1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8931: IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Selective Fragment Recovery</title>
<meta content="Pascal Thubert" name="author">
<meta content="
This document updates RFC 4944 with a protocol that forwards individual fragments
across a route-over mesh and recovers them end to end, with
congestion control
capabilities to protect the network.
" name="description">
<meta content="xml2rfc 3.5.0" name="generator">
<meta content="8931" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.5.0
Python 3.6.10
appdirs 1.4.4
ConfigArgParse 1.2.3
google-i18n-address 2.3.5
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.2
kitchen 1.2.6
lxml 4.4.2
pycairo 1.19.0
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.3.1
requests 2.22.0
setuptools 40.6.2
six 1.14.0
WeasyPrint 51
-->
<link href="rfc8931.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: avoid-page;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc8931" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-6lo-fragment-recovery-21" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8931</td>
<td class="center">Selective RFRAG</td>
<td class="right">November 2020</td>
</tr></thead>
<tfoot><tr>
<td class="left">Thubert</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8931" class="eref">8931</a></dd>
<dt class="label-updates">Updates:</dt>
<dd class="updates">
<a href="https://www.rfc-editor.org/rfc/rfc4944" class="eref">4944</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2020-11" class="published">November 2020</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Author:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">P. Thubert, <span class="editor">Ed.</span>
</div>
<div class="org">Cisco Systems</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8931</h1>
<h1 id="title">IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Selective Fragment Recovery</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">
This document updates RFC 4944 with a protocol that forwards individual fragments
across a route-over mesh and recovers them end to end, with
congestion control
capabilities to protect the network.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc8931">https://www.rfc-editor.org/info/rfc8931</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-terminology" class="xref">Terminology</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-requirements-language" class="xref">Requirements Language</a><a href="#section-toc.1-1.2.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1" class="keepWithNext"><a href="#section-2.2" class="xref">2.2</a>. <a href="#name-background" class="xref">Background</a><a href="#section-toc.1-1.2.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.2.2.3">
<p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="xref">2.3</a>. <a href="#name-other-terms" class="xref">Other Terms</a><a href="#section-toc.1-1.2.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-updating-rfc-4944" class="xref">Updating RFC 4944</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-extending-rfc-8930" class="xref">Extending RFC 8930</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-slack-in-the-first-fragment" class="xref">Slack in the First Fragment</a><a href="#section-toc.1-1.4.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-gap-between-frames" class="xref">Gap between Frames</a><a href="#section-toc.1-1.4.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-congestion-control" class="xref">Congestion Control</a><a href="#section-toc.1-1.4.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.4.2.4">
<p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>. <a href="#name-modifying-the-first-fragmen" class="xref">Modifying the First Fragment</a><a href="#section-toc.1-1.4.2.4.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-new-dispatch-types-and-head" class="xref">New Dispatch Types and Headers</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>. <a href="#name-recoverable-fragment-dispat" class="xref">Recoverable Fragment Dispatch Type and Header</a><a href="#section-toc.1-1.5.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>. <a href="#name-rfrag-acknowledgment-dispat" class="xref">RFRAG Acknowledgment Dispatch Type and Header</a><a href="#section-toc.1-1.5.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-fragment-recovery" class="xref">Fragment Recovery</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-forwarding-fragments" class="xref">Forwarding Fragments</a><a href="#section-toc.1-1.6.2.1.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.6.2.1.2.1">
<p id="section-toc.1-1.6.2.1.2.1.1"><a href="#section-6.1.1" class="xref">6.1.1</a>. <a href="#name-receiving-the-first-fragmen" class="xref">Receiving the First Fragment</a><a href="#section-toc.1-1.6.2.1.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.6.2.1.2.2">
<p id="section-toc.1-1.6.2.1.2.2.1"><a href="#section-6.1.2" class="xref">6.1.2</a>. <a href="#name-receiving-the-next-fragment" class="xref">Receiving the Next Fragments</a><a href="#section-toc.1-1.6.2.1.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-receiving-rfrag-acknowledgm" class="xref">Receiving RFRAG Acknowledgments</a><a href="#section-toc.1-1.6.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.6.2.3">
<p id="section-toc.1-1.6.2.3.1"><a href="#section-6.3" class="xref">6.3</a>. <a href="#name-aborting-the-transmission-o" class="xref">Aborting the Transmission of a Fragmented Packet</a><a href="#section-toc.1-1.6.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.6.2.4">
<p id="section-toc.1-1.6.2.4.1"><a href="#section-6.4" class="xref">6.4</a>. <a href="#name-applying-recoverable-fragme" class="xref">Applying Recoverable Fragmentation along a Diverse Path</a><a href="#section-toc.1-1.6.2.4.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-management-considerations" class="xref">Management Considerations</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>. <a href="#name-protocol-parameters" class="xref">Protocol Parameters</a><a href="#section-toc.1-1.7.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>. <a href="#name-observing-the-network" class="xref">Observing the Network</a><a href="#section-toc.1-1.7.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
<ul class="ulEmpty compact toc">
<li class="ulEmpty compact toc" id="section-toc.1-1.10.2.1">
<p id="section-toc.1-1.10.2.1.1"><a href="#section-10.1" class="xref">10.1</a>. <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.10.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.10.2.2">
<p id="section-toc.1-1.10.2.2.1"><a href="#section-10.2" class="xref">10.2</a>. <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.10.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-appendix.a" class="xref">Appendix A</a>. <a href="#name-rationale" class="xref">Rationale</a><a href="#section-toc.1-1.11.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-appendix.b" class="xref">Appendix B</a>. <a href="#name-requirements" class="xref">Requirements</a><a href="#section-toc.1-1.12.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#section-appendix.c" class="xref">Appendix C</a>. <a href="#name-considerations-on-congestio" class="xref">Considerations on Congestion Control</a><a href="#section-toc.1-1.13.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#section-appendix.d" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a><a href="#section-toc.1-1.14.1" class="pilcrow">¶</a></p>
</li>
<li class="ulEmpty compact toc" id="section-toc.1-1.15">
<p id="section-toc.1-1.15.1"><a href="#section-appendix.e" class="xref"></a><a href="#name-authors-address" class="xref">Author's Address</a><a href="#section-toc.1-1.15.1" class="pilcrow">¶</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="introduction">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">
In most Low-Power and Lossy Network (LLN) applications, the bulk of
the traffic consists of small chunks of data (on the order of a few bytes
to a few tens of bytes) at a time. Given that an
<span><a href="#IEEE.802.15.4" class="xref">IEEE Std 802.15.4</a> [<a href="#IEEE.802.15.4" class="xref">IEEE.802.15.4</a>]</span>
frame can carry a payload of 74 bytes or more, fragmentation is
usually not required. However, and though this happens only
occasionally, a number of mission-critical applications do require
the capability to transfer larger chunks of data, for instance, to
support the firmware upgrade of the LLN nodes or the extraction of logs
from LLN nodes.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">
In the former case, the large chunk of data is
transferred to the LLN node, whereas in the latter case, the large chunk
flows away from the LLN node.
In both cases, the size can be on the
order of 10 KB or more, and an end-to-end reliable transport
is required.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">
<span><a href="#RFC4944" class="xref">"Transmission of IPv6 Packets over IEEE 802.15.4
Networks"</a> [<a href="#RFC4944" class="xref">RFC4944</a>]</span> defines the original IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) datagram fragmentation
mechanism for LLNs. One critical issue with this original design is that
routing an IPv6 <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span> packet across a route-over mesh
requires the reassembly of the packet at each hop. <span><a href="#I-D.ietf-6tisch-architecture" class="xref">"An
Architecture for IPv6 over the TSCH mode of IEEE 802.15.4"</a> [<a href="#I-D.ietf-6tisch-architecture" class="xref">6TiSCH</a>]</span>
indicates that this may cause latency along a path and impact critical
resources such as memory and battery; to alleviate those
undesirable effects, it recommends using a 6LoWPAN Fragment Forwarding
(6LFF) technique.<a href="#section-1-3" class="pilcrow">¶</a></p>
<p id="section-1-4">
<span><a href="#RFC8930" class="xref">"On Forwarding 6LoWPAN Fragments over a Multihop IPv6 Network"</a> [<a href="#RFC8930" class="xref">RFC8930</a>]</span> specifies the generic behavior
that all 6LFF techniques including this specification follow, and it presents
the associated caveats. In particular, the routing information is fully
indicated in the first fragment, which is always forwarded first.
With this specification, the first fragment is identified by a Sequence
of 0 as opposed to a dispatch type in <span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span>.
A state is formed and used to forward all the next fragments along the
same path. The Datagram_Tag is locally significant to the Layer 2 source
of the packet and is swapped at each hop; see <a href="#ffc" class="xref">Section 6</a>.
This specification encodes the Datagram_Tag in 1 byte, which will
saturate if more than 256 datagrams transit in fragmented
form over a single hop at the same time.
This is not realistic at the time of this writing.
Should this happen in a new 6LoWPAN technology, a node will need to use
several link-layer addresses to increase its indexing capacity.<a href="#section-1-4" class="pilcrow">¶</a></p>
<p id="section-1-5">
<span><a href="#I-D.ietf-lwig-6lowpan-virtual-reassembly" class="xref">"Virtual reassembly buffers in 6LoWPAN"</a> [<a href="#I-D.ietf-lwig-6lowpan-virtual-reassembly" class="xref">LWIG-FRAG</a>]</span> proposes a 6LFF
technique that is compatible with <span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span> without the
need to define a new protocol.
However, adding that capability alone to the local implementation of the
original 6LoWPAN fragmentation would not address the inherent fragility
of fragmentation (see <span>[<a href="#RFC8900" class="xref">RFC8900</a>]</span>), in
particular, the issues of resources locked on the reassembling endpoint and the wasted
transmissions due to the loss of a single fragment in a whole datagram.
<span>[<a href="#Kent" class="xref">Kent</a>]</span> compares the unreliable delivery of fragments with
a mechanism it calls "selective acknowledgments" that recovers the loss
of a fragment individually. The paper illustrates the benefits that can
be derived from such a method; see Figures 1, 2, and 3 in Section 2.3 of <span>[<a href="#Kent" class="xref">Kent</a>]</span>.
<span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span> has no selective recovery, and the whole datagram
fails when one fragment is not delivered to the reassembling endpoint.
Constrained memory resources are blocked on the reassembling endpoint until
it times out, possibly causing the loss of subsequent packets
that cannot be received for the lack of buffers.<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6">
That problem is exacerbated when forwarding fragments over multiple hops
since a loss at an intermediate hop will not be discovered by either the
fragmenting or the reassembling endpoints. Should this happen, the source will keep on sending
fragments, wasting even more resources in the network since the datagram
cannot arrive in its entirety, which possibly contributes to the
condition that caused the loss.
<span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span> is lacking a congestion control to avoid
participating in a saturation that may have caused the loss of the
fragment.
It has no signaling to abort a multi-fragment transmission at any
time and from either end, and if the
capability to forward fragments is implemented, clean up the related
state in the network.<a href="#section-1-6" class="pilcrow">¶</a></p>
<p id="section-1-7">
This specification provides a method to forward fragments over, typically,
a few hops in a route-over 6LoWPAN mesh and a selective acknowledgment
to recover individual fragments between 6LoWPAN endpoints. The method
can help limit the congestion loss in the network and addresses the
requirements in <a href="#req" class="xref">Appendix B</a>. Flow control is out of scope since
the endpoints are expected to be able to store the full datagram.
Deployments are expected to be managed and homogeneous, and an
incremental transition requires a flag day.<a href="#section-1-7" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-2">
<h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h2>
<div id="bcp">
<section id="section-2.1">
<h3 id="name-requirements-language">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
</h3>
<p id="section-2.1-1">
The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as
described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span>
when, and only when, they appear in all capitals, as shown here.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="lo">
<section id="section-2.2">
<h3 id="name-background">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-background" class="section-name selfRef">Background</a>
</h3>
<p id="section-2.2-1">
This document uses 6LoWPAN terms and concepts
that are presented in <span><a href="#RFC4919" class="xref">"IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions,
Problem Statement, and Goals"</a> [<a href="#RFC4919" class="xref">RFC4919</a>]</span>; <span><a href="#RFC4944" class="xref">"Transmission of IPv6 Packets over IEEE 802.15.4 Networks"</a> [<a href="#RFC4944" class="xref">RFC4944</a>]</span>; and
<span><a href="#RFC6606" class="xref">"Problem Statement and Requirements for
IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN)
Routing"</a> [<a href="#RFC6606" class="xref">RFC6606</a>]</span>.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2"><span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span> discusses the generic concept
of a Virtual Reassembly Buffer (VRB) and specifies behaviors
and caveats that are common to a large family of 6LFF techniques
including the mechanism specified by this document,
which is fully inherited from that specification.
