1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 8966: The Babel Routing Protocol</title>
<meta content="Juliusz Chroboczek" name="author">
<meta content="David Schinazi" name="author">
<meta content="
Babel is a loop-avoiding, distance-vector routing protocol that is
robust and efficient both in ordinary wired networks and in wireless mesh
networks. This document describes the Babel routing protocol and
obsoletes RFC 6126 and RFC 7557.
" name="description">
<meta content="xml2rfc 3.5.0" name="generator">
<meta content="Bellman-Ford" name="keyword">
<meta content="IGP" name="keyword">
<meta content="loop-avoidance" name="keyword">
<meta content="mesh network" name="keyword">
<meta content="8966" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.5.0
Python 3.6.10
appdirs 1.4.4
ConfigArgParse 1.2.3
google-i18n-address 2.3.5
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.2
kitchen 1.2.6
lxml 4.4.2
pycairo 1.19.0
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.3.1
requests 2.22.0
setuptools 40.6.2
six 1.14.0
WeasyPrint 51
-->
<link href="rfc8966.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: avoid-page;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc8966" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-babel-rfc6126bis-20" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 8966</td>
<td class="center">The Babel Routing Protocol</td>
<td class="right">January 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Chroboczek & Schinazi</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc8966" class="eref">8966</a></dd>
<dt class="label-obsoletes">Obsoletes:</dt>
<dd class="obsoletes">
<a href="https://www.rfc-editor.org/rfc/rfc6126" class="eref">6126</a>, <a href="https://www.rfc-editor.org/rfc/rfc7557" class="eref">7557</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-01" class="published">January 2021</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">J. Chroboczek</div>
<div class="org">IRIF, University of Paris-Diderot</div>
</div>
<div class="author">
<div class="author-name">D. Schinazi</div>
<div class="org">Google LLC</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 8966</h1>
<h1 id="title">The Babel Routing Protocol</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">Babel is a loop-avoiding, distance-vector routing protocol that is
robust and efficient both in ordinary wired networks and in wireless mesh
networks. This document describes the Babel routing protocol and
obsoletes RFC 6126 and RFC 7557.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc8966">https://www.rfc-editor.org/info/rfc8966</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a><a href="#section-toc.1-1.1.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.1.2.1">
<p id="section-toc.1-1.1.2.1.1" class="keepWithNext"><a href="#section-1.1" class="xref">1.1</a>. <a href="#name-features" class="xref">Features</a><a href="#section-toc.1-1.1.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.1.2.2">
<p id="section-toc.1-1.1.2.2.1" class="keepWithNext"><a href="#section-1.2" class="xref">1.2</a>. <a href="#name-limitations" class="xref">Limitations</a><a href="#section-toc.1-1.1.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.1.2.3">
<p id="section-toc.1-1.1.2.3.1" class="keepWithNext"><a href="#section-1.3" class="xref">1.3</a>. <a href="#name-specification-of-requiremen" class="xref">Specification of Requirements</a><a href="#section-toc.1-1.1.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-conceptual-description-of-t" class="xref">Conceptual Description of the Protocol</a><a href="#section-toc.1-1.2.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-costs-metrics-and-neighbour" class="xref">Costs, Metrics, and Neighbourship</a><a href="#section-toc.1-1.2.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1"><a href="#section-2.2" class="xref">2.2</a>. <a href="#name-the-bellman-ford-algorithm" class="xref">The Bellman-Ford Algorithm</a><a href="#section-toc.1-1.2.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.3">
<p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="xref">2.3</a>. <a href="#name-transient-loops-in-bellman-" class="xref">Transient Loops in Bellman-Ford</a><a href="#section-toc.1-1.2.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.4">
<p id="section-toc.1-1.2.2.4.1"><a href="#section-2.4" class="xref">2.4</a>. <a href="#name-feasibility-conditions" class="xref">Feasibility Conditions</a><a href="#section-toc.1-1.2.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.5">
<p id="section-toc.1-1.2.2.5.1"><a href="#section-2.5" class="xref">2.5</a>. <a href="#name-solving-starvation-sequenci" class="xref">Solving Starvation: Sequencing Routes</a><a href="#section-toc.1-1.2.2.5.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.6">
<p id="section-toc.1-1.2.2.6.1"><a href="#section-2.6" class="xref">2.6</a>. <a href="#name-requests" class="xref">Requests</a><a href="#section-toc.1-1.2.2.6.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.7">
<p id="section-toc.1-1.2.2.7.1"><a href="#section-2.7" class="xref">2.7</a>. <a href="#name-multiple-routers" class="xref">Multiple Routers</a><a href="#section-toc.1-1.2.2.7.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.8">
<p id="section-toc.1-1.2.2.8.1"><a href="#section-2.8" class="xref">2.8</a>. <a href="#name-overlapping-prefixes" class="xref">Overlapping Prefixes</a><a href="#section-toc.1-1.2.2.8.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-protocol-operation" class="xref">Protocol Operation</a><a href="#section-toc.1-1.3.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>. <a href="#name-message-transmission-and-re" class="xref">Message Transmission and Reception</a><a href="#section-toc.1-1.3.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>. <a href="#name-data-structures" class="xref">Data Structures</a><a href="#section-toc.1-1.3.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.3.2.3">
<p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>. <a href="#name-acknowledgments-and-acknowl" class="xref">Acknowledgments and Acknowledgment Requests</a><a href="#section-toc.1-1.3.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.3.2.4">
<p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="xref">3.4</a>. <a href="#name-neighbour-acquisition" class="xref">Neighbour Acquisition</a><a href="#section-toc.1-1.3.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.3.2.5">
<p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="xref">3.5</a>. <a href="#name-routing-table-maintenance" class="xref">Routing Table Maintenance</a><a href="#section-toc.1-1.3.2.5.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.3.2.6">
<p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="xref">3.6</a>. <a href="#name-route-selection" class="xref">Route Selection</a><a href="#section-toc.1-1.3.2.6.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.3.2.7">
<p id="section-toc.1-1.3.2.7.1"><a href="#section-3.7" class="xref">3.7</a>. <a href="#name-sending-updates" class="xref">Sending Updates</a><a href="#section-toc.1-1.3.2.7.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.3.2.8">
<p id="section-toc.1-1.3.2.8.1"><a href="#section-3.8" class="xref">3.8</a>. <a href="#name-explicit-requests" class="xref">Explicit Requests</a><a href="#section-toc.1-1.3.2.8.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-protocol-encoding" class="xref">Protocol Encoding</a><a href="#section-toc.1-1.4.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-data-types" class="xref">Data Types</a><a href="#section-toc.1-1.4.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-packet-format" class="xref">Packet Format</a><a href="#section-toc.1-1.4.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-tlv-format" class="xref">TLV Format</a><a href="#section-toc.1-1.4.2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.4">
<p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>. <a href="#name-sub-tlv-format" class="xref">Sub-TLV Format</a><a href="#section-toc.1-1.4.2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.5">
<p id="section-toc.1-1.4.2.5.1"><a href="#section-4.5" class="xref">4.5</a>. <a href="#name-parser-state-and-encoding-o" class="xref">Parser State and Encoding of Updates</a><a href="#section-toc.1-1.4.2.5.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.6">
<p id="section-toc.1-1.4.2.6.1"><a href="#section-4.6" class="xref">4.6</a>. <a href="#name-details-of-specific-tlvs" class="xref">Details of Specific TLVs</a><a href="#section-toc.1-1.4.2.6.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.7">
<p id="section-toc.1-1.4.2.7.1"><a href="#section-4.7" class="xref">4.7</a>. <a href="#name-details-of-specific-sub-tlv" class="xref">Details of specific sub-TLVs</a><a href="#section-toc.1-1.4.2.7.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a><a href="#section-toc.1-1.5.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a><a href="#section-toc.1-1.6.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-references" class="xref">References</a><a href="#section-toc.1-1.7.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>. <a href="#name-normative-references" class="xref">Normative References</a><a href="#section-toc.1-1.7.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>. <a href="#name-informative-references" class="xref">Informative References</a><a href="#section-toc.1-1.7.2.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-appendix.a" class="xref">Appendix A</a>. <a href="#name-cost-and-metric-computation" class="xref">Cost and Metric Computation</a><a href="#section-toc.1-1.8.1" class="pilcrow">¶</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.8.2.1">
<p id="section-toc.1-1.8.2.1.1"><a href="#section-a.1" class="xref">A.1</a>. <a href="#name-maintaining-hello-history" class="xref">Maintaining Hello History</a><a href="#section-toc.1-1.8.2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.8.2.2">
<p id="section-toc.1-1.8.2.2.1"><a href="#section-a.2" class="xref">A.2</a>. <a href="#name-cost-computation-2" class="xref">Cost Computation</a><a href="#section-toc.1-1.8.2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.8.2.3">
<p id="section-toc.1-1.8.2.3.1"><a href="#section-a.3" class="xref">A.3</a>. <a href="#name-route-selection-and-hystere" class="xref">Route Selection and Hysteresis</a><a href="#section-toc.1-1.8.2.3.1" class="pilcrow">¶</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-appendix.b" class="xref">Appendix B</a>. <a href="#name-protocol-parameters" class="xref">Protocol Parameters</a><a href="#section-toc.1-1.9.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-appendix.c" class="xref">Appendix C</a>. <a href="#name-route-filtering" class="xref">Route Filtering</a><a href="#section-toc.1-1.10.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-appendix.d" class="xref">Appendix D</a>. <a href="#name-considerations-for-protocol" class="xref">Considerations for Protocol Extensions</a><a href="#section-toc.1-1.11.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-appendix.e" class="xref">Appendix E</a>. <a href="#name-stub-implementations" class="xref">Stub Implementations</a><a href="#section-toc.1-1.12.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#section-appendix.f" class="xref">Appendix F</a>. <a href="#name-compatibility-with-previous" class="xref">Compatibility with Previous Versions</a><a href="#section-toc.1-1.13.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#section-appendix.g" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a><a href="#section-toc.1-1.14.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.15">
<p id="section-toc.1-1.15.1"><a href="#section-appendix.h" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a><a href="#section-toc.1-1.15.1" class="pilcrow">¶</a></p>
</li>
</ul>
</nav>
</section>
</div>
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">Babel is a loop-avoiding distance-vector routing protocol that is
designed to be robust and efficient both in networks using prefix-based
routing and in networks using flat routing ("mesh networks"), and both in
relatively stable wired networks and in highly dynamic wireless networks.
This document describes the Babel routing protocol and obsoletes
<span>[<a href="#RFC6126" class="xref">RFC6126</a>]</span> and <span>[<a href="#RFC7557" class="xref">RFC7557</a>]</span>.<a href="#section-1-1" class="pilcrow">¶</a></p>
<section id="section-1.1">
<h3 id="name-features">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-features" class="section-name selfRef">Features</a>
</h3>
<p id="section-1.1-1">The main property that makes Babel suitable for unstable networks is
that, unlike naive distance-vector routing protocols <span>[<a href="#RFC2453" class="xref">RIP</a>]</span>,
it strongly limits the frequency and duration of routing pathologies such
as routing loops and black-holes during reconvergence. Even after
a mobility event is detected, a Babel network usually remains loop-free.
Babel then quickly reconverges to a configuration that preserves the
loop-freedom and connectedness of the network, but is not necessarily
optimal; in many cases, this operation requires no packet exchanges at
all. Babel then slowly converges, in a time on the scale of minutes, to
an optimal configuration. This is achieved by using sequenced routes,
a technique pioneered by Destination-Sequenced Distance-Vector routing
<span>[<a href="#DSDV" class="xref">DSDV</a>]</span>.<a href="#section-1.1-1" class="pilcrow">¶</a></p>
<p id="section-1.1-2">More precisely, Babel has the following properties:<a href="#section-1.1-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1.1-3.1">when every prefix is originated by at most one router, Babel never
suffers from routing loops;<a href="#section-1.1-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.1-3.2">when a single prefix is originated by multiple routers, Babel may
occasionally create a transient routing loop for this particular prefix;
this loop disappears in time proportional to the loop's diameter, and never
again (up to an arbitrary garbage-collection (GC) time) will the routers
involved participate in a routing loop for the same prefix;<a href="#section-1.1-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.1-3.3">assuming bounded packet loss rates, any routing black-holes that
may appear after a mobility event are corrected in a time at most
proportional to the network's diameter.<a href="#section-1.1-3.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-1.1-4">Babel has provisions for link quality estimation and for fairly
arbitrary metrics. When configured suitably, Babel can implement
shortest-path routing, or it may use a metric based, for example, on
measured packet loss.<a href="#section-1.1-4" class="pilcrow">¶</a></p>
<p id="section-1.1-5">Babel nodes will successfully establish an association even when they
are configured with different parameters. For example, a mobile node that
is low on battery may choose to use larger time constants (hello and update
intervals, etc.) than a node that has access to wall power. Conversely, a
node that detects high levels of mobility may choose to use smaller time
constants. The ability to build such heterogeneous networks makes Babel
particularly adapted to the unmanaged or wireless environment.<a href="#section-1.1-5" class="pilcrow">¶</a></p>
<p id="section-1.1-6">Finally, Babel is a hybrid routing protocol, in the sense that it can
carry routes for multiple network-layer protocols (IPv4 and IPv6),
regardless of which protocol the Babel packets are themselves being
carried over.<a href="#section-1.1-6" class="pilcrow">¶</a></p>
</section>
<section id="section-1.2">
<h3 id="name-limitations">
<a href="#section-1.2" class="section-number selfRef">1.2. </a><a href="#name-limitations" class="section-name selfRef">Limitations</a>
</h3>
<p id="section-1.2-1">Babel has two limitations that make it unsuitable for use in some
environments. First, Babel relies on periodic routing table updates
rather than using a reliable transport; hence, in large, stable networks
it generates more traffic than protocols that only send updates when the
network topology changes. In such networks, protocols such as OSPF <span>[<a href="#RFC2328" class="xref">OSPF</a>]</span>, IS-IS <span>[<a href="#IS-IS" class="xref">IS-IS</a>]</span>, or the Enhanced Interior
Gateway Routing Protocol (EIGRP) <span>[<a href="#EIGRP" class="xref">EIGRP</a>]</span> might be more
suitable.<a href="#section-1.2-1" class="pilcrow">¶</a></p>
<p id="section-1.2-2">Second, unless the second algorithm described in <a href="#hold-time" class="xref">Section 3.5.4</a>
is implemented, Babel does impose a hold time when a prefix is retracted.
While this hold time does not apply to the exact prefix being retracted,
and hence does not prevent fast reconvergence should it become available
again, it does apply to any shorter prefix that covers it. This may make
those implementations of Babel that do not implement the optional
algorithm described in <a href="#hold-time" class="xref">Section 3.5.4</a> unsuitable for use in
networks that implement automatic prefix aggregation.<a href="#section-1.2-2" class="pilcrow">¶</a></p>
</section>
<section id="section-1.3">
<h3 id="name-specification-of-requiremen">
<a href="#section-1.3" class="section-number selfRef">1.3. </a><a href="#name-specification-of-requiremen" class="section-name selfRef">Specification of Requirements</a>
</h3>
<p id="section-1.3-1">
The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as
described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span>
<span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when,
they appear in all capitals, as shown here.<a href="#section-1.3-1" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-2">
<h2 id="name-conceptual-description-of-t">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-conceptual-description-of-t" class="section-name selfRef">Conceptual Description of the Protocol</a>
</h2>
<p id="section-2-1">Babel is a loop-avoiding distance-vector protocol: it is based on the
Bellman-Ford algorithm, just like the venerable RIP <span>[<a href="#RFC2453" class="xref">RIP</a>]</span>,
but includes a number of refinements that either prevent loop formation
altogether, or ensure that a loop disappears in a timely manner and
doesn't form again.<a href="#section-2-1" class="pilcrow">¶</a></p>
<p id="section-2-2">Conceptually, Bellman-Ford is executed in parallel for every source of
routing information (destination of data traffic). In the following
discussion, we fix a source S; the reader will recall that the same
algorithm is executed for all sources.<a href="#section-2-2" class="pilcrow">¶</a></p>
<section id="section-2.1">
<h3 id="name-costs-metrics-and-neighbour">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-costs-metrics-and-neighbour" class="section-name selfRef">Costs, Metrics, and Neighbourship</a>
</h3>
<p id="section-2.1-1">For every pair of neighbouring nodes A and B, Babel computes an
abstract value known as the cost of the link from A to B, written
C(A, B). Given a route between any two (not necessarily
neighbouring) nodes, the metric of the route is the sum of the costs of
all the links along the route. The goal of the routing algorithm is to
compute, for every source S, the tree of routes of lowest metric to S.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">Costs and metrics need not be integers. In general, they can be values
in any algebra that satisfies two fairly general conditions
(<a href="#metric-computation" class="xref">Section 3.5.2</a>).<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<p id="section-2.1-3">A Babel node periodically sends Hello messages to all of its
neighbours; it also periodically sends an IHU ("I Heard You") message to
every neighbour from which it has recently heard a Hello. From the
information derived from Hello and IHU messages received from its neighbour
B, a node A computes the cost C(A, B) of the link from A to B.<a href="#section-2.1-3" class="pilcrow">¶</a></p>
</section>
<section id="section-2.2">
<h3 id="name-the-bellman-ford-algorithm">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-the-bellman-ford-algorithm" class="section-name selfRef">The Bellman-Ford Algorithm</a>
</h3>
<p id="section-2.2-1">Every node A maintains two pieces of data: its estimated distance to S,
written D(A), and its next-hop router to S, written NH(A). Initially, D(S)
= 0, D(A) is infinite, and NH(A) is undefined.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2">Periodically, every node B sends to all of its neighbours a route
update, a message containing D(B). When a neighbour A of B receives the
route update, it checks whether B is its selected next hop; if that is the
case, then NH(A) is set to B, and D(A) is set to C(A, B) + D(B). If that
is not the case, then A compares C(A, B) + D(B) to its current value of
D(A). If that value is smaller, meaning that the received update
advertises a route that is better than the currently selected route, then
NH(A) is set to B, and D(A) is set to C(A, B) + D(B).<a href="#section-2.2-2" class="pilcrow">¶</a></p>
<p id="section-2.2-3">A number of refinements to this algorithm are possible, and are used by
Babel. In particular, convergence speed may be increased by sending
unscheduled "triggered updates" whenever a major change in the topology is
detected, in addition to the regular, scheduled updates. Additionally,
a node may maintain a number of alternate routes, which are being
advertised by neighbours other than its selected neighbour, and which can
be used immediately if the selected route were to fail.<a href="#section-2.2-3" class="pilcrow">¶</a></p>
</section>
<section id="section-2.3">
<h3 id="name-transient-loops-in-bellman-">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-transient-loops-in-bellman-" class="section-name selfRef">Transient Loops in Bellman-Ford</a>
</h3>
<p id="section-2.3-1">It is well known that a naive application of Bellman-Ford to distributed
routing can cause transient loops after a topology change. Consider for
example the following topology:<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.3-2">
<pre>
B
1 /|
1 / |
S --- A |1
\ |
1 \|
C
</pre><a href="#section-2.3-2" class="pilcrow">¶</a>
</div>
<p id="section-2.3-3">
After convergence, D(B) = D(C) = 2, with NH(B) = NH(C) = A.<a href="#section-2.3-3" class="pilcrow">¶</a></p>
<p id="section-2.3-4">Suppose now that the link between S and A fails:<a href="#section-2.3-4" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.3-5">
<pre>
B
1 /|
/ |
S A |1
\ |
1 \|
C
</pre><a href="#section-2.3-5" class="pilcrow">¶</a>
</div>
<p id="section-2.3-6">When it detects the failure of the link, A switches its next hop to
B (which is still advertising a route to S with metric 2), and advertises
a metric equal to 3, and then advertises a new route with metric 3. This
process of nodes changing selected neighbours and increasing their metric
continues until the advertised metric reaches "infinity", a value larger
than all the metrics that the routing protocol is able to carry.<a href="#section-2.3-6" class="pilcrow">¶</a></p>
</section>
<section id="section-2.4">
<h3 id="name-feasibility-conditions">
<a href="#section-2.4" class="section-number selfRef">2.4. </a><a href="#name-feasibility-conditions" class="section-name selfRef">Feasibility Conditions</a>
</h3>
<p id="section-2.4-1">Bellman-Ford is a very robust algorithm: its convergence properties
are preserved when routers delay route acquisition or when they
discard some updates. Babel routers discard received route
announcements unless they can prove that accepting them cannot
possibly cause a routing loop.<a href="#section-2.4-1" class="pilcrow">¶</a></p>
<p id="section-2.4-2">More formally, we define a condition over route announcements, known as
the "feasibility condition", that guarantees the absence of routing loops
whenever all routers ignore route updates that do not satisfy the
feasibility condition. In effect, this makes Bellman-Ford into a family
of routing algorithms, parameterised by the feasibility condition.<a href="#section-2.4-2" class="pilcrow">¶</a></p>
<p id="section-2.4-3">Many different feasibility conditions are possible. For example, BGP
can be modelled as being a distance-vector protocol with a (rather
drastic) feasibility condition: a routing update is only accepted when the
receiving node's AS number is not included in the update's AS_PATH
attribute (note that BGP's feasibility condition does not ensure the
absence of transient "micro-loops" during reconvergence).<a href="#section-2.4-3" class="pilcrow">¶</a></p>
<p id="section-2.4-4">Another simple feasibility condition, used in the Destination-Sequenced
Distance-Vector (DSDV) routing protocol <span>[<a href="#DSDV" class="xref">DSDV</a>]</span> and in the
Ad hoc On-Demand Distance Vector (AODV) protocol <span>[<a href="#RFC3561" class="xref">RFC3561</a>]</span>,
stems from the following observation: a routing loop can only arise after
a router has switched to a route with a larger metric than the route that
it had previously selected. Hence, one may define that a route is
feasible when its metric at the local node would be no larger than
the metric of the currently selected route, i.e., an announcement carrying
a metric D(B) is accepted by A when C(A, B) + D(B) <= D(A). If all
routers obey this constraint, then the metric at every router is
nonincreasing, and the following invariant is always preserved: if A has
selected B as its next hop, then D(B) < D(A), which implies that the
forwarding graph is loop-free.<a href="#section-2.4-4" class="pilcrow">¶</a></p>
<p id="section-2.4-5">Babel uses a slightly more refined feasibility condition, derived from
EIGRP <span>[<a href="#DUAL" class="xref">DUAL</a>]</span>. Given a router A, define the feasibility
distance of A, written FD(A), as the smallest metric that A has ever
advertised for S to any of its neighbours. An update sent by a neighbour
B of A is feasible when the metric D(B) advertised by B is strictly
smaller than A's feasibility distance, i.e., when D(B) < FD(A).<a href="#section-2.4-5" class="pilcrow">¶</a></p>
<p id="section-2.4-6">It is easy to see that this latter condition is no more restrictive than
DSDV-feasibility. Suppose that node A obeys DSDV-feasibility; then D(A) is
nonincreasing, hence at all times D(A) <= FD(A). Suppose now that
A receives a DSDV-feasible update that advertises a metric D(B). Since the
update is DSDV-feasible, C(A, B) + D(B) <= D(A), hence D(B) < D(A),
and since D(A) <= FD(A), D(B) < FD(A).<a href="#section-2.4-6" class="pilcrow">¶</a></p>
<p id="section-2.4-7">To see that it is strictly less restrictive, consider the following
diagram, where A has selected the route through B, and D(A) = FD(A) = 2.
