File: rfc8966.html

package info (click to toggle)
doc-rfc 20230121-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 1,609,944 kB
file content (4893 lines) | stat: -rw-r--r-- 276,181 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8966: The Babel Routing Protocol</title>
<meta content="Juliusz Chroboczek" name="author">
<meta content="David Schinazi" name="author">
<meta content="
       Babel is a loop-avoiding, distance-vector routing protocol that is
robust and efficient both in ordinary wired networks and in wireless mesh
networks.  This document describes the Babel routing protocol and
obsoletes RFC 6126 and RFC 7557. 
    " name="description">
<meta content="xml2rfc 3.5.0" name="generator">
<meta content="Bellman-Ford" name="keyword">
<meta content="IGP" name="keyword">
<meta content="loop-avoidance" name="keyword">
<meta content="mesh network" name="keyword">
<meta content="8966" name="rfc.number">
<!-- Generator version information:
  xml2rfc 3.5.0
    Python 3.6.10
    appdirs 1.4.4
    ConfigArgParse 1.2.3
    google-i18n-address 2.3.5
    html5lib 1.0.1
    intervaltree 3.0.2
    Jinja2 2.11.2
    kitchen 1.2.6
    lxml 4.4.2
    pycairo 1.19.0
    pycountry 19.8.18
    pyflakes 2.1.1
    PyYAML 5.3.1
    requests 2.22.0
    setuptools 40.6.2
    six 1.14.0
    WeasyPrint 51
-->
<link href="rfc8966.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*

  NOTE: Changes at the bottom of this file overrides some earlier settings.

  Once the style has stabilized and has been adopted as an official RFC style,
  this can be consolidated so that style settings occur only in one place, but
  for now the contents of this file consists first of the initial CSS work as
  provided to the RFC Formatter (xml2rfc) work, followed by itemized and
  commented changes found necssary during the development of the v3
  formatters.

*/

/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */

@viewport {
  zoom: 1.0;
  width: extend-to-zoom;
}
@-ms-viewport {
  width: extend-to-zoom;
  zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
  max-width: 90%;
  margin: 1.5em auto;
  color: #222;
  background-color: #fff;
  font-size: 14px;
  font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
  line-height: 1.6;
  scroll-behavior: smooth;
}
.ears {
  display: none;
}

/* headings */
#title, h1, h2, h3, h4, h5, h6 {
  margin: 1em 0 0.5em;
  font-weight: bold;
  line-height: 1.3;
}
#title {
  clear: both;
  border-bottom: 1px solid #ddd;
  margin: 0 0 0.5em 0;
  padding: 1em 0 0.5em;
}
.author {
  padding-bottom: 4px;
}
h1 {
  font-size: 26px;
  margin: 1em 0;
}
h2 {
  font-size: 22px;
  margin-top: -20px;  /* provide offset for in-page anchors */
  padding-top: 33px;
}
h3 {
  font-size: 18px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h4 {
  font-size: 16px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h5, h6 {
  font-size: 14px;
}
#n-copyright-notice {
  border-bottom: 1px solid #ddd;
  padding-bottom: 1em;
  margin-bottom: 1em;
}
/* general structure */
p {
  padding: 0;
  margin: 0 0 1em 0;
  text-align: left;
}
div, span {
  position: relative;
}
div {
  margin: 0;
}
.alignRight.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignRight.art-text pre {
  padding: 0;
}
.alignRight {
  margin: 1em 0;
}
.alignRight > *:first-child {
  border: none;
  margin: 0;
  float: right;
  clear: both;
}
.alignRight > *:nth-child(2) {
  clear: both;
  display: block;
  border: none;
}
svg {
  display: block;
}
.alignCenter.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
  padding: 0;
}
.alignCenter {
  margin: 1em 0;
}
.alignCenter > *:first-child {
  border: none;
  /* this isn't optimal, but it's an existence proof.  PrinceXML doesn't
     support flexbox yet.
  */
  display: table;
  margin: 0 auto;
}

/* lists */
ol, ul {
  padding: 0;
  margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
  margin-left: 1em;
}
li {
  margin: 0 0 0.25em 0;
}
.ulCompact li {
  margin: 0;
}
ul.empty, .ulEmpty {
  list-style-type: none;
}
ul.empty li, .ulEmpty li {
  margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
  line-height: 100%;
  margin: 0 0 0 2em;
}

/* definition lists */
dl {
}
dl > dt {
  float: left;
  margin-right: 1em;
}
/* 
dl.nohang > dt {
  float: none;
}
*/
dl > dd {
  margin-bottom: .8em;
  min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
  margin-bottom: 0em;
}
dl > dd > dl {
  margin-top: 0.5em;
  margin-bottom: 0em;
}

/* links */
a {
  text-decoration: none;
}
a[href] {
  color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
  background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
  color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
  background-color: transparent;
  cursor: default;
} */

/* Figures */
tt, code, pre, code {
  background-color: #f9f9f9;
  font-family: 'Roboto Mono', monospace;
}
pre {
  border: 1px solid #eee;
  margin: 0;
  padding: 1em;
}
img {
  max-width: 100%;
}
figure {
  margin: 0;
}
figure blockquote {
  margin: 0.8em 0.4em 0.4em;
}
figcaption {
  font-style: italic;
  margin: 0 0 1em 0;
}
@media screen {
  pre {
    overflow-x: auto;
    max-width: 100%;
    max-width: calc(100% - 22px);
  }
}

/* aside, blockquote */
aside, blockquote {
  margin-left: 0;
  padding: 1.2em 2em;
}
blockquote {
  background-color: #f9f9f9;
  color: #111; /* Arlen: WCAG 2019 */
  border: 1px solid #ddd;
  border-radius: 3px;
  margin: 1em 0;
}
cite {
  display: block;
  text-align: right;
  font-style: italic;
}

/* tables */
table {
  width: 100%;
  margin: 0 0 1em;
  border-collapse: collapse;
  border: 1px solid #eee;
}
th, td {
  text-align: left;
  vertical-align: top;
  padding: 0.5em 0.75em;
}
th {
  text-align: left;
  background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
  background-color: #f5f5f5;
}
table caption {
  font-style: italic;
  margin: 0;
  padding: 0;
  text-align: left;
}
table p {
  /* XXX to avoid bottom margin on table row signifiers. If paragraphs should
     be allowed within tables more generally, it would be far better to select on a class. */
  margin: 0;
}

/* pilcrow */
a.pilcrow {
  color: #666; /* Arlen: AHDJ 2019 */
  text-decoration: none;
  visibility: hidden;
  user-select: none;
  -ms-user-select: none;
  -o-user-select:none;
  -moz-user-select: none;
  -khtml-user-select: none;
  -webkit-user-select: none;
  -webkit-touch-callout: none;
}
@media screen {
  aside:hover > a.pilcrow,
  p:hover > a.pilcrow,
  blockquote:hover > a.pilcrow,
  div:hover > a.pilcrow,
  li:hover > a.pilcrow,
  pre:hover > a.pilcrow {
    visibility: visible;
  }
  a.pilcrow:hover {
    background-color: transparent;
  }
}

/* misc */
hr {
  border: 0;
  border-top: 1px solid #eee;
}
.bcp14 {
  font-variant: small-caps;
}

.role {
  font-variant: all-small-caps;
}

/* info block */
#identifiers {
  margin: 0;
  font-size: 0.9em;
}
#identifiers dt {
  width: 3em;
  clear: left;
}
#identifiers dd {
  float: left;
  margin-bottom: 0;
}
#identifiers .authors .author {
  display: inline-block;
  margin-right: 1.5em;
}
#identifiers .authors .org {
  font-style: italic;
}

/* The prepared/rendered info at the very bottom of the page */
.docInfo {
  color: #666; /* Arlen: WCAG 2019 */
  font-size: 0.9em;
  font-style: italic;
  margin-top: 2em;
}
.docInfo .prepared {
  float: left;
}
.docInfo .prepared {
  float: right;
}

/* table of contents */
#toc  {
  padding: 0.75em 0 2em 0;
  margin-bottom: 1em;
}
nav.toc ul {
  margin: 0 0.5em 0 0;
  padding: 0;
  list-style: none;
}
nav.toc li {
  line-height: 1.3em;
  margin: 0.75em 0;
  padding-left: 1.2em;
  text-indent: -1.2em;
}
/* references */
.references dt {
  text-align: right;
  font-weight: bold;
  min-width: 7em;
}
.references dd {
  margin-left: 8em;
  overflow: auto;
}

.refInstance {
  margin-bottom: 1.25em;
}

.references .ascii {
  margin-bottom: 0.25em;
}

/* index */
.index ul {
  margin: 0 0 0 1em;
  padding: 0;
  list-style: none;
}
.index ul ul {
  margin: 0;
}
.index li {
  margin: 0;
  text-indent: -2em;
  padding-left: 2em;
  padding-bottom: 5px;
}
.indexIndex {
  margin: 0.5em 0 1em;
}
.index a {
  font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
  .index ul {
    -moz-column-count: 2;
    -moz-column-gap: 20px;
  }
  .index ul ul {
    -moz-column-count: 1;
    -moz-column-gap: 0;
  }
}

/* authors */
address.vcard {
  font-style: normal;
  margin: 1em 0;
}

address.vcard .nameRole {
  font-weight: 700;
  margin-left: 0;
}
address.vcard .label {
  font-family: "Noto Sans",Arial,Helvetica,sans-serif;
  margin: 0.5em 0;
}
address.vcard .type {
  display: none;
}
.alternative-contact {
  margin: 1.5em 0 1em;
}
hr.addr {
  border-top: 1px dashed;
  margin: 0;
  color: #ddd;
  max-width: calc(100% - 16px);
}

/* temporary notes */
.rfcEditorRemove::before {
  position: absolute;
  top: 0.2em;
  right: 0.2em;
  padding: 0.2em;
  content: "The RFC Editor will remove this note";
  color: #9e2a00; /* Arlen: WCAG 2019 */
  background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
  position: relative;
  padding-top: 1.8em;
  background-color: #ffd; /* Arlen: WCAG 2019 */
  border-radius: 3px;
}
.cref {
  background-color: #ffd; /* Arlen: WCAG 2019 */
  padding: 2px 4px;
}
.crefSource {
  font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
  body {
    padding-top: 2em;
  }
  #title {
    padding: 1em 0;
  }
  h1 {
    font-size: 24px;
  }
  h2 {
    font-size: 20px;
    margin-top: -18px;  /* provide offset for in-page anchors */
    padding-top: 38px;
  }
  #identifiers dd {
    max-width: 60%;
  }
  #toc {
    position: fixed;
    z-index: 2;
    top: 0;
    right: 0;
    padding: 0;
    margin: 0;
    background-color: inherit;
    border-bottom: 1px solid #ccc;
  }
  #toc h2 {
    margin: -1px 0 0 0;
    padding: 4px 0 4px 6px;
    padding-right: 1em;
    min-width: 190px;
    font-size: 1.1em;
    text-align: right;
    background-color: #444;
    color: white;
    cursor: pointer;
  }
  #toc h2::before { /* css hamburger */
    float: right;
    position: relative;
    width: 1em;
    height: 1px;
    left: -164px;
    margin: 6px 0 0 0;
    background: white none repeat scroll 0 0;
    box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
    content: "";
  }
  #toc nav {
    display: none;
    padding: 0.5em 1em 1em;
    overflow: auto;
    height: calc(100vh - 48px);
    border-left: 1px solid #ddd;
  }
}

/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
  body {
    max-width: 724px;
    margin: 42px auto;
    padding-left: 1.5em;
    padding-right: 29em;
  }
  #toc {
    position: fixed;
    top: 42px;
    right: 42px;
    width: 25%;
    margin: 0;
    padding: 0 1em;
    z-index: 1;
  }
  #toc h2 {
    border-top: none;
    border-bottom: 1px solid #ddd;
    font-size: 1em;
    font-weight: normal;
    margin: 0;
    padding: 0.25em 1em 1em 0;
  }
  #toc nav {
    display: block;
    height: calc(90vh - 84px);
    bottom: 0;
    padding: 0.5em 0 0;
    overflow: auto;
  }
  img { /* future proofing */
    max-width: 100%;
    height: auto;
  }
}

/* pagination */
@media print {
  body {

    width: 100%;
  }
  p {
    orphans: 3;
    widows: 3;
  }
  #n-copyright-notice {
    border-bottom: none;
  }
  #toc, #n-introduction {
    page-break-before: always;
  }
  #toc {
    border-top: none;
    padding-top: 0;
  }
  figure, pre {
    page-break-inside: avoid;
  }
  figure {
    overflow: scroll;
  }
  h1, h2, h3, h4, h5, h6 {
    page-break-after: avoid;
  }
  h2+*, h3+*, h4+*, h5+*, h6+* {
    page-break-before: avoid;
  }
  pre {
    white-space: pre-wrap;
    word-wrap: break-word;
    font-size: 10pt;
  }
  table {
    border: 1px solid #ddd;
  }
  td {
    border-top: 1px solid #ddd;
  }
}

/* This is commented out here, as the string-set: doesn't
   pass W3C validation currently */
/*
.ears thead .left {
  string-set: ears-top-left content();
}

.ears thead .center {
  string-set: ears-top-center content();
}

.ears thead .right {
  string-set: ears-top-right content();
}

.ears tfoot .left {
  string-set: ears-bottom-left content();
}

.ears tfoot .center {
  string-set: ears-bottom-center content();
}

.ears tfoot .right {
  string-set: ears-bottom-right content();
}
*/

@page :first {
  padding-top: 0;
  @top-left {
    content: normal;
    border: none;
  }
  @top-center {
    content: normal;
    border: none;
  }
  @top-right {
    content: normal;
    border: none;
  }
}

@page {
  size: A4;
  margin-bottom: 45mm;
  padding-top: 20px;
  /* The follwing is commented out here, but set appropriately by in code, as
     the content depends on the document */
  /*
  @top-left {
    content: 'Internet-Draft';
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-left {
    content: string(ears-top-left);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-center {
    content: string(ears-top-center);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-right {
    content: string(ears-top-right);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @bottom-left {
    content: string(ears-bottom-left);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-center {
    content: string(ears-bottom-center);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-right {
      content: '[Page ' counter(page) ']';
      vertical-align: top;
      border-top: solid 1px #ccc;
  }
  */

}

/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
  z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
  clear: both;
}


/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
  vertical-align: top;
}

/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
  width: 8em;
}

/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
  margin-left: 1em;
}

/* Give floating toc a background color (needed when it's a div inside section */
#toc {
  background-color: white;
}

/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
  #toc h2 a,
  #toc h2 a:link,
  #toc h2 a:focus,
  #toc h2 a:hover,
  #toc a.toplink,
  #toc a.toplink:hover {
    color: white;
    background-color: #444;
    text-decoration: none;
  }
}

/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
  #toc {
    padding: 0 0 1em 1em;
  }
}

/* Style section numbers with more space between number and title */
.section-number {
  padding-right: 0.5em;
}

/* prevent monospace from becoming overly large */
tt, code, pre, code {
  font-size: 95%;
}

/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
  line-height: 1.12;
}


/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
  float: right;
  margin-right: 0.5em;
}

/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
  float: left;
  margin-right: 1em;
}
dl.dlNewline > dt {
  float: none;
}

/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
  text-align: left;
}
table td.text-center,
table th.text-center {
  text-align: center;
}
table td.text-right,
table th.text-right {
  text-align: right;
}

/* Make the alternative author contact informatio look less like just another
   author, and group it closer with the primary author contact information */
.alternative-contact {
  margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
  margin: 0 0 0 2em;
}

/* With it being possible to set tables with alignment
  left, center, and right, { width: 100%; } does not make sense */
table {
  width: auto;
}

/* Avoid reference text that sits in a block with very wide left margin,
   because of a long floating dt label.*/
.references dd {
  overflow: visible;
}

/* Control caption placement */
caption {
  caption-side: bottom;
}

/* Limit the width of the author address vcard, so names in right-to-left
   script don't end up on the other side of the page. */

address.vcard {
  max-width: 30em;
  margin-right: auto;
}

/* For address alignment dependent on LTR or RTL scripts */
address div.left {
  text-align: left;
}
address div.right {
  text-align: right;
}

/* Provide table alignment support.  We can't use the alignX classes above
   since they do unwanted things with caption and other styling. */
table.right {
 margin-left: auto;
 margin-right: 0;
}
table.center {
 margin-left: auto;
 margin-right: auto;
}
table.left {
 margin-left: 0;
 margin-right: auto;
}

/* Give the table caption label the same styling as the figcaption */
caption a[href] {
  color: #222;
}

@media print {
  .toplink {
    display: none;
  }

  /* avoid overwriting the top border line with the ToC header */
  #toc {
    padding-top: 1px;
  }

  /* Avoid page breaks inside dl and author address entries */
  .vcard {
    page-break-inside: avoid;
  }