It also defines terms used in this document: Compressed Form,
Datagram_Tag, Datagram_Size, Fragment_Offset, and
6LoWPAN Fragment Forwarding endpoint (commonly abbreviated as only
"endpoint").<a href="#section-2.2-2" class="pilcrow">¶</a></p>
<p id="section-2.2-3">
Past experience with fragmentation has shown that misassociated or lost
fragments can lead to poor network behavior and, occasionally, trouble
at the application layer. The reader is encouraged to read
<span><a href="#RFC4963" class="xref">"IPv4 Reassembly Errors at High Data Rates"</a> [<a href="#RFC4963" class="xref">RFC4963</a>]</span>
and follow the references for more information.
That experience led to the definition of the <span><a href="#RFC8201" class="xref">"Path
MTU Discovery for IP version 6"</a> [<a href="#RFC8201" class="xref">RFC8201</a>]</span> protocol that limits fragmentation over the
Internet.
Specifically, in the case of UDP, valuable additional information can be
found in <span><a href="#RFC8085" class="xref">"UDP Usage Guidelines"</a> [<a href="#RFC8085" class="xref">RFC8085</a>]</span>.<a href="#section-2.2-3" class="pilcrow">¶</a></p>
<p id="section-2.2-4"><span><a href="#RFC8087" class="xref">"The Benefits of Using Explicit Congestion Notification (ECN)"</a> [<a href="#RFC8087" class="xref">RFC8087</a>]</span>
provides useful information on the potential benefits and pitfalls of
using ECN.<a href="#section-2.2-4" class="pilcrow">¶</a></p>
<p id="section-2.2-5">Quoting <span><a href="#RFC3031" class="xref">"Multiprotocol Label Switching Architecture"</a> [<a href="#RFC3031" class="xref">RFC3031</a>]</span>:<a href="#section-2.2-5" class="pilcrow">¶</a></p>
<blockquote id="section-2.2-6">With MPLS, "packets are "labeled" before they are forwarded [along a Label Switched
Path (LSP)]. At subsequent hops, there is no further analysis of the packet's
network layer header. Rather, the label is used as an index into a
table which specifies the next hop, and a new label".<a href="#section-2.2-6" class="pilcrow">¶</a>
</blockquote>
<p id="section-2.2-7">
<span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span> leverages
MPLS to forward fragments that actually
do not have a network-layer header, since the fragmentation occurs below
IP, and this specification makes it reversible so the reverse path can
be followed as well.<a href="#section-2.2-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="new">
<section id="section-2.3">
<h3 id="name-other-terms">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-other-terms" class="section-name selfRef">Other Terms</a>
</h3>
<p id="section-2.3-1">
This specification uses the following terms:<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-2.3-2">
<dt id="section-2.3-2.1">RFRAG:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-2.2">Recoverable Fragment<a href="#section-2.3-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3-2.3">RFRAG-ACK:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-2.4">Recoverable Fragment Acknowledgment<a href="#section-2.3-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3-2.5">RFRAG Acknowledgment Request:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-2.6">An RFRAG with the
Acknowledgment Request flag ("X" flag) set.<a href="#section-2.3-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3-2.7">NULL bitmap:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-2.8">Refers to a bitmap with all bits set to zero.<a href="#section-2.3-2.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3-2.9">FULL bitmap:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-2.10">Refers to a bitmap with all bits set to one.<a href="#section-2.3-2.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3-2.11">Reassembling endpoint:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-2.12">The receiving endpoint.<a href="#section-2.3-2.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3-2.13">Fragmenting endpoint:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-2.14">The sending endpoint.<a href="#section-2.3-2.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3-2.15">Forward direction:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-2.16">The direction of a path, which is followed by the RFRAG.<a href="#section-2.3-2.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3-2.17">Reverse direction:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-2.18">The reverse direction of a path, which is taken by the
RFRAG-ACK.<a href="#section-2.3-2.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-2.3-3"></p>
</section>
</div>
</section>
<section id="section-3">
<h2 id="name-updating-rfc-4944">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-updating-rfc-4944" class="section-name selfRef">Updating RFC 4944</a>
</h2>
<p id="section-3-1">This specification updates the fragmentation mechanism that is
specified in <span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span> for use in route-over
LLNs by providing a model where fragments can be forwarded
end to end across a 6LoWPAN LLN and where fragments that are lost on
the way can be recovered individually.
A new format for fragments is introduced, and new dispatch types are defined
in <a href="#dispatch" class="xref">Section 5</a>.<a href="#section-3-1" class="pilcrow">¶</a></p>
<p id="section-3-2">
<span>[<a href="#RFC8138" class="xref">RFC8138</a>]</span> allows modifying the size of a packet en route by
removing the consumed hops in a compressed Routing Header.
This requires that
Fragment_Offset and Datagram_Size (defined in <a href="#RF2" class="xref">Section 5.1</a>) also be
modified en route, which is difficult to do in the uncompressed form.
This specification expresses those fields in the compressed form and
allows modifying them en route easily (more in <a href="#mod" class="xref">Section 4.4</a>).<a href="#section-3-2" class="pilcrow">¶</a></p>
<p id="section-3-3">
To be consistent with <span><a href="https://www.rfc-editor.org/rfc/rfc6282#section-2" class="relref">Section 2</a> of [<a href="#RFC6282" class="xref">RFC6282</a>]</span>, for the
fragmentation mechanism described in <span><a href="https://www.rfc-editor.org/rfc/rfc4944#section-5.3" class="relref">Section 5.3</a> of [<a href="#RFC4944" class="xref">RFC4944</a>]</span>,
any header that cannot fit within the first fragment <span class="bcp14">MUST NOT</span> be compressed
when using the fragmentation mechanism described in this specification.<a href="#section-3-3" class="pilcrow">¶</a></p>
</section>
<section id="section-4">
<h2 id="name-extending-rfc-8930">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-extending-rfc-8930" class="section-name selfRef">Extending RFC 8930</a>
</h2>
<p id="section-4-1">This specification implements the generic 6LFF technique defined in
<span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span> and provides end-to-end fragment
recovery and congestion control mechanisms.<a href="#section-4-1" class="pilcrow">¶</a></p>
<section id="section-4.1">
<h3 id="name-slack-in-the-first-fragment">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-slack-in-the-first-fragment" class="section-name selfRef">Slack in the First Fragment</a>
</h3>
<p id="section-4.1-1">
<span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span> allows for a refragmentation operation
in intermediate nodes, whereby the trailing bytes from a given fragment may be
left in the VRB to be added as the heading bytes in the next fragment.
This solves the case when the outgoing fragment needs more space than the incoming fragment; that case may arise when
the 6LoWPAN header compression is not as efficient on the outgoing link or
if the Link MTU is reduced.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">
This specification cannot allow that refragmentation operation since
the fragments are recovered end to end based on a sequence number. The
Fragment_Size <span class="bcp14">MUST</span> be tailored to fit the minimal MTU along the path, and
the first fragment that contains a 6LoWPAN compressed header <span class="bcp14">MUST</span> have enough
slack to enable a less-efficient compression in the next hops to still
fit within the Link MTU.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">
For instance, if the fragmenting endpoint is also the 6LoWPAN compression endpoint, it will
elide the Interface ID (IID) of the source IPv6 address when it matches the link-layer address
<span>[<a href="#RFC6282" class="xref">RFC6282</a>]</span>. In that case, it <span class="bcp14">MUST</span> leave slack in the first fragment as the if MTU on the first hop was 8 bytes less, so the next hop can expand the IID within the same fragment within MTU.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
</section>
<div id="gap">
<section id="section-4.2">
<h3 id="name-gap-between-frames">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-gap-between-frames" class="section-name selfRef">Gap between Frames</a>
</h3>
<p id="section-4.2-1"><span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span> requires that a
configurable interval of time be inserted between transmissions to the same
next hop and, in particular, between fragments of a same datagram.
In the case of half duplex interfaces, this inter-frame gap ensures that the
next hop is done forwarding the previous frame and is capable of receiving
the next one.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2-2">
In the case of a mesh operating at a single frequency with omnidirectional
antennas, a larger inter-frame gap is required to protect the frame against
hidden terminal collisions with the previous frame of the same flow that is
still progressing along a common path.<a href="#section-4.2-2" class="pilcrow">¶</a></p>
<p id="section-4.2-3">
The inter-frame gap is useful even for unfragmented datagrams, but it
becomes a necessity for fragments that are typically generated in a fast
sequence and are all sent over the exact same path.<a href="#section-4.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.3">
<h3 id="name-congestion-control">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-congestion-control" class="section-name selfRef">Congestion Control</a>
</h3>
<p id="section-4.3-1">
The inter-frame gap is the only protection that
<span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span> imposes by default. This
document enables grouping fragments in windows and requesting intermediate
acknowledgments, so the number of in-flight fragments can be bounded.
This document also adds an
ECN mechanism that can be used to protect the network by adapting the
size of the window, the size of the fragments, and/or the inter-frame gap.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2">
This specification enables the fragmenting endpoint to apply a congestion control
mechanism to tune those parameters, but the mechanism itself is out of scope.
In most cases, the expectation is that most datagrams will require only a
few fragments, and that only the last fragment will be acknowledged. A
basic implementation of the fragmenting endpoint is NOT <span class="bcp14">REQUIRED</span> to vary
the size of the window, the duration of the inter-frame gap, or the size of a
fragment in the middle of the transmission of a datagram, and it <span class="bcp14">MAY</span> ignore
the ECN signal or simply reset the window to 1 (see <a href="#onECN" class="xref">Appendix C</a>)
until the end of this datagram upon detecting a congestion.<a href="#section-4.3-2" class="pilcrow">¶</a></p>
<p id="section-4.3-3">
An intermediate node that experiences a congestion <span class="bcp14">MAY</span> set the ECN bit in a
fragment, and the reassembling endpoint echoes the ECN bit at most once at
the next opportunity to acknowledge back.<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<p id="section-4.3-4">
The size of the fragments is typically computed from the
Link MTU to maximize the size of the resulting frames.
The size of the window and the duration of the inter-frame
gap <span class="bcp14">SHOULD</span> be configurable, to reduce the chances of congestion and to
follow the general recommendations
in <span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span>, respectively.<a href="#section-4.3-4" class="pilcrow">¶</a></p>
</section>
<div id="mod">
<section id="section-4.4">
<h3 id="name-modifying-the-first-fragmen">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-modifying-the-first-fragmen" class="section-name selfRef">Modifying the First Fragment</a>
</h3>
<p id="section-4.4-1">
The compression of the hop limit, of the source and destination addresses
in the IPv6 header, and of the Routing Header, which are all in the first fragment, may change en route in a
route-over mesh LLN.
If the size of the first fragment is modified, then the intermediate node
<span class="bcp14">MUST</span> adapt the Datagram_Size, encoded in the Fragment_Size field,
to reflect that difference.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<p id="section-4.4-2">
The intermediate node <span class="bcp14">MUST</span> also save the difference of Datagram_Size of the
first fragment in the VRB and add it to the Fragment_Offset of all the
subsequent fragments that it forwards for that datagram. In the case of a Source Routing
Header 6LoWPAN Routing Header (SRH-6LoRH)
<span>[<a href="#RFC8138" class="xref">RFC8138</a>]</span> being consumed and thus reduced, that
difference is negative, meaning that the Fragment_Offset is decremented by
the number of bytes that were consumed.<a href="#section-4.4-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<div id="dispatch">
<section id="section-5">
<h2 id="name-new-dispatch-types-and-head">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-new-dispatch-types-and-head" class="section-name selfRef">New Dispatch Types and Headers</a>
</h2>
<p id="section-5-1"> This document specifies an alternative to the 6LoWPAN fragmentation
sub-layer <span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span> to emulate a Link MTU up to 2048 bytes
for the upper layer, which can be the 6LoWPAN header compression sub-layer
that is defined in <span><a href="#RFC6282" class="xref">"Compression Format for IPv6
Datagrams over IEEE 802.15.4-Based Networks"</a> [<a href="#RFC6282" class="xref">RFC6282</a>]</span>. This specification also provides a reliable
transmission of the fragments over a multi-hop 6LoWPAN route-over mesh
network and a minimal congestion control to reduce the chances of congestion loss.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">
A 6LoWPAN Fragment Forwarding <span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span>
technique derived from MPLS enables the forwarding of individual fragments
across a 6LoWPAN route-over mesh without reassembly at each hop.
The Datagram_Tag is used as a label; it is locally unique to the
node that owns the source link-layer address of the fragment, so together
the link-layer address and the label can identify the fragment globally
within the lifetime of the datagram.
A node may build the Datagram_Tag in its own locally significant way,
as long as the chosen Datagram_Tag stays unique to the particular datagram
for its lifetime.
