1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
|
<!DOCTYPE html>
<html lang="en" class="RFC BCP">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8900: IP Fragmentation Considered Fragile</title>
<meta content="Ron Bonica" name="author">
<meta content="Fred Baker" name="author">
<meta content="Geoff Huston" name="author">
<meta content="Robert M. Hinden" name="author">
<meta content="Ole Troan" name="author">
<meta content="Fernando Gont" name="author">
<meta content="
This document describes IP fragmentation and explains how it
introduces fragility to Internet communication.
This document also proposes alternatives to IP fragmentation and
provides recommendations for developers and network operators.
" name="description">
<meta content="xml2rfc 3.0.0" name="generator">
<meta content="IPv6" name="keyword">
<meta content="Fragmentation" name="keyword">
<meta content="8900" name="rfc.number">
<link href="rfc8900.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: avoid-page;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc8900" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-intarea-frag-fragile-17" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8900</td>
<td class="center">IP Fragmentation Fragile</td>
<td class="right">September 2020</td>
</tr></thead>
<tfoot><tr>
<td class="left">Bonica, et al.</td>
<td class="center">Best Current Practice</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8900" class="eref">8900</a></dd>
<dt class="label-bcp">BCP:</dt>
<dd class="bcp">230</dd>
<dt class="label-category">Category:</dt>
<dd class="category">Best Current Practice</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2020-09" class="published">September 2020</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">R. Bonica</div>
<div class="org">Juniper Networks</div>
</div>
<div class="author">
<div class="author-name">F. Baker</div>
<div class="org">Unaffiliated</div>
</div>
<div class="author">
<div class="author-name">G. Huston</div>
<div class="org">APNIC</div>
</div>
<div class="author">
<div class="author-name">R. Hinden</div>
<div class="org">Check Point Software</div>
</div>
<div class="author">
<div class="author-name">O. Troan</div>
<div class="org">Cisco</div>
</div>
<div class="author">
<div class="author-name">F. Gont</div>
<div class="org">SI6 Networks</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8900</h1>
<h1 id="title">IP Fragmentation Considered Fragile</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This document describes IP fragmentation and explains how it
introduces fragility to Internet communication.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
<p id="section-abstract-2">This document also proposes alternatives to IP fragmentation and
provides recommendations for developers and network operators.<a href="#section-abstract-2" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This memo documents an Internet Best Current Practice.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further information
on BCPs is available in Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc8900">https://www.rfc-editor.org/info/rfc8900</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.1.2.1">
<p id="section-toc.1-1.1.2.1.1" class="keepWithNext"><a href="#section-1.1" class="xref">1.1</a>. <a href="#name-requirements-language" class="xref">Requirements Language</a><a href="#section-toc.1-1.1.2.1.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-ip-fragmentation" class="xref">IP Fragmentation</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-links-paths-mtu-and-pmtu" class="xref">Links, Paths, MTU, and PMTU</a><a href="#section-toc.1-1.2.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1"><a href="#section-2.2" class="xref">2.2</a>. <a href="#name-fragmentation-procedures" class="xref">Fragmentation Procedures</a><a href="#section-toc.1-1.2.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.2.2.3">
<p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="xref">2.3</a>. <a href="#name-upper-layer-reliance-on-ip-" class="xref">Upper-Layer Reliance on IP Fragmentation</a><a href="#section-toc.1-1.2.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-increased-fragility" class="xref">Increased Fragility</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>. <a href="#name-virtual-reassembly" class="xref">Virtual Reassembly</a><a href="#section-toc.1-1.3.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>. <a href="#name-policy-based-routing" class="xref">Policy-Based Routing</a><a href="#section-toc.1-1.3.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.3">
<p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>. <a href="#name-network-address-translation" class="xref">Network Address Translation (NAT)</a><a href="#section-toc.1-1.3.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.4">
<p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="xref">3.4</a>. <a href="#name-stateless-firewalls" class="xref">Stateless Firewalls</a><a href="#section-toc.1-1.3.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.5">
<p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="xref">3.5</a>. <a href="#name-equal-cost-multipath-link-a" class="xref">Equal-Cost Multipath, Link Aggregate Groups, and Stateless Load Balancers</a><a href="#section-toc.1-1.3.2.5.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.6">
<p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="xref">3.6</a>. <a href="#name-ipv4-reassembly-errors-at-h" class="xref">IPv4 Reassembly Errors at High Data Rates</a><a href="#section-toc.1-1.3.2.6.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.7">
<p id="section-toc.1-1.3.2.7.1"><a href="#section-3.7" class="xref">3.7</a>. <a href="#name-security-vulnerabilities" class="xref">Security Vulnerabilities</a><a href="#section-toc.1-1.3.2.7.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.8">
<p id="section-toc.1-1.3.2.8.1"><a href="#section-3.8" class="xref">3.8</a>. <a href="#name-pmtu-black-holing-due-to-ic" class="xref">PMTU Black-Holing Due to ICMP Loss</a><a href="#section-toc.1-1.3.2.8.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.8.2.1">
<p id="section-toc.1-1.3.2.8.2.1.1"><a href="#section-3.8.1" class="xref">3.8.1</a>. <a href="#name-transient-loss" class="xref">Transient Loss</a><a href="#section-toc.1-1.3.2.8.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.8.2.2">
<p id="section-toc.1-1.3.2.8.2.2.1"><a href="#section-3.8.2" class="xref">3.8.2</a>. <a href="#name-incorrect-implementation-of" class="xref">Incorrect Implementation of Security Policy</a><a href="#section-toc.1-1.3.2.8.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.8.2.3">
<p id="section-toc.1-1.3.2.8.2.3.1"><a href="#section-3.8.3" class="xref">3.8.3</a>. <a href="#name-persistent-loss-caused-by-a" class="xref">Persistent Loss Caused by Anycast</a><a href="#section-toc.1-1.3.2.8.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.8.2.4">
<p id="section-toc.1-1.3.2.8.2.4.1"><a href="#section-3.8.4" class="xref">3.8.4</a>. <a href="#name-persistent-loss-caused-by-u" class="xref">Persistent Loss Caused by Unidirectional Routing</a><a href="#section-toc.1-1.3.2.8.2.4.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.3.2.9">
<p id="section-toc.1-1.3.2.9.1"><a href="#section-3.9" class="xref">3.9</a>. <a href="#name-black-holing-due-to-filteri" class="xref">Black-Holing Due to Filtering or Loss</a><a href="#section-toc.1-1.3.2.9.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-alternatives-to-ip-fragment" class="xref">Alternatives to IP Fragmentation</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-transport-layer-solutions" class="xref">Transport-Layer Solutions</a><a href="#section-toc.1-1.4.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-application-layer-solutions" class="xref">Application-Layer Solutions</a><a href="#section-toc.1-1.4.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-applications-that-rely-on-i" class="xref">Applications That Rely on IPv6 Fragmentation</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>. <a href="#name-domain-name-service-dns" class="xref">Domain Name Service (DNS)</a><a href="#section-toc.1-1.5.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>. <a href="#name-open-shortest-path-first-os" class="xref">Open Shortest Path First (OSPF)</a><a href="#section-toc.1-1.5.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.5.2.3">
<p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>. <a href="#name-packet-in-packet-encapsulat" class="xref">Packet-in-Packet Encapsulations</a><a href="#section-toc.1-1.5.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.5.2.4">
<p id="section-toc.1-1.5.2.4.1"><a href="#section-5.4" class="xref">5.4</a>. <a href="#name-udp-applications-enhancing-" class="xref">UDP Applications Enhancing Performance</a><a href="#section-toc.1-1.5.2.4.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-recommendations" class="xref">Recommendations</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-for-application-and-protoco" class="xref">For Application and Protocol Developers</a><a href="#section-toc.1-1.6.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-for-system-developers" class="xref">For System Developers</a><a href="#section-toc.1-1.6.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.6.2.3">
<p id="section-toc.1-1.6.2.3.1"><a href="#section-6.3" class="xref">6.3</a>. <a href="#name-for-middlebox-developers" class="xref">For Middlebox Developers</a><a href="#section-toc.1-1.6.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.6.2.4">
<p id="section-toc.1-1.6.2.4.1"><a href="#section-6.4" class="xref">6.4</a>. <a href="#name-for-ecmp-lag-and-load-balan" class="xref">For ECMP, LAG, and Load-Balancer Developers And Operators</a><a href="#section-toc.1-1.6.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.6.2.5">
<p id="section-toc.1-1.6.2.5.1"><a href="#section-6.5" class="xref">6.5</a>. <a href="#name-for-network-operators" class="xref">For Network Operators</a><a href="#section-toc.1-1.6.2.5.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
<ul class="toc compact ulEmpty">
<li class="toc compact ulEmpty" id="section-toc.1-1.9.2.1">
<p id="section-toc.1-1.9.2.1.1"><a href="#section-9.1" class="xref">9.1</a>. <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.9.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.9.2.2">
<p id="section-toc.1-1.9.2.2.1"><a href="#section-9.2" class="xref">9.2</a>. <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.9.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-appendix.a" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
</li>
<li class="toc compact ulEmpty" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.11.1" class="pilcrow">¶</a></p>
</li>
</ul>
</nav>
</section>
</div>
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">Operational experience <span>[<a href="#Kent" class="xref">Kent</a>]</span>
<span>[<a href="#Huston" class="xref">Huston</a>]</span> <span>[<a href="#RFC7872" class="xref">RFC7872</a>]</span>
reveals that IP fragmentation
introduces fragility to Internet communication. This document describes
IP fragmentation and explains the fragility it introduces. It also
proposes alternatives to IP fragmentation and provides recommendations
for developers and network operators.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">While this document identifies issues associated with IP
fragmentation, it does not recommend deprecation. Legacy protocols that
depend upon IP fragmentation would do well to be updated to remove that dependency.
However, some applications and environments (see <a href="#rely" class="xref">Section 5</a>)
require IP fragmentation. In these cases, the protocol will continue
to rely on IP fragmentation, but the designer should be aware that
fragmented packets may result in black holes. A design should include
appropriate safeguards.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">Rather than deprecating IP fragmentation, this document recommends
that upper-layer protocols address the problem of fragmentation at their
layer, reducing their reliance on IP fragmentation to the greatest
degree possible.<a href="#section-1-3" class="pilcrow">¶</a></p>
<section id="section-1.1">
<h3 id="name-requirements-language">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
</h3>
<p id="section-1.1-1">
The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
"<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>",
"<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>",
"<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be
interpreted as described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when, they appear in all capitals, as
shown here.<a href="#section-1.1-1" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-2">
<h2 id="name-ip-fragmentation">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-ip-fragmentation" class="section-name selfRef">IP Fragmentation</a>
</h2>
<div id="pmtu">
<section id="section-2.1">
<h3 id="name-links-paths-mtu-and-pmtu">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-links-paths-mtu-and-pmtu" class="section-name selfRef">Links, Paths, MTU, and PMTU</a>
</h3>
<p id="section-2.1-1">An Internet path connects a source node to a destination node. A
path may contain links and routers. If a path contains more than one
link, the links are connected in series, and a router connects each
link to the next.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">Internet paths are dynamic. Assume that the path from one node
to another contains a set of links and routers. If a link or a
router fails, the path can also change so that it includes a
different set of links and routers.<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<p id="section-2.1-3">
Each link is constrained by the number of octets that it can convey in
a single IP packet. This constraint is called the link Maximum
Transmission Unit (MTU). <span><a href="#RFC0791" class="xref">IPv4</a> [<a href="#RFC0791" class="xref">RFC0791</a>]</span>
requires every link to support an MTU of 68 octets or greater (see <a href="#note-1" class="xref">NOTE 1</a>).
