For IPv6, EMTU_S is 1280
        bytes <span>[<a href="#RFC2460" class="xref">RFC2460</a>]</span>. The effective PMTU for a directly
        connected destination (with no routers on the path) is the configured
        interface MTU, which could be less than the maximum link payload size.
        Transmission of minimum-sized UDP datagrams is inefficient over paths
        that support a larger PMTU, which is a second reason to implement PMTU
        discovery.<a href="#section-4.2-4" class="pilcrow">¶</a>
</blockquote>
<p id="section-4.2-5">RFC 8085 assumes that for IPv4 an EMTU_S of 576 is sufficiently
        small to be supported by most current Internet
        paths, even though the IPv4 minimum link MTU is 68 octets.<a href="#section-4.2-5" class="pilcrow">¶</a></p>
<p id="section-4.2-6">This advice applies equally to any application that runs directly
        over IP.<a href="#section-4.2-6" class="pilcrow">¶</a></p>
</section>
</section>
<div id="rely">
<section id="section-5">
      <h2 id="name-applications-that-rely-on-i">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-applications-that-rely-on-i" class="section-name selfRef">Applications That Rely on IPv6 Fragmentation</a>
      </h2>
<p id="section-5-1">The following applications rely on IPv6 fragmentation:<a href="#section-5-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5-2.1">
          <span><a href="#RFC1035" class="xref">DNS</a> [<a href="#RFC1035" class="xref">RFC1035</a>]</span>.<a href="#section-5-2.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-5-2.2">
          <span><a href="#RFC2328" class="xref">OSPFv2</a> [<a href="#RFC2328" class="xref">RFC2328</a>]</span>.<a href="#section-5-2.2" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-5-2.3">
          <span><a href="#RFC5340" class="xref">OSPFv3</a> [<a href="#RFC5340" class="xref">RFC5340</a>]</span>.<a href="#section-5-2.3" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-5-2.4">Packet-in-packet encapsulations.<a href="#section-5-2.4" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-5-3">Each of these applications relies on IPv6 fragmentation to a
      varying degree. In some cases, that reliance is essential and cannot be
      broken without fundamentally changing the protocol. In other cases, that
      reliance is incidental, and most implementations already take
      appropriate steps to avoid fragmentation.<a href="#section-5-3" class="pilcrow">¶</a></p>
<p id="section-5-4">This list is not comprehensive, and other protocols that rely on IP
      fragmentation may exist. They are not specifically considered in the
      context of this document.<a href="#section-5-4" class="pilcrow">¶</a></p>
<section id="section-5.1">
        <h3 id="name-domain-name-service-dns">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-domain-name-service-dns" class="section-name selfRef">Domain Name Service (DNS)</a>
        </h3>
<p id="section-5.1-1">DNS relies on UDP for efficiency, and the consequence is the use of
        IP fragmentation for large responses, as permitted by the Extension Mechanisms for DNS (EDNS0)
        options in the query. It is possible to mitigate the issue of
        fragmentation-based packet loss by having queries use smaller EDNS0
        UDP buffer sizes or by having the DNS server limit the size of its
        UDP responses to some self-imposed maximum packet size that may be
        less than the preferred EDNS0 UDP buffer size. In both cases, large
        responses are truncated in the DNS, signaling to the client to
        re-query using TCP to obtain the complete response. However, the
        operational issue of the partial level of support for DNS over TCP,
        particularly in the case where IPv6 transport is being used, becomes a
        limiting factor of the efficacy of this approach <span>[<a href="#Damas" class="xref">Damas</a>]</span>.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<p id="section-5.1-2">Larger DNS responses can normally be avoided by aggressively
        pruning the Additional section of DNS responses. One scenario where
        such pruning is ineffective is in the use of DNSSEC, where large key
        sizes act to increase the response size to certain DNS queries. There
        is no effective response to this situation within the DNS other than
        using smaller cryptographic keys and adopting of DNSSEC administrative
        practices that attempt to keep DNS response as short as possible.<a href="#section-5.1-2" class="pilcrow">¶</a></p>
</section>
<section id="section-5.2">
        <h3 id="name-open-shortest-path-first-os">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-open-shortest-path-first-os" class="section-name selfRef">Open Shortest Path First (OSPF)</a>
        </h3>
<p id="section-5.2-1">OSPF implementations can emit messages large enough to cause
        fragmentation. However, in order to optimize performance, most OSPF
        implementations restrict their maximum message size to a value that
        will not cause fragmentation.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
</section>
<section id="section-5.3">
        <h3 id="name-packet-in-packet-encapsulat">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-packet-in-packet-encapsulat" class="section-name selfRef">Packet-in-Packet Encapsulations</a>
        </h3>
<p id="section-5.3-1"> This document acknowledges that in some cases, packets must
 be fragmented within IP-in-IP tunnels.  Therefore, this document
 makes no additional recommendations regarding IP-in-IP
 tunnels.<a href="#section-5.3-1" class="pilcrow">¶</a></p>
<p id="section-5.3-2">In this document, packet-in-packet encapsulations include 
        <span><a href="#RFC2003" class="xref">IP-in-IP</a> [<a href="#RFC2003" class="xref">RFC2003</a>]</span>, 
        <span><a href="#RFC2784" class="xref">Generic Routing Encapsulation (GRE)</a> [<a href="#RFC2784" class="xref">RFC2784</a>]</span>, 
        <span><a href="#RFC8086" class="xref">GRE-in-UDP</a> [<a href="#RFC8086" class="xref">RFC8086</a>]</span>, and 
        <span><a href="#RFC2473" class="xref">Generic Packet Tunneling in IPv6</a> [<a href="#RFC2473" class="xref">RFC2473</a>]</span>. 