}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
  font-variant: small-caps;
  font-weight: bold;
  font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
 h2 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 31px;
 }
 h3 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
 h4 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
/* Float artwork pilcrow to the right */
@media screen {
  .artwork a.pilcrow {
    display: block;
    line-height: 0.7;
    margin-top: 0.15em;
  }
}
/* Make pilcrows on dd visible */
@media screen {
  dd:hover > a.pilcrow {
    visibility: visible;
  }
}
/* Make the placement of figcaption match that of a table's caption
   by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
   margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
  margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
   possibly even requiring a new line */
@media print {
  a.pilcrow {
    display: none;
  }
}
/* Styling for the external metadata */
div#external-metadata {
  background-color: #eee;
  padding: 0.5em;
  margin-bottom: 0.5em;
  display: none;
}
div#internal-metadata {
  padding: 0.5em;                       /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
  clear: both;
  margin: 0 0 -1em;
  padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
  margin-bottom: 0.25em;
  min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
  border-left: 1px solid #ddd;
  margin: 1em 0 1em 2em;
  padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
  margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
  figcaption, table caption {
    page-break-before: avoid;
  }
}
/* Font size adjustments for print */
@media print {
  body  { font-size: 10pt;      line-height: normal; max-width: 96%; }
  h1    { font-size: 1.72em;    padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
  h2    { font-size: 1.44em;    padding-top: 1.5em; } /* 1*1.2*1.2 */
  h3    { font-size: 1.2em;     padding-top: 1.5em; } /* 1*1.2 */
  h4    { font-size: 1em;       padding-top: 1.5em; }
  h5, h6 { font-size: 1em;      margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
  .artwork,
  .sourcecode {
    margin-bottom: 1em;
  }
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
  min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
  border: 1px solid #ddd;
}
td {
  border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
  background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
  #toc nav { display: none; }
  #toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
  break-after: avoid-page;
  break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
  break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode  {
  break-before: avoid-page;
  break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
  break-before: auto;
  break-inside: auto;
}
dt {
  break-before: auto;
  break-after: avoid-page;
}
dd {
  break-before: avoid-page;
  break-after: auto;
  orphans: 3;
  widows: 3
}
span.break, dd.break {
  margin-bottom: 0;
  min-height: 0;
  break-before: auto;
  break-inside: auto;
  break-after: auto;
}
/* Undo break-before ToC */
@media print {
  #toc {
    break-before: auto;
  }
}
/* Text in compact lists should not get extra bottim margin space,
   since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
 margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
  margin-bottom: 1em;                    /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
   backgrounds.  Changed to something a bit more selective. */
tt, code {
  background-color: transparent;
}
p tt, p code, li tt, li code {
  background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
   margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
  line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
  margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
  clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
  content: "\00a0";
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc8966" rel="alternate">
  <link href="urn:issn:2070-1721" rel="alternate">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-babel-rfc6126bis-20" rel="prev">
  </head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8966</td>
<td class="center">The Babel Routing Protocol</td>
<td class="right">January 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Chroboczek &amp; Schinazi</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8966" class="eref">8966</a></dd>
<dt class="label-obsoletes">Obsoletes:</dt>
<dd class="obsoletes">
<a href="https://www.rfc-editor.org/rfc/rfc6126" class="eref">6126</a>, <a href="https://www.rfc-editor.org/rfc/rfc7557" class="eref">7557</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-01" class="published">January 2021</time>
    </dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
      <div class="author-name">J. Chroboczek</div>
<div class="org">IRIF, University of Paris-Diderot</div>
</div>
<div class="author">
      <div class="author-name">D. Schinazi</div>
<div class="org">Google LLC</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8966</h1>
<h1 id="title">The Babel Routing Protocol</h1>
<section id="section-abstract">
      <h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">Babel is a loop-avoiding, distance-vector routing protocol that is
robust and efficient both in ordinary wired networks and in wireless mesh
networks.  This document describes the Babel routing protocol and
obsoletes RFC 6126 and RFC 7557.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
        <h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
        </h2>
<p id="section-boilerplate.1-1">
            This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further
            information on Internet Standards is available in Section 2 of 
            RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <span><a href="https://www.rfc-editor.org/info/rfc8966">https://www.rfc-editor.org/info/rfc8966</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
        <h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
        </h2>
<p id="section-boilerplate.2-1">
            Copyright (c) 2021 IETF Trust and the persons identified as the
            document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
        <a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
        </h2>
<nav class="toc"><ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.1">
            <p id="section-toc.1-1.1.1"><a href="#section-1" class="xref">1</a>.  <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.1.2.1">
                <p id="section-toc.1-1.1.2.1.1" class="keepWithNext"><a href="#section-1.1" class="xref">1.1</a>.  <a href="#name-features" class="xref">Features</a><a href="#section-toc.1-1.1.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.1.2.2">
                <p id="section-toc.1-1.1.2.2.1" class="keepWithNext"><a href="#section-1.2" class="xref">1.2</a>.  <a href="#name-limitations" class="xref">Limitations</a><a href="#section-toc.1-1.1.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.1.2.3">
                <p id="section-toc.1-1.1.2.3.1" class="keepWithNext"><a href="#section-1.3" class="xref">1.3</a>.  <a href="#name-specification-of-requiremen" class="xref">Specification of Requirements</a><a href="#section-toc.1-1.1.2.3.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.2">
            <p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>.  <a href="#name-conceptual-description-of-t" class="xref">Conceptual Description of the Protocol</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.1">
                <p id="section-toc.1-1.2.2.1.1"><a href="#section-2.1" class="xref">2.1</a>.  <a href="#name-costs-metrics-and-neighbour" class="xref">Costs, Metrics, and Neighbourship</a><a href="#section-toc.1-1.2.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.2.2.2">
                <p id="section-toc.1-1.2.2.2.1"><a href="#section-2.2" class="xref">2.2</a>.  <a href="#name-the-bellman-ford-algorithm" class="xref">The Bellman-Ford Algorithm</a><a href="#section-toc.1-1.2.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.2.2.3">
                <p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="xref">2.3</a>.  <a href="#name-transient-loops-in-bellman-" class="xref">Transient Loops in Bellman-Ford</a><a href="#section-toc.1-1.2.2.3.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.2.2.4">
                <p id="section-toc.1-1.2.2.4.1"><a href="#section-2.4" class="xref">2.4</a>.  <a href="#name-feasibility-conditions" class="xref">Feasibility Conditions</a><a href="#section-toc.1-1.2.2.4.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.2.2.5">
                <p id="section-toc.1-1.2.2.5.1"><a href="#section-2.5" class="xref">2.5</a>.  <a href="#name-solving-starvation-sequenci" class="xref">Solving Starvation: Sequencing Routes</a><a href="#section-toc.1-1.2.2.5.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.2.2.6">
                <p id="section-toc.1-1.2.2.6.1"><a href="#section-2.6" class="xref">2.6</a>.  <a href="#name-requests" class="xref">Requests</a><a href="#section-toc.1-1.2.2.6.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.2.2.7">
                <p id="section-toc.1-1.2.2.7.1"><a href="#section-2.7" class="xref">2.7</a>.  <a href="#name-multiple-routers" class="xref">Multiple Routers</a><a href="#section-toc.1-1.2.2.7.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.2.2.8">
                <p id="section-toc.1-1.2.2.8.1"><a href="#section-2.8" class="xref">2.8</a>.  <a href="#name-overlapping-prefixes" class="xref">Overlapping Prefixes</a><a href="#section-toc.1-1.2.2.8.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.3">
            <p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>.  <a href="#name-protocol-operation" class="xref">Protocol Operation</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.3.2.1">
                <p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>.  <a href="#name-message-transmission-and-re" class="xref">Message Transmission and Reception</a><a href="#section-toc.1-1.3.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.3.2.2">
                <p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>.  <a href="#name-data-structures" class="xref">Data Structures</a><a href="#section-toc.1-1.3.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.3.2.3">
                <p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>.  <a href="#name-acknowledgments-and-acknowl" class="xref">Acknowledgments and Acknowledgment Requests</a><a href="#section-toc.1-1.3.2.3.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.3.2.4">
                <p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="xref">3.4</a>.  <a href="#name-neighbour-acquisition" class="xref">Neighbour Acquisition</a><a href="#section-toc.1-1.3.2.4.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.3.2.5">
                <p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="xref">3.5</a>.  <a href="#name-routing-table-maintenance" class="xref">Routing Table Maintenance</a><a href="#section-toc.1-1.3.2.5.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.3.2.6">
                <p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="xref">3.6</a>.  <a href="#name-route-selection" class="xref">Route Selection</a><a href="#section-toc.1-1.3.2.6.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.3.2.7">
                <p id="section-toc.1-1.3.2.7.1"><a href="#section-3.7" class="xref">3.7</a>.  <a href="#name-sending-updates" class="xref">Sending Updates</a><a href="#section-toc.1-1.3.2.7.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.3.2.8">
                <p id="section-toc.1-1.3.2.8.1"><a href="#section-3.8" class="xref">3.8</a>.  <a href="#name-explicit-requests" class="xref">Explicit Requests</a><a href="#section-toc.1-1.3.2.8.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.4">
            <p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.  <a href="#name-protocol-encoding" class="xref">Protocol Encoding</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.1">
                <p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>.  <a href="#name-data-types" class="xref">Data Types</a><a href="#section-toc.1-1.4.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.4.2.2">
                <p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>.  <a href="#name-packet-format" class="xref">Packet Format</a><a href="#section-toc.1-1.4.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.4.2.3">
                <p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>.  <a href="#name-tlv-format" class="xref">TLV Format</a><a href="#section-toc.1-1.4.2.3.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.4.2.4">
                <p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>.  <a href="#name-sub-tlv-format" class="xref">Sub-TLV Format</a><a href="#section-toc.1-1.4.2.4.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.4.2.5">
                <p id="section-toc.1-1.4.2.5.1"><a href="#section-4.5" class="xref">4.5</a>.  <a href="#name-parser-state-and-encoding-o" class="xref">Parser State and Encoding of Updates</a><a href="#section-toc.1-1.4.2.5.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.4.2.6">
                <p id="section-toc.1-1.4.2.6.1"><a href="#section-4.6" class="xref">4.6</a>.  <a href="#name-details-of-specific-tlvs" class="xref">Details of Specific TLVs</a><a href="#section-toc.1-1.4.2.6.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.4.2.7">
                <p id="section-toc.1-1.4.2.7.1"><a href="#section-4.7" class="xref">4.7</a>.  <a href="#name-details-of-specific-sub-tlv" class="xref">Details of specific sub-TLVs</a><a href="#section-toc.1-1.4.2.7.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.5">
            <p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.  <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.6">
            <p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.  <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.7">
            <p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>.  <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.7.2.1">
                <p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>.  <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.7.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.7.2.2">
                <p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>.  <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.7.2.2.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.8">
            <p id="section-toc.1-1.8.1"><a href="#section-appendix.a" class="xref">Appendix A</a>.  <a href="#name-cost-and-metric-computation" class="xref">Cost and Metric Computation</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.8.2.1">
                <p id="section-toc.1-1.8.2.1.1"><a href="#section-a.1" class="xref">A.1</a>.  <a href="#name-maintaining-hello-history" class="xref">Maintaining Hello History</a><a href="#section-toc.1-1.8.2.1.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.8.2.2">
                <p id="section-toc.1-1.8.2.2.1"><a href="#section-a.2" class="xref">A.2</a>.  <a href="#name-cost-computation-2" class="xref">Cost Computation</a><a href="#section-toc.1-1.8.2.2.1" class="pilcrow">¶</a></p>
</li>
              <li class="toc ulEmpty compact" id="section-toc.1-1.8.2.3">
                <p id="section-toc.1-1.8.2.3.1"><a href="#section-a.3" class="xref">A.3</a>.  <a href="#name-route-selection-and-hystere" class="xref">Route Selection and Hysteresis</a><a href="#section-toc.1-1.8.2.3.1" class="pilcrow">¶</a></p>
</li>
            </ul>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.9">
            <p id="section-toc.1-1.9.1"><a href="#section-appendix.b" class="xref">Appendix B</a>.  <a href="#name-protocol-parameters" class="xref">Protocol Parameters</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.10">
            <p id="section-toc.1-1.10.1"><a href="#section-appendix.c" class="xref">Appendix C</a>.  <a href="#name-route-filtering" class="xref">Route Filtering</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.11">
            <p id="section-toc.1-1.11.1"><a href="#section-appendix.d" class="xref">Appendix D</a>.  <a href="#name-considerations-for-protocol" class="xref">Considerations for Protocol Extensions</a><a href="#section-toc.1-1.11.1" class="pilcrow">¶</a></p>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.12">
            <p id="section-toc.1-1.12.1"><a href="#section-appendix.e" class="xref">Appendix E</a>.  <a href="#name-stub-implementations" class="xref">Stub Implementations</a><a href="#section-toc.1-1.12.1" class="pilcrow">¶</a></p>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.13">
            <p id="section-toc.1-1.13.1"><a href="#section-appendix.f" class="xref">Appendix F</a>.  <a href="#name-compatibility-with-previous" class="xref">Compatibility with Previous Versions</a><a href="#section-toc.1-1.13.1" class="pilcrow">¶</a></p>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.14">
            <p id="section-toc.1-1.14.1"><a href="#section-appendix.g" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a><a href="#section-toc.1-1.14.1" class="pilcrow">¶</a></p>
</li>
          <li class="compact ulEmpty toc" id="section-toc.1-1.15">
            <p id="section-toc.1-1.15.1"><a href="#section-appendix.h" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.15.1" class="pilcrow">¶</a></p>
</li>
        </ul>
</nav>
</section>
</div>
<section id="section-1">
      <h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
      </h2>
<p id="section-1-1">Babel is a loop-avoiding distance-vector routing protocol that is
designed to be robust and efficient both in networks using prefix-based
routing and in networks using flat routing ("mesh networks"), and both in
relatively stable wired networks and in highly dynamic wireless networks.
This document describes the Babel routing protocol and obsoletes
<span>[<a href="#RFC6126" class="xref">RFC6126</a>]</span> and <span>[<a href="#RFC7557" class="xref">RFC7557</a>]</span>.<a href="#section-1-1" class="pilcrow">¶</a></p>
<section id="section-1.1">
        <h3 id="name-features">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-features" class="section-name selfRef">Features</a>
        </h3>
<p id="section-1.1-1">The main property that makes Babel suitable for unstable networks is
that, unlike naive distance-vector routing protocols <span>[<a href="#RFC2453" class="xref">RIP</a>]</span>,
it strongly limits the frequency and duration of routing pathologies such
as routing loops and black-holes during reconvergence.  Even after
a mobility event is detected, a Babel network usually remains loop-free.
Babel then quickly reconverges to a configuration that preserves the
loop-freedom and connectedness of the network, but is not necessarily
optimal; in many cases, this operation requires no packet exchanges at
all.  Babel then slowly converges, in a time on the scale of minutes, to
an optimal configuration.  This is achieved by using sequenced routes,
a technique pioneered by Destination-Sequenced Distance-Vector routing
<span>[<a href="#DSDV" class="xref">DSDV</a>]</span>.<a href="#section-1.1-1" class="pilcrow">¶</a></p>
<p id="section-1.1-2">More precisely, Babel has the following properties:<a href="#section-1.1-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1.1-3.1">when every prefix is originated by at most one router, Babel never
  suffers from routing loops;<a href="#section-1.1-3.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-1.1-3.2">when a single prefix is originated by multiple routers, Babel may
  occasionally create a transient routing loop for this particular prefix;
  this loop disappears in time proportional to the loop's diameter, and never
  again (up to an arbitrary garbage-collection (GC) time) will the routers
  involved participate in a routing loop for the same prefix;<a href="#section-1.1-3.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-1.1-3.3">assuming bounded packet loss rates, any routing black-holes that
  may appear after a mobility event are corrected in a time at most
  proportional to the network's diameter.<a href="#section-1.1-3.3" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-1.1-4">Babel has provisions for link quality estimation and for fairly
arbitrary metrics.  When configured suitably, Babel can implement
shortest-path routing, or it may use a metric based, for example, on
measured packet loss.<a href="#section-1.1-4" class="pilcrow">¶</a></p>
<p id="section-1.1-5">Babel nodes will successfully establish an association even when they
are configured with different parameters.  For example, a mobile node that
is low on battery may choose to use larger time constants (hello and update
intervals, etc.) than a node that has access to wall power.  Conversely, a
node that detects high levels of mobility may choose to use smaller time
constants.  The ability to build such heterogeneous networks makes Babel
particularly adapted to the unmanaged or wireless environment.<a href="#section-1.1-5" class="pilcrow">¶</a></p>
<p id="section-1.1-6">Finally, Babel is a hybrid routing protocol, in the sense that it can
carry routes for multiple network-layer protocols (IPv4 and IPv6),
regardless of which protocol the Babel packets are themselves being
carried over.<a href="#section-1.1-6" class="pilcrow">¶</a></p>
</section>
<section id="section-1.2">
        <h3 id="name-limitations">
<a href="#section-1.2" class="section-number selfRef">1.2. </a><a href="#name-limitations" class="section-name selfRef">Limitations</a>
        </h3>
<p id="section-1.2-1">Babel has two limitations that make it unsuitable for use in some
environments.  First, Babel relies on periodic routing table updates
rather than using a reliable transport; hence, in large, stable networks
it generates more traffic than protocols that only send updates when the
network topology changes.  In such networks, protocols such as OSPF <span>[<a href="#RFC2328" class="xref">OSPF</a>]</span>, IS-IS <span>[<a href="#IS-IS" class="xref">IS-IS</a>]</span>, or the Enhanced Interior
Gateway Routing Protocol (EIGRP) <span>[<a href="#EIGRP" class="xref">EIGRP</a>]</span> might be more
suitable.<a href="#section-1.2-1" class="pilcrow">¶</a></p>
<p id="section-1.2-2">Second, unless the second algorithm described in <a href="#hold-time" class="xref">Section 3.5.4</a>
is implemented, Babel does impose a hold time when a prefix is retracted.
While this hold time does not apply to the exact prefix being retracted,
and hence does not prevent fast reconvergence should it become available
again, it does apply to any shorter prefix that covers it.  This may make
those implementations of Babel that do not implement the optional
algorithm described in <a href="#hold-time" class="xref">Section 3.5.4</a> unsuitable for use in
networks that implement automatic prefix aggregation.<a href="#section-1.2-2" class="pilcrow">¶</a></p>
</section>
<section id="section-1.3">
        <h3 id="name-specification-of-requiremen">
<a href="#section-1.3" class="section-number selfRef">1.3. </a><a href="#name-specification-of-requiremen" class="section-name selfRef">Specification of Requirements</a>
        </h3>
<p id="section-1.3-1">
    The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
    "<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as
    described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span>
          <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when, 
    they appear in all capitals, as shown here.<a href="#section-1.3-1" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-2">
      <h2 id="name-conceptual-description-of-t">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-conceptual-description-of-t" class="section-name selfRef">Conceptual Description of the Protocol</a>
      </h2>
<p id="section-2-1">Babel is a loop-avoiding distance-vector protocol: it is based on the
Bellman-Ford algorithm, just like the venerable RIP <span>[<a href="#RFC2453" class="xref">RIP</a>]</span>,
but includes a number of refinements that either prevent loop formation
altogether, or ensure that a loop disappears in a timely manner and
doesn't form again.<a href="#section-2-1" class="pilcrow">¶</a></p>
<p id="section-2-2">Conceptually, Bellman-Ford is executed in parallel for every source of
routing information (destination of data traffic).  In the following
discussion, we fix a source S; the reader will recall that the same
algorithm is executed for all sources.<a href="#section-2-2" class="pilcrow">¶</a></p>
<section id="section-2.1">
        <h3 id="name-costs-metrics-and-neighbour">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-costs-metrics-and-neighbour" class="section-name selfRef">Costs, Metrics, and Neighbourship</a>
        </h3>
<p id="section-2.1-1">For every pair of neighbouring nodes A and B, Babel computes an
abstract value known as the cost of the link from A to B, written
C(A, B).  Given a route between any two (not necessarily
neighbouring) nodes, the metric of the route is the sum of the costs of
all the links along the route.  The goal of the routing algorithm is to
compute, for every source S, the tree of routes of lowest metric to S.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">Costs and metrics need not be integers.  In general, they can be values
in any algebra that satisfies two fairly general conditions
(<a href="#metric-computation" class="xref">Section 3.5.2</a>).<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<p id="section-2.1-3">A Babel node periodically sends Hello messages to all of its
neighbours; it also periodically sends an IHU ("I Heard You") message to
every neighbour from which it has recently heard a Hello.  From the
information derived from Hello and IHU messages received from its neighbour
B, a node A computes the cost C(A, B) of the link from A to B.<a href="#section-2.1-3" class="pilcrow">¶</a></p>
</section>
<section id="section-2.2">
        <h3 id="name-the-bellman-ford-algorithm">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-the-bellman-ford-algorithm" class="section-name selfRef">The Bellman-Ford Algorithm</a>
        </h3>
<p id="section-2.2-1">Every node A maintains two pieces of data: its estimated distance to S,
written D(A), and its next-hop router to S, written NH(A).  Initially, D(S)
= 0, D(A) is infinite, and NH(A) is undefined.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2">Periodically, every node B sends to all of its neighbours a route
update, a message containing D(B).  When a neighbour A of B receives the
route update, it checks whether B is its selected next hop; if that is the
case, then NH(A) is set to B, and D(A) is set to C(A, B) + D(B).  If that
is not the case, then A compares C(A, B) + D(B) to its current value of
D(A).  If that value is smaller, meaning that the received update
advertises a route that is better than the currently selected route, then
NH(A) is set to B, and D(A) is set to C(A, B) + D(B).<a href="#section-2.2-2" class="pilcrow">¶</a></p>
<p id="section-2.2-3">A number of refinements to this algorithm are possible, and are used by
Babel.  In particular, convergence speed may be increased by sending
unscheduled "triggered updates" whenever a major change in the topology is
detected, in addition to the regular, scheduled updates.  Additionally,
a node may maintain a number of alternate routes, which are being
advertised by neighbours other than its selected neighbour, and which can
be used immediately if the selected route were to fail.<a href="#section-2.2-3" class="pilcrow">¶</a></p>
</section>
<section id="section-2.3">
        <h3 id="name-transient-loops-in-bellman-">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-transient-loops-in-bellman-" class="section-name selfRef">Transient Loops in Bellman-Ford</a>
        </h3>
<p id="section-2.3-1">It is well known that a naive application of Bellman-Ford to distributed
routing can cause transient loops after a topology change.  Consider for
example the following topology:<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.3-2">
<pre>
         B
      1 /|
   1   / |
S --- A  |1
       \ |
      1 \|
         C
</pre><a href="#section-2.3-2" class="pilcrow">¶</a>
</div>
<p id="section-2.3-3">
After convergence, D(B) = D(C) = 2, with NH(B) = NH(C) = A.<a href="#section-2.3-3" class="pilcrow">¶</a></p>
<p id="section-2.3-4">Suppose now that the link between S and A fails:<a href="#section-2.3-4" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.3-5">
<pre>
         B
      1 /|
       / |
S     A  |1
       \ |
      1 \|
         C
</pre><a href="#section-2.3-5" class="pilcrow">¶</a>
</div>
<p id="section-2.3-6">When it detects the failure of the link, A switches its next hop to
B (which is still advertising a route to S with metric 2), and advertises
a metric equal to 3, and then advertises a new route with metric 3.  This
process of nodes changing selected neighbours and increasing their metric
continues until the advertised metric reaches "infinity", a value larger
than all the metrics that the routing protocol is able to carry.<a href="#section-2.3-6" class="pilcrow">¶</a></p>
</section>
<section id="section-2.4">
        <h3 id="name-feasibility-conditions">
<a href="#section-2.4" class="section-number selfRef">2.4. </a><a href="#name-feasibility-conditions" class="section-name selfRef">Feasibility Conditions</a>
        </h3>
<p id="section-2.4-1">Bellman-Ford is a very robust algorithm: its convergence properties
are preserved when routers delay route acquisition or when they
discard some updates.  Babel routers discard received route
announcements unless they can prove that accepting them cannot
possibly cause a routing loop.<a href="#section-2.4-1" class="pilcrow">¶</a></p>
<p id="section-2.4-2">More formally, we define a condition over route announcements, known as
the "feasibility condition", that guarantees the absence of routing loops
whenever all routers ignore route updates that do not satisfy the
feasibility condition.  In effect, this makes Bellman-Ford into a family
of routing algorithms, parameterised by the feasibility condition.<a href="#section-2.4-2" class="pilcrow">¶</a></p>
<p id="section-2.4-3">Many different feasibility conditions are possible.  For example, BGP
can be modelled as being a distance-vector protocol with a (rather
drastic) feasibility condition: a routing update is only accepted when the
receiving node's AS number is not included in the update's AS_PATH
attribute (note that BGP's feasibility condition does not ensure the
absence of transient "micro-loops" during reconvergence).<a href="#section-2.4-3" class="pilcrow">¶</a></p>
<p id="section-2.4-4">Another simple feasibility condition, used in the Destination-Sequenced
Distance-Vector (DSDV) routing protocol <span>[<a href="#DSDV" class="xref">DSDV</a>]</span> and in the
Ad hoc On-Demand Distance Vector (AODV) protocol <span>[<a href="#RFC3561" class="xref">RFC3561</a>]</span>,
stems from the following observation: a routing loop can only arise after
a router has switched to a route with a larger metric than the route that
it had previously selected.  Hence, one may define that a route is
feasible when its metric at the local node would be no larger than
the metric of the currently selected route, i.e., an announcement carrying
a metric D(B) is accepted by A when C(A, B) + D(B) &lt;= D(A).  If all
routers obey this constraint, then the metric at every router is
nonincreasing, and the following invariant is always preserved: if A has
selected B as its next hop, then D(B) &lt; D(A), which implies that the
forwarding graph is loop-free.<a href="#section-2.4-4" class="pilcrow">¶</a></p>
<p id="section-2.4-5">Babel uses a slightly more refined feasibility condition, derived from
EIGRP <span>[<a href="#DUAL" class="xref">DUAL</a>]</span>.  Given a router A, define the feasibility
distance of A, written FD(A), as the smallest metric that A has ever
advertised for S to any of its neighbours.  An update sent by a neighbour
B of A is feasible when the metric D(B) advertised by B is strictly
smaller than A's feasibility distance, i.e., when D(B) &lt; FD(A).<a href="#section-2.4-5" class="pilcrow">¶</a></p>
<p id="section-2.4-6">It is easy to see that this latter condition is no more restrictive than
DSDV-feasibility.  Suppose that node A obeys DSDV-feasibility; then D(A) is
nonincreasing, hence at all times D(A) &lt;= FD(A).  Suppose now that
A receives a DSDV-feasible update that advertises a metric D(B).  Since the
update is DSDV-feasible, C(A, B) + D(B) &lt;= D(A), hence D(B) &lt; D(A),
and since D(A) &lt;= FD(A), D(B) &lt; FD(A).<a href="#section-2.4-6" class="pilcrow">¶</a></p>
<p id="section-2.4-7">To see that it is strictly less restrictive, consider the following
diagram, where A has selected the route through B, and D(A) = FD(A) = 2.