The result is that the label does not need to be globally unique, but
it must be swapped at each hop as the source link-layer address changes.<a href="#section-5-2" class="pilcrow">¶</a></p>
<p id="section-5-3">
In the following sections, a Datagram_Tag extends the semantics defined in
"Fragmentation Type and Header" (see <span><a href="https://www.rfc-editor.org/rfc/rfc4944#section-5.3" class="relref">Section 5.3</a> of [<a href="#RFC4944" class="xref">RFC4944</a>]</span>).
The Datagram_Tag is a locally unique identifier for the datagram from the
perspective of the sender. This means that the Datagram_Tag identifies a
datagram uniquely in the network when associated with the source of the
datagram. As the datagram gets forwarded, the source changes, and the
Datagram_Tag must be swapped as detailed in
<span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span>.<a href="#section-5-3" class="pilcrow">¶</a></p>
<p id="section-5-4">This specification extends <span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span>
with two new dispatch types for RFRAG and the RFRAG-ACK that is received back.
The new 6LoWPAN dispatch types are taken from
<span>[<a href="#RFC8025" class="xref">RFC8025</a>]</span>, as indicated in <a href="#difig" class="xref">Table 1</a>
of <a href="#ianacon" class="xref">Section 9</a>.<a href="#section-5-4" class="pilcrow">¶</a></p>
<div id="RF2">
<section id="section-5.1">
<h3 id="name-recoverable-fragment-dispat">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-recoverable-fragment-dispat" class="section-name selfRef">Recoverable Fragment Dispatch Type and Header</a>
</h3>
<p id="section-5.1-1">
In this specification, if the packet is compressed, the size and offset
of the fragments are expressed with respect to the compressed form of the
packet, as opposed to the uncompressed (native) form.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<p id="section-5.1-2">
The format of the fragment header is shown in <a href="#RFfigalt" class="xref">Figure 1</a>.
It is the same for all fragments even though the Fragment_Offset is overloaded.
The format has a length and an offset, as
well as a Sequence field. This would be redundant if the offset was computed
as the product of the Sequence by the length, but this is not the case.
The position of a fragment in the
reassembly buffer is correlated with neither the value of the Sequence
field nor the order in which the fragments are received.
This enables splitting fragments to cope with an MTU deduction; see the example of
fragment Sequence 5 that is retried end to end as smaller fragment Sequences 13
and 14 in <a href="#ura" class="xref">Section 6.2</a>.<a href="#section-5.1-2" class="pilcrow">¶</a></p>
<p id="section-5.1-3">
The first fragment is recognized by a Sequence of 0; it carries its
Fragment_Size and the Datagram_Size of the compressed packet before it is
fragmented, whereas the other fragments carry their Fragment_Size and
Fragment_Offset. The last fragment
for a datagram is recognized when its Fragment_Offset and its Fragment_Size
add up to the stored Datagram_Size of the packet identified by the
sender link-layer address and the Datagram_Tag.<a href="#section-5.1-3" class="pilcrow">¶</a></p>
<span id="name-rfrag-dispatch-type-and-hea"></span><div id="RFfigalt">
<figure id="figure-1">
<div class="artwork art-text alignCenter" id="section-5.1-4.1">
<pre>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 1 1 0 1 0 0|E| Datagram_Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|X| Sequence| Fragment_Size | Fragment_Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
X set == Ack-Request
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-rfrag-dispatch-type-and-hea" class="selfRef">RFRAG Dispatch Type and Header</a>
</figcaption></figure>
</div>
<span class="break"></span><dl class="dlParallel" id="section-5.1-5">
<dt id="section-5.1-5.1">X:</dt>
<dd style="margin-left: 1.5em" id="section-5.1-5.2">1 bit; Ack-Request. When set, the fragmenting endpoint requires an
RFRAG Acknowledgment from the reassembling endpoint.<a href="#section-5.1-5.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.1-5.3">E:</dt>
<dd style="margin-left: 1.5em" id="section-5.1-5.4">1 bit; Explicit Congestion Notification. The "E"
flag is cleared by the source of the fragment and set by intermediate
routers to signal that this fragment experienced congestion along
its path.<a href="#section-5.1-5.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.1-5.5">Fragment_Size:</dt>
<dd style="margin-left: 1.5em" id="section-5.1-5.6">10-bit unsigned integer. The size of this
fragment in a unit that depends on link-layer technology. Unless
overridden by a more specific specification, that unit is the byte,
which allows fragments up to 1023 bytes.<a href="#section-5.1-5.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.1-5.7">Datagram_Tag:</dt>
<dd style="margin-left: 1.5em" id="section-5.1-5.8">8 bits. An identifier of the datagram that
is locally unique to the link-layer sender.<a href="#section-5.1-5.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.1-5.9">Sequence:</dt>
<dd style="margin-left: 1.5em" id="section-5.1-5.10">5-bit unsigned integer.
The sequence number of the fragment in the acknowledgment bitmap.
Fragments are numbered as [0..N], where N is in [0..31].
A Sequence of 0 indicates the first fragment in a datagram, but non-zero
values are not indicative of the position in the reassembly buffer.<a href="#section-5.1-5.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.1-5.11">Fragment_Offset:</dt>
<dd style="margin-left: 1.5em" id="section-5.1-5.12">
<p id="section-5.1-5.12.1">16-bit unsigned integer.<a href="#section-5.1-5.12.1" class="pilcrow">¶</a></p>
<p id="section-5.1-5.12.2">
When the Fragment_Offset is set to a non-zero value, its semantics depend
on the value of the Sequence field as follows:<a href="#section-5.1-5.12.2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5.1-5.12.3.1">
For a first fragment (i.e., with a Sequence of 0), this field indicates
the Datagram_Size of the compressed datagram, to help the reassembling endpoint
allocate an adapted buffer for the reception and reassembly operations.
The fragment may be stored for local reassembly. Alternatively, it may be
routed based on the destination IPv6 address. In that case, a VRB state
must be installed as described in <a href="#ff" class="xref">Section 6.1.1</a>.<a href="#section-5.1-5.12.3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-5.12.3.2">
When the Sequence is not 0, this field indicates the offset of the
fragment in the compressed form of the datagram. The fragment may be
added to a local reassembly buffer or forwarded based on an existing
VRB as described in <a href="#nf" class="xref">Section 6.1.2</a>.<a href="#section-5.1-5.12.3.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5.1-5.12.4">
A Fragment_Offset that is set to a value of 0 indicates
an abort condition, and all states regarding the datagram should be
cleaned up once the processing of the fragment is complete;
the processing of the fragment depends on whether there is a VRB already
established for this datagram and if the next hop is still reachable:<a href="#section-5.1-5.12.4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5.1-5.12.5.1">
if a VRB already exists and the next hop is still reachable, the fragment
is to be
forwarded along the associated LSP
as described in <a href="#nf" class="xref">Section 6.1.2</a>, without checking the value
of the Sequence field.<a href="#section-5.1-5.12.5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-5.12.5.2">
else, if the Sequence is 0, then the fragment is to be routed as
described in <a href="#ff" class="xref">Section 6.1.1</a>, but no state is conserved afterwards.
In that case, the session, if it exists, is aborted, and the packet is
also forwarded in an attempt to clean up the next hops along the
path indicated by the IPv6 header (possibly including a Routing Header).<a href="#section-5.1-5.12.5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-5.12.5.3">
else (the Sequence is non-zero and either no VRB exists or the next hop
is unavailable), the fragment cannot be forwarded or routed; the fragment
is discarded and an abort RFRAG-ACK
is sent back to the source as described in <a href="#nf" class="xref">Section 6.1.2</a>.<a href="#section-5.1-5.12.5.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5.1-5.12.6"></p>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-5.1-6">
Recoverable Fragments are sequenced, and a bitmap is used in the RFRAG
Acknowledgment to indicate the received fragments by setting the individual
bits that correspond to their sequence.<a href="#section-5.1-6" class="pilcrow">¶</a></p>
<p id="section-5.1-7">
There is no requirement on the reassembling endpoint to check that the
received fragments are consecutive and non-overlapping.
This may be useful, in particular, in the case where the MTU changes and a
fragment Sequence is retried with a smaller Fragment_Size, with the remainder of
the original fragment being retried with new Sequence values.
The fragmenting endpoint knows that the datagram is fully received
when the acknowledged fragments cover the whole datagram, which is implied
by a FULL bitmap.<a href="#section-5.1-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ackfrag">
<section id="section-5.2">
<h3 id="name-rfrag-acknowledgment-dispat">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-rfrag-acknowledgment-dispat" class="section-name selfRef">RFRAG Acknowledgment Dispatch Type and Header</a>
</h3>
<p id="section-5.2-1">This specification also defines a 4-byte RFRAG Acknowledgment Bitmap
that is used by the reassembling endpoint
to selectively confirm the reception of individual fragments.
A given offset in the bitmap maps one to one with a given sequence number
and indicates which fragment is acknowledged as follows:<a href="#section-5.2-1" class="pilcrow">¶</a></p>
<span id="name-rfrag-acknowledgment-bitmap"></span><div id="dCack3">
<figure id="figure-2">
<div class="artwork art-text alignCenter" id="section-5.2-2.1">
<pre>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RFRAG Acknowledgment Bitmap |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
^ ^
| | bitmap indicating whether:
| +----- Fragment with Sequence 9 was received
+----------------------- Fragment with Sequence 0 was received
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-rfrag-acknowledgment-bitmap" class="selfRef">RFRAG Acknowledgment Bitmap Encoding</a>
</figcaption></figure>
</div>
<p id="section-5.2-3"> <a href="#dCack2" class="xref">Figure 3</a> shows an example RFRAG Acknowledgment Bitmap that
indicates that all fragments from Sequence 0 to 20 were received, except
for fragments 1, 2, and 16, which were lost and must be retried.<a href="#section-5.2-3" class="pilcrow">¶</a></p>
<span id="name-example-rfrag-acknowledgmen"></span><div id="dCack2">
<figure id="figure-3">
<div class="artwork art-text alignCenter" id="section-5.2-4.1">
<pre>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|0|0|1|1|1|1|1|1|1|1|1|1|1|1|1|0|1|1|1|1|0|0|0|0|0|0|0|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-example-rfrag-acknowledgmen" class="selfRef">Example RFRAG Acknowledgment Bitmap</a>
</figcaption></figure>
</div>
<p id="section-5.2-5">The RFRAG Acknowledgment Bitmap is included in
an RFRAG Acknowledgment header, as follows:<a href="#section-5.2-5" class="pilcrow">¶</a></p>
<span id="name-rfrag-acknowledgment-dispatc"></span><div id="ackfig">
<figure id="figure-4">
<div class="artwork art-text alignCenter" id="section-5.2-6.1">
<pre>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 1 1 0 1 0 1|E| Datagram_Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RFRAG Acknowledgment Bitmap (32 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-rfrag-acknowledgment-dispatc" class="selfRef">RFRAG Acknowledgment Dispatch Type and Header</a>
</figcaption></figure>
</div>
<span class="break"></span><dl class="dlParallel" id="section-5.2-7">
<dt id="section-5.2-7.1">E:</dt>
<dd style="margin-left: 1.5em" id="section-5.2-7.2">1 bit; Explicit Congestion Notification Echo.<a href="#section-5.2-7.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.2-7.3"></dt>
<dd style="margin-left: 1.5em" id="section-5.2-7.4">When set, the fragmenting endpoint indicates that at least one of the acknowledged fragments
was received with an Explicit Congestion Notification, indicating that the
path followed by the fragments is subject to congestion. See more details in
<a href="#onECN" class="xref">Appendix C</a>.<a href="#section-5.2-7.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.2-7.5">Datagram_Tag:</dt>
<dd style="margin-left: 1.5em" id="section-5.2-7.6">8 bits; an identifier of the datagram that
is locally unique to the link-layer recipient.<a href="#section-5.2-7.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.2-7.7">RFRAG Acknowledgment Bitmap:</dt>
<dd style="margin-left: 1.5em" id="section-5.2-7.8">An RFRAG Acknowledgment Bitmap, whereby setting the bit at offset x
indicates that fragment x was received, as shown in <a href="#dCack3" class="xref">Figure 2</a>.
A NULL bitmap indicates that the fragmentation process is aborted.
A FULL bitmap indicates that the fragmentation process is complete;
all fragments were received at the reassembly endpoint.<a href="#section-5.2-7.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
</section>
</div>
<div id="ffc">
<section id="section-6">
<h2 id="name-fragment-recovery">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-fragment-recovery" class="section-name selfRef">Fragment Recovery</a>
</h2>
<p id="section-6-1">
The RFRAG header is used to transport
a fragment and optionally request an RFRAG-ACK that
confirms the reception of one or more fragments.
An RFRAG-ACK is carried as a standalone fragment header (i.e.,
with no 6LoWPAN payload) in a message that is propagated back to the
fragmenting endpoint.