<span><a href="#RFC8200" class="xref">IPv6</a> [<a href="#RFC8200" class="xref">RFC8200</a>]</span> similarly requires every link to
support an MTU of 1280 octets or greater. These are called the IPv4 and IPv6 minimum link MTUs.<a href="#section-2.1-3" class="pilcrow">¶</a></p>
<p id="section-2.1-4">Some links, and some ways of using links, result in
additional variable overhead. For the simple case of tunnels,
this document defers to other documents. For other cases,
such as MPLS, this document considers the link MTU to include
appropriate allowance for any such overhead.<a href="#section-2.1-4" class="pilcrow">¶</a></p>
<p id="section-2.1-5">Likewise, each Internet path is constrained by the number of octets
that it can convey in a single IP packet. This constraint is called
the Path MTU (PMTU). For any given path, the PMTU is equal to the
smallest of its link MTUs. Because Internet paths are dynamic, PMTU
is also dynamic.<a href="#section-2.1-5" class="pilcrow">¶</a></p>
<p id="section-2.1-6">For reasons described below, source nodes estimate the PMTU between
themselves and destination nodes. A source node can produce extremely
conservative PMTU estimates in which:<a href="#section-2.1-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-7.1">The estimate for each IPv4 path is equal to the IPv4 minimum
link MTU.<a href="#section-2.1-7.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.1-7.2">The estimate for each IPv6 path is equal to the IPv6 minimum
link MTU.<a href="#section-2.1-7.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.1-8">While these conservative estimates are guaranteed to be less
than or equal to the actual PMTU, they are likely to be much less than
the actual PMTU. This may adversely affect upper-layer protocol
performance.<a href="#section-2.1-8" class="pilcrow">¶</a></p>
<p id="section-2.1-9">By executing Path MTU Discovery (PMTUD) procedures <span>[<a href="#RFC1191" class="xref">RFC1191</a>]</span>
<span>[<a href="#RFC8201" class="xref">RFC8201</a>]</span>, a source node can
maintain a less conservative estimate of the PMTU between itself and a
destination node. In PMTUD, the source node produces an initial PMTU
estimate. This initial estimate is equal to the MTU of the first link
along the path to the destination node. It can be greater than the
actual PMTU.<a href="#section-2.1-9" class="pilcrow">¶</a></p>
<p id="section-2.1-10">Having produced an initial PMTU estimate, the source node sends
non-fragmentable IP packets to the destination node (see <a href="#note-2" class="xref">NOTE 2</a>). If
one of these packets is larger than the actual PMTU, a downstream
router will not be able to forward the packet through the next link
along the path. Therefore, the downstream router drops the packet and
sends an Internet Control Message Protocol (ICMP)
<span>[<a href="#RFC0792" class="xref">RFC0792</a>]</span> <span>[<a href="#RFC4443" class="xref">RFC4443</a>]</span> Packet Too Big (PTB) message to
the source node (see <a href="#note-3" class="xref">NOTE 3</a>). The ICMP PTB message indicates the MTU
of the link through which the packet could not be forwarded. The
source node uses this information to refine its PMTU estimate.<a href="#section-2.1-10" class="pilcrow">¶</a></p>
<p id="section-2.1-11">PMTUD produces a running estimate of the PMTU between a source node
and a destination node. Because PMTU is dynamic, the PMTU estimate can
be larger than the actual PMTU. In order to detect PMTU increases,
PMTUD occasionally resets the PMTU estimate to its initial value and
repeats the procedure described above.<a href="#section-2.1-11" class="pilcrow">¶</a></p>
<p id="section-2.1-12">Ideally, PMTUD operates as described above. However, in some
scenarios, PMTUD fails. For example:<a href="#section-2.1-12" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-13.1">PMTUD relies on the network's ability to deliver ICMP PTB
messages to the source node. If the network cannot deliver ICMP
PTB messages to the source node, PMTUD fails.<a href="#section-2.1-13.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.1-13.2">PMTUD is susceptible to attack because ICMP messages are easily
<span><a href="#RFC5927" class="xref">forged</a> [<a href="#RFC5927" class="xref">RFC5927</a>]</span> and not authenticated by the
receiver. Such attacks can cause PMTUD to produce unnecessarily
conservative PMTU estimates.<a href="#section-2.1-13.2" class="pilcrow">¶</a>
</li>
</ul>
<span class="break"></span><dl class="dlParallel" id="section-2.1-14">
<dt id="section-2.1-14.1">
<div id="note-1">NOTE 1:</div>
</dt>
<dd style="margin-left: 1.5em" id="section-2.1-14.2">In IPv4, every host must be able to reassemble a packet
whose length is less than or equal to 576 octets. However, the IPv4 minimum
link MTU is not 576. Section <a href="https://www.rfc-editor.org/rfc/rfc791#section-3.2" class="relref">3.2</a>
of <span><a href="#RFC0791" class="xref">RFC 791</a> [<a href="#RFC0791" class="xref">RFC0791</a>]</span> explicitly states
that the IPv4 minimum link MTU is 68 octets.<a href="#section-2.1-14.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-14.3">
<div id="note-2">NOTE 2:</div>
</dt>
<dd style="margin-left: 1.5em" id="section-2.1-14.4">A non-fragmentable packet can be fragmented at its source.
However, it cannot be fragmented by a downstream node. An IPv4 packet
whose Don't Fragment (DF) bit is set to 0 is fragmentable. An IPv4 packet whose
DF bit is set to 1 is non-fragmentable. All IPv6 packets are also
non-fragmentable.<a href="#section-2.1-14.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-14.5">
<div id="note-3">NOTE 3:</div>
</dt>
<dd style="margin-left: 1.5em" id="section-2.1-14.6">The ICMP PTB message has two instantiations. In <span><a href="#RFC0792" class="xref">ICMPv4</a> [<a href="#RFC0792" class="xref">RFC0792</a>]</span>, the ICMP PTB message is a Destination
Unreachable message with Code equal to 4 (fragmentation needed and DF
set). This message was augmented by <span>[<a href="#RFC1191" class="xref">RFC1191</a>]</span> to
indicate the MTU of the link through which the packet could not be
forwarded. In <span><a href="#RFC4443" class="xref">ICMPv6</a> [<a href="#RFC4443" class="xref">RFC4443</a>]</span>, the ICMP PTB
message is a Packet Too Big Message with Code equal to 0. This
message also indicates the MTU of the link through which the packet
could not be forwarded.<a href="#section-2.1-14.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<section id="section-2.2">
<h3 id="name-fragmentation-procedures">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-fragmentation-procedures" class="section-name selfRef">Fragmentation Procedures</a>
</h3>
<p id="section-2.2-1">When an upper-layer protocol submits data to the underlying IP
module, and the resulting IP packet's length is greater than the PMTU,
the packet is divided into fragments. Each fragment includes an IP
header and a portion of the original packet.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2"><span>[<a href="#RFC0791" class="xref">RFC0791</a>]</span> describes IPv4 fragmentation procedures.
An IPv4 packet whose DF bit is set to 1 may be fragmented by the
source node, but may not be fragmented by a downstream router. An IPv4
packet whose DF bit is set to 0 may be fragmented by the source
node or by a downstream router. When an IPv4 packet is fragmented, all
IP options (which are within the IPv4 header) appear in the first fragment, but only options whose "copy"
bit is set to 1 appear in subsequent fragments.<a href="#section-2.2-2" class="pilcrow">¶</a></p>
<p id="section-2.2-3"><span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span>, notably in
Section <a href="https://www.rfc-editor.org/rfc/rfc8200#section-4.5" class="relref">4.5</a>, describes
IPv6 fragmentation procedures. An IPv6 packet may be
fragmented only at the source node. When an IPv6 packet is
fragmented, all extension headers appear in the first
fragment, but only per-fragment headers appear in subsequent
fragments. Per-fragment headers include the following:<a href="#section-2.2-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.2-4.1">The IPv6 header.<a href="#section-2.2-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.2-4.2">The Hop-by-Hop Options header (if present).<a href="#section-2.2-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.2-4.3">The Destination Options header (if present and if it precedes a
Routing header).<a href="#section-2.2-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.2-4.4">The Routing header (if present).<a href="#section-2.2-4.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.2-4.5">The Fragment header.<a href="#section-2.2-4.5" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.2-5">In IPv4, the upper-layer header usually appears in the
first fragment, due to the sizes of the headers involved.
In IPv6, the upper-layer header must appear in the first fragment.<a href="#section-2.2-5" class="pilcrow">¶</a></p>
</section>
<div id="upper">
<section id="section-2.3">
<h3 id="name-upper-layer-reliance-on-ip-">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-upper-layer-reliance-on-ip-" class="section-name selfRef">Upper-Layer Reliance on IP Fragmentation</a>
</h3>
<p id="section-2.3-1">Upper-layer protocols can operate in the following modes:<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.3-2.1">Do not rely on IP fragmentation.<a href="#section-2.3-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.3-2.2">Rely on IP fragmentation by the source node only.<a href="#section-2.3-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.3-2.3">Rely on IP fragmentation by any node.<a href="#section-2.3-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.3-3">Upper-layer protocols running over IPv4 can operate in all of the
above-mentioned modes. Upper-layer protocols running over IPv6 can
operate in the first and second modes only.<a href="#section-2.3-3" class="pilcrow">¶</a></p>
<p id="section-2.3-4">Upper-layer protocols that operate in the first two modes (above)
require access to the PMTU estimate. In order to fulfill this
requirement, they can:<a href="#section-2.3-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.3-5.1">Estimate the PMTU to be equal to the IPv4 or IPv6 minimum link
MTU.<a href="#section-2.3-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.3-5.2">Access the estimate that PMTUD produced.<a href="#section-2.3-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.3-5.3">Execute PMTUD procedures themselves.<a href="#section-2.3-5.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.3-5.4">Execute Packetization Layer PMTUD (PLPMTUD) procedures
<span>[<a href="#RFC4821" class="xref">RFC4821</a>]</span>
<span>[<a href="#RFC8899" class="xref">RFC8899</a>]</span>.<a href="#section-2.3-5.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.3-6">According to PLPMTUD procedures, the upper-layer protocol
maintains a running PMTU estimate. It does so by sending probe packets
of various sizes to its upper-layer peer and receiving
acknowledgements. This strategy differs from PMTUD in that it relies
on acknowledgement of received messages, as opposed to ICMP PTB
messages concerning dropped messages. Therefore, PLPMTUD does not rely
on the network's ability to deliver ICMP PTB messages to the
source.<a href="#section-2.3-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<section id="section-3">
<h2 id="name-increased-fragility">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-increased-fragility" class="section-name selfRef">Increased Fragility</a>
</h2>
<p id="section-3-1">This section explains how IP fragmentation introduces fragility to
Internet communication.<a href="#section-3-1" class="pilcrow">¶</a></p>
<div id="virtualreassembly">
<section id="section-3.1">
<h3 id="name-virtual-reassembly">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-virtual-reassembly" class="section-name selfRef">Virtual Reassembly</a>
</h3>
<p id="section-3.1-1">Virtual reassembly is a procedure in which a device
conceptually reassembles a packet, forwards its fragments, and discards
the reassembled copy. In <span><a href="#RFC6346" class="xref">Address plus Port (A+P)</a> [<a href="#RFC6346" class="xref">RFC6346</a>]</span>
and <span><a href="#RFC6888" class="xref">Carrier Grade NAT (CGN)</a> [<a href="#RFC6888" class="xref">RFC6888</a>]</span>, virtual reassembly
is required in order to correctly translate fragment
addresses. It could be useful to address the problems in Sections
<a href="#mb" class="xref">3.2</a>, <a href="#nat" class="xref">3.3</a>,
<a href="#statelessfirewall" class="xref">3.4</a>, and <a href="#ecmp" class="xref">3.5</a>.<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<p id="section-3.1-2">Virtual reassembly is computationally expensive and holds
state for indeterminate periods of time. Therefore, it is prone
to errors and <span><a href="#at" class="xref">attacks</a> (<a href="#at" class="xref">Section 3.7</a>)</span>.<a href="#section-3.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="mb">
<section id="section-3.2">
<h3 id="name-policy-based-routing">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-policy-based-routing" class="section-name selfRef">Policy-Based Routing</a>
</h3>
<p id="section-3.2-1">IP fragmentation causes problems for routers that implement
policy-based routing.<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2-2">When a router receives a packet, it identifies the next hop on
route to the packet's destination and forwards the packet to that
next hop. In order to identify the next hop, the router interrogates a
local data structure called the Forwarding Information Base (FIB).<a href="#section-3.2-2" class="pilcrow">¶</a></p>
<p id="section-3.2-3">Normally, the FIB contains destination-based entries that map a
destination prefix to a next hop. Policy-based routing allows
destination-based and policy-based entries to coexist in the same FIB.