Since D(C) = 1 < FD(A), the alternate route through C is feasible for A,
although its metric C(A, C) + D(C) = 5 is larger than that of the
currently selected route:<a href="#section-2.4-7" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.4-8">
<pre>
B
1 / \ 1
/ \
S A
\ /
1 \ / 4
C
</pre><a href="#section-2.4-8" class="pilcrow">¶</a>
</div>
<p id="section-2.4-9">To show that this feasibility condition still guarantees loop-freedom,
recall that at the time when A accepts an update from B, the metric D(B)
announced by B is no smaller than FD(B); since it is smaller than FD(A),
at that point in time FD(B) < FD(A). Since this property is preserved
when A sends updates and also when it picks a different next hop, it
remains true at all times, which ensures that the forwarding graph has no
loops.<a href="#section-2.4-9" class="pilcrow">¶</a></p>
</section>
<section id="section-2.5">
<h3 id="name-solving-starvation-sequenci">
<a href="#section-2.5" class="section-number selfRef">2.5. </a><a href="#name-solving-starvation-sequenci" class="section-name selfRef">Solving Starvation: Sequencing Routes</a>
</h3>
<p id="section-2.5-1">Obviously, the feasibility conditions defined above cause starvation
when a router runs out of feasible routes. Consider the following diagram,
where both A and B have selected the direct route to S:<a href="#section-2.5-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.5-2">
<pre>
A
1 /| D(A) = 1
/ | FD(A) = 1
S |1
\ | D(B) = 2
2 \| FD(B) = 2
B
</pre><a href="#section-2.5-2" class="pilcrow">¶</a>
</div>
<p id="section-2.5-3">Suppose now that the link between A and S breaks:<a href="#section-2.5-3" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.5-4">
<pre>
A
|
| FD(A) = 1
S |1
\ | D(B) = 2
2 \| FD(B) = 2
B
</pre><a href="#section-2.5-4" class="pilcrow">¶</a>
</div>
<p id="section-2.5-5">The only route available from A to S, the one that goes through B, is
not feasible: A suffers from spurious starvation. At that point, the
whole subtree suffering from starvation must be reset, which is
essentially what EIGRP does when it performs a global synchronisation of
all the routers in the starving subtree (the "active" phase of EIGRP).<a href="#section-2.5-5" class="pilcrow">¶</a></p>
<p id="section-2.5-6">Babel reacts to starvation in a less drastic manner, by using sequenced
routes, a technique introduced by DSDV and adopted by AODV. In addition to
a metric, every route carries a sequence number, a nondecreasing integer
that is propagated unchanged through the network and is only ever
incremented by the source; a pair (s, m), where s is a sequence number and
m a metric, is called a distance.<a href="#section-2.5-6" class="pilcrow">¶</a></p>
<p id="section-2.5-7">A received update is feasible when either it is more recent than the
feasibility distance maintained by the receiving node, or it is equally
recent and the metric is strictly smaller. More formally, if FD(A) =
(s, m), then an update carrying the distance (s', m') is feasible
when either s' > s, or s = s' and m' < m.<a href="#section-2.5-7" class="pilcrow">¶</a></p>
<p id="section-2.5-8">Assuming the sequence number of S is 137, the diagram above becomes:<a href="#section-2.5-8" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.5-9">
<pre>
A
|
| FD(A) = (137, 1)
S |1
\ | D(B) = (137, 2)
2 \| FD(B) = (137, 2)
B
</pre><a href="#section-2.5-9" class="pilcrow">¶</a>
</div>
<p id="section-2.5-10">After S increases its sequence number, and the new sequence number is
propagated to B, we have:<a href="#section-2.5-10" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.5-11">
<pre>
A
|
| FD(A) = (137, 1)
S |1
\ | D(B) = (138, 2)
2 \| FD(B) = (138, 2)
B
</pre><a href="#section-2.5-11" class="pilcrow">¶</a>
</div>
<p id="section-2.5-12">
at which point the route through B becomes feasible again.<a href="#section-2.5-12" class="pilcrow">¶</a></p>
<p id="section-2.5-13">Note that while sequence numbers are used for determining feasibility,
they are not used in route selection: a node ignores the sequence number
when selecting the best route to a given destination
(<a href="#route-selection" class="xref">Section 3.6</a>). Doing otherwise would cause
route oscillation while a sequence number propagates through the network,
and might even cause persistent black-holes with some exotic metrics.<a href="#section-2.5-13" class="pilcrow">¶</a></p>
</section>
<section id="section-2.6">
<h3 id="name-requests">
<a href="#section-2.6" class="section-number selfRef">2.6. </a><a href="#name-requests" class="section-name selfRef">Requests</a>
</h3>
<p id="section-2.6-1">In DSDV, the sequence number of a source is increased periodically.
A route becomes feasible again after the source increases its sequence
number, and the new sequence number is propagated through the network,
which may, in general, require a significant amount of time.<a href="#section-2.6-1" class="pilcrow">¶</a></p>
<p id="section-2.6-2">Babel takes a different approach. When a node detects that it is
suffering from a potentially spurious starvation, it sends an explicit
request to the source for a new sequence number. This request is forwarded
hop by hop to the source, with no regard to the feasibility condition.
Upon receiving the request, the source increases its sequence number and
broadcasts an update, which is forwarded to the requesting node.<a href="#section-2.6-2" class="pilcrow">¶</a></p>
<p id="section-2.6-3">Note that after a change in network topology not all such requests
will, in general, reach the source, as some will be sent over links that
are now broken. However, if the network is still connected, then at least
one among the nodes suffering from spurious starvation has an (unfeasible)
route to the source; hence, in the absence of packet loss, at least one
such request will reach the source. (Resending requests a small number of
times compensates for packet loss.)<a href="#section-2.6-3" class="pilcrow">¶</a></p>
<p id="section-2.6-4">Since requests are forwarded with no regard to the feasibility
condition, they may, in general, be caught in a forwarding loop; this is
avoided by having nodes perform duplicate detection for the requests that
they forward.<a href="#section-2.6-4" class="pilcrow">¶</a></p>
</section>
<section id="section-2.7">
<h3 id="name-multiple-routers">
<a href="#section-2.7" class="section-number selfRef">2.7. </a><a href="#name-multiple-routers" class="section-name selfRef">Multiple Routers</a>
</h3>
<p id="section-2.7-1">The above discussion assumes that each prefix is originated by a single
router. In real networks, however, it is often necessary to have a single
prefix originated by multiple routers: for example, the default route will
be originated by all of the edge routers of a routing domain.<a href="#section-2.7-1" class="pilcrow">¶</a></p>
<p id="section-2.7-2">Since synchronising sequence numbers between distinct routers is
problematic, Babel treats routes for the same prefix as distinct entities
when they are originated by different routers: every route announcement
carries the router-id of its originating router, and feasibility distances
are not maintained per prefix, but per source, where a source is a pair of
a router-id and a prefix. In effect, Babel guarantees loop-freedom for the
forwarding graph to every source; since the union of multiple acyclic
graphs is not in general acyclic, Babel does not in general guarantee
loop-freedom when a prefix is originated by multiple routers, but any
loops will be broken in a time at most proportional to the diameter of the
loop -- as soon as an update has "gone around" the routing loop.<a href="#section-2.7-2" class="pilcrow">¶</a></p>
<p id="section-2.7-3">Consider for example the following topology, where A has selected the
default route through S, and B has selected the one through S':<a href="#section-2.7-3" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.7-4">
<pre>
1 1 1
::/0 -- S --- A --- B --- S' -- ::/0
</pre><a href="#section-2.7-4" class="pilcrow">¶</a>
</div>
<p id="section-2.7-5">Suppose that both default routes fail at the same time; then nothing
prevents A from switching to B, and B simultaneously switching to A.
However, as soon as A has successfully advertised the new route to B, the
route through A will become unfeasible for B. Conversely, as soon as
B will have advertised the route through A, the route through B will
become unfeasible for A.<a href="#section-2.7-5" class="pilcrow">¶</a></p>
<p id="section-2.7-6">In effect, the routing loop disappears at the latest when routing
information has gone around the loop. Since this process can be delayed by
lost packets, Babel makes certain efforts to ensure that updates are sent
reliably after a router-id change (<a href="#triggered-updates" class="xref">Section 3.7.2</a>).<a href="#section-2.7-6" class="pilcrow">¶</a></p>
<p id="section-2.7-7">Additionally, after the routers have advertised the two routes, both
sources will be in their source tables, which will prevent them from ever
again participating in a routing loop involving routes from S and S' (up to
the source GC time, which, available memory permitting, can be set to
arbitrarily large values).<a href="#section-2.7-7" class="pilcrow">¶</a></p>
</section>
<div id="overlapping-prefixes">
<section id="section-2.8">
<h3 id="name-overlapping-prefixes">
<a href="#section-2.8" class="section-number selfRef">2.8. </a><a href="#name-overlapping-prefixes" class="section-name selfRef">Overlapping Prefixes</a>
</h3>
<p id="section-2.8-1">In the above discussion, we have assumed that all prefixes are disjoint,
as is the case in flat ("mesh") routing. In practice, however, prefixes
may overlap: for example, the default route overlaps with all of the routes
present in the network.<a href="#section-2.8-1" class="pilcrow">¶</a></p>
<p id="section-2.8-2">After a route fails, it is not correct in general to switch to a route
that subsumes the failed route. Consider for example the following
configuration:<a href="#section-2.8-2" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-2.8-3">
<pre>
1 1
::/0 -- A --- B --- C
</pre><a href="#section-2.8-3" class="pilcrow">¶</a>
</div>
<p id="section-2.8-4">Suppose that node C fails. If B forwards packets destined to C by
following the default route, a routing loop will form, and persist until
A learns of B's retraction of the direct route to C. B avoids this
pitfall by installing an "unreachable" route after a route is retracted;
this route is maintained until it can be guaranteed that the former route
has been retracted by all of B's neighbours (<a href="#hold-time" class="xref">Section 3.5.4</a>).<a href="#section-2.8-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<section id="section-3">
<h2 id="name-protocol-operation">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-protocol-operation" class="section-name selfRef">Protocol Operation</a>
</h2>
<p id="section-3-1">Every Babel speaker is assigned a router-id, which is an arbitrary
string of 8 octets that is assumed unique across the routing domain. For
example, router-ids could be assigned randomly, or they could be derived
from a link-layer address. (The protocol encoding is slightly more
compact when router-ids are assigned in the same manner as the IPv6 layer
assigns host IDs; see the definition of the "R" flag in
<a href="#update" class="xref">Section 4.6.9</a>.)<a href="#section-3-1" class="pilcrow">¶</a></p>
<div id="transmission-reception">
<section id="section-3.1">
<h3 id="name-message-transmission-and-re">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-message-transmission-and-re" class="section-name selfRef">Message Transmission and Reception</a>
</h3>
<p id="section-3.1-1">Babel protocol packets are sent in the body of a UDP datagram (as
described in <a href="#protocol-encoding" class="xref">Section 4</a>). Each Babel packet
consists of zero or more TLVs. Most TLVs may contain sub-TLVs.<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<p id="section-3.1-2">Babel's control traffic can be carried indifferently over IPv6
or over IPv4, and prefixes of either address family can be announced over
either protocol. Thus, there are at least two natural deployment models:
using IPv6 exclusively for all control traffic, or running two distinct
protocol instances, one for each address family. The exclusive use of
IPv6 for all control traffic is <span class="bcp14">RECOMMENDED</span>, since using both protocols at
the same time doubles the amount of traffic devoted to neighbour discovery
and link quality estimation.<a href="#section-3.1-2" class="pilcrow">¶</a></p>
<p id="section-3.1-3">The source address of a Babel packet is always a unicast address,
link-local in the case of IPv6. Babel packets may be sent to a well-known
(link-local) multicast address or to a (link-local) unicast address. In
normal operation, a Babel speaker sends both multicast and unicast packets
to its neighbours.<a href="#section-3.1-3" class="pilcrow">¶</a></p>
<p id="section-3.1-4">With the exception of acknowledgments, all Babel TLVs
can be sent to either unicast or multicast addresses, and their semantics
does not depend on whether the destination is a unicast or a multicast
address. Hence, a Babel speaker does not need to determine the destination
address of a packet that it receives in order to interpret it.<a href="#section-3.1-4" class="pilcrow">¶</a></p>
<p id="section-3.1-5">A moderate amount of jitter may be applied to packets sent by a Babel
speaker: outgoing TLVs are buffered and <span class="bcp14">SHOULD</span> be sent with a random
delay. This is done for two purposes: it avoids synchronisation of
multiple Babel speakers across a network <span>[<a href="#JITTER" class="xref">JITTER</a>]</span>, and it
allows for the aggregation of multiple TLVs into a single packet.<a href="#section-3.1-5" class="pilcrow">¶</a></p>
<p id="section-3.1-6">The maximum amount of delay a TLV can be subjected to depends on the
TLV. When the protocol description specifies that a TLV is urgent (as in
<a href="#triggered-updates" class="xref">Section 3.7.2</a> and <a href="#handling-requests" class="xref">Section 3.8.1</a>),
then the TLV <span class="bcp14">MUST</span> be sent within a short time known as the urgent timeout
(see <a href="#parameters" class="xref">Appendix B</a> for recommended values). When the TLV is
governed by a timeout explicitly included in a previous TLV, such as in
the case of Acknowledgments (<a href="#ack" class="xref">Section 4.6.4</a>),
Updates (<a href="#sending-updates" class="xref">Section 3.7</a>), and IHUs
(<a href="#bidirectional-reachability" class="xref">Section 3.4.2</a>), then the TLV <span class="bcp14">MUST</span> be sent
early enough to meet the explicit deadline (with a small margin to allow
for propagation delays). In all other cases, the TLV <span class="bcp14">SHOULD</span> be sent out
within one-half of the Multicast Hello interval.<a href="#section-3.1-6" class="pilcrow">¶</a></p>
<p id="section-3.1-7">In order to avoid packet drops (either at the sender or at the
receiver), a delay <span class="bcp14">SHOULD</span> be introduced between successive packets sent
out on the same interface, within the constraints of the previous
paragraph. Note, however, that such packet pacing might impair the ability
of some link layers (e.g., IEEE 802.11 <span>[<a href="#IEEE802.11" class="xref">IEEE802.11</a>]</span>)
to perform packet aggregation.<a href="#section-3.1-7" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.2">
<h3 id="name-data-structures">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-data-structures" class="section-name selfRef">Data Structures</a>
</h3>
<p id="section-3.2-1">In this section, we describe the data structures that
every Babel speaker maintains. This description is conceptual: a Babel
speaker may use different data structures as long as the resulting
protocol is the same as the one described in this document. For example,
rather than maintaining a single table containing both selected and
unselected (fallback) routes, as described in <a href="#route-table" class="xref">Section 3.2.6</a>,
an actual implementation would probably use two tables, one with
selected routes and one with fallback routes.<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<div id="sequence-number">
<section id="section-3.2.1">
<h4 id="name-sequence-number-arithmetic">
<a href="#section-3.2.1" class="section-number selfRef">3.2.1. </a><a href="#name-sequence-number-arithmetic" class="section-name selfRef">Sequence Number Arithmetic</a>
</h4>
<p id="section-3.2.1-1">Sequence numbers (seqnos) appear in a number of Babel data structures,
and they are interpreted as integers modulo 2<sup>16</sup>. For the purposes of
this document, arithmetic on sequence numbers is defined as follows.<a href="#section-3.2.1-1" class="pilcrow">¶</a></p>
<p id="section-3.2.1-2">Given a seqno s and a non-negative integer n, the sum of s and n is
defined by the following:<a href="#section-3.2.1-2" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.2.1-3">s + n (modulo 2<sup>16</sup>) = (s + n) MOD 2<sup>16</sup><a href="#section-3.2.1-3" class="pilcrow">¶</a></p>
<p id="section-3.2.1-4">
or, equivalently,<a href="#section-3.2.1-4" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.2.1-5">s + n (modulo 2<sup>16</sup>) = (s + n) AND 65535<a href="#section-3.2.1-5" class="pilcrow">¶</a></p>
<p id="section-3.2.1-6">
where MOD is the modulo operation yielding a non-negative integer, and AND is
the bitwise conjunction operation.<a href="#section-3.2.1-6" class="pilcrow">¶</a></p>
<p id="section-3.2.1-7">Given two sequence numbers s and s', the relation s is less than s'
(s < s') is defined by the following:<a href="#section-3.2.1-7" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.2.1-8">s < s' (modulo 2<sup>16</sup>) when 0 < ((s' - s) MOD 2<sup>16</sup>) < 32768<a href="#section-3.2.1-8" class="pilcrow">¶</a></p>
<p id="section-3.2.1-9">
or, equivalently,<a href="#section-3.2.1-9" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.2.1-10">s < s' (modulo 2<sup>16</sup>) when s /= s' and ((s' - s) AND 32768) = 0.<a href="#section-3.2.1-10" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.2.2">
<h4 id="name-node-sequence-number">
<a href="#section-3.2.2" class="section-number selfRef">3.2.2. </a><a href="#name-node-sequence-number" class="section-name selfRef">Node Sequence Number</a>
</h4>
<p id="section-3.2.2-1">A node's sequence number is a 16-bit integer that is included in route
updates sent for routes originated by this node.<a href="#section-3.2.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2.2-2">A node increments its sequence number (modulo 2<sup>16</sup>) whenever it
receives a request for a new sequence number (<a href="#handling-seqno-requests" class="xref">Section 3.8.1.2</a>). A node <span class="bcp14">SHOULD NOT</span> increment its
sequence number (seqno) spontaneously, since increasing seqnos makes it
less likely that other nodes will have feasible alternate routes when
their selected routes fail.<a href="#section-3.2.2-2" class="pilcrow">¶</a></p>
</section>
<section id="section-3.2.3">
<h4 id="name-the-interface-table">
<a href="#section-3.2.3" class="section-number selfRef">3.2.3. </a><a href="#name-the-interface-table" class="section-name selfRef">The Interface Table</a>
</h4>
<p id="section-3.2.3-1">The interface table contains the list of interfaces on which the node
speaks the Babel protocol. Every interface table entry contains the
interface's outgoing Multicast Hello seqno, a 16-bit integer that is sent
with each Multicast Hello TLV on this interface and is incremented (modulo
2<sup>16</sup>) whenever a Multicast Hello is sent. (Note that an interface's
Multicast Hello seqno is unrelated to the node's seqno.)<a href="#section-3.2.3-1" class="pilcrow">¶</a></p>
<p id="section-3.2.3-2">There are two timers associated with each interface table entry.
The periodic multicast hello timer governs the sending of scheduled
Multicast Hello and IHU packets (<a href="#neighbour-acquisition" class="xref">Section 3.4</a>).