To achieve this, each hop that performed an MPLS-like operation on fragments
reverses that operation for the RFRAG-ACK by sending a frame from the next
hop to the previous hop as known by its link-layer address in the VRB.
The Datagram_Tag in the RFRAG-ACK is unique to the reassembling endpoint and is enough
information for an intermediate hop to locate the VRB that contains the
Datagram_Tag used by the previous hop and the Layer 2 information associated with it (interface and link-layer address).<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2"> The fragmenting endpoint (i.e., the node that fragments the packets at the 6LoWPAN level)
also controls the number of acknowledgments by setting the Ack-Request flag in the RFRAG packets.<a href="#section-6-2" class="pilcrow">¶</a></p>
<p id="section-6-3">
The fragmenting endpoint may set the Ack-Request flag on any fragment to perform
congestion control by limiting the number of outstanding fragments, which
are the fragments that have been sent but for which reception or loss
was not positively confirmed by the reassembling endpoint. The maximum
number of outstanding fragments is controlled by the Window-Size. It is configurable and
may vary in case of ECN notification. When the endpoint that
reassembles the packets at the 6LoWPAN level receives a fragment with the Ack-Request flag set, it <span class="bcp14">MUST</span> send an
RFRAG-ACK back to the originator to confirm reception of all the
fragments it has received so far.<a href="#section-6-3" class="pilcrow">¶</a></p>
<p id="section-6-4">
The Ack-Request ("X") set in an RFRAG marks the end of a window. This flag
<span class="bcp14">MUST</span> be set on the last fragment if the fragmenting endpoint wishes to perform
an automatic repeat request (ARQ) process for the datagram,
and it <span class="bcp14">MAY</span> be set in any intermediate fragment for the purpose of congestion control.<a href="#section-6-4" class="pilcrow">¶</a></p>
<p id="section-6-5">
This ARQ process <span class="bcp14">MUST</span> be protected by a Retransmission Timeout (RTO) timer,
and the fragment that carries the "X"
flag <span class="bcp14">MAY</span> be retried upon a timeout for a configurable number of times (see
<a href="#protp" class="xref">Section 7.1</a>) with an exponential backoff.
Upon exhaustion of the retries, the fragmenting endpoint may either abort the
transmission of the datagram or resend the first fragment with an "X" flag
set in order to establish a new path for the datagram and obtain the list of
fragments that were received over the old path in the acknowledgment bitmap.
When the fragmenting endpoint knows that an underlying link-layer
mechanism protects the fragments, it may refrain from using the RFRAG
Acknowledgment mechanism and never set the Ack-Request bit.<a href="#section-6-5" class="pilcrow">¶</a></p>
<p id="section-6-6">The reassembling endpoint <span class="bcp14">MAY</span> issue unsolicited acknowledgments.
An unsolicited acknowledgment signals to the fragmenting endpoint that it
can resume sending in case it has reached its maximum number
of outstanding fragments. Another use is to inform the fragmenting endpoint
that the reassembling endpoint aborted the processing of an individual
datagram.<a href="#section-6-6" class="pilcrow">¶</a></p>
<p id="section-6-7">
The RFRAG Acknowledgment carries an ECN indication for congestion
control (see <a href="#onECN" class="xref">Appendix C</a>).
The reassembling endpoint of a fragment with the "E" (ECN) flag set <span class="bcp14">MUST</span>
echo that information at most once by setting the "E" (ECN) flag
in the next RFRAG-ACK.<a href="#section-6-7" class="pilcrow">¶</a></p>
<p id="section-6-8">
In order to protect the datagram, the fragmenting endpoint transfers a controlled number
of fragments and flags to the last
fragment of a window with an RFRAG Acknowledgment Request. The reassembling endpoint <span class="bcp14">MUST</span>
acknowledge a fragment with the acknowledgment request bit set.
If any fragment immediately preceding
an acknowledgment request is still missing, the reassembling endpoint <span class="bcp14">MAY</span> intentionally
delay its acknowledgment to allow in-transit fragments to arrive.
Because it might defeat the round-trip time computation, delaying the
acknowledgment should be configurable and not enabled by default.<a href="#section-6-8" class="pilcrow">¶</a></p>
<p id="section-6-9">
When enough fragments are received to cover the whole datagram, the reassembling endpoint reconstructs
the packet, passes it to the upper layer, sends an RFRAG-ACK on
the reverse path with a FULL bitmap, and arms a short timer, e.g.,
on the order of an average round-trip time in the network. The FULL bitmap
is used as opposed to a bitmap that acknowledges only the received fragments
to let the intermediate nodes know that the datagram is fully received.
As the timer runs, the reassembling endpoint absorbs the fragments that were
still in flight for that datagram without creating a new state, acknowledging
the ones that bear an Ack-Request with an FRAG Acknowledgment and the
FULL bitmap.
The reassembling endpoint aborts the communication if fragments with a
matching source and Datagram-Tag continue to be received
after the timer expires.<a href="#section-6-9" class="pilcrow">¶</a></p>
<p id="section-6-10">
Note that acknowledgments might consume precious resources, so the use of
unsolicited acknowledgments <span class="bcp14">SHOULD</span> be configurable and not enabled by
default.<a href="#section-6-10" class="pilcrow">¶</a></p>
<p id="section-6-11">
An observation is that streamlining the forwarding of fragments generally
reduces the latency over the LLN mesh, providing room for retries within
existing upper-layer reliability mechanisms.
The fragmenting endpoint protects the transmission over the LLN mesh with a retry timer
that is configured for a use case and may be adapted dynamically, e.g.,
according to the method detailed in <span>[<a href="#RFC6298" class="xref">RFC6298</a>]</span>.
It is expected that the upper-layer retry mechanism obeys the recommendations in
<span>[<a href="#RFC8085" class="xref">RFC8085</a>]</span>, in which case a single
round of fragment recovery should fit within the upper-layer recovery timers.<a href="#section-6-11" class="pilcrow">¶</a></p>
<p id="section-6-12">
Fragments <span class="bcp14">MUST</span> be sent in a round-robin fashion: the sender <span class="bcp14">MUST</span> send all
the fragments for a first time before it retries any lost fragment; lost
fragments <span class="bcp14">MUST</span> be retried in sequence, oldest first. This mechanism
enables the receiver to acknowledge fragments that were delayed in
the network before they are retried.<a href="#section-6-12" class="pilcrow">¶</a></p>
<p id="section-6-13">
When a single radio frequency is used by contiguous hops, the fragmenting endpoint <span class="bcp14">SHOULD</span> insert a delay between the frames (e.g., carrying fragments) that are sent to the same next hop. The delay <span class="bcp14">SHOULD</span> cover multiple transmissions so as to let a frame progress a few hops and avoid hidden terminal issues.
This precaution is not required on channel hopping technologies such as Time-Slotted Channel Hopping (TSCH)
<span>[<a href="#RFC6554" class="xref">RFC6554</a>]</span>, where nodes that communicate at Layer 2 are scheduled to send
and receive, respectively, and different hops operate on different channels.<a href="#section-6-13" class="pilcrow">¶</a></p>
<div id="ffg">
<section id="section-6.1">
<h3 id="name-forwarding-fragments">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-forwarding-fragments" class="section-name selfRef">Forwarding Fragments</a>
</h3>
<p id="section-6.1-1">
This specification inherits from <span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span>
and proposes a Virtual Reassembly Buffer technique to forward fragments with no intermediate reconstruction of the entire datagram.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">
The IPv6 header <span class="bcp14">MUST</span> be placed in the first fragment in full to enable the routing decision. The first fragment is routed and creates an LSP from the fragmenting endpoint to the reassembling endpoint. The next fragments are label switched along that LSP.
As a consequence, the next fragments can only follow the path that was set
up by the first fragment; they cannot follow an alternate route.
The Datagram_Tag is used to carry the label, which is swapped in each hop.<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1-3">
If the first fragment is too large for the path MTU, it will repeatedly fail
and never establish an LSP. In that case,
the fragmenting endpoint <span class="bcp14">MAY</span> retry the same datagram with a smaller
Fragment_Size, in which case it <span class="bcp14">MUST</span> abort the original attempt and use a
new Datagram_Tag for the new attempt.<a href="#section-6.1-3" class="pilcrow">¶</a></p>
<div id="ff">
<section id="section-6.1.1">
<h4 id="name-receiving-the-first-fragmen">
<a href="#section-6.1.1" class="section-number selfRef">6.1.1. </a><a href="#name-receiving-the-first-fragmen" class="section-name selfRef">Receiving the First Fragment</a>
</h4>
<p id="section-6.1.1-1">
In route-over mode, the source and destination link-layer addresses in a frame
change at each hop. The label that is formed and placed in the
Datagram_Tag by the sender is associated with the source link-layer address and only valid (and temporarily unique) for that source link-layer address.<a href="#section-6.1.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1.1-2">
Upon receiving the first fragment (i.e., with a Sequence of 0), an intermediate router
creates a VRB and the associated
LSP state indexed by the incoming interface, the previous-hop link-layer address,
and the Datagram_Tag and forwards the fragment along the IPv6 route that matches
the destination IPv6 address in the IPv6 header until it reaches the
reassembling endpoint, as prescribed by
<span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span>.
The LSP state enables matching the next incoming fragments of a datagram to
the abstract forwarding information of the next interface, source and next-hop
link-layer addresses, and the swapped Datagram_Tag.<a href="#section-6.1.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1.1-3">
In addition, the router also forms a reverse LSP state indexed by the interface to the next hop, the link-layer address the router uses as source for that datagram, and the swapped Datagram_Tag. This reverse LSP state
enables matching the tuple (interface, destination link-layer address, Datagram_Tag) found in an RFRAG-ACK to the abstract forwarding information (previous interface, previous link-layer address, Datagram_Tag) used to forward the RFRAG-ACK back to the fragmenting endpoint.<a href="#section-6.1.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="nf">
<section id="section-6.1.2">
<h4 id="name-receiving-the-next-fragment">
<a href="#section-6.1.2" class="section-number selfRef">6.1.2. </a><a href="#name-receiving-the-next-fragment" class="section-name selfRef">Receiving the Next Fragments</a>
</h4>
<p id="section-6.1.2-1">Upon receiving the next fragment (i.e., with a non-zero Sequence),
an intermediate router looks up
an LSP indexed by the tuple (incoming interface, previous-hop link-layer address, Datagram_Tag) found in the fragment.
If it is found, the router forwards the fragment using the associated VRB as
prescribed by <span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span>.<a href="#section-6.1.2-1" class="pilcrow">¶</a></p>
<p id="section-6.1.2-2">If the VRB for the tuple is not found, the router builds an RFRAG-ACK
to abort the transmission of the packet. The resulting message has the
following information:<a href="#section-6.1.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6.1.2-3.1">The source and destination link-layer addresses are swapped from those found
in the fragment, and the same interface is used<a href="#section-6.1.2-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.1.2-3.2">The Datagram_Tag is set to the Datagram_Tag found in the fragment<a href="#section-6.1.2-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.1.2-3.3">A NULL bitmap is used to signal the abort condition<a href="#section-6.1.2-3.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6.1.2-4">
At this point, the router is all set and can send the RFRAG-ACK back to
the previous router. The RFRAG-ACK should normally be forwarded all the way
to the source using the reverse LSP state in the VRBs in the intermediate
routers as described in the next section.<a href="#section-6.1.2-4" class="pilcrow">¶</a></p>
<p id="section-6.1.2-5">
<span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span> indicates that the
reassembling endpoint stores
"the actual packet data from the fragments received so far, in a form that
makes it possible to detect when the whole packet has been received and can
be processed or forwarded".
How this is computed is implementation specific,
but it relies on receiving all the bytes up to the Datagram_Size indicated in
the first fragment.
An implementation may receive overlapping fragments as the result of retries
after an MTU change.<a href="#section-6.1.2-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="ura">
<section id="section-6.2">
<h3 id="name-receiving-rfrag-acknowledgm">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-receiving-rfrag-acknowledgm" class="section-name selfRef">Receiving RFRAG Acknowledgments</a>
</h3>
<p id="section-6.2-1">Upon receipt of an RFRAG-ACK, the router looks up a reverse LSP indexed by the interface and destination link-layer address of the received frame and the received Datagram_Tag in the RFRAG-ACK.