A policy-based FIB entry maps multiple fields, drawn from either the
IP or transport-layer header, to a next hop.<a href="#section-3.2-3" class="pilcrow">¶</a></p>
<p id="section-3.2-4"></p>
<span id="name-policy-based-routing-fib"></span><div id="FIB">
<table class="center" id="table-1">
<caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-policy-based-routing-fib" class="selfRef">Policy-Based Routing FIB</a>
</caption>
<thead>
<tr>
<th class="text-center" rowspan="1" colspan="1">Entry</th>
<th class="text-left" rowspan="1" colspan="1">Type</th>
<th class="text-left" rowspan="1" colspan="1">Dest. Prefix</th>
<th class="text-left" rowspan="1" colspan="1">Next Hdr / Dest. Port</th>
<th class="text-left" rowspan="1" colspan="1">Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-center" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">Destination-based</td>
<td class="text-left" rowspan="1" colspan="1">2001:db8::1/128</td>
<td class="text-left" rowspan="1" colspan="1">Any / Any</td>
<td class="text-left" rowspan="1" colspan="1">2001:db8:2::2</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">2</td>
<td class="text-left" rowspan="1" colspan="1">Policy-based</td>
<td class="text-left" rowspan="1" colspan="1">2001:db8::1/128</td>
<td class="text-left" rowspan="1" colspan="1">TCP / 80</td>
<td class="text-left" rowspan="1" colspan="1">2001:db8:3::3</td>
</tr>
</tbody>
</table>
</div>
<p id="section-3.2-6">Assume that a router maintains the FIB in <a href="#FIB" class="xref">Table 1</a>. The
first FIB entry is destination-based. It maps a destination prefix
2001:db8::1/128 to a next hop 2001:db8:2::2. The second FIB entry is
policy-based. It maps the same destination prefix 2001:db8::1/128
and a destination port (TCP / 80) to a different next hop
(2001:db8:3::3). The second entry is more specific than the first.<a href="#section-3.2-6" class="pilcrow">¶</a></p>
<p id="section-3.2-7">When the router receives the first fragment of a packet that is
destined for TCP port 80 on 2001:db8::1, it interrogates the FIB. Both
FIB entries satisfy the query. The router selects the second FIB entry
because it is more specific and forwards the packet to
2001:db8:3::3.<a href="#section-3.2-7" class="pilcrow">¶</a></p>
<p id="section-3.2-8">When the router receives the second fragment of the packet, it
interrogates the FIB again. This time, only the first FIB entry
satisfies the query, because the second fragment contains no
indication that the packet is destined for TCP port 80. Therefore, the
router selects the first FIB entry and forwards the packet to
2001:db8:2::2.<a href="#section-3.2-8" class="pilcrow">¶</a></p>
<p id="section-3.2-9">Policy-based routing is also known as filter-based forwarding.<a href="#section-3.2-9" class="pilcrow">¶</a></p>
</section>
</div>
<div id="nat">
<section id="section-3.3">
<h3 id="name-network-address-translation">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-network-address-translation" class="section-name selfRef">Network Address Translation (NAT)</a>
</h3>
<p id="section-3.3-1">IP fragmentation causes problems for Network Address Translation
(NAT) devices. When a NAT device detects a new, outbound flow, it maps
that flow's source port and IP address to another source port and IP
address. Having created that mapping, the NAT device translates:<a href="#section-3.3-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.3-2.1">The source IP address and source port on each outbound
packet.<a href="#section-3.3-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.3-2.2">The destination IP address and destination port on each inbound
packet.<a href="#section-3.3-2.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.3-3"></p>
<p id="section-3.3-4"><span><a href="#RFC6346" class="xref">A+P</a> [<a href="#RFC6346" class="xref">RFC6346</a>]</span> and
<span><a href="#RFC6888" class="xref">Carrier Grade NAT (CGN)</a> [<a href="#RFC6888" class="xref">RFC6888</a>]</span>
are two common NAT strategies. In both approaches, the NAT device must virtually
reassemble fragmented packets in order to translate and forward each
fragment.<a href="#section-3.3-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="statelessfirewall">
<section id="section-3.4">
<h3 id="name-stateless-firewalls">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-stateless-firewalls" class="section-name selfRef">Stateless Firewalls</a>
</h3>
<p id="section-3.4-1">As discussed in more detail in <a href="#at" class="xref">Section 3.7</a>, IP
fragmentation causes problems for stateless firewalls whose rules
include TCP and UDP ports. Because port information is only
available in the first fragment and not available
in the subsequent fragments, the firewall is limited to the following
options:<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.4-2.1">Accept all subsequent fragments, possibly admitting certain
classes of attack.<a href="#section-3.4-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.4-2.2">Block all subsequent fragments, possibly blocking legitimate
traffic.<a href="#section-3.4-2.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.4-3">Neither option is attractive.<a href="#section-3.4-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ecmp">
<section id="section-3.5">
<h3 id="name-equal-cost-multipath-link-a">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-equal-cost-multipath-link-a" class="section-name selfRef">Equal-Cost Multipath, Link Aggregate Groups, and Stateless Load Balancers</a>
</h3>
<p id="section-3.5-1">IP fragmentation causes problems for Equal-Cost Multipath (ECMP),
Link Aggregate Groups (LAG), and other stateless load-distribution
technologies. In order to assign a packet or packet fragment to a
link, an intermediate node executes a hash (i.e., load-distributing)
algorithm. The following paragraphs describe a commonly deployed hash
algorithm.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
<p id="section-3.5-2">If the packet or packet fragment contains a transport-layer header,
the algorithm accepts the following 5-tuple as input:<a href="#section-3.5-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5-3.1">IP Source Address.<a href="#section-3.5-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5-3.2">IP Destination Address.<a href="#section-3.5-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5-3.3">IPv4 Protocol or IPv6 Next Header.<a href="#section-3.5-3.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5-3.4">transport-layer source port.<a href="#section-3.5-3.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5-3.5">transport-layer destination port.<a href="#section-3.5-3.5" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.5-4">If the packet or packet fragment does not contain a
transport-layer header, the algorithm accepts only the following
3-tuple as input:<a href="#section-3.5-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5-5.1">IP Source Address.<a href="#section-3.5-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5-5.2">IP Destination Address.<a href="#section-3.5-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5-5.3">IPv4 Protocol or IPv6 Next Header.<a href="#section-3.5-5.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.5-6">Therefore, non-fragmented packets belonging to a flow can be
assigned to one link while fragmented packets belonging to the same
flow can be divided between that link and another. This can cause
suboptimal load distribution.<a href="#section-3.5-6" class="pilcrow">¶</a></p>
<p id="section-3.5-7"><span>[<a href="#RFC6438" class="xref">RFC6438</a>]</span> offers a partial solution to this problem
for IPv6 devices only. According to <span>[<a href="#RFC6438" class="xref">RFC6438</a>]</span>:<a href="#section-3.5-7" class="pilcrow">¶</a></p>
<blockquote id="section-3.5-8">At intermediate routers that perform load distribution, the hash
algorithm used to determine the outgoing component-link in an ECMP
and/or LAG toward the next hop <span class="bcp14">MUST</span> minimally include the 3-tuple
{dest addr, source addr, flow label} and <span class="bcp14">MAY</span> also include the
remaining components of the 5-tuple.<a href="#section-3.5-8" class="pilcrow">¶</a>
</blockquote>
<p id="section-3.5-9">If the algorithm includes only the 3-tuple {dest addr, source addr,
flow label}, it will assign all fragments belonging to a packet to the
same link. (See <span>[<a href="#RFC6437" class="xref">RFC6437</a>]</span> and <span>[<a href="#RFC7098" class="xref">RFC7098</a>]</span>).<a href="#section-3.5-9" class="pilcrow">¶</a></p>
<p id="section-3.5-10">In order to avoid the problem described above, implementations
<span class="bcp14">SHOULD</span> implement the recommendations provided in <a href="#lagrec" class="xref">Section 6.4</a> of this document.<a href="#section-3.5-10" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.6">
<h3 id="name-ipv4-reassembly-errors-at-h">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-ipv4-reassembly-errors-at-h" class="section-name selfRef">IPv4 Reassembly Errors at High Data Rates</a>
</h3>
<p id="section-3.6-1">IPv4 fragmentation is not sufficiently robust for use under some
conditions in today's Internet. At high data rates, the 16-bit IP
identification field is not large enough to prevent duplicate IDs, resulting in frequent
incorrectly assembled IP fragments, and the TCP and UDP checksums are
insufficient to prevent the resulting corrupted datagrams from being
delivered to upper-layer protocols. <span>[<a href="#RFC4963" class="xref">RFC4963</a>]</span>
describes some easily reproduced experiments demonstrating the
problem and discusses some of the operational implications of these
observations.<a href="#section-3.6-1" class="pilcrow">¶</a></p>
<p id="section-3.6-2">These reassembly issues do not occur as frequently in IPv6 because
the IPv6 identification field is 32 bits long.<a href="#section-3.6-2" class="pilcrow">¶</a></p>
</section>
<div id="at">
<section id="section-3.7">
<h3 id="name-security-vulnerabilities">
<a href="#section-3.7" class="section-number selfRef">3.7. </a><a href="#name-security-vulnerabilities" class="section-name selfRef">Security Vulnerabilities</a>
</h3>
<p id="section-3.7-1">Security researchers have documented several attacks that exploit
IP fragmentation. The following are examples:<a href="#section-3.7-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.7-2.1">Overlapping fragment attacks <span>[<a href="#RFC1858" class="xref">RFC1858</a>]</span>
<span>[<a href="#RFC3128" class="xref">RFC3128</a>]</span> <span>[<a href="#RFC5722" class="xref">RFC5722</a>]</span>.<a href="#section-3.7-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.7-2.2">Resource exhaustion attacks.<a href="#section-3.7-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.7-2.3">Attacks based on predictable fragment identification values
<span>[<a href="#RFC7739" class="xref">RFC7739</a>]</span>.<a href="#section-3.7-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.7-2.4">Evasion of Network Intrusion Detection Systems (NIDS) <span>[<a href="#Ptacek1998" class="xref">Ptacek1998</a>]</span>.<a href="#section-3.7-2.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.7-3">In the overlapping fragment attack, an attacker constructs a series
of packet fragments. The first fragment contains an IP header, a
transport-layer header, and some transport-layer payload. This
fragment complies with local security policy and is allowed to pass
through a stateless firewall. A second fragment, having a nonzero
offset, overlaps with the first fragment. The second fragment also
passes through the stateless firewall. When the packet is reassembled,
the transport-layer header from the first fragment is overwritten by
data from the second fragment. The reassembled packet does not comply
with local security policy. Had it traversed the firewall in one
piece, the firewall would have rejected it.<a href="#section-3.7-3" class="pilcrow">¶</a></p>
<p id="section-3.7-4">A stateless firewall cannot protect against the overlapping
fragment attack. However, destination nodes can protect against the
overlapping fragment attack by implementing the procedures described
in RFC 1858, RFC 3128, and RFC 8200. These reassembly procedures detect
the overlap and discard the packet.<a href="#section-3.7-4" class="pilcrow">¶</a></p>
<p id="section-3.7-5">The fragment reassembly algorithm is a stateful procedure in an
otherwise stateless protocol. Therefore, it can be exploited by
resource exhaustion attacks. An attacker can construct a series of
fragmented packets with one fragment missing from each packet so that
the reassembly is impossible. Thus, this attack causes resource
exhaustion on the destination node, possibly denying reassembly
services to other flows. This type of attack can be mitigated by
flushing fragment reassembly buffers when necessary, at the expense of
possibly dropping legitimate fragments.<a href="#section-3.7-5" class="pilcrow">¶</a></p>
<p id="section-3.7-6">Each IP fragment contains an "Identification" field that
destination nodes use to reassemble fragmented packets. Some
implementations set the Identification field to a predictable value,
thus making it easy for an attacker to forge malicious IP fragments
that would cause the reassembly procedure for legitimate packets to
fail.<a href="#section-3.7-6" class="pilcrow">¶</a></p>
<p id="section-3.7-7">NIDS aims at identifying malicious activity by analyzing network
traffic. Ambiguity in the possible result of the fragment reassembly
process may allow an attacker to evade these systems. Many of these
systems try to mitigate some of these evasion techniques (e.g., by
computing all possible outcomes of the fragment reassembly process, at
the expense of increased processing requirements).<a href="#section-3.7-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="PTB">
<section id="section-3.8">
<h3 id="name-pmtu-black-holing-due-to-ic">
<a href="#section-3.8" class="section-number selfRef">3.8. </a><a href="#name-pmtu-black-holing-due-to-ic" class="section-name selfRef">PMTU Black-Holing Due to ICMP Loss</a>
</h3>
<p id="section-3.8-1">As mentioned in <a href="#upper" class="xref">Section 2.3</a>, upper-layer protocols can
be configured to rely on PMTUD. Because PMTUD relies upon the network
to deliver ICMP PTB messages, those protocols also rely on the
networks to deliver ICMP PTB messages.<a href="#section-3.8-1" class="pilcrow">¶</a></p>
<p id="section-3.8-2">According to <span>[<a href="#RFC4890" class="xref">RFC4890</a>]</span>, ICMPv6 PTB messages must not
be filtered. However, ICMP PTB delivery is not reliable. It is subject
to both transient and persistent loss.<a href="#section-3.8-2" class="pilcrow">¶</a></p>
<p id="section-3.8-3">Transient loss of ICMP PTB messages can cause transient PMTU black
holes. When the conditions contributing to transient loss abate, the
network regains its ability to deliver ICMP PTB messages and
connectivity between the source and destination nodes is restored.