Since D(C) = 1 &lt; FD(A), the alternate route through C is feasible for A,
although its metric C(A, C) + D(C) = 5 is larger than that of the
currently selected route:<a href="#section-2.4-7" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.4-8">
<pre>
   B
1 / \ 1
 /   \
S     A
 \   /
1 \ / 4
   C
</pre><a href="#section-2.4-8" class="pilcrow">¶</a>
</div>
<p id="section-2.4-9">To show that this feasibility condition still guarantees loop-freedom,
recall that at the time when A accepts an update from B, the metric D(B)
announced by B is no smaller than FD(B); since it is smaller than FD(A),
at that point in time FD(B) &lt; FD(A).  Since this property is preserved
when A sends updates and also when it picks a different next hop, it
remains true at all times, which ensures that the forwarding graph has no
loops.<a href="#section-2.4-9" class="pilcrow">¶</a></p>
</section>
<section id="section-2.5">
        <h3 id="name-solving-starvation-sequenci">
<a href="#section-2.5" class="section-number selfRef">2.5. </a><a href="#name-solving-starvation-sequenci" class="section-name selfRef">Solving Starvation: Sequencing Routes</a>
        </h3>
<p id="section-2.5-1">Obviously, the feasibility conditions defined above cause starvation
when a router runs out of feasible routes.  Consider the following diagram,
where both A and B have selected the direct route to S:<a href="#section-2.5-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.5-2">
<pre>
   A
1 /|        D(A) = 1
 / |       FD(A) = 1
S  |1
 \ |        D(B) = 2
2 \|       FD(B) = 2
   B
</pre><a href="#section-2.5-2" class="pilcrow">¶</a>
</div>
<p id="section-2.5-3">Suppose now that the link between A and S breaks:<a href="#section-2.5-3" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.5-4">
<pre>
   A
   |
   |       FD(A) = 1
S  |1
 \ |        D(B) = 2
2 \|       FD(B) = 2
   B
</pre><a href="#section-2.5-4" class="pilcrow">¶</a>
</div>
<p id="section-2.5-5">The only route available from A to S, the one that goes through B, is
not feasible: A suffers from spurious starvation.  At that point, the
whole subtree suffering from starvation must be reset, which is
essentially what EIGRP does when it performs a global synchronisation of
all the routers in the starving subtree (the "active" phase of EIGRP).<a href="#section-2.5-5" class="pilcrow">¶</a></p>
<p id="section-2.5-6">Babel reacts to starvation in a less drastic manner, by using sequenced
routes, a technique introduced by DSDV and adopted by AODV.  In addition to
a metric, every route carries a sequence number, a nondecreasing integer
that is propagated unchanged through the network and is only ever
incremented by the source; a pair (s, m), where s is a sequence number and
m a metric, is called a distance.<a href="#section-2.5-6" class="pilcrow">¶</a></p>
<p id="section-2.5-7">A received update is feasible when either it is more recent than the
feasibility distance maintained by the receiving node, or it is equally
recent and the metric is strictly smaller.  More formally, if FD(A) =
(s, m), then an update carrying the distance (s', m') is feasible
when either s' &gt; s, or s = s' and m' &lt; m.<a href="#section-2.5-7" class="pilcrow">¶</a></p>
<p id="section-2.5-8">Assuming the sequence number of S is 137, the diagram above becomes:<a href="#section-2.5-8" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.5-9">
<pre>
   A
   |
   |       FD(A) = (137, 1)
S  |1
 \ |        D(B) = (137, 2)
2 \|       FD(B) = (137, 2)
   B
</pre><a href="#section-2.5-9" class="pilcrow">¶</a>
</div>
<p id="section-2.5-10">After S increases its sequence number, and the new sequence number is
propagated to B, we have:<a href="#section-2.5-10" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.5-11">
<pre>
   A
   |
   |       FD(A) = (137, 1)
S  |1
 \ |        D(B) = (138, 2)
2 \|       FD(B) = (138, 2)
   B
</pre><a href="#section-2.5-11" class="pilcrow">¶</a>
</div>
<p id="section-2.5-12">
at which point the route through B becomes feasible again.<a href="#section-2.5-12" class="pilcrow">¶</a></p>
<p id="section-2.5-13">Note that while sequence numbers are used for determining feasibility,
they are not used in route selection: a node ignores the sequence number
when selecting the best route to a given destination
(<a href="#route-selection" class="xref">Section 3.6</a>).  Doing otherwise would cause
route oscillation while a sequence number propagates through the network,
and might even cause persistent black-holes with some exotic metrics.<a href="#section-2.5-13" class="pilcrow">¶</a></p>
</section>
<section id="section-2.6">
        <h3 id="name-requests">
<a href="#section-2.6" class="section-number selfRef">2.6. </a><a href="#name-requests" class="section-name selfRef">Requests</a>
        </h3>
<p id="section-2.6-1">In DSDV, the sequence number of a source is increased periodically.
A route becomes feasible again after the source increases its sequence
number, and the new sequence number is propagated through the network,
which may, in general, require a significant amount of time.<a href="#section-2.6-1" class="pilcrow">¶</a></p>
<p id="section-2.6-2">Babel takes a different approach.  When a node detects that it is
suffering from a potentially spurious starvation, it sends an explicit
request to the source for a new sequence number.  This request is forwarded
hop by hop to the source, with no regard to the feasibility condition.
Upon receiving the request, the source increases its sequence number and
broadcasts an update, which is forwarded to the requesting node.<a href="#section-2.6-2" class="pilcrow">¶</a></p>
<p id="section-2.6-3">Note that after a change in network topology not all such requests
will, in general, reach the source, as some will be sent over links that
are now broken.  However, if the network is still connected, then at least
one among the nodes suffering from spurious starvation has an (unfeasible)
route to the source; hence, in the absence of packet loss, at least one
such request will reach the source.  (Resending requests a small number of
times compensates for packet loss.)<a href="#section-2.6-3" class="pilcrow">¶</a></p>
<p id="section-2.6-4">Since requests are forwarded with no regard to the feasibility
condition, they may, in general, be caught in a forwarding loop; this is
avoided by having nodes perform duplicate detection for the requests that
they forward.<a href="#section-2.6-4" class="pilcrow">¶</a></p>
</section>
<section id="section-2.7">
        <h3 id="name-multiple-routers">
<a href="#section-2.7" class="section-number selfRef">2.7. </a><a href="#name-multiple-routers" class="section-name selfRef">Multiple Routers</a>
        </h3>
<p id="section-2.7-1">The above discussion assumes that each prefix is originated by a single
router.  In real networks, however, it is often necessary to have a single
prefix originated by multiple routers: for example, the default route will
be originated by all of the edge routers of a routing domain.<a href="#section-2.7-1" class="pilcrow">¶</a></p>
<p id="section-2.7-2">Since synchronising sequence numbers between distinct routers is
problematic, Babel treats routes for the same prefix as distinct entities
when they are originated by different routers: every route announcement
carries the router-id of its originating router, and feasibility distances
are not maintained per prefix, but per source, where a source is a pair of
a router-id and a prefix.  In effect, Babel guarantees loop-freedom for the
forwarding graph to every source; since the union of multiple acyclic
graphs is not in general acyclic, Babel does not in general guarantee
loop-freedom when a prefix is originated by multiple routers, but any
loops will be broken in a time at most proportional to the diameter of the
loop -- as soon as an update has "gone around" the routing loop.<a href="#section-2.7-2" class="pilcrow">¶</a></p>
<p id="section-2.7-3">Consider for example the following topology, where A has selected the
default route through S, and B has selected the one through S':<a href="#section-2.7-3" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.7-4">
<pre>
           1     1     1
::/0 -- S --- A --- B --- S' -- ::/0
</pre><a href="#section-2.7-4" class="pilcrow">¶</a>
</div>
<p id="section-2.7-5">Suppose that both default routes fail at the same time; then nothing
prevents A from switching to B, and B simultaneously switching to A.
However, as soon as A has successfully advertised the new route to B, the
route through A will become unfeasible for B.  Conversely, as soon as
B will have advertised the route through A, the route through B will
become unfeasible for A.<a href="#section-2.7-5" class="pilcrow">¶</a></p>
<p id="section-2.7-6">In effect, the routing loop disappears at the latest when routing
information has gone around the loop.  Since this process can be delayed by
lost packets, Babel makes certain efforts to ensure that updates are sent
reliably after a router-id change (<a href="#triggered-updates" class="xref">Section 3.7.2</a>).<a href="#section-2.7-6" class="pilcrow">¶</a></p>
<p id="section-2.7-7">Additionally, after the routers have advertised the two routes, both
sources will be in their source tables, which will prevent them from ever
again participating in a routing loop involving routes from S and S' (up to
the source GC time, which, available memory permitting, can be set to
arbitrarily large values).<a href="#section-2.7-7" class="pilcrow">¶</a></p>
</section>
<div id="overlapping-prefixes">
<section id="section-2.8">
        <h3 id="name-overlapping-prefixes">
<a href="#section-2.8" class="section-number selfRef">2.8. </a><a href="#name-overlapping-prefixes" class="section-name selfRef">Overlapping Prefixes</a>
        </h3>
<p id="section-2.8-1">In the above discussion, we have assumed that all prefixes are disjoint,
as is the case in flat ("mesh") routing.  In practice, however, prefixes
may overlap: for example, the default route overlaps with all of the routes
present in the network.<a href="#section-2.8-1" class="pilcrow">¶</a></p>
<p id="section-2.8-2">After a route fails, it is not correct in general to switch to a route
that subsumes the failed route.  Consider for example the following
configuration:<a href="#section-2.8-2" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.8-3">
<pre>
           1     1
::/0 -- A --- B --- C
</pre><a href="#section-2.8-3" class="pilcrow">¶</a>
</div>
<p id="section-2.8-4">Suppose that node C fails.  If B forwards packets destined to C by
following the default route, a routing loop will form, and persist until
A learns of B's retraction of the direct route to C.  B avoids this
pitfall by installing an "unreachable" route after a route is retracted;
this route is maintained until it can be guaranteed that the former route
has been retracted by all of B's neighbours (<a href="#hold-time" class="xref">Section 3.5.4</a>).<a href="#section-2.8-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<section id="section-3">
      <h2 id="name-protocol-operation">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-protocol-operation" class="section-name selfRef">Protocol Operation</a>
      </h2>
<p id="section-3-1">Every Babel speaker is assigned a router-id, which is an arbitrary
string of 8 octets that is assumed unique across the routing domain.  For
example, router-ids could be assigned randomly, or they could be derived
from a link-layer address.  (The protocol encoding is slightly more
compact when router-ids are assigned in the same manner as the IPv6 layer
assigns host IDs; see the definition of the "R" flag in
<a href="#update" class="xref">Section 4.6.9</a>.)<a href="#section-3-1" class="pilcrow">¶</a></p>
<div id="transmission-reception">
<section id="section-3.1">
        <h3 id="name-message-transmission-and-re">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-message-transmission-and-re" class="section-name selfRef">Message Transmission and Reception</a>
        </h3>
<p id="section-3.1-1">Babel protocol packets are sent in the body of a UDP datagram (as
described in <a href="#protocol-encoding" class="xref">Section 4</a>).  Each Babel packet
consists of zero or more TLVs.  Most TLVs may contain sub-TLVs.<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<p id="section-3.1-2">Babel's control traffic can be carried indifferently over IPv6
or over IPv4, and prefixes of either address family can be announced over
either protocol.  Thus, there are at least two natural deployment models:
using IPv6 exclusively for all control traffic, or running two distinct
protocol instances, one for each address family.  The exclusive use of
IPv6 for all control traffic is <span class="bcp14">RECOMMENDED</span>, since using both protocols at
the same time doubles the amount of traffic devoted to neighbour discovery
and link quality estimation.<a href="#section-3.1-2" class="pilcrow">¶</a></p>
<p id="section-3.1-3">The source address of a Babel packet is always a unicast address,
link-local in the case of IPv6.  Babel packets may be sent to a well-known
(link-local) multicast address or to a (link-local) unicast address.  In
normal operation, a Babel speaker sends both multicast and unicast packets
to its neighbours.<a href="#section-3.1-3" class="pilcrow">¶</a></p>
<p id="section-3.1-4">With the exception of acknowledgments, all Babel TLVs
can be sent to either unicast or multicast addresses, and their semantics
does not depend on whether the destination is a unicast or a multicast
address.  Hence, a Babel speaker does not need to determine the destination
address of a packet that it receives in order to interpret it.<a href="#section-3.1-4" class="pilcrow">¶</a></p>
<p id="section-3.1-5">A moderate amount of jitter may be applied to packets sent by a Babel
speaker: outgoing TLVs are buffered and <span class="bcp14">SHOULD</span> be sent with a random
delay.  This is done for two purposes: it avoids synchronisation of
multiple Babel speakers across a network <span>[<a href="#JITTER" class="xref">JITTER</a>]</span>, and it
allows for the aggregation of multiple TLVs into a single packet.<a href="#section-3.1-5" class="pilcrow">¶</a></p>
<p id="section-3.1-6">The maximum amount of delay a TLV can be subjected to depends on the
TLV.  When the protocol description specifies that a TLV is urgent (as in
<a href="#triggered-updates" class="xref">Section 3.7.2</a> and <a href="#handling-requests" class="xref">Section 3.8.1</a>),
then the TLV <span class="bcp14">MUST</span> be sent within a short time known as the urgent timeout
(see <a href="#parameters" class="xref">Appendix B</a> for recommended values).  When the TLV is
governed by a timeout explicitly included in a previous TLV, such as in
the case of Acknowledgments (<a href="#ack" class="xref">Section 4.6.4</a>),
Updates (<a href="#sending-updates" class="xref">Section 3.7</a>), and IHUs
(<a href="#bidirectional-reachability" class="xref">Section 3.4.2</a>), then the TLV <span class="bcp14">MUST</span> be sent
early enough to meet the explicit deadline (with a small margin to allow
for propagation delays).  In all other cases, the TLV <span class="bcp14">SHOULD</span> be sent out
within one-half of the Multicast Hello interval.<a href="#section-3.1-6" class="pilcrow">¶</a></p>
<p id="section-3.1-7">In order to avoid packet drops (either at the sender or at the
receiver), a delay <span class="bcp14">SHOULD</span> be introduced between successive packets sent
out on the same interface, within the constraints of the previous
paragraph.  Note, however, that such packet pacing might impair the ability
of some link layers (e.g., IEEE 802.11 <span>[<a href="#IEEE802.11" class="xref">IEEE802.11</a>]</span>)
to perform packet aggregation.<a href="#section-3.1-7" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.2">
        <h3 id="name-data-structures">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-data-structures" class="section-name selfRef">Data Structures</a>
        </h3>
<p id="section-3.2-1">In this section, we describe the data structures that
every Babel speaker maintains.  This description is conceptual: a Babel
speaker may use different data structures as long as the resulting
protocol is the same as the one described in this document.  For example,
rather than maintaining a single table containing both selected and
unselected (fallback) routes, as described in <a href="#route-table" class="xref">Section 3.2.6</a>, 
an actual implementation would probably use two tables, one with
selected routes and one with fallback routes.<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<div id="sequence-number">
<section id="section-3.2.1">
          <h4 id="name-sequence-number-arithmetic">
<a href="#section-3.2.1" class="section-number selfRef">3.2.1. </a><a href="#name-sequence-number-arithmetic" class="section-name selfRef">Sequence Number Arithmetic</a>
          </h4>
<p id="section-3.2.1-1">Sequence numbers (seqnos) appear in a number of Babel data structures,
and they are interpreted as integers modulo 2<sup>16</sup>.  For the purposes of
this document, arithmetic on sequence numbers is defined as follows.<a href="#section-3.2.1-1" class="pilcrow">¶</a></p>
<p id="section-3.2.1-2">Given a seqno s and a non-negative integer n, the sum of s and n is
defined by the following:<a href="#section-3.2.1-2" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.2.1-3">s + n (modulo 2<sup>16</sup>) = (s + n) MOD 2<sup>16</sup><a href="#section-3.2.1-3" class="pilcrow">¶</a></p>
<p id="section-3.2.1-4">
or, equivalently,<a href="#section-3.2.1-4" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.2.1-5">s + n (modulo 2<sup>16</sup>) = (s + n) AND 65535<a href="#section-3.2.1-5" class="pilcrow">¶</a></p>
<p id="section-3.2.1-6">
where MOD is the modulo operation yielding a non-negative integer, and AND is
the bitwise conjunction operation.<a href="#section-3.2.1-6" class="pilcrow">¶</a></p>
<p id="section-3.2.1-7">Given two sequence numbers s and s', the relation s is less than s'
(s &lt; s') is defined by the following:<a href="#section-3.2.1-7" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.2.1-8">s &lt; s' (modulo 2<sup>16</sup>) when 0 &lt; ((s' - s) MOD 2<sup>16</sup>) &lt; 32768<a href="#section-3.2.1-8" class="pilcrow">¶</a></p>
<p id="section-3.2.1-9">
or, equivalently,<a href="#section-3.2.1-9" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.2.1-10">s &lt; s' (modulo 2<sup>16</sup>) when s /= s' and ((s' - s) AND 32768) = 0.<a href="#section-3.2.1-10" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.2.2">
          <h4 id="name-node-sequence-number">
<a href="#section-3.2.2" class="section-number selfRef">3.2.2. </a><a href="#name-node-sequence-number" class="section-name selfRef">Node Sequence Number</a>
          </h4>
<p id="section-3.2.2-1">A node's sequence number is a 16-bit integer that is included in route
updates sent for routes originated by this node.<a href="#section-3.2.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2.2-2">A node increments its sequence number (modulo 2<sup>16</sup>) whenever it
receives a request for a new sequence number (<a href="#handling-seqno-requests" class="xref">Section 3.8.1.2</a>).  A node <span class="bcp14">SHOULD NOT</span> increment its
sequence number (seqno) spontaneously, since increasing seqnos makes it
less likely that other nodes will have feasible alternate routes when
their selected routes fail.<a href="#section-3.2.2-2" class="pilcrow">¶</a></p>
</section>
<section id="section-3.2.3">
          <h4 id="name-the-interface-table">
<a href="#section-3.2.3" class="section-number selfRef">3.2.3. </a><a href="#name-the-interface-table" class="section-name selfRef">The Interface Table</a>
          </h4>
<p id="section-3.2.3-1">The interface table contains the list of interfaces on which the node
speaks the Babel protocol.  Every interface table entry contains the
interface's outgoing Multicast Hello seqno, a 16-bit integer that is sent
with each Multicast Hello TLV on this interface and is incremented (modulo
2<sup>16</sup>) whenever a Multicast Hello is sent.  (Note that an interface's
Multicast Hello seqno is unrelated to the node's seqno.)<a href="#section-3.2.3-1" class="pilcrow">¶</a></p>
<p id="section-3.2.3-2">There are two timers associated with each interface table entry.
The periodic multicast hello timer governs the sending of scheduled
Multicast Hello and IHU packets (<a href="#neighbour-acquisition" class="xref">Section 3.4</a>).
The periodic Update timer governs the sending of periodic route updates
(<a href="#periodic-updates" class="xref">Section 3.7.1</a>).  See <a href="#parameters" class="xref">Appendix B</a> for
suggested time constants.<a href="#section-3.2.3-2" class="pilcrow">¶</a></p>
</section>
<section id="section-3.2.4">
          <h4 id="name-the-neighbour-table">
<a href="#section-3.2.4" class="section-number selfRef">3.2.4. </a><a href="#name-the-neighbour-table" class="section-name selfRef">The Neighbour Table</a>
          </h4>
<p id="section-3.2.4-1">The neighbour table contains the list of all neighbouring interfaces
from which a Babel packet has been recently received.  The neighbour table
is indexed by pairs of the form (interface, address), and every neighbour table
entry contains the following data:<a href="#section-3.2.4-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.4-2.1">the local node's interface over which this neighbour is reachable;<a href="#section-3.2.4-2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.4-2.2">the address of the neighbouring interface;<a href="#section-3.2.4-2.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.4-2.3">a history of recently received Multicast Hello packets from this
neighbour; this can, for example, be a sequence of n bits, for some small
value n, indicating which of the n hellos most recently sent by this
neighbour have been received by the local node;<a href="#section-3.2.4-2.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.4-2.4">a history of recently received Unicast Hello packets from this neighbour;<a href="#section-3.2.4-2.4" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.4-2.5">the "transmission cost" value from the last IHU packet received from
this neighbour, or FFFF hexadecimal (infinity) if the IHU hold timer for
this neighbour has expired;<a href="#section-3.2.4-2.5" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.4-2.6">the expected incoming Multicast Hello sequence number for this neighbour,
an integer modulo 2<sup>16</sup>.<a href="#section-3.2.4-2.6" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.4-2.7">the expected incoming Unicast Hello sequence number for this neighbour,
an integer modulo 2<sup>16</sup>.<a href="#section-3.2.4-2.7" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.4-2.8">the outgoing Unicast Hello sequence number for this neighbour, an integer
modulo 2<sup>16</sup> that is sent with each Unicast Hello TLV to this neighbour and
is incremented (modulo 2<sup>16</sup>) whenever a Unicast Hello is sent.  (Note that
the outgoing Unicast Hello seqno for a neighbour is distinct from the
interface's outgoing Multicast Hello seqno.)<a href="#section-3.2.4-2.8" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.2.4-3">There are three timers associated with each neighbour entry -- the
multicast hello timer, which is set to the interval value carried by
scheduled Multicast Hello TLVs sent by this neighbour, the unicast hello
timer, which is set to the interval value carried by scheduled Unicast
Hello TLVs, and the IHU timer, which is set to a small multiple of the
interval carried in IHU TLVs (see "IHU Hold time" in
<a href="#parameters" class="xref">Appendix B</a> for suggested values).<a href="#section-3.2.4-3" class="pilcrow">¶</a></p>
<p id="section-3.2.4-4">Note that the neighbour table is indexed by IP addresses, not by
router-ids: neighbourship is a relationship between interfaces, not between
nodes.  Therefore, two nodes with multiple interfaces can participate in
multiple neighbourship relationships, a situation that can notably arise
when wireless nodes with multiple radios are involved.<a href="#section-3.2.4-4" class="pilcrow">¶</a></p>
</section>
<section id="section-3.2.5">
          <h4 id="name-the-source-table">
<a href="#section-3.2.5" class="section-number selfRef">3.2.5. </a><a href="#name-the-source-table" class="section-name selfRef">The Source Table</a>
          </h4>
<p id="section-3.2.5-1">The source table is used to record feasibility distances.  It is indexed
by triples of the form (prefix, plen, router-id), and every source table
entry contains the following data:<a href="#section-3.2.5-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.5-2.1">the prefix (prefix, plen), where plen is the prefix length in bits,
that this entry applies to;<a href="#section-3.2.5-2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.5-2.2">the router-id of a router originating this prefix;<a href="#section-3.2.5-2.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.5-2.3">a pair (seqno, metric), this source's feasibility distance.<a href="#section-3.2.5-2.3" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.2.5-3">There is one timer associated with each entry in the source table
-- the source garbage-collection timer.  It is initialised to a time
on the order of minutes and reset as specified in <a href="#maintaining-fd" class="xref">Section 3.7.3</a>.<a href="#section-3.2.5-3" class="pilcrow">¶</a></p>
</section>
<div id="route-table">
<section id="section-3.2.6">
          <h4 id="name-the-route-table">
<a href="#section-3.2.6" class="section-number selfRef">3.2.6. </a><a href="#name-the-route-table" class="section-name selfRef">The Route Table</a>
          </h4>
<p id="section-3.2.6-1">The route table contains the routes known to this node.  It is indexed
by triples of the form (prefix, plen, neighbour), and every route table
entry contains the following data:<a href="#section-3.2.6-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.6-2.1">the source (prefix, plen, router-id) for which this route is advertised;<a href="#section-3.2.6-2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.6-2.2">the neighbour (an entry in the neighbour table) that advertised this
route;<a href="#section-3.2.6-2.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.6-2.3">the metric with which this route was advertised by the neighbour, or
FFFF hexadecimal (infinity) for a recently retracted route;<a href="#section-3.2.6-2.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.6-2.4">the sequence number with which this route was advertised;<a href="#section-3.2.6-2.4" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.6-2.5">the next-hop address of this route;<a href="#section-3.2.6-2.5" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.6-2.6">a boolean flag indicating whether this route is selected, i.e., whether
it is currently being used for forwarding and is being advertised.<a href="#section-3.2.6-2.6" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.2.6-3">There is one timer associated with each route table entry -- the
route expiry timer.  It is initialised and reset as specified in
<a href="#route-acquisition" class="xref">Section 3.5.3</a>.<a href="#section-3.2.6-3" class="pilcrow">¶</a></p>
<p id="section-3.2.6-4">Note that there are two distinct (seqno, metric) pairs associated with 
each route: the route's distance, which is stored in the route table, and
the feasibility distance, which is stored in the source table and shared between
all routes with the same source.<a href="#section-3.2.6-4" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.2.7">
          <h4 id="name-the-table-of-pending-seqno-">
<a href="#section-3.2.7" class="section-number selfRef">3.2.7. </a><a href="#name-the-table-of-pending-seqno-" class="section-name selfRef">The Table of Pending Seqno Requests</a>
          </h4>
<p id="section-3.2.7-1">The table of pending seqno requests contains a list of seqno requests
that the local node has sent (either because they have been originated
locally, or because they were forwarded) and to which no reply has been
received yet.  This table is indexed by triples of the form (prefix, plen,
router-id), and every entry in this table contains the following data:<a href="#section-3.2.7-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.7-2.1">the prefix, plen, router-id, and seqno being requested;<a href="#section-3.2.7-2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.7-2.2">the neighbour, if any, on behalf of which we are forwarding this
request;<a href="#section-3.2.7-2.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.7-2.3">a small integer indicating the number of times that this request will be
resent if it remains unsatisfied.<a href="#section-3.2.7-2.3" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.2.7-3">There is one timer associated with each pending seqno request; it governs
both the resending of requests and their expiry.<a href="#section-3.2.7-3" class="pilcrow">¶</a></p>
</section>
</section>
<div id="acknowledgments">
<section id="section-3.3">
        <h3 id="name-acknowledgments-and-acknowl">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-acknowledgments-and-acknowl" class="section-name selfRef">Acknowledgments and Acknowledgment Requests</a>
        </h3>
<p id="section-3.3-1">A Babel speaker may request that a neighbour receiving a given packet
reply with an explicit acknowledgment within a given time.  While the use
of acknowledgment requests is optional, every Babel speaker <span class="bcp14">MUST</span> be able
to reply to such a request.<a href="#section-3.3-1" class="pilcrow">¶</a></p>
<p id="section-3.3-2">An acknowledgment <span class="bcp14">MUST</span> be sent to a unicast destination.  On the other
hand, acknowledgment requests may be sent to either unicast or multicast
destinations, in which case they request an acknowledgment from all of the
receiving nodes.<a href="#section-3.3-2" class="pilcrow">¶</a></p>
<p id="section-3.3-3">When to request acknowledgments is a matter of local policy; the
simplest strategy is to never request acknowledgments and to rely on
periodic updates to ensure that any reachable routes are eventually
propagated throughout the routing domain.  In order to improve convergence
speed and to reduce the amount of control traffic, acknowledgment requests
<span class="bcp14">MAY</span> be used in order to reliably send urgent updates (<a href="#triggered-updates" class="xref">Section 3.7.2</a>) and retractions (<a href="#hold-time" class="xref">Section 3.5.4</a>),
especially when the number of neighbours on a given interface is small.
Since Babel is designed to deal gracefully with packet loss on unreliable
media, sending all packets with acknowledgment requests is not necessary
and <span class="bcp14">NOT RECOMMENDED</span>, as the acknowledgments cause additional traffic and
may force additional Address Resolution Protocol (ARP) or Neighbour
Discovery (ND) exchanges.<a href="#section-3.3-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="neighbour-acquisition">
<section id="section-3.4">
        <h3 id="name-neighbour-acquisition">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-neighbour-acquisition" class="section-name selfRef">Neighbour Acquisition</a>
        </h3>
<p id="section-3.4-1">Neighbour acquisition is the process by which a Babel node discovers the
set of neighbours heard over each of its interfaces and ascertains
bidirectional reachability.  On unreliable media, neighbour acquisition
additionally provides some statistics that may be useful for link quality
computation.<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<p id="section-3.4-2">Before it can exchange routing information with a neighbour, a Babel
node <span class="bcp14">MUST</span> create an entry for that neighbour in the neighbour table.  When
to do that is implementation-specific; suitable strategies include
creating an entry when any Babel packet is received, or creating an entry
when a Hello TLV is parsed.  Similarly, in order to conserve system
resources, an implementation <span class="bcp14">SHOULD</span> discard an entry when it has been
unused for long enough; suitable strategies include dropping the neighbour
after a timeout, and dropping a neighbour when the associated Hello
histories become empty (see <a href="#cost-computation-examples" class="xref">Appendix A.2</a>).<a href="#section-3.4-2" class="pilcrow">¶</a></p>
<div id="reverse-reachability">
<section id="section-3.4.1">
          <h4 id="name-reverse-reachability-detect">
<a href="#section-3.4.1" class="section-number selfRef">3.4.1. </a><a href="#name-reverse-reachability-detect" class="section-name selfRef">Reverse Reachability Detection</a>
          </h4>
<p id="section-3.4.1-1">Every Babel node sends Hello TLVs to its neighbours, at regular or irregular intervals, to indicate that it