The periodic Update timer governs the sending of periodic route updates
(<a href="#periodic-updates" class="xref">Section 3.7.1</a>). See <a href="#parameters" class="xref">Appendix B</a> for
suggested time constants.<a href="#section-3.2.3-2" class="pilcrow">¶</a></p>
</section>
<section id="section-3.2.4">
<h4 id="name-the-neighbour-table">
<a href="#section-3.2.4" class="section-number selfRef">3.2.4. </a><a href="#name-the-neighbour-table" class="section-name selfRef">The Neighbour Table</a>
</h4>
<p id="section-3.2.4-1">The neighbour table contains the list of all neighbouring interfaces
from which a Babel packet has been recently received. The neighbour table
is indexed by pairs of the form (interface, address), and every neighbour table
entry contains the following data:<a href="#section-3.2.4-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.4-2.1">the local node's interface over which this neighbour is reachable;<a href="#section-3.2.4-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.4-2.2">the address of the neighbouring interface;<a href="#section-3.2.4-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.4-2.3">a history of recently received Multicast Hello packets from this
neighbour; this can, for example, be a sequence of n bits, for some small
value n, indicating which of the n hellos most recently sent by this
neighbour have been received by the local node;<a href="#section-3.2.4-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.4-2.4">a history of recently received Unicast Hello packets from this neighbour;<a href="#section-3.2.4-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.4-2.5">the "transmission cost" value from the last IHU packet received from
this neighbour, or FFFF hexadecimal (infinity) if the IHU hold timer for
this neighbour has expired;<a href="#section-3.2.4-2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.4-2.6">the expected incoming Multicast Hello sequence number for this neighbour,
an integer modulo 2<sup>16</sup>.<a href="#section-3.2.4-2.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.4-2.7">the expected incoming Unicast Hello sequence number for this neighbour,
an integer modulo 2<sup>16</sup>.<a href="#section-3.2.4-2.7" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.4-2.8">the outgoing Unicast Hello sequence number for this neighbour, an integer
modulo 2<sup>16</sup> that is sent with each Unicast Hello TLV to this neighbour and
is incremented (modulo 2<sup>16</sup>) whenever a Unicast Hello is sent. (Note that
the outgoing Unicast Hello seqno for a neighbour is distinct from the
interface's outgoing Multicast Hello seqno.)<a href="#section-3.2.4-2.8" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2.4-3">There are three timers associated with each neighbour entry -- the
multicast hello timer, which is set to the interval value carried by
scheduled Multicast Hello TLVs sent by this neighbour, the unicast hello
timer, which is set to the interval value carried by scheduled Unicast
Hello TLVs, and the IHU timer, which is set to a small multiple of the
interval carried in IHU TLVs (see "IHU Hold time" in
<a href="#parameters" class="xref">Appendix B</a> for suggested values).<a href="#section-3.2.4-3" class="pilcrow">¶</a></p>
<p id="section-3.2.4-4">Note that the neighbour table is indexed by IP addresses, not by
router-ids: neighbourship is a relationship between interfaces, not between
nodes. Therefore, two nodes with multiple interfaces can participate in
multiple neighbourship relationships, a situation that can notably arise
when wireless nodes with multiple radios are involved.<a href="#section-3.2.4-4" class="pilcrow">¶</a></p>
</section>
<section id="section-3.2.5">
<h4 id="name-the-source-table">
<a href="#section-3.2.5" class="section-number selfRef">3.2.5. </a><a href="#name-the-source-table" class="section-name selfRef">The Source Table</a>
</h4>
<p id="section-3.2.5-1">The source table is used to record feasibility distances. It is indexed
by triples of the form (prefix, plen, router-id), and every source table
entry contains the following data:<a href="#section-3.2.5-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.5-2.1">the prefix (prefix, plen), where plen is the prefix length in bits,
that this entry applies to;<a href="#section-3.2.5-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.5-2.2">the router-id of a router originating this prefix;<a href="#section-3.2.5-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.5-2.3">a pair (seqno, metric), this source's feasibility distance.<a href="#section-3.2.5-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2.5-3">There is one timer associated with each entry in the source table
-- the source garbage-collection timer. It is initialised to a time
on the order of minutes and reset as specified in <a href="#maintaining-fd" class="xref">Section 3.7.3</a>.<a href="#section-3.2.5-3" class="pilcrow">¶</a></p>
</section>
<div id="route-table">
<section id="section-3.2.6">
<h4 id="name-the-route-table">
<a href="#section-3.2.6" class="section-number selfRef">3.2.6. </a><a href="#name-the-route-table" class="section-name selfRef">The Route Table</a>
</h4>
<p id="section-3.2.6-1">The route table contains the routes known to this node. It is indexed
by triples of the form (prefix, plen, neighbour), and every route table
entry contains the following data:<a href="#section-3.2.6-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.6-2.1">the source (prefix, plen, router-id) for which this route is advertised;<a href="#section-3.2.6-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.6-2.2">the neighbour (an entry in the neighbour table) that advertised this
route;<a href="#section-3.2.6-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.6-2.3">the metric with which this route was advertised by the neighbour, or
FFFF hexadecimal (infinity) for a recently retracted route;<a href="#section-3.2.6-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.6-2.4">the sequence number with which this route was advertised;<a href="#section-3.2.6-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.6-2.5">the next-hop address of this route;<a href="#section-3.2.6-2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.6-2.6">a boolean flag indicating whether this route is selected, i.e., whether
it is currently being used for forwarding and is being advertised.<a href="#section-3.2.6-2.6" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2.6-3">There is one timer associated with each route table entry -- the
route expiry timer. It is initialised and reset as specified in
<a href="#route-acquisition" class="xref">Section 3.5.3</a>.<a href="#section-3.2.6-3" class="pilcrow">¶</a></p>
<p id="section-3.2.6-4">Note that there are two distinct (seqno, metric) pairs associated with
each route: the route's distance, which is stored in the route table, and
the feasibility distance, which is stored in the source table and shared between
all routes with the same source.<a href="#section-3.2.6-4" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.2.7">
<h4 id="name-the-table-of-pending-seqno-">
<a href="#section-3.2.7" class="section-number selfRef">3.2.7. </a><a href="#name-the-table-of-pending-seqno-" class="section-name selfRef">The Table of Pending Seqno Requests</a>
</h4>
<p id="section-3.2.7-1">The table of pending seqno requests contains a list of seqno requests
that the local node has sent (either because they have been originated
locally, or because they were forwarded) and to which no reply has been
received yet. This table is indexed by triples of the form (prefix, plen,
router-id), and every entry in this table contains the following data:<a href="#section-3.2.7-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.7-2.1">the prefix, plen, router-id, and seqno being requested;<a href="#section-3.2.7-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.7-2.2">the neighbour, if any, on behalf of which we are forwarding this
request;<a href="#section-3.2.7-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.7-2.3">a small integer indicating the number of times that this request will be
resent if it remains unsatisfied.<a href="#section-3.2.7-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2.7-3">There is one timer associated with each pending seqno request; it governs
both the resending of requests and their expiry.<a href="#section-3.2.7-3" class="pilcrow">¶</a></p>
</section>
</section>
<div id="acknowledgments">
<section id="section-3.3">
<h3 id="name-acknowledgments-and-acknowl">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-acknowledgments-and-acknowl" class="section-name selfRef">Acknowledgments and Acknowledgment Requests</a>
</h3>
<p id="section-3.3-1">A Babel speaker may request that a neighbour receiving a given packet
reply with an explicit acknowledgment within a given time. While the use
of acknowledgment requests is optional, every Babel speaker <span class="bcp14">MUST</span> be able
to reply to such a request.<a href="#section-3.3-1" class="pilcrow">¶</a></p>
<p id="section-3.3-2">An acknowledgment <span class="bcp14">MUST</span> be sent to a unicast destination. On the other
hand, acknowledgment requests may be sent to either unicast or multicast
destinations, in which case they request an acknowledgment from all of the
receiving nodes.<a href="#section-3.3-2" class="pilcrow">¶</a></p>
<p id="section-3.3-3">When to request acknowledgments is a matter of local policy; the
simplest strategy is to never request acknowledgments and to rely on
periodic updates to ensure that any reachable routes are eventually
propagated throughout the routing domain. In order to improve convergence
speed and to reduce the amount of control traffic, acknowledgment requests
<span class="bcp14">MAY</span> be used in order to reliably send urgent updates (<a href="#triggered-updates" class="xref">Section 3.7.2</a>) and retractions (<a href="#hold-time" class="xref">Section 3.5.4</a>),
especially when the number of neighbours on a given interface is small.
Since Babel is designed to deal gracefully with packet loss on unreliable
media, sending all packets with acknowledgment requests is not necessary
and <span class="bcp14">NOT RECOMMENDED</span>, as the acknowledgments cause additional traffic and
may force additional Address Resolution Protocol (ARP) or Neighbour
Discovery (ND) exchanges.<a href="#section-3.3-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="neighbour-acquisition">
<section id="section-3.4">
<h3 id="name-neighbour-acquisition">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-neighbour-acquisition" class="section-name selfRef">Neighbour Acquisition</a>
</h3>
<p id="section-3.4-1">Neighbour acquisition is the process by which a Babel node discovers the
set of neighbours heard over each of its interfaces and ascertains
bidirectional reachability. On unreliable media, neighbour acquisition
additionally provides some statistics that may be useful for link quality
computation.<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<p id="section-3.4-2">Before it can exchange routing information with a neighbour, a Babel
node <span class="bcp14">MUST</span> create an entry for that neighbour in the neighbour table. When
to do that is implementation-specific; suitable strategies include
creating an entry when any Babel packet is received, or creating an entry
when a Hello TLV is parsed. Similarly, in order to conserve system
resources, an implementation <span class="bcp14">SHOULD</span> discard an entry when it has been
unused for long enough; suitable strategies include dropping the neighbour
after a timeout, and dropping a neighbour when the associated Hello
histories become empty (see <a href="#cost-computation-examples" class="xref">Appendix A.2</a>).<a href="#section-3.4-2" class="pilcrow">¶</a></p>
<div id="reverse-reachability">
<section id="section-3.4.1">
<h4 id="name-reverse-reachability-detect">
<a href="#section-3.4.1" class="section-number selfRef">3.4.1. </a><a href="#name-reverse-reachability-detect" class="section-name selfRef">Reverse Reachability Detection</a>
</h4>
<p id="section-3.4.1-1">Every Babel node sends Hello TLVs to its neighbours, at regular or irregular intervals, to indicate that it
is alive. Each Hello TLV carries an
increasing (modulo 2<sup>16</sup>) sequence number and an upper bound on the time
interval until the next Hello of the same type (see below). If the time
interval is set to 0, then the Hello TLV does not establish a new promise:
the deadline carried by the previous Hello of the same type still applies
to the next Hello (if the most recent scheduled Hello of the right kind
was received at time t0 and carried interval i, then the previous promise
of sending another Hello before time t0 + i still holds). We
say that a Hello is "scheduled" if it carries a nonzero interval, and
"unscheduled" otherwise.<a href="#section-3.4.1-1" class="pilcrow">¶</a></p>
<p id="section-3.4.1-2">There are two kinds of Hellos: Multicast Hellos, which use
a per-interface Hello counter (the Multicast Hello seqno), and Unicast
Hellos, which use a per-neighbour counter (the Unicast Hello seqno).
A Multicast Hello with a given seqno <span class="bcp14">MUST</span> be sent to all neighbours on
a given interface, either by sending it to a multicast address or by
sending it to one unicast address per neighbour (hence, the term
"Multicast Hello" is a slight misnomer). A Unicast Hello carrying a given
seqno should normally be sent to just one neighbour (over unicast), since
the sequence numbers of different neighbours are not in general
synchronised.<a href="#section-3.4.1-2" class="pilcrow">¶</a></p>
<p id="section-3.4.1-3">Multicast Hellos sent over multicast can be used for neighbour
discovery; hence, a node <span class="bcp14">SHOULD</span> send periodic (scheduled) Multicast Hellos
unless neighbour discovery is performed by means outside of the Babel
protocol. A node <span class="bcp14">MAY</span> send Unicast Hellos or unscheduled Hellos of either
kind for any reason, such as reducing the amount of multicast traffic or
improving reliability on link technologies with poor support for
link-layer multicast.<a href="#section-3.4.1-3" class="pilcrow">¶</a></p>
<p id="section-3.4.1-4">A node <span class="bcp14">MAY</span> send a scheduled Hello ahead of time. A node <span class="bcp14">MAY</span> change its
scheduled Hello interval. The Hello interval <span class="bcp14">MAY</span> be decreased at any
time; it <span class="bcp14">MAY</span> be increased immediately before sending a Hello TLV, but
<span class="bcp14">SHOULD NOT</span> be increased at other times. (Equivalently, a node <span class="bcp14">SHOULD</span> send
a scheduled Hello immediately after increasing its Hello interval.)<a href="#section-3.4.1-4" class="pilcrow">¶</a></p>
<p id="section-3.4.1-5">How to deal with received Hello TLVs and what statistics to maintain
are considered local implementation matters; typically, a node will
maintain some sort of history of recently received Hellos. An example of
a suitable algorithm is described in <a href="#hello-history" class="xref">Appendix A.1</a>.<a href="#section-3.4.1-5" class="pilcrow">¶</a></p>
<p id="section-3.4.1-6">After receiving a Hello, or determining that it has missed one, the node
recomputes the association's cost (<a href="#cost-computation" class="xref">Section 3.4.3</a>) and
runs the route selection procedure (<a href="#route-selection" class="xref">Section 3.6</a>).<a href="#section-3.4.1-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="bidirectional-reachability">
<section id="section-3.4.2">
<h4 id="name-bidirectional-reachability-">
<a href="#section-3.4.2" class="section-number selfRef">3.4.2. </a><a href="#name-bidirectional-reachability-" class="section-name selfRef">Bidirectional Reachability Detection</a>
</h4>
<p id="section-3.4.2-1">In order to establish bidirectional reachability, every node sends
periodic IHU ("I Heard You") TLVs to each of its neighbours. Since IHUs
carry an explicit interval value, they <span class="bcp14">MAY</span> be sent less often than Hellos
in order to reduce the amount of routing traffic in dense networks; in
particular, they <span class="bcp14">SHOULD</span> be sent less often than Hellos over links with
little packet loss. While IHUs are conceptually unicast, they <span class="bcp14">MAY</span> be
sent to a multicast address in order to avoid an ARP or Neighbour Discovery
exchange and to aggregate multiple IHUs into a single packet.<a href="#section-3.4.2-1" class="pilcrow">¶</a></p>
<p id="section-3.4.2-2">In addition to the periodic IHUs, a node <span class="bcp14">MAY</span>, at any time, send an
unscheduled IHU packet. It <span class="bcp14">MAY</span> also, at any time, decrease its IHU
interval, and it <span class="bcp14">MAY</span> increase its IHU interval immediately before sending
an IHU, but <span class="bcp14">SHOULD NOT</span> increase it at any other time. (Equivalently,
a node <span class="bcp14">SHOULD</span> send an extra IHU immediately after increasing its Hello
interval.)<a href="#section-3.4.2-2" class="pilcrow">¶</a></p>
<p id="section-3.4.2-3">Every IHU TLV contains two pieces of data: the link's rxcost (reception
cost) from the sender's perspective, used by the neighbour for computing
link costs (<a href="#cost-computation" class="xref">Section 3.4.3</a>), and the interval between
periodic IHU packets. A node receiving an IHU sets the value of the
txcost (transmission cost) maintained in the neighbour table to the value
contained in the IHU, and resets the IHU timer associated to this
neighbour to a small multiple of the interval value received in the IHU
(see "IHU Hold time" in <a href="#parameters" class="xref">Appendix B</a> for suggested values).
When a neighbour's IHU timer expires, the neighbour's txcost is set to
infinity.<a href="#section-3.4.2-3" class="pilcrow">¶</a></p>
<p id="section-3.4.2-4">After updating a neighbour's txcost, the receiving node recomputes the
neighbour's cost (<a href="#cost-computation" class="xref">Section 3.4.3</a>) and runs the route
selection procedure (<a href="#route-selection" class="xref">Section 3.6</a>).<a href="#section-3.4.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="cost-computation">
<section id="section-3.4.3">
<h4 id="name-cost-computation">
<a href="#section-3.4.3" class="section-number selfRef">3.4.3. </a><a href="#name-cost-computation" class="section-name selfRef">Cost Computation</a>
</h4>
<p id="section-3.4.3-1">A neighbourship association's link cost is computed from the values
maintained in the neighbour table: the statistics kept in the neighbour
table about the reception of Hellos, and the txcost computed from received
IHU packets.<a href="#section-3.4.3-1" class="pilcrow">¶</a></p>
<p id="section-3.4.3-2">For every neighbour, a Babel node computes a value known as this
neighbour's rxcost. This value is usually derived from the Hello history,
which may be combined with other data, such as statistics maintained by
the link layer. The rxcost is sent to a neighbour in each IHU.<a href="#section-3.4.3-2" class="pilcrow">¶</a></p>
<p id="section-3.4.3-3">Since nodes do not necessarily send periodic Unicast Hellos but do
usually send periodic Multicast Hellos (<a href="#reverse-reachability" class="xref">Section 3.4.1</a>),
a node <span class="bcp14">SHOULD</span> use an algorithm that yields a finite rxcost when only
Multicast Hellos are received, unless interoperability with nodes that
only send Multicast Hellos is not required.<a href="#section-3.4.3-3" class="pilcrow">¶</a></p>
<p id="section-3.4.3-4">How the txcost and rxcost are combined in order to compute a link's
cost is a matter of local policy; as far as Babel's correctness is
concerned, only the following conditions <span class="bcp14">MUST</span> be satisfied:<a href="#section-3.4.3-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.4.3-5.1">the cost is strictly positive;<a href="#section-3.4.3-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.4.3-5.2">if no Hello TLVs of either kind were received recently, then the cost
is infinite;<a href="#section-3.4.3-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.4.3-5.3">if the txcost is infinite, then the cost is infinite.<a href="#section-3.4.3-5.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.4.3-6">See <a href="#cost-computation-examples" class="xref">Appendix A.2</a> for <span class="bcp14">RECOMMENDED</span>
strategies for computing a link's cost.<a href="#section-3.4.3-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="route-maintenance">
<section id="section-3.5">
<h3 id="name-routing-table-maintenance">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-routing-table-maintenance" class="section-name selfRef">Routing Table Maintenance</a>
</h3>
<p id="section-3.5-1">Conceptually, a Babel update is a quintuple (prefix, plen, router-id,
seqno, metric), where (prefix, plen) is the prefix for which a route is
being advertised, router-id is the router-id of the router originating this
update, seqno is a nondecreasing (modulo 2<sup>16</sup>) integer that carries the
originating router seqno, and metric is the announced metric.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
<p id="section-3.5-2">Before being accepted, an update is checked against the feasibility
condition (<a href="#feasibility-condition" class="xref">Section 3.5.1</a>), which ensures that the
route does not create a routing loop. If the feasibility condition is not
satisfied, the update is either ignored or prevents the route from being
selected, as described in <a href="#route-acquisition" class="xref">Section 3.5.3</a>. If the
feasibility condition is satisfied, then the update cannot possibly cause
a routing loop.<a href="#section-3.5-2" class="pilcrow">¶</a></p>
<div id="feasibility-condition">
<section id="section-3.5.1">
<h4 id="name-the-feasibility-condition">
<a href="#section-3.5.1" class="section-number selfRef">3.5.1. </a><a href="#name-the-feasibility-condition" class="section-name selfRef">The Feasibility Condition</a>
</h4>
<p id="section-3.5.1-1">The feasibility condition is applied to all received updates. The
feasibility condition compares the metric in the received update with the
metrics of the updates previously sent by the receiving node; updates that
fail the feasibility condition, and therefore have metrics large enough to
cause a routing loop, are either ignored or prevent the resulting route
from being selected.<a href="#section-3.5.1-1" class="pilcrow">¶</a></p>
<p id="section-3.5.1-2">A feasibility distance is a pair (seqno, metric), where seqno is an
integer modulo 2<sup>16</sup> and metric is a positive integer. Feasibility
distances are compared lexicographically, with the first component
inverted: we say that a distance (seqno, metric) is strictly better than
a distance (seqno', metric'), written<a href="#section-3.5.1-2" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.5.1-3">(seqno, metric) < (seqno', metric')<a href="#section-3.5.1-3" class="pilcrow">¶</a></p>
<p id="section-3.5.1-4">
when<a href="#section-3.5.1-4" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-3.5.1-5">seqno > seqno' or (seqno = seqno' and metric < metric')<a href="#section-3.5.1-5" class="pilcrow">¶</a></p>
<p id="section-3.5.1-6">
where sequence numbers are compared modulo 2<sup>16</sup>.<a href="#section-3.5.1-6" class="pilcrow">¶</a></p>
<p id="section-3.5.1-7">Given a source (prefix, plen, router-id), a node's feasibility distance
for this source is the minimum, according to the ordering defined above,
of the distances of all the finite updates ever sent by this particular
node for the prefix (prefix, plen) and the given router-id. Feasibility
distances are maintained in the source table, the exact procedure is given
in <a href="#maintaining-fd" class="xref">Section 3.7.3</a>.<a href="#section-3.5.1-7" class="pilcrow">¶</a></p>
<p id="section-3.5.1-8">A received update is feasible when either it is a retraction (its metric
is FFFF hexadecimal), or the advertised distance is strictly better, in the
sense defined above, than the feasibility distance for the corresponding
source. More precisely, a route advertisement carrying the quintuple
(prefix, plen, router-id, seqno, metric) is feasible if one of the
following conditions holds:<a href="#section-3.5.1-8" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.1-9.1">metric is infinite; or<a href="#section-3.5.1-9.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5.1-9.2">no entry exists in the source table indexed by (prefix, plen, router-id);
or<a href="#section-3.5.1-9.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5.1-9.3">
<p id="section-3.5.1-9.3.1">an entry (prefix, plen, router-id, seqno', metric') exists in the
source table, and either<a href="#section-3.5.1-9.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.1-9.3.2.1">seqno' < seqno or<a href="#section-3.5.1-9.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5.1-9.3.2.2">seqno = seqno' and metric < metric'.<a href="#section-3.5.1-9.3.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-3.5.1-10">Note that the feasibility condition considers the metric advertised by
the neighbour, not the route's metric; hence, a fluctuation in
a neighbour's cost cannot render a selected route unfeasible. Note
further that retractions (updates with infinite metric) are always
feasible, since they cannot possibly cause a routing loop.<a href="#section-3.5.1-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="metric-computation">
<section id="section-3.5.2">
<h4 id="name-metric-computation">
<a href="#section-3.5.2" class="section-number selfRef">3.5.2. </a><a href="#name-metric-computation" class="section-name selfRef">Metric Computation</a>
</h4>
<p id="section-3.5.2-1">A route's metric is computed from the metric advertised by the neighbour
and the neighbour's link cost. Just like cost computation, metric
computation is considered a local policy matter; as far as Babel is
concerned, the function M(c, m) used for computing a metric from
a locally computed link cost c and the metric m advertised by a neighbour
<span class="bcp14">MUST</span> only satisfy the following conditions:<a href="#section-3.5.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.2-2.1">if c is infinite, then M(c, m) is infinite;<a href="#section-3.5.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5.2-2.2">M is strictly monotonic: M(c, m) > m.<a href="#section-3.5.2-2.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.5.2-3">
Additionally, the metric <span class="bcp14">SHOULD</span> satisfy the following condition:<a href="#section-3.5.2-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.2-4.1">M is left-distributive: if m <= m', then M(c, m) <= M(c, m').<a href="#section-3.5.2-4.1" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.5.2-5">
While strict monotonicity is essential to the integrity of the network
(persistent routing loops may arise if it is not satisfied),
left-distributivity is not: if it is not satisfied, Babel will still converge
to a loop-free configuration, but might not reach a global optimum (in
fact, a global optimum may not even exist).<a href="#section-3.5.2-5" class="pilcrow">¶</a></p>
<p id="section-3.5.2-6">The conditions above are easily satisfied by using the additive metric,
i.e., by defining M(c, m) = c + m. Since the additive
metric is useful with a large range of cost computation strategies, it is
the <span class="bcp14">RECOMMENDED</span> default. See also <a href="#filtering" class="xref">Appendix C</a>, which
describes a technique that makes it possible to tweak the values of
individual metrics without running the risk of creating routing loops.<a href="#section-3.5.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="route-acquisition">
<section id="section-3.5.3">
<h4 id="name-route-acquisition">
<a href="#section-3.5.3" class="section-number selfRef">3.5.3. </a><a href="#name-route-acquisition" class="section-name selfRef">Route Acquisition</a>
</h4>
<p id="section-3.5.3-1">When a Babel node receives an update (prefix, plen, router-id, seqno,
metric) from a neighbour neigh, it checks whether it already has a route
table entry indexed by (prefix, plen, neigh).<a href="#section-3.5.3-1" class="pilcrow">¶</a></p>
<p id="section-3.5.3-2">If no such entry exists:<a href="#section-3.5.3-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.3-3.1">if the update is unfeasible, it <span class="bcp14">MAY</span> be ignored;<a href="#section-3.5.3-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5.3-3.2">if the metric is infinite (the update is a retraction of a route we
do not know about), the update is ignored;<a href="#section-3.5.3-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5.3-3.3">otherwise, a new entry is created in the route table, indexed by (prefix,
plen, neigh), with source equal to (prefix, plen, router-id), seqno
equal to seqno, and an advertised metric equal to the metric carried by
the update.<a href="#section-3.5.3-3.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.5.3-4">
If such an entry exists:<a href="#section-3.5.3-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.3-5.1">if the entry is currently selected, the update is unfeasible, and the
router-id of the update is equal to the router-id of the entry, then the
update <span class="bcp14">MAY</span> be ignored;<a href="#section-3.5.3-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5.3-5.2">otherwise, the entry's sequence number, advertised metric, metric,
and router-id are updated, and if the advertised metric is not infinite,
the route's expiry timer is reset to a small multiple of the interval
value included in the update (see "Route Expiry time" in
<a href="#parameters" class="xref">Appendix B</a> for suggested values). If the update is
unfeasible, then the (now unfeasible) entry <span class="bcp14">MUST</span> be immediately
unselected. If the update caused the router-id of the entry to change,
an update (possibly a retraction) <span class="bcp14">MUST</span> be sent in a timely manner as
described in <a href="#triggered-updates" class="xref">Section 3.7.2</a>.<a href="#section-3.5.3-5.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.5.3-6">
Note that the route table may contain unfeasible routes, either because
they were created by an unfeasible update or due to a metric fluctuation.
Such routes are never selected, since they are not known to be loop-free.