        <span>[<a href="#RFC4459" class="xref">RFC4459</a>]</span> describes
        fragmentation issues associated with all of the above-mentioned
        encapsulations.<a href="#section-5.3-2" class="pilcrow">¶</a></p>
<p id="section-5.3-3">The fragmentation strategy described for GRE in 
        <span>[<a href="#RFC7588" class="xref">RFC7588</a>]</span> has been deployed for all of the above-mentioned
        encapsulations. This strategy does not rely on IP fragmentation except
        in one corner case. 
        (See <span><a href="https://www.rfc-editor.org/rfc/rfc7588#section-3.3.2.2" class="relref">Section 3.3.2.2</a> of [<a href="#RFC7588" class="xref">RFC7588</a>]</span> 
        and <span><a href="https://www.rfc-editor.org/rfc/rfc2473#section-7.1" class="relref">Section 7.1</a> of [<a href="#RFC2473" class="xref">RFC2473</a>]</span>.) 
        <span><a href="https://www.rfc-editor.org/rfc/rfc7676#section-3.3" class="relref">Section 3.3</a> of [<a href="#RFC7676" class="xref">RFC7676</a>]</span> further
        describes this corner case.<a href="#section-5.3-3" class="pilcrow">¶</a></p>
<p id="section-5.3-4">See <span>[<a href="#I-D.ietf-intarea-tunnels" class="xref">TUNNELS</a>]</span> for further
        discussion.<a href="#section-5.3-4" class="pilcrow">¶</a></p>
</section>
<section id="section-5.4">
        <h3 id="name-udp-applications-enhancing-">
<a href="#section-5.4" class="section-number selfRef">5.4. </a><a href="#name-udp-applications-enhancing-" class="section-name selfRef">UDP Applications Enhancing Performance</a>
        </h3>
<p id="section-5.4-1">Some UDP applications rely on IP fragmentation to achieve
        acceptable levels of performance. These applications use UDP datagram
        sizes that are larger than the Path MTU so that more data can be
        conveyed between the application and the kernel in a single system
        call.<a href="#section-5.4-1" class="pilcrow">¶</a></p>
<p id="section-5.4-2">To pick one example, the <span><a href="#RFC5326" class="xref">Licklider
        Transmission Protocol (LTP)</a> [<a href="#RFC5326" class="xref">RFC5326</a>]</span>, which is in current use on the
        International Space Station (ISS), uses UDP datagram sizes larger than
        the Path MTU to achieve acceptable levels of performance even though
        this invokes IP fragmentation. More generally, SNMP and video
        applications may transmit an application-layer quantum of data,
        depending on the network layer to fragment and reassemble as
        needed.<a href="#section-5.4-2" class="pilcrow">¶</a></p>
<p id="section-5.4-3"></p>
</section>
</section>
</div>
<section id="section-6">
      <h2 id="name-recommendations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-recommendations" class="section-name selfRef">Recommendations</a>
      </h2>
<p id="section-6-1"></p>
<section id="section-6.1">
        <h3 id="name-for-application-and-protoco">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-for-application-and-protoco" class="section-name selfRef">For Application and Protocol Developers</a>
        </h3>
<p id="section-6.1-1">Developers <span class="bcp14">SHOULD NOT</span> develop new protocols or applications that
        rely on IP fragmentation. When a new protocol or application is
        deployed in an environment that does not fully support IP
        fragmentation, it <span class="bcp14">SHOULD</span> operate correctly, either in its default
        configuration or in a specified alternative configuration.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">While there may be controlled environments where IP
 fragmentation 
        works reliably, this is a deployment issue and can not be known
        to someone developing a new protocol or application.  It is not
        recommended that new protocols or applications be developed that
        rely on IP fragmentation.   
 Protocols and
        applications that rely on IP fragmentation will work less
        reliably on the Internet.<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1-3">Legacy protocols that depend upon IP fragmentation <span class="bcp14">SHOULD</span> be
        updated to break that dependency. However, in some cases, there may be
        no viable alternative to IP fragmentation (e.g., IPSEC tunnel mode,
        IP-in-IP encapsulation).
        Applications and protocols cannot necessarily know or control
 whether they use lower layers or network paths that rely on such
 fragmentation. 