is alive.  Each Hello TLV carries an
increasing (modulo 2<sup>16</sup>) sequence number and an upper bound on the time
interval until the next Hello of the same type (see below).  If the time
interval is set to 0, then the Hello TLV does not establish a new promise:
the deadline carried by the previous Hello of the same type still applies
to the next Hello (if the most recent scheduled Hello of the right kind
was received at time t0 and carried interval i, then the previous promise
of sending another Hello before time t0 + i still holds).  We
say that a Hello is "scheduled" if it carries a nonzero interval, and
"unscheduled" otherwise.<a href="#section-3.4.1-1" class="pilcrow">¶</a></p>
<p id="section-3.4.1-2">There are two kinds of Hellos: Multicast Hellos, which use
a per-interface Hello counter (the Multicast Hello seqno), and Unicast
Hellos, which use a per-neighbour counter (the Unicast Hello seqno).
A Multicast Hello with a given seqno <span class="bcp14">MUST</span> be sent to all neighbours on
a given interface, either by sending it to a multicast address or by
sending it to one unicast address per neighbour (hence, the term
"Multicast Hello" is a slight misnomer).  A Unicast Hello carrying a given
seqno should normally be sent to just one neighbour (over unicast), since
the sequence numbers of different neighbours are not in general
synchronised.<a href="#section-3.4.1-2" class="pilcrow">¶</a></p>
<p id="section-3.4.1-3">Multicast Hellos sent over multicast can be used for neighbour
discovery; hence, a node <span class="bcp14">SHOULD</span> send periodic (scheduled) Multicast Hellos
unless neighbour discovery is performed by means outside of the Babel
protocol.  A node <span class="bcp14">MAY</span> send Unicast Hellos or unscheduled Hellos of either
kind for any reason, such as reducing the amount of multicast traffic or
improving reliability on link technologies with poor support for
link-layer multicast.<a href="#section-3.4.1-3" class="pilcrow">¶</a></p>
<p id="section-3.4.1-4">A node <span class="bcp14">MAY</span> send a scheduled Hello ahead of time.  A node <span class="bcp14">MAY</span> change its
scheduled Hello interval.  The Hello interval <span class="bcp14">MAY</span> be decreased at any
time; it <span class="bcp14">MAY</span> be increased immediately before sending a Hello TLV, but
<span class="bcp14">SHOULD NOT</span> be increased at other times.  (Equivalently, a node <span class="bcp14">SHOULD</span> send
a scheduled Hello immediately after increasing its Hello interval.)<a href="#section-3.4.1-4" class="pilcrow">¶</a></p>
<p id="section-3.4.1-5">How to deal with received Hello TLVs and what statistics to maintain
are considered local implementation matters; typically, a node will
maintain some sort of history of recently received Hellos.  An example of
a suitable algorithm is described in <a href="#hello-history" class="xref">Appendix A.1</a>.<a href="#section-3.4.1-5" class="pilcrow">¶</a></p>
<p id="section-3.4.1-6">After receiving a Hello, or determining that it has missed one, the node
recomputes the association's cost (<a href="#cost-computation" class="xref">Section 3.4.3</a>) and
runs the route selection procedure (<a href="#route-selection" class="xref">Section 3.6</a>).<a href="#section-3.4.1-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="bidirectional-reachability">
<section id="section-3.4.2">
          <h4 id="name-bidirectional-reachability-">
<a href="#section-3.4.2" class="section-number selfRef">3.4.2. </a><a href="#name-bidirectional-reachability-" class="section-name selfRef">Bidirectional Reachability Detection</a>
          </h4>
<p id="section-3.4.2-1">In order to establish bidirectional reachability, every node sends
periodic IHU ("I Heard You") TLVs to each of its neighbours.  Since IHUs
carry an explicit interval value, they <span class="bcp14">MAY</span> be sent less often than Hellos
in order to reduce the amount of routing traffic in dense networks; in
particular, they <span class="bcp14">SHOULD</span> be sent less often than Hellos over links with
little packet loss.  While IHUs are conceptually unicast, they <span class="bcp14">MAY</span> be
sent to a multicast address in order to avoid an ARP or Neighbour Discovery
exchange and to aggregate multiple IHUs into a single packet.<a href="#section-3.4.2-1" class="pilcrow">¶</a></p>
<p id="section-3.4.2-2">In addition to the periodic IHUs, a node <span class="bcp14">MAY</span>, at any time, send an
unscheduled IHU packet.  It <span class="bcp14">MAY</span> also, at any time, decrease its IHU
interval, and it <span class="bcp14">MAY</span> increase its IHU interval immediately before sending
an IHU, but <span class="bcp14">SHOULD NOT</span> increase it at any other time.  (Equivalently,
a node <span class="bcp14">SHOULD</span> send an extra IHU immediately after increasing its Hello
interval.)<a href="#section-3.4.2-2" class="pilcrow">¶</a></p>
<p id="section-3.4.2-3">Every IHU TLV contains two pieces of data: the link's rxcost (reception
cost) from the sender's perspective, used by the neighbour for computing
link costs (<a href="#cost-computation" class="xref">Section 3.4.3</a>), and the interval between
periodic IHU packets.  A node receiving an IHU sets the value of the
txcost (transmission cost) maintained in the neighbour table to the value
contained in the IHU, and resets the IHU timer associated to this
neighbour to a small multiple of the interval value received in the IHU
(see "IHU Hold time" in <a href="#parameters" class="xref">Appendix B</a> for suggested values).
When a neighbour's IHU timer expires, the neighbour's txcost is set to
infinity.<a href="#section-3.4.2-3" class="pilcrow">¶</a></p>
<p id="section-3.4.2-4">After updating a neighbour's txcost, the receiving node recomputes the
neighbour's cost (<a href="#cost-computation" class="xref">Section 3.4.3</a>) and runs the route
selection procedure (<a href="#route-selection" class="xref">Section 3.6</a>).<a href="#section-3.4.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="cost-computation">
<section id="section-3.4.3">
          <h4 id="name-cost-computation">
<a href="#section-3.4.3" class="section-number selfRef">3.4.3. </a><a href="#name-cost-computation" class="section-name selfRef">Cost Computation</a>
          </h4>
<p id="section-3.4.3-1">A neighbourship association's link cost is computed from the values
maintained in the neighbour table: the statistics kept in the neighbour
table about the reception of Hellos, and the txcost computed from received
IHU packets.<a href="#section-3.4.3-1" class="pilcrow">¶</a></p>
<p id="section-3.4.3-2">For every neighbour, a Babel node computes a value known as this
neighbour's rxcost.  This value is usually derived from the Hello history,
which may be combined with other data, such as statistics maintained by
the link layer.  The rxcost is sent to a neighbour in each IHU.<a href="#section-3.4.3-2" class="pilcrow">¶</a></p>
<p id="section-3.4.3-3">Since nodes do not necessarily send periodic Unicast Hellos but do
usually send periodic Multicast Hellos (<a href="#reverse-reachability" class="xref">Section 3.4.1</a>),
a node <span class="bcp14">SHOULD</span> use an algorithm that yields a finite rxcost when only
Multicast Hellos are received, unless interoperability with nodes that
only send Multicast Hellos is not required.<a href="#section-3.4.3-3" class="pilcrow">¶</a></p>
<p id="section-3.4.3-4">How the txcost and rxcost are combined in order to compute a link's
cost is a matter of local policy; as far as Babel's correctness is
concerned, only the following conditions <span class="bcp14">MUST</span> be satisfied:<a href="#section-3.4.3-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.4.3-5.1">the cost is strictly positive;<a href="#section-3.4.3-5.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.4.3-5.2">if no Hello TLVs of either kind were received recently, then the cost
  is infinite;<a href="#section-3.4.3-5.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.4.3-5.3">if the txcost is infinite, then the cost is infinite.<a href="#section-3.4.3-5.3" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.4.3-6">See <a href="#cost-computation-examples" class="xref">Appendix A.2</a> for <span class="bcp14">RECOMMENDED</span>
strategies for computing a link's cost.<a href="#section-3.4.3-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="route-maintenance">
<section id="section-3.5">
        <h3 id="name-routing-table-maintenance">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-routing-table-maintenance" class="section-name selfRef">Routing Table Maintenance</a>
        </h3>
<p id="section-3.5-1">Conceptually, a Babel update is a quintuple (prefix, plen, router-id,
seqno, metric), where (prefix, plen) is the prefix for which a route is
being advertised, router-id is the router-id of the router originating this
update, seqno is a nondecreasing (modulo 2<sup>16</sup>) integer that carries the
originating router seqno, and metric is the announced metric.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
<p id="section-3.5-2">Before being accepted, an update is checked against the feasibility
condition (<a href="#feasibility-condition" class="xref">Section 3.5.1</a>), which ensures that the
route does not create a routing loop.  If the feasibility condition is not
satisfied, the update is either ignored or prevents the route from being
selected, as described in <a href="#route-acquisition" class="xref">Section 3.5.3</a>.  If the
feasibility condition is satisfied, then the update cannot possibly cause
a routing loop.<a href="#section-3.5-2" class="pilcrow">¶</a></p>
<div id="feasibility-condition">
<section id="section-3.5.1">
          <h4 id="name-the-feasibility-condition">
<a href="#section-3.5.1" class="section-number selfRef">3.5.1. </a><a href="#name-the-feasibility-condition" class="section-name selfRef">The Feasibility Condition</a>
          </h4>
<p id="section-3.5.1-1">The feasibility condition is applied to all received updates.  The
feasibility condition compares the metric in the received update with the
metrics of the updates previously sent by the receiving node; updates that
fail the feasibility condition, and therefore have metrics large enough to
cause a routing loop, are either ignored or prevent the resulting route
from being selected.<a href="#section-3.5.1-1" class="pilcrow">¶</a></p>
<p id="section-3.5.1-2">A feasibility distance is a pair (seqno, metric), where seqno is an
integer modulo 2<sup>16</sup> and metric is a positive integer.  Feasibility
distances are compared lexicographically, with the first component
inverted: we say that a distance (seqno, metric) is strictly better than
a distance (seqno', metric'), written<a href="#section-3.5.1-2" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.5.1-3">(seqno, metric) &lt; (seqno', metric')<a href="#section-3.5.1-3" class="pilcrow">¶</a></p>
<p id="section-3.5.1-4">
when<a href="#section-3.5.1-4" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.5.1-5">seqno &gt; seqno' or (seqno = seqno' and metric &lt; metric')<a href="#section-3.5.1-5" class="pilcrow">¶</a></p>
<p id="section-3.5.1-6">
where sequence numbers are compared modulo 2<sup>16</sup>.<a href="#section-3.5.1-6" class="pilcrow">¶</a></p>
<p id="section-3.5.1-7">Given a source (prefix, plen, router-id), a node's feasibility distance
for this source is the minimum, according to the ordering defined above,
of the distances of all the finite updates ever sent by this particular
node for the prefix (prefix, plen) and the given router-id.  Feasibility
distances are maintained in the source table, the exact procedure is given
in <a href="#maintaining-fd" class="xref">Section 3.7.3</a>.<a href="#section-3.5.1-7" class="pilcrow">¶</a></p>
<p id="section-3.5.1-8">A received update is feasible when either it is a retraction (its metric
is FFFF hexadecimal), or the advertised distance is strictly better, in the
sense defined above, than the feasibility distance for the corresponding
source.  More precisely, a route advertisement carrying the quintuple
(prefix, plen, router-id, seqno, metric) is feasible if one of the
following conditions holds:<a href="#section-3.5.1-8" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.1-9.1">metric is infinite; or<a href="#section-3.5.1-9.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.5.1-9.2">no entry exists in the source table indexed by (prefix, plen, router-id);
  or<a href="#section-3.5.1-9.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.5.1-9.3">
              <p id="section-3.5.1-9.3.1">an entry (prefix, plen, router-id, seqno', metric') exists in the
    source table, and either<a href="#section-3.5.1-9.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.1-9.3.2.1">seqno' &lt; seqno or<a href="#section-3.5.1-9.3.2.1" class="pilcrow">¶</a>
</li>
                <li class="normal" id="section-3.5.1-9.3.2.2">seqno = seqno' and metric &lt; metric'.<a href="#section-3.5.1-9.3.2.2" class="pilcrow">¶</a>
</li>
              </ul>
</li>
          </ul>
<p id="section-3.5.1-10">Note that the feasibility condition considers the metric advertised by
the neighbour, not the route's metric; hence, a fluctuation in
a neighbour's cost cannot render a selected route unfeasible.  Note
further that retractions (updates with infinite metric) are always
feasible, since they cannot possibly cause a routing loop.<a href="#section-3.5.1-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="metric-computation">
<section id="section-3.5.2">
          <h4 id="name-metric-computation">
<a href="#section-3.5.2" class="section-number selfRef">3.5.2. </a><a href="#name-metric-computation" class="section-name selfRef">Metric Computation</a>
          </h4>
<p id="section-3.5.2-1">A route's metric is computed from the metric advertised by the neighbour
and the neighbour's link cost.  Just like cost computation, metric
computation is considered a local policy matter; as far as Babel is
concerned, the function M(c, m) used for computing a metric from
a locally computed link cost c and the metric m advertised by a neighbour
<span class="bcp14">MUST</span> only satisfy the following conditions:<a href="#section-3.5.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.2-2.1">if c is infinite, then M(c, m) is infinite;<a href="#section-3.5.2-2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.5.2-2.2">M is strictly monotonic: M(c, m) &gt; m.<a href="#section-3.5.2-2.2" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.5.2-3">
Additionally, the metric <span class="bcp14">SHOULD</span> satisfy the following condition:<a href="#section-3.5.2-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.2-4.1">M is left-distributive: if m &lt;= m', then M(c, m) &lt;= M(c, m').<a href="#section-3.5.2-4.1" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.5.2-5">
While strict monotonicity is essential to the integrity of the network
(persistent routing loops may arise if it is not satisfied), 
left-distributivity is not: if it is not satisfied, Babel will still converge
to a loop-free configuration, but might not reach a global optimum (in
fact, a global optimum may not even exist).<a href="#section-3.5.2-5" class="pilcrow">¶</a></p>
<p id="section-3.5.2-6">The conditions above are easily satisfied by using the additive metric,
i.e., by defining M(c, m) = c + m.  Since the additive
metric is useful with a large range of cost computation strategies, it is
the <span class="bcp14">RECOMMENDED</span> default.  See also <a href="#filtering" class="xref">Appendix C</a>, which
describes a technique that makes it possible to tweak the values of
individual metrics without running the risk of creating routing loops.<a href="#section-3.5.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="route-acquisition">
<section id="section-3.5.3">
          <h4 id="name-route-acquisition">
<a href="#section-3.5.3" class="section-number selfRef">3.5.3. </a><a href="#name-route-acquisition" class="section-name selfRef">Route Acquisition</a>
          </h4>
<p id="section-3.5.3-1">When a Babel node receives an update (prefix, plen, router-id, seqno,
metric) from a neighbour neigh, it checks whether it already has a route
table entry indexed by (prefix, plen, neigh).<a href="#section-3.5.3-1" class="pilcrow">¶</a></p>
<p id="section-3.5.3-2">If no such entry exists:<a href="#section-3.5.3-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.3-3.1">if the update is unfeasible, it <span class="bcp14">MAY</span> be ignored;<a href="#section-3.5.3-3.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.5.3-3.2">if the metric is infinite (the update is a retraction of a route we
  do not know about), the update is ignored;<a href="#section-3.5.3-3.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.5.3-3.3">otherwise, a new entry is created in the route table, indexed by (prefix,
  plen, neigh), with source equal to (prefix, plen, router-id), seqno
  equal to seqno, and an advertised metric equal to the metric carried by
  the update.<a href="#section-3.5.3-3.3" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.5.3-4">
If such an entry exists:<a href="#section-3.5.3-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.3-5.1">if the entry is currently selected, the update is unfeasible, and the
  router-id of the update is equal to the router-id of the entry, then the
  update <span class="bcp14">MAY</span> be ignored;<a href="#section-3.5.3-5.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.5.3-5.2">otherwise, the entry's sequence number, advertised metric, metric,
  and router-id are updated, and if the advertised metric is not infinite,
  the route's expiry timer is reset to a small multiple of the interval
  value included in the update (see "Route Expiry time" in
  <a href="#parameters" class="xref">Appendix B</a> for suggested values).  If the update is
  unfeasible, then the (now unfeasible) entry <span class="bcp14">MUST</span> be immediately
  unselected.  If the update caused the router-id of the entry to change,
  an update (possibly a retraction) <span class="bcp14">MUST</span> be sent in a timely manner as
  described in <a href="#triggered-updates" class="xref">Section 3.7.2</a>.<a href="#section-3.5.3-5.2" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.5.3-6">
Note that the route table may contain unfeasible routes, either because
they were created by an unfeasible update or due to a metric fluctuation.
Such routes are never selected, since they are not known to be loop-free.
Should all the feasible routes become unusable, however, the unfeasible
routes can be made feasible and therefore possible to select by sending
requests along them (see <a href="#sending-requests" class="xref">Section 3.8.2</a>).<a href="#section-3.5.3-6" class="pilcrow">¶</a></p>
<p id="section-3.5.3-7">When a route's expiry timer triggers, the behaviour depends on whether
the route's metric is finite.  If the metric is finite, it is set to
infinity and the expiry timer is reset.  If the metric is already infinite,
the route is flushed from the route table.<a href="#section-3.5.3-7" class="pilcrow">¶</a></p>
<p id="section-3.5.3-8">After the route table is updated, the route selection procedure
(<a href="#route-selection" class="xref">Section 3.6</a>) is run.<a href="#section-3.5.3-8" class="pilcrow">¶</a></p>
</section>
</div>
<div id="hold-time">
<section id="section-3.5.4">
          <h4 id="name-hold-time">
<a href="#section-3.5.4" class="section-number selfRef">3.5.4. </a><a href="#name-hold-time" class="section-name selfRef">Hold Time</a>
          </h4>
<p id="section-3.5.4-1">When a prefix P is retracted (because all routes are unfeasible or have
an infinite metric, whether due to the expiry timer or for other reasons),
and a shorter prefix P' that covers P is reachable, P' cannot in general
be used for routing packets destined to P without running the risk of
creating a routing loop (<a href="#overlapping-prefixes" class="xref">Section 2.8</a>).<a href="#section-3.5.4-1" class="pilcrow">¶</a></p>
<p id="section-3.5.4-2">To avoid this issue, whenever a prefix P is retracted, a route table
entry with infinite metric is maintained as described in <a href="#route-acquisition" class="xref">Section 3.5.3</a>.  
As long as this entry is maintained,
packets destined to an address within P <span class="bcp14">MUST NOT</span> be forwarded by following
a route for a shorter prefix.  This entry is removed as soon as
a finite-metric update for prefix P is received and the resulting route
selected.  If no such update is forthcoming, the infinite metric entry
<span class="bcp14">SHOULD</span> be maintained at least until it is guaranteed that no neighbour has
selected the current node as next hop for prefix P.  This can be achieved
by either:<a href="#section-3.5.4-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.4-3.1">waiting until the route's expiry timer has expired 
                (<a href="#route-acquisition" class="xref">Section 3.5.3</a>); or<a href="#section-3.5.4-3.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.5.4-3.2">sending a retraction with an acknowledgment request (<a href="#acknowledgments" class="xref">Section 3.3</a>) to every reachable neighbour that has not
explicitly retracted prefix P, and waiting for all acknowledgments.<a href="#section-3.5.4-3.2" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.5.4-4">
The former option is simpler and ensures that, at that point, any routes
for prefix P pointing at the current node have expired.  However, since
the expiry time can be as high as a few minutes, doing that prevents
automatic aggregation by creating spurious black-holes for aggregated
routes.  The latter option is <span class="bcp14">RECOMMENDED</span> as it dramatically reduces the
time for which a prefix is unreachable in the presence of aggregated
routes.<a href="#section-3.5.4-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="route-selection">
<section id="section-3.6">
        <h3 id="name-route-selection">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-route-selection" class="section-name selfRef">Route Selection</a>
        </h3>
<p id="section-3.6-1">Route selection is the process by which a single route for a given
prefix is selected to be used for forwarding packets and to be
re-advertised to a node's neighbours.<a href="#section-3.6-1" class="pilcrow">¶</a></p>
<p id="section-3.6-2">Babel is designed to allow flexible route selection policies.  As far as
  the algorithm's correctness is concerned, the route selection policy <span class="bcp14">MUST</span>
  only satisfy the following properties:<a href="#section-3.6-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.6-3.1">a route with infinite metric (a retracted route) is never selected;<a href="#section-3.6-3.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.6-3.2">an unfeasible route is never selected.<a href="#section-3.6-3.2" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.6-4">
Babel nodes using different route selection strategies will interoperate
and will not create routing loops as long as these two properties hold.<a href="#section-3.6-4" class="pilcrow">¶</a></p>
<p id="section-3.6-5">Route selection <span class="bcp14">MUST NOT</span> take seqnos into account: a route <span class="bcp14">MUST NOT</span> be
preferred just because it carries a higher (more recent) seqno.  Doing
otherwise would cause route oscillation while a new seqno propagates
across the network, and might create persistent black-holes if the metric
being used is not left-distributive (<a href="#metric-computation" class="xref">Section 3.5.2</a>).<a href="#section-3.6-5" class="pilcrow">¶</a></p>
<p id="section-3.6-6">The obvious route selection strategy is to pick, for every destination,
the feasible route with minimal metric.  When all metrics are stable, this
approach ensures convergence to a tree of shortest paths (assuming that
the metric is left-distributive, see <a href="#metric-computation" class="xref">Section 3.5.2</a>).
There are two reasons, however, why this strategy may lead to instability
in the presence of continuously varying metrics.  First, if two parallel
routes oscillate around a common value, then the smallest metric strategy
will keep switching between the two.  
   Second, the selection of a route increases congestion along it,
   which might increase packet loss, which in turn could
   cause its metric to increase; this kind of feedback loop
   is prone to causing persistent oscillations.<a href="#section-3.6-6" class="pilcrow">¶</a></p>
<p id="section-3.6-7">In order to limit these kinds of instabilities, a route selection
strategy <span class="bcp14">SHOULD</span> include some form of hysteresis, i.e., be sensitive to
a route's history: 
the strategy should only switch from the currently selected route
to a different route if the latter has been
consistently good for some period of time.  A <span class="bcp14">RECOMMENDED</span> hysteresis
algorithm is given in <a href="#route-selection-hysteresis" class="xref">Appendix A.3</a>.<a href="#section-3.6-7" class="pilcrow">¶</a></p>
<p id="section-3.6-8">After the route selection procedure is run, triggered updates
(<a href="#triggered-updates" class="xref">Section 3.7.2</a>) and requests
(<a href="#sending-requests" class="xref">Section 3.8.2</a>) are sent.<a href="#section-3.6-8" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sending-updates">
<section id="section-3.7">
        <h3 id="name-sending-updates">
<a href="#section-3.7" class="section-number selfRef">3.7. </a><a href="#name-sending-updates" class="section-name selfRef">Sending Updates</a>
        </h3>
<p id="section-3.7-1">A Babel speaker advertises to its neighbours its set of selected
routes.  Normally, this is done by sending one or more multicast packets
containing Update TLVs on all of its connected interfaces; however, on
link technologies where multicast is significantly more expensive than
unicast, a node <span class="bcp14">MAY</span> choose to send multiple copies of updates in unicast
packets, especially when the number of neighbours is small.<a href="#section-3.7-1" class="pilcrow">¶</a></p>
<p id="section-3.7-2">Additionally, in order to ensure that any black-holes are reliably
cleared in a timely manner, a Babel node may send retractions (updates
with an infinite metric) for any recently retracted prefixes.<a href="#section-3.7-2" class="pilcrow">¶</a></p>
<p id="section-3.7-3">If an update is for a route injected into the Babel domain by the local
node (e.g., it carries the address of a local interface, the prefix of
a directly attached network, or a prefix redistributed from a different
routing protocol), the router-id is set to the local node's router-id, the
metric is set to some arbitrary finite value (typically 0), and the seqno
is set to the local router's sequence number.<a href="#section-3.7-3" class="pilcrow">¶</a></p>
<p id="section-3.7-4">If an update is for a route learnt from another Babel speaker, the
router-id and sequence number are copied from the route table entry, and
the metric is computed as specified in <a href="#metric-computation" class="xref">Section 3.5.2</a>.<a href="#section-3.7-4" class="pilcrow">¶</a></p>
<div id="periodic-updates">
<section id="section-3.7.1">
          <h4 id="name-periodic-updates">
<a href="#section-3.7.1" class="section-number selfRef">3.7.1. </a><a href="#name-periodic-updates" class="section-name selfRef">Periodic Updates</a>
          </h4>
<p id="section-3.7.1-1">Every Babel speaker <span class="bcp14">MUST</span> advertise each of its selected routes on every
interface, at least once every Update interval.  Since Babel doesn't
suffer from routing loops (there is no "counting to infinity") and relies
heavily on triggered updates (<a href="#triggered-updates" class="xref">Section 3.7.2</a>), this
full dump only needs to happen infrequently (see <a href="#parameters" class="xref">Appendix B</a>
for suggested intervals).<a href="#section-3.7.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="triggered-updates">
<section id="section-3.7.2">
          <h4 id="name-triggered-updates">
<a href="#section-3.7.2" class="section-number selfRef">3.7.2. </a><a href="#name-triggered-updates" class="section-name selfRef">Triggered Updates</a>
          </h4>
<p id="section-3.7.2-1">In addition to periodic routing updates, a Babel speaker sends
unscheduled, or triggered, updates in order to inform its neighbours of
a significant change in the network topology.<a href="#section-3.7.2-1" class="pilcrow">¶</a></p>
<p id="section-3.7.2-2">A change of router-id for the selected route to a given prefix may be
indicative of a routing loop in formation; hence, whenever it changes the
selected router-id for a given destination, a node <span class="bcp14">MUST</span> send an update as
an urgent TLV (as defined in <a href="#transmission-reception" class="xref">Section 3.1</a>).
Additionally, it <span class="bcp14">SHOULD</span> make a reasonable attempt at ensuring that all
reachable neighbours receive this update.<a href="#section-3.7.2-2" class="pilcrow">¶</a></p>
<p id="section-3.7.2-3">There are two strategies for ensuring that.  If the number of neighbours
is small, then it is reasonable to send the update together with an
acknowledgment request; the update is resent until all neighbours have
acknowledged the packet, up to some number of times.  If the number of
neighbours is large, however, requesting acknowledgments from all of them
might cause a non-negligible amount of network traffic; in that case, it
may be preferable to simply repeat the update some reasonable number of
times (say, 3 for wireless and 2 for wired links).  The number of copies
<span class="bcp14">MUST NOT</span> exceed 5, and the copies <span class="bcp14">SHOULD</span> be separated by a small delay, as
described in <a href="#transmission-reception" class="xref">Section 3.1</a>.<a href="#section-3.7.2-3" class="pilcrow">¶</a></p>
<p id="section-3.7.2-4">A route retraction is somewhat less worrying: if the route retraction
doesn't reach all neighbours, a black-hole might be created, which, unlike
a routing loop, does not endanger the integrity of the network.  When a
route is retracted, a node <span class="bcp14">SHOULD</span> send a triggered update and <span class="bcp14">SHOULD</span> make
a reasonable attempt at ensuring that all neighbours receive this
retraction.<a href="#section-3.7.2-4" class="pilcrow">¶</a></p>
<p id="section-3.7.2-5">Finally, a node <span class="bcp14">MAY</span> send a triggered update when the metric for a given
prefix changes in a significant manner, due to a received update, because
a link's cost has changed or because a different next hop has been
selected.  A node <span class="bcp14">SHOULD NOT</span> send triggered updates for other reasons,
such as when there is a minor fluctuation in a route's metric, when the
selected next hop changes without inducing a significant change to the
route's metric, or to propagate a new sequence number (except to satisfy
a request, as specified in <a href="#requests" class="xref">Section 3.8</a>).<a href="#section-3.7.2-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="maintaining-fd">
<section id="section-3.7.3">
          <h4 id="name-maintaining-feasibility-dis">
<a href="#section-3.7.3" class="section-number selfRef">3.7.3. </a><a href="#name-maintaining-feasibility-dis" class="section-name selfRef">Maintaining Feasibility Distances</a>
          </h4>
<p id="section-3.7.3-1">Before sending an update (prefix, plen, router-id, seqno, metric) with
finite metric (i.e., not a route retraction), a Babel node updates the
feasibility distance maintained in the source table.  This is done as
follows.<a href="#section-3.7.3-1" class="pilcrow">¶</a></p>
<p id="section-3.7.3-2">If no entry indexed by (prefix, plen, router-id) exists in the source
table, then one is created with value (prefix, plen, router-id, seqno,
metric).<a href="#section-3.7.3-2" class="pilcrow">¶</a></p>
<p id="section-3.7.3-3">If an entry (prefix, plen, router-id, seqno', metric') exists, then it
is updated as follows:<a href="#section-3.7.3-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.7.3-4.1">if seqno &gt; seqno', then seqno' := seqno, metric' := metric;<a href="#section-3.7.3-4.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.7.3-4.2">if seqno = seqno' and metric' &gt; metric, then metric' := metric;<a href="#section-3.7.3-4.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.7.3-4.3">otherwise, nothing needs to be done.<a href="#section-3.7.3-4.3" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.7.3-5">The garbage-collection timer for the entry is then reset.  Note that
the feasibility distance is not updated and the garbage-collection timer
is not reset when a retraction (an update with infinite metric) is
sent.<a href="#section-3.7.3-5" class="pilcrow">¶</a></p>
<p id="section-3.7.3-6">When the garbage-collection timer expires, the entry is removed from