If it is found, the router forwards the fragment using the associated VRB as
prescribed by <span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span>, but it uses
the reverse LSP so that the RFRAG-ACK flows back to the fragmenting endpoint.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<p id="section-6.2-2">If the reverse LSP is not found, the router <span class="bcp14">MUST</span> silently drop the RFRAG-ACK message.<a href="#section-6.2-2" class="pilcrow">¶</a></p>
<p id="section-6.2-3">Either way, if the RFRAG-ACK indicates that the fragment was entirely received (FULL bitmap), it arms a short timer, and upon timeout, the VRB and all the associated states are destroyed. Until the timer elapses, fragments of that datagram may still be received, e.g., if the RFRAG-ACK was lost on the path back, and the source retried the last fragment. In that
case, the router generates an RFRAG-ACK with a FULL bitmap back to the fragmenting endpoint if an acknowledgment was requested; else, it silently drops the fragment.<a href="#section-6.2-3" class="pilcrow">¶</a></p>
<p id="section-6.2-4">
This specification does not provide a method to discover the number of hops
or the minimal value of MTU along those hops. In a typical case, the MTU is
constant and is the same across the network. But should the minimal MTU along
the path decrease, it is possible to retry a long fragment (say a Sequence of 5) with
several shorter fragments with a Sequence that was not used before (e.g.,
13 and 14). Fragment 5 is marked as abandoned and will not be retried
anymore. Note that when this mechanism is in place, it is hard to predict
the total number of fragments that will be needed or the final shape of the
bitmap that would cover the whole packet. This is why the FULL bitmap is used
when the reassembling endpoint gets the whole datagram regardless of which
fragments were actually used to do so. Intermediate nodes will know unambiguously
that the process is complete. Note that Path MTU Discovery is out of scope for this document.<a href="#section-6.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-6.3">
<h3 id="name-aborting-the-transmission-o">
<a href="#section-6.3" class="section-number selfRef">6.3. </a><a href="#name-aborting-the-transmission-o" class="section-name selfRef">Aborting the Transmission of a Fragmented Packet</a>
</h3>
<p id="section-6.3-1">
A reset is signaled on the forward path with a pseudo fragment that has the Fragment_Offset set to 0. The sender of a reset <span class="bcp14">SHOULD</span> also set the Sequence and Fragment_Size field to 0.<a href="#section-6.3-1" class="pilcrow">¶</a></p>
<p id="section-6.3-2">
When the fragmenting endpoint or a router on the path decides that a packet should be dropped and the fragmentation process aborted, it generates a reset pseudo fragment and forwards it down the fragment path.<a href="#section-6.3-2" class="pilcrow">¶</a></p>
<p id="section-6.3-3">Each router along the path forwards the pseudo fragment in
turn based on the VRB state. If an acknowledgment is not requested, the VRB and all associated states are destroyed.<a href="#section-6.3-3" class="pilcrow">¶</a></p>
<p id="section-6.3-4">
Upon reception of the pseudo fragment, the reassembling endpoint cleans up all resources for the packet
associated with the Datagram_Tag. If an acknowledgment is requested, the reassembling endpoint responds with a NULL bitmap.<a href="#section-6.3-4" class="pilcrow">¶</a></p>
<p id="section-6.3-5">On the other hand, the reassembling endpoint might need to abort the processing of a fragmented packet for internal reasons, for instance, if it is out of reassembly buffers, already uses all 256 possible values of the Datagram_Tag, or keeps receiving fragments beyond a reasonable time while it considers that this packet is already fully reassembled and was passed to the upper layer. In that case, the reassembling endpoint <span class="bcp14">SHOULD</span> indicate so to the fragmenting endpoint with a NULL bitmap in an RFRAG-ACK.<a href="#section-6.3-5" class="pilcrow">¶</a></p>
<p id="section-6.3-6">
The RFRAG-ACK is forwarded all the way back to the source of the packet and cleans up all resources on the path.
Upon an acknowledgment with a NULL bitmap, the fragmenting endpoint <span class="bcp14">MUST</span> abort the transmission of the fragmented datagram with one exception: in the particular case of the first fragment, it <span class="bcp14">MAY</span> decide to retry via an alternate next hop instead.<a href="#section-6.3-6" class="pilcrow">¶</a></p>
</section>
<section id="section-6.4">
<h3 id="name-applying-recoverable-fragme">
<a href="#section-6.4" class="section-number selfRef">6.4. </a><a href="#name-applying-recoverable-fragme" class="section-name selfRef">Applying Recoverable Fragmentation along a Diverse Path</a>
</h3>
<p id="section-6.4-1">
The text above can be read with the assumption of a serial path between a
source and a destination. The IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) architecture (see
<span><a href="https://tools.ietf.org/html/draft-ietf-6tisch-architecture-29#section-4.5.3" class="relref">Section 4.5.3</a> of [<a href="#I-D.ietf-6tisch-architecture" class="xref">6TiSCH</a>]</span>)
defines the concept of a Track that can be a complex path between a source
and a destination with Packet ARQ, Replication,
Elimination, and Overhearing (PAREO) along the Track. This specification
can be used along any subset of
the complex Track where the first fragment is flooded. The last RFRAG
Acknowledgment is flooded on that same subset in the reverse direction.
Intermediate RFRAG Acknowledgments can be flooded on any sub-subset of that
reverse subset that reaches back to the source.<a href="#section-6.4-1" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<section id="section-7">
<h2 id="name-management-considerations">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-management-considerations" class="section-name selfRef">Management Considerations</a>
</h2>
<p id="section-7-1">
This specification extends <span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span> and requires the same parameters in the reassembling endpoint and on intermediate nodes. There is no new parameter as echoing ECN is always on. These parameters typically include the reassembly timeout at the reassembling endpoint, an inactivity cleanup timer on the intermediate nodes, and the number of messages that can be processed in parallel in all nodes.<a href="#section-7-1" class="pilcrow">¶</a></p>
<p id="section-7-2">
The configuration settings introduced by this specification only apply to the fragmenting endpoint, which is in full control of the transmission.
LLNs vary a lot in size (there can be thousands of nodes in a mesh), in
speed (from 10 Kbps to several Mbps at the PHY layer), in traffic density, and in optimizations that are desired (e.g., the selection of a Routing Protocol for LLNs (RPL) <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> Objective Function <span>[<a href="#RFC6552" class="xref">RFC6552</a>]</span> impacts the shape of the routing graph).<a href="#section-7-2" class="pilcrow">¶</a></p>
<p id="section-7-3">
For that reason, only very generic guidance can be given on the settings of the fragmenting endpoint and on whether complex algorithms are needed to perform congestion control or to estimate the round-trip time. To cover the most complex use cases, this specification enables the fragmenting endpoint to vary the fragment size, the window size, and the inter-frame gap based on the number of losses, the observed variations of the round-trip time, and the setting of the ECN bit.<a href="#section-7-3" class="pilcrow">¶</a></p>
<div id="protp">
<section id="section-7.1">
<h3 id="name-protocol-parameters">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-protocol-parameters" class="section-name selfRef">Protocol Parameters</a>
</h3>
<p id="section-7.1-1">
The management system <span class="bcp14">SHOULD</span> be capable of providing the parameters listed in this section, and an
implementation <span class="bcp14">MUST</span> abide by those parameters and, in particular, never exceed the minimum and maximum configured boundaries.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
<p id="section-7.1-2">
An implementation should consider the generic recommendations from the IETF in the matter of congestion control and rate management for IP datagrams in
<span>[<a href="#RFC8085" class="xref">RFC8085</a>]</span>.
An implementation may perform congestion control by using a dynamic value of the window size (Window_Size), adapting the fragment size (Fragment_Size), and potentially
reducing the load by inserting an inter-frame gap that is longer than necessary. In a large network where nodes contend for the bandwidth, a larger Fragment_Size consumes less bandwidth but also reduces fluidity and incurs higher chances of loss in transmission.<a href="#section-7.1-2" class="pilcrow">¶</a></p>
<p id="section-7.1-3">
This is controlled by the following parameters:<a href="#section-7.1-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-7.1-4">
<dt id="section-7.1-4.1">inter-frame gap:</dt>
<dd style="margin-left: 1.5em" id="section-7.1-4.2">
The inter-frame gap indicates the minimum amount of time between transmissions.
The inter-frame gap controls the rate at which fragments are sent, the ratio of air time, and the amount of memory in intermediate nodes that a particular datagram will use. It can be used as a flow control, a congestion control, and/or a collision
control measure.
It <span class="bcp14">MUST</span> be set at a minimum to a value that protects the propagation of one transmission against collision with next <span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span>. In a wireless network that uses the same frequency along a path, this may represent the time for a frame to progress over multiple hops (see more in <a href="#gap" class="xref">Section 4.2</a>).
It <span class="bcp14">SHOULD</span> be augmented beyond this as necessary to protect the network against congestion.<a href="#section-7.1-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.1-4.3">MinFragmentSize:</dt>
<dd style="margin-left: 1.5em" id="section-7.1-4.4">
The MinFragmentSize is the minimum value for the Fragment_Size. It <span class="bcp14">MUST</span> be lower than the minimum value of smallest 1-hop MTU that can be encountered along the path.<a href="#section-7.1-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.1-4.5">OptFragmentSize:</dt>
<dd style="margin-left: 1.5em" id="section-7.1-4.6">
The OptFragmentSize is the value for the Fragment_Size that the fragmenting endpoint
should use to start with. It is greater than or equal to MinFragmentSize. It is less than or equal to MaxFragmentSize. For the
first fragment, it must account for the expansion of the IPv6 addresses and of the Hop Limit field within MTU. For all fragments, it is a balance between the expected fluidity and the overhead of link-layer and 6LoWPAN headers. For a small MTU, the idea is to keep it close to the maximum, whereas for larger MTUs, it might make sense to keep it short enough so that the duty cycle of the transmitter is bounded, e.g., to transmit at least 10 frames per second.<a href="#section-7.1-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.1-4.7">MaxFragmentSize:</dt>
<dd style="margin-left: 1.5em" id="section-7.1-4.8">
The MaxFragmentSize is the maximum value for the Fragment_Size.
It <span class="bcp14">MUST</span> be lower than the maximum value of the smallest 1-hop MTU that can be encountered along the path. A large
value augments the chances of buffer bloat and transmission loss.
The value <span class="bcp14">MUST</span> be less than 512 if the unit that is defined
for the PHY layer is the byte.<a href="#section-7.1-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.1-4.9">Window_Size:</dt>
<dd style="margin-left: 1.5em" id="section-7.1-4.10">
<p id="section-7.1-4.10.1">
The Window_Size <span class="bcp14">MUST</span> be at least 1 and less than 33.<a href="#section-7.1-4.10.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.1-4.10.2.1">
If the round-trip time is known, the Window_Size <span class="bcp14">SHOULD</span> be set to the round-trip time divided by the time per fragment; that is, the time to transmit a fragment plus the inter-frame gap.<a href="#section-7.1-4.10.2.1" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-7.1-4.10.3">
Otherwise:<a href="#section-7.1-4.10.3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.1-4.10.4.1">
A window_size of 32 indicates that only the last fragment is to be acknowledged in each round. This is the <span class="bcp14">RECOMMENDED</span> value in a half-duplex LLN
where the fragment acknowledgment consumes roughly the same bandwidth on the
same links as the fragments themselves.<a href="#section-7.1-4.10.4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.1-4.10.4.2">
If it is set to a smaller value, more acks are generated.
In a full-duplex network, the load on the forward path will be lower, and
a small value of 3 <span class="bcp14">SHOULD</span> be configured.<a href="#section-7.1-4.10.4.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-7.1-5">
An implementation may perform its estimate of the RTO or use a configured one. The ARQ process is controlled by the following parameters:<a href="#section-7.1-5" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-7.1-6">
<dt id="section-7.1-6.1">MinARQTimeOut:</dt>
<dd style="margin-left: 1.5em" id="section-7.1-6.2">
The minimum amount of time a node should wait for an RFRAG Acknowledgment before it takes the next action.
It <span class="bcp14">MUST</span> be more than the maximum expected round-trip time in the respective network.<a href="#section-7.1-6.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.1-6.3">OptARQTimeOut:</dt>
<dd style="margin-left: 1.5em" id="section-7.1-6.4">
The initial value of the RTO, which is the amount of time that a fragmenting endpoint should wait for an RFRAG Acknowledgment before it takes the next action. It is greater than or equal to MinARQTimeOut. It is less than or equal to MaxARQTimeOut. See <a href="#onECN" class="xref">Appendix C</a> for recommendations on computing the round-trip time. By default, a value of 3 times the maximum expected round-trip time in the respective network is <span class="bcp14">RECOMMENDED</span>.<a href="#section-7.1-6.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.1-6.5">MaxARQTimeOut:</dt>
<dd style="margin-left: 1.5em" id="section-7.1-6.6">
The maximum amount of time a node should wait for the RFRAG Acknowledgment before it takes the next action. It must cover the longest expected round-trip time and be several times less than the timeout that covers the recomposition buffer at the reassembling endpoint, which is typically on the order of the minute.
An upper bound can be estimated to ensure that the datagram is either fully transmitted or dropped
before an upper layer decides to retry it.<a href="#section-7.1-6.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.1-6.7">MaxFragRetries:</dt>
<dd style="margin-left: 1.5em" id="section-7.1-6.8">
The maximum number of retries for a particular fragment. A default value of 3 is <span class="bcp14">RECOMMENDED</span>.