 In these cases, the protocol will continue to
        rely on IP fragmentation but should only be used in environments where
        IP fragmentation is known to be supported.<a href="#section-6.1-3" class="pilcrow">¶</a></p>
<p id="section-6.1-4">Protocols may be able to avoid IP fragmentation by using a
        sufficiently small MTU (e.g., The protocol minimum link MTU), disabling
        IP fragmentation, and ensuring that the transport protocol in use
        adapts its segment size to the MTU. Other protocols may deploy a
        sufficiently reliable PMTU discovery mechanism (e.g., PLPMTUD).<a href="#section-6.1-4" class="pilcrow">¶</a></p>
<p id="section-6.1-5">UDP applications <span class="bcp14">SHOULD</span> abide by the recommendations stated in
        <span><a href="https://www.rfc-editor.org/rfc/rfc8085#section-3.2" class="relref">Section 3.2</a> of [<a href="#RFC8085" class="xref">RFC8085</a>]</span>.<a href="#section-6.1-5" class="pilcrow">¶</a></p>
</section>
<section id="section-6.2">
        <h3 id="name-for-system-developers">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-for-system-developers" class="section-name selfRef">For System Developers</a>
        </h3>
<p id="section-6.2-1">Software libraries <span class="bcp14">SHOULD</span> include provision for PLPMTUD for each
        supported transport protocol.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
</section>
<section id="section-6.3">
        <h3 id="name-for-middlebox-developers">
<a href="#section-6.3" class="section-number selfRef">6.3. </a><a href="#name-for-middlebox-developers" class="section-name selfRef">For Middlebox Developers</a>
        </h3>
<p id="section-6.3-1">Middleboxes, which are systems that "transparently"
 perform policy functions on passing traffic but do not
 participate in the routing system, should process IP fragments
 in a manner that is consistent with <span>[<a href="#RFC0791" class="xref">RFC0791</a>]</span>
 and <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span>.  In many cases, middleboxes
 must maintain state in order to achieve this goal.<a href="#section-6.3-1" class="pilcrow">¶</a></p>
<p id="section-6.3-2">Price and performance considerations frequently motivate network
        operators to deploy stateless middleboxes. These stateless middleboxes
        may perform suboptimally, process IP fragments in a manner that is not
        compliant with RFC 791 or RFC 8200, or even discard IP fragments
        completely. Such behaviors are <span class="bcp14">NOT RECOMMENDED</span>. If a
        middlebox implements nonstandard behavior with respect to IP
        fragmentation, then that behavior <span class="bcp14">MUST</span> be clearly
        documented.<a href="#section-6.3-2" class="pilcrow">¶</a></p>
</section>
<div id="lagrec">
<section id="section-6.4">
        <h3 id="name-for-ecmp-lag-and-load-balan">
<a href="#section-6.4" class="section-number selfRef">6.4. </a><a href="#name-for-ecmp-lag-and-load-balan" class="section-name selfRef">For ECMP, LAG, and Load-Balancer Developers And Operators</a>
        </h3>
<p id="section-6.4-1">In their default configuration, when the IPv6 Flow Label is not
        equal to zero, IPv6 devices that implement Equal-Cost Multipath (ECMP)
        Routing as described in <span><a href="#RFC2328" class="xref">OSPF</a> [<a href="#RFC2328" class="xref">RFC2328</a>]</span>
        and other routing protocols, <span><a href="#RFC7424" class="xref">Link
        Aggregation Grouping (LAG)</a> [<a href="#RFC7424" class="xref">RFC7424</a>]</span>, or other load-distribution
        technologies <span class="bcp14">SHOULD</span> accept only the following fields as input to their
        hash algorithm:<a href="#section-6.4-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6.4-2.1">IP Source Address.<a href="#section-6.4-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-6.4-2.2">IP Destination Address.<a href="#section-6.4-2.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-6.4-2.3">Flow Label.<a href="#section-6.4-2.3" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-6.4-3">Operators <span class="bcp14">SHOULD</span> deploy these devices in their
        default configuration.<a href="#section-6.4-3" class="pilcrow">¶</a></p>
<p id="section-6.4-4">These recommendations are similar to those presented in <span>[<a href="#RFC6438" class="xref">RFC6438</a>]</span> and <span>[<a href="#RFC7098" class="xref">RFC7098</a>]</span>. They differ in that
        they specify a default configuration.<a href="#section-6.4-4" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-6.5">
        <h3 id="name-for-network-operators">
<a href="#section-6.5" class="section-number selfRef">6.5. </a><a href="#name-for-network-operators" class="section-name selfRef">For Network Operators</a>
        </h3>
<p id="section-6.5-1">Operators <span class="bcp14">MUST</span> ensure proper PMTUD operation in their network,
        including making sure the network generates PTB packets when
        dropping packets too large compared to outgoing interface
        MTU. However, implementations <span class="bcp14">MAY</span> rate limit the generation of
        ICMP messages per <span>[<a href="#RFC1812" class="xref">RFC1812</a>]</span> and <span>[<a href="#RFC4443" class="xref">RFC4443</a>]</span>.<a href="#section-6.5-1" class="pilcrow">¶</a></p>
<p id="section-6.5-2">As per RFC 4890, network operators <span class="bcp14">MUST NOT</span> filter ICMPv6 PTB
        messages unless they are known to be forged or otherwise illegitimate.