<a href="#transLoss" class="xref">Section 3.8.1</a> of this document describes conditions that
lead to transient loss of ICMP PTB messages.<a href="#section-3.8-3" class="pilcrow">¶</a></p>
<p id="section-3.8-4">Persistent loss of ICMP PTB messages can cause persistent black
holes. Sections <a href="#CPE" class="xref">3.8.2</a>, <a href="#Anycast" class="xref">3.8.3</a>,
and <a href="#unidirectional" class="xref">3.8.4</a> of this document describe conditions that
lead to persistent loss of ICMP PTB messages.<a href="#section-3.8-4" class="pilcrow">¶</a></p>
<p id="section-3.8-5">The problem described in this section is specific to PMTUD. It does
not occur when the upper-layer protocol obtains its PMTU estimate from
PLPMTUD or from any other source.<a href="#section-3.8-5" class="pilcrow">¶</a></p>
<div id="transLoss">
<section id="section-3.8.1">
<h4 id="name-transient-loss">
<a href="#section-3.8.1" class="section-number selfRef">3.8.1. </a><a href="#name-transient-loss" class="section-name selfRef">Transient Loss</a>
</h4>
<p id="section-3.8.1-1">The following factors can contribute to transient loss of ICMP
PTB messages:<a href="#section-3.8.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.8.1-2.1">Network congestion.<a href="#section-3.8.1-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.8.1-2.2">Packet corruption.<a href="#section-3.8.1-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.8.1-2.3">Transient routing loops.<a href="#section-3.8.1-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.8.1-2.4">ICMP rate limiting.<a href="#section-3.8.1-2.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.8.1-3">The effect of rate limiting may be severe, as RFC 4443 recommends
strict rate limiting of ICMPv6 traffic.<a href="#section-3.8.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="CPE">
<section id="section-3.8.2">
<h4 id="name-incorrect-implementation-of">
<a href="#section-3.8.2" class="section-number selfRef">3.8.2. </a><a href="#name-incorrect-implementation-of" class="section-name selfRef">Incorrect Implementation of Security Policy</a>
</h4>
<p id="section-3.8.2-1">Incorrect implementation of security policy can cause persistent
loss of ICMP PTB messages.<a href="#section-3.8.2-1" class="pilcrow">¶</a></p>
<p id="section-3.8.2-2">For example, assume that a Customer Premises Equipment (CPE) router implements
the following zone-based security policy:<a href="#section-3.8.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.8.2-3.1">Allow any traffic to flow from the inside zone to the outside
zone.<a href="#section-3.8.2-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.8.2-3.2">Do not allow any traffic to flow from the outside zone to the
inside zone unless it is part of an existing flow (i.e., it was
elicited by an outbound packet).<a href="#section-3.8.2-3.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.8.2-4">When a correct implementation of the above-mentioned
security policy receives an ICMP PTB message, it examines the ICMP
PTB payload in order to determine whether the original packet (i.e.,
the packet that elicited the ICMP PTB message) belonged to an
existing flow. If the original packet belonged to an existing flow,
the implementation allows the ICMP PTB to flow from the outside zone
to the inside zone. If not, the implementation discards the ICMP PTB
message.<a href="#section-3.8.2-4" class="pilcrow">¶</a></p>
<p id="section-3.8.2-5">When an incorrect implementation of the above-mentioned security
policy receives an ICMP PTB message, it discards the packet because
its source address is not associated with an existing flow.<a href="#section-3.8.2-5" class="pilcrow">¶</a></p>
<p id="section-3.8.2-6">The security policy described above has been implemented incorrectly on
many consumer CPE routers.<a href="#section-3.8.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Anycast">
<section id="section-3.8.3">
<h4 id="name-persistent-loss-caused-by-a">
<a href="#section-3.8.3" class="section-number selfRef">3.8.3. </a><a href="#name-persistent-loss-caused-by-a" class="section-name selfRef">Persistent Loss Caused by Anycast</a>
</h4>
<p id="section-3.8.3-1">Anycast can cause persistent loss of ICMP PTB messages. Consider
the example below:<a href="#section-3.8.3-1" class="pilcrow">¶</a></p>
<p id="section-3.8.3-2">A DNS client sends a request to an anycast address. The network
routes that DNS request to the nearest instance of that anycast
address (i.e., a DNS server). The DNS server generates a response
and sends it back to the DNS client. While the response does not
exceed the DNS server's PMTU estimate, it does exceed the actual
PMTU.<a href="#section-3.8.3-2" class="pilcrow">¶</a></p>
<p id="section-3.8.3-3">A downstream router drops the packet and sends an ICMP PTB
message the packet's source (i.e., the anycast address). The network
routes the ICMP PTB message to the anycast instance closest to the
downstream router. That anycast instance may not be the DNS server
that originated the DNS response. It may be another DNS server with
the same anycast address. The DNS server that originated the
response may never receive the ICMP PTB message and may never update
its PMTU estimate.<a href="#section-3.8.3-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="unidirectional">
<section id="section-3.8.4">
<h4 id="name-persistent-loss-caused-by-u">
<a href="#section-3.8.4" class="section-number selfRef">3.8.4. </a><a href="#name-persistent-loss-caused-by-u" class="section-name selfRef">Persistent Loss Caused by Unidirectional Routing</a>
</h4>
<p id="section-3.8.4-1">Unidirectional routing can cause persistent loss of ICMP PTB
messages. Consider the example below:<a href="#section-3.8.4-1" class="pilcrow">¶</a></p>
<p id="section-3.8.4-2">A source node sends a packet to a destination node. All
intermediate nodes maintain a route to the destination node but do
not maintain a route to the source node. In this case, when an
intermediate node encounters an MTU issue, it cannot send an ICMP
PTB message to the source node.<a href="#section-3.8.4-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<section id="section-3.9">
<h3 id="name-black-holing-due-to-filteri">
<a href="#section-3.9" class="section-number selfRef">3.9. </a><a href="#name-black-holing-due-to-filteri" class="section-name selfRef">Black-Holing Due to Filtering or Loss</a>
</h3>
<p id="section-3.9-1">In RFC 7872, researchers sampled Internet paths to determine
whether they would convey packets that contain IPv6 extension headers.
Sampled paths terminated at popular Internet sites (e.g., popular web,
mail, and DNS servers).<a href="#section-3.9-1" class="pilcrow">¶</a></p>
<p id="section-3.9-2">The study revealed that at least 28% of the sampled paths did not
convey packets containing the IPv6 Fragment extension header. In most
cases, fragments were dropped in the destination autonomous system. In
other cases, the fragments were dropped in transit autonomous
systems.<a href="#section-3.9-2" class="pilcrow">¶</a></p>
<p id="section-3.9-3">Another <span><a href="#Huston" class="xref">study</a> [<a href="#Huston" class="xref">Huston</a>]</span> confirmed this
finding. It reported that 37% of sampled endpoints used IPv6-capable
DNS resolvers that were incapable of receiving a fragmented IPv6
response.<a href="#section-3.9-3" class="pilcrow">¶</a></p>
<p id="section-3.9-4">It is difficult to determine why network operators drop fragments.
Possible causes follow:<a href="#section-3.9-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.9-5.1">Hardware inability to process fragmented packets.<a href="#section-3.9-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.9-5.2">Failure to change vendor defaults.<a href="#section-3.9-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.9-5.3">Unintentional misconfiguration.<a href="#section-3.9-5.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.9-5.4">Intentional configuration (e.g., network operators consciously
chooses to drop IPv6 fragments in order to address the issues
raised in Sections <a href="#mb" class="xref">3.2</a> through <a href="#PTB" class="xref">3.8</a>,
above.)<a href="#section-3.9-5.4" class="pilcrow">¶</a>
</li>
</ul>
</section>
</section>
<section id="section-4">
<h2 id="name-alternatives-to-ip-fragment">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-alternatives-to-ip-fragment" class="section-name selfRef">Alternatives to IP Fragmentation</a>
</h2>
<p id="section-4-1"></p>
<section id="section-4.1">
<h3 id="name-transport-layer-solutions">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-transport-layer-solutions" class="section-name selfRef">Transport-Layer Solutions</a>
</h3>
<p id="section-4.1-1">The <span><a href="#RFC0793" class="xref">Transport Control Protocol (TCP)</a> [<a href="#RFC0793" class="xref">RFC0793</a>]</span>)
can be operated in a mode that does not require IP fragmentation.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">Applications submit a stream of data to TCP. TCP divides that
stream of data into segments, with no segment exceeding the TCP
Maximum Segment Size (MSS). Each segment is encapsulated in a TCP
header and submitted to the underlying IP module. The underlying IP
module prepends an IP header and forwards the resulting packet.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">If the TCP MSS is sufficiently small, then the underlying IP module
never produces a packet whose length is greater than the actual PMTU.