Should all the feasible routes become unusable, however, the unfeasible
routes can be made feasible and therefore possible to select by sending
requests along them (see <a href="#sending-requests" class="xref">Section 3.8.2</a>).<a href="#section-3.5.3-6" class="pilcrow">¶</a></p>
<p id="section-3.5.3-7">When a route's expiry timer triggers, the behaviour depends on whether
the route's metric is finite. If the metric is finite, it is set to
infinity and the expiry timer is reset. If the metric is already infinite,
the route is flushed from the route table.<a href="#section-3.5.3-7" class="pilcrow">¶</a></p>
<p id="section-3.5.3-8">After the route table is updated, the route selection procedure
(<a href="#route-selection" class="xref">Section 3.6</a>) is run.<a href="#section-3.5.3-8" class="pilcrow">¶</a></p>
</section>
</div>
<div id="hold-time">
<section id="section-3.5.4">
<h4 id="name-hold-time">
<a href="#section-3.5.4" class="section-number selfRef">3.5.4. </a><a href="#name-hold-time" class="section-name selfRef">Hold Time</a>
</h4>
<p id="section-3.5.4-1">When a prefix P is retracted (because all routes are unfeasible or have
an infinite metric, whether due to the expiry timer or for other reasons),
and a shorter prefix P' that covers P is reachable, P' cannot in general
be used for routing packets destined to P without running the risk of
creating a routing loop (<a href="#overlapping-prefixes" class="xref">Section 2.8</a>).<a href="#section-3.5.4-1" class="pilcrow">¶</a></p>
<p id="section-3.5.4-2">To avoid this issue, whenever a prefix P is retracted, a route table
entry with infinite metric is maintained as described in <a href="#route-acquisition" class="xref">Section 3.5.3</a>.
As long as this entry is maintained,
packets destined to an address within P <span class="bcp14">MUST NOT</span> be forwarded by following
a route for a shorter prefix. This entry is removed as soon as
a finite-metric update for prefix P is received and the resulting route
selected. If no such update is forthcoming, the infinite metric entry
<span class="bcp14">SHOULD</span> be maintained at least until it is guaranteed that no neighbour has
selected the current node as next hop for prefix P. This can be achieved
by either:<a href="#section-3.5.4-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.5.4-3.1">waiting until the route's expiry timer has expired
(<a href="#route-acquisition" class="xref">Section 3.5.3</a>); or<a href="#section-3.5.4-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.5.4-3.2">sending a retraction with an acknowledgment request (<a href="#acknowledgments" class="xref">Section 3.3</a>) to every reachable neighbour that has not
explicitly retracted prefix P, and waiting for all acknowledgments.<a href="#section-3.5.4-3.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.5.4-4">
The former option is simpler and ensures that, at that point, any routes
for prefix P pointing at the current node have expired. However, since
the expiry time can be as high as a few minutes, doing that prevents
automatic aggregation by creating spurious black-holes for aggregated
routes. The latter option is <span class="bcp14">RECOMMENDED</span> as it dramatically reduces the
time for which a prefix is unreachable in the presence of aggregated
routes.<a href="#section-3.5.4-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="route-selection">
<section id="section-3.6">
<h3 id="name-route-selection">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-route-selection" class="section-name selfRef">Route Selection</a>
</h3>
<p id="section-3.6-1">Route selection is the process by which a single route for a given
prefix is selected to be used for forwarding packets and to be
re-advertised to a node's neighbours.<a href="#section-3.6-1" class="pilcrow">¶</a></p>
<p id="section-3.6-2">Babel is designed to allow flexible route selection policies. As far as
the algorithm's correctness is concerned, the route selection policy <span class="bcp14">MUST</span>
only satisfy the following properties:<a href="#section-3.6-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.6-3.1">a route with infinite metric (a retracted route) is never selected;<a href="#section-3.6-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.6-3.2">an unfeasible route is never selected.<a href="#section-3.6-3.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.6-4">
Babel nodes using different route selection strategies will interoperate
and will not create routing loops as long as these two properties hold.<a href="#section-3.6-4" class="pilcrow">¶</a></p>
<p id="section-3.6-5">Route selection <span class="bcp14">MUST NOT</span> take seqnos into account: a route <span class="bcp14">MUST NOT</span> be
preferred just because it carries a higher (more recent) seqno. Doing
otherwise would cause route oscillation while a new seqno propagates
across the network, and might create persistent black-holes if the metric
being used is not left-distributive (<a href="#metric-computation" class="xref">Section 3.5.2</a>).<a href="#section-3.6-5" class="pilcrow">¶</a></p>
<p id="section-3.6-6">The obvious route selection strategy is to pick, for every destination,
the feasible route with minimal metric. When all metrics are stable, this
approach ensures convergence to a tree of shortest paths (assuming that
the metric is left-distributive, see <a href="#metric-computation" class="xref">Section 3.5.2</a>).
There are two reasons, however, why this strategy may lead to instability
in the presence of continuously varying metrics. First, if two parallel
routes oscillate around a common value, then the smallest metric strategy
will keep switching between the two.
Second, the selection of a route increases congestion along it,
which might increase packet loss, which in turn could
cause its metric to increase; this kind of feedback loop
is prone to causing persistent oscillations.<a href="#section-3.6-6" class="pilcrow">¶</a></p>
<p id="section-3.6-7">In order to limit these kinds of instabilities, a route selection
strategy <span class="bcp14">SHOULD</span> include some form of hysteresis, i.e., be sensitive to
a route's history:
the strategy should only switch from the currently selected route
to a different route if the latter has been
consistently good for some period of time. A <span class="bcp14">RECOMMENDED</span> hysteresis
algorithm is given in <a href="#route-selection-hysteresis" class="xref">Appendix A.3</a>.<a href="#section-3.6-7" class="pilcrow">¶</a></p>
<p id="section-3.6-8">After the route selection procedure is run, triggered updates
(<a href="#triggered-updates" class="xref">Section 3.7.2</a>) and requests
(<a href="#sending-requests" class="xref">Section 3.8.2</a>) are sent.<a href="#section-3.6-8" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sending-updates">
<section id="section-3.7">
<h3 id="name-sending-updates">
<a href="#section-3.7" class="section-number selfRef">3.7. </a><a href="#name-sending-updates" class="section-name selfRef">Sending Updates</a>
</h3>
<p id="section-3.7-1">A Babel speaker advertises to its neighbours its set of selected
routes. Normally, this is done by sending one or more multicast packets
containing Update TLVs on all of its connected interfaces; however, on
link technologies where multicast is significantly more expensive than
unicast, a node <span class="bcp14">MAY</span> choose to send multiple copies of updates in unicast
packets, especially when the number of neighbours is small.<a href="#section-3.7-1" class="pilcrow">¶</a></p>
<p id="section-3.7-2">Additionally, in order to ensure that any black-holes are reliably
cleared in a timely manner, a Babel node may send retractions (updates
with an infinite metric) for any recently retracted prefixes.<a href="#section-3.7-2" class="pilcrow">¶</a></p>
<p id="section-3.7-3">If an update is for a route injected into the Babel domain by the local
node (e.g., it carries the address of a local interface, the prefix of
a directly attached network, or a prefix redistributed from a different
routing protocol), the router-id is set to the local node's router-id, the
metric is set to some arbitrary finite value (typically 0), and the seqno
is set to the local router's sequence number.<a href="#section-3.7-3" class="pilcrow">¶</a></p>
<p id="section-3.7-4">If an update is for a route learnt from another Babel speaker, the
router-id and sequence number are copied from the route table entry, and
the metric is computed as specified in <a href="#metric-computation" class="xref">Section 3.5.2</a>.<a href="#section-3.7-4" class="pilcrow">¶</a></p>
<div id="periodic-updates">
<section id="section-3.7.1">
<h4 id="name-periodic-updates">
<a href="#section-3.7.1" class="section-number selfRef">3.7.1. </a><a href="#name-periodic-updates" class="section-name selfRef">Periodic Updates</a>
</h4>
<p id="section-3.7.1-1">Every Babel speaker <span class="bcp14">MUST</span> advertise each of its selected routes on every
interface, at least once every Update interval. Since Babel doesn't
suffer from routing loops (there is no "counting to infinity") and relies
heavily on triggered updates (<a href="#triggered-updates" class="xref">Section 3.7.2</a>), this
full dump only needs to happen infrequently (see <a href="#parameters" class="xref">Appendix B</a>
for suggested intervals).<a href="#section-3.7.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="triggered-updates">
<section id="section-3.7.2">
<h4 id="name-triggered-updates">
<a href="#section-3.7.2" class="section-number selfRef">3.7.2. </a><a href="#name-triggered-updates" class="section-name selfRef">Triggered Updates</a>
</h4>
<p id="section-3.7.2-1">In addition to periodic routing updates, a Babel speaker sends
unscheduled, or triggered, updates in order to inform its neighbours of
a significant change in the network topology.<a href="#section-3.7.2-1" class="pilcrow">¶</a></p>
<p id="section-3.7.2-2">A change of router-id for the selected route to a given prefix may be
indicative of a routing loop in formation; hence, whenever it changes the
selected router-id for a given destination, a node <span class="bcp14">MUST</span> send an update as
an urgent TLV (as defined in <a href="#transmission-reception" class="xref">Section 3.1</a>).
Additionally, it <span class="bcp14">SHOULD</span> make a reasonable attempt at ensuring that all
reachable neighbours receive this update.<a href="#section-3.7.2-2" class="pilcrow">¶</a></p>
<p id="section-3.7.2-3">There are two strategies for ensuring that. If the number of neighbours
is small, then it is reasonable to send the update together with an
acknowledgment request; the update is resent until all neighbours have
acknowledged the packet, up to some number of times. If the number of
neighbours is large, however, requesting acknowledgments from all of them
might cause a non-negligible amount of network traffic; in that case, it
may be preferable to simply repeat the update some reasonable number of
times (say, 3 for wireless and 2 for wired links). The number of copies
<span class="bcp14">MUST NOT</span> exceed 5, and the copies <span class="bcp14">SHOULD</span> be separated by a small delay, as
described in <a href="#transmission-reception" class="xref">Section 3.1</a>.<a href="#section-3.7.2-3" class="pilcrow">¶</a></p>
<p id="section-3.7.2-4">A route retraction is somewhat less worrying: if the route retraction
doesn't reach all neighbours, a black-hole might be created, which, unlike
a routing loop, does not endanger the integrity of the network. When a
route is retracted, a node <span class="bcp14">SHOULD</span> send a triggered update and <span class="bcp14">SHOULD</span> make
a reasonable attempt at ensuring that all neighbours receive this
retraction.<a href="#section-3.7.2-4" class="pilcrow">¶</a></p>
<p id="section-3.7.2-5">Finally, a node <span class="bcp14">MAY</span> send a triggered update when the metric for a given
prefix changes in a significant manner, due to a received update, because
a link's cost has changed or because a different next hop has been
selected. A node <span class="bcp14">SHOULD NOT</span> send triggered updates for other reasons,
such as when there is a minor fluctuation in a route's metric, when the
selected next hop changes without inducing a significant change to the
route's metric, or to propagate a new sequence number (except to satisfy
a request, as specified in <a href="#requests" class="xref">Section 3.8</a>).<a href="#section-3.7.2-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="maintaining-fd">
<section id="section-3.7.3">
<h4 id="name-maintaining-feasibility-dis">
<a href="#section-3.7.3" class="section-number selfRef">3.7.3. </a><a href="#name-maintaining-feasibility-dis" class="section-name selfRef">Maintaining Feasibility Distances</a>
</h4>
<p id="section-3.7.3-1">Before sending an update (prefix, plen, router-id, seqno, metric) with
finite metric (i.e., not a route retraction), a Babel node updates the
feasibility distance maintained in the source table. This is done as
follows.<a href="#section-3.7.3-1" class="pilcrow">¶</a></p>
<p id="section-3.7.3-2">If no entry indexed by (prefix, plen, router-id) exists in the source
table, then one is created with value (prefix, plen, router-id, seqno,
metric).<a href="#section-3.7.3-2" class="pilcrow">¶</a></p>
<p id="section-3.7.3-3">If an entry (prefix, plen, router-id, seqno', metric') exists, then it
is updated as follows:<a href="#section-3.7.3-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.7.3-4.1">if seqno > seqno', then seqno' := seqno, metric' := metric;<a href="#section-3.7.3-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.7.3-4.2">if seqno = seqno' and metric' > metric, then metric' := metric;<a href="#section-3.7.3-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.7.3-4.3">otherwise, nothing needs to be done.<a href="#section-3.7.3-4.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.7.3-5">The garbage-collection timer for the entry is then reset. Note that
the feasibility distance is not updated and the garbage-collection timer
is not reset when a retraction (an update with infinite metric) is
sent.<a href="#section-3.7.3-5" class="pilcrow">¶</a></p>
<p id="section-3.7.3-6">When the garbage-collection timer expires, the entry is removed from
the source table.<a href="#section-3.7.3-6" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.7.4">
<h4 id="name-split-horizon">
<a href="#section-3.7.4" class="section-number selfRef">3.7.4. </a><a href="#name-split-horizon" class="section-name selfRef">Split Horizon</a>
</h4>
<p id="section-3.7.4-1">When running over a transitive, symmetric link technology, e.g.,
a point-to-point link or a wired LAN technology such as Ethernet, a Babel
node <span class="bcp14">SHOULD</span> use an optimisation known as split horizon. When split
horizon is used on a given interface, a routing update for prefix P is not
sent on the particular interface over which the selected route towards
prefix P was learnt.<a href="#section-3.7.4-1" class="pilcrow">¶</a></p>
<p id="section-3.7.4-2">Split horizon <span class="bcp14">SHOULD NOT</span> be applied to an interface unless the interface
is known to be symmetric and transitive; in particular, split horizon is
not applicable to decentralised wireless link technologies
(e.g., IEEE 802.11 in ad hoc mode) when routing updates are sent over
multicast.<a href="#section-3.7.4-2" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="requests">
<section id="section-3.8">
<h3 id="name-explicit-requests">
<a href="#section-3.8" class="section-number selfRef">3.8. </a><a href="#name-explicit-requests" class="section-name selfRef">Explicit Requests</a>
</h3>
<p id="section-3.8-1">In normal operation, a node's route table is populated by the regular
and triggered updates sent by its neighbours. Under some circumstances,
however, a node sends explicit requests in order to cause a resynchronisation
with the source after a mobility event or to prevent a route from
spuriously expiring.<a href="#section-3.8-1" class="pilcrow">¶</a></p>
<p id="section-3.8-2">The Babel protocol provides two kinds of explicit requests: route
requests, which simply request an update for a given prefix, and seqno
requests, which request an update for a given prefix with a specific
sequence number. The former are never forwarded; the latter are forwarded
if they cannot be satisfied by the receiver.<a href="#section-3.8-2" class="pilcrow">¶</a></p>
<div id="handling-requests">
<section id="section-3.8.1">
<h4 id="name-handling-requests">
<a href="#section-3.8.1" class="section-number selfRef">3.8.1. </a><a href="#name-handling-requests" class="section-name selfRef">Handling Requests</a>
</h4>
<p id="section-3.8.1-1">Upon receiving a request, a node either forwards the request or sends an
update in reply to the request, as described in the following sections. If
this causes an update to be sent, the update is either sent to a multicast
address on the interface on which the request was received, or to the
unicast address of the neighbour that sent the request.<a href="#section-3.8.1-1" class="pilcrow">¶</a></p>
<p id="section-3.8.1-2">The exact behaviour is different for route requests and seqno requests.<a href="#section-3.8.1-2" class="pilcrow">¶</a></p>
<div id="handling-route-requests">
<section id="section-3.8.1.1">
<h5 id="name-route-requests">
<a href="#section-3.8.1.1" class="section-number selfRef">3.8.1.1. </a><a href="#name-route-requests" class="section-name selfRef">Route Requests</a>
</h5>
<p id="section-3.8.1.1-1">When a node receives a route request for a given prefix, it checks its
route table for a selected route to this exact prefix. If such a route
exists, it <span class="bcp14">MUST</span> send an update (over unicast or over multicast); if such
a route does not exist, it <span class="bcp14">MUST</span> send a retraction for that prefix.<a href="#section-3.8.1.1-1" class="pilcrow">¶</a></p>
<p id="section-3.8.1.1-2">When a node receives a wildcard route request, it <span class="bcp14">SHOULD</span> send a full
route table dump. Full route dumps <span class="bcp14">SHOULD</span> be rate-limited, especially if
they are sent over multicast.<a href="#section-3.8.1.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="handling-seqno-requests">
<section id="section-3.8.1.2">
<h5 id="name-seqno-requests">
<a href="#section-3.8.1.2" class="section-number selfRef">3.8.1.2. </a><a href="#name-seqno-requests" class="section-name selfRef">Seqno Requests</a>
</h5>
<p id="section-3.8.1.2-1">When a node receives a seqno request for a given router-id and sequence
number, it checks whether its route table contains a selected entry for
that prefix. If a selected route for the given prefix exists and has
finite metric, and either the router-ids are different or the router-ids
are equal and the entry's sequence number is no smaller (modulo 2<sup>16</sup>) than
the requested sequence number, the node <span class="bcp14">MUST</span> send an update for the given
prefix. If the router-ids match, but the requested seqno is larger (modulo
2<sup>16</sup>) than the route entry's, the node compares the router-id against its
own router-id. If the router-id is its own, then it increases its
sequence number by 1 (modulo 2<sup>16</sup>) and sends an update. A node <span class="bcp14">MUST NOT</span>
increase its sequence number by more than 1 in reaction to a single seqno
request.<a href="#section-3.8.1.2-1" class="pilcrow">¶</a></p>
<p id="section-3.8.1.2-2">Otherwise, if the requested router-id is not its own, the received node
consults the Hop Count field of the request. If the hop count is 2 or
more, and the node is advertising the prefix to its neighbours, the node
selects a neighbour to forward the request to as follows:<a href="#section-3.8.1.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.8.1.2-3.1">if the node has one or more feasible routes towards the requested prefix
with a next hop that is not the requesting node, then the node <span class="bcp14">MUST</span>
forward the request to the next hop of one such route;<a href="#section-3.8.1.2-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.8.1.2-3.2">otherwise, if the node has one or more (not feasible) routes to the
requested prefix with a next hop that is not the requesting node, then the
node <span class="bcp14">SHOULD</span> forward the request to the next hop of one such route.<a href="#section-3.8.1.2-3.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.8.1.2-4">
In order to actually forward the request, the node decrements the hop
count and sends the request in a unicast packet destined to the selected
neighbour. The forwarded request <span class="bcp14">SHOULD</span> be sent as an urgent TLV (as
defined in <a href="#transmission-reception" class="xref">Section 3.1</a>).<a href="#section-3.8.1.2-4" class="pilcrow">¶</a></p>
<p id="section-3.8.1.2-5">A node <span class="bcp14">SHOULD</span> maintain a list of recently forwarded seqno requests and
forward the reply (an update with a seqno sufficiently large to satisfy
the request) as an urgent TLV (as defined in
<a href="#transmission-reception" class="xref">Section 3.1</a>). A node <span class="bcp14">SHOULD</span> compare every
incoming seqno request against its list of recently forwarded seqno
requests and avoid forwarding the request if it is redundant (i.e., if the node has
recently sent a request with the same prefix, router-id, and a seqno that
is not smaller modulo 2<sup>16</sup>).<a href="#section-3.8.1.2-5" class="pilcrow">¶</a></p>
<p id="section-3.8.1.2-6">Since the request-forwarding mechanism does not necessarily obey the
feasibility condition, it may get caught in routing loops; hence, requests
carry a hop count to limit the time during which they remain in the network.