        As stated in <a href="#PTB" class="xref">Section 3.8</a>, filtering ICMPv6 PTB packets causes
        PMTUD to fail. Many upper-layer protocols rely on PMTUD.<a href="#section-6.5-2" class="pilcrow">¶</a></p>
<p id="section-6.5-3">As per RFC 8200, network operators <span class="bcp14">MUST NOT</span> deploy IPv6 links whose
        MTU is less than 1280 octets.<a href="#section-6.5-3" class="pilcrow">¶</a></p>
<p id="section-6.5-4">Network operators <span class="bcp14">SHOULD NOT</span> filter IP fragments if they are known
        to have originated at a domain name server or be destined for a domain
        name server. This is because domain name services are critical to
        operation of the Internet.<a href="#section-6.5-4" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-7">
      <h2 id="name-iana-considerations">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
      </h2>
<p id="section-7-1">This document has no IANA actions.<a href="#section-7-1" class="pilcrow">¶</a></p>
</section>
<section id="section-8">
      <h2 id="name-security-considerations">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
      </h2>
<p id="section-8-1">This document mitigates some of the security considerations
      associated with IP fragmentation by discouraging its use. It does not
      introduce any new security vulnerabilities, because it does not
      introduce any new alternatives to IP fragmentation. Instead, it
      recommends well-understood alternatives.<a href="#section-8-1" class="pilcrow">¶</a></p>
</section>
<section id="section-9">
      <h2 id="name-references">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-references" class="section-name selfRef">References</a>
      </h2>
<section id="section-9.1">
        <h3 id="name-normative-references">
<a href="#section-9.1" class="section-number selfRef">9.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
        </h3>
<dl class="references">
<dt id="RFC0768">[RFC0768]</dt>
        <dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"User Datagram Protocol"</span>, <span class="seriesInfo">STD 6</span>, <span class="seriesInfo">RFC 768</span>, <span class="seriesInfo">DOI 10.17487/RFC0768</span>, <time datetime="1980-08" class="refDate">August 1980</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc768">https://www.rfc-editor.org/info/rfc768</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC0791">[RFC0791]</dt>
        <dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Internet Protocol"</span>, <span class="seriesInfo">STD 5</span>, <span class="seriesInfo">RFC 791</span>, <span class="seriesInfo">DOI 10.17487/RFC0791</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc791">https://www.rfc-editor.org/info/rfc791</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC0792">[RFC0792]</dt>
        <dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Internet Control Message Protocol"</span>, <span class="seriesInfo">STD 5</span>, <span class="seriesInfo">RFC 792</span>, <span class="seriesInfo">DOI 10.17487/RFC0792</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc792">https://www.rfc-editor.org/info/rfc792</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC0793">[RFC0793]</dt>
        <dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Transmission Control Protocol"</span>, <span class="seriesInfo">STD 7</span>, <span class="seriesInfo">RFC 793</span>, <span class="seriesInfo">DOI 10.17487/RFC0793</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc793">https://www.rfc-editor.org/info/rfc793</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1035">[RFC1035]</dt>
        <dd>
<span class="refAuthor">Mockapetris, P.</span>, <span class="refTitle">"Domain names - implementation and specification"</span>, <span class="seriesInfo">STD 13</span>, <span class="seriesInfo">RFC 1035</span>, <span class="seriesInfo">DOI 10.17487/RFC1035</span>, <time datetime="1987-11" class="refDate">November 1987</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1035">https://www.rfc-editor.org/info/rfc1035</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1191">[RFC1191]</dt>
        <dd>
<span class="refAuthor">Mogul, J.</span><span class="refAuthor"> and S. Deering</span>, <span class="refTitle">"Path MTU discovery"</span>, <span class="seriesInfo">RFC 1191</span>, <span class="seriesInfo">DOI 10.17487/RFC1191</span>, <time datetime="1990-11" class="refDate">November 1990</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1191">https://www.rfc-editor.org/info/rfc1191</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2119">[RFC2119]</dt>
        <dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4443">[RFC4443]</dt>
        <dd>
<span class="refAuthor">Conta, A.</span><span class="refAuthor">, Deering, S.</span><span class="refAuthor">, and M. Gupta, Ed.</span>, <span class="refTitle">"Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">STD 89</span>, <span class="seriesInfo">RFC 4443</span>, <span class="seriesInfo">DOI 10.17487/RFC4443</span>, <time datetime="2006-03" class="refDate">March 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4443">https://www.rfc-editor.org/info/rfc4443</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4821">[RFC4821]</dt>
        <dd>
<span class="refAuthor">Mathis, M.</span><span class="refAuthor"> and J. Heffner</span>, <span class="refTitle">"Packetization Layer Path MTU Discovery"</span>, <span class="seriesInfo">RFC 4821</span>, <span class="seriesInfo">DOI 10.17487/RFC4821</span>, <time datetime="2007-03" class="refDate">March 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4821">https://www.rfc-editor.org/info/rfc4821</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6437">[RFC6437]</dt>
        <dd>
<span class="refAuthor">Amante, S.</span><span class="refAuthor">, Carpenter, B.</span><span class="refAuthor">, Jiang, S.</span><span class="refAuthor">, and J. Rajahalme</span>, <span class="refTitle">"IPv6 Flow Label Specification"</span>, <span class="seriesInfo">RFC 6437</span>, <span class="seriesInfo">DOI 10.17487/RFC6437</span>, <time datetime="2011-11" class="refDate">November 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6437">https://www.rfc-editor.org/info/rfc6437</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6438">[RFC6438]</dt>