Therefore, IP fragmentation is not required.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1-4">TCP offers the following mechanisms for MSS management:<a href="#section-4.1-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.1">Manual configuration.<a href="#section-4.1-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1-5.2">PMTUD.<a href="#section-4.1-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1-5.3">PLPMTUD.<a href="#section-4.1-5.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.1-6">Manual configuration is always applicable. If the MSS is configured
to a sufficiently low value, the IP layer will never produce a packet
whose length is greater than the protocol minimum link MTU. However,
manual configuration prevents TCP from taking advantage of larger link
MTUs.<a href="#section-4.1-6" class="pilcrow">¶</a></p>
<p id="section-4.1-7">Upper-layer protocols can implement PMTUD in order to discover and
take advantage of larger Path MTUs. However, as mentioned in
<a href="#pmtu" class="xref">Section 2.1</a>, PMTUD relies upon the network to deliver ICMP PTB
messages. Therefore, PMTUD can only provide an estimate of the PMTU in
environments where the risk of ICMP PTB loss is acceptable (e.g.,
known to not be filtered).<a href="#section-4.1-7" class="pilcrow">¶</a></p>
<p id="section-4.1-8">By contrast, PLPMTUD does not rely upon the network's ability to
deliver ICMP PTB messages. It utilizes probe messages sent as TCP
segments to determine whether the probed PMTU can be successfully used
across the network path. In PLPMTUD, probing is separated from
congestion control, so that loss of a TCP probe segment does not cause
a reduction of the congestion control window. <span>[<a href="#RFC4821" class="xref">RFC4821</a>]</span>
defines PLPMTUD procedures for TCP.<a href="#section-4.1-8" class="pilcrow">¶</a></p>
<p id="section-4.1-9">While TCP will never knowingly cause the underlying IP module to
emit a packet that is larger than the PMTU estimate, it can cause the
underlying IP module to emit a packet that is larger than the actual
PMTU. For example, if routing changes and as a result the PMTU becomes
smaller, TCP will not know until the ICMP PTB message arrives. If this
occurs, the packet is dropped, the PMTU estimate is updated, the
segment is divided into smaller segments, and each smaller segment is
submitted to the underlying IP module.<a href="#section-4.1-9" class="pilcrow">¶</a></p>
<p id="section-4.1-10">The <span><a href="#RFC4340" class="xref">Datagram Congestion Control Protocol
(DCCP)</a> [<a href="#RFC4340" class="xref">RFC4340</a>]</span> and the <span><a href="#RFC4960" class="xref">Stream Control Transmission
Protocol (SCTP)</a> [<a href="#RFC4960" class="xref">RFC4960</a>]</span> also can be operated in a mode that does not
require IP fragmentation. They both accept data from an application
and divide that data into segments, with no segment exceeding a
maximum size.<a href="#section-4.1-10" class="pilcrow">¶</a></p>
<p id="section-4.1-11">DCCP offers manual configuration,
PMTUD, and PLPMTUD as mechanisms for managing that maximum size.
Datagram protocols can also implement PLPMTUD to estimate the PMTU
via <span>[<a href="#RFC8899" class="xref">RFC8899</a>]</span>. This proposes
procedures for performing PLPMTUD with UDP, UDP options, SCTP, QUIC,
and other datagram protocols.<a href="#section-4.1-11" class="pilcrow">¶</a></p>
<p id="section-4.1-12">Currently, <span><a href="#RFC0768" class="xref">User Datagram Protocol (UDP)</a> [<a href="#RFC0768" class="xref">RFC0768</a>]</span>
lacks a fragmentation mechanism of its own and relies on IP
fragmentation. However, <span>[<a href="#I-D.ietf-tsvwg-udp-options" class="xref">UDP-OPTIONS</a>]</span>
proposes a fragmentation mechanism for UDP.<a href="#section-4.1-12" class="pilcrow">¶</a></p>
</section>
<section id="section-4.2">
<h3 id="name-application-layer-solutions">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-application-layer-solutions" class="section-name selfRef">Application-Layer Solutions</a>
</h3>
<p id="section-4.2-1"><span>[<a href="#RFC8085" class="xref">RFC8085</a>]</span> recognizes that IP fragmentation reduces
the reliability of Internet communication. It also recognizes that UDP
lacks a fragmentation mechanism of its own and relies on IP
fragmentation. Therefore, <span>[<a href="#RFC8085" class="xref">RFC8085</a>]</span> offers the
following advice regarding applications the run over the UDP:<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<blockquote id="section-4.2-2">An application <span class="bcp14">SHOULD NOT</span> send UDP datagrams that result in IP
packets that exceed the Maximum Transmission Unit (MTU) along the path
to the destination. Consequently, an application <span class="bcp14">SHOULD</span> either use the
path MTU information provided by the IP layer or implement Path MTU
Discovery (PMTUD) itself <span>[<a href="#RFC1191" class="xref">RFC1191</a>]</span>
<span>[<a href="#RFC1981" class="xref">RFC1981</a>]</span> <span>[<a href="#RFC4821" class="xref">RFC4821</a>]</span> to determine whether the path to a
destination will support its desired message size without
fragmentation.<a href="#section-4.2-2" class="pilcrow">¶</a>
</blockquote>
<p id="section-4.2-3">RFC 8085 continues:<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<blockquote id="section-4.2-4">Applications that do not follow the recommendation to do
PMTU/PLPMTUD discovery <span class="bcp14">SHOULD</span> still avoid sending UDP datagrams that
would result in IP packets that exceed the path MTU. Because the
actual path MTU is unknown, such applications <span class="bcp14">SHOULD</span> fall back to
sending messages that are shorter than the default effective MTU for
sending (EMTU_S in <span>[<a href="#RFC1122" class="xref">RFC1122</a>]</span>). For IPv4, EMTU_S is the
smaller of 576 bytes and the first-hop MTU <span>[<a href="#RFC1122" class="xref">RFC1122</a>]</span>. For IPv6, EMTU_S is 1280
bytes <span>[<a href="#RFC2460" class="xref">RFC2460</a>]</span>. The effective PMTU for a directly
connected destination (with no routers on the path) is the configured
interface MTU, which could be less than the maximum link payload size.
Transmission of minimum-sized UDP datagrams is inefficient over paths
that support a larger PMTU, which is a second reason to implement PMTU
discovery.<a href="#section-4.2-4" class="pilcrow">¶</a>
</blockquote>
<p id="section-4.2-5">RFC 8085 assumes that for IPv4 an EMTU_S of 576 is sufficiently
small to be supported by most current Internet
paths, even though the IPv4 minimum link MTU is 68 octets.<a href="#section-4.2-5" class="pilcrow">¶</a></p>
<p id="section-4.2-6">This advice applies equally to any application that runs directly
over IP.<a href="#section-4.2-6" class="pilcrow">¶</a></p>
</section>
</section>
<div id="rely">
<section id="section-5">
<h2 id="name-applications-that-rely-on-i">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-applications-that-rely-on-i" class="section-name selfRef">Applications That Rely on IPv6 Fragmentation</a>
</h2>
<p id="section-5-1">The following applications rely on IPv6 fragmentation:<a href="#section-5-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5-2.1">
<span><a href="#RFC1035" class="xref">DNS</a> [<a href="#RFC1035" class="xref">RFC1035</a>]</span>.<a href="#section-5-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5-2.2">
<span><a href="#RFC2328" class="xref">OSPFv2</a> [<a href="#RFC2328" class="xref">RFC2328</a>]</span>.<a href="#section-5-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5-2.3">
<span><a href="#RFC5340" class="xref">OSPFv3</a> [<a href="#RFC5340" class="xref">RFC5340</a>]</span>.<a href="#section-5-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5-2.4">Packet-in-packet encapsulations.<a href="#section-5-2.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5-3">Each of these applications relies on IPv6 fragmentation to a
varying degree. In some cases, that reliance is essential and cannot be
broken without fundamentally changing the protocol. In other cases, that
reliance is incidental, and most implementations already take
appropriate steps to avoid fragmentation.<a href="#section-5-3" class="pilcrow">¶</a></p>
<p id="section-5-4">This list is not comprehensive, and other protocols that rely on IP
fragmentation may exist. They are not specifically considered in the
context of this document.<a href="#section-5-4" class="pilcrow">¶</a></p>
<section id="section-5.1">
<h3 id="name-domain-name-service-dns">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-domain-name-service-dns" class="section-name selfRef">Domain Name Service (DNS)</a>
</h3>
<p id="section-5.1-1">DNS relies on UDP for efficiency, and the consequence is the use of
IP fragmentation for large responses, as permitted by the Extension Mechanisms for DNS (EDNS0)
options in the query. It is possible to mitigate the issue of
fragmentation-based packet loss by having queries use smaller EDNS0
UDP buffer sizes or by having the DNS server limit the size of its
UDP responses to some self-imposed maximum packet size that may be
less than the preferred EDNS0 UDP buffer size. In both cases, large
responses are truncated in the DNS, signaling to the client to
re-query using TCP to obtain the complete response. However, the
operational issue of the partial level of support for DNS over TCP,
particularly in the case where IPv6 transport is being used, becomes a
limiting factor of the efficacy of this approach <span>[<a href="#Damas" class="xref">Damas</a>]</span>.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<p id="section-5.1-2">Larger DNS responses can normally be avoided by aggressively
pruning the Additional section of DNS responses. One scenario where
such pruning is ineffective is in the use of DNSSEC, where large key
sizes act to increase the response size to certain DNS queries. There
is no effective response to this situation within the DNS other than
using smaller cryptographic keys and adopting of DNSSEC administrative
practices that attempt to keep DNS response as short as possible.<a href="#section-5.1-2" class="pilcrow">¶</a></p>
</section>
<section id="section-5.2">
<h3 id="name-open-shortest-path-first-os">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-open-shortest-path-first-os" class="section-name selfRef">Open Shortest Path First (OSPF)</a>
</h3>
<p id="section-5.2-1">OSPF implementations can emit messages large enough to cause
fragmentation. However, in order to optimize performance, most OSPF
implementations restrict their maximum message size to a value that
will not cause fragmentation.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
</section>
<section id="section-5.3">
<h3 id="name-packet-in-packet-encapsulat">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-packet-in-packet-encapsulat" class="section-name selfRef">Packet-in-Packet Encapsulations</a>
</h3>
<p id="section-5.3-1"> This document acknowledges that in some cases, packets must
be fragmented within IP-in-IP tunnels. Therefore, this document
makes no additional recommendations regarding IP-in-IP
tunnels.<a href="#section-5.3-1" class="pilcrow">¶</a></p>
<p id="section-5.3-2">In this document, packet-in-packet encapsulations include
<span><a href="#RFC2003" class="xref">IP-in-IP</a> [<a href="#RFC2003" class="xref">RFC2003</a>]</span>,
<span><a href="#RFC2784" class="xref">Generic Routing Encapsulation (GRE)</a> [<a href="#RFC2784" class="xref">RFC2784</a>]</span>,
<span><a href="#RFC8086" class="xref">GRE-in-UDP</a> [<a href="#RFC8086" class="xref">RFC8086</a>]</span>, and
<span><a href="#RFC2473" class="xref">Generic Packet Tunneling in IPv6</a> [<a href="#RFC2473" class="xref">RFC2473</a>]</span>.
<span>[<a href="#RFC4459" class="xref">RFC4459</a>]</span> describes
fragmentation issues associated with all of the above-mentioned
encapsulations.<a href="#section-5.3-2" class="pilcrow">¶</a></p>
<p id="section-5.3-3">The fragmentation strategy described for GRE in
<span>[<a href="#RFC7588" class="xref">RFC7588</a>]</span> has been deployed for all of the above-mentioned
encapsulations. This strategy does not rely on IP fragmentation except
in one corner case.
(See <span><a href="https://www.rfc-editor.org/rfc/rfc7588#section-3.3.2.2" class="relref">Section 3.3.2.2</a> of [<a href="#RFC7588" class="xref">RFC7588</a>]</span>
and <span><a href="https://www.rfc-editor.org/rfc/rfc2473#section-7.1" class="relref">Section 7.1</a> of [<a href="#RFC2473" class="xref">RFC2473</a>]</span>.)