the source table.<a href="#section-3.7.3-6" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.7.4">
          <h4 id="name-split-horizon">
<a href="#section-3.7.4" class="section-number selfRef">3.7.4. </a><a href="#name-split-horizon" class="section-name selfRef">Split Horizon</a>
          </h4>
<p id="section-3.7.4-1">When running over a transitive, symmetric link technology, e.g.,
a point-to-point link or a wired LAN technology such as Ethernet, a Babel
node <span class="bcp14">SHOULD</span> use an optimisation known as split horizon.  When split
horizon is used on a given interface, a routing update for prefix P is not
sent on the particular interface over which the selected route towards
prefix P was learnt.<a href="#section-3.7.4-1" class="pilcrow">¶</a></p>
<p id="section-3.7.4-2">Split horizon <span class="bcp14">SHOULD NOT</span> be applied to an interface unless the interface
is known to be symmetric and transitive; in particular, split horizon is
not applicable to decentralised wireless link technologies
(e.g., IEEE 802.11 in ad hoc mode) when routing updates are sent over
multicast.<a href="#section-3.7.4-2" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="requests">
<section id="section-3.8">
        <h3 id="name-explicit-requests">
<a href="#section-3.8" class="section-number selfRef">3.8. </a><a href="#name-explicit-requests" class="section-name selfRef">Explicit Requests</a>
        </h3>
<p id="section-3.8-1">In normal operation, a node's route table is populated by the regular
and triggered updates sent by its neighbours.  Under some circumstances,
however, a node sends explicit requests in order to cause a resynchronisation
with the source after a mobility event or to prevent a route from
spuriously expiring.<a href="#section-3.8-1" class="pilcrow">¶</a></p>
<p id="section-3.8-2">The Babel protocol provides two kinds of explicit requests: route
requests, which simply request an update for a given prefix, and seqno
requests, which request an update for a given prefix with a specific
sequence number.  The former are never forwarded; the latter are forwarded
if they cannot be satisfied by the receiver.<a href="#section-3.8-2" class="pilcrow">¶</a></p>
<div id="handling-requests">
<section id="section-3.8.1">
          <h4 id="name-handling-requests">
<a href="#section-3.8.1" class="section-number selfRef">3.8.1. </a><a href="#name-handling-requests" class="section-name selfRef">Handling Requests</a>
          </h4>
<p id="section-3.8.1-1">Upon receiving a request, a node either forwards the request or sends an
update in reply to the request, as described in the following sections.  If
this causes an update to be sent, the update is either sent to a multicast
address on the interface on which the request was received, or to the
unicast address of the neighbour that sent the request.<a href="#section-3.8.1-1" class="pilcrow">¶</a></p>
<p id="section-3.8.1-2">The exact behaviour is different for route requests and seqno requests.<a href="#section-3.8.1-2" class="pilcrow">¶</a></p>
<div id="handling-route-requests">
<section id="section-3.8.1.1">
            <h5 id="name-route-requests">
<a href="#section-3.8.1.1" class="section-number selfRef">3.8.1.1. </a><a href="#name-route-requests" class="section-name selfRef">Route Requests</a>
            </h5>
<p id="section-3.8.1.1-1">When a node receives a route request for a given prefix, it checks its
route table for a selected route to this exact prefix.  If such a route
exists, it <span class="bcp14">MUST</span> send an update (over unicast or over multicast); if such
a route does not exist, it <span class="bcp14">MUST</span> send a retraction for that prefix.<a href="#section-3.8.1.1-1" class="pilcrow">¶</a></p>
<p id="section-3.8.1.1-2">When a node receives a wildcard route request, it <span class="bcp14">SHOULD</span> send a full
route table dump.  Full route dumps <span class="bcp14">SHOULD</span> be rate-limited, especially if
they are sent over multicast.<a href="#section-3.8.1.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="handling-seqno-requests">
<section id="section-3.8.1.2">
            <h5 id="name-seqno-requests">
<a href="#section-3.8.1.2" class="section-number selfRef">3.8.1.2. </a><a href="#name-seqno-requests" class="section-name selfRef">Seqno Requests</a>
            </h5>
<p id="section-3.8.1.2-1">When a node receives a seqno request for a given router-id and sequence
number, it checks whether its route table contains a selected entry for
that prefix.  If a selected route for the given prefix exists and has
finite metric, and either the router-ids are different or the router-ids
are equal and the entry's sequence number is no smaller (modulo 2<sup>16</sup>) than
the requested sequence number, the node <span class="bcp14">MUST</span> send an update for the given
prefix.  If the router-ids match, but the requested seqno is larger (modulo
2<sup>16</sup>) than the route entry's, the node compares the router-id against its
own router-id.  If the router-id is its own, then it increases its
sequence number by 1 (modulo 2<sup>16</sup>) and sends an update.  A node <span class="bcp14">MUST NOT</span>
increase its sequence number by more than 1 in reaction to a single seqno
request.<a href="#section-3.8.1.2-1" class="pilcrow">¶</a></p>
<p id="section-3.8.1.2-2">Otherwise, if the requested router-id is not its own, the received node
consults the Hop Count field of the request.  If the hop count is 2 or
more, and the node is advertising the prefix to its neighbours, the node
selects a neighbour to forward the request to as follows:<a href="#section-3.8.1.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.8.1.2-3.1">if the node has one or more feasible routes towards the requested prefix
with a next hop that is not the requesting node, then the node <span class="bcp14">MUST</span>
forward the request to the next hop of one such route;<a href="#section-3.8.1.2-3.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.8.1.2-3.2">otherwise, if the node has one or more (not feasible) routes to the
requested prefix with a next hop that is not the requesting node, then the
node <span class="bcp14">SHOULD</span> forward the request to the next hop of one such route.<a href="#section-3.8.1.2-3.2" class="pilcrow">¶</a>
</li>
            </ul>
<p id="section-3.8.1.2-4">
In order to actually forward the request, the node decrements the hop
count and sends the request in a unicast packet destined to the selected
neighbour.  The forwarded request <span class="bcp14">SHOULD</span> be sent as an urgent TLV (as
defined in <a href="#transmission-reception" class="xref">Section 3.1</a>).<a href="#section-3.8.1.2-4" class="pilcrow">¶</a></p>
<p id="section-3.8.1.2-5">A node <span class="bcp14">SHOULD</span> maintain a list of recently forwarded seqno requests and
forward the reply (an update with a seqno sufficiently large to satisfy
the request) as an urgent TLV (as defined in
<a href="#transmission-reception" class="xref">Section 3.1</a>).  A node <span class="bcp14">SHOULD</span> compare every
incoming seqno request against its list of recently forwarded seqno
requests and avoid forwarding the request if it is redundant (i.e., if the node has
recently sent a request with the same prefix, router-id, and a seqno that
is not smaller modulo 2<sup>16</sup>).<a href="#section-3.8.1.2-5" class="pilcrow">¶</a></p>
<p id="section-3.8.1.2-6">Since the request-forwarding mechanism does not necessarily obey the
feasibility condition, it may get caught in routing loops; hence, requests
carry a hop count to limit the time during which they remain in the network.
However, since requests are only ever forwarded as unicast packets, the
initial hop count need not be kept particularly low, and performing an
expanding horizon search is not necessary.  A single request <span class="bcp14">MUST NOT</span> be
duplicated: it <span class="bcp14">MUST NOT</span> be forwarded to a multicast address, and it <span class="bcp14">MUST NOT</span> be forwarded to multiple neighbours.  However, if a seqno request is
resent by its originator, the subsequent copies may be forwarded to
a different neighbour than the initial one.<a href="#section-3.8.1.2-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sending-requests">
<section id="section-3.8.2">
          <h4 id="name-sending-requests">
<a href="#section-3.8.2" class="section-number selfRef">3.8.2. </a><a href="#name-sending-requests" class="section-name selfRef">Sending Requests</a>
          </h4>
<p id="section-3.8.2-1">A Babel node <span class="bcp14">MAY</span> send a route or seqno request at any time to a
multicast or a unicast address; there is only one case when originating
requests is required (<a href="#avoiding-starvation" class="xref">Section 3.8.2.1</a>).<a href="#section-3.8.2-1" class="pilcrow">¶</a></p>
<div id="avoiding-starvation">
<section id="section-3.8.2.1">
            <h5 id="name-avoiding-starvation">
<a href="#section-3.8.2.1" class="section-number selfRef">3.8.2.1. </a><a href="#name-avoiding-starvation" class="section-name selfRef">Avoiding Starvation</a>
            </h5>
<p id="section-3.8.2.1-1">When a route is retracted or expires, a Babel node usually switches to
another feasible route for the same prefix.  It may be the case, however,
that no such routes are available.<a href="#section-3.8.2.1-1" class="pilcrow">¶</a></p>
<p id="section-3.8.2.1-2">A node that has lost all feasible routes to a given destination but
still has unexpired unfeasible routes to that destination <span class="bcp14">MUST</span> send
a seqno request; if it doesn't have any such routes, it <span class="bcp14">MAY</span> still send
a seqno request.  The router-id of the request is set to the router-id of
the route that it has just lost, and the requested seqno is the value
contained in the source table plus 1.  The request carries a hop count,
which is used as a last-resort mechanism to ensure that it eventually
vanishes from the network; it <span class="bcp14">MAY</span> be set to any value that is larger than
the diameter of the network (64 is a suitable default value).<a href="#section-3.8.2.1-2" class="pilcrow">¶</a></p>
<p id="section-3.8.2.1-3">If the node has any (unfeasible) routes to the requested destination,
then it <span class="bcp14">MUST</span> send the request to at least one of the next-hop neighbours
that advertised these routes, and <span class="bcp14">SHOULD</span> send it to all of them; in any
case, it <span class="bcp14">MAY</span> send the request to any other neighbours, whether they
advertise a route to the requested destination or not.  A simple
implementation strategy is therefore to unconditionally multicast the
request over all interfaces.<a href="#section-3.8.2.1-3" class="pilcrow">¶</a></p>
<p id="section-3.8.2.1-4">Similar requests will be sent by other nodes that are affected by the
route's loss.  If the network is still connected, and assuming no packet
loss, then at least one of these requests will be forwarded to the source,
resulting in a route being advertised with a new sequence number.  (Due to
duplicate suppression, only a small number of such requests are expected
to actually reach the source.)<a href="#section-3.8.2.1-4" class="pilcrow">¶</a></p>
<p id="section-3.8.2.1-5">In order to compensate for packet loss, a node <span class="bcp14">SHOULD</span> repeat such
a request a small number of times if no route becomes feasible within
a short time (see "Request timeout" in <a href="#parameters" class="xref">Appendix B</a> for
suggested values).  In the presence of heavy packet loss, however, all
such requests might be lost; in that case, the mechanism in the next
section will eventually ensure that a new seqno is received.<a href="#section-3.8.2.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="request-unfeasible">
<section id="section-3.8.2.2">
            <h5 id="name-dealing-with-unfeasible-upd">
<a href="#section-3.8.2.2" class="section-number selfRef">3.8.2.2. </a><a href="#name-dealing-with-unfeasible-upd" class="section-name selfRef">Dealing with Unfeasible Updates</a>
            </h5>
<p id="section-3.8.2.2-1">When a route's metric increases, a node might receive an unfeasible
update for a route that it has currently selected.  As specified in
<a href="#feasibility-condition" class="xref">Section 3.5.1</a>, the receiving node will either
ignore the update or unselect the route.<a href="#section-3.8.2.2-1" class="pilcrow">¶</a></p>
<p id="section-3.8.2.2-2">In order to keep routes from spuriously expiring because they have
become unfeasible, a node <span class="bcp14">SHOULD</span> send a unicast seqno request when it
receives an unfeasible update for a route that is currently selected.  The
requested sequence number is computed from the source table as in <a href="#avoiding-starvation" class="xref">Section 3.8.2.1</a>.<a href="#section-3.8.2.2-2" class="pilcrow">¶</a></p>
<p id="section-3.8.2.2-3">Additionally, since metric computation does not necessarily coincide
with the delay in propagating updates, a node might receive an unfeasible
update from a currently unselected neighbour that is preferable to the
currently selected route (e.g., because it has a much smaller metric); in
that case, the node <span class="bcp14">SHOULD</span> send a unicast seqno request to the neighbour
that advertised the preferable update.<a href="#section-3.8.2.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="request-expiring">
<section id="section-3.8.2.3">
            <h5 id="name-preventing-routes-from-expi">
<a href="#section-3.8.2.3" class="section-number selfRef">3.8.2.3. </a><a href="#name-preventing-routes-from-expi" class="section-name selfRef">Preventing Routes from Expiring</a>
            </h5>
<p id="section-3.8.2.3-1">In normal operation, a route's expiry timer never triggers: since
a route's hold time is computed from an explicit interval included in
Update TLVs, a new update (possibly a retraction) should arrive in time to
prevent a route from expiring.<a href="#section-3.8.2.3-1" class="pilcrow">¶</a></p>
<p id="section-3.8.2.3-2">In the presence of packet loss, however, it may be the case that no
update is successfully received for an extended period of time, causing
a route to expire.  In order to avoid such spurious expiry, shortly before
a selected route expires, a Babel node <span class="bcp14">SHOULD</span> send a unicast route request
to the neighbour that advertised this route; since nodes always send
either updates or retractions in response to non-wildcard route requests
(<a href="#handling-route-requests" class="xref">Section 3.8.1.1</a>), this will usually result in
the route being either refreshed or retracted.<a href="#section-3.8.2.3-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
</section>
<div id="protocol-encoding">
<section id="section-4">
      <h2 id="name-protocol-encoding">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-protocol-encoding" class="section-name selfRef">Protocol Encoding</a>
      </h2>
<p id="section-4-1">A Babel packet <span class="bcp14">MUST</span> be sent as the body of a UDP datagram, with
network-layer hop count set to 1, destined to a well-known multicast
address or to a unicast address, over IPv4 or IPv6; in the case of IPv6,
these addresses are link-local.  Both the source and destination UDP port
are set to a well-known port number.  A Babel packet <span class="bcp14">MUST</span> be silently
ignored unless its source address is either a link-local IPv6 address or
an IPv4 address belonging to the local network, and its source port is the
well-known Babel port.  It <span class="bcp14">MAY</span> be silently ignored if its destination
address is a global IPv6 address.<a href="#section-4-1" class="pilcrow">¶</a></p>
<p id="section-4-2">In order to minimise the number of packets being sent while avoiding
lower-layer fragmentation, a Babel node <span class="bcp14">SHOULD</span> maximise the size of the
packets it sends, up to the outgoing interface's MTU adjusted for
lower-layer headers (28 octets for UDP over IPv4, 48 octets for UDP over
IPv6).  It <span class="bcp14">MUST NOT</span> send packets larger than the attached interface's MTU
adjusted for lower-layer headers or 512 octets, whichever is larger, but
not exceeding 2<sup>16</sup> - 1 adjusted for lower-layer headers.  Every Babel
speaker <span class="bcp14">MUST</span> be able to receive packets that are as large as any attached
interface's MTU adjusted for lower-layer headers or 512 octets, whichever
is larger.  Babel packets <span class="bcp14">MUST NOT</span> be sent in IPv6 jumbograms
<span>[<a href="#RFC2675" class="xref">RFC2675</a>]</span>.<a href="#section-4-2" class="pilcrow">¶</a></p>
<section id="section-4.1">
        <h3 id="name-data-types">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-data-types" class="section-name selfRef">Data Types</a>
        </h3>
<section id="section-4.1.1">
          <h4 id="name-representation-of-integers">
<a href="#section-4.1.1" class="section-number selfRef">4.1.1. </a><a href="#name-representation-of-integers" class="section-name selfRef">Representation of Integers</a>
          </h4>
<p id="section-4.1.1-1">All multi-octet fields that represent integers are encoded with the
most significant octet first (in Big-Endian format <span>[<a href="#IEN137" class="xref">IEN137</a>]</span>,
also called network order).  The base protocol only carries unsigned
values; if an extension needs to carry signed values, it will need to
specify their encoding (e.g., two's complement).<a href="#section-4.1.1-1" class="pilcrow">¶</a></p>
</section>
<section id="section-4.1.2">
          <h4 id="name-interval">
<a href="#section-4.1.2" class="section-number selfRef">4.1.2. </a><a href="#name-interval" class="section-name selfRef">Interval</a>
          </h4>
<p id="section-4.1.2-1">Relative times are carried as 16-bit values specifying a number of
centiseconds (hundredths of a second).  This allows times up to roughly 11
minutes with a granularity of 10 ms, which should cover all reasonable
applications of Babel (see also <a href="#parameters" class="xref">Appendix B</a>).<a href="#section-4.1.2-1" class="pilcrow">¶</a></p>
</section>
<div id="router-id-def">
<section id="section-4.1.3">
          <h4 id="name-router-id">
<a href="#section-4.1.3" class="section-number selfRef">4.1.3. </a><a href="#name-router-id" class="section-name selfRef">Router-Id</a>
          </h4>
<p id="section-4.1.3-1">A router-id is an arbitrary 8-octet value.  A router-id <span class="bcp14">MUST NOT</span>
consist of either all binary zeroes (0000000000000000 hexadecimal) or all
binary ones (FFFFFFFFFFFFFFFF hexadecimal).<a href="#section-4.1.3-1" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.1.4">
          <h4 id="name-address">
<a href="#section-4.1.4" class="section-number selfRef">4.1.4. </a><a href="#name-address" class="section-name selfRef">Address</a>
          </h4>
<p id="section-4.1.4-1">Since the bulk of the protocol is taken by addresses, multiple ways of
encoding addresses are defined.  Additionally, within Update TLVs a common
subnet prefix may be omitted when multiple addresses are sent in a single
packet -- this is known as address compression (<a href="#update" class="xref">Section 4.6.9</a>).<a href="#section-4.1.4-1" class="pilcrow">¶</a></p>
<p id="section-4.1.4-2">Address encodings (AEs):<a href="#section-4.1.4-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.1.4-3">
            <dt id="section-4.1.4-3.1">AE 0:</dt>
            <dd style="margin-left: 5.0em" id="section-4.1.4-3.2">Wildcard address.  The value is 0 octets long.<a href="#section-4.1.4-3.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.1.4-3.3">AE 1:</dt>
            <dd style="margin-left: 5.0em" id="section-4.1.4-3.4">IPv4 address.  Compression is allowed.  4 octets or less.<a href="#section-4.1.4-3.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.1.4-3.5">AE 2:</dt>
            <dd style="margin-left: 5.0em" id="section-4.1.4-3.6">IPv6 address.  Compression is allowed.  16 octets or less.<a href="#section-4.1.4-3.6" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.1.4-3.7">AE 3:</dt>
            <dd style="margin-left: 5.0em" id="section-4.1.4-3.8">Link-local IPv6 address.  Compression is not allowed.  The value
is 8 octets long, a prefix of fe80::/64 is implied.<a href="#section-4.1.4-3.8" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.1.4-4">The address family associated with an address encoding is either IPv4 or
IPv6: it is undefined for AE 0, IPv4 for AE 1, and IPv6 for AEs 2 and
3.<a href="#section-4.1.4-4" class="pilcrow">¶</a></p>
</section>
<section id="section-4.1.5">
          <h4 id="name-prefixes">
<a href="#section-4.1.5" class="section-number selfRef">4.1.5. </a><a href="#name-prefixes" class="section-name selfRef">Prefixes</a>
          </h4>
<p id="section-4.1.5-1">A network prefix is encoded just like a network address, but it is
stored in the smallest number of octets that are enough to hold the
significant bits (up to the prefix length).<a href="#section-4.1.5-1" class="pilcrow">¶</a></p>
</section>
</section>
<div id="packet-format">
<section id="section-4.2">
        <h3 id="name-packet-format">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-packet-format" class="section-name selfRef">Packet Format</a>
        </h3>
<p id="section-4.2-1">A Babel packet consists of a 4-octet header, followed by a sequence of
TLVs (the packet body), optionally followed by a second sequence of TLVs
(the packet trailer).  The format is designed to be extensible; see
<a href="#extensions" class="xref">Appendix D</a> for extensibility considerations.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.2-2">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Magic     |    Version    |        Body length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          Packet Body...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|         Packet Trailer...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.2-2" class="pilcrow">¶</a>
</div>
<p id="section-4.2-3">Fields:<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.2-4">
          <dt id="section-4.2-4.1">Magic</dt>
          <dd style="margin-left: 5.0em" id="section-4.2-4.2">The arbitrary but carefully chosen value 42 (decimal);
packets with a first octet different from 42 <span class="bcp14">MUST</span> be silently ignored.<a href="#section-4.2-4.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.2-4.3">Version</dt>
          <dd style="margin-left: 5.0em" id="section-4.2-4.4">This document specifies version 2 of the Babel
  protocol.  Packets with a second octet different from 2 <span class="bcp14">MUST</span> be silently
  ignored.<a href="#section-4.2-4.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.2-4.5">Body length</dt>
          <dd style="margin-left: 5.0em" id="section-4.2-4.6">The length in octets of the body following the
packet header (excluding the Magic, Version, and Body length fields, and
excluding the packet trailer).<a href="#section-4.2-4.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.2-4.7">Packet Body</dt>
          <dd style="margin-left: 5.0em" id="section-4.2-4.8">The packet body; a sequence of TLVs.<a href="#section-4.2-4.8" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.2-4.9">Packet Trailer</dt>
          <dd style="margin-left: 5.0em" id="section-4.2-4.10">The packet trailer; another sequence of TLVs.<a href="#section-4.2-4.10" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-4.2-5">The packet body and trailer are both sequences of TLVs.  The packet
body is the normal place to store TLVs; the packet trailer only contains
specialised TLVs that do not need to be protected by cryptographic
security mechanisms.  When parsing the trailer, the receiver <span class="bcp14">MUST</span> ignore
any TLV unless its definition explicitly states that it is allowed to
appear there.  Among the TLVs defined in this document, only Pad1 and PadN
are allowed in the trailer; since these TLVs are ignored in any case, an
implementation <span class="bcp14">MAY</span> silently ignore the packet trailer without even parsing
it, unless it implements at least one protocol extension that defines TLVs
that are allowed to appear in the trailer.<a href="#section-4.2-5" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.3">
        <h3 id="name-tlv-format">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-tlv-format" class="section-name selfRef">TLV Format</a>
        </h3>
<p id="section-4.3-1">With the exception of Pad1, all TLVs have the following structure:<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.3-2">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type      |    Length     |     Payload...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.3-2" class="pilcrow">¶</a>
</div>
<p id="section-4.3-3">Fields:<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.3-4">
          <dt id="section-4.3-4.1">Type</dt>
          <dd style="margin-left: 5.0em" id="section-4.3-4.2">The type of the TLV.<a href="#section-4.3-4.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.3-4.3">Length</dt>
          <dd style="margin-left: 5.0em" id="section-4.3-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.3-4.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.3-4.5">Payload</dt>
          <dd style="margin-left: 5.0em" id="section-4.3-4.6">The TLV payload, which consists of a body and, for
selected TLV types, an optional list of sub-TLVs.<a href="#section-4.3-4.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-4.3-5">TLVs with an unknown type value <span class="bcp14">MUST</span> be silently ignored.<a href="#section-4.3-5" class="pilcrow">¶</a></p>
</section>
<div id="sub-tlv-format">
<section id="section-4.4">
        <h3 id="name-sub-tlv-format">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-sub-tlv-format" class="section-name selfRef">Sub-TLV Format</a>
        </h3>
<p id="section-4.4-1">Every TLV carries an explicit length in its header; however, most TLVs
are self-terminating, in the sense that it is possible to determine the
length of the body without reference to the explicit Length field.  If
a TLV has a self-terminating format, then the space between the natural
size of the TLV and the size announced in the Length field may be used to
store a sequence of sub-TLVs.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<p id="section-4.4-2">Sub-TLVs have the same structure as TLVs.  With the exception of Pad1,
all TLVs have the following structure:<a href="#section-4.4-2" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.4-3">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type      |    Length     |     Body...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.4-3" class="pilcrow">¶</a>
</div>
<p id="section-4.4-4">Fields:<a href="#section-4.4-4" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.4-5">
          <dt id="section-4.4-5.1">Type</dt>
          <dd style="margin-left: 5.0em" id="section-4.4-5.2">The type of the sub-TLV.<a href="#section-4.4-5.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.4-5.3">Length</dt>
          <dd style="margin-left: 5.0em" id="section-4.4-5.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.4-5.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.4-5.5">Body</dt>
          <dd style="margin-left: 5.0em" id="section-4.4-5.6">The sub-TLV body, the interpretation of which depends
on both the type of the sub-TLV and the type of the TLV within which it is
embedded.<a href="#section-4.4-5.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-4.4-6">The most significant bit of the sub-TLV type (the bit with value 80
hexadecimal), is called the mandatory bit; in other words, sub-TLV types
128 through 255 have the mandatory bit set.  This bit indicates how to
handle unknown sub-TLVs.  If the mandatory bit is not set, then an unknown
sub-TLV <span class="bcp14">MUST</span> be silently ignored, and the rest of the TLV is processed
normally.  If the mandatory bit is set, then the whole enclosing TLV <span class="bcp14">MUST</span>
be silently ignored (except for updating the parser state by a Router-Id,
Next Hop, or Update TLV, as described in the next section).<a href="#section-4.4-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="parser-state">
<section id="section-4.5">
        <h3 id="name-parser-state-and-encoding-o">
<a href="#section-4.5" class="section-number selfRef">4.5. </a><a href="#name-parser-state-and-encoding-o" class="section-name selfRef">Parser State and Encoding of Updates</a>
        </h3>
<p id="section-4.5-1">In a large network, the bulk of Babel traffic consists of route
updates; hence, some care has been given to encoding them efficiently.
The data conceptually contained in an update (<a href="#route-maintenance" class="xref">Section 3.5</a>)
is split into three pieces:<a href="#section-4.5-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.5-2.1">the prefix, seqno, and metric are contained in the Update TLV itself
(<a href="#update" class="xref">Section 4.6.9</a>);<a href="#section-4.5-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.5-2.2">the router-id is taken from the Router-Id TLV that precedes the Update TLV
and may be shared among multiple Update TLVs (<a href="#router-id" class="xref">Section 4.6.7</a>);<a href="#section-4.5-2.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.5-2.3">the next hop is taken either from the source address of the
network-layer packet that contains the Babel packet or from an explicit
Next Hop TLV (<a href="#next-hop" class="xref">Section 4.6.8</a>).<a href="#section-4.5-2.3" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-4.5-3">
In addition to the above, an Update TLV can omit a prefix of the prefix
being announced, which is then extracted from the preceding Update TLV
in the same address family (IPv4 or IPv6).  Finally, as a special
optimisation for the case when a router-id coincides with the interface-id
part of an IPv6 address, the Router-Id TLV itself may be omitted, and the
router-id is derived from the low-order bits of the advertised prefix
(<a href="#update" class="xref">Section 4.6.9</a>).<a href="#section-4.5-3" class="pilcrow">¶</a></p>
<p id="section-4.5-4">In order to implement these compression techniques, Babel uses
a stateful parser: a TLV may refer to data from a previous TLV.  The
parser state consists of the following pieces of data:<a href="#section-4.5-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.5-5.1">for each address encoding that allows compression, the current
  default prefix: this is undefined at the start of the packet and is
  updated by each Update TLV with the Prefix flag set
  (<a href="#update" class="xref">Section 4.6.9</a>);<a href="#section-4.5-5.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.5-5.2">for each address family (IPv4 or IPv6), the current next hop: this is
  the source address of the enclosing packet for the matching address
  family at the start of a packet, and it is updated by each Next Hop TLV
  (<a href="#next-hop" class="xref">Section 4.6.8</a>);<a href="#section-4.5-5.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.5-5.3">the current router-id: this is undefined at the start of the packet,
  and it is updated by each Router-Id TLV (<a href="#router-id" class="xref">Section 4.6.7</a>)
  and by each Update TLV with Router-Id flag set.<a href="#section-4.5-5.3" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-4.5-6">Since the parser state must be identical across implementations, it is
updated before checking for mandatory sub-TLVs: parsing a TLV <span class="bcp14">MUST</span> update
the parser state even if the TLV is otherwise ignored due to an unknown
mandatory sub-TLV or for any other reason.<a href="#section-4.5-6" class="pilcrow">¶</a></p>
<p id="section-4.5-7">None of the TLVs that modify the parser state are allowed in the packet
trailer; hence, an implementation may choose to use a dedicated stateless
parser to parse the packet trailer.<a href="#section-4.5-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="tlv-details">
<section id="section-4.6">
        <h3 id="name-details-of-specific-tlvs">
<a href="#section-4.6" class="section-number selfRef">4.6. </a><a href="#name-details-of-specific-tlvs" class="section-name selfRef">Details of Specific TLVs</a>
        </h3>
<section id="section-4.6.1">
          <h4 id="name-pad1">
<a href="#section-4.6.1" class="section-number selfRef">4.6.1. </a><a href="#name-pad1" class="section-name selfRef">Pad1</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.6.1-1">
<pre>
 0
 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|   Type = 0    |
+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.1-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.1-2">Fields:<a href="#section-4.6.1-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.1-3">