        <dd>
<span class="refAuthor">Carpenter, B.</span><span class="refAuthor"> and S. Amante</span>, <span class="refTitle">"Using the IPv6 Flow Label for Equal Cost Multipath Routing and Link Aggregation in Tunnels"</span>, <span class="seriesInfo">RFC 6438</span>, <span class="seriesInfo">DOI 10.17487/RFC6438</span>, <time datetime="2011-11" class="refDate">November 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6438">https://www.rfc-editor.org/info/rfc6438</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8085">[RFC8085]</dt>
        <dd>
<span class="refAuthor">Eggert, L.</span><span class="refAuthor">, Fairhurst, G.</span><span class="refAuthor">, and G. Shepherd</span>, <span class="refTitle">"UDP Usage Guidelines"</span>, <span class="seriesInfo">BCP 145</span>, <span class="seriesInfo">RFC 8085</span>, <span class="seriesInfo">DOI 10.17487/RFC8085</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8085">https://www.rfc-editor.org/info/rfc8085</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
        <dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8200">[RFC8200]</dt>
        <dd>
<span class="refAuthor">Deering, S.</span><span class="refAuthor"> and R. Hinden</span>, <span class="refTitle">"Internet Protocol, Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">STD 86</span>, <span class="seriesInfo">RFC 8200</span>, <span class="seriesInfo">DOI 10.17487/RFC8200</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8200">https://www.rfc-editor.org/info/rfc8200</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8201">[RFC8201]</dt>
        <dd>
<span class="refAuthor">McCann, J.</span><span class="refAuthor">, Deering, S.</span><span class="refAuthor">, Mogul, J.</span><span class="refAuthor">, and R. Hinden, Ed.</span>, <span class="refTitle">"Path MTU Discovery for IP version 6"</span>, <span class="seriesInfo">STD 87</span>, <span class="seriesInfo">RFC 8201</span>, <span class="seriesInfo">DOI 10.17487/RFC8201</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8201">https://www.rfc-editor.org/info/rfc8201</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8899">[RFC8899]</dt>
      <dd>
<span class="refAuthor">Fairhurst, G.</span><span class="refAuthor">, Jones, T.</span><span class="refAuthor">, Tüxen, M.</span><span class="refAuthor">, Rüngeler, I.</span><span class="refAuthor">, and T. Völker</span>, <span class="refTitle">"Packetization Layer Path MTU Discovery for Datagram Transports"</span>, <span class="seriesInfo">RFC 8899</span>, <span class="seriesInfo">DOI 10.17487/RFC8899</span>, <time datetime="2020-09" class="refDate">September 2020</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8899">https://www.rfc-editor.org/info/rfc8899</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-9.2">
        <h3 id="name-informative-references">
<a href="#section-9.2" class="section-number selfRef">9.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
        </h3>
<dl class="references">
<dt id="Damas">[Damas]</dt>
        <dd>
<span class="refAuthor">Damas, J.</span><span class="refAuthor"> and G. Huston</span>, <span class="refTitle">"Measuring ATR"</span>, <time datetime="2018-04" class="refDate">April 2018</time>, <span>&lt;<a href="http://www.potaroo.net/ispcol/2018-04/atr.html">http://www.potaroo.net/ispcol/2018-04/atr.html</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Huston">[Huston]</dt>
        <dd>
<span class="refAuthor">Huston, G.</span>, <span class="refTitle">"IPv6, Large UDP Packets and the DNS"</span>, <time datetime="2017-08" class="refDate">August 2017</time>, <span>&lt;<a href="http://www.potaroo.net/ispcol/2017-08/xtn-hdrs.html">http://www.potaroo.net/ispcol/2017-08/xtn-hdrs.html</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Kent">[Kent]</dt>
        <dd>
<span class="refAuthor">Kent, C.</span><span class="refAuthor"> and J. Mogul</span>, <span class="refTitle">"Fragmentation Considered Harmful"</span>, <span class="refContent">SIGCOMM '87: Proceedings of the ACM workshop on Frontiers in computer communications technology</span>, <span class="seriesInfo">DOI 10.1145/55482.55524</span>, <time datetime="1987-08" class="refDate">August 1987</time>, <span>&lt;<a href="http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf">http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Ptacek1998">[Ptacek1998]</dt>
        <dd>
<span class="refAuthor">Ptacek, T. H.</span><span class="refAuthor"> and T. N. Newsham</span>, <span class="refTitle">"Insertion, Evasion and Denial of Service: Eluding Network Intrusion Detection"</span>, <time datetime="1998" class="refDate">1998</time>, <span>&lt;<a href="http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps">http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1122">[RFC1122]</dt>
        <dd>
<span class="refAuthor">Braden, R., Ed.</span>, <span class="refTitle">"Requirements for Internet Hosts - Communication Layers"</span>, <span class="seriesInfo">STD 3</span>, <span class="seriesInfo">RFC 1122</span>, <span class="seriesInfo">DOI 10.17487/RFC1122</span>, <time datetime="1989-10" class="refDate">October 1989</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1122">https://www.rfc-editor.org/info/rfc1122</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1812">[RFC1812]</dt>
        <dd>
<span class="refAuthor">Baker, F., Ed.</span>, <span class="refTitle">"Requirements for IP Version 4 Routers"</span>, <span class="seriesInfo">RFC 1812</span>, <span class="seriesInfo">DOI 10.17487/RFC1812</span>, <time datetime="1995-06" class="refDate">June 1995</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1812">https://www.rfc-editor.org/info/rfc1812</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1858">[RFC1858]</dt>
        <dd>