However, since requests are only ever forwarded as unicast packets, the
initial hop count need not be kept particularly low, and performing an
expanding horizon search is not necessary. A single request <span class="bcp14">MUST NOT</span> be
duplicated: it <span class="bcp14">MUST NOT</span> be forwarded to a multicast address, and it <span class="bcp14">MUST NOT</span> be forwarded to multiple neighbours. However, if a seqno request is
resent by its originator, the subsequent copies may be forwarded to
a different neighbour than the initial one.<a href="#section-3.8.1.2-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sending-requests">
<section id="section-3.8.2">
<h4 id="name-sending-requests">
<a href="#section-3.8.2" class="section-number selfRef">3.8.2. </a><a href="#name-sending-requests" class="section-name selfRef">Sending Requests</a>
</h4>
<p id="section-3.8.2-1">A Babel node <span class="bcp14">MAY</span> send a route or seqno request at any time to a
multicast or a unicast address; there is only one case when originating
requests is required (<a href="#avoiding-starvation" class="xref">Section 3.8.2.1</a>).<a href="#section-3.8.2-1" class="pilcrow">¶</a></p>
<div id="avoiding-starvation">
<section id="section-3.8.2.1">
<h5 id="name-avoiding-starvation">
<a href="#section-3.8.2.1" class="section-number selfRef">3.8.2.1. </a><a href="#name-avoiding-starvation" class="section-name selfRef">Avoiding Starvation</a>
</h5>
<p id="section-3.8.2.1-1">When a route is retracted or expires, a Babel node usually switches to
another feasible route for the same prefix. It may be the case, however,
that no such routes are available.<a href="#section-3.8.2.1-1" class="pilcrow">¶</a></p>
<p id="section-3.8.2.1-2">A node that has lost all feasible routes to a given destination but
still has unexpired unfeasible routes to that destination <span class="bcp14">MUST</span> send
a seqno request; if it doesn't have any such routes, it <span class="bcp14">MAY</span> still send
a seqno request. The router-id of the request is set to the router-id of
the route that it has just lost, and the requested seqno is the value
contained in the source table plus 1. The request carries a hop count,
which is used as a last-resort mechanism to ensure that it eventually
vanishes from the network; it <span class="bcp14">MAY</span> be set to any value that is larger than
the diameter of the network (64 is a suitable default value).<a href="#section-3.8.2.1-2" class="pilcrow">¶</a></p>
<p id="section-3.8.2.1-3">If the node has any (unfeasible) routes to the requested destination,
then it <span class="bcp14">MUST</span> send the request to at least one of the next-hop neighbours
that advertised these routes, and <span class="bcp14">SHOULD</span> send it to all of them; in any
case, it <span class="bcp14">MAY</span> send the request to any other neighbours, whether they
advertise a route to the requested destination or not. A simple
implementation strategy is therefore to unconditionally multicast the
request over all interfaces.<a href="#section-3.8.2.1-3" class="pilcrow">¶</a></p>
<p id="section-3.8.2.1-4">Similar requests will be sent by other nodes that are affected by the
route's loss. If the network is still connected, and assuming no packet
loss, then at least one of these requests will be forwarded to the source,
resulting in a route being advertised with a new sequence number. (Due to
duplicate suppression, only a small number of such requests are expected
to actually reach the source.)<a href="#section-3.8.2.1-4" class="pilcrow">¶</a></p>
<p id="section-3.8.2.1-5">In order to compensate for packet loss, a node <span class="bcp14">SHOULD</span> repeat such
a request a small number of times if no route becomes feasible within
a short time (see "Request timeout" in <a href="#parameters" class="xref">Appendix B</a> for
suggested values). In the presence of heavy packet loss, however, all
such requests might be lost; in that case, the mechanism in the next
section will eventually ensure that a new seqno is received.<a href="#section-3.8.2.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="request-unfeasible">
<section id="section-3.8.2.2">
<h5 id="name-dealing-with-unfeasible-upd">
<a href="#section-3.8.2.2" class="section-number selfRef">3.8.2.2. </a><a href="#name-dealing-with-unfeasible-upd" class="section-name selfRef">Dealing with Unfeasible Updates</a>
</h5>
<p id="section-3.8.2.2-1">When a route's metric increases, a node might receive an unfeasible
update for a route that it has currently selected. As specified in
<a href="#feasibility-condition" class="xref">Section 3.5.1</a>, the receiving node will either
ignore the update or unselect the route.<a href="#section-3.8.2.2-1" class="pilcrow">¶</a></p>
<p id="section-3.8.2.2-2">In order to keep routes from spuriously expiring because they have
become unfeasible, a node <span class="bcp14">SHOULD</span> send a unicast seqno request when it
receives an unfeasible update for a route that is currently selected. The
requested sequence number is computed from the source table as in <a href="#avoiding-starvation" class="xref">Section 3.8.2.1</a>.<a href="#section-3.8.2.2-2" class="pilcrow">¶</a></p>
<p id="section-3.8.2.2-3">Additionally, since metric computation does not necessarily coincide
with the delay in propagating updates, a node might receive an unfeasible
update from a currently unselected neighbour that is preferable to the
currently selected route (e.g., because it has a much smaller metric); in
that case, the node <span class="bcp14">SHOULD</span> send a unicast seqno request to the neighbour
that advertised the preferable update.<a href="#section-3.8.2.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="request-expiring">
<section id="section-3.8.2.3">
<h5 id="name-preventing-routes-from-expi">
<a href="#section-3.8.2.3" class="section-number selfRef">3.8.2.3. </a><a href="#name-preventing-routes-from-expi" class="section-name selfRef">Preventing Routes from Expiring</a>
</h5>
<p id="section-3.8.2.3-1">In normal operation, a route's expiry timer never triggers: since
a route's hold time is computed from an explicit interval included in
Update TLVs, a new update (possibly a retraction) should arrive in time to
prevent a route from expiring.<a href="#section-3.8.2.3-1" class="pilcrow">¶</a></p>
<p id="section-3.8.2.3-2">In the presence of packet loss, however, it may be the case that no
update is successfully received for an extended period of time, causing
a route to expire. In order to avoid such spurious expiry, shortly before
a selected route expires, a Babel node <span class="bcp14">SHOULD</span> send a unicast route request
to the neighbour that advertised this route; since nodes always send
either updates or retractions in response to non-wildcard route requests
(<a href="#handling-route-requests" class="xref">Section 3.8.1.1</a>), this will usually result in
the route being either refreshed or retracted.<a href="#section-3.8.2.3-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
</section>
<div id="protocol-encoding">
<section id="section-4">
<h2 id="name-protocol-encoding">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-protocol-encoding" class="section-name selfRef">Protocol Encoding</a>
</h2>
<p id="section-4-1">A Babel packet <span class="bcp14">MUST</span> be sent as the body of a UDP datagram, with
network-layer hop count set to 1, destined to a well-known multicast
address or to a unicast address, over IPv4 or IPv6; in the case of IPv6,
these addresses are link-local. Both the source and destination UDP port
are set to a well-known port number. A Babel packet <span class="bcp14">MUST</span> be silently
ignored unless its source address is either a link-local IPv6 address or
an IPv4 address belonging to the local network, and its source port is the
well-known Babel port. It <span class="bcp14">MAY</span> be silently ignored if its destination
address is a global IPv6 address.<a href="#section-4-1" class="pilcrow">¶</a></p>
<p id="section-4-2">In order to minimise the number of packets being sent while avoiding
lower-layer fragmentation, a Babel node <span class="bcp14">SHOULD</span> maximise the size of the
packets it sends, up to the outgoing interface's MTU adjusted for
lower-layer headers (28 octets for UDP over IPv4, 48 octets for UDP over
IPv6). It <span class="bcp14">MUST NOT</span> send packets larger than the attached interface's MTU
adjusted for lower-layer headers or 512 octets, whichever is larger, but
not exceeding 2<sup>16</sup> - 1 adjusted for lower-layer headers. Every Babel
speaker <span class="bcp14">MUST</span> be able to receive packets that are as large as any attached
interface's MTU adjusted for lower-layer headers or 512 octets, whichever
is larger. Babel packets <span class="bcp14">MUST NOT</span> be sent in IPv6 jumbograms
<span>[<a href="#RFC2675" class="xref">RFC2675</a>]</span>.<a href="#section-4-2" class="pilcrow">¶</a></p>
<section id="section-4.1">
<h3 id="name-data-types">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-data-types" class="section-name selfRef">Data Types</a>
</h3>
<section id="section-4.1.1">
<h4 id="name-representation-of-integers">
<a href="#section-4.1.1" class="section-number selfRef">4.1.1. </a><a href="#name-representation-of-integers" class="section-name selfRef">Representation of Integers</a>
</h4>
<p id="section-4.1.1-1">All multi-octet fields that represent integers are encoded with the
most significant octet first (in Big-Endian format <span>[<a href="#IEN137" class="xref">IEN137</a>]</span>,
also called network order). The base protocol only carries unsigned
values; if an extension needs to carry signed values, it will need to
specify their encoding (e.g., two's complement).<a href="#section-4.1.1-1" class="pilcrow">¶</a></p>
</section>
<section id="section-4.1.2">
<h4 id="name-interval">
<a href="#section-4.1.2" class="section-number selfRef">4.1.2. </a><a href="#name-interval" class="section-name selfRef">Interval</a>
</h4>
<p id="section-4.1.2-1">Relative times are carried as 16-bit values specifying a number of
centiseconds (hundredths of a second). This allows times up to roughly 11
minutes with a granularity of 10 ms, which should cover all reasonable
applications of Babel (see also <a href="#parameters" class="xref">Appendix B</a>).<a href="#section-4.1.2-1" class="pilcrow">¶</a></p>
</section>
<div id="router-id-def">
<section id="section-4.1.3">
<h4 id="name-router-id">
<a href="#section-4.1.3" class="section-number selfRef">4.1.3. </a><a href="#name-router-id" class="section-name selfRef">Router-Id</a>
</h4>
<p id="section-4.1.3-1">A router-id is an arbitrary 8-octet value. A router-id <span class="bcp14">MUST NOT</span>
consist of either all binary zeroes (0000000000000000 hexadecimal) or all
binary ones (FFFFFFFFFFFFFFFF hexadecimal).<a href="#section-4.1.3-1" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.1.4">
<h4 id="name-address">
<a href="#section-4.1.4" class="section-number selfRef">4.1.4. </a><a href="#name-address" class="section-name selfRef">Address</a>
</h4>
<p id="section-4.1.4-1">Since the bulk of the protocol is taken by addresses, multiple ways of
encoding addresses are defined. Additionally, within Update TLVs a common
subnet prefix may be omitted when multiple addresses are sent in a single
packet -- this is known as address compression (<a href="#update" class="xref">Section 4.6.9</a>).<a href="#section-4.1.4-1" class="pilcrow">¶</a></p>
<p id="section-4.1.4-2">Address encodings (AEs):<a href="#section-4.1.4-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.1.4-3">
<dt id="section-4.1.4-3.1">AE 0:</dt>
<dd style="margin-left: 5.0em" id="section-4.1.4-3.2">Wildcard address. The value is 0 octets long.<a href="#section-4.1.4-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.1.4-3.3">AE 1:</dt>
<dd style="margin-left: 5.0em" id="section-4.1.4-3.4">IPv4 address. Compression is allowed. 4 octets or less.<a href="#section-4.1.4-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.1.4-3.5">AE 2:</dt>
<dd style="margin-left: 5.0em" id="section-4.1.4-3.6">IPv6 address. Compression is allowed. 16 octets or less.<a href="#section-4.1.4-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.1.4-3.7">AE 3:</dt>
<dd style="margin-left: 5.0em" id="section-4.1.4-3.8">Link-local IPv6 address. Compression is not allowed. The value
is 8 octets long, a prefix of fe80::/64 is implied.<a href="#section-4.1.4-3.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.1.4-4">The address family associated with an address encoding is either IPv4 or
IPv6: it is undefined for AE 0, IPv4 for AE 1, and IPv6 for AEs 2 and
3.<a href="#section-4.1.4-4" class="pilcrow">¶</a></p>
</section>
<section id="section-4.1.5">
<h4 id="name-prefixes">
<a href="#section-4.1.5" class="section-number selfRef">4.1.5. </a><a href="#name-prefixes" class="section-name selfRef">Prefixes</a>
</h4>
<p id="section-4.1.5-1">A network prefix is encoded just like a network address, but it is
stored in the smallest number of octets that are enough to hold the
significant bits (up to the prefix length).<a href="#section-4.1.5-1" class="pilcrow">¶</a></p>
</section>
</section>
<div id="packet-format">
<section id="section-4.2">
<h3 id="name-packet-format">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-packet-format" class="section-name selfRef">Packet Format</a>
</h3>
<p id="section-4.2-1">A Babel packet consists of a 4-octet header, followed by a sequence of
TLVs (the packet body), optionally followed by a second sequence of TLVs
(the packet trailer). The format is designed to be extensible; see
<a href="#extensions" class="xref">Appendix D</a> for extensibility considerations.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.2-2">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Magic | Version | Body length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Packet Body...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
| Packet Trailer...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.2-2" class="pilcrow">¶</a>
</div>
<p id="section-4.2-3">Fields:<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.2-4">
<dt id="section-4.2-4.1">Magic</dt>
<dd style="margin-left: 5.0em" id="section-4.2-4.2">The arbitrary but carefully chosen value 42 (decimal);
packets with a first octet different from 42 <span class="bcp14">MUST</span> be silently ignored.<a href="#section-4.2-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.2-4.3">Version</dt>
<dd style="margin-left: 5.0em" id="section-4.2-4.4">This document specifies version 2 of the Babel
protocol. Packets with a second octet different from 2 <span class="bcp14">MUST</span> be silently
ignored.<a href="#section-4.2-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.2-4.5">Body length</dt>
<dd style="margin-left: 5.0em" id="section-4.2-4.6">The length in octets of the body following the
packet header (excluding the Magic, Version, and Body length fields, and
excluding the packet trailer).<a href="#section-4.2-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.2-4.7">Packet Body</dt>
<dd style="margin-left: 5.0em" id="section-4.2-4.8">The packet body; a sequence of TLVs.<a href="#section-4.2-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.2-4.9">Packet Trailer</dt>
<dd style="margin-left: 5.0em" id="section-4.2-4.10">The packet trailer; another sequence of TLVs.<a href="#section-4.2-4.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.2-5">The packet body and trailer are both sequences of TLVs. The packet
body is the normal place to store TLVs; the packet trailer only contains
specialised TLVs that do not need to be protected by cryptographic
security mechanisms. When parsing the trailer, the receiver <span class="bcp14">MUST</span> ignore
any TLV unless its definition explicitly states that it is allowed to
appear there. Among the TLVs defined in this document, only Pad1 and PadN
are allowed in the trailer; since these TLVs are ignored in any case, an
implementation <span class="bcp14">MAY</span> silently ignore the packet trailer without even parsing
it, unless it implements at least one protocol extension that defines TLVs
that are allowed to appear in the trailer.<a href="#section-4.2-5" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.3">
<h3 id="name-tlv-format">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-tlv-format" class="section-name selfRef">TLV Format</a>
</h3>
<p id="section-4.3-1">With the exception of Pad1, all TLVs have the following structure:<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.3-2">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Payload...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.3-2" class="pilcrow">¶</a>
</div>
<p id="section-4.3-3">Fields:<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.3-4">
<dt id="section-4.3-4.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.3-4.2">The type of the TLV.<a href="#section-4.3-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3-4.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.3-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.3-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3-4.5">Payload</dt>
<dd style="margin-left: 5.0em" id="section-4.3-4.6">The TLV payload, which consists of a body and, for
selected TLV types, an optional list of sub-TLVs.<a href="#section-4.3-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.3-5">TLVs with an unknown type value <span class="bcp14">MUST</span> be silently ignored.<a href="#section-4.3-5" class="pilcrow">¶</a></p>
</section>
<div id="sub-tlv-format">
<section id="section-4.4">
<h3 id="name-sub-tlv-format">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-sub-tlv-format" class="section-name selfRef">Sub-TLV Format</a>
</h3>
<p id="section-4.4-1">Every TLV carries an explicit length in its header; however, most TLVs
are self-terminating, in the sense that it is possible to determine the
length of the body without reference to the explicit Length field. If
a TLV has a self-terminating format, then the space between the natural
size of the TLV and the size announced in the Length field may be used to
store a sequence of sub-TLVs.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<p id="section-4.4-2">Sub-TLVs have the same structure as TLVs. With the exception of Pad1,
all TLVs have the following structure:<a href="#section-4.4-2" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.4-3">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Body...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.4-3" class="pilcrow">¶</a>
</div>
<p id="section-4.4-4">Fields:<a href="#section-4.4-4" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.4-5">
<dt id="section-4.4-5.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.4-5.2">The type of the sub-TLV.<a href="#section-4.4-5.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.4-5.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.4-5.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.4-5.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.4-5.5">Body</dt>
<dd style="margin-left: 5.0em" id="section-4.4-5.6">The sub-TLV body, the interpretation of which depends
on both the type of the sub-TLV and the type of the TLV within which it is
embedded.<a href="#section-4.4-5.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.4-6">The most significant bit of the sub-TLV type (the bit with value 80
hexadecimal), is called the mandatory bit; in other words, sub-TLV types
128 through 255 have the mandatory bit set. This bit indicates how to
handle unknown sub-TLVs. If the mandatory bit is not set, then an unknown
sub-TLV <span class="bcp14">MUST</span> be silently ignored, and the rest of the TLV is processed
normally. If the mandatory bit is set, then the whole enclosing TLV <span class="bcp14">MUST</span>
be silently ignored (except for updating the parser state by a Router-Id,
Next Hop, or Update TLV, as described in the next section).<a href="#section-4.4-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="parser-state">
<section id="section-4.5">
<h3 id="name-parser-state-and-encoding-o">
<a href="#section-4.5" class="section-number selfRef">4.5. </a><a href="#name-parser-state-and-encoding-o" class="section-name selfRef">Parser State and Encoding of Updates</a>
</h3>
<p id="section-4.5-1">In a large network, the bulk of Babel traffic consists of route
updates; hence, some care has been given to encoding them efficiently.
The data conceptually contained in an update (<a href="#route-maintenance" class="xref">Section 3.5</a>)
is split into three pieces:<a href="#section-4.5-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.5-2.1">the prefix, seqno, and metric are contained in the Update TLV itself
(<a href="#update" class="xref">Section 4.6.9</a>);<a href="#section-4.5-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.5-2.2">the router-id is taken from the Router-Id TLV that precedes the Update TLV
and may be shared among multiple Update TLVs (<a href="#router-id" class="xref">Section 4.6.7</a>);<a href="#section-4.5-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.5-2.3">the next hop is taken either from the source address of the
network-layer packet that contains the Babel packet or from an explicit
Next Hop TLV (<a href="#next-hop" class="xref">Section 4.6.8</a>).<a href="#section-4.5-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.5-3">
In addition to the above, an Update TLV can omit a prefix of the prefix
being announced, which is then extracted from the preceding Update TLV
in the same address family (IPv4 or IPv6). Finally, as a special
optimisation for the case when a router-id coincides with the interface-id
part of an IPv6 address, the Router-Id TLV itself may be omitted, and the
router-id is derived from the low-order bits of the advertised prefix
(<a href="#update" class="xref">Section 4.6.9</a>).<a href="#section-4.5-3" class="pilcrow">¶</a></p>
<p id="section-4.5-4">In order to implement these compression techniques, Babel uses
a stateful parser: a TLV may refer to data from a previous TLV. The
parser state consists of the following pieces of data:<a href="#section-4.5-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.5-5.1">for each address encoding that allows compression, the current
default prefix: this is undefined at the start of the packet and is
updated by each Update TLV with the Prefix flag set
(<a href="#update" class="xref">Section 4.6.9</a>);<a href="#section-4.5-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.5-5.2">for each address family (IPv4 or IPv6), the current next hop: this is
the source address of the enclosing packet for the matching address
family at the start of a packet, and it is updated by each Next Hop TLV
(<a href="#next-hop" class="xref">Section 4.6.8</a>);<a href="#section-4.5-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.5-5.3">the current router-id: this is undefined at the start of the packet,
and it is updated by each Router-Id TLV (<a href="#router-id" class="xref">Section 4.6.7</a>)
and by each Update TLV with Router-Id flag set.<a href="#section-4.5-5.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.5-6">Since the parser state must be identical across implementations, it is
updated before checking for mandatory sub-TLVs: parsing a TLV <span class="bcp14">MUST</span> update
the parser state even if the TLV is otherwise ignored due to an unknown
mandatory sub-TLV or for any other reason.<a href="#section-4.5-6" class="pilcrow">¶</a></p>
<p id="section-4.5-7">None of the TLVs that modify the parser state are allowed in the packet
trailer; hence, an implementation may choose to use a dedicated stateless
parser to parse the packet trailer.<a href="#section-4.5-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="tlv-details">
<section id="section-4.6">
<h3 id="name-details-of-specific-tlvs">
<a href="#section-4.6" class="section-number selfRef">4.6. </a><a href="#name-details-of-specific-tlvs" class="section-name selfRef">Details of Specific TLVs</a>
</h3>
<section id="section-4.6.1">
<h4 id="name-pad1">
<a href="#section-4.6.1" class="section-number selfRef">4.6.1. </a><a href="#name-pad1" class="section-name selfRef">Pad1</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.6.1-1">
<pre>
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Type = 0 |
+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.1-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.1-2">Fields:<a href="#section-4.6.1-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.1-3">
<dt id="section-4.6.1-3.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.6.1-3.2">Set to 0 to indicate a Pad1 TLV.<a href="#section-4.6.1-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.1-4">This TLV is silently ignored on reception. It is allowed in the packet
trailer.<a href="#section-4.6.1-4" class="pilcrow">¶</a></p>
</section>
<section id="section-4.6.2">
<h4 id="name-padn">
<a href="#section-4.6.2" class="section-number selfRef">4.6.2. </a><a href="#name-padn" class="section-name selfRef">PadN</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.6.2-1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Length | MBZ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.6.2-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.2-2">Fields:<a href="#section-4.6.2-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.2-3">
<dt id="section-4.6.2-3.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.6.2-3.2">Set to 1 to indicate a PadN TLV.<a href="#section-4.6.2-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.2-3.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.6.2-3.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.2-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.2-3.5">MBZ</dt>
<dd style="margin-left: 5.0em" id="section-4.6.2-3.6">Must be zero, set to 0 on transmission.<a href="#section-4.6.2-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.2-4">This TLV is silently ignored on reception. It is allowed in the packet
trailer.<a href="#section-4.6.2-4" class="pilcrow">¶</a></p>
</section>
<section id="section-4.6.3">
<h4 id="name-acknowledgment-request">
<a href="#section-4.6.3" class="section-number selfRef">4.6.3. </a><a href="#name-acknowledgment-request" class="section-name selfRef">Acknowledgment Request</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.6.3-1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opaque | Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.3-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.3-2">This TLV requests that the receiver send an Acknowledgment TLV
within the number of centiseconds specified by the Interval field.<a href="#section-4.6.3-2" class="pilcrow">¶</a></p>
<p id="section-4.6.3-3">Fields:<a href="#section-4.6.3-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.3-4">
<dt id="section-4.6.3-4.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.6.3-4.2">Set to 2 to indicate an Acknowledgment Request TLV.<a href="#section-4.6.3-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.3-4.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.6.3-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.3-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.3-4.5">Reserved</dt>
<dd style="margin-left: 5.0em" id="section-4.6.3-4.6">Sent as 0 and <span class="bcp14">MUST</span> be ignored on
reception.<a href="#section-4.6.3-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.3-4.7">Opaque</dt>
<dd style="margin-left: 5.0em" id="section-4.6.3-4.8">An arbitrary value that will be echoed in the
receiver's Acknowledgment TLV.<a href="#section-4.6.3-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.3-4.9">Interval</dt>
<dd style="margin-left: 5.0em" id="section-4.6.3-4.10">A time interval in centiseconds after which the
sender will assume that this packet has been lost. This <span class="bcp14">MUST NOT</span> be 0.
The receiver <span class="bcp14">MUST</span> send an Acknowledgment TLV before this time has elapsed
(with a margin allowing for propagation time).<a href="#section-4.6.3-4.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.3-5">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.3-5" class="pilcrow">¶</a></p>
</section>
<div id="ack">
<section id="section-4.6.4">
<h4 id="name-acknowledgment">
<a href="#section-4.6.4" class="section-number selfRef">4.6.4. </a><a href="#name-acknowledgment" class="section-name selfRef">Acknowledgment</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.6.4-1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 3 | Length | Opaque |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.4-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.4-2">This TLV is sent by a node upon receiving an Acknowledgment Request TLV.<a href="#section-4.6.4-2" class="pilcrow">¶</a></p>
<p id="section-4.6.4-3">Fields:<a href="#section-4.6.4-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.4-4">
<dt id="section-4.6.4-4.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.6.4-4.2">Set to 3 to indicate an Acknowledgment TLV.<a href="#section-4.6.4-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.4-4.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.6.4-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.4-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.4-4.5">Opaque</dt>
<dd style="margin-left: 5.0em" id="section-4.6.4-4.6">Set to the Opaque value of the Acknowledgment Request
that prompted this Acknowledgment.<a href="#section-4.6.4-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.4-5">Since Opaque values are not globally unique, this TLV <span class="bcp14">MUST</span> be sent to
a unicast address.<a href="#section-4.6.4-5" class="pilcrow">¶</a></p>
<p id="section-4.6.4-6">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.4-6" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.6.5">
<h4 id="name-hello">
<a href="#section-4.6.5" class="section-number selfRef">4.6.5. </a><a href="#name-hello" class="section-name selfRef">Hello</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.6.5-1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 4 | Length | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Seqno | Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.5-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.5-2">This TLV is used for neighbour discovery and for determining a
neighbour's reception cost.<a href="#section-4.6.5-2" class="pilcrow">¶</a></p>
<p id="section-4.6.5-3">Fields:<a href="#section-4.6.5-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.5-4">
<dt id="section-4.6.5-4.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.6.5-4.2">Set to 4 to indicate a Hello TLV.<a href="#section-4.6.5-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.5-4.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.6.5-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.5-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.5-4.5">Flags</dt>
<dd style="margin-left: 5.0em" id="section-4.6.5-4.6">The individual bits of this field specify special
handling of this TLV (see below).<a href="#section-4.6.5-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.5-4.7">Seqno</dt>
<dd style="margin-left: 5.0em" id="section-4.6.5-4.8">If the Unicast flag is set, this is the value of the
sending node's outgoing Unicast Hello seqno for this neighbour. Otherwise,
it is the sending node's outgoing Multicast Hello seqno for this interface.<a href="#section-4.6.5-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.5-4.9">Interval</dt>
<dd style="margin-left: 5.0em" id="section-4.6.5-4.10">If nonzero, this is an upper bound, expressed in
centiseconds, on the time after which the sending node will send a new
scheduled Hello TLV with the same setting of the Unicast flag. If this is
0, then this Hello represents an unscheduled Hello and doesn't carry any
new information about times at which Hellos are sent.<a href="#section-4.6.5-4.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.5-5">The Flags field is interpreted as follows:<a href="#section-4.6.5-5" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.6.5-6">
<pre>
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|X|X|X|X|X|X|X|X|X|X|X|X|X|X|X|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.5-6" class="pilcrow">¶</a>
</div>
<span class="break"></span><dl class="dlParallel" id="section-4.6.5-7">
<dt id="section-4.6.5-7.1">U (Unicast) flag (8000 hexadecimal):</dt>
<dd style="margin-left: 5.0em" id="section-4.6.5-7.2">if set, then this Hello
represents a Unicast Hello, otherwise it represents a Multicast Hello;<a href="#section-4.6.5-7.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.5-7.3">X:</dt>
<dd style="margin-left: 5.0em" id="section-4.6.5-7.4">all other bits <span class="bcp14">MUST</span> be sent as 0 and silently ignored on reception.<a href="#section-4.6.5-7.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.5-8">Every time a Hello is sent, the corresponding seqno counter <span class="bcp14">MUST</span> be
incremented. Since there is a single seqno counter for all the Multicast
Hellos sent by a given node over a given interface, if the Unicast flag is
not set, this TLV <span class="bcp14">MUST</span> be sent to all neighbours on this link, which can be
achieved by sending to a multicast destination or by sending multiple
packets to the unicast addresses of all reachable neighbours. Conversely,
if the Unicast flag is set, this TLV <span class="bcp14">MUST</span> be sent to a single neighbour,
which can achieved by sending to a unicast destination. In order to avoid
large discontinuities in link quality, multiple Hello TLVs <span class="bcp14">SHOULD NOT</span> be
sent in the same packet.<a href="#section-4.6.5-8" class="pilcrow">¶</a></p>
<p id="section-4.6.5-9">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.5-9" class="pilcrow">¶</a></p>
</section>
<section id="section-4.6.6">
<h4 id="name-ihu">
<a href="#section-4.6.6" class="section-number selfRef">4.6.6. </a><a href="#name-ihu" class="section-name selfRef">IHU</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.6.6-1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 5 | Length | AE | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Rxcost | Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Address...