            <dt id="section-4.6.1-3.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.1-3.2">Set to 0 to indicate a Pad1 TLV.<a href="#section-4.6.1-3.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.1-4">This TLV is silently ignored on reception.  It is allowed in the packet
trailer.<a href="#section-4.6.1-4" class="pilcrow">¶</a></p>
</section>
<section id="section-4.6.2">
          <h4 id="name-padn">
<a href="#section-4.6.2" class="section-number selfRef">4.6.2. </a><a href="#name-padn" class="section-name selfRef">PadN</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.6.2-1">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type = 1   |    Length     |      MBZ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.6.2-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.2-2">Fields:<a href="#section-4.6.2-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.2-3">
            <dt id="section-4.6.2-3.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.2-3.2">Set to 1 to indicate a PadN TLV.<a href="#section-4.6.2-3.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.2-3.3">Length</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.2-3.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.2-3.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.2-3.5">MBZ</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.2-3.6">Must be zero, set to 0 on transmission.<a href="#section-4.6.2-3.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.2-4">This TLV is silently ignored on reception.  It is allowed in the packet
trailer.<a href="#section-4.6.2-4" class="pilcrow">¶</a></p>
</section>
<section id="section-4.6.3">
          <h4 id="name-acknowledgment-request">
<a href="#section-4.6.3" class="section-number selfRef">4.6.3. </a><a href="#name-acknowledgment-request" class="section-name selfRef">Acknowledgment Request</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.6.3-1">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type = 2   |    Length     |          Reserved             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|             Opaque            |          Interval             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.3-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.3-2">This TLV requests that the receiver send an Acknowledgment TLV
within the number of centiseconds specified by the Interval field.<a href="#section-4.6.3-2" class="pilcrow">¶</a></p>
<p id="section-4.6.3-3">Fields:<a href="#section-4.6.3-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.3-4">
            <dt id="section-4.6.3-4.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.3-4.2">Set to 2 to indicate an Acknowledgment Request TLV.<a href="#section-4.6.3-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.3-4.3">Length</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.3-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.3-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.3-4.5">Reserved</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.3-4.6">Sent as 0 and <span class="bcp14">MUST</span> be ignored on
  reception.<a href="#section-4.6.3-4.6" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.3-4.7">Opaque</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.3-4.8">An arbitrary value that will be echoed in the
receiver's Acknowledgment TLV.<a href="#section-4.6.3-4.8" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.3-4.9">Interval</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.3-4.10">A time interval in centiseconds after which the
sender will assume that this packet has been lost.  This <span class="bcp14">MUST NOT</span> be 0.
The receiver <span class="bcp14">MUST</span> send an Acknowledgment TLV before this time has elapsed
(with a margin allowing for propagation time).<a href="#section-4.6.3-4.10" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.3-5">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.3-5" class="pilcrow">¶</a></p>
</section>
<div id="ack">
<section id="section-4.6.4">
          <h4 id="name-acknowledgment">
<a href="#section-4.6.4" class="section-number selfRef">4.6.4. </a><a href="#name-acknowledgment" class="section-name selfRef">Acknowledgment</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.6.4-1">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type = 3   |    Length     |           Opaque              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.4-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.4-2">This TLV is sent by a node upon receiving an Acknowledgment Request TLV.<a href="#section-4.6.4-2" class="pilcrow">¶</a></p>
<p id="section-4.6.4-3">Fields:<a href="#section-4.6.4-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.4-4">
            <dt id="section-4.6.4-4.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.4-4.2">Set to 3 to indicate an Acknowledgment TLV.<a href="#section-4.6.4-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.4-4.3">Length</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.4-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.4-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.4-4.5">Opaque</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.4-4.6">Set to the Opaque value of the Acknowledgment Request
that prompted this Acknowledgment.<a href="#section-4.6.4-4.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.4-5">Since Opaque values are not globally unique, this TLV <span class="bcp14">MUST</span> be sent to
a unicast address.<a href="#section-4.6.4-5" class="pilcrow">¶</a></p>
<p id="section-4.6.4-6">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.4-6" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.6.5">
          <h4 id="name-hello">
<a href="#section-4.6.5" class="section-number selfRef">4.6.5. </a><a href="#name-hello" class="section-name selfRef">Hello</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.6.5-1">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type = 4   |    Length     |            Flags              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            Seqno              |          Interval             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.5-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.5-2">This TLV is used for neighbour discovery and for determining a
neighbour's reception cost.<a href="#section-4.6.5-2" class="pilcrow">¶</a></p>
<p id="section-4.6.5-3">Fields:<a href="#section-4.6.5-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.5-4">
            <dt id="section-4.6.5-4.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.5-4.2">Set to 4 to indicate a Hello TLV.<a href="#section-4.6.5-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.5-4.3">Length</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.5-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.5-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.5-4.5">Flags</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.5-4.6">The individual bits of this field specify special
handling of this TLV (see below).<a href="#section-4.6.5-4.6" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.5-4.7">Seqno</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.5-4.8">If the Unicast flag is set, this is the value of the
sending node's outgoing Unicast Hello seqno for this neighbour.  Otherwise,
it is the sending node's outgoing Multicast Hello seqno for this interface.<a href="#section-4.6.5-4.8" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.5-4.9">Interval</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.5-4.10">If nonzero, this is an upper bound, expressed in
centiseconds, on the time after which the sending node will send a new
scheduled Hello TLV with the same setting of the Unicast flag.  If this is
0, then this Hello represents an unscheduled Hello and doesn't carry any
new information about times at which Hellos are sent.<a href="#section-4.6.5-4.10" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.5-5">The Flags field is interpreted as follows:<a href="#section-4.6.5-5" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.6.5-6">
<pre>
 0                   1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|X|X|X|X|X|X|X|X|X|X|X|X|X|X|X|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.5-6" class="pilcrow">¶</a>
</div>
<span class="break"></span><dl class="dlParallel" id="section-4.6.5-7">
            <dt id="section-4.6.5-7.1">U (Unicast) flag (8000 hexadecimal):</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.5-7.2">if set, then this Hello
represents a Unicast Hello, otherwise it represents a Multicast Hello;<a href="#section-4.6.5-7.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.5-7.3">X:</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.5-7.4">all other bits <span class="bcp14">MUST</span> be sent as 0 and silently ignored on reception.<a href="#section-4.6.5-7.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.5-8">Every time a Hello is sent, the corresponding seqno counter <span class="bcp14">MUST</span> be
incremented.  Since there is a single seqno counter for all the Multicast
Hellos sent by a given node over a given interface, if the Unicast flag is
not set, this TLV <span class="bcp14">MUST</span> be sent to all neighbours on this link, which can be
achieved by sending to a multicast destination or by sending multiple
packets to the unicast addresses of all reachable neighbours.  Conversely,
if the Unicast flag is set, this TLV <span class="bcp14">MUST</span> be sent to a single neighbour,
which can achieved by sending to a unicast destination.  In order to avoid
large discontinuities in link quality, multiple Hello TLVs <span class="bcp14">SHOULD NOT</span> be
sent in the same packet.<a href="#section-4.6.5-8" class="pilcrow">¶</a></p>
<p id="section-4.6.5-9">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.5-9" class="pilcrow">¶</a></p>
</section>
<section id="section-4.6.6">
          <h4 id="name-ihu">
<a href="#section-4.6.6" class="section-number selfRef">4.6.6. </a><a href="#name-ihu" class="section-name selfRef">IHU</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.6.6-1">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type = 5   |    Length     |       AE      |    Reserved   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            Rxcost             |          Interval             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       Address...
+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.6.6-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.6-2">An IHU ("I Heard You") TLV is used for confirming bidirectional
reachability and carrying a link's transmission cost.<a href="#section-4.6.6-2" class="pilcrow">¶</a></p>
<p id="section-4.6.6-3">Fields:<a href="#section-4.6.6-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.6-4">
            <dt id="section-4.6.6-4.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.6-4.2">Set to 5 to indicate an IHU TLV.<a href="#section-4.6.6-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.6-4.3">Length</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.6-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.6-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.6-4.5">AE</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.6-4.6">The encoding of the Address field.  This should be 1 or 3
in most cases.  As an optimisation, it <span class="bcp14">MAY</span> be 0 if the TLV is
sent to a unicast address, if the association is over a point-to-point
link, or when bidirectional reachability is ascertained by means outside of
the Babel protocol.<a href="#section-4.6.6-4.6" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.6-4.7">Reserved</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.6-4.8">Sent as 0 and <span class="bcp14">MUST</span> be ignored on reception.<a href="#section-4.6.6-4.8" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.6-4.9">Rxcost</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.6-4.10">The rxcost according to the sending node of the
interface whose address is specified in the Address field.  The value FFFF
hexadecimal (infinity) indicates that this interface is unreachable.<a href="#section-4.6.6-4.10" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.6-4.11">Interval</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.6-4.12">An upper bound, expressed in centiseconds, on the
time after which the sending node will send a new IHU; this <span class="bcp14">MUST NOT</span> be 0.
The receiving node will use this value in order to compute a hold time for
this symmetric association.<a href="#section-4.6.6-4.12" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.6-4.13">Address</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.6-4.14">The address of the destination node, in the format
specified by the AE field.  Address compression is not allowed.<a href="#section-4.6.6-4.14" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.6-5">Conceptually, an IHU is destined to a single neighbour.  However, IHU
TLVs contain an explicit destination address, and <span class="bcp14">MAY</span> be sent to
a multicast address, as this allows aggregation of IHUs destined to
distinct neighbours into a single packet and avoids the need for an ARP or
Neighbour Discovery exchange when a neighbour is not being used for data
traffic.<a href="#section-4.6.6-5" class="pilcrow">¶</a></p>
<p id="section-4.6.6-6">IHU TLVs with an unknown value in the AE field <span class="bcp14">MUST</span> be silently
ignored.<a href="#section-4.6.6-6" class="pilcrow">¶</a></p>
<p id="section-4.6.6-7">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.6-7" class="pilcrow">¶</a></p>
</section>
<div id="router-id">
<section id="section-4.6.7">
          <h4 id="name-router-id-2">
<a href="#section-4.6.7" class="section-number selfRef">4.6.7. </a><a href="#name-router-id-2" class="section-name selfRef">Router-Id</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.6.7-1">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type = 6   |    Length     |          Reserved             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+                           Router-Id                           +
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.7-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.7-2">A Router-Id TLV establishes a router-id that is implied by subsequent
Update TLVs, as described in <a href="#parser-state" class="xref">Section 4.5</a>.  This TLV sets
the router-id even if it is otherwise ignored due to an unknown mandatory
sub-TLV.<a href="#section-4.6.7-2" class="pilcrow">¶</a></p>
<p id="section-4.6.7-3">Fields:<a href="#section-4.6.7-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.7-4">
            <dt id="section-4.6.7-4.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.7-4.2">Set to 6 to indicate a Router-Id TLV.<a href="#section-4.6.7-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.7-4.3">Length</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.7-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.7-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.7-4.5">Reserved</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.7-4.6">Sent as 0 and <span class="bcp14">MUST</span> be ignored on reception.<a href="#section-4.6.7-4.6" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.7-4.7">Router-Id</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.7-4.8">The router-id for routes advertised in subsequent
Update TLVs.  This <span class="bcp14">MUST NOT</span> consist of all zeroes or all ones.<a href="#section-4.6.7-4.8" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.7-5">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.7-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="next-hop">
<section id="section-4.6.8">
          <h4 id="name-next-hop">
<a href="#section-4.6.8" class="section-number selfRef">4.6.8. </a><a href="#name-next-hop" class="section-name selfRef">Next Hop</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.6.8-1">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type = 7   |    Length     |      AE       |   Reserved    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       Next hop...
+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.6.8-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.8-2">A Next Hop TLV establishes a next-hop address for a given address
family (IPv4 or IPv6) that is implied in subsequent Update TLVs, as
described in <a href="#parser-state" class="xref">Section 4.5</a>.  This TLV sets up the next hop
for subsequent Update TLVs even if it is otherwise ignored due to an
unknown mandatory sub-TLV.<a href="#section-4.6.8-2" class="pilcrow">¶</a></p>
<p id="section-4.6.8-3">Fields:<a href="#section-4.6.8-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.8-4">
            <dt id="section-4.6.8-4.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.8-4.2">Set to 7 to indicate a Next Hop TLV.<a href="#section-4.6.8-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.8-4.3">Length</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.8-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.8-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.8-4.5">AE</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.8-4.6">The encoding of the Address field.  This <span class="bcp14">SHOULD</span> be
1 (IPv4) or 3 (link-local IPv6), and <span class="bcp14">MUST NOT</span> be 0.<a href="#section-4.6.8-4.6" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.8-4.7">Reserved</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.8-4.8">Sent as 0 and <span class="bcp14">MUST</span> be ignored on reception.<a href="#section-4.6.8-4.8" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.8-4.9">Next hop</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.8-4.10">The next-hop address advertised by subsequent Update
TLVs for this address family.<a href="#section-4.6.8-4.10" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.8-5">When the address family matches the network-layer protocol over which this
packet is transported, a Next Hop TLV is not needed: in the absence
of a Next Hop TLV in a given address family, the next-hop address is taken
to be the source address of the packet.<a href="#section-4.6.8-5" class="pilcrow">¶</a></p>
<p id="section-4.6.8-6">Next Hop TLVs with an unknown value for the AE field <span class="bcp14">MUST</span> be silently
ignored.<a href="#section-4.6.8-6" class="pilcrow">¶</a></p>
<p id="section-4.6.8-7">This TLV is self-terminating, and allows sub-TLVs.<a href="#section-4.6.8-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="update">
<section id="section-4.6.9">
          <h4 id="name-update">
<a href="#section-4.6.9" class="section-number selfRef">4.6.9. </a><a href="#name-update" class="section-name selfRef">Update</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.6.9-1">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type = 8   |    Length     |       AE      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Plen      |    Omitted    |            Interval           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|             Seqno             |            Metric             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Prefix...
+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.6.9-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.9-2">An Update TLV advertises or retracts a route.  As an optimisation, it
can optionally have the side effect of establishing a new implied
router-id and a new default prefix, as described in
<a href="#parser-state" class="xref">Section 4.5</a>.<a href="#section-4.6.9-2" class="pilcrow">¶</a></p>
<p id="section-4.6.9-3">Fields:<a href="#section-4.6.9-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.9-4">
            <dt id="section-4.6.9-4.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-4.2">Set to 8 to indicate an Update TLV.<a href="#section-4.6.9-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.9-4.3">Length</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.9-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.9-4.5">AE</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-4.6">The encoding of the Prefix field.<a href="#section-4.6.9-4.6" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.9-4.7">Flags</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-4.8">The individual bits of this field specify special
handling of this TLV (see below).<a href="#section-4.6.9-4.8" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.9-4.9">Plen</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-4.10">The length in bits of the advertised prefix.  If AE is
3 (link-local IPv6), the Omitted field <span class="bcp14">MUST</span> be 0.<a href="#section-4.6.9-4.10" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.9-4.11">Omitted</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-4.12">The number of octets that have been omitted at
the beginning of the advertised prefix and that should be taken from a
preceding Update TLV in the same address family with the Prefix flag set.<a href="#section-4.6.9-4.12" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.9-4.13">Interval</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-4.14">An upper bound, expressed in centiseconds, on the
time after which the sending node will send a new update for this prefix.
This <span class="bcp14">MUST NOT</span> be 0.  The receiving node will use this value to compute
a hold time for the route table entry.  The value FFFF hexadecimal
(infinity) expresses that this announcement will not be repeated unless
a request is received (<a href="#request-expiring" class="xref">Section 3.8.2.3</a>).<a href="#section-4.6.9-4.14" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.9-4.15">Seqno</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-4.16">The originator's sequence number for this update.<a href="#section-4.6.9-4.16" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.9-4.17">Metric</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-4.18">The sender's metric for this route.  The value FFFF
hexadecimal (infinity) means that this is a route retraction.<a href="#section-4.6.9-4.18" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.9-4.19">Prefix</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-4.20">The prefix being advertised.  This field's size is
(Plen/8 - Omitted) rounded upwards.<a href="#section-4.6.9-4.20" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.9-5">The Flags field is interpreted as follows:<a href="#section-4.6.9-5" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.6.9-6">
<pre>
 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|P|R|X|X|X|X|X|X|
+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.9-6" class="pilcrow">¶</a>
</div>
<span class="break"></span><dl class="dlParallel" id="section-4.6.9-7">
            <dt id="section-4.6.9-7.1">P (Prefix) flag (80 hexadecimal):</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-7.2">if set, then this Update
TLV establishes a new default prefix for subsequent Update TLVs with a matching
address encoding within the same packet, even if this TLV is otherwise
ignored due to an unknown mandatory sub-TLV;<a href="#section-4.6.9-7.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.9-7.3">R (Router-Id) flag (40 hexadecimal):</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-7.4">
              <p id="section-4.6.9-7.4.1">if set, then this TLV establishes
a new default router-id for this TLV and subsequent Update TLVs in the
same packet, even if this TLV is otherwise ignored due to an unknown
mandatory sub-TLV.  This router-id is computed from the first address of
the advertised prefix as follows:<a href="#section-4.6.9-7.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.6.9-7.4.2.1">if the length of the address is 8 octets or more, then the new
  router-id is taken from the 8 last octets of the address;<a href="#section-4.6.9-7.4.2.1" class="pilcrow">¶</a>
</li>
                <li class="normal" id="section-4.6.9-7.4.2.2">if the length of the address is smaller than 8 octets, then the new
  router-id consists of the required number of zero octets followed by the
  address, i.e., the address is stored on the right of the router-id.  For
  example, for an IPv4 address, the router-id consists of 4 octets of
  zeroes followed by the IPv4 address.<a href="#section-4.6.9-7.4.2.2" class="pilcrow">¶</a>
</li>
              </ul>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.9-7.5">X:</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.9-7.6">all other bits <span class="bcp14">MUST</span> be sent as 0 and silently ignored on reception.<a href="#section-4.6.9-7.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.9-8">The prefix being advertised by an Update TLV is computed as follows:<a href="#section-4.6.9-8" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.6.9-9.1">the first Omitted octets of the prefix are taken from the previous
Update TLV with the Prefix flag set and the same address encoding,
even if it was ignored due to an unknown mandatory sub-TLV; if the Omitted field is
not zero and there is no such TLV, then this Update <span class="bcp14">MUST</span> be ignored;<a href="#section-4.6.9-9.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.6.9-9.2">the next (Plen/8 - Omitted) rounded upwards octets are taken from the
Prefix field;<a href="#section-4.6.9-9.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.6.9-9.3">if Plen is not a multiple of 8, then any bits beyond Plen (i.e., the
low-order (8 - Plen MOD 8) bits of the last octet) are cleared;<a href="#section-4.6.9-9.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.6.9-9.4">the remaining octets are set to 0.<a href="#section-4.6.9-9.4" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-4.6.9-10">If the Metric field is finite, the router-id of the originating node
for this announcement is taken from the prefix advertised by this Update
if the Router-Id flag is set, computed as described above.  Otherwise, it
is taken either from the preceding Router-Id TLV, or the preceding
Update TLV with the Router-Id flag set, whichever comes last, even if
that TLV is otherwise ignored due to an unknown mandatory sub-TLV; if
there is no suitable TLV, then this update is ignored.<a href="#section-4.6.9-10" class="pilcrow">¶</a></p>
<p id="section-4.6.9-11">The next-hop address for this update is taken from the last preceding
Next Hop TLV with a matching address family (IPv4 or IPv6) in the same
packet even if it was otherwise ignored due to an unknown mandatory
sub-TLV; if no such TLV exists, it is taken from the network-layer source
address of this packet if it belongs to the same address family as the
prefix being announced; otherwise, this Update <span class="bcp14">MUST</span> be ignored.<a href="#section-4.6.9-11" class="pilcrow">¶</a></p>
<p id="section-4.6.9-12">If the metric field is FFFF hexadecimal, this TLV specifies
a retraction.  In that case, the router-id, next hop, and seqno are not
used.  AE <span class="bcp14">MAY</span> then be 0, in which case this Update retracts all of the
routes previously advertised by the sending interface.  If the metric is
finite, AE <span class="bcp14">MUST NOT</span> be 0; Update TLVs with finite metric and AE equal to
0 <span class="bcp14">MUST</span> be ignored.  If the metric is infinite and AE is 0, Plen and
Omitted <span class="bcp14">MUST</span> both be 0; Update TLVs that do not satisfy this requirement
<span class="bcp14">MUST</span> be ignored.<a href="#section-4.6.9-12" class="pilcrow">¶</a></p>
<p id="section-4.6.9-13">Update TLVs with an unknown value in the AE field <span class="bcp14">MUST</span> be silently
ignored.<a href="#section-4.6.9-13" class="pilcrow">¶</a></p>
<p id="section-4.6.9-14">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.9-14" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.6.10">
          <h4 id="name-route-request">
<a href="#section-4.6.10" class="section-number selfRef">4.6.10. </a><a href="#name-route-request" class="section-name selfRef">Route Request</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.6.10-1">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type = 9   |    Length     |      AE       |     Plen      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Prefix...
+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.6.10-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.10-2">A Route Request TLV prompts the receiver to send an update for a given
prefix, or a full route table dump.<a href="#section-4.6.10-2" class="pilcrow">¶</a></p>
<p id="section-4.6.10-3">Fields:<a href="#section-4.6.10-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.10-4">
            <dt id="section-4.6.10-4.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.10-4.2">Set to 9 to indicate a Route Request TLV.<a href="#section-4.6.10-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.10-4.3">Length</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.10-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.10-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.10-4.5">AE</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.10-4.6">The encoding of the Prefix field.  The value 0 specifies
that this is a request for a full route table dump (a wildcard
request).<a href="#section-4.6.10-4.6" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.10-4.7">Plen</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.10-4.8">The length in bits of the requested prefix.<a href="#section-4.6.10-4.8" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.10-4.9">Prefix</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.10-4.10">The prefix being requested.  This field's size is
Plen/8 rounded upwards.<a href="#section-4.6.10-4.10" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.10-5">A Request TLV prompts the receiver to send an update message (possibly
a retraction) for the prefix specified by the AE, Plen, and Prefix fields,
or a full dump of its route table if AE is 0 (in which case Plen must be
0 and Prefix is of length 0).  A Request TLV with AE set to 0 and Plen not
set to 0 <span class="bcp14">MUST</span> be ignored.<a href="#section-4.6.10-5" class="pilcrow">¶</a></p>
<p id="section-4.6.10-6">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.10-6" class="pilcrow">¶</a></p>
</section>
<section id="section-4.6.11">
          <h4 id="name-seqno-request">
<a href="#section-4.6.11" class="section-number selfRef">4.6.11. </a><a href="#name-seqno-request" class="section-name selfRef">Seqno Request</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.6.11-1">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type = 10  |    Length     |      AE       |    Plen       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|             Seqno             |  Hop Count    |   Reserved    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+                          Router-Id                            +
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Prefix...
+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.11-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.11-2">A Seqno Request TLV prompts the receiver to send an Update for a given
prefix with a given sequence number, or to forward the request further if
it cannot be satisfied locally.<a href="#section-4.6.11-2" class="pilcrow">¶</a></p>
<p id="section-4.6.11-3">Fields:<a href="#section-4.6.11-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.11-4">
            <dt id="section-4.6.11-4.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.11-4.2">Set to 10 to indicate a Seqno Request TLV.<a href="#section-4.6.11-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.11-4.3">Length</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.11-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.11-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.11-4.5">AE</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.11-4.6">The encoding of the Prefix field.  This <span class="bcp14">MUST NOT</span> be 0.<a href="#section-4.6.11-4.6" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.11-4.7">Plen</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.11-4.8">The length in bits of the requested prefix.<a href="#section-4.6.11-4.8" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.11-4.9">Seqno</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.11-4.10">The sequence number that is being requested.<a href="#section-4.6.11-4.10" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.11-4.11">Hop Count</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.11-4.12">The maximum number of times that this TLV may be