<span class="refAuthor">Ziemba, G.</span><span class="refAuthor">, Reed, D.</span><span class="refAuthor">, and P. Traina</span>, <span class="refTitle">"Security Considerations for IP Fragment Filtering"</span>, <span class="seriesInfo">RFC 1858</span>, <span class="seriesInfo">DOI 10.17487/RFC1858</span>, <time datetime="1995-10" class="refDate">October 1995</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1858">https://www.rfc-editor.org/info/rfc1858</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1981">[RFC1981]</dt>
        <dd>
<span class="refAuthor">McCann, J.</span><span class="refAuthor">, Deering, S.</span><span class="refAuthor">, and J. Mogul</span>, <span class="refTitle">"Path MTU Discovery for IP version 6"</span>, <span class="seriesInfo">RFC 1981</span>, <span class="seriesInfo">DOI 10.17487/RFC1981</span>, <time datetime="1996-08" class="refDate">August 1996</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1981">https://www.rfc-editor.org/info/rfc1981</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2003">[RFC2003]</dt>
        <dd>
<span class="refAuthor">Perkins, C.</span>, <span class="refTitle">"IP Encapsulation within IP"</span>, <span class="seriesInfo">RFC 2003</span>, <span class="seriesInfo">DOI 10.17487/RFC2003</span>, <time datetime="1996-10" class="refDate">October 1996</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2003">https://www.rfc-editor.org/info/rfc2003</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2328">[RFC2328]</dt>
        <dd>
<span class="refAuthor">Moy, J.</span>, <span class="refTitle">"OSPF Version 2"</span>, <span class="seriesInfo">STD 54</span>, <span class="seriesInfo">RFC 2328</span>, <span class="seriesInfo">DOI 10.17487/RFC2328</span>, <time datetime="1998-04" class="refDate">April 1998</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2328">https://www.rfc-editor.org/info/rfc2328</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2460">[RFC2460]</dt>
        <dd>
<span class="refAuthor">Deering, S.</span><span class="refAuthor"> and R. Hinden</span>, <span class="refTitle">"Internet Protocol, Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">RFC 2460</span>, <span class="seriesInfo">DOI 10.17487/RFC2460</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2460">https://www.rfc-editor.org/info/rfc2460</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2473">[RFC2473]</dt>
        <dd>
<span class="refAuthor">Conta, A.</span><span class="refAuthor"> and S. Deering</span>, <span class="refTitle">"Generic Packet Tunneling in IPv6 Specification"</span>, <span class="seriesInfo">RFC 2473</span>, <span class="seriesInfo">DOI 10.17487/RFC2473</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2473">https://www.rfc-editor.org/info/rfc2473</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2784">[RFC2784]</dt>
        <dd>
<span class="refAuthor">Farinacci, D.</span><span class="refAuthor">, Li, T.</span><span class="refAuthor">, Hanks, S.</span><span class="refAuthor">, Meyer, D.</span><span class="refAuthor">, and P. Traina</span>, <span class="refTitle">"Generic Routing Encapsulation (GRE)"</span>, <span class="seriesInfo">RFC 2784</span>, <span class="seriesInfo">DOI 10.17487/RFC2784</span>, <time datetime="2000-03" class="refDate">March 2000</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2784">https://www.rfc-editor.org/info/rfc2784</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3128">[RFC3128]</dt>
        <dd>
<span class="refAuthor">Miller, I.</span>, <span class="refTitle">"Protection Against a Variant of the Tiny Fragment Attack (RFC 1858)"</span>, <span class="seriesInfo">RFC 3128</span>, <span class="seriesInfo">DOI 10.17487/RFC3128</span>, <time datetime="2001-06" class="refDate">June 2001</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3128">https://www.rfc-editor.org/info/rfc3128</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4340">[RFC4340]</dt>
        <dd>
<span class="refAuthor">Kohler, E.</span><span class="refAuthor">, Handley, M.</span><span class="refAuthor">, and S. Floyd</span>, <span class="refTitle">"Datagram Congestion Control Protocol (DCCP)"</span>, <span class="seriesInfo">RFC 4340</span>, <span class="seriesInfo">DOI 10.17487/RFC4340</span>, <time datetime="2006-03" class="refDate">March 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4340">https://www.rfc-editor.org/info/rfc4340</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4459">[RFC4459]</dt>
        <dd>
<span class="refAuthor">Savola, P.</span>, <span class="refTitle">"MTU and Fragmentation Issues with In-the-Network Tunneling"</span>, <span class="seriesInfo">RFC 4459</span>, <span class="seriesInfo">DOI 10.17487/RFC4459</span>, <time datetime="2006-04" class="refDate">April 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4459">https://www.rfc-editor.org/info/rfc4459</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4890">[RFC4890]</dt>
        <dd>
<span class="refAuthor">Davies, E.</span><span class="refAuthor"> and J. Mohacsi</span>, <span class="refTitle">"Recommendations for Filtering ICMPv6 Messages in Firewalls"</span>, <span class="seriesInfo">RFC 4890</span>, <span class="seriesInfo">DOI 10.17487/RFC4890</span>, <time datetime="2007-05" class="refDate">May 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4890">https://www.rfc-editor.org/info/rfc4890</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4960">[RFC4960]</dt>
        <dd>
<span class="refAuthor">Stewart, R., Ed.</span>, <span class="refTitle">"Stream Control Transmission Protocol"</span>, <span class="seriesInfo">RFC 4960</span>, <span class="seriesInfo">DOI 10.17487/RFC4960</span>, <time datetime="2007-09" class="refDate">September 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4960">https://www.rfc-editor.org/info/rfc4960</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4963">[RFC4963]</dt>
        <dd>
<span class="refAuthor">Heffner, J.</span><span class="refAuthor">, Mathis, M.</span><span class="refAuthor">, and B. Chandler</span>, <span class="refTitle">"IPv4 Reassembly Errors at High Data Rates"</span>, <span class="seriesInfo">RFC 4963</span>, <span class="seriesInfo">DOI 10.17487/RFC4963</span>, <time datetime="2007-07" class="refDate">July 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4963">https://www.rfc-editor.org/info/rfc4963</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5326">[RFC5326]</dt>