+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.6.6-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.6-2">An IHU ("I Heard You") TLV is used for confirming bidirectional
reachability and carrying a link's transmission cost.<a href="#section-4.6.6-2" class="pilcrow">¶</a></p>
<p id="section-4.6.6-3">Fields:<a href="#section-4.6.6-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.6-4">
<dt id="section-4.6.6-4.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.6.6-4.2">Set to 5 to indicate an IHU TLV.<a href="#section-4.6.6-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.6-4.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.6.6-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.6-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.6-4.5">AE</dt>
<dd style="margin-left: 5.0em" id="section-4.6.6-4.6">The encoding of the Address field. This should be 1 or 3
in most cases. As an optimisation, it <span class="bcp14">MAY</span> be 0 if the TLV is
sent to a unicast address, if the association is over a point-to-point
link, or when bidirectional reachability is ascertained by means outside of
the Babel protocol.<a href="#section-4.6.6-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.6-4.7">Reserved</dt>
<dd style="margin-left: 5.0em" id="section-4.6.6-4.8">Sent as 0 and <span class="bcp14">MUST</span> be ignored on reception.<a href="#section-4.6.6-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.6-4.9">Rxcost</dt>
<dd style="margin-left: 5.0em" id="section-4.6.6-4.10">The rxcost according to the sending node of the
interface whose address is specified in the Address field. The value FFFF
hexadecimal (infinity) indicates that this interface is unreachable.<a href="#section-4.6.6-4.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.6-4.11">Interval</dt>
<dd style="margin-left: 5.0em" id="section-4.6.6-4.12">An upper bound, expressed in centiseconds, on the
time after which the sending node will send a new IHU; this <span class="bcp14">MUST NOT</span> be 0.
The receiving node will use this value in order to compute a hold time for
this symmetric association.<a href="#section-4.6.6-4.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.6-4.13">Address</dt>
<dd style="margin-left: 5.0em" id="section-4.6.6-4.14">The address of the destination node, in the format
specified by the AE field. Address compression is not allowed.<a href="#section-4.6.6-4.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.6-5">Conceptually, an IHU is destined to a single neighbour. However, IHU
TLVs contain an explicit destination address, and <span class="bcp14">MAY</span> be sent to
a multicast address, as this allows aggregation of IHUs destined to
distinct neighbours into a single packet and avoids the need for an ARP or
Neighbour Discovery exchange when a neighbour is not being used for data
traffic.<a href="#section-4.6.6-5" class="pilcrow">¶</a></p>
<p id="section-4.6.6-6">IHU TLVs with an unknown value in the AE field <span class="bcp14">MUST</span> be silently
ignored.<a href="#section-4.6.6-6" class="pilcrow">¶</a></p>
<p id="section-4.6.6-7">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.6-7" class="pilcrow">¶</a></p>
</section>
<div id="router-id">
<section id="section-4.6.7">
<h4 id="name-router-id-2">
<a href="#section-4.6.7" class="section-number selfRef">4.6.7. </a><a href="#name-router-id-2" class="section-name selfRef">Router-Id</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.6.7-1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 6 | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Router-Id +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.7-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.7-2">A Router-Id TLV establishes a router-id that is implied by subsequent
Update TLVs, as described in <a href="#parser-state" class="xref">Section 4.5</a>. This TLV sets
the router-id even if it is otherwise ignored due to an unknown mandatory
sub-TLV.<a href="#section-4.6.7-2" class="pilcrow">¶</a></p>
<p id="section-4.6.7-3">Fields:<a href="#section-4.6.7-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.7-4">
<dt id="section-4.6.7-4.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.6.7-4.2">Set to 6 to indicate a Router-Id TLV.<a href="#section-4.6.7-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.7-4.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.6.7-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.7-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.7-4.5">Reserved</dt>
<dd style="margin-left: 5.0em" id="section-4.6.7-4.6">Sent as 0 and <span class="bcp14">MUST</span> be ignored on reception.<a href="#section-4.6.7-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.7-4.7">Router-Id</dt>
<dd style="margin-left: 5.0em" id="section-4.6.7-4.8">The router-id for routes advertised in subsequent
Update TLVs. This <span class="bcp14">MUST NOT</span> consist of all zeroes or all ones.<a href="#section-4.6.7-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.7-5">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.7-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="next-hop">
<section id="section-4.6.8">
<h4 id="name-next-hop">
<a href="#section-4.6.8" class="section-number selfRef">4.6.8. </a><a href="#name-next-hop" class="section-name selfRef">Next Hop</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.6.8-1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 7 | Length | AE | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next hop...
+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.6.8-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.8-2">A Next Hop TLV establishes a next-hop address for a given address
family (IPv4 or IPv6) that is implied in subsequent Update TLVs, as
described in <a href="#parser-state" class="xref">Section 4.5</a>. This TLV sets up the next hop
for subsequent Update TLVs even if it is otherwise ignored due to an
unknown mandatory sub-TLV.<a href="#section-4.6.8-2" class="pilcrow">¶</a></p>
<p id="section-4.6.8-3">Fields:<a href="#section-4.6.8-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.8-4">
<dt id="section-4.6.8-4.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.6.8-4.2">Set to 7 to indicate a Next Hop TLV.<a href="#section-4.6.8-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.8-4.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.6.8-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.8-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.8-4.5">AE</dt>
<dd style="margin-left: 5.0em" id="section-4.6.8-4.6">The encoding of the Address field. This <span class="bcp14">SHOULD</span> be
1 (IPv4) or 3 (link-local IPv6), and <span class="bcp14">MUST NOT</span> be 0.<a href="#section-4.6.8-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.8-4.7">Reserved</dt>
<dd style="margin-left: 5.0em" id="section-4.6.8-4.8">Sent as 0 and <span class="bcp14">MUST</span> be ignored on reception.<a href="#section-4.6.8-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.8-4.9">Next hop</dt>
<dd style="margin-left: 5.0em" id="section-4.6.8-4.10">The next-hop address advertised by subsequent Update
TLVs for this address family.<a href="#section-4.6.8-4.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.8-5">When the address family matches the network-layer protocol over which this
packet is transported, a Next Hop TLV is not needed: in the absence
of a Next Hop TLV in a given address family, the next-hop address is taken
to be the source address of the packet.<a href="#section-4.6.8-5" class="pilcrow">¶</a></p>
<p id="section-4.6.8-6">Next Hop TLVs with an unknown value for the AE field <span class="bcp14">MUST</span> be silently
ignored.<a href="#section-4.6.8-6" class="pilcrow">¶</a></p>
<p id="section-4.6.8-7">This TLV is self-terminating, and allows sub-TLVs.<a href="#section-4.6.8-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="update">
<section id="section-4.6.9">
<h4 id="name-update">
<a href="#section-4.6.9" class="section-number selfRef">4.6.9. </a><a href="#name-update" class="section-name selfRef">Update</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.6.9-1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 8 | Length | AE | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Plen | Omitted | Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Seqno | Metric |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix...
+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.6.9-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.9-2">An Update TLV advertises or retracts a route. As an optimisation, it
can optionally have the side effect of establishing a new implied
router-id and a new default prefix, as described in
<a href="#parser-state" class="xref">Section 4.5</a>.<a href="#section-4.6.9-2" class="pilcrow">¶</a></p>
<p id="section-4.6.9-3">Fields:<a href="#section-4.6.9-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.9-4">
<dt id="section-4.6.9-4.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-4.2">Set to 8 to indicate an Update TLV.<a href="#section-4.6.9-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.9-4.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.9-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.9-4.5">AE</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-4.6">The encoding of the Prefix field.<a href="#section-4.6.9-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.9-4.7">Flags</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-4.8">The individual bits of this field specify special
handling of this TLV (see below).<a href="#section-4.6.9-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.9-4.9">Plen</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-4.10">The length in bits of the advertised prefix. If AE is
3 (link-local IPv6), the Omitted field <span class="bcp14">MUST</span> be 0.<a href="#section-4.6.9-4.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.9-4.11">Omitted</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-4.12">The number of octets that have been omitted at
the beginning of the advertised prefix and that should be taken from a
preceding Update TLV in the same address family with the Prefix flag set.<a href="#section-4.6.9-4.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.9-4.13">Interval</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-4.14">An upper bound, expressed in centiseconds, on the
time after which the sending node will send a new update for this prefix.
This <span class="bcp14">MUST NOT</span> be 0. The receiving node will use this value to compute
a hold time for the route table entry. The value FFFF hexadecimal
(infinity) expresses that this announcement will not be repeated unless
a request is received (<a href="#request-expiring" class="xref">Section 3.8.2.3</a>).<a href="#section-4.6.9-4.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.9-4.15">Seqno</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-4.16">The originator's sequence number for this update.<a href="#section-4.6.9-4.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.9-4.17">Metric</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-4.18">The sender's metric for this route. The value FFFF
hexadecimal (infinity) means that this is a route retraction.<a href="#section-4.6.9-4.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.9-4.19">Prefix</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-4.20">The prefix being advertised. This field's size is
(Plen/8 - Omitted) rounded upwards.<a href="#section-4.6.9-4.20" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.9-5">The Flags field is interpreted as follows:<a href="#section-4.6.9-5" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.6.9-6">
<pre>
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|P|R|X|X|X|X|X|X|
+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.9-6" class="pilcrow">¶</a>
</div>
<span class="break"></span><dl class="dlParallel" id="section-4.6.9-7">
<dt id="section-4.6.9-7.1">P (Prefix) flag (80 hexadecimal):</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-7.2">if set, then this Update
TLV establishes a new default prefix for subsequent Update TLVs with a matching
address encoding within the same packet, even if this TLV is otherwise
ignored due to an unknown mandatory sub-TLV;<a href="#section-4.6.9-7.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.9-7.3">R (Router-Id) flag (40 hexadecimal):</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-7.4">
<p id="section-4.6.9-7.4.1">if set, then this TLV establishes
a new default router-id for this TLV and subsequent Update TLVs in the
same packet, even if this TLV is otherwise ignored due to an unknown
mandatory sub-TLV. This router-id is computed from the first address of
the advertised prefix as follows:<a href="#section-4.6.9-7.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.6.9-7.4.2.1">if the length of the address is 8 octets or more, then the new
router-id is taken from the 8 last octets of the address;<a href="#section-4.6.9-7.4.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.6.9-7.4.2.2">if the length of the address is smaller than 8 octets, then the new
router-id consists of the required number of zero octets followed by the
address, i.e., the address is stored on the right of the router-id. For
example, for an IPv4 address, the router-id consists of 4 octets of
zeroes followed by the IPv4 address.<a href="#section-4.6.9-7.4.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.9-7.5">X:</dt>
<dd style="margin-left: 5.0em" id="section-4.6.9-7.6">all other bits <span class="bcp14">MUST</span> be sent as 0 and silently ignored on reception.<a href="#section-4.6.9-7.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.9-8">The prefix being advertised by an Update TLV is computed as follows:<a href="#section-4.6.9-8" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.6.9-9.1">the first Omitted octets of the prefix are taken from the previous
Update TLV with the Prefix flag set and the same address encoding,
even if it was ignored due to an unknown mandatory sub-TLV; if the Omitted field is
not zero and there is no such TLV, then this Update <span class="bcp14">MUST</span> be ignored;<a href="#section-4.6.9-9.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.6.9-9.2">the next (Plen/8 - Omitted) rounded upwards octets are taken from the
Prefix field;<a href="#section-4.6.9-9.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.6.9-9.3">if Plen is not a multiple of 8, then any bits beyond Plen (i.e., the
low-order (8 - Plen MOD 8) bits of the last octet) are cleared;<a href="#section-4.6.9-9.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.6.9-9.4">the remaining octets are set to 0.<a href="#section-4.6.9-9.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.6.9-10">If the Metric field is finite, the router-id of the originating node
for this announcement is taken from the prefix advertised by this Update
if the Router-Id flag is set, computed as described above. Otherwise, it
is taken either from the preceding Router-Id TLV, or the preceding
Update TLV with the Router-Id flag set, whichever comes last, even if
that TLV is otherwise ignored due to an unknown mandatory sub-TLV; if
there is no suitable TLV, then this update is ignored.<a href="#section-4.6.9-10" class="pilcrow">¶</a></p>
<p id="section-4.6.9-11">The next-hop address for this update is taken from the last preceding
Next Hop TLV with a matching address family (IPv4 or IPv6) in the same
packet even if it was otherwise ignored due to an unknown mandatory
sub-TLV; if no such TLV exists, it is taken from the network-layer source
address of this packet if it belongs to the same address family as the
prefix being announced; otherwise, this Update <span class="bcp14">MUST</span> be ignored.<a href="#section-4.6.9-11" class="pilcrow">¶</a></p>
<p id="section-4.6.9-12">If the metric field is FFFF hexadecimal, this TLV specifies
a retraction. In that case, the router-id, next hop, and seqno are not
used. AE <span class="bcp14">MAY</span> then be 0, in which case this Update retracts all of the
routes previously advertised by the sending interface. If the metric is
finite, AE <span class="bcp14">MUST NOT</span> be 0; Update TLVs with finite metric and AE equal to
0 <span class="bcp14">MUST</span> be ignored. If the metric is infinite and AE is 0, Plen and
Omitted <span class="bcp14">MUST</span> both be 0; Update TLVs that do not satisfy this requirement
<span class="bcp14">MUST</span> be ignored.<a href="#section-4.6.9-12" class="pilcrow">¶</a></p>
<p id="section-4.6.9-13">Update TLVs with an unknown value in the AE field <span class="bcp14">MUST</span> be silently
ignored.<a href="#section-4.6.9-13" class="pilcrow">¶</a></p>
<p id="section-4.6.9-14">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.9-14" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.6.10">
<h4 id="name-route-request">
<a href="#section-4.6.10" class="section-number selfRef">4.6.10. </a><a href="#name-route-request" class="section-name selfRef">Route Request</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.6.10-1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 9 | Length | AE | Plen |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix...
+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.6.10-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.10-2">A Route Request TLV prompts the receiver to send an update for a given
prefix, or a full route table dump.<a href="#section-4.6.10-2" class="pilcrow">¶</a></p>
<p id="section-4.6.10-3">Fields:<a href="#section-4.6.10-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.10-4">
<dt id="section-4.6.10-4.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.6.10-4.2">Set to 9 to indicate a Route Request TLV.<a href="#section-4.6.10-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.10-4.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.6.10-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.10-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.10-4.5">AE</dt>
<dd style="margin-left: 5.0em" id="section-4.6.10-4.6">The encoding of the Prefix field. The value 0 specifies
that this is a request for a full route table dump (a wildcard
request).<a href="#section-4.6.10-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.10-4.7">Plen</dt>
<dd style="margin-left: 5.0em" id="section-4.6.10-4.8">The length in bits of the requested prefix.<a href="#section-4.6.10-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.10-4.9">Prefix</dt>
<dd style="margin-left: 5.0em" id="section-4.6.10-4.10">The prefix being requested. This field's size is
Plen/8 rounded upwards.<a href="#section-4.6.10-4.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.10-5">A Request TLV prompts the receiver to send an update message (possibly
a retraction) for the prefix specified by the AE, Plen, and Prefix fields,
or a full dump of its route table if AE is 0 (in which case Plen must be
0 and Prefix is of length 0). A Request TLV with AE set to 0 and Plen not
set to 0 <span class="bcp14">MUST</span> be ignored.<a href="#section-4.6.10-5" class="pilcrow">¶</a></p>
<p id="section-4.6.10-6">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.10-6" class="pilcrow">¶</a></p>
</section>
<section id="section-4.6.11">
<h4 id="name-seqno-request">
<a href="#section-4.6.11" class="section-number selfRef">4.6.11. </a><a href="#name-seqno-request" class="section-name selfRef">Seqno Request</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.6.11-1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 10 | Length | AE | Plen |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Seqno | Hop Count | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Router-Id +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix...
+-+-+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.6.11-1" class="pilcrow">¶</a>
</div>
<p id="section-4.6.11-2">A Seqno Request TLV prompts the receiver to send an Update for a given
prefix with a given sequence number, or to forward the request further if
it cannot be satisfied locally.<a href="#section-4.6.11-2" class="pilcrow">¶</a></p>
<p id="section-4.6.11-3">Fields:<a href="#section-4.6.11-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.6.11-4">
<dt id="section-4.6.11-4.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.6.11-4.2">Set to 10 to indicate a Seqno Request TLV.<a href="#section-4.6.11-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.11-4.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.6.11-4.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.6.11-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.11-4.5">AE</dt>
<dd style="margin-left: 5.0em" id="section-4.6.11-4.6">The encoding of the Prefix field. This <span class="bcp14">MUST NOT</span> be 0.<a href="#section-4.6.11-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.11-4.7">Plen</dt>
<dd style="margin-left: 5.0em" id="section-4.6.11-4.8">The length in bits of the requested prefix.<a href="#section-4.6.11-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.11-4.9">Seqno</dt>
<dd style="margin-left: 5.0em" id="section-4.6.11-4.10">The sequence number that is being requested.<a href="#section-4.6.11-4.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.11-4.11">Hop Count</dt>
<dd style="margin-left: 5.0em" id="section-4.6.11-4.12">The maximum number of times that this TLV may be
forwarded, plus 1. This <span class="bcp14">MUST NOT</span> be 0.<a href="#section-4.6.11-4.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.11-4.13">Reserved</dt>
<dd style="margin-left: 5.0em" id="section-4.6.11-4.14">Sent as 0 and <span class="bcp14">MUST</span> be ignored on reception.<a href="#section-4.6.11-4.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.11-4.15">Router-Id</dt>
<dd style="margin-left: 5.0em" id="section-4.6.11-4.16">The Router-Id that is being requested. This <span class="bcp14">MUST NOT</span> consist of all zeroes or all ones.<a href="#section-4.6.11-4.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.6.11-4.17">Prefix</dt>
<dd style="margin-left: 5.0em" id="section-4.6.11-4.18">The prefix being requested. This field's size is
Plen/8 rounded upwards.<a href="#section-4.6.11-4.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.6.11-5">A Seqno Request TLV prompts the receiving node to send a finite-metric
Update for the prefix specified by the AE, Plen, and Prefix fields, with
either a router-id different from what is specified by the Router-Id
field, or a Seqno no less (modulo 2<sup>16</sup>) than what is specified by the
Seqno field. If this request cannot be satisfied locally, then it is
forwarded according to the rules set out in
<a href="#handling-seqno-requests" class="xref">Section 3.8.1.2</a>.<a href="#section-4.6.11-5" class="pilcrow">¶</a></p>
<p id="section-4.6.11-6">While a Seqno Request <span class="bcp14">MAY</span> be sent to a multicast address, it <span class="bcp14">MUST NOT</span> be
forwarded to a multicast address and <span class="bcp14">MUST NOT</span> be forwarded to more than
one neighbour. A request <span class="bcp14">MUST NOT</span> be forwarded if its Hop Count field is
1.<a href="#section-4.6.11-6" class="pilcrow">¶</a></p>
<p id="section-4.6.11-7">This TLV is self-terminating and allows sub-TLVs.<a href="#section-4.6.11-7" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<section id="section-4.7">
<h3 id="name-details-of-specific-sub-tlv">
<a href="#section-4.7" class="section-number selfRef">4.7. </a><a href="#name-details-of-specific-sub-tlv" class="section-name selfRef">Details of specific sub-TLVs</a>
</h3>
<div id="pad1">
<section id="section-4.7.1">
<h4 id="name-pad1-2">
<a href="#section-4.7.1" class="section-number selfRef">4.7.1. </a><a href="#name-pad1-2" class="section-name selfRef">Pad1</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.7.1-1">
<pre>
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Type = 0 |
+-+-+-+-+-+-+-+-+
</pre><a href="#section-4.7.1-1" class="pilcrow">¶</a>
</div>
<p id="section-4.7.1-2">Fields:<a href="#section-4.7.1-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.7.1-3">
<dt id="section-4.7.1-3.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.7.1-3.2">Set to 0 to indicate a Pad1 sub-TLV.<a href="#section-4.7.1-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.7.1-4">This sub-TLV is silently ignored on reception. It is allowed within
any TLV that allows sub-TLVs.<a href="#section-4.7.1-4" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.7.2">
<h4 id="name-padn-2">
<a href="#section-4.7.2" class="section-number selfRef">4.7.2. </a><a href="#name-padn-2" class="section-name selfRef">PadN</a>
</h4>
<div class="artwork art-text alignLeft" id="section-4.7.2-1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Length | MBZ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
</pre><a href="#section-4.7.2-1" class="pilcrow">¶</a>
</div>
<p id="section-4.7.2-2">Fields:<a href="#section-4.7.2-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.7.2-3">
<dt id="section-4.7.2-3.1">Type</dt>
<dd style="margin-left: 5.0em" id="section-4.7.2-3.2">Set to 1 to indicate a PadN sub-TLV.<a href="#section-4.7.2-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.7.2-3.3">Length</dt>
<dd style="margin-left: 5.0em" id="section-4.7.2-3.4">The length of the body in octets, exclusive of the
Type and Length fields.<a href="#section-4.7.2-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.7.2-3.5">MBZ</dt>
<dd style="margin-left: 5.0em" id="section-4.7.2-3.6">Must be zero, set to 0 on transmission.<a href="#section-4.7.2-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.7.2-4">This sub-TLV is silently ignored on reception. It is allowed within
any TLV that allows sub-TLVs.<a href="#section-4.7.2-4" class="pilcrow">¶</a></p>
</section>
</section>
</section>
</div>
<section id="section-5">
<h2 id="name-iana-considerations">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-5-1">IANA has registered the UDP port number 6696, called "babel", for use
by the Babel protocol.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">IANA has registered the IPv6 multicast group ff02::1:6 and the
IPv4 multicast group 224.0.0.111 for use by the Babel protocol.<a href="#section-5-2" class="pilcrow">¶</a></p>
<p id="section-5-3">IANA has created a registry called "Babel TLV Types". The allocation
policy for this registry is Specification Required <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>
for Types 0-223 and Experimental Use for Types 224-254. The values in
this registry are as follows:<a href="#section-5-3" class="pilcrow">¶</a></p>
<table class="center" id="table-1">
<caption><a href="#table-1" class="selfRef">Table 1</a></caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Type</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Pad1</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">PadN</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">2</td>
<td class="text-left" rowspan="1" colspan="1">Acknowledgment Request</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">3</td>
<td class="text-left" rowspan="1" colspan="1">Acknowledgment</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">4</td>
<td class="text-left" rowspan="1" colspan="1">Hello</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">5</td>
<td class="text-left" rowspan="1" colspan="1">IHU</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">6</td>
<td class="text-left" rowspan="1" colspan="1">Router-Id</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">7</td>
<td class="text-left" rowspan="1" colspan="1">Next Hop</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">8</td>
<td class="text-left" rowspan="1" colspan="1">Update</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">9</td>
<td class="text-left" rowspan="1" colspan="1">Route Request</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">10</td>
<td class="text-left" rowspan="1" colspan="1">Seqno Request</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">11</td>
<td class="text-left" rowspan="1" colspan="1">TS/PC</td>
<td class="text-left" rowspan="1" colspan="1">
<span>[<a href="#RFC7298" class="xref">RFC7298</a>]</span>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">12</td>
<td class="text-left" rowspan="1" colspan="1">HMAC</td>
<td class="text-left" rowspan="1" colspan="1">
<span>[<a href="#RFC7298" class="xref">RFC7298</a>]</span>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">13</td>
<td class="text-left" rowspan="1" colspan="1">Reserved</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">14</td>
<td class="text-left" rowspan="1" colspan="1">Reserved</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">15</td>
<td class="text-left" rowspan="1" colspan="1">Reserved</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">224-254</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for Experimental Use</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">255</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for expansion of the type space</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
</tbody>
</table>
<p id="section-5-5">IANA has created a registry called "Babel Sub-TLV Types". The allocation
policy for this registry is Specification Required for Types 0-111 and
128-239, and Experimental Use for Types 112-126 and 240-254. The values
in this registry are as follows:<a href="#section-5-5" class="pilcrow">¶</a></p>
<table class="center" id="table-2">
<caption><a href="#table-2" class="selfRef">Table 2</a></caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Type</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Pad1</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">PadN</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">2</td>
<td class="text-left" rowspan="1" colspan="1">Diversity</td>
<td class="text-left" rowspan="1" colspan="1">
<span>[<a href="#I-D.chroboczek-babel-diversity-routing" class="xref">BABEL-DIVERSITY</a>]</span>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">3</td>
<td class="text-left" rowspan="1" colspan="1">Timestamp</td>
<td class="text-left" rowspan="1" colspan="1">
<span>[<a href="#I-D.ietf-babel-rtt-extension" class="xref">BABEL-RTT</a>]</span>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">4-111</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">112-126</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for Experimental Use</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">127</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for expansion of the type space</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">128</td>
<td class="text-left" rowspan="1" colspan="1">Source Prefix</td>
<td class="text-left" rowspan="1" colspan="1">
<span>[<a href="#I-D.ietf-babel-source-specific" class="xref">BABEL-SS</a>]</span>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">129-239</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">240-254</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for Experimental Use</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">255</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for expansion of the type space</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
</tbody>
</table>
<p id="section-5-7">IANA has created a registry called "Babel Address
Encodings". The allocation policy for this registry is Specification
Required for Address Encodings (AEs) 0-223, and Experimental Use for AEs
224-254. The values in this registry are as follows:<a href="#section-5-7" class="pilcrow">¶</a></p>
<table class="center" id="table-3">
<caption><a href="#table-3" class="selfRef">Table 3</a></caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">AE</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Wildcard address</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">IPv4 address</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">2</td>
<td class="text-left" rowspan="1" colspan="1">IPv6 address</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">3</td>
<td class="text-left" rowspan="1" colspan="1">Link-local IPv6 address</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">4-223</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">224-254</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for Experimental Use</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">255</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for expansion of the AE space</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
</tbody>
</table>
<p id="section-5-9">IANA has renamed the registry called "Babel Flags Values" to "Babel Update Flags Values". The allocation policy for this registry is Specification Required.