<span><a href="https://www.rfc-editor.org/rfc/rfc7676#section-3.3" class="relref">Section 3.3</a> of [<a href="#RFC7676" class="xref">RFC7676</a>]</span> further
describes this corner case.<a href="#section-5.3-3" class="pilcrow">¶</a></p>
<p id="section-5.3-4">See <span>[<a href="#I-D.ietf-intarea-tunnels" class="xref">TUNNELS</a>]</span> for further
discussion.<a href="#section-5.3-4" class="pilcrow">¶</a></p>
</section>
<section id="section-5.4">
<h3 id="name-udp-applications-enhancing-">
<a href="#section-5.4" class="section-number selfRef">5.4. </a><a href="#name-udp-applications-enhancing-" class="section-name selfRef">UDP Applications Enhancing Performance</a>
</h3>
<p id="section-5.4-1">Some UDP applications rely on IP fragmentation to achieve
acceptable levels of performance. These applications use UDP datagram
sizes that are larger than the Path MTU so that more data can be
conveyed between the application and the kernel in a single system
call.<a href="#section-5.4-1" class="pilcrow">¶</a></p>
<p id="section-5.4-2">To pick one example, the <span><a href="#RFC5326" class="xref">Licklider
Transmission Protocol (LTP)</a> [<a href="#RFC5326" class="xref">RFC5326</a>]</span>, which is in current use on the
International Space Station (ISS), uses UDP datagram sizes larger than
the Path MTU to achieve acceptable levels of performance even though
this invokes IP fragmentation. More generally, SNMP and video
applications may transmit an application-layer quantum of data,
depending on the network layer to fragment and reassemble as
needed.<a href="#section-5.4-2" class="pilcrow">¶</a></p>
<p id="section-5.4-3"></p>
</section>
</section>
</div>
<section id="section-6">
<h2 id="name-recommendations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-recommendations" class="section-name selfRef">Recommendations</a>
</h2>
<p id="section-6-1"></p>
<section id="section-6.1">
<h3 id="name-for-application-and-protoco">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-for-application-and-protoco" class="section-name selfRef">For Application and Protocol Developers</a>
</h3>
<p id="section-6.1-1">Developers <span class="bcp14">SHOULD NOT</span> develop new protocols or applications that
rely on IP fragmentation. When a new protocol or application is
deployed in an environment that does not fully support IP
fragmentation, it <span class="bcp14">SHOULD</span> operate correctly, either in its default
configuration or in a specified alternative configuration.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">While there may be controlled environments where IP
fragmentation
works reliably, this is a deployment issue and can not be known
to someone developing a new protocol or application. It is not
recommended that new protocols or applications be developed that
rely on IP fragmentation.
Protocols and
applications that rely on IP fragmentation will work less
reliably on the Internet.<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1-3">Legacy protocols that depend upon IP fragmentation <span class="bcp14">SHOULD</span> be
updated to break that dependency. However, in some cases, there may be
no viable alternative to IP fragmentation (e.g., IPSEC tunnel mode,
IP-in-IP encapsulation).
Applications and protocols cannot necessarily know or control
whether they use lower layers or network paths that rely on such
fragmentation.
In these cases, the protocol will continue to
rely on IP fragmentation but should only be used in environments where
IP fragmentation is known to be supported.<a href="#section-6.1-3" class="pilcrow">¶</a></p>
<p id="section-6.1-4">Protocols may be able to avoid IP fragmentation by using a
sufficiently small MTU (e.g., The protocol minimum link MTU), disabling
IP fragmentation, and ensuring that the transport protocol in use
adapts its segment size to the MTU. Other protocols may deploy a
sufficiently reliable PMTU discovery mechanism (e.g., PLPMTUD).<a href="#section-6.1-4" class="pilcrow">¶</a></p>
<p id="section-6.1-5">UDP applications <span class="bcp14">SHOULD</span> abide by the recommendations stated in
<span><a href="https://www.rfc-editor.org/rfc/rfc8085#section-3.2" class="relref">Section 3.2</a> of [<a href="#RFC8085" class="xref">RFC8085</a>]</span>.<a href="#section-6.1-5" class="pilcrow">¶</a></p>
</section>
<section id="section-6.2">
<h3 id="name-for-system-developers">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-for-system-developers" class="section-name selfRef">For System Developers</a>
</h3>
<p id="section-6.2-1">Software libraries <span class="bcp14">SHOULD</span> include provision for PLPMTUD for each
supported transport protocol.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
</section>
<section id="section-6.3">
<h3 id="name-for-middlebox-developers">
<a href="#section-6.3" class="section-number selfRef">6.3. </a><a href="#name-for-middlebox-developers" class="section-name selfRef">For Middlebox Developers</a>
</h3>
<p id="section-6.3-1">Middleboxes, which are systems that "transparently"
perform policy functions on passing traffic but do not
participate in the routing system, should process IP fragments
in a manner that is consistent with <span>[<a href="#RFC0791" class="xref">RFC0791</a>]</span>
and <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span>. In many cases, middleboxes
must maintain state in order to achieve this goal.<a href="#section-6.3-1" class="pilcrow">¶</a></p>
<p id="section-6.3-2">Price and performance considerations frequently motivate network
operators to deploy stateless middleboxes. These stateless middleboxes
may perform suboptimally, process IP fragments in a manner that is not
compliant with RFC 791 or RFC 8200, or even discard IP fragments
completely. Such behaviors are <span class="bcp14">NOT RECOMMENDED</span>. If a
middlebox implements nonstandard behavior with respect to IP
fragmentation, then that behavior <span class="bcp14">MUST</span> be clearly
documented.<a href="#section-6.3-2" class="pilcrow">¶</a></p>
</section>
<div id="lagrec">
<section id="section-6.4">
<h3 id="name-for-ecmp-lag-and-load-balan">
<a href="#section-6.4" class="section-number selfRef">6.4. </a><a href="#name-for-ecmp-lag-and-load-balan" class="section-name selfRef">For ECMP, LAG, and Load-Balancer Developers And Operators</a>
</h3>
<p id="section-6.4-1">In their default configuration, when the IPv6 Flow Label is not
equal to zero, IPv6 devices that implement Equal-Cost Multipath (ECMP)
Routing as described in <span><a href="#RFC2328" class="xref">OSPF</a> [<a href="#RFC2328" class="xref">RFC2328</a>]</span>
and other routing protocols, <span><a href="#RFC7424" class="xref">Link
Aggregation Grouping (LAG)</a> [<a href="#RFC7424" class="xref">RFC7424</a>]</span>, or other load-distribution
technologies <span class="bcp14">SHOULD</span> accept only the following fields as input to their
hash algorithm:<a href="#section-6.4-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6.4-2.1">IP Source Address.<a href="#section-6.4-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.4-2.2">IP Destination Address.<a href="#section-6.4-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.4-2.3">Flow Label.<a href="#section-6.4-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6.4-3">Operators <span class="bcp14">SHOULD</span> deploy these devices in their
default configuration.<a href="#section-6.4-3" class="pilcrow">¶</a></p>
<p id="section-6.4-4">These recommendations are similar to those presented in <span>[<a href="#RFC6438" class="xref">RFC6438</a>]</span> and <span>[<a href="#RFC7098" class="xref">RFC7098</a>]</span>. They differ in that
they specify a default configuration.<a href="#section-6.4-4" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-6.5">
<h3 id="name-for-network-operators">
<a href="#section-6.5" class="section-number selfRef">6.5. </a><a href="#name-for-network-operators" class="section-name selfRef">For Network Operators</a>
</h3>
<p id="section-6.5-1">Operators <span class="bcp14">MUST</span> ensure proper PMTUD operation in their network,
including making sure the network generates PTB packets when
dropping packets too large compared to outgoing interface
MTU. However, implementations <span class="bcp14">MAY</span> rate limit the generation of
ICMP messages per <span>[<a href="#RFC1812" class="xref">RFC1812</a>]</span> and <span>[<a href="#RFC4443" class="xref">RFC4443</a>]</span>.<a href="#section-6.5-1" class="pilcrow">¶</a></p>
<p id="section-6.5-2">As per RFC 4890, network operators <span class="bcp14">MUST NOT</span> filter ICMPv6 PTB
messages unless they are known to be forged or otherwise illegitimate.
As stated in <a href="#PTB" class="xref">Section 3.8</a>, filtering ICMPv6 PTB packets causes
PMTUD to fail. Many upper-layer protocols rely on PMTUD.<a href="#section-6.5-2" class="pilcrow">¶</a></p>
<p id="section-6.5-3">As per RFC 8200, network operators <span class="bcp14">MUST NOT</span> deploy IPv6 links whose
MTU is less than 1280 octets.<a href="#section-6.5-3" class="pilcrow">¶</a></p>
<p id="section-6.5-4">Network operators <span class="bcp14">SHOULD NOT</span> filter IP fragments if they are known
to have originated at a domain name server or be destined for a domain
name server. This is because domain name services are critical to
operation of the Internet.<a href="#section-6.5-4" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-7">
<h2 id="name-iana-considerations">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-7-1">This document has no IANA actions.<a href="#section-7-1" class="pilcrow">¶</a></p>
</section>
<section id="section-8">
<h2 id="name-security-considerations">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-8-1">This document mitigates some of the security considerations
associated with IP fragmentation by discouraging its use. It does not
introduce any new security vulnerabilities, because it does not
introduce any new alternatives to IP fragmentation. Instead, it
recommends well-understood alternatives.<a href="#section-8-1" class="pilcrow">¶</a></p>
</section>
<section id="section-9">
<h2 id="name-references">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-9.1">
<h3 id="name-normative-references">
<a href="#section-9.1" class="section-number selfRef">9.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC0768">[RFC0768]</dt>
<dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"User Datagram Protocol"</span>, <span class="seriesInfo">STD 6</span>, <span class="seriesInfo">RFC 768</span>, <span class="seriesInfo">DOI 10.17487/RFC0768</span>, <time datetime="1980-08" class="refDate">August 1980</time>, <span><<a href="https://www.rfc-editor.org/info/rfc768">https://www.rfc-editor.org/info/rfc768</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC0791">[RFC0791]</dt>
<dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Internet Protocol"</span>, <span class="seriesInfo">STD 5</span>, <span class="seriesInfo">RFC 791</span>, <span class="seriesInfo">DOI 10.17487/RFC0791</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span><<a href="https://www.rfc-editor.org/info/rfc791">https://www.rfc-editor.org/info/rfc791</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC0792">[RFC0792]</dt>
<dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Internet Control Message Protocol"</span>, <span class="seriesInfo">STD 5</span>, <span class="seriesInfo">RFC 792</span>, <span class="seriesInfo">DOI 10.17487/RFC0792</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span><<a href="https://www.rfc-editor.org/info/rfc792">https://www.rfc-editor.org/info/rfc792</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC0793">[RFC0793]</dt>
<dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Transmission Control Protocol"</span>, <span class="seriesInfo">STD 7</span>, <span class="seriesInfo">RFC 793</span>, <span class="seriesInfo">DOI 10.17487/RFC0793</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span><<a href="https://www.rfc-editor.org/info/rfc793">https://www.rfc-editor.org/info/rfc793</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC1035">[RFC1035]</dt>
<dd>
<span class="refAuthor">Mockapetris, P.</span>, <span class="refTitle">"Domain names - implementation and specification"</span>, <span class="seriesInfo">STD 13</span>, <span class="seriesInfo">RFC 1035</span>, <span class="seriesInfo">DOI 10.17487/RFC1035</span>, <time datetime="1987-11" class="refDate">November 1987</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1035">https://www.rfc-editor.org/info/rfc1035</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC1191">[RFC1191]</dt>
<dd>