        <dd>
<span class="refAuthor">Ramadas, M.</span><span class="refAuthor">, Burleigh, S.</span><span class="refAuthor">, and S. Farrell</span>, <span class="refTitle">"Licklider Transmission Protocol - Specification"</span>, <span class="seriesInfo">RFC 5326</span>, <span class="seriesInfo">DOI 10.17487/RFC5326</span>, <time datetime="2008-09" class="refDate">September 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5326">https://www.rfc-editor.org/info/rfc5326</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5340">[RFC5340]</dt>
        <dd>
<span class="refAuthor">Coltun, R.</span><span class="refAuthor">, Ferguson, D.</span><span class="refAuthor">, Moy, J.</span><span class="refAuthor">, and A. Lindem</span>, <span class="refTitle">"OSPF for IPv6"</span>, <span class="seriesInfo">RFC 5340</span>, <span class="seriesInfo">DOI 10.17487/RFC5340</span>, <time datetime="2008-07" class="refDate">July 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5340">https://www.rfc-editor.org/info/rfc5340</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5722">[RFC5722]</dt>
        <dd>
<span class="refAuthor">Krishnan, S.</span>, <span class="refTitle">"Handling of Overlapping IPv6 Fragments"</span>, <span class="seriesInfo">RFC 5722</span>, <span class="seriesInfo">DOI 10.17487/RFC5722</span>, <time datetime="2009-12" class="refDate">December 2009</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5722">https://www.rfc-editor.org/info/rfc5722</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5927">[RFC5927]</dt>
        <dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"ICMP Attacks against TCP"</span>, <span class="seriesInfo">RFC 5927</span>, <span class="seriesInfo">DOI 10.17487/RFC5927</span>, <time datetime="2010-07" class="refDate">July 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5927">https://www.rfc-editor.org/info/rfc5927</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6346">[RFC6346]</dt>
        <dd>
<span class="refAuthor">Bush, R., Ed.</span>, <span class="refTitle">"The Address plus Port (A+P) Approach to the IPv4 Address Shortage"</span>, <span class="seriesInfo">RFC 6346</span>, <span class="seriesInfo">DOI 10.17487/RFC6346</span>, <time datetime="2011-08" class="refDate">August 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6346">https://www.rfc-editor.org/info/rfc6346</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6888">[RFC6888]</dt>
        <dd>
<span class="refAuthor">Perreault, S., Ed.</span><span class="refAuthor">, Yamagata, I.</span><span class="refAuthor">, Miyakawa, S.</span><span class="refAuthor">, Nakagawa, A.</span><span class="refAuthor">, and H. Ashida</span>, <span class="refTitle">"Common Requirements for Carrier-Grade NATs (CGNs)"</span>, <span class="seriesInfo">BCP 127</span>, <span class="seriesInfo">RFC 6888</span>, <span class="seriesInfo">DOI 10.17487/RFC6888</span>, <time datetime="2013-04" class="refDate">April 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6888">https://www.rfc-editor.org/info/rfc6888</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7098">[RFC7098]</dt>
        <dd>
<span class="refAuthor">Carpenter, B.</span><span class="refAuthor">, Jiang, S.</span><span class="refAuthor">, and W. Tarreau</span>, <span class="refTitle">"Using the IPv6 Flow Label for Load Balancing in Server Farms"</span>, <span class="seriesInfo">RFC 7098</span>, <span class="seriesInfo">DOI 10.17487/RFC7098</span>, <time datetime="2014-01" class="refDate">January 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7098">https://www.rfc-editor.org/info/rfc7098</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7424">[RFC7424]</dt>
        <dd>
<span class="refAuthor">Krishnan, R.</span><span class="refAuthor">, Yong, L.</span><span class="refAuthor">, Ghanwani, A.</span><span class="refAuthor">, So, N.</span><span class="refAuthor">, and B. Khasnabish</span>, <span class="refTitle">"Mechanisms for Optimizing Link Aggregation Group (LAG) and Equal-Cost Multipath (ECMP) Component Link Utilization in Networks"</span>, <span class="seriesInfo">RFC 7424</span>, <span class="seriesInfo">DOI 10.17487/RFC7424</span>, <time datetime="2015-01" class="refDate">January 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7424">https://www.rfc-editor.org/info/rfc7424</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7588">[RFC7588]</dt>
        <dd>
<span class="refAuthor">Bonica, R.</span><span class="refAuthor">, Pignataro, C.</span><span class="refAuthor">, and J. Touch</span>, <span class="refTitle">"A Widely Deployed Solution to the Generic Routing Encapsulation (GRE) Fragmentation Problem"</span>, <span class="seriesInfo">RFC 7588</span>, <span class="seriesInfo">DOI 10.17487/RFC7588</span>, <time datetime="2015-07" class="refDate">July 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7588">https://www.rfc-editor.org/info/rfc7588</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7676">[RFC7676]</dt>
        <dd>
<span class="refAuthor">Pignataro, C.</span><span class="refAuthor">, Bonica, R.</span><span class="refAuthor">, and S. Krishnan</span>, <span class="refTitle">"IPv6 Support for Generic Routing Encapsulation (GRE)"</span>, <span class="seriesInfo">RFC 7676</span>, <span class="seriesInfo">DOI 10.17487/RFC7676</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7676">https://www.rfc-editor.org/info/rfc7676</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7739">[RFC7739]</dt>
        <dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"Security Implications of Predictable Fragment Identification Values"</span>, <span class="seriesInfo">RFC 7739</span>, <span class="seriesInfo">DOI 10.17487/RFC7739</span>, <time datetime="2016-02" class="refDate">February 2016</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7739">https://www.rfc-editor.org/info/rfc7739</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7872">[RFC7872]</dt>
        <dd>