The values in this registry are as follows:<a href="#section-5-9" class="pilcrow">¶</a></p>
<table class="center" id="table-4">
<caption><a href="#table-4" class="selfRef">Table 4</a></caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Bit</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Default prefix</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">Default router-id</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">2-7</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<p id="section-5-11">IANA has created a new registry called "Babel Hello Flags
Values". The allocation policy for this registry is Specification
Required. The initial values in this registry are as follows:<a href="#section-5-11" class="pilcrow">¶</a></p>
<table class="center" id="table-5">
<caption><a href="#table-5" class="selfRef">Table 5</a></caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Bit</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Unicast</td>
<td class="text-left" rowspan="1" colspan="1">RFC 8966</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1-15</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<p id="section-5-13">IANA has replaced all references to RFCs 6126 and 7557
in all of the registries mentioned above with references to this document.<a href="#section-5-13" class="pilcrow">¶</a></p>
</section>
<section id="section-6">
<h2 id="name-security-considerations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-6-1">As defined in this document, Babel is a completely insecure protocol.
Without additional security mechanisms, Babel trusts any information it
receives in plaintext UDP datagrams and acts on it. An attacker that is
present on the local network can impact Babel operation in a variety of
ways; for example they can:<a href="#section-6-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6-2.1">spoof a Babel packet, and redirect traffic by announcing a route with
a smaller metric, a larger sequence number, or a longer prefix;<a href="#section-6-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6-2.2">spoof a malformed packet, which could cause an insufficiently robust
implementation to crash or interfere with the rest of the network;<a href="#section-6-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6-2.3">replay a previously captured Babel packet, which could cause traffic to
be redirected, black-holed, or otherwise interfere with the network.<a href="#section-6-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6-3">
When carried over IPv6, Babel packets are ignored unless they are sent
from a link-local IPv6 address; since routers don't forward link-local
IPv6 packets, this mitigates the attacks outlined above by restricting
them to on-link attackers. No such natural protection exists when Babel
packets are carried over IPv4, which is one of the reasons why it is
recommended to deploy Babel over IPv6
(<a href="#transmission-reception" class="xref">Section 3.1</a>).<a href="#section-6-3" class="pilcrow">¶</a></p>
<p id="section-6-4">It is usually difficult to ensure that packets arriving at a Babel node
are trusted, even in the case where the local link is believed to be
secure. For that reason, it is <span class="bcp14">RECOMMENDED</span> that all Babel traffic be
protected by an application-layer cryptographic protocol. There are
currently two suitable mechanisms, which implement different trade-offs
between implementation simplicity and security:<a href="#section-6-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6-5.1">Babel over DTLS <span>[<a href="#RFC8968" class="xref">RFC8968</a>]</span> runs the majority of Babel
traffic over DTLS and leverages DTLS to authenticate nodes and provide
confidentiality and integrity protection;<a href="#section-6-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6-5.2">MAC authentication <span>[<a href="#RFC8967" class="xref">RFC8967</a>]</span> appends a message
authentication code (MAC) to every Babel packet to prove that it
originated at a node that knows a shared secret, and includes sufficient
additional information to prove that the packet is fresh (not replayed).<a href="#section-6-5.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6-6">
Both mechanisms enable nodes to ignore packets generated by attackers
without the proper credentials. They also ensure integrity of messages
and prevent message replay. While Babel-DTLS supports asymmetric keying
and ensures confidentiality, Babel-MAC has a much more limited scope (see
Sections <a href="https://www.rfc-editor.org/rfc/rfc8967#section-1.1" class="relref">1.1</a>,
<a href="https://www.rfc-editor.org/rfc/rfc8967#section-1.2" class="relref">1.2</a>, and
<a href="https://www.rfc-editor.org/rfc/rfc8967#section-7" class="relref">7</a> of
<span>[<a href="#RFC8967" class="xref">RFC8967</a>]</span>). Since Babel-MAC
is simpler and more lightweight, it is recommended in preference to
Babel-DTLS in deployments where its limitations are acceptable, i.e., when
symmetric keying is sufficient and where the routing information is not
considered confidential.<a href="#section-6-6" class="pilcrow">¶</a></p>
<p id="section-6-7">Every implementation of Babel <span class="bcp14">SHOULD</span> implement BABEL-MAC.<a href="#section-6-7" class="pilcrow">¶</a></p>
<p id="section-6-8">One should be aware that the information that a mobile Babel node
announces to the whole routing domain is sufficient to determine the mobile
node's physical location with reasonable precision, which might cause
privacy concerns even if the control traffic is protected from
unauthenticated attackers by a cryptographic mechanism such as Babel-DTLS.
This issue may be mitigated somewhat by using randomly chosen router-ids
and randomly chosen IP addresses, and changing them often enough.<a href="#section-6-8" class="pilcrow">¶</a></p>
</section>
<section id="section-7">
<h2 id="name-references">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-7.1">
<h3 id="name-normative-references">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC0793">[RFC793]</dt>
<dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Transmission Control Protocol"</span>, <span class="seriesInfo">STD 7</span>, <span class="seriesInfo">RFC 793</span>, <span class="seriesInfo">DOI 10.17487/RFC0793</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span><<a href="https://www.rfc-editor.org/info/rfc793">https://www.rfc-editor.org/info/rfc793</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8126">[RFC8126]</dt>
<dd>
<span class="refAuthor">Cotton, M.</span><span class="refAuthor">, Leiba, B.</span><span class="refAuthor">, and T. Narten</span>, <span class="refTitle">"Guidelines for Writing an IANA Considerations Section in RFCs"</span>, <span class="seriesInfo">BCP 26</span>, <span class="seriesInfo">RFC 8126</span>, <span class="seriesInfo">DOI 10.17487/RFC8126</span>, <time datetime="2017-06" class="refDate">June 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8967">[RFC8967]</dt>
<dd>
<span class="refAuthor">Dô, C.</span><span class="refAuthor">, Kolodziejak, W.</span><span class="refAuthor">, and J. Chroboczek</span>, <span class="refTitle">"MAC Authentication for the Babel Routing Protocol"</span>, <span class="seriesInfo">RFC 8967</span>, <span class="seriesInfo">DOI 10.17487/RFC8967</span>, <time datetime="2021-01" class="refDate">January 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8967">https://www.rfc-editor.org/info/rfc8967</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-7.2">
<h3 id="name-informative-references">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="I-D.chroboczek-babel-diversity-routing">[BABEL-DIVERSITY]</dt>
<dd>
<span class="refAuthor">Chroboczek, J.</span>, <span class="refTitle">"Diversity Routing for the Babel Routing Protocol"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-chroboczek-babel-diversity-routing-01</span>, <time datetime="2016-02-15" class="refDate">15 February 2016</time>, <span><<a href="https://tools.ietf.org/html/draft-chroboczek-babel-diversity-routing-01">https://tools.ietf.org/html/draft-chroboczek-babel-diversity-routing-01</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-babel-rtt-extension">[BABEL-RTT]</dt>
<dd>
<span class="refAuthor">Jonglez, B.</span><span class="refAuthor"> and J. Chroboczek</span>, <span class="refTitle">"Delay-based Metric Extension for the Babel Routing Protocol"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-babel-rtt-extension-00</span>, <time datetime="2019-04-26" class="refDate">26 April 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-babel-rtt-extension-00">https://tools.ietf.org/html/draft-ietf-babel-rtt-extension-00</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-babel-source-specific">[BABEL-SS]</dt>
<dd>
<span class="refAuthor">Boutier, M.</span><span class="refAuthor"> and J. Chroboczek</span>, <span class="refTitle">"Source-Specific Routing in Babel"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-babel-source-specific-07</span>, <time datetime="2020-10-28" class="refDate">28 October 2020</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-babel-source-specific-07">https://tools.ietf.org/html/draft-ietf-babel-source-specific-07</a>></span>. </dd>
<dd class="break"></dd>
<dt id="DSDV">[DSDV]</dt>
<dd>
<span class="refAuthor">Perkins, C.</span><span class="refAuthor"> and P. Bhagwat</span>, <span class="refTitle">"Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers"</span>, <span class="refContent">ACM SIGCOMM '94: Proceedings of the conference on
Communications architectures, protocols and applications</span>, <span class="refContent">234-244</span>, <span class="seriesInfo">DOI 10.1145/190314.190336</span>, <time datetime="1994-10" class="refDate">October 1994</time>, <span><<a href="https://doi.org/10.1145/190314.190336">https://doi.org/10.1145/190314.190336</a>></span>. </dd>
<dd class="break"></dd>
<dt id="DUAL">[DUAL]</dt>
<dd>
<span class="refAuthor">Garcia Luna Aceves, J. J.</span>, <span class="refTitle">"Loop-free routing using diffusing computations"</span>, <span class="refContent">IEEE/ACM Transactions on Networking</span>, <span class="refContent">1:1</span>, <span class="seriesInfo">DOI 10.1109/90.222913</span>, <time datetime="1993-02" class="refDate">February 1993</time>, <span><<a href="https://doi.org/10.1109/90.222913">https://doi.org/10.1109/90.222913</a>></span>. </dd>
<dd class="break"></dd>
<dt id="EIGRP">[EIGRP]</dt>
<dd>
<span class="refAuthor">Albrightson, B.</span><span class="refAuthor">, Garcia Luna Aceves, J. J.</span><span class="refAuthor">, and J. Boyle</span>, <span class="refTitle">"EIGRP -- a Fast Routing Protocol Based on Distance Vectors"</span>, <span class="refContent">Proc. Networld/Interop 94</span>, <time datetime="1994" class="refDate">1994</time>. </dd>
<dd class="break"></dd>
<dt id="ETX">[ETX]</dt>
<dd>
<span class="refAuthor">De Couto, D.</span><span class="refAuthor">, Aguayo, D.</span><span class="refAuthor">, Bicket, J.</span><span class="refAuthor">, and R. Morris</span>, <span class="refTitle">"A high-throughput path metric for multi-hop wireless networks"</span>, <span class="refContent">MobiCom '03: Proceedings of the 9th annual international
conference on Mobile computing and networking</span>, <span class="refContent">134-146</span>, <span class="seriesInfo">DOI 10.1145/938985.939000</span>, <time datetime="2003-09" class="refDate">September 2003</time>, <span><<a href="https://doi.org/10.1145/938985.939000">https://doi.org/10.1145/938985.939000</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.11">[IEEE802.11]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications"</span>, <span class="seriesInfo">IEEE 802.11-2012</span>, <span class="seriesInfo">DOI 10.1109/ieeestd.2012.6178212</span>, <time datetime="2012-04" class="refDate">April 2012</time>, <span><<a href="https://doi.org/10.1109/ieeestd.2012.6178212">https://doi.org/10.1109/ieeestd.2012.6178212</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEN137">[IEN137]</dt>
<dd>
<span class="refAuthor">Cohen, D.</span>, <span class="refTitle">"On Holy Wars and a Plea for Peace"</span>, <span class="seriesInfo">IEN 137</span>, <time datetime="1980-04-01" class="refDate">1 April 1980</time>. </dd>
<dd class="break"></dd>
<dt id="IS-IS">[IS-IS]</dt>
<dd>
<span class="refAuthor">International Organization for Standardization</span>, <span class="refTitle">"Information technology -- Telecommunications and information exchange between systems -- Intermediate System to Intermediate System intra-domain routeing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode network service (ISO 8473)"</span>, <span class="refContent">ISO/IEC 10589:2002</span>, <time datetime="2002" class="refDate">2002</time>. </dd>
<dd class="break"></dd>
<dt id="JITTER">[JITTER]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span><span class="refAuthor"> and V. Jacobson</span>, <span class="refTitle">"The Synchronization of Periodic Routing Messages"</span>, <span class="refContent">IEEE/ACM Transactions on Networking</span>, <span class="refContent">2, 2, 122-136</span>, <span class="seriesInfo">DOI 10.1109/90.298431</span>, <time datetime="1994-04" class="refDate">April 1994</time>, <span><<a href="https://doi.org/10.1109/90.298431">https://doi.org/10.1109/90.298431</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2328">[OSPF]</dt>
<dd>
<span class="refAuthor">Moy, J.</span>, <span class="refTitle">"OSPF Version 2"</span>, <span class="seriesInfo">STD 54</span>, <span class="seriesInfo">RFC 2328</span>, <span class="seriesInfo">DOI 10.17487/RFC2328</span>, <time datetime="1998-04" class="refDate">April 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2328">https://www.rfc-editor.org/info/rfc2328</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5444">[PACKETBB]</dt>
<dd>
<span class="refAuthor">Clausen, T.</span><span class="refAuthor">, Dearlove, C.</span><span class="refAuthor">, Dean, J.</span><span class="refAuthor">, and C. Adjih</span>, <span class="refTitle">"Generalized Mobile Ad Hoc Network (MANET) Packet/Message Format"</span>, <span class="seriesInfo">RFC 5444</span>, <span class="seriesInfo">DOI 10.17487/RFC5444</span>, <time datetime="2009-02" class="refDate">February 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5444">https://www.rfc-editor.org/info/rfc5444</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2675">[RFC2675]</dt>
<dd>
<span class="refAuthor">Borman, D.</span><span class="refAuthor">, Deering, S.</span><span class="refAuthor">, and R. Hinden</span>, <span class="refTitle">"IPv6 Jumbograms"</span>, <span class="seriesInfo">RFC 2675</span>, <span class="seriesInfo">DOI 10.17487/RFC2675</span>, <time datetime="1999-08" class="refDate">August 1999</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2675">https://www.rfc-editor.org/info/rfc2675</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3561">[RFC3561]</dt>
<dd>
<span class="refAuthor">Perkins, C.</span><span class="refAuthor">, Belding-Royer, E.</span><span class="refAuthor">, and S. Das</span>, <span class="refTitle">"Ad hoc On-Demand Distance Vector (AODV) Routing"</span>, <span class="seriesInfo">RFC 3561</span>, <span class="seriesInfo">DOI 10.17487/RFC3561</span>, <time datetime="2003-07" class="refDate">July 2003</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3561">https://www.rfc-editor.org/info/rfc3561</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6126">[RFC6126]</dt>
<dd>
<span class="refAuthor">Chroboczek, J.</span>, <span class="refTitle">"The Babel Routing Protocol"</span>, <span class="seriesInfo">RFC 6126</span>, <span class="seriesInfo">DOI 10.17487/RFC6126</span>, <time datetime="2011-04" class="refDate">April 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6126">https://www.rfc-editor.org/info/rfc6126</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7298">[RFC7298]</dt>
<dd>
<span class="refAuthor">Ovsienko, D.</span>, <span class="refTitle">"Babel Hashed Message Authentication Code (HMAC) Cryptographic Authentication"</span>, <span class="seriesInfo">RFC 7298</span>, <span class="seriesInfo">DOI 10.17487/RFC7298</span>, <time datetime="2014-07" class="refDate">July 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7298">https://www.rfc-editor.org/info/rfc7298</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7557">[RFC7557]</dt>
<dd>
<span class="refAuthor">Chroboczek, J.</span>, <span class="refTitle">"Extension Mechanism for the Babel Routing Protocol"</span>, <span class="seriesInfo">RFC 7557</span>, <span class="seriesInfo">DOI 10.17487/RFC7557</span>, <time datetime="2015-05" class="refDate">May 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7557">https://www.rfc-editor.org/info/rfc7557</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8968">[RFC8968]</dt>
<dd>
<span class="refAuthor">Décimo, A.</span><span class="refAuthor">, Schinazi, D.</span><span class="refAuthor">, and J. Chroboczek</span>, <span class="refTitle">"Babel Routing Protocol over Datagram Transport Layer Security"</span>, <span class="seriesInfo">RFC 8968</span>, <span class="seriesInfo">DOI 10.17487/RFC8968</span>, <time datetime="2021-01" class="refDate">January 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8968">https://www.rfc-editor.org/info/rfc8968</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2453">[RIP]</dt>
<dd>
<span class="refAuthor">Malkin, G.</span>, <span class="refTitle">"RIP Version 2"</span>, <span class="seriesInfo">STD 56</span>, <span class="seriesInfo">RFC 2453</span>, <span class="seriesInfo">DOI 10.17487/RFC2453</span>, <time datetime="1998-11" class="refDate">November 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2453">https://www.rfc-editor.org/info/rfc2453</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="section-appendix.a">
<h2 id="name-cost-and-metric-computation">
<a href="#section-appendix.a" class="section-number selfRef">Appendix A. </a><a href="#name-cost-and-metric-computation" class="section-name selfRef">Cost and Metric Computation</a>
</h2>
<p id="section-appendix.a-1">The strategy for computing link costs and route metrics is a local
matter; Babel itself only requires that it comply with the conditions given
in <a href="#cost-computation" class="xref">Section 3.4.3</a> and <a href="#metric-computation" class="xref">Section 3.5.2</a>.