An upper bound can be estimated to ensure that the datagram is either fully transmitted or dropped
before an upper layer decides to retry it.<a href="#section-7.1-6.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.1-6.9">MaxDatagramRetries:</dt>
<dd style="margin-left: 1.5em" id="section-7.1-6.10">
The maximum number of retries from scratch for a particular datagram.
A default value of 1 is <span class="bcp14">RECOMMENDED</span>.
An upper bound can be estimated to ensure that the datagram is either fully transmitted or dropped
before an upper layer decides to retry it.<a href="#section-7.1-6.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-7.1-7">
An implementation may be capable of performing congestion control based on ECN; see <a href="#onECN" class="xref">Appendix C</a>. This is controlled by the following parameter:<a href="#section-7.1-7" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-7.1-8">
<dt id="section-7.1-8.1">UseECN:</dt>
<dd style="margin-left: 1.5em" id="section-7.1-8.2">
Indicates whether the fragmenting endpoint should react to ECN.
The fragmenting endpoint may react to ECN by varying the Window_Size between
MinWindowSize and MaxWindowSize, varying the Fragment_Size between MinFragmentSize and MaxFragmentSize, and/or increasing or reducing the inter-frame gap.
With this specification, if UseECN is set and a fragmenting
endpoint detects a congestion, it may apply a congestion control method until the end of the datagram, whereas if UseECN is reset, the endpoint does not react to congestion.
Future specifications may provide additional parameters and capabilities.<a href="#section-7.1-8.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<section id="section-7.2">
<h3 id="name-observing-the-network">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-observing-the-network" class="section-name selfRef">Observing the Network</a>
</h3>
<p id="section-7.2-1">The management system should monitor the number of retries
and ECN settings that can be observed from the perspective of
the fragmenting endpoint with respect to the reassembling endpoint and reciprocally.
It may then tune the optimum size of
Fragment_Size and of Window_Size, OptFragmentSize, and OptWindowSize,
respectively, at the fragmenting endpoint towards a particular reassembling endpoint, which is applicable to the
next datagrams.
It will preferably tune the inter-frame gap to
increase the spacing between fragments of the same datagram and reduce the
buffer bloat in the intermediate node that holds one or more fragments of that
datagram.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-8">
<h2 id="name-security-considerations">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-8-1">
This document specifies an instantiation of a 6LFF technique and inherits
from the generic description in <span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span>.
The considerations in the Security Considerations section of <span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span> equally apply to this document.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">
In addition to the threats detailed therein, an attacker that is on path can
prematurely end the transmission of a datagram by sending a RFRAG Acknowledgment
to the fragmenting endpoint. It can also cause extra transmissions of
fragments by resetting bits in the RFRAG Acknowledgment Bitmap and of
RFRAG Acknowledgments by forcing the Ack-Request bit in fragments that it
forwards.<a href="#section-8-2" class="pilcrow">¶</a></p>
<p id="section-8-3">
As indicated in <span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span>, secure joining and link-layer security are <span class="bcp14">REQUIRED</span> to protect against those attacks, as the fragmentation protocol does not include any native
security mechanisms.<a href="#section-8-3" class="pilcrow">¶</a></p>
<p id="section-8-4">
This specification does not recommend a particular algorithm for the
estimation of the duration of the RTO that covers the detection of the
loss of a fragment with the "X" flag set; regardless, an attacker on the
path may slow down or discard packets, which in turn can affect the
throughput of fragmented packets.<a href="#section-8-4" class="pilcrow">¶</a></p>
<p id="section-8-5">Compared to
<span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span>, this specification reduces the Datagram_Tag to 8 bits, and
the tag wraps faster than with <span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span>.
But for a constrained network where a node is expected to be able to hold
only one or a few large packets in memory, 256 is still a large number.
Also, the acknowledgment mechanism allows cleaning up the state rapidly
once the packet is fully transmitted or aborted.<a href="#section-8-5" class="pilcrow">¶</a></p>
<p id="section-8-6">
The abstract Virtual Recovery Buffer from
<span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span> may be used to perform a
Denial-of-Service (DoS) attack against the intermediate routers since the
routers need to maintain a state per flow. The particular VRB implementation
technique described in
<span>[<a href="#I-D.ietf-lwig-6lowpan-virtual-reassembly" class="xref">LWIG-FRAG</a>]</span> allows realigning
which data goes in which fragment; this causes the intermediate node to
store a portion of the data, which adds an attack vector that is not present
with this specification. With this specification, the data that is
transported in each fragment is conserved, and the state to keep does not
include any data that would not fit in the previous fragment.<a href="#section-8-6" class="pilcrow">¶</a></p>
</section>
<div id="ianacon">
<section id="section-9">
<h2 id="name-iana-considerations">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-9-1">
This document allocates two patterns for a total of four dispatch values for Recoverable Fragments from the
"Dispatch Type Field" registry that was created by <span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span> and
reformatted by <span><a href="#RFC8025" class="xref">"IPv6 over Low-Power Wireless Personal Area
Network (6LoWPAN) Paging Dispatch"</a> [<a href="#RFC8025" class="xref">RFC8025</a>]</span>.<a href="#section-9-1" class="pilcrow">¶</a></p>
<span id="name-additional-dispatch-value-b"></span><div id="difig">
<table class="center" id="table-1">
<caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-additional-dispatch-value-b" class="selfRef">Additional Dispatch Value Bit Patterns</a>
</caption>
<thead>
<tr>
<td class="text-left" rowspan="1" colspan="1">Bit Pattern</td>
<td class="text-left" rowspan="1" colspan="1">Page</td>
<td class="text-left" rowspan="1" colspan="1">Header Type</td>
<td class="text-left" rowspan="1" colspan="1">Reference</td>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">11 10100x</td>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">RFRAG - Recoverable
Fragment</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8931</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">11 10100x</td>
<td class="text-left" rowspan="1" colspan="1">1-14</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">11 10100x</td>
<td class="text-left" rowspan="1" colspan="1">15</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for Experimental Use</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8025</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">11 10101x</td>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">RFRAG-ACK - RFRAG
Acknowledgment</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8931</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">11 10101x</td>
<td class="text-left" rowspan="1" colspan="1">1-14</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">11 10101x</td>
<td class="text-left" rowspan="1" colspan="1">15</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for Experimental Use</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8025</td>
</tr>
</tbody>
</table>
</div>
</section>
</div>
<section id="section-10">
<h2 id="name-references">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-10.1">
<h3 id="name-normative-references">
<a href="#section-10.1" class="section-number selfRef">10.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4919">[RFC4919]</dt>
<dd>
<span class="refAuthor">Kushalnagar, N.</span><span class="refAuthor">, Montenegro, G.</span><span class="refAuthor">, and C. Schumacher</span>, <span class="refTitle">"IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals"</span>, <span class="seriesInfo">RFC 4919</span>, <span class="seriesInfo">DOI 10.17487/RFC4919</span>, <time datetime="2007-08" class="refDate">August 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4919">https://www.rfc-editor.org/info/rfc4919</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4944">[RFC4944]</dt>
<dd>
<span class="refAuthor">Montenegro, G.</span><span class="refAuthor">, Kushalnagar, N.</span><span class="refAuthor">, Hui, J.</span><span class="refAuthor">, and D. Culler</span>, <span class="refTitle">"Transmission of IPv6 Packets over IEEE 802.15.4 Networks"</span>, <span class="seriesInfo">RFC 4944</span>, <span class="seriesInfo">DOI 10.17487/RFC4944</span>, <time datetime="2007-09" class="refDate">September 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4944">https://www.rfc-editor.org/info/rfc4944</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6282">[RFC6282]</dt>
<dd>
<span class="refAuthor">Hui, J., Ed.</span><span class="refAuthor"> and P. Thubert</span>, <span class="refTitle">"Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks"</span>, <span class="seriesInfo">RFC 6282</span>, <span class="seriesInfo">DOI 10.17487/RFC6282</span>, <time datetime="2011-09" class="refDate">September 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6282">https://www.rfc-editor.org/info/rfc6282</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6298">[RFC6298]</dt>
<dd>
<span class="refAuthor">Paxson, V.</span><span class="refAuthor">, Allman, M.</span><span class="refAuthor">, Chu, J.</span><span class="refAuthor">, and M. Sargent</span>, <span class="refTitle">"Computing TCP's Retransmission Timer"</span>, <span class="seriesInfo">RFC 6298</span>, <span class="seriesInfo">DOI 10.17487/RFC6298</span>, <time datetime="2011-06" class="refDate">June 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6298">https://www.rfc-editor.org/info/rfc6298</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6606">[RFC6606]</dt>
<dd>
<span class="refAuthor">Kim, E.</span><span class="refAuthor">, Kaspar, D.</span><span class="refAuthor">, Gomez, C.</span><span class="refAuthor">, and C. Bormann</span>, <span class="refTitle">"Problem Statement and Requirements for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing"</span>, <span class="seriesInfo">RFC 6606</span>, <span class="seriesInfo">DOI 10.17487/RFC6606</span>, <time datetime="2012-05" class="refDate">May 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6606">https://www.rfc-editor.org/info/rfc6606</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8025">[RFC8025]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span><span class="refAuthor"> and R. Cragie</span>, <span class="refTitle">"IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Paging Dispatch"</span>, <span class="seriesInfo">RFC 8025</span>, <span class="seriesInfo">DOI 10.17487/RFC8025</span>, <time datetime="2016-11" class="refDate">November 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8025">https://www.rfc-editor.org/info/rfc8025</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8138">[RFC8138]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span><span class="refAuthor">, Bormann, C.</span><span class="refAuthor">, Toutain, L.</span><span class="refAuthor">, and R. Cragie</span>, <span class="refTitle">"IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing Header"</span>, <span class="seriesInfo">RFC 8138</span>, <span class="seriesInfo">DOI 10.17487/RFC8138</span>, <time datetime="2017-04" class="refDate">April 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8138">https://www.rfc-editor.org/info/rfc8138</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8200">[RFC8200]</dt>
<dd>
<span class="refAuthor">Deering, S.</span><span class="refAuthor"> and R. Hinden</span>, <span class="refTitle">"Internet Protocol, Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">STD 86</span>, <span class="seriesInfo">RFC 8200</span>, <span class="seriesInfo">DOI 10.17487/RFC8200</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8200">https://www.rfc-editor.org/info/rfc8200</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8930">[RFC8930]</dt>
<dd>
<span class="refAuthor">Watteyne, T., Ed.</span><span class="refAuthor">, Thubert, P., Ed.</span><span class="refAuthor">, and C. Bormann</span>, <span class="refTitle">"On Forwarding 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Network) Fragments over a Multi-Hop IPv6 Network"</span>, <span class="seriesInfo">RFC 8930</span>, <span class="seriesInfo">DOI 10.17487/RFC8930</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8930">https://www.rfc-editor.org/info/rfc8930</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-10.2">
<h3 id="name-informative-references">
<a href="#section-10.2" class="section-number selfRef">10.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="I-D.ietf-6tisch-architecture">[6TiSCH]</dt>
<dd>
<span class="refAuthor">Thubert, P.</span>, <span class="refTitle">"An Architecture for IPv6 over the TSCH mode of IEEE 802.15.4"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-6tisch-architecture-29</span>, <time datetime="2020-08-27" class="refDate">27 August 2020</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-6tisch-architecture-29">https://tools.ietf.org/html/draft-ietf-6tisch-architecture-29</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE.802.15.4">[IEEE.802.15.4]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Low-Rate Wireless Networks"</span>, <span class="seriesInfo">IEEE Standard 802.15.4-2015</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2016.7460875</span>, <time datetime="2016-04" class="refDate">April 2016</time>, <span><<a href="http://ieeexplore.ieee.org/document/7460875/">http://ieeexplore.ieee.org/document/7460875/</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Kent">[Kent]</dt>
<dd>
<span class="refAuthor">Kent, C.</span><span class="refAuthor"> and J. Mogul</span>, <span class="refTitle">"Fragmentation Considered Harmful"</span>, <span class="refContent">SIGCOMM '87: Proceedings of the ACM workshop on Frontiers in computer communications technology, pp. 390-401</span>, <span class="seriesInfo">DOI 10.1145/55483.55524</span>, <time datetime="1987-08" class="refDate">August 1987</time>, <span><<a href="http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf">http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-lwig-6lowpan-virtual-reassembly">[LWIG-FRAG]</dt>