<span class="refAuthor">Mogul, J.</span><span class="refAuthor"> and S. Deering</span>, <span class="refTitle">"Path MTU discovery"</span>, <span class="seriesInfo">RFC 1191</span>, <span class="seriesInfo">DOI 10.17487/RFC1191</span>, <time datetime="1990-11" class="refDate">November 1990</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1191">https://www.rfc-editor.org/info/rfc1191</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4443">[RFC4443]</dt>
<dd>
<span class="refAuthor">Conta, A.</span><span class="refAuthor">, Deering, S.</span><span class="refAuthor">, and M. Gupta, Ed.</span>, <span class="refTitle">"Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">STD 89</span>, <span class="seriesInfo">RFC 4443</span>, <span class="seriesInfo">DOI 10.17487/RFC4443</span>, <time datetime="2006-03" class="refDate">March 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4443">https://www.rfc-editor.org/info/rfc4443</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4821">[RFC4821]</dt>
<dd>
<span class="refAuthor">Mathis, M.</span><span class="refAuthor"> and J. Heffner</span>, <span class="refTitle">"Packetization Layer Path MTU Discovery"</span>, <span class="seriesInfo">RFC 4821</span>, <span class="seriesInfo">DOI 10.17487/RFC4821</span>, <time datetime="2007-03" class="refDate">March 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4821">https://www.rfc-editor.org/info/rfc4821</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6437">[RFC6437]</dt>
<dd>
<span class="refAuthor">Amante, S.</span><span class="refAuthor">, Carpenter, B.</span><span class="refAuthor">, Jiang, S.</span><span class="refAuthor">, and J. Rajahalme</span>, <span class="refTitle">"IPv6 Flow Label Specification"</span>, <span class="seriesInfo">RFC 6437</span>, <span class="seriesInfo">DOI 10.17487/RFC6437</span>, <time datetime="2011-11" class="refDate">November 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6437">https://www.rfc-editor.org/info/rfc6437</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6438">[RFC6438]</dt>
<dd>
<span class="refAuthor">Carpenter, B.</span><span class="refAuthor"> and S. Amante</span>, <span class="refTitle">"Using the IPv6 Flow Label for Equal Cost Multipath Routing and Link Aggregation in Tunnels"</span>, <span class="seriesInfo">RFC 6438</span>, <span class="seriesInfo">DOI 10.17487/RFC6438</span>, <time datetime="2011-11" class="refDate">November 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6438">https://www.rfc-editor.org/info/rfc6438</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8085">[RFC8085]</dt>
<dd>
<span class="refAuthor">Eggert, L.</span><span class="refAuthor">, Fairhurst, G.</span><span class="refAuthor">, and G. Shepherd</span>, <span class="refTitle">"UDP Usage Guidelines"</span>, <span class="seriesInfo">BCP 145</span>, <span class="seriesInfo">RFC 8085</span>, <span class="seriesInfo">DOI 10.17487/RFC8085</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8085">https://www.rfc-editor.org/info/rfc8085</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8200">[RFC8200]</dt>
<dd>
<span class="refAuthor">Deering, S.</span><span class="refAuthor"> and R. Hinden</span>, <span class="refTitle">"Internet Protocol, Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">STD 86</span>, <span class="seriesInfo">RFC 8200</span>, <span class="seriesInfo">DOI 10.17487/RFC8200</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8200">https://www.rfc-editor.org/info/rfc8200</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8201">[RFC8201]</dt>
<dd>
<span class="refAuthor">McCann, J.</span><span class="refAuthor">, Deering, S.</span><span class="refAuthor">, Mogul, J.</span><span class="refAuthor">, and R. Hinden, Ed.</span>, <span class="refTitle">"Path MTU Discovery for IP version 6"</span>, <span class="seriesInfo">STD 87</span>, <span class="seriesInfo">RFC 8201</span>, <span class="seriesInfo">DOI 10.17487/RFC8201</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8201">https://www.rfc-editor.org/info/rfc8201</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8899">[RFC8899]</dt>
<dd>
<span class="refAuthor">Fairhurst, G.</span><span class="refAuthor">, Jones, T.</span><span class="refAuthor">, Tüxen, M.</span><span class="refAuthor">, Rüngeler, I.</span><span class="refAuthor">, and T. Völker</span>, <span class="refTitle">"Packetization Layer Path MTU Discovery for Datagram Transports"</span>, <span class="seriesInfo">RFC 8899</span>, <span class="seriesInfo">DOI 10.17487/RFC8899</span>, <time datetime="2020-09" class="refDate">September 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8899">https://www.rfc-editor.org/info/rfc8899</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-9.2">
<h3 id="name-informative-references">
<a href="#section-9.2" class="section-number selfRef">9.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="Damas">[Damas]</dt>
<dd>
<span class="refAuthor">Damas, J.</span><span class="refAuthor"> and G. Huston</span>, <span class="refTitle">"Measuring ATR"</span>, <time datetime="2018-04" class="refDate">April 2018</time>, <span><<a href="http://www.potaroo.net/ispcol/2018-04/atr.html">http://www.potaroo.net/ispcol/2018-04/atr.html</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Huston">[Huston]</dt>
<dd>
<span class="refAuthor">Huston, G.</span>, <span class="refTitle">"IPv6, Large UDP Packets and the DNS"</span>, <time datetime="2017-08" class="refDate">August 2017</time>, <span><<a href="http://www.potaroo.net/ispcol/2017-08/xtn-hdrs.html">http://www.potaroo.net/ispcol/2017-08/xtn-hdrs.html</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Kent">[Kent]</dt>
<dd>
<span class="refAuthor">Kent, C.</span><span class="refAuthor"> and J. Mogul</span>, <span class="refTitle">"Fragmentation Considered Harmful"</span>, <span class="refContent">SIGCOMM '87: Proceedings of the ACM workshop on Frontiers in computer communications technology</span>, <span class="seriesInfo">DOI 10.1145/55482.55524</span>, <time datetime="1987-08" class="refDate">August 1987</time>, <span><<a href="http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf">http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Ptacek1998">[Ptacek1998]</dt>
<dd>
<span class="refAuthor">Ptacek, T. H.</span><span class="refAuthor"> and T. N. Newsham</span>, <span class="refTitle">"Insertion, Evasion and Denial of Service: Eluding Network Intrusion Detection"</span>, <time datetime="1998" class="refDate">1998</time>, <span><<a href="http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps">http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC1122">[RFC1122]</dt>
<dd>
<span class="refAuthor">Braden, R., Ed.</span>, <span class="refTitle">"Requirements for Internet Hosts - Communication Layers"</span>, <span class="seriesInfo">STD 3</span>, <span class="seriesInfo">RFC 1122</span>, <span class="seriesInfo">DOI 10.17487/RFC1122</span>, <time datetime="1989-10" class="refDate">October 1989</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1122">https://www.rfc-editor.org/info/rfc1122</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC1812">[RFC1812]</dt>
<dd>
<span class="refAuthor">Baker, F., Ed.</span>, <span class="refTitle">"Requirements for IP Version 4 Routers"</span>, <span class="seriesInfo">RFC 1812</span>, <span class="seriesInfo">DOI 10.17487/RFC1812</span>, <time datetime="1995-06" class="refDate">June 1995</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1812">https://www.rfc-editor.org/info/rfc1812</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC1858">[RFC1858]</dt>
<dd>
<span class="refAuthor">Ziemba, G.</span><span class="refAuthor">, Reed, D.</span><span class="refAuthor">, and P. Traina</span>, <span class="refTitle">"Security Considerations for IP Fragment Filtering"</span>, <span class="seriesInfo">RFC 1858</span>, <span class="seriesInfo">DOI 10.17487/RFC1858</span>, <time datetime="1995-10" class="refDate">October 1995</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1858">https://www.rfc-editor.org/info/rfc1858</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC1981">[RFC1981]</dt>
<dd>
<span class="refAuthor">McCann, J.</span><span class="refAuthor">, Deering, S.</span><span class="refAuthor">, and J. Mogul</span>, <span class="refTitle">"Path MTU Discovery for IP version 6"</span>, <span class="seriesInfo">RFC 1981</span>, <span class="seriesInfo">DOI 10.17487/RFC1981</span>, <time datetime="1996-08" class="refDate">August 1996</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1981">https://www.rfc-editor.org/info/rfc1981</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2003">[RFC2003]</dt>
<dd>
<span class="refAuthor">Perkins, C.</span>, <span class="refTitle">"IP Encapsulation within IP"</span>, <span class="seriesInfo">RFC 2003</span>, <span class="seriesInfo">DOI 10.17487/RFC2003</span>, <time datetime="1996-10" class="refDate">October 1996</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2003">https://www.rfc-editor.org/info/rfc2003</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2328">[RFC2328]</dt>
<dd>
<span class="refAuthor">Moy, J.</span>, <span class="refTitle">"OSPF Version 2"</span>, <span class="seriesInfo">STD 54</span>, <span class="seriesInfo">RFC 2328</span>, <span class="seriesInfo">DOI 10.17487/RFC2328</span>, <time datetime="1998-04" class="refDate">April 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2328">https://www.rfc-editor.org/info/rfc2328</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2460">[RFC2460]</dt>
<dd>
<span class="refAuthor">Deering, S.</span><span class="refAuthor"> and R. Hinden</span>, <span class="refTitle">"Internet Protocol, Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">RFC 2460</span>, <span class="seriesInfo">DOI 10.17487/RFC2460</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2460">https://www.rfc-editor.org/info/rfc2460</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2473">[RFC2473]</dt>
<dd>
<span class="refAuthor">Conta, A.</span><span class="refAuthor"> and S. Deering</span>, <span class="refTitle">"Generic Packet Tunneling in IPv6 Specification"</span>, <span class="seriesInfo">RFC 2473</span>, <span class="seriesInfo">DOI 10.17487/RFC2473</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2473">https://www.rfc-editor.org/info/rfc2473</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2784">[RFC2784]</dt>
<dd>
<span class="refAuthor">Farinacci, D.</span><span class="refAuthor">, Li, T.</span><span class="refAuthor">, Hanks, S.</span><span class="refAuthor">, Meyer, D.</span><span class="refAuthor">, and P. Traina</span>, <span class="refTitle">"Generic Routing Encapsulation (GRE)"</span>, <span class="seriesInfo">RFC 2784</span>, <span class="seriesInfo">DOI 10.17487/RFC2784</span>, <time datetime="2000-03" class="refDate">March 2000</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2784">https://www.rfc-editor.org/info/rfc2784</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3128">[RFC3128]</dt>
<dd>
<span class="refAuthor">Miller, I.</span>, <span class="refTitle">"Protection Against a Variant of the Tiny Fragment Attack (RFC 1858)"</span>, <span class="seriesInfo">RFC 3128</span>, <span class="seriesInfo">DOI 10.17487/RFC3128</span>, <time datetime="2001-06" class="refDate">June 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3128">https://www.rfc-editor.org/info/rfc3128</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4340">[RFC4340]</dt>
<dd>
<span class="refAuthor">Kohler, E.</span><span class="refAuthor">, Handley, M.</span><span class="refAuthor">, and S. Floyd</span>, <span class="refTitle">"Datagram Congestion Control Protocol (DCCP)"</span>, <span class="seriesInfo">RFC 4340</span>, <span class="seriesInfo">DOI 10.17487/RFC4340</span>, <time datetime="2006-03" class="refDate">March 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4340">https://www.rfc-editor.org/info/rfc4340</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4459">[RFC4459]</dt>
<dd>
<span class="refAuthor">Savola, P.</span>, <span class="refTitle">"MTU and Fragmentation Issues with In-the-Network Tunneling"</span>, <span class="seriesInfo">RFC 4459</span>, <span class="seriesInfo">DOI 10.17487/RFC4459</span>, <time datetime="2006-04" class="refDate">April 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4459">https://www.rfc-editor.org/info/rfc4459</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4890">[RFC4890]</dt>
<dd>
<span class="refAuthor">Davies, E.</span><span class="refAuthor"> and J. Mohacsi</span>, <span class="refTitle">"Recommendations for Filtering ICMPv6 Messages in Firewalls"</span>, <span class="seriesInfo">RFC 4890</span>, <span class="seriesInfo">DOI 10.17487/RFC4890</span>, <time datetime="2007-05" class="refDate">May 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4890">https://www.rfc-editor.org/info/rfc4890</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4960">[RFC4960]</dt>
<dd>