<span class="refAuthor">Gont, F.</span><span class="refAuthor">, Linkova, J.</span><span class="refAuthor">, Chown, T.</span><span class="refAuthor">, and W. Liu</span>, <span class="refTitle">"Observations on the Dropping of Packets with IPv6 Extension Headers in the Real World"</span>, <span class="seriesInfo">RFC 7872</span>, <span class="seriesInfo">DOI 10.17487/RFC7872</span>, <time datetime="2016-06" class="refDate">June 2016</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7872">https://www.rfc-editor.org/info/rfc7872</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8086">[RFC8086]</dt>
        <dd>
<span class="refAuthor">Yong, L., Ed.</span><span class="refAuthor">, Crabbe, E.</span><span class="refAuthor">, Xu, X.</span><span class="refAuthor">, and T. Herbert</span>, <span class="refTitle">"GRE-in-UDP Encapsulation"</span>, <span class="seriesInfo">RFC 8086</span>, <span class="seriesInfo">DOI 10.17487/RFC8086</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8086">https://www.rfc-editor.org/info/rfc8086</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-intarea-tunnels">[TUNNELS]</dt>
        <dd>
<span class="refAuthor">Touch, J.</span><span class="refAuthor"> and M. Townsley</span>, <span class="refTitle">"IP Tunnels in the Internet Architecture"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-intarea-tunnels-10</span>, <time datetime="2019-09-12" class="refDate">12 September 2019</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-intarea-tunnels-10">https://tools.ietf.org/html/draft-ietf-intarea-tunnels-10</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-tsvwg-udp-options">[UDP-OPTIONS]</dt>
      <dd>
<span class="refAuthor">Touch, J.</span>, <span class="refTitle">"Transport Options for UDP"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-tsvwg-udp-options-08</span>, <time datetime="2019-09-12" class="refDate">12 September 2019</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-08">https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-08</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="section-appendix.a">
      <h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
      </h2>
<p id="section-appendix.a-1">Thanks to <span class="contact-name">Mikael Abrahamsson</span>, 
      <span class="contact-name">Brian Carpenter</span>, <span class="contact-name">Silambu Chelvan</span>,
      <span class="contact-name">Lorenzo Colitti</span>, 
      <span class="contact-name">Gorry Fairhurst</span>, 
      <span class="contact-name">Joel Halpern</span>, 
      <span class="contact-name">Mike Heard</span>,
      <span class="contact-name">Tom Herbert</span>, <span class="contact-name">Tatuya Jinmei</span>, 
      <span class="contact-name">Suresh Krishnan</span>, <span class="contact-name">Jen Linkova</span>, 
      <span class="contact-name">Paolo Lucente</span>, <span class="contact-name">Manoj Nayak</span>, 
      <span class="contact-name">Eric Nygren</span>, <span class="contact-name">Fred Templin</span>, and 
      <span class="contact-name">Joe Touch</span> for their comments.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
</section>
<div id="authors-addresses">
<section id="section-appendix.b">
      <h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Ron Bonica</span></div>
<div dir="auto" class="left"><span class="org">Juniper Networks</span></div>
<div dir="auto" class="left"><span class="street-address">2251 Corporate Park Drive</span></div>
<div dir="auto" class="left">
<span class="locality">Herndon</span>, <span class="region">Virginia</span> <span class="postal-code">20171</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:rbonica@juniper.net" class="email">rbonica@juniper.net</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Fred Baker</span></div>
<div dir="auto" class="left"><span class="org">Unaffiliated</span></div>
<div dir="auto" class="left">
<span class="locality">Santa Barbara</span>, <span class="region">California</span> <span class="postal-code">93117</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:FredBaker.IETF@gmail.com" class="email">FredBaker.IETF@gmail.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Geoff Huston</span></div>
<div dir="auto" class="left"><span class="org">APNIC</span></div>
<div dir="auto" class="left"><span class="street-address">6 Cordelia St</span></div>
<div dir="auto" class="left">
<span class="locality">Brisbane</span> <span class="region">4101 QLD</span> </div>
<div dir="auto" class="left"><span class="country-name">Australia</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:gih@apnic.net" class="email">gih@apnic.net</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Robert M. Hinden</span></div>
<div dir="auto" class="left"><span class="org">Check Point Software</span></div>
<div dir="auto" class="left"><span class="street-address">959 Skyway Road</span></div>
<div dir="auto" class="left">
<span class="locality">San Carlos</span>, <span class="region">California</span> <span class="postal-code">94070</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:bob.hinden@gmail.com" class="email">bob.hinden@gmail.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Ole Troan</span></div>
<div dir="auto" class="left"><span class="org">Cisco</span></div>
<div dir="auto" class="left"><span class="street-address">Philip Pedersens vei 1</span></div>
<div dir="auto" class="left"><span class="locality">N-1366 Lysaker</span></div>
<div dir="auto" class="left"><span class="country-name">Norway</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ot@cisco.com" class="email">ot@cisco.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Fernando Gont</span></div>
<div dir="auto" class="left"><span class="org">SI6 Networks</span></div>
<div dir="auto" class="left"><span class="street-address">Evaristo Carriego 2644</span></div>
<div dir="auto" class="left"><span class="locality">Haedo</span></div>
<div dir="auto" class="left"><span class="region">Provincia de Buenos Aires</span></div>
<div dir="auto" class="left"><span class="country-name">Argentina</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:fgont@si6networks.com" class="email">fgont@si6networks.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
  toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
  toc.classList.remove("active");
});
</script>
</body>
</html>