<dd>
<span class="refAuthor">Bormann, C.</span><span class="refAuthor"> and T. Watteyne</span>, <span class="refTitle">"Virtual reassembly buffers in 6LoWPAN"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-lwig-6lowpan-virtual-reassembly-02</span>, <time datetime="2020-03-09" class="refDate">9 March 2020</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-lwig-6lowpan-virtual-reassembly-02">https://tools.ietf.org/html/draft-ietf-lwig-6lowpan-virtual-reassembly-02</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2914">[RFC2914]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span>, <span class="refTitle">"Congestion Control Principles"</span>, <span class="seriesInfo">BCP 41</span>, <span class="seriesInfo">RFC 2914</span>, <span class="seriesInfo">DOI 10.17487/RFC2914</span>, <time datetime="2000-09" class="refDate">September 2000</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2914">https://www.rfc-editor.org/info/rfc2914</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3031">[RFC3031]</dt>
<dd>
<span class="refAuthor">Rosen, E.</span><span class="refAuthor">, Viswanathan, A.</span><span class="refAuthor">, and R. Callon</span>, <span class="refTitle">"Multiprotocol Label Switching Architecture"</span>, <span class="seriesInfo">RFC 3031</span>, <span class="seriesInfo">DOI 10.17487/RFC3031</span>, <time datetime="2001-01" class="refDate">January 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3031">https://www.rfc-editor.org/info/rfc3031</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3168">[RFC3168]</dt>
<dd>
<span class="refAuthor">Ramakrishnan, K.</span><span class="refAuthor">, Floyd, S.</span><span class="refAuthor">, and D. Black</span>, <span class="refTitle">"The Addition of Explicit Congestion Notification (ECN) to IP"</span>, <span class="seriesInfo">RFC 3168</span>, <span class="seriesInfo">DOI 10.17487/RFC3168</span>, <time datetime="2001-09" class="refDate">September 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3168">https://www.rfc-editor.org/info/rfc3168</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4963">[RFC4963]</dt>
<dd>
<span class="refAuthor">Heffner, J.</span><span class="refAuthor">, Mathis, M.</span><span class="refAuthor">, and B. Chandler</span>, <span class="refTitle">"IPv4 Reassembly Errors at High Data Rates"</span>, <span class="seriesInfo">RFC 4963</span>, <span class="seriesInfo">DOI 10.17487/RFC4963</span>, <time datetime="2007-07" class="refDate">July 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4963">https://www.rfc-editor.org/info/rfc4963</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5033">[RFC5033]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span><span class="refAuthor"> and M. Allman</span>, <span class="refTitle">"Specifying New Congestion Control Algorithms"</span>, <span class="seriesInfo">BCP 133</span>, <span class="seriesInfo">RFC 5033</span>, <span class="seriesInfo">DOI 10.17487/RFC5033</span>, <time datetime="2007-08" class="refDate">August 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5033">https://www.rfc-editor.org/info/rfc5033</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5681">[RFC5681]</dt>
<dd>
<span class="refAuthor">Allman, M.</span><span class="refAuthor">, Paxson, V.</span><span class="refAuthor">, and E. Blanton</span>, <span class="refTitle">"TCP Congestion Control"</span>, <span class="seriesInfo">RFC 5681</span>, <span class="seriesInfo">DOI 10.17487/RFC5681</span>, <time datetime="2009-09" class="refDate">September 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5681">https://www.rfc-editor.org/info/rfc5681</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6550">[RFC6550]</dt>
<dd>
<span class="refAuthor">Winter, T., Ed.</span><span class="refAuthor">, Thubert, P., Ed.</span><span class="refAuthor">, Brandt, A.</span><span class="refAuthor">, Hui, J.</span><span class="refAuthor">, Kelsey, R.</span><span class="refAuthor">, Levis, P.</span><span class="refAuthor">, Pister, K.</span><span class="refAuthor">, Struik, R.</span><span class="refAuthor">, Vasseur, JP.</span><span class="refAuthor">, and R. Alexander</span>, <span class="refTitle">"RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks"</span>, <span class="seriesInfo">RFC 6550</span>, <span class="seriesInfo">DOI 10.17487/RFC6550</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6550">https://www.rfc-editor.org/info/rfc6550</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6552">[RFC6552]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refTitle">"Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL)"</span>, <span class="seriesInfo">RFC 6552</span>, <span class="seriesInfo">DOI 10.17487/RFC6552</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6552">https://www.rfc-editor.org/info/rfc6552</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6554">[RFC6554]</dt>
<dd>
<span class="refAuthor">Hui, J.</span><span class="refAuthor">, Vasseur, JP.</span><span class="refAuthor">, Culler, D.</span><span class="refAuthor">, and V. Manral</span>, <span class="refTitle">"An IPv6 Routing Header for Source Routes with the Routing Protocol for Low-Power and Lossy Networks (RPL)"</span>, <span class="seriesInfo">RFC 6554</span>, <span class="seriesInfo">DOI 10.17487/RFC6554</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6554">https://www.rfc-editor.org/info/rfc6554</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7554">[RFC7554]</dt>
<dd>
<span class="refAuthor">Watteyne, T., Ed.</span><span class="refAuthor">, Palattella, M.</span><span class="refAuthor">, and L. Grieco</span>, <span class="refTitle">"Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement"</span>, <span class="seriesInfo">RFC 7554</span>, <span class="seriesInfo">DOI 10.17487/RFC7554</span>, <time datetime="2015-05" class="refDate">May 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7554">https://www.rfc-editor.org/info/rfc7554</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7567">[RFC7567]</dt>
<dd>
<span class="refAuthor">Baker, F., Ed.</span><span class="refAuthor"> and G. Fairhurst, Ed.</span>, <span class="refTitle">"IETF Recommendations Regarding Active Queue Management"</span>, <span class="seriesInfo">BCP 197</span>, <span class="seriesInfo">RFC 7567</span>, <span class="seriesInfo">DOI 10.17487/RFC7567</span>, <time datetime="2015-07" class="refDate">July 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7567">https://www.rfc-editor.org/info/rfc7567</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8085">[RFC8085]</dt>
<dd>
<span class="refAuthor">Eggert, L.</span><span class="refAuthor">, Fairhurst, G.</span><span class="refAuthor">, and G. Shepherd</span>, <span class="refTitle">"UDP Usage Guidelines"</span>, <span class="seriesInfo">BCP 145</span>, <span class="seriesInfo">RFC 8085</span>, <span class="seriesInfo">DOI 10.17487/RFC8085</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8085">https://www.rfc-editor.org/info/rfc8085</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8087">[RFC8087]</dt>
<dd>
<span class="refAuthor">Fairhurst, G.</span><span class="refAuthor"> and M. Welzl</span>, <span class="refTitle">"The Benefits of Using Explicit Congestion Notification (ECN)"</span>, <span class="seriesInfo">RFC 8087</span>, <span class="seriesInfo">DOI 10.17487/RFC8087</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8087">https://www.rfc-editor.org/info/rfc8087</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8201">[RFC8201]</dt>
<dd>
<span class="refAuthor">McCann, J.</span><span class="refAuthor">, Deering, S.</span><span class="refAuthor">, Mogul, J.</span><span class="refAuthor">, and R. Hinden, Ed.</span>, <span class="refTitle">"Path MTU Discovery for IP version 6"</span>, <span class="seriesInfo">STD 87</span>, <span class="seriesInfo">RFC 8201</span>, <span class="seriesInfo">DOI 10.17487/RFC8201</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8201">https://www.rfc-editor.org/info/rfc8201</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8900">[RFC8900]</dt>
<dd>
<span class="refAuthor">Bonica, R.</span><span class="refAuthor">, Baker, F.</span><span class="refAuthor">, Huston, G.</span><span class="refAuthor">, Hinden, R.</span><span class="refAuthor">, Troan, O.</span><span class="refAuthor">, and F. Gont</span>, <span class="refTitle">"IP Fragmentation Considered Fragile"</span>, <span class="seriesInfo">BCP 230</span>, <span class="seriesInfo">RFC 8900</span>, <span class="seriesInfo">DOI 10.17487/RFC8900</span>, <time datetime="2020-09" class="refDate">September 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8900">https://www.rfc-editor.org/info/rfc8900</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="rationale">
<section id="section-appendix.a">
<h2 id="name-rationale">
<a href="#section-appendix.a" class="section-number selfRef">Appendix A. </a><a href="#name-rationale" class="section-name selfRef">Rationale</a>
</h2>
<p id="section-appendix.a-1">
There are a number of uses for large packets in Wireless Sensor Networks. Such usages
may not be the most typical or represent the largest amount of traffic over the LLN;
however, the associated functionality can be critical enough to justify extra care for
ensuring effective transport of large packets across the LLN.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
<p id="section-appendix.a-2">
The list of those usages includes:<a href="#section-appendix.a-2" class="pilcrow">¶</a></p>
<p id="section-appendix.a-3">Towards the LLN node:<a href="#section-appendix.a-3" class="pilcrow">¶</a></p>
<ul class="ulEmpty normal">
<li class="ulEmpty normal" id="section-appendix.a-4.1">
<span class="break"></span><dl class="dlParallel" id="section-appendix.a-4.1.1">
<dt id="section-appendix.a-4.1.1.1">Firmware update:</dt>
<dd style="margin-left: 1.5em" id="section-appendix.a-4.1.1.2">
For example, a new version of the LLN node software is downloaded from a system
manager over unicast or multicast services.
Such a reflashing operation typically involves updating a large number of similar
LLN nodes over a relatively short period of time.<a href="#section-appendix.a-4.1.1.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.a-4.1.1.3">Packages of commands:</dt>
<dd style="margin-left: 1.5em" id="section-appendix.a-4.1.1.4">
A number of commands or a full configuration can be packaged as a single message
to ensure consistency and enable atomic execution or complete rollback.
Until such commands are fully received and interpreted, the intended operation will not take effect.<a href="#section-appendix.a-4.1.1.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</li>
</ul>
<p id="section-appendix.a-5">From the LLN node:<a href="#section-appendix.a-5" class="pilcrow">¶</a></p>
<ul class="ulEmpty normal">
<li class="ulEmpty normal" id="section-appendix.a-6.1">
<span class="break"></span><dl class="dlParallel" id="section-appendix.a-6.1.1">
<dt id="section-appendix.a-6.1.1.1">Waveform captures:</dt>
<dd style="margin-left: 1.5em" id="section-appendix.a-6.1.1.2">
A number of consecutive samples are measured at a high rate for a short time and then are transferred
from a sensor to a gateway or an edge server as a single large report.<a href="#section-appendix.a-6.1.1.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.a-6.1.1.3">Data logs:</dt>
<dd style="margin-left: 1.5em" id="section-appendix.a-6.1.1.4">
LLN nodes may generate large logs of sampled data
for later extraction. LLN nodes may also generate
system logs to assist in diagnosing problems on the
node or network.<a href="#section-appendix.a-6.1.1.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.a-6.1.1.5">Large data packets:</dt>
<dd style="margin-left: 1.5em" id="section-appendix.a-6.1.1.6">
Rich data types might require more than one fragment.<a href="#section-appendix.a-6.1.1.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</li>
</ul>
<p id="section-appendix.a-7">
Uncontrolled firmware download or waveform upload can easily result in a massive
increase of the traffic and saturate the network.<a href="#section-appendix.a-7" class="pilcrow">¶</a></p>
<p id="section-appendix.a-8">
When a fragment is lost in transmission, the lack of recovery in
the original fragmentation system of RFC 4944 implies that all
fragments would need to be resent, further contributing
to the congestion that caused the initial loss
and potentially leading to congestion collapse.<a href="#section-appendix.a-8" class="pilcrow">¶</a></p>
<p id="section-appendix.a-9">
This saturation may lead to excessive radio interference or random early discard
(leaky bucket) in relaying nodes. Additional queuing and memory congestion may
result while waiting for a low-power next hop to emerge from its sleep state.<a href="#section-appendix.a-9" class="pilcrow">¶</a></p>
<p id="section-appendix.a-10">
Considering that RFC 4944
defines an MTU as 1280 bytes, and that in most incarnations
(except 802.15.4g) an IEEE Std 802.15.4 frame can limit the link-layer payload
to as few as 74 bytes, a packet might be fragmented into at
least 18 fragments at the 6LoWPAN shim layer. Taking into
account the worst-case header overhead for 6LoWPAN
Fragmentation and Mesh Addressing headers will increase
the number of required fragments to around 32. This level
of fragmentation is much higher than that traditionally
experienced over the Internet with IPv4 fragments. At the
same time, the use of radios increases the probability of
transmission loss, and mesh-under techniques compound that
risk over multiple hops.<a href="#section-appendix.a-10" class="pilcrow">¶</a></p>
<p id="section-appendix.a-11">
Mechanisms such as TCP or application-layer segmentation
could be used to support end-to-end reliable transport. One
option to support bulk data transfer over a frame-size-constrained
LLN is to set the Maximum Segment Size to fit within the link
maximum frame size. However, doing so can add significant header
overhead to each 802.15.4 frame and cause extraneous acknowledgments
across the LLN compared to the method in this specification.<a href="#section-appendix.a-11" class="pilcrow">¶</a></p>
</section>
</div>
<div id="req">
<section id="section-appendix.b">
<h2 id="name-requirements">
<a href="#section-appendix.b" class="section-number selfRef">Appendix B. </a><a href="#name-requirements" class="section-name selfRef">Requirements</a>
</h2>
<p id="section-appendix.b-1">
For one-hop communications, a number of LLN
link layers propose a local acknowledgment mechanism that is enough to
detect and recover the loss of fragments. In a multi-hop environment, an
end-to-end fragment recovery mechanism might be a good complement to a
hop-by-hop Medium Access Control (MAC) recovery.