<span class="refAuthor">Stewart, R., Ed.</span>, <span class="refTitle">"Stream Control Transmission Protocol"</span>, <span class="seriesInfo">RFC 4960</span>, <span class="seriesInfo">DOI 10.17487/RFC4960</span>, <time datetime="2007-09" class="refDate">September 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4960">https://www.rfc-editor.org/info/rfc4960</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4963">[RFC4963]</dt>
<dd>
<span class="refAuthor">Heffner, J.</span><span class="refAuthor">, Mathis, M.</span><span class="refAuthor">, and B. Chandler</span>, <span class="refTitle">"IPv4 Reassembly Errors at High Data Rates"</span>, <span class="seriesInfo">RFC 4963</span>, <span class="seriesInfo">DOI 10.17487/RFC4963</span>, <time datetime="2007-07" class="refDate">July 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4963">https://www.rfc-editor.org/info/rfc4963</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5326">[RFC5326]</dt>
<dd>
<span class="refAuthor">Ramadas, M.</span><span class="refAuthor">, Burleigh, S.</span><span class="refAuthor">, and S. Farrell</span>, <span class="refTitle">"Licklider Transmission Protocol - Specification"</span>, <span class="seriesInfo">RFC 5326</span>, <span class="seriesInfo">DOI 10.17487/RFC5326</span>, <time datetime="2008-09" class="refDate">September 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5326">https://www.rfc-editor.org/info/rfc5326</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5340">[RFC5340]</dt>
<dd>
<span class="refAuthor">Coltun, R.</span><span class="refAuthor">, Ferguson, D.</span><span class="refAuthor">, Moy, J.</span><span class="refAuthor">, and A. Lindem</span>, <span class="refTitle">"OSPF for IPv6"</span>, <span class="seriesInfo">RFC 5340</span>, <span class="seriesInfo">DOI 10.17487/RFC5340</span>, <time datetime="2008-07" class="refDate">July 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5340">https://www.rfc-editor.org/info/rfc5340</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5722">[RFC5722]</dt>
<dd>
<span class="refAuthor">Krishnan, S.</span>, <span class="refTitle">"Handling of Overlapping IPv6 Fragments"</span>, <span class="seriesInfo">RFC 5722</span>, <span class="seriesInfo">DOI 10.17487/RFC5722</span>, <time datetime="2009-12" class="refDate">December 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5722">https://www.rfc-editor.org/info/rfc5722</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5927">[RFC5927]</dt>
<dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"ICMP Attacks against TCP"</span>, <span class="seriesInfo">RFC 5927</span>, <span class="seriesInfo">DOI 10.17487/RFC5927</span>, <time datetime="2010-07" class="refDate">July 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5927">https://www.rfc-editor.org/info/rfc5927</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6346">[RFC6346]</dt>
<dd>
<span class="refAuthor">Bush, R., Ed.</span>, <span class="refTitle">"The Address plus Port (A+P) Approach to the IPv4 Address Shortage"</span>, <span class="seriesInfo">RFC 6346</span>, <span class="seriesInfo">DOI 10.17487/RFC6346</span>, <time datetime="2011-08" class="refDate">August 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6346">https://www.rfc-editor.org/info/rfc6346</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6888">[RFC6888]</dt>
<dd>
<span class="refAuthor">Perreault, S., Ed.</span><span class="refAuthor">, Yamagata, I.</span><span class="refAuthor">, Miyakawa, S.</span><span class="refAuthor">, Nakagawa, A.</span><span class="refAuthor">, and H. Ashida</span>, <span class="refTitle">"Common Requirements for Carrier-Grade NATs (CGNs)"</span>, <span class="seriesInfo">BCP 127</span>, <span class="seriesInfo">RFC 6888</span>, <span class="seriesInfo">DOI 10.17487/RFC6888</span>, <time datetime="2013-04" class="refDate">April 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6888">https://www.rfc-editor.org/info/rfc6888</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7098">[RFC7098]</dt>
<dd>
<span class="refAuthor">Carpenter, B.</span><span class="refAuthor">, Jiang, S.</span><span class="refAuthor">, and W. Tarreau</span>, <span class="refTitle">"Using the IPv6 Flow Label for Load Balancing in Server Farms"</span>, <span class="seriesInfo">RFC 7098</span>, <span class="seriesInfo">DOI 10.17487/RFC7098</span>, <time datetime="2014-01" class="refDate">January 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7098">https://www.rfc-editor.org/info/rfc7098</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7424">[RFC7424]</dt>
<dd>
<span class="refAuthor">Krishnan, R.</span><span class="refAuthor">, Yong, L.</span><span class="refAuthor">, Ghanwani, A.</span><span class="refAuthor">, So, N.</span><span class="refAuthor">, and B. Khasnabish</span>, <span class="refTitle">"Mechanisms for Optimizing Link Aggregation Group (LAG) and Equal-Cost Multipath (ECMP) Component Link Utilization in Networks"</span>, <span class="seriesInfo">RFC 7424</span>, <span class="seriesInfo">DOI 10.17487/RFC7424</span>, <time datetime="2015-01" class="refDate">January 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7424">https://www.rfc-editor.org/info/rfc7424</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7588">[RFC7588]</dt>
<dd>
<span class="refAuthor">Bonica, R.</span><span class="refAuthor">, Pignataro, C.</span><span class="refAuthor">, and J. Touch</span>, <span class="refTitle">"A Widely Deployed Solution to the Generic Routing Encapsulation (GRE) Fragmentation Problem"</span>, <span class="seriesInfo">RFC 7588</span>, <span class="seriesInfo">DOI 10.17487/RFC7588</span>, <time datetime="2015-07" class="refDate">July 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7588">https://www.rfc-editor.org/info/rfc7588</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7676">[RFC7676]</dt>
<dd>
<span class="refAuthor">Pignataro, C.</span><span class="refAuthor">, Bonica, R.</span><span class="refAuthor">, and S. Krishnan</span>, <span class="refTitle">"IPv6 Support for Generic Routing Encapsulation (GRE)"</span>, <span class="seriesInfo">RFC 7676</span>, <span class="seriesInfo">DOI 10.17487/RFC7676</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7676">https://www.rfc-editor.org/info/rfc7676</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7739">[RFC7739]</dt>
<dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"Security Implications of Predictable Fragment Identification Values"</span>, <span class="seriesInfo">RFC 7739</span>, <span class="seriesInfo">DOI 10.17487/RFC7739</span>, <time datetime="2016-02" class="refDate">February 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7739">https://www.rfc-editor.org/info/rfc7739</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7872">[RFC7872]</dt>
<dd>
<span class="refAuthor">Gont, F.</span><span class="refAuthor">, Linkova, J.</span><span class="refAuthor">, Chown, T.</span><span class="refAuthor">, and W. Liu</span>, <span class="refTitle">"Observations on the Dropping of Packets with IPv6 Extension Headers in the Real World"</span>, <span class="seriesInfo">RFC 7872</span>, <span class="seriesInfo">DOI 10.17487/RFC7872</span>, <time datetime="2016-06" class="refDate">June 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7872">https://www.rfc-editor.org/info/rfc7872</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8086">[RFC8086]</dt>
<dd>
<span class="refAuthor">Yong, L., Ed.</span><span class="refAuthor">, Crabbe, E.</span><span class="refAuthor">, Xu, X.</span><span class="refAuthor">, and T. Herbert</span>, <span class="refTitle">"GRE-in-UDP Encapsulation"</span>, <span class="seriesInfo">RFC 8086</span>, <span class="seriesInfo">DOI 10.17487/RFC8086</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8086">https://www.rfc-editor.org/info/rfc8086</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-intarea-tunnels">[TUNNELS]</dt>
<dd>
<span class="refAuthor">Touch, J.</span><span class="refAuthor"> and M. Townsley</span>, <span class="refTitle">"IP Tunnels in the Internet Architecture"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-intarea-tunnels-10</span>, <time datetime="2019-09-12" class="refDate">12 September 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-intarea-tunnels-10">https://tools.ietf.org/html/draft-ietf-intarea-tunnels-10</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-tsvwg-udp-options">[UDP-OPTIONS]</dt>
<dd>
<span class="refAuthor">Touch, J.</span>, <span class="refTitle">"Transport Options for UDP"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-tsvwg-udp-options-08</span>, <time datetime="2019-09-12" class="refDate">12 September 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-08">https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-08</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="section-appendix.a">
<h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
</h2>
<p id="section-appendix.a-1">Thanks to <span class="contact-name">Mikael Abrahamsson</span>,
<span class="contact-name">Brian Carpenter</span>, <span class="contact-name">Silambu Chelvan</span>,
<span class="contact-name">Lorenzo Colitti</span>,
<span class="contact-name">Gorry Fairhurst</span>,
<span class="contact-name">Joel Halpern</span>,
<span class="contact-name">Mike Heard</span>,
<span class="contact-name">Tom Herbert</span>, <span class="contact-name">Tatuya Jinmei</span>,
<span class="contact-name">Suresh Krishnan</span>, <span class="contact-name">Jen Linkova</span>,
<span class="contact-name">Paolo Lucente</span>, <span class="contact-name">Manoj Nayak</span>,
<span class="contact-name">Eric Nygren</span>, <span class="contact-name">Fred Templin</span>, and
<span class="contact-name">Joe Touch</span> for their comments.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
</section>
<div id="authors-addresses">
<section id="section-appendix.b">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Ron Bonica</span></div>
<div dir="auto" class="left"><span class="org">Juniper Networks</span></div>
<div dir="auto" class="left"><span class="street-address">2251 Corporate Park Drive</span></div>
<div dir="auto" class="left">
<span class="locality">Herndon</span>, <span class="region">Virginia</span> <span class="postal-code">20171</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:rbonica@juniper.net" class="email">rbonica@juniper.net</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Fred Baker</span></div>
<div dir="auto" class="left"><span class="org">Unaffiliated</span></div>
<div dir="auto" class="left">
<span class="locality">Santa Barbara</span>, <span class="region">California</span> <span class="postal-code">93117</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:FredBaker.IETF@gmail.com" class="email">FredBaker.IETF@gmail.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Geoff Huston</span></div>
<div dir="auto" class="left"><span class="org">APNIC</span></div>
<div dir="auto" class="left"><span class="street-address">6 Cordelia St</span></div>
<div dir="auto" class="left">
<span class="locality">Brisbane</span> <span class="region">4101 QLD</span> </div>
<div dir="auto" class="left"><span class="country-name">Australia</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:gih@apnic.net" class="email">gih@apnic.net</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Robert M. Hinden</span></div>
<div dir="auto" class="left"><span class="org">Check Point Software</span></div>
<div dir="auto" class="left"><span class="street-address">959 Skyway Road</span></div>
<div dir="auto" class="left">
<span class="locality">San Carlos</span>, <span class="region">California</span> <span class="postal-code">94070</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:bob.hinden@gmail.com" class="email">bob.hinden@gmail.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Ole Troan</span></div>
<div dir="auto" class="left"><span class="org">Cisco</span></div>
<div dir="auto" class="left"><span class="street-address">Philip Pedersens vei 1</span></div>
<div dir="auto" class="left"><span class="locality">N-1366 Lysaker</span></div>
<div dir="auto" class="left"><span class="country-name">Norway</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ot@cisco.com" class="email">ot@cisco.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Fernando Gont</span></div>
<div dir="auto" class="left"><span class="org">SI6 Networks</span></div>
<div dir="auto" class="left"><span class="street-address">Evaristo Carriego 2644</span></div>
<div dir="auto" class="left"><span class="locality">Haedo</span></div>
<div dir="auto" class="left"><span class="region">Provincia de Buenos Aires</span></div>
<div dir="auto" class="left"><span class="country-name">Argentina</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:fgont@si6networks.com" class="email">fgont@si6networks.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|