forwarded, plus 1.  This <span class="bcp14">MUST NOT</span> be 0.<a href="#section-4.6.11-4.12" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.11-4.13">Reserved</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.11-4.14">Sent as 0 and <span class="bcp14">MUST</span> be ignored on reception.<a href="#section-4.6.11-4.14" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.11-4.15">Router-Id</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.11-4.16">The Router-Id that is being requested.  This <span class="bcp14">MUST NOT</span> consist of all zeroes or all ones.<a href="#section-4.6.11-4.16" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.6.11-4.17">Prefix</dt>
            <dd style="margin-left: 5.0em" id="section-4.6.11-4.18">The prefix being requested.  This field's size is
Plen/8 rounded upwards.<a href="#section-4.6.11-4.18" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.6.11-5">A Seqno Request TLV prompts the receiving node to send a finite-metric
Update for the prefix specified by the AE, Plen, and Prefix fields, with
either a router-id different from what is specified by the Router-Id
field, or a Seqno no less (modulo 2<sup>16</sup>) than what is specified by the
Seqno field.  If this request cannot be satisfied locally, then it is
forwarded according to the rules set out in
 <a href="#handling-seqno-requests" class="xref">Section 3.8.1.2</a>.<a href="#section-4.6.11-5" class="pilcrow">¶</a></p>
<p id="section-4.6.11-6">While a Seqno Request <span class="bcp14">MAY</span> be sent to a multicast address, it <span class="bcp14">MUST NOT</span> be
forwarded to a multicast address and <span class="bcp14">MUST NOT</span> be forwarded to more than
one neighbour.  A request <span class="bcp14">MUST NOT</span> be forwarded if its Hop Count field is
1.<a href="#section-4.6.11-6" class="pilcrow">¶</a></p>
<p id="section-4.6.11-7">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.11-7" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<section id="section-4.7">
        <h3 id="name-details-of-specific-sub-tlv">
<a href="#section-4.7" class="section-number selfRef">4.7. </a><a href="#name-details-of-specific-sub-tlv" class="section-name selfRef">Details of specific sub-TLVs</a>
        </h3>
<div id="pad1">
<section id="section-4.7.1">
          <h4 id="name-pad1-2">
<a href="#section-4.7.1" class="section-number selfRef">4.7.1. </a><a href="#name-pad1-2" class="section-name selfRef">Pad1</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.7.1-1">
<pre>
 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|   Type = 0    |
+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.7.1-1" class="pilcrow">¶</a>
</div>
<p id="section-4.7.1-2">Fields:<a href="#section-4.7.1-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.7.1-3">
            <dt id="section-4.7.1-3.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.7.1-3.2">Set to 0 to indicate a Pad1 sub-TLV.<a href="#section-4.7.1-3.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.7.1-4">This sub-TLV is silently ignored on reception.  It is allowed within
any TLV that allows sub-TLVs.<a href="#section-4.7.1-4" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.7.2">
          <h4 id="name-padn-2">
<a href="#section-4.7.2" class="section-number selfRef">4.7.2. </a><a href="#name-padn-2" class="section-name selfRef">PadN</a>
          </h4>
<div class="artwork art-text alignLeft" id="section-4.7.2-1">
<pre>
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type = 1   |    Length     |      MBZ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.7.2-1" class="pilcrow">¶</a>
</div>
<p id="section-4.7.2-2">Fields:<a href="#section-4.7.2-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.7.2-3">
            <dt id="section-4.7.2-3.1">Type</dt>
            <dd style="margin-left: 5.0em" id="section-4.7.2-3.2">Set to 1 to indicate a PadN sub-TLV.<a href="#section-4.7.2-3.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.7.2-3.3">Length</dt>
            <dd style="margin-left: 5.0em" id="section-4.7.2-3.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.7.2-3.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-4.7.2-3.5">MBZ</dt>
            <dd style="margin-left: 5.0em" id="section-4.7.2-3.6">Must be zero, set to 0 on transmission.<a href="#section-4.7.2-3.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.7.2-4">This sub-TLV is silently ignored on reception.  It is allowed within
any TLV that allows sub-TLVs.<a href="#section-4.7.2-4" class="pilcrow">¶</a></p>
</section>
</section>
</section>
</div>
<section id="section-5">
      <h2 id="name-iana-considerations">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
      </h2>
<p id="section-5-1">IANA has registered the UDP port number 6696, called "babel", for use
by the Babel protocol.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">IANA has registered the IPv6 multicast group ff02::1:6 and the
IPv4 multicast group 224.0.0.111 for use by the Babel protocol.<a href="#section-5-2" class="pilcrow">¶</a></p>
<p id="section-5-3">IANA has created a registry called "Babel TLV Types".  The allocation
policy for this registry is Specification Required <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>
for Types 0-223 and Experimental Use for Types 224-254.  The values in
this registry are as follows:<a href="#section-5-3" class="pilcrow">¶</a></p>
<table class="center" id="table-1">
        <caption><a href="#table-1" class="selfRef">Table 1</a></caption>
<thead>
          <tr>
            <th class="text-left" rowspan="1" colspan="1">Type</th>
            <th class="text-left" rowspan="1" colspan="1">Name</th>
            <th class="text-left" rowspan="1" colspan="1">Reference</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">0</td>
            <td class="text-left" rowspan="1" colspan="1">Pad1</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">1</td>
            <td class="text-left" rowspan="1" colspan="1">PadN</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">2</td>
            <td class="text-left" rowspan="1" colspan="1">Acknowledgment Request</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">3</td>
            <td class="text-left" rowspan="1" colspan="1">Acknowledgment</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">4</td>
            <td class="text-left" rowspan="1" colspan="1">Hello</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">5</td>
            <td class="text-left" rowspan="1" colspan="1">IHU</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">6</td>
            <td class="text-left" rowspan="1" colspan="1">Router-Id</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">7</td>
            <td class="text-left" rowspan="1" colspan="1">Next Hop</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">8</td>
            <td class="text-left" rowspan="1" colspan="1">Update</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">9</td>
            <td class="text-left" rowspan="1" colspan="1">Route Request</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">10</td>
            <td class="text-left" rowspan="1" colspan="1">Seqno Request</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">11</td>
            <td class="text-left" rowspan="1" colspan="1">TS/PC</td>
            <td class="text-left" rowspan="1" colspan="1">
              <span>[<a href="#RFC7298" class="xref">RFC7298</a>]</span>
</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">12</td>
            <td class="text-left" rowspan="1" colspan="1">HMAC</td>
            <td class="text-left" rowspan="1" colspan="1">
              <span>[<a href="#RFC7298" class="xref">RFC7298</a>]</span>
</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">13</td>
            <td class="text-left" rowspan="1" colspan="1">Reserved</td>
            <td class="text-left" rowspan="1" colspan="1"></td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">14</td>
            <td class="text-left" rowspan="1" colspan="1">Reserved</td>
            <td class="text-left" rowspan="1" colspan="1"></td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">15</td>
            <td class="text-left" rowspan="1" colspan="1">Reserved</td>
            <td class="text-left" rowspan="1" colspan="1"></td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">224-254</td>
            <td class="text-left" rowspan="1" colspan="1">Reserved for Experimental Use</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">255</td>
            <td class="text-left" rowspan="1" colspan="1">Reserved for expansion of the type space</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
        </tbody>
      </table>
<p id="section-5-5">IANA has created a registry called "Babel Sub-TLV Types".  The allocation
policy for this registry is Specification Required for Types 0-111 and
128-239, and Experimental Use for Types 112-126 and 240-254.  The values
in this registry are as follows:<a href="#section-5-5" class="pilcrow">¶</a></p>
<table class="center" id="table-2">
        <caption><a href="#table-2" class="selfRef">Table 2</a></caption>
<thead>
          <tr>
            <th class="text-left" rowspan="1" colspan="1">Type</th>
            <th class="text-left" rowspan="1" colspan="1">Name</th>
            <th class="text-left" rowspan="1" colspan="1">Reference</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">0</td>
            <td class="text-left" rowspan="1" colspan="1">Pad1</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">1</td>
            <td class="text-left" rowspan="1" colspan="1">PadN</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">2</td>
            <td class="text-left" rowspan="1" colspan="1">Diversity</td>
            <td class="text-left" rowspan="1" colspan="1">
              <span>[<a href="#I-D.chroboczek-babel-diversity-routing" class="xref">BABEL-DIVERSITY</a>]</span>
</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">3</td>
            <td class="text-left" rowspan="1" colspan="1">Timestamp</td>
            <td class="text-left" rowspan="1" colspan="1">
              <span>[<a href="#I-D.ietf-babel-rtt-extension" class="xref">BABEL-RTT</a>]</span>
</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">4-111</td>
            <td class="text-left" rowspan="1" colspan="1">Unassigned</td>
            <td class="text-left" rowspan="1" colspan="1"></td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">112-126</td>
            <td class="text-left" rowspan="1" colspan="1">Reserved for Experimental Use</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">127</td>
            <td class="text-left" rowspan="1" colspan="1">Reserved for expansion of the type space</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">128</td>
            <td class="text-left" rowspan="1" colspan="1">Source Prefix</td>
            <td class="text-left" rowspan="1" colspan="1">
              <span>[<a href="#I-D.ietf-babel-source-specific" class="xref">BABEL-SS</a>]</span>
</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">129-239</td>
            <td class="text-left" rowspan="1" colspan="1">Unassigned</td>
            <td class="text-left" rowspan="1" colspan="1"></td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">240-254</td>
            <td class="text-left" rowspan="1" colspan="1">Reserved for Experimental Use</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">255</td>
            <td class="text-left" rowspan="1" colspan="1">Reserved for expansion of the type space</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
        </tbody>
      </table>
<p id="section-5-7">IANA has created a registry called "Babel Address
Encodings".  The allocation policy for this registry is Specification
Required for Address Encodings (AEs) 0-223, and Experimental Use for AEs
224-254.  The values in this registry are as follows:<a href="#section-5-7" class="pilcrow">¶</a></p>
<table class="center" id="table-3">
        <caption><a href="#table-3" class="selfRef">Table 3</a></caption>
<thead>
          <tr>
            <th class="text-left" rowspan="1" colspan="1">AE</th>
            <th class="text-left" rowspan="1" colspan="1">Name</th>
            <th class="text-left" rowspan="1" colspan="1">Reference</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">0</td>
            <td class="text-left" rowspan="1" colspan="1">Wildcard address</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">1</td>
            <td class="text-left" rowspan="1" colspan="1">IPv4 address</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">2</td>
            <td class="text-left" rowspan="1" colspan="1">IPv6 address</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">3</td>
            <td class="text-left" rowspan="1" colspan="1">Link-local IPv6 address</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">4-223</td>
            <td class="text-left" rowspan="1" colspan="1">Unassigned</td>
            <td class="text-left" rowspan="1" colspan="1"></td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">224-254</td>
            <td class="text-left" rowspan="1" colspan="1">Reserved for Experimental Use</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">255</td>
            <td class="text-left" rowspan="1" colspan="1">Reserved for expansion of the AE space</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
        </tbody>
      </table>
<p id="section-5-9">IANA has renamed the registry called "Babel Flags Values" to "Babel Update Flags Values".  The allocation policy for this registry is Specification Required.  
The values in this registry are as follows:<a href="#section-5-9" class="pilcrow">¶</a></p>
<table class="center" id="table-4">
        <caption><a href="#table-4" class="selfRef">Table 4</a></caption>
<thead>
          <tr>
            <th class="text-left" rowspan="1" colspan="1">Bit</th>
            <th class="text-left" rowspan="1" colspan="1">Name</th>
            <th class="text-left" rowspan="1" colspan="1">Reference</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">0</td>
            <td class="text-left" rowspan="1" colspan="1">Default prefix</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">1</td>
            <td class="text-left" rowspan="1" colspan="1">Default router-id</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">2-7</td>
            <td class="text-left" rowspan="1" colspan="1">Unassigned</td>
            <td class="text-left" rowspan="1" colspan="1"></td>
          </tr>
        </tbody>
      </table>
<p id="section-5-11">IANA has created a new registry called "Babel Hello Flags
Values".  The allocation policy for this registry is Specification
Required.  The initial values in this registry are as follows:<a href="#section-5-11" class="pilcrow">¶</a></p>
<table class="center" id="table-5">
        <caption><a href="#table-5" class="selfRef">Table 5</a></caption>
<thead>
          <tr>
            <th class="text-left" rowspan="1" colspan="1">Bit</th>
            <th class="text-left" rowspan="1" colspan="1">Name</th>
            <th class="text-left" rowspan="1" colspan="1">Reference</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">0</td>
            <td class="text-left" rowspan="1" colspan="1">Unicast</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">1-15</td>
            <td class="text-left" rowspan="1" colspan="1">Unassigned</td>
            <td class="text-left" rowspan="1" colspan="1"></td>
          </tr>
        </tbody>
      </table>
<p id="section-5-13">IANA has replaced all references to RFCs 6126 and 7557
in all of the registries mentioned above with references to this document.<a href="#section-5-13" class="pilcrow">¶</a></p>
</section>
<section id="section-6">
      <h2 id="name-security-considerations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
      </h2>
<p id="section-6-1">As defined in this document, Babel is a completely insecure protocol.
Without additional security mechanisms, Babel trusts any information it
receives in plaintext UDP datagrams and acts on it.  An attacker that is
present on the local network can impact Babel operation in a variety of
ways; for example they can:<a href="#section-6-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6-2.1">spoof a Babel packet, and redirect traffic by announcing a route with
a smaller metric, a larger sequence number, or a longer prefix;<a href="#section-6-2.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-6-2.2">spoof a malformed packet, which could cause an insufficiently robust
implementation to crash or interfere with the rest of the network;<a href="#section-6-2.2" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-6-2.3">replay a previously captured Babel packet, which could cause traffic to
be redirected, black-holed, or otherwise interfere with the network.<a href="#section-6-2.3" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-6-3">
When carried over IPv6, Babel packets are ignored unless they are sent
from a link-local IPv6 address; since routers don't forward link-local
IPv6 packets, this mitigates the attacks outlined above by restricting
them to on-link attackers.  No such natural protection exists when Babel
packets are carried over IPv4, which is one of the reasons why it is
recommended to deploy Babel over IPv6
(<a href="#transmission-reception" class="xref">Section 3.1</a>).<a href="#section-6-3" class="pilcrow">¶</a></p>
<p id="section-6-4">It is usually difficult to ensure that packets arriving at a Babel node
are trusted, even in the case where the local link is believed to be
secure.  For that reason, it is <span class="bcp14">RECOMMENDED</span> that all Babel traffic be
protected by an application-layer cryptographic protocol.  There are
currently two suitable mechanisms, which implement different trade-offs
between implementation simplicity and security:<a href="#section-6-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6-5.1">Babel over DTLS <span>[<a href="#RFC8968" class="xref">RFC8968</a>]</span> runs the majority of Babel
traffic over DTLS and leverages DTLS to authenticate nodes and provide
confidentiality and integrity protection;<a href="#section-6-5.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-6-5.2">MAC authentication <span>[<a href="#RFC8967" class="xref">RFC8967</a>]</span> appends a message
authentication code (MAC) to every Babel packet to prove that it
originated at a node that knows a shared secret, and includes sufficient
additional information to prove that the packet is fresh (not replayed).<a href="#section-6-5.2" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-6-6">
Both mechanisms enable nodes to ignore packets generated by attackers
without the proper credentials.  They also ensure integrity of messages
and prevent message replay.  While Babel-DTLS supports asymmetric keying
and ensures confidentiality, Babel-MAC has a much more limited scope (see
Sections <a href="https://www.rfc-editor.org/rfc/rfc8967#section-1.1" class="relref">1.1</a>, 
<a href="https://www.rfc-editor.org/rfc/rfc8967#section-1.2" class="relref">1.2</a>, and 
<a href="https://www.rfc-editor.org/rfc/rfc8967#section-7" class="relref">7</a> of 
<span>[<a href="#RFC8967" class="xref">RFC8967</a>]</span>).  Since Babel-MAC
is simpler and more lightweight, it is recommended in preference to
Babel-DTLS in deployments where its limitations are acceptable, i.e., when
symmetric keying is sufficient and where the routing information is not
considered confidential.<a href="#section-6-6" class="pilcrow">¶</a></p>
<p id="section-6-7">Every implementation of Babel <span class="bcp14">SHOULD</span> implement BABEL-MAC.<a href="#section-6-7" class="pilcrow">¶</a></p>
<p id="section-6-8">One should be aware that the information that a mobile Babel node
announces to the whole routing domain is sufficient to determine the mobile
node's physical location with reasonable precision, which might cause
privacy concerns even if the control traffic is protected from
unauthenticated attackers by a cryptographic mechanism such as Babel-DTLS.
This issue may be mitigated somewhat by using randomly chosen router-ids
and randomly chosen IP addresses, and changing them often enough.<a href="#section-6-8" class="pilcrow">¶</a></p>
</section>
<section id="section-7">
      <h2 id="name-references">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-references" class="section-name selfRef">References</a>
      </h2>
<section id="section-7.1">
        <h3 id="name-normative-references">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
        </h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
        <dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC0793">[RFC793]</dt>
        <dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Transmission Control Protocol"</span>, <span class="seriesInfo">STD 7</span>, <span class="seriesInfo">RFC 793</span>, <span class="seriesInfo">DOI 10.17487/RFC0793</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc793">https://www.rfc-editor.org/info/rfc793</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8126">[RFC8126]</dt>
        <dd>
<span class="refAuthor">Cotton, M.</span><span class="refAuthor">, Leiba, B.</span><span class="refAuthor">, and T. Narten</span>, <span class="refTitle">"Guidelines for Writing an IANA Considerations Section in RFCs"</span>, <span class="seriesInfo">BCP 26</span>, <span class="seriesInfo">RFC 8126</span>, <span class="seriesInfo">DOI 10.17487/RFC8126</span>, <time datetime="2017-06" class="refDate">June 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
        <dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8967">[RFC8967]</dt>
      <dd>
<span class="refAuthor">Dô, C.</span><span class="refAuthor">, Kolodziejak, W.</span><span class="refAuthor">, and J. Chroboczek</span>, <span class="refTitle">"MAC Authentication for the Babel Routing Protocol"</span>, <span class="seriesInfo">RFC 8967</span>, <span class="seriesInfo">DOI 10.17487/RFC8967</span>, <time datetime="2021-01" class="refDate">January 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8967">https://www.rfc-editor.org/info/rfc8967</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-7.2">
        <h3 id="name-informative-references">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
        </h3>
<dl class="references">
<dt id="I-D.chroboczek-babel-diversity-routing">[BABEL-DIVERSITY]</dt>
        <dd>
<span class="refAuthor">Chroboczek, J.</span>, <span class="refTitle">"Diversity Routing for the Babel Routing Protocol"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-chroboczek-babel-diversity-routing-01</span>, <time datetime="2016-02-15" class="refDate">15 February 2016</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-chroboczek-babel-diversity-routing-01">https://tools.ietf.org/html/draft-chroboczek-babel-diversity-routing-01</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-babel-rtt-extension">[BABEL-RTT]</dt>
        <dd>
<span class="refAuthor">Jonglez, B.</span><span class="refAuthor"> and J. Chroboczek</span>, <span class="refTitle">"Delay-based Metric Extension for the Babel Routing Protocol"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-babel-rtt-extension-00</span>, <time datetime="2019-04-26" class="refDate">26 April 2019</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-babel-rtt-extension-00">https://tools.ietf.org/html/draft-ietf-babel-rtt-extension-00</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-babel-source-specific">[BABEL-SS]</dt>
        <dd>
<span class="refAuthor">Boutier, M.</span><span class="refAuthor"> and J. Chroboczek</span>, <span class="refTitle">"Source-Specific Routing in Babel"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-babel-source-specific-07</span>, <time datetime="2020-10-28" class="refDate">28 October 2020</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-ietf-babel-source-specific-07">https://tools.ietf.org/html/draft-ietf-babel-source-specific-07</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="DSDV">[DSDV]</dt>
        <dd>
<span class="refAuthor">Perkins, C.</span><span class="refAuthor"> and P. Bhagwat</span>, <span class="refTitle">"Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers"</span>, <span class="refContent">ACM SIGCOMM '94: Proceedings of the conference on 
           Communications architectures, protocols and applications</span>, <span class="refContent">234-244</span>, <span class="seriesInfo">DOI 10.1145/190314.190336</span>, <time datetime="1994-10" class="refDate">October 1994</time>, <span>&lt;<a href="https://doi.org/10.1145/190314.190336">https://doi.org/10.1145/190314.190336</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="DUAL">[DUAL]</dt>
        <dd>
<span class="refAuthor">Garcia Luna Aceves, J. J.</span>, <span class="refTitle">"Loop-free routing using diffusing computations"</span>, <span class="refContent">IEEE/ACM Transactions on Networking</span>, <span class="refContent">1:1</span>, <span class="seriesInfo">DOI 10.1109/90.222913</span>, <time datetime="1993-02" class="refDate">February 1993</time>, <span>&lt;<a href="https://doi.org/10.1109/90.222913">https://doi.org/10.1109/90.222913</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="EIGRP">[EIGRP]</dt>
        <dd>
<span class="refAuthor">Albrightson, B.</span><span class="refAuthor">, Garcia Luna Aceves, J. J.</span><span class="refAuthor">, and J. Boyle</span>, <span class="refTitle">"EIGRP -- a Fast Routing Protocol Based on Distance Vectors"</span>, <span class="refContent">Proc. Networld/Interop 94</span>, <time datetime="1994" class="refDate">1994</time>. </dd>
<dd class="break"></dd>
<dt id="ETX">[ETX]</dt>
        <dd>
<span class="refAuthor">De Couto, D.</span><span class="refAuthor">, Aguayo, D.</span><span class="refAuthor">, Bicket, J.</span><span class="refAuthor">, and R. Morris</span>, <span class="refTitle">"A high-throughput path metric for multi-hop wireless networks"</span>, <span class="refContent">MobiCom '03: Proceedings of the 9th annual international 
           conference on Mobile computing and networking</span>, <span class="refContent">134-146</span>, <span class="seriesInfo">DOI 10.1145/938985.939000</span>, <time datetime="2003-09" class="refDate">September 2003</time>, <span>&lt;<a href="https://doi.org/10.1145/938985.939000">https://doi.org/10.1145/938985.939000</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.11">[IEEE802.11]</dt>
        <dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications"</span>, <span class="seriesInfo">IEEE 802.11-2012</span>, <span class="seriesInfo">DOI 10.1109/ieeestd.2012.6178212</span>, <time datetime="2012-04" class="refDate">April 2012</time>, <span>&lt;<a href="https://doi.org/10.1109/ieeestd.2012.6178212">https://doi.org/10.1109/ieeestd.2012.6178212</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IEN137">[IEN137]</dt>
        <dd>
<span class="refAuthor">Cohen, D.</span>, <span class="refTitle">"On Holy Wars and a Plea for Peace"</span>, <span class="seriesInfo">IEN 137</span>, <time datetime="1980-04-01" class="refDate">1 April 1980</time>. </dd>
<dd class="break"></dd>
<dt id="IS-IS">[IS-IS]</dt>
        <dd>
<span class="refAuthor">International Organization for Standardization</span>, <span class="refTitle">"Information technology -- Telecommunications and information exchange between systems -- Intermediate System to Intermediate System intra-domain routeing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode network service (ISO 8473)"</span>, <span class="refContent">ISO/IEC 10589:2002</span>, <time datetime="2002" class="refDate">2002</time>. </dd>
<dd class="break"></dd>
<dt id="JITTER">[JITTER]</dt>
        <dd>
<span class="refAuthor">Floyd, S.</span><span class="refAuthor"> and V. Jacobson</span>, <span class="refTitle">"The Synchronization of Periodic Routing Messages"</span>, <span class="refContent">IEEE/ACM Transactions on Networking</span>, <span class="refContent">2, 2, 122-136</span>, <span class="seriesInfo">DOI 10.1109/90.298431</span>, <time datetime="1994-04" class="refDate">April 1994</time>, <span>&lt;<a href="https://doi.org/10.1109/90.298431">https://doi.org/10.1109/90.298431</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2328">[OSPF]</dt>
        <dd>
<span class="refAuthor">Moy, J.</span>, <span class="refTitle">"OSPF Version 2"</span>, <span class="seriesInfo">STD 54</span>, <span class="seriesInfo">RFC 2328</span>, <span class="seriesInfo">DOI 10.17487/RFC2328</span>, <time datetime="1998-04" class="refDate">April 1998</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2328">https://www.rfc-editor.org/info/rfc2328</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5444">[PACKETBB]</dt>
        <dd>
<span class="refAuthor">Clausen, T.</span><span class="refAuthor">, Dearlove, C.</span><span class="refAuthor">, Dean, J.</span><span class="refAuthor">, and C. Adjih</span>, <span class="refTitle">"Generalized Mobile Ad Hoc Network (MANET) Packet/Message Format"</span>, <span class="seriesInfo">RFC 5444</span>, <span class="seriesInfo">DOI 10.17487/RFC5444</span>, <time datetime="2009-02" class="refDate">February 2009</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5444">https://www.rfc-editor.org/info/rfc5444</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2675">[RFC2675]</dt>
        <dd>
<span class="refAuthor">Borman, D.</span><span class="refAuthor">, Deering, S.</span><span class="refAuthor">, and R. Hinden</span>, <span class="refTitle">"IPv6 Jumbograms"</span>, <span class="seriesInfo">RFC 2675</span>, <span class="seriesInfo">DOI 10.17487/RFC2675</span>, <time datetime="1999-08" class="refDate">August 1999</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2675">https://www.rfc-editor.org/info/rfc2675</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3561">[RFC3561]</dt>
        <dd>
<span class="refAuthor">Perkins, C.</span><span class="refAuthor">, Belding-Royer, E.</span><span class="refAuthor">, and S. Das</span>, <span class="refTitle">"Ad hoc On-Demand Distance Vector (AODV) Routing"</span>, <span class="seriesInfo">RFC 3561</span>, <span class="seriesInfo">DOI 10.17487/RFC3561</span>, <time datetime="2003-07" class="refDate">July 2003</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3561">https://www.rfc-editor.org/info/rfc3561</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6126">[RFC6126]</dt>
        <dd>
<span class="refAuthor">Chroboczek, J.</span>, <span class="refTitle">"The Babel Routing Protocol"</span>, <span class="seriesInfo">RFC 6126</span>, <span class="seriesInfo">DOI 10.17487/RFC6126</span>, <time datetime="2011-04" class="refDate">April 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6126">https://www.rfc-editor.org/info/rfc6126</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7298">[RFC7298]</dt>
        <dd>
<span class="refAuthor">Ovsienko, D.</span>, <span class="refTitle">"Babel Hashed Message Authentication Code (HMAC) Cryptographic Authentication"</span>, <span class="seriesInfo">RFC 7298</span>, <span class="seriesInfo">DOI 10.17487/RFC7298</span>, <time datetime="2014-07" class="refDate">July 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7298">https://www.rfc-editor.org/info/rfc7298</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7557">[RFC7557]</dt>
        <dd>
<span class="refAuthor">Chroboczek, J.</span>, <span class="refTitle">"Extension Mechanism for the Babel Routing Protocol"</span>, <span class="seriesInfo">RFC 7557</span>, <span class="seriesInfo">DOI 10.17487/RFC7557</span>, <time datetime="2015-05" class="refDate">May 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7557">https://www.rfc-editor.org/info/rfc7557</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8968">[RFC8968]</dt>
        <dd>
<span class="refAuthor">Décimo, A.</span><span class="refAuthor">, Schinazi, D.</span><span class="refAuthor">, and J. Chroboczek</span>, <span class="refTitle">"Babel Routing Protocol over Datagram Transport Layer Security"</span>, <span class="seriesInfo">RFC 8968</span>, <span class="seriesInfo">DOI 10.17487/RFC8968</span>, <time datetime="2021-01" class="refDate">January 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8968">https://www.rfc-editor.org/info/rfc8968</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2453">[RIP]</dt>
      <dd>
<span class="refAuthor">Malkin, G.</span>, <span class="refTitle">"RIP Version 2"</span>, <span class="seriesInfo">STD 56</span>, <span class="seriesInfo">RFC 2453</span>, <span class="seriesInfo">DOI 10.17487/RFC2453</span>, <time datetime="1998-11" class="refDate">November 1998</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2453">https://www.rfc-editor.org/info/rfc2453</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="section-appendix.a">
      <h2 id="name-cost-and-metric-computation">
<a href="#section-appendix.a" class="section-number selfRef">Appendix A. </a><a href="#name-cost-and-metric-computation" class="section-name selfRef">Cost and Metric Computation</a>
      </h2>
<p id="section-appendix.a-1">The strategy for computing link costs and route metrics is a local
matter; Babel itself only requires that it comply with the conditions given