This document introduces a simple protocol to recover individual fragments
between 6LFF endpoints that may be multiple hops away.<a href="#section-appendix.b-1" class="pilcrow">¶</a></p>
<p id="section-appendix.b-2">
The method addresses the following requirements of an LLN:<a href="#section-appendix.b-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-appendix.b-3">
<dt id="section-appendix.b-3.1">Number of fragments:</dt>
<dd style="margin-left: 1.5em" id="section-appendix.b-3.2">The recovery mechanism must support highly fragmented packets, with a maximum of 32 fragments per packet.<a href="#section-appendix.b-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-3.3">Minimum acknowledgment overhead:</dt>
<dd style="margin-left: 1.5em" id="section-appendix.b-3.4"> Because the radio is half duplex, and because of silent time spent in the
various medium access mechanisms, an acknowledgment consumes roughly as many resources as a data fragment.<a href="#section-appendix.b-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-3.5"></dt>
<dd style="margin-left: 1.5em" id="section-appendix.b-3.6">The new end-to-end fragment recovery mechanism should be able to acknowledge multiple fragments in a single message and
not require an acknowledgment at all if fragments are already protected at a lower layer.<a href="#section-appendix.b-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-3.7">Controlled latency:</dt>
<dd style="margin-left: 1.5em" id="section-appendix.b-3.8">The recovery mechanism must succeed or give up within the time boundary imposed by the recovery process
of the upper-layer protocols.<a href="#section-appendix.b-3.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-3.9">Optional congestion control:</dt>
<dd style="margin-left: 1.5em" id="section-appendix.b-3.10"> The aggregation of multiple concurrent flows may lead to the saturation of the radio network and congestion collapse.<a href="#section-appendix.b-3.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-3.11"></dt>
<dd style="margin-left: 1.5em" id="section-appendix.b-3.12">The recovery mechanism should provide means for controlling the number of fragments in transit over the LLN.<a href="#section-appendix.b-3.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="onECN">
<section id="section-appendix.c">
<h2 id="name-considerations-on-congestio">
<a href="#section-appendix.c" class="section-number selfRef">Appendix C. </a><a href="#name-considerations-on-congestio" class="section-name selfRef">Considerations on Congestion Control</a>
</h2>
<p id="section-appendix.c-1">Considering that a multi-hop LLN can be a very sensitive environment
due to the limited queuing capabilities of a
large population of its nodes, this document recommends a simple and
conservative approach to congestion control, based on TCP congestion avoidance.<a href="#section-appendix.c-1" class="pilcrow">¶</a></p>
<p id="section-appendix.c-2">Congestion on the forward path is assumed in case of packet loss, and
packet loss is assumed upon timeout. This document allows controlling the number
of outstanding fragments that have been transmitted, but for which an
acknowledgment was not yet received, and that are still covered by the ARQ timer.<a href="#section-appendix.c-2" class="pilcrow">¶</a></p>
<p id="section-appendix.c-3">Congestion on the forward path can also be indicated by an ECN mechanism.
Though whether and how ECN <span>[<a href="#RFC3168" class="xref">RFC3168</a>]</span> is carried out over the
LoWPAN is out of scope, this document provides a way for the destination
endpoint to echo an ECN indication back to the fragmenting endpoint in an
acknowledgment message as represented in
<a href="#ackfig" class="xref">Figure 4</a> in <a href="#ackfrag" class="xref">Section 5.2</a>.<a href="#section-appendix.c-3" class="pilcrow">¶</a></p>
<p id="section-appendix.c-4">
While the support of echoing the ECN at the reassembling endpoint is mandatory, this
specification only provides a minimalistic behavior on the fragmenting endpoint.
If an "E" flag is received, the window <span class="bcp14">SHOULD</span> be reduced at least by 1 and at max to 1. Halving the window for each "E" flag received could be a good compromise, but it needs further experimentation. A very simple implementation may just reset the window to 1, so the fragments are sent and acknowledged one by one.<a href="#section-appendix.c-4" class="pilcrow">¶</a></p>
<p id="section-appendix.c-5">
Note that any action that has been performed upon detection of congestion
only applies for the transmission of one datagram, and the next datagram
starts with the configured Window_Size again.<a href="#section-appendix.c-5" class="pilcrow">¶</a></p>
<p id="section-appendix.c-6">
The exact use of the Acknowledgment Request flag and of the window are left to implementation. An optimistic implementation could send all the fragments up to Window_Size, setting the Acknowledgment Request "X" flag only on the last fragment; wait for the bitmap, which means a gap of half a round-trip time; and resend the losses.
A pessimistic implementation could set the "X" flag on the first fragment to check that the path works and open the window only upon receiving the RFRAG-ACK. It could then set an "X" flag again on the second fragment and use the window as a credit to send up to Window_Size before it is blocked. In that case, if the RFRAG-ACK comes back before the window starves, the gating factor is the inter-frame gap. If the RFRAG-ACK does not arrive in time, the Window_Size is the gating factor, and the
transmission of the datagram is delayed.<a href="#section-appendix.c-6" class="pilcrow">¶</a></p>
<p id="section-appendix.c-7">
It must be noted that even though the inter-frame gap can be used as a flow
control or a congestion control measure, it also plays a critical role in
wireless collision avoidance.
In particular, when a mesh operates on the same channel over multiple hops,
the forwarding of a fragment over a certain hop may collide with the
forwarding of the next fragment that is following over a previous hop but that is in the same interference domain. To prevent this, the fragmenting endpoint is required to pace individual fragments within a transmit window with an inter-frame gap. This is needed to ensure that a given fragment is sent only when the previous fragment has had a chance to progress beyond the interference domain of this hop.
In the case of
6TiSCH <span>[<a href="#I-D.ietf-6tisch-architecture" class="xref">6TiSCH</a>]</span>, which operates
over the
Time-Slotted Channel Hopping (TSCH) mode
of operation of IEEE 802.15.4 <span>[<a href="#RFC7554" class="xref">RFC7554</a>]</span>, a fragment is forwarded over a different
channel at a different time, and it makes full sense to transmit the next fragment as
soon as the previous fragment has had its chance to be forwarded at the next
hop.<a href="#section-appendix.c-7" class="pilcrow">¶</a></p>
<p id="section-appendix.c-8">
Depending on the setting of the Window_Size and the inter-frame gap,
how the window is used, and the number of hops, the Window_Size may or
may not become the gating factor that blocks the transmission.
If the sender uses the Window_Size as a credit:<a href="#section-appendix.c-8" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-appendix.c-9.1">
a conservative Window_Size of, say, 3 will be the gating factor that limits the transmission rate of the sender -- and causes transmission gaps longer than the inter-frame gap -- as soon as the
number of hops exceeds 3 in a TSCH network and 5-9 in a single frequency mesh.
The more hops the more the starving window will add to latency of the transmission.<a href="#section-appendix.c-9.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-appendix.c-9.2">
The recommendation to align the Window-Size to the round-trip time divided by
the time per fragment aligns the Window-Size to the time it takes to get the
RFAG_ACK before the window starves. A Window-Size that is higher than that increases
the chances of a congestion but does not improve the forward throughput. Considering that the RFRAG-ACK takes the same path as the fragment with the assumption that it travels at roughly the same speed, an inter-frame gap that separates fragments by 2
hops leads to a Window_Size that is roughly the number of hops.<a href="#section-appendix.c-9.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-appendix.c-9.3">
Setting the Window-Size to 32 minimizes the cost of the acknowledgment
in a constrained network and frees bandwidth for the fragments in a half-duplex
network. Using it increases the risk of congestion if a bottleneck forms, but it
optimizes the use of resources under normal conditions. When it is used, the
only protection for the network is the inter-frame gap, which must be chosen
wisely to prevent the formation of a bottleneck.<a href="#section-appendix.c-9.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-appendix.c-10">
From the standpoint of a source 6LoWPAN endpoint, an outstanding
fragment is a fragment that was
sent but for which no explicit acknowledgment was yet received.
This means that the fragment might be on the path or received but not yet
acknowledged, or the acknowledgment might be on the path back. It is also
possible that either the fragment or the acknowledgment was lost on the
way.<a href="#section-appendix.c-10" class="pilcrow">¶</a></p>
<p id="section-appendix.c-11">From the fragmenting endpoint standpoint,
all outstanding fragments might still be in the network and contribute to its congestion.
There is an assumption, though, that after a certain amount of time, a frame is either received
or lost, so it is not causing congestion anymore. This amount of time can be estimated based on the round-trip
time between the 6LoWPAN endpoints. For the lack of a more adapted technique, the method detailed in <span><a href="#RFC6298" class="xref">"Computing TCP's Retransmission Timer"</a> [<a href="#RFC6298" class="xref">RFC6298</a>]</span> may be used for that computation.<a href="#section-appendix.c-11" class="pilcrow">¶</a></p>
<p id="section-appendix.c-12">
This specification provides the necessary tools for the fragmenting endpoint
to take congestion control actions and protect the network, but it leaves the
implementation free to select the action to be taken. The intention is to
use it to build experience and specify more precisely the congestion control actions
in one or more future specifications. <span><a href="#RFC2914" class="xref">"Congestion Control Principles"</a> [<a href="#RFC2914" class="xref">RFC2914</a>]</span> and <span><a href="#RFC5033" class="xref">"Specifying New Congestion Control Algorithms"</a> [<a href="#RFC5033" class="xref">RFC5033</a>]</span> provide indications and wisdom that should help through this process.<a href="#section-appendix.c-12" class="pilcrow">¶</a></p>
<p id="section-appendix.c-13">
<span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span> and <span>[<a href="#RFC5681" class="xref">RFC5681</a>]</span> provide deeper information on why congestion control is needed and how TCP handles it. Basically, the goal here is to
manage the number of fragments present in the network; this is achieved by reducing the number of outstanding fragments over a congested path by throttling the sources.<a href="#section-appendix.c-13" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-appendix.d">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<p id="section-appendix.d-1">The author wishes to thank <span class="contact-name">Michel Veillette</span>, <span class="contact-name">Dario Tedeschi</span>, <span class="contact-name">Laurent Toutain</span>,
<span class="contact-name">Carles Gomez Montenegro</span>, <span class="contact-name">Thomas Watteyne</span>, and <span class="contact-name">Michael Richardson</span> for their in-depth
reviews and comments.
Also, many thanks to <span class="contact-name">Roman Danyliw</span>, <span class="contact-name">Peter Yee</span>, <span class="contact-name">Colin Perkins</span>, <span class="contact-name">Tirumaleswar Reddy.K</span>, <span class="contact-name">Éric Vyncke</span>, <span class="contact-name">Warren Kumari</span>, <span class="contact-name">Magnus Westerlund</span>, <span class="contact-name">Erik Nordmark</span>, and especially <span class="contact-name">Benjamin Kaduk</span> and <span class="contact-name">Mirja Kühlewind</span> for
their careful reviews and help during the IETF Last Call and IESG review process.
Thanks to <span class="contact-name">Jonathan Hui</span>, <span class="contact-name">Jay Werb</span>, <span class="contact-name">Christos Polyzois</span>, <span class="contact-name">Soumitri Kolavennu</span>,
<span class="contact-name">Pat Kinney</span>, <span class="contact-name">Margaret Wasserman</span>, <span class="contact-name">Richard Kelsey</span>, <span class="contact-name">Carsten Bormann</span>, and
<span class="contact-name">Harry Courtice</span> for their various contributions in the long process that lead to this document.<a href="#section-appendix.d-1" class="pilcrow">¶</a></p>
</section>
<div id="authors-addresses">
<section id="section-appendix.e">
<h2 id="name-authors-address">
<a href="#name-authors-address" class="section-name selfRef">Author's Address</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Pascal Thubert (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems, Inc.</span></div>
<div dir="auto" class="left"><span class="extended-address">Building D</span></div>
<div dir="auto" class="left"><span class="street-address">45 Allee des Ormes - BP1200</span></div>
<div dir="auto" class="left">
<span class="postal-code">06254</span> <span class="locality">MOUGINS - Sophia Antipolis</span>
</div>
<div dir="auto" class="left"><span class="country-name">France</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+33%20497%2023%2026%2034" class="tel">+33 497 23 26 34</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:pthubert@cisco.com" class="email">pthubert@cisco.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|