in <a href="#cost-computation" class="xref">Section 3.4.3</a> and <a href="#metric-computation" class="xref">Section 3.5.2</a>.
Different nodes may use different strategies in a single network and may
use different strategies on different interface types.  This section describes
a set of strategies that have been found to work well in actual networks.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
<p id="section-appendix.a-2">In summary, a node maintains per-neighbour statistics about the last 16
received Hello TLVs of each kind (<a href="#hello-history" class="xref">Appendix A.1</a>),
it computes costs by using the 2-out-of-3 strategy (<a href="#k-j" class="xref">Appendix A.2.1</a>) on
wired links and Expected Transmission Cost (ETX) (<a href="#etx" class="xref">Appendix A.2.2</a>) on wireless links.  It uses an
additive algebra for metric computation (<a href="#metric-computation" class="xref">Section 3.5.2</a>).<a href="#section-appendix.a-2" class="pilcrow">¶</a></p>
<div id="hello-history">
<section id="section-a.1">
        <h2 id="name-maintaining-hello-history">
<a href="#section-a.1" class="section-number selfRef">A.1. </a><a href="#name-maintaining-hello-history" class="section-name selfRef">Maintaining Hello History</a>
        </h2>
<p id="section-a.1-1">For each neighbour, a node maintains two sets of Hello history, one for
each kind of Hello, and an expected sequence number, one for Multicast and
one for Unicast Hellos.  Each Hello history is a vector of 16 bits, where
a 1 value represents a received Hello, and a 0 value a missed Hello.  For
each kind of Hello, the expected sequence number, written ne, is the
sequence number that is expected to be carried by the next received Hello
from this neighbour.<a href="#section-a.1-1" class="pilcrow">¶</a></p>
<p id="section-a.1-2">Whenever it receives a Hello packet of a given kind from a neighbour,
a node compares the received sequence number nr for that kind of Hello
with its expected sequence number ne.  Depending on the outcome of this
comparison, one of the following actions is taken:<a href="#section-a.1-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-a.1-3.1">if the two differ by more than 16 (modulo 2<sup>16</sup>), then the sending
  node has probably rebooted and lost its sequence number; the whole
  associated neighbour table entry is flushed and a new one is created;<a href="#section-a.1-3.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-a.1-3.2">otherwise, if the received nr is smaller (modulo 2<sup>16</sup>) than the
  expected sequence number ne, then the sending node has increased its
  Hello interval without our noticing; the receiving node removes the last
  (ne - nr) entries from this neighbour's Hello history (we "undo
  history");<a href="#section-a.1-3.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-a.1-3.3">otherwise, if nr is larger (modulo 2<sup>16</sup>) than ne, then the sending
  node has decreased its Hello interval, and some Hellos were lost; the
  receiving node adds (nr - ne) 0 bits to the Hello history (we
  "fast-forward").<a href="#section-a.1-3.3" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-a.1-4">
The receiving node then appends a 1 bit to the Hello history and sets ne
to (nr + 1).  If the Interval field of the received Hello is not zero, it
resets the neighbour's hello timer to 1.5 times the advertised Interval
(the extra margin allows for delay due to jitter).<a href="#section-a.1-4" class="pilcrow">¶</a></p>
<p id="section-a.1-5">Whenever either hello timer associated with a neighbour expires, the
local node adds a 0 bit to the corresponding Hello history, and increments
the expected Hello number.  If both Hello histories are empty (they
contain 0 bits only), the neighbour entry is flushed; otherwise, the
relevant hello timer is reset to the value advertised in the last Hello of
that kind received from this neighbour (no extra margin is necessary in
this case, since jitter was already taken into account when computing the
timeout that has just expired).<a href="#section-a.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="cost-computation-examples">
<section id="section-a.2">
        <h2 id="name-cost-computation-2">
<a href="#section-a.2" class="section-number selfRef">A.2. </a><a href="#name-cost-computation-2" class="section-name selfRef">Cost Computation</a>
        </h2>
<p id="section-a.2-1">This section describes two algorithms suitable for computing costs
(<a href="#cost-computation" class="xref">Section 3.4.3</a>) based on Hello history.
<a href="#k-j" class="xref">Appendix A.2.1</a> applies to wired links and <a href="#etx" class="xref">Appendix A.2.2</a> to
wireless links.  <span class="bcp14">RECOMMENDED</span> default values of the parameters that appear
in these algorithms are given in <a href="#parameters" class="xref">Appendix B</a>.<a href="#section-a.2-1" class="pilcrow">¶</a></p>
<div id="k-j">
<section id="section-a.2.1">
          <h3 id="name-k-out-of-j">
<a href="#section-a.2.1" class="section-number selfRef">A.2.1. </a><a href="#name-k-out-of-j" class="section-name selfRef">k-out-of-j</a>
          </h3>
<p id="section-a.2.1-1">K-out-of-j link sensing is suitable for wired links that are either up,
in which case they only occasionally drop a packet, or down, in which case
they drop all packets.<a href="#section-a.2.1-1" class="pilcrow">¶</a></p>
<p id="section-a.2.1-2">The k-out-of-j strategy is parameterised by two small integers k and j,
such that 0 &lt; k &lt;= j, and the nominal link cost, a constant C &gt;= 1.
A node keeps a history of the last j hellos; if k or more of those have
been correctly received, the link is assumed to be up, and the rxcost is
set to C; otherwise, the link is assumed to be down, and the rxcost is set
to infinity.<a href="#section-a.2.1-2" class="pilcrow">¶</a></p>
<p id="section-a.2.1-3">Since Babel supports two kinds of Hellos, a Babel node performs
k-out-of-j twice for each neighbour, once on the Unicast Hello history and once on the
Multicast Hello history.  If either of the instances of k-out-of-j
indicates that the link is up, then the link is assumed to be up, and the
rxcost is set to C; if both instances indicate that the link is down, then
the link is assumed to be down, and the rxcost is set to infinity.  In
other words, the resulting rxcost is the minimum of the rxcosts yielded by
the two instances of k-out-of-j link sensing.<a href="#section-a.2.1-3" class="pilcrow">¶</a></p>
<p id="section-a.2.1-4">The cost of a link performing k-out-of-j link sensing is defined as
follows:<a href="#section-a.2.1-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-a.2.1-5.1">cost = FFFF hexadecimal if rxcost = FFFF hexadecimal;<a href="#section-a.2.1-5.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-a.2.1-5.2">cost = txcost otherwise.<a href="#section-a.2.1-5.2" class="pilcrow">¶</a>
</li>
          </ul>
</section>
</div>
<div id="etx">
<section id="section-a.2.2">
          <h3 id="name-etx">
<a href="#section-a.2.2" class="section-number selfRef">A.2.2. </a><a href="#name-etx" class="section-name selfRef">ETX</a>
          </h3>
<p id="section-a.2.2-1">Unlike wired links which are bimodal (either up or down), wireless
links exhibit continuous variation of the link quality.  Naive application
of hop-count routing in networks that use wireless links for transit tends
to select long, lossy links in preference to shorter, lossless links,
which can dramatically reduce throughput.  For that reason, a routing
protocol designed to support wireless links must perform some form of
link quality estimation.<a href="#section-a.2.2-1" class="pilcrow">¶</a></p>
<p id="section-a.2.2-2">The Expected Transmission Cost algorithm, or ETX <span>[<a href="#ETX" class="xref">ETX</a>]</span>,
is a simple link quality estimation algorithm that is designed to work
well with the IEEE 802.11 MAC <span>[<a href="#IEEE802.11" class="xref">IEEE802.11</a>]</span>.  By
default, the IEEE 802.11 MAC performs Automatic Repeat Query (ARQ)
and rate adaptation on unicast frames, but not on multicast frames, which
are sent at a fixed rate with no ARQ; therefore, measuring the loss rate
of multicast frames yields a useful estimate of a link's quality.<a href="#section-a.2.2-2" class="pilcrow">¶</a></p>
<p id="section-a.2.2-3">A node performing ETX link quality estimation uses a neighbour's
Multicast Hello history to compute an estimate, written beta, of the
probability that a Hello TLV is successfully received.  Beta can be
computed as the fraction of 1 bits within a small number (say, 6) of the
most recent entries in the Multicast Hello history, or it can be an
exponential average, or some combination of both approaches.  Let rxcost
be 256/beta.<a href="#section-a.2.2-3" class="pilcrow">¶</a></p>
<p id="section-a.2.2-4">Let alpha be MIN(1, 256/txcost), an estimate of the probability of
successfully sending a Hello TLV.  The cost is then computed by<a href="#section-a.2.2-4" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-a.2.2-5">cost = 256/(alpha * beta)<a href="#section-a.2.2-5" class="pilcrow">¶</a></p>
<p id="section-a.2.2-6">
or, equivalently,<a href="#section-a.2.2-6" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-a.2.2-7">cost = (MAX(txcost, 256) * rxcost) / 256.<a href="#section-a.2.2-7" class="pilcrow">¶</a></p>
<p id="section-a.2.2-8">Since the IEEE 802.11 MAC performs ARQ on unicast frames, unicast
frames do not provide a useful measure of link quality, and therefore ETX
ignores the Unicast Hello history.  Thus, a node performing ETX
link quality estimation will not route through neighbouring nodes unless
they send periodic Multicast Hellos (possibly in addition to Unicast
Hellos).<a href="#section-a.2.2-8" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="route-selection-hysteresis">
<section id="section-a.3">
        <h2 id="name-route-selection-and-hystere">
<a href="#section-a.3" class="section-number selfRef">A.3. </a><a href="#name-route-selection-and-hystere" class="section-name selfRef">Route Selection and Hysteresis</a>
        </h2>
<p id="section-a.3-1">Route selection (<a href="#route-selection" class="xref">Section 3.6</a>) is the process by
which a node selects a single route among the routes that it has available
towards a given destination.  With Babel, any route selection procedure
that only ever chooses feasible routes with a finite metric will yield
a set of loop-free routes; however, in the presence of continuously
variable metrics such as ETX (<a href="#etx" class="xref">Appendix A.2.2</a>), a naive route
selection procedure might lead to persistent oscillations.  Such
oscillations can be limited or avoided altogether by implementing
hysteresis within the route selection algorithm, i.e., by making the route
selection algorithm sensitive to a route's history.  Any reasonable
hysteresis algorithm should yield good results; the following algorithm
is simple to implement and has been successfully deployed in a variety of
environments.<a href="#section-a.3-1" class="pilcrow">¶</a></p>
<p id="section-a.3-2">For every route R, in addition to the route's metric m(R), maintain
a smoothed version of m(R) written ms(R) (we RECOMMEND computing ms(R) as an
exponentially smoothed average (see <span><a href="https://www.rfc-editor.org/rfc/rfc793#section-3.7" class="relref">Section 3.7</a> of [<a href="#RFC0793" class="xref">RFC793</a>]</span>)
of m(R) with a time constant equal to the Hello interval multiplied by
a small number such as 3).  If no route to a given destination is selected,
then select the route with the smallest metric, ignoring the smoothed
metric.  If a route R is selected, then switch to a route R' only when
both m(R') &lt; m(R) and ms(R') &lt; ms(R).<a href="#section-a.3-2" class="pilcrow">¶</a></p>
<p id="section-a.3-3">Intuitively, the smoothed metric is a long-term estimate of the quality
of a route.  The algorithm above works by only switching routes when both
the instantaneous and the long-term estimates of the route's quality
indicate that switching is profitable.<a href="#section-a.3-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<div id="parameters">
<section id="section-appendix.b">
      <h2 id="name-protocol-parameters">
<a href="#section-appendix.b" class="section-number selfRef">Appendix B. </a><a href="#name-protocol-parameters" class="section-name selfRef">Protocol Parameters</a>
      </h2>
<p id="section-appendix.b-1">The choice of time constants is a trade-off between fast detection of
mobility events and protocol overhead.  Two instances of Babel running
with different time constants will interoperate, although the resulting
worst-case convergence time will be dictated by the slower of the two.<a href="#section-appendix.b-1" class="pilcrow">¶</a></p>
<p id="section-appendix.b-2">The Hello interval is the most important time constant: an outage or
a mobility event is detected within 1.5 to 3.5 Hello intervals.  Due to
Babel's use of a redundant route table, and due to its reliance on
triggered updates and explicit requests, the Update interval has little
influence on the time needed to reconverge after an outage: in practice,
it only has a significant effect on the time needed to acquire new routes
after a mobility event.  While the protocol allows intervals as low as
10 ms, such low values would cause significant amounts of protocol traffic
for little practical benefit.<a href="#section-appendix.b-2" class="pilcrow">¶</a></p>
<p id="section-appendix.b-3">The following values have been found to work well in a variety of
environments and are therefore <span class="bcp14">RECOMMENDED</span> default values:<a href="#section-appendix.b-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-appendix.b-4">
        <dt id="section-appendix.b-4.1">Multicast Hello interval:</dt>
        <dd style="margin-left: 5.0em" id="section-appendix.b-4.2">4 seconds.<a href="#section-appendix.b-4.2" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-appendix.b-4.3">Unicast Hello interval:</dt>
        <dd style="margin-left: 5.0em" id="section-appendix.b-4.4">infinite (no Unicast Hellos are sent).<a href="#section-appendix.b-4.4" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-appendix.b-4.5">Link cost:</dt>
        <dd style="margin-left: 5.0em" id="section-appendix.b-4.6">estimated using ETX on wireless links; 2-out-of-3 with C=96
on wired links.<a href="#section-appendix.b-4.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-appendix.b-4.7">IHU interval:</dt>
        <dd style="margin-left: 5.0em" id="section-appendix.b-4.8">the advertised IHU interval is always 3 times the
Multicast Hello interval.  IHUs are actually sent with each Hello on lossy
links (as determined from the Hello history), but only with every third
Multicast Hello on lossless links.<a href="#section-appendix.b-4.8" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-appendix.b-4.9">Update interval:</dt>
        <dd style="margin-left: 5.0em" id="section-appendix.b-4.10">4 times the Multicast Hello interval.<a href="#section-appendix.b-4.10" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-appendix.b-4.11">IHU Hold time:</dt>
        <dd style="margin-left: 5.0em" id="section-appendix.b-4.12">3.5 times the advertised IHU interval.<a href="#section-appendix.b-4.12" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-appendix.b-4.13">Route Expiry time:</dt>
        <dd style="margin-left: 5.0em" id="section-appendix.b-4.14">3.5 times the advertised update interval.<a href="#section-appendix.b-4.14" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-appendix.b-4.15">Request timeout:</dt>
        <dd style="margin-left: 5.0em" id="section-appendix.b-4.16">initially 2 seconds, doubled every time a request is
resent, up to a maximum of three times.<a href="#section-appendix.b-4.16" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-appendix.b-4.17">Urgent timeout:</dt>
        <dd style="margin-left: 5.0em" id="section-appendix.b-4.18">0.2 seconds.<a href="#section-appendix.b-4.18" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-appendix.b-4.19">Source GC time:</dt>
        <dd style="margin-left: 5.0em" id="section-appendix.b-4.20">3 minutes.<a href="#section-appendix.b-4.20" class="pilcrow">¶</a>
</dd>
      <dd class="break"></dd>
</dl>
</section>
</div>
<div id="filtering">
<section id="section-appendix.c">
      <h2 id="name-route-filtering">
<a href="#section-appendix.c" class="section-number selfRef">Appendix C. </a><a href="#name-route-filtering" class="section-name selfRef">Route Filtering</a>
      </h2>
<p id="section-appendix.c-1">Route filtering is a procedure where an instance of a routing protocol
either discards some of the routes announced by its neighbours or learns
them with a metric that is higher than what would be expected.  Like all
distance-vector protocols, Babel has the ability to apply arbitrary
filtering to the routes it learns, and implementations of Babel that apply
different sets of filtering rules will interoperate without causing
routing loops.  The protocol's ability to perform route filtering is
a consequence of the latitude given in <a href="#metric-computation" class="xref">Section 3.5.2</a>:
Babel can use any metric that is strictly monotonic, including one that
assigns an infinite metric to a selected subset of routes.  (See also
<a href="#handling-requests" class="xref">Section 3.8.1</a>, where requests for nonexistent routes
are treated in the same way as requests for routes with infinite metric.)<a href="#section-appendix.c-1" class="pilcrow">¶</a></p>
<p id="section-appendix.c-2">It is not in general correct to learn a route with a metric smaller
than the one it was announced with, or to replace a route's destination
prefix with a more specific (longer) one.  Doing either of these may cause
persistent routing loops.<a href="#section-appendix.c-2" class="pilcrow">¶</a></p>
<p id="section-appendix.c-3">Route filtering is a useful tool, since it allows fine-grained tuning
of the routing decisions made by the routing protocol.  Accordingly, some
implementations of Babel implement a rich configuration language that
allows applying filtering to sets of routes defined, for example, by
incoming interface and destination prefix.<a href="#section-appendix.c-3" class="pilcrow">¶</a></p>
<p id="section-appendix.c-4">In order to limit the consequences of misconfiguration, Babel
implementations provide a reasonable set of default filtering rules even
when they don't allow configuration of filtering by the user.  At
a minimum, they discard routes with a destination prefix in fe80::/64,
ff00::/8, 127.0.0.1/32, 0.0.0.0/32, and 224.0.0.0/8.<a href="#section-appendix.c-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="extensions">
<section id="section-appendix.d">
      <h2 id="name-considerations-for-protocol">
<a href="#section-appendix.d" class="section-number selfRef">Appendix D. </a><a href="#name-considerations-for-protocol" class="section-name selfRef">Considerations for Protocol Extensions</a>
      </h2>
<p id="section-appendix.d-1">Babel is an extensible protocol, and this document defines a number of
mechanisms that can be used to extend the protocol in a backwards
compatible manner:<a href="#section-appendix.d-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-appendix.d-2.1">increasing the version number in the packet header;<a href="#section-appendix.d-2.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-appendix.d-2.2">defining new TLVs;<a href="#section-appendix.d-2.2" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-appendix.d-2.3">defining new sub-TLVs (with or without the mandatory bit set);<a href="#section-appendix.d-2.3" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-appendix.d-2.4">defining new AEs;<a href="#section-appendix.d-2.4" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-appendix.d-2.5">using the packet trailer.<a href="#section-appendix.d-2.5" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-appendix.d-3">This appendix is intended to guide designers of protocol extensions in
choosing a particular encoding.<a href="#section-appendix.d-3" class="pilcrow">¶</a></p>
<p id="section-appendix.d-4">The version number in the Babel header should only be increased if the
new version is not backwards compatible with the original protocol.<a href="#section-appendix.d-4" class="pilcrow">¶</a></p>
<p id="section-appendix.d-5">In many cases, an extension could be implemented either by defining
a new TLV or by adding a new sub-TLV to an existing TLV.  For example, an
extension whose purpose is to attach additional data to route updates can
be implemented either by creating a new "enriched" Update TLV, by adding
a nonmandatory sub-TLV to the Update TLV, or by adding a mandatory
sub-TLV.<a href="#section-appendix.d-5" class="pilcrow">¶</a></p>
<p id="section-appendix.d-6">The various encodings are treated differently by implementations that
do not understand the extension.  In the case of a new TLV or of a sub-TLV
with the mandatory bit set, the whole TLV is ignored by implementations
that do not implement the extension, while in the case of a nonmandatory
sub-TLV, the TLV is parsed and acted upon, and only the unknown sub-TLV is
silently ignored.  Therefore, a nonmandatory sub-TLV should be used by
extensions that extend the Update in a compatible manner (the extension
data may be silently ignored), while a mandatory sub-TLV or a new TLV must
be used by extensions that make incompatible extensions to the meaning of
the TLV (the whole TLV must be thrown away if the extension data is not
understood).<a href="#section-appendix.d-6" class="pilcrow">¶</a></p>
<p id="section-appendix.d-7">Experience shows that the need for additional data tends to crop up in
the most unexpected places.  Hence, it is recommended that extensions that
define new TLVs should make them self-terminating and allow attaching
sub-TLVs to them.<a href="#section-appendix.d-7" class="pilcrow">¶</a></p>
<p id="section-appendix.d-8">Adding a new AE is essentially equivalent to adding a new TLV: Update
TLVs with an unknown AE are ignored, just like unknown TLVs.  However,
adding a new AE is more involved than adding a new TLV, since it creates
a new set of compression state.  Additionally, since the Next Hop TLV
creates state specific to a given address family, as opposed to a given
AE, a new AE for a previously defined address family must not be used in
the Next Hop TLV if backwards compatibility is required.  A similar issue
arises with Update TLVs with unknown AEs establishing a new router-id (due
to the Router-Id flag being set).  Therefore, defining new AEs must be
done with care if compatibility with unextended implementations is
required.<a href="#section-appendix.d-8" class="pilcrow">¶</a></p>
<p id="section-appendix.d-9">The packet trailer is intended to carry cryptographic signatures that
only cover the packet body; storing the cryptographic signatures in the
packet trailer avoids clearing the signature before computing a hash of
the packet body, and makes it possible to check a cryptographic signature
before running the full, stateful TLV parser.  Hence, only TLVs that don't
need to be protected by cryptographic security protocols should be allowed
in the packet trailer.  Any such TLVs should be easy to parse and, in
particular, should not require stateful parsing.<a href="#section-appendix.d-9" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-appendix.e">
      <h2 id="name-stub-implementations">
<a href="#section-appendix.e" class="section-number selfRef">Appendix E. </a><a href="#name-stub-implementations" class="section-name selfRef">Stub Implementations</a>
      </h2>
<p id="section-appendix.e-1">Babel is a fairly economic protocol.  Updates take between 12 and 40
octets per destination, depending on the address family and how successful
compression is; in a dual-stack flat network, an average of less than 24
octets per update is typical.  The route table occupies about 35 octets
per IPv6 entry.  To put these values into perspective, a single full-size
Ethernet frame can carry some 65 route updates, and a megabyte of memory
can contain a 20,000-entry route table and the associated source table.<a href="#section-appendix.e-1" class="pilcrow">¶</a></p>
<p id="section-appendix.e-2">Babel is also a reasonably simple protocol.  One complete implementation
consists of less than 12,000 lines of C code, and it compiles to less
than 120 KB of text on a 32-bit CISC architecture; about half of this
figure is due to protocol extensions and user-interface code.<a href="#section-appendix.e-2" class="pilcrow">¶</a></p>
<p id="section-appendix.e-3">Nonetheless, in some very constrained environments, such as PDAs,
microwave ovens, or abacuses, it may be desirable to have subset
implementations of the protocol.<a href="#section-appendix.e-3" class="pilcrow">¶</a></p>
<p id="section-appendix.e-4">There are many different definitions of a stub router, but for the
needs of this section, a stub implementation of Babel is one that announces
one or more directly attached prefixes into a Babel network but doesn't
re-announce any routes that it has learnt from its neighbours, and always
prefers the direct route to a directly attached prefix to a route learnt
over the Babel protocol, even when the prefixes are the same.  It may
either maintain a full routing table or simply select a default gateway
through any one of its neighbours that announces a default route.  Since
a stub implementation never forwards packets except from or to a directly
attached link, it cannot possibly participate in a routing loop, and hence
it need not evaluate the feasibility condition or maintain a source
table.<a href="#section-appendix.e-4" class="pilcrow">¶</a></p>
<p id="section-appendix.e-5">No matter how primitive, a stub implementation must parse sub-TLVs
attached to any TLVs that it understands and check the mandatory bit.
It must answer acknowledgment requests and must participate in the
Hello/IHU protocol.  It must also be able to reply to seqno requests for
routes that it announces, and it should be able to reply to route
requests.<a href="#section-appendix.e-5" class="pilcrow">¶</a></p>
<p id="section-appendix.e-6">Experience shows that an IPv6-only stub implementation of Babel can be
written in less than 1,000 lines of C code and compile to 13 KB of
text on 32-bit CISC architecture.<a href="#section-appendix.e-6" class="pilcrow">¶</a></p>
</section>
<section id="section-appendix.f">
      <h2 id="name-compatibility-with-previous">
<a href="#section-appendix.f" class="section-number selfRef">Appendix F. </a><a href="#name-compatibility-with-previous" class="section-name selfRef">Compatibility with Previous Versions</a>
      </h2>
<p id="section-appendix.f-1">The protocol defined in this document is a successor to the protocol
defined in <span>[<a href="#RFC6126" class="xref">RFC6126</a>]</span> and <span>[<a href="#RFC7557" class="xref">RFC7557</a>]</span>.  While
the two protocols are not entirely compatible, the new protocol has been
designed so that it can be deployed in existing RFC 6126 networks without
requiring a flag day.<a href="#section-appendix.f-1" class="pilcrow">¶</a></p>
<p id="section-appendix.f-2">There are three optional features that make this protocol
incompatible with its predecessor.  First of all, RFC 6126 did not define
Unicast Hellos (<a href="#reverse-reachability" class="xref">Section 3.4.1</a>), and an
implementation of RFC 6126 will misinterpret a Unicast Hello for
a Multicast one; since the sequence number space of Unicast Hellos is
distinct from the sequence number space of Multicast Hellos, sending a Unicast
Hello to an implementation of RFC 6126 will confuse its link quality
estimator.  Second, RFC 6126 did not define unscheduled Hellos, and an
implementation of RFC 6126 will mis-parse Hellos with an interval equal to
0.  Finally, RFC 7557 did not define mandatory sub-TLVs 
(<a href="#sub-tlv-format" class="xref">Section 4.4</a>), and thus an implementation of RFCs 6126 and
7557 will not correctly ignore a TLV that carries an unknown mandatory
sub-TLV; depending on the sub-TLV, this might cause routing pathologies.<a href="#section-appendix.f-2" class="pilcrow">¶</a></p>
<p id="section-appendix.f-3">An implementation of this specification that never sends Unicast or
unscheduled Hellos and doesn't implement any extensions that use mandatory
sub-TLVs is safe to deploy in a network in which some nodes implement the
protocol described in RFCs 6126 and 7557.<a href="#section-appendix.f-3" class="pilcrow">¶</a></p>
<p id="section-appendix.f-4">Two changes need to be made to an implementation of RFCs 6126 and 7557
so that it can safely interoperate in all cases with implementations of
this protocol.  First, it needs to be modified either to ignore or to process
Unicast and unscheduled Hellos.  Second, it needs to be modified to parse
sub-TLVs of all the TLVs that it understands and that allow sub-TLVs, and
to ignore the TLV if an unknown mandatory sub-TLV is found.  It is not
necessary to parse unknown TLVs, as these are ignored in any case.<a href="#section-appendix.f-4" class="pilcrow">¶</a></p>
<p id="section-appendix.f-5">There are other changes, but these are not of a nature to prevent
interoperability:<a href="#section-appendix.f-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-appendix.f-6.1">the conditions on route acquisition (<a href="#route-acquisition" class="xref">Section 3.5.3</a>)
have been relaxed;<a href="#section-appendix.f-6.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-appendix.f-6.2">route selection should no longer use the route's sequence number
(<a href="#route-selection" class="xref">Section 3.6</a>);<a href="#section-appendix.f-6.2" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-appendix.f-6.3">the format of the packet trailer has been defined
(<a href="#packet-format" class="xref">Section 4.2</a>);<a href="#section-appendix.f-6.3" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-appendix.f-6.4">router-ids with a value of all-zeros or all-ones have been forbidden
(<a href="#router-id-def" class="xref">Section 4.1.3</a>);<a href="#section-appendix.f-6.4" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-appendix.f-6.5">the compression state is now specific to an address family rather than
an address encoding (<a href="#parser-state" class="xref">Section 4.5</a>);<a href="#section-appendix.f-6.5" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-appendix.f-6.6">packet pacing is now recommended
(<a href="#transmission-reception" class="xref">Section 3.1</a>).<a href="#section-appendix.f-6.6" class="pilcrow">¶</a>
</li>
      </ul>
</section>
<section id="section-appendix.g">
      <h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
      </h2>
<p id="section-appendix.g-1">A number of people have contributed text and ideas to this
specification.  The authors are particularly indebted to <span class="contact-name">Matthieu Boutier</span>,
<span class="contact-name">Gwendoline Chouasne</span>, <span class="contact-name">Margaret Cullen</span>, 
<span class="contact-name">Donald Eastlake</span>, <span class="contact-name">Toke Høiland-Jørgensen</span>, 
<span class="contact-name">Benjamin Kaduk</span>, <span class="contact-name">Joao Sobrinho</span>, and 
<span class="contact-name">Martin Vigoureux</span>.
The previous version of this specification <span>[<a href="#RFC6126" class="xref">RFC6126</a>]</span>  
greatly benefited from the input of <span class="contact-name">Joel Halpern</span>.  The address compression
technique was inspired by <span>[<a href="#RFC5444" class="xref">PACKETBB</a>]</span>.<a href="#section-appendix.g-1" class="pilcrow">¶</a></p>
</section>
<div id="authors-addresses">
<section id="section-appendix.h">
      <h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Juliusz Chroboczek</span></div>
<div dir="auto" class="left"><span class="org">IRIF, University of Paris-Diderot</span></div>
<div dir="auto" class="left"><span class="street-address">Case 7014</span></div>
<div dir="auto" class="left">
<span class="postal-code">75205</span> <span class="locality">Paris CEDEX 13</span>
</div>
<div dir="auto" class="left"><span class="country-name">France</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jch@irif.fr" class="email">jch@irif.fr</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">David Schinazi</span></div>
<div dir="auto" class="left"><span class="org">Google LLC</span></div>
<div dir="auto" class="left"><span class="street-address">1600 Amphitheatre Parkway</span></div>
<div dir="auto" class="left">
<span class="locality">Mountain View</span>, <span class="region">California</span> <span class="postal-code">94043</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:dschinazi.ietf@gmail.com" class="email">dschinazi.ietf@gmail.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
  toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
  toc.classList.remove("active");
});
</script>
</body>
</html>