Different nodes may use different strategies in a single network and may
use different strategies on different interface types. This section describes
a set of strategies that have been found to work well in actual networks.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
<p id="section-appendix.a-2">In summary, a node maintains per-neighbour statistics about the last 16
received Hello TLVs of each kind (<a href="#hello-history" class="xref">Appendix A.1</a>),
it computes costs by using the 2-out-of-3 strategy (<a href="#k-j" class="xref">Appendix A.2.1</a>) on
wired links and Expected Transmission Cost (ETX) (<a href="#etx" class="xref">Appendix A.2.2</a>) on wireless links. It uses an
additive algebra for metric computation (<a href="#metric-computation" class="xref">Section 3.5.2</a>).<a href="#section-appendix.a-2" class="pilcrow">¶</a></p>
<div id="hello-history">
<section id="section-a.1">
<h2 id="name-maintaining-hello-history">
<a href="#section-a.1" class="section-number selfRef">A.1. </a><a href="#name-maintaining-hello-history" class="section-name selfRef">Maintaining Hello History</a>
</h2>
<p id="section-a.1-1">For each neighbour, a node maintains two sets of Hello history, one for
each kind of Hello, and an expected sequence number, one for Multicast and
one for Unicast Hellos. Each Hello history is a vector of 16 bits, where
a 1 value represents a received Hello, and a 0 value a missed Hello. For
each kind of Hello, the expected sequence number, written ne, is the
sequence number that is expected to be carried by the next received Hello
from this neighbour.<a href="#section-a.1-1" class="pilcrow">¶</a></p>
<p id="section-a.1-2">Whenever it receives a Hello packet of a given kind from a neighbour,
a node compares the received sequence number nr for that kind of Hello
with its expected sequence number ne. Depending on the outcome of this
comparison, one of the following actions is taken:<a href="#section-a.1-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-a.1-3.1">if the two differ by more than 16 (modulo 2<sup>16</sup>), then the sending
node has probably rebooted and lost its sequence number; the whole
associated neighbour table entry is flushed and a new one is created;<a href="#section-a.1-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-a.1-3.2">otherwise, if the received nr is smaller (modulo 2<sup>16</sup>) than the
expected sequence number ne, then the sending node has increased its
Hello interval without our noticing; the receiving node removes the last
(ne - nr) entries from this neighbour's Hello history (we "undo
history");<a href="#section-a.1-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-a.1-3.3">otherwise, if nr is larger (modulo 2<sup>16</sup>) than ne, then the sending
node has decreased its Hello interval, and some Hellos were lost; the
receiving node adds (nr - ne) 0 bits to the Hello history (we
"fast-forward").<a href="#section-a.1-3.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-a.1-4">
The receiving node then appends a 1 bit to the Hello history and sets ne
to (nr + 1). If the Interval field of the received Hello is not zero, it
resets the neighbour's hello timer to 1.5 times the advertised Interval
(the extra margin allows for delay due to jitter).<a href="#section-a.1-4" class="pilcrow">¶</a></p>
<p id="section-a.1-5">Whenever either hello timer associated with a neighbour expires, the
local node adds a 0 bit to the corresponding Hello history, and increments
the expected Hello number. If both Hello histories are empty (they
contain 0 bits only), the neighbour entry is flushed; otherwise, the
relevant hello timer is reset to the value advertised in the last Hello of
that kind received from this neighbour (no extra margin is necessary in
this case, since jitter was already taken into account when computing the
timeout that has just expired).<a href="#section-a.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="cost-computation-examples">
<section id="section-a.2">
<h2 id="name-cost-computation-2">
<a href="#section-a.2" class="section-number selfRef">A.2. </a><a href="#name-cost-computation-2" class="section-name selfRef">Cost Computation</a>
</h2>
<p id="section-a.2-1">This section describes two algorithms suitable for computing costs
(<a href="#cost-computation" class="xref">Section 3.4.3</a>) based on Hello history.
<a href="#k-j" class="xref">Appendix A.2.1</a> applies to wired links and <a href="#etx" class="xref">Appendix A.2.2</a> to
wireless links. <span class="bcp14">RECOMMENDED</span> default values of the parameters that appear
in these algorithms are given in <a href="#parameters" class="xref">Appendix B</a>.<a href="#section-a.2-1" class="pilcrow">¶</a></p>
<div id="k-j">
<section id="section-a.2.1">
<h3 id="name-k-out-of-j">
<a href="#section-a.2.1" class="section-number selfRef">A.2.1. </a><a href="#name-k-out-of-j" class="section-name selfRef">k-out-of-j</a>
</h3>
<p id="section-a.2.1-1">K-out-of-j link sensing is suitable for wired links that are either up,
in which case they only occasionally drop a packet, or down, in which case
they drop all packets.<a href="#section-a.2.1-1" class="pilcrow">¶</a></p>
<p id="section-a.2.1-2">The k-out-of-j strategy is parameterised by two small integers k and j,
such that 0 < k <= j, and the nominal link cost, a constant C >= 1.
A node keeps a history of the last j hellos; if k or more of those have
been correctly received, the link is assumed to be up, and the rxcost is
set to C; otherwise, the link is assumed to be down, and the rxcost is set
to infinity.<a href="#section-a.2.1-2" class="pilcrow">¶</a></p>
<p id="section-a.2.1-3">Since Babel supports two kinds of Hellos, a Babel node performs
k-out-of-j twice for each neighbour, once on the Unicast Hello history and once on the
Multicast Hello history. If either of the instances of k-out-of-j
indicates that the link is up, then the link is assumed to be up, and the
rxcost is set to C; if both instances indicate that the link is down, then
the link is assumed to be down, and the rxcost is set to infinity. In
other words, the resulting rxcost is the minimum of the rxcosts yielded by
the two instances of k-out-of-j link sensing.<a href="#section-a.2.1-3" class="pilcrow">¶</a></p>
<p id="section-a.2.1-4">The cost of a link performing k-out-of-j link sensing is defined as
follows:<a href="#section-a.2.1-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-a.2.1-5.1">cost = FFFF hexadecimal if rxcost = FFFF hexadecimal;<a href="#section-a.2.1-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-a.2.1-5.2">cost = txcost otherwise.<a href="#section-a.2.1-5.2" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="etx">
<section id="section-a.2.2">
<h3 id="name-etx">
<a href="#section-a.2.2" class="section-number selfRef">A.2.2. </a><a href="#name-etx" class="section-name selfRef">ETX</a>
</h3>
<p id="section-a.2.2-1">Unlike wired links which are bimodal (either up or down), wireless
links exhibit continuous variation of the link quality. Naive application
of hop-count routing in networks that use wireless links for transit tends
to select long, lossy links in preference to shorter, lossless links,
which can dramatically reduce throughput. For that reason, a routing
protocol designed to support wireless links must perform some form of
link quality estimation.<a href="#section-a.2.2-1" class="pilcrow">¶</a></p>
<p id="section-a.2.2-2">The Expected Transmission Cost algorithm, or ETX <span>[<a href="#ETX" class="xref">ETX</a>]</span>,
is a simple link quality estimation algorithm that is designed to work
well with the IEEE 802.11 MAC <span>[<a href="#IEEE802.11" class="xref">IEEE802.11</a>]</span>. By
default, the IEEE 802.11 MAC performs Automatic Repeat Query (ARQ)
and rate adaptation on unicast frames, but not on multicast frames, which
are sent at a fixed rate with no ARQ; therefore, measuring the loss rate
of multicast frames yields a useful estimate of a link's quality.<a href="#section-a.2.2-2" class="pilcrow">¶</a></p>
<p id="section-a.2.2-3">A node performing ETX link quality estimation uses a neighbour's
Multicast Hello history to compute an estimate, written beta, of the
probability that a Hello TLV is successfully received. Beta can be
computed as the fraction of 1 bits within a small number (say, 6) of the
most recent entries in the Multicast Hello history, or it can be an
exponential average, or some combination of both approaches. Let rxcost
be 256/beta.<a href="#section-a.2.2-3" class="pilcrow">¶</a></p>
<p id="section-a.2.2-4">Let alpha be MIN(1, 256/txcost), an estimate of the probability of
successfully sending a Hello TLV. The cost is then computed by<a href="#section-a.2.2-4" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-a.2.2-5">cost = 256/(alpha * beta)<a href="#section-a.2.2-5" class="pilcrow">¶</a></p>
<p id="section-a.2.2-6">
or, equivalently,<a href="#section-a.2.2-6" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-a.2.2-7">cost = (MAX(txcost, 256) * rxcost) / 256.<a href="#section-a.2.2-7" class="pilcrow">¶</a></p>
<p id="section-a.2.2-8">Since the IEEE 802.11 MAC performs ARQ on unicast frames, unicast
frames do not provide a useful measure of link quality, and therefore ETX
ignores the Unicast Hello history. Thus, a node performing ETX
link quality estimation will not route through neighbouring nodes unless
they send periodic Multicast Hellos (possibly in addition to Unicast
Hellos).<a href="#section-a.2.2-8" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="route-selection-hysteresis">
<section id="section-a.3">
<h2 id="name-route-selection-and-hystere">
<a href="#section-a.3" class="section-number selfRef">A.3. </a><a href="#name-route-selection-and-hystere" class="section-name selfRef">Route Selection and Hysteresis</a>
</h2>
<p id="section-a.3-1">Route selection (<a href="#route-selection" class="xref">Section 3.6</a>) is the process by
which a node selects a single route among the routes that it has available
towards a given destination. With Babel, any route selection procedure
that only ever chooses feasible routes with a finite metric will yield
a set of loop-free routes; however, in the presence of continuously
variable metrics such as ETX (<a href="#etx" class="xref">Appendix A.2.2</a>), a naive route
selection procedure might lead to persistent oscillations. Such
oscillations can be limited or avoided altogether by implementing
hysteresis within the route selection algorithm, i.e., by making the route
selection algorithm sensitive to a route's history. Any reasonable
hysteresis algorithm should yield good results; the following algorithm
is simple to implement and has been successfully deployed in a variety of
environments.<a href="#section-a.3-1" class="pilcrow">¶</a></p>
<p id="section-a.3-2">For every route R, in addition to the route's metric m(R), maintain
a smoothed version of m(R) written ms(R) (we RECOMMEND computing ms(R) as an
exponentially smoothed average (see <span><a href="https://www.rfc-editor.org/rfc/rfc793#section-3.7" class="relref">Section 3.7</a> of [<a href="#RFC0793" class="xref">RFC793</a>]</span>)
of m(R) with a time constant equal to the Hello interval multiplied by
a small number such as 3). If no route to a given destination is selected,
then select the route with the smallest metric, ignoring the smoothed
metric. If a route R is selected, then switch to a route R' only when
both m(R') < m(R) and ms(R') < ms(R).<a href="#section-a.3-2" class="pilcrow">¶</a></p>
<p id="section-a.3-3">Intuitively, the smoothed metric is a long-term estimate of the quality
of a route. The algorithm above works by only switching routes when both
the instantaneous and the long-term estimates of the route's quality
indicate that switching is profitable.<a href="#section-a.3-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<div id="parameters">
<section id="section-appendix.b">
<h2 id="name-protocol-parameters">
<a href="#section-appendix.b" class="section-number selfRef">Appendix B. </a><a href="#name-protocol-parameters" class="section-name selfRef">Protocol Parameters</a>
</h2>
<p id="section-appendix.b-1">The choice of time constants is a trade-off between fast detection of
mobility events and protocol overhead. Two instances of Babel running
with different time constants will interoperate, although the resulting
worst-case convergence time will be dictated by the slower of the two.<a href="#section-appendix.b-1" class="pilcrow">¶</a></p>
<p id="section-appendix.b-2">The Hello interval is the most important time constant: an outage or
a mobility event is detected within 1.5 to 3.5 Hello intervals. Due to
Babel's use of a redundant route table, and due to its reliance on
triggered updates and explicit requests, the Update interval has little
influence on the time needed to reconverge after an outage: in practice,
it only has a significant effect on the time needed to acquire new routes
after a mobility event. While the protocol allows intervals as low as
10 ms, such low values would cause significant amounts of protocol traffic
for little practical benefit.<a href="#section-appendix.b-2" class="pilcrow">¶</a></p>
<p id="section-appendix.b-3">The following values have been found to work well in a variety of
environments and are therefore <span class="bcp14">RECOMMENDED</span> default values:<a href="#section-appendix.b-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-appendix.b-4">
<dt id="section-appendix.b-4.1">Multicast Hello interval:</dt>
<dd style="margin-left: 5.0em" id="section-appendix.b-4.2">4 seconds.<a href="#section-appendix.b-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-4.3">Unicast Hello interval:</dt>
<dd style="margin-left: 5.0em" id="section-appendix.b-4.4">infinite (no Unicast Hellos are sent).<a href="#section-appendix.b-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-4.5">Link cost:</dt>
<dd style="margin-left: 5.0em" id="section-appendix.b-4.6">estimated using ETX on wireless links; 2-out-of-3 with C=96
on wired links.<a href="#section-appendix.b-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-4.7">IHU interval:</dt>
<dd style="margin-left: 5.0em" id="section-appendix.b-4.8">the advertised IHU interval is always 3 times the
Multicast Hello interval. IHUs are actually sent with each Hello on lossy
links (as determined from the Hello history), but only with every third
Multicast Hello on lossless links.<a href="#section-appendix.b-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-4.9">Update interval:</dt>
<dd style="margin-left: 5.0em" id="section-appendix.b-4.10">4 times the Multicast Hello interval.<a href="#section-appendix.b-4.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-4.11">IHU Hold time:</dt>
<dd style="margin-left: 5.0em" id="section-appendix.b-4.12">3.5 times the advertised IHU interval.<a href="#section-appendix.b-4.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-4.13">Route Expiry time:</dt>
<dd style="margin-left: 5.0em" id="section-appendix.b-4.14">3.5 times the advertised update interval.<a href="#section-appendix.b-4.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-4.15">Request timeout:</dt>
<dd style="margin-left: 5.0em" id="section-appendix.b-4.16">initially 2 seconds, doubled every time a request is
resent, up to a maximum of three times.<a href="#section-appendix.b-4.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-4.17">Urgent timeout:</dt>
<dd style="margin-left: 5.0em" id="section-appendix.b-4.18">0.2 seconds.<a href="#section-appendix.b-4.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-appendix.b-4.19">Source GC time:</dt>
<dd style="margin-left: 5.0em" id="section-appendix.b-4.20">3 minutes.<a href="#section-appendix.b-4.20" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="filtering">
<section id="section-appendix.c">
<h2 id="name-route-filtering">
<a href="#section-appendix.c" class="section-number selfRef">Appendix C. </a><a href="#name-route-filtering" class="section-name selfRef">Route Filtering</a>
</h2>
<p id="section-appendix.c-1">Route filtering is a procedure where an instance of a routing protocol
either discards some of the routes announced by its neighbours or learns
them with a metric that is higher than what would be expected. Like all
distance-vector protocols, Babel has the ability to apply arbitrary
filtering to the routes it learns, and implementations of Babel that apply
different sets of filtering rules will interoperate without causing
routing loops. The protocol's ability to perform route filtering is
a consequence of the latitude given in <a href="#metric-computation" class="xref">Section 3.5.2</a>:
Babel can use any metric that is strictly monotonic, including one that
assigns an infinite metric to a selected subset of routes. (See also
<a href="#handling-requests" class="xref">Section 3.8.1</a>, where requests for nonexistent routes
are treated in the same way as requests for routes with infinite metric.)<a href="#section-appendix.c-1" class="pilcrow">¶</a></p>
<p id="section-appendix.c-2">It is not in general correct to learn a route with a metric smaller
than the one it was announced with, or to replace a route's destination
prefix with a more specific (longer) one. Doing either of these may cause
persistent routing loops.<a href="#section-appendix.c-2" class="pilcrow">¶</a></p>
<p id="section-appendix.c-3">Route filtering is a useful tool, since it allows fine-grained tuning
of the routing decisions made by the routing protocol. Accordingly, some
implementations of Babel implement a rich configuration language that
allows applying filtering to sets of routes defined, for example, by
incoming interface and destination prefix.<a href="#section-appendix.c-3" class="pilcrow">¶</a></p>
<p id="section-appendix.c-4">In order to limit the consequences of misconfiguration, Babel
implementations provide a reasonable set of default filtering rules even
when they don't allow configuration of filtering by the user. At
a minimum, they discard routes with a destination prefix in fe80::/64,
ff00::/8, 127.0.0.1/32, 0.0.0.0/32, and 224.0.0.0/8.<a href="#section-appendix.c-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="extensions">
<section id="section-appendix.d">
<h2 id="name-considerations-for-protocol">
<a href="#section-appendix.d" class="section-number selfRef">Appendix D. </a><a href="#name-considerations-for-protocol" class="section-name selfRef">Considerations for Protocol Extensions</a>
</h2>
<p id="section-appendix.d-1">Babel is an extensible protocol, and this document defines a number of
mechanisms that can be used to extend the protocol in a backwards
compatible manner:<a href="#section-appendix.d-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-appendix.d-2.1">increasing the version number in the packet header;<a href="#section-appendix.d-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-appendix.d-2.2">defining new TLVs;<a href="#section-appendix.d-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-appendix.d-2.3">defining new sub-TLVs (with or without the mandatory bit set);<a href="#section-appendix.d-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-appendix.d-2.4">defining new AEs;<a href="#section-appendix.d-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-appendix.d-2.5">using the packet trailer.<a href="#section-appendix.d-2.5" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-appendix.d-3">This appendix is intended to guide designers of protocol extensions in
choosing a particular encoding.<a href="#section-appendix.d-3" class="pilcrow">¶</a></p>
<p id="section-appendix.d-4">The version number in the Babel header should only be increased if the
new version is not backwards compatible with the original protocol.<a href="#section-appendix.d-4" class="pilcrow">¶</a></p>
<p id="section-appendix.d-5">In many cases, an extension could be implemented either by defining
a new TLV or by adding a new sub-TLV to an existing TLV. For example, an
extension whose purpose is to attach additional data to route updates can
be implemented either by creating a new "enriched" Update TLV, by adding
a nonmandatory sub-TLV to the Update TLV, or by adding a mandatory
sub-TLV.<a href="#section-appendix.d-5" class="pilcrow">¶</a></p>
<p id="section-appendix.d-6">The various encodings are treated differently by implementations that
do not understand the extension. In the case of a new TLV or of a sub-TLV
with the mandatory bit set, the whole TLV is ignored by implementations
that do not implement the extension, while in the case of a nonmandatory
sub-TLV, the TLV is parsed and acted upon, and only the unknown sub-TLV is
silently ignored. Therefore, a nonmandatory sub-TLV should be used by
extensions that extend the Update in a compatible manner (the extension
data may be silently ignored), while a mandatory sub-TLV or a new TLV must
be used by extensions that make incompatible extensions to the meaning of
the TLV (the whole TLV must be thrown away if the extension data is not
understood).<a href="#section-appendix.d-6" class="pilcrow">¶</a></p>
<p id="section-appendix.d-7">Experience shows that the need for additional data tends to crop up in
the most unexpected places. Hence, it is recommended that extensions that
define new TLVs should make them self-terminating and allow attaching
sub-TLVs to them.<a href="#section-appendix.d-7" class="pilcrow">¶</a></p>
<p id="section-appendix.d-8">Adding a new AE is essentially equivalent to adding a new TLV: Update
TLVs with an unknown AE are ignored, just like unknown TLVs. However,
adding a new AE is more involved than adding a new TLV, since it creates
a new set of compression state. Additionally, since the Next Hop TLV
creates state specific to a given address family, as opposed to a given
AE, a new AE for a previously defined address family must not be used in
the Next Hop TLV if backwards compatibility is required. A similar issue
arises with Update TLVs with unknown AEs establishing a new router-id (due
to the Router-Id flag being set). Therefore, defining new AEs must be
done with care if compatibility with unextended implementations is
required.<a href="#section-appendix.d-8" class="pilcrow">¶</a></p>
<p id="section-appendix.d-9">The packet trailer is intended to carry cryptographic signatures that
only cover the packet body; storing the cryptographic signatures in the
packet trailer avoids clearing the signature before computing a hash of
the packet body, and makes it possible to check a cryptographic signature
before running the full, stateful TLV parser. Hence, only TLVs that don't
need to be protected by cryptographic security protocols should be allowed
in the packet trailer. Any such TLVs should be easy to parse and, in
particular, should not require stateful parsing.<a href="#section-appendix.d-9" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-appendix.e">
<h2 id="name-stub-implementations">
<a href="#section-appendix.e" class="section-number selfRef">Appendix E. </a><a href="#name-stub-implementations" class="section-name selfRef">Stub Implementations</a>
</h2>
<p id="section-appendix.e-1">Babel is a fairly economic protocol. Updates take between 12 and 40
octets per destination, depending on the address family and how successful
compression is; in a dual-stack flat network, an average of less than 24
octets per update is typical. The route table occupies about 35 octets
per IPv6 entry. To put these values into perspective, a single full-size
Ethernet frame can carry some 65 route updates, and a megabyte of memory
can contain a 20,000-entry route table and the associated source table.<a href="#section-appendix.e-1" class="pilcrow">¶</a></p>
<p id="section-appendix.e-2">Babel is also a reasonably simple protocol. One complete implementation
consists of less than 12,000 lines of C code, and it compiles to less
than 120 KB of text on a 32-bit CISC architecture; about half of this
figure is due to protocol extensions and user-interface code.<a href="#section-appendix.e-2" class="pilcrow">¶</a></p>
<p id="section-appendix.e-3">Nonetheless, in some very constrained environments, such as PDAs,
microwave ovens, or abacuses, it may be desirable to have subset
implementations of the protocol.<a href="#section-appendix.e-3" class="pilcrow">¶</a></p>
<p id="section-appendix.e-4">There are many different definitions of a stub router, but for the
needs of this section, a stub implementation of Babel is one that announces
one or more directly attached prefixes into a Babel network but doesn't
re-announce any routes that it has learnt from its neighbours, and always
prefers the direct route to a directly attached prefix to a route learnt
over the Babel protocol, even when the prefixes are the same. It may
either maintain a full routing table or simply select a default gateway
through any one of its neighbours that announces a default route. Since
a stub implementation never forwards packets except from or to a directly
attached link, it cannot possibly participate in a routing loop, and hence
it need not evaluate the feasibility condition or maintain a source
table.<a href="#section-appendix.e-4" class="pilcrow">¶</a></p>
<p id="section-appendix.e-5">No matter how primitive, a stub implementation must parse sub-TLVs
attached to any TLVs that it understands and check the mandatory bit.
It must answer acknowledgment requests and must participate in the
Hello/IHU protocol. It must also be able to reply to seqno requests for
routes that it announces, and it should be able to reply to route
requests.<a href="#section-appendix.e-5" class="pilcrow">¶</a></p>
<p id="section-appendix.e-6">Experience shows that an IPv6-only stub implementation of Babel can be
written in less than 1,000 lines of C code and compile to 13 KB of
text on 32-bit CISC architecture.<a href="#section-appendix.e-6" class="pilcrow">¶</a></p>
</section>
<section id="section-appendix.f">
<h2 id="name-compatibility-with-previous">
<a href="#section-appendix.f" class="section-number selfRef">Appendix F. </a><a href="#name-compatibility-with-previous" class="section-name selfRef">Compatibility with Previous Versions</a>
</h2>
<p id="section-appendix.f-1">The protocol defined in this document is a successor to the protocol
defined in <span>[<a href="#RFC6126" class="xref">RFC6126</a>]</span> and <span>[<a href="#RFC7557" class="xref">RFC7557</a>]</span>. While
the two protocols are not entirely compatible, the new protocol has been
designed so that it can be deployed in existing RFC 6126 networks without
requiring a flag day.<a href="#section-appendix.f-1" class="pilcrow">¶</a></p>
<p id="section-appendix.f-2">There are three optional features that make this protocol
incompatible with its predecessor. First of all, RFC 6126 did not define
Unicast Hellos (<a href="#reverse-reachability" class="xref">Section 3.4.1</a>), and an
implementation of RFC 6126 will misinterpret a Unicast Hello for
a Multicast one; since the sequence number space of Unicast Hellos is
distinct from the sequence number space of Multicast Hellos, sending a Unicast
Hello to an implementation of RFC 6126 will confuse its link quality
estimator. Second, RFC 6126 did not define unscheduled Hellos, and an
implementation of RFC 6126 will mis-parse Hellos with an interval equal to
0. Finally, RFC 7557 did not define mandatory sub-TLVs
(<a href="#sub-tlv-format" class="xref">Section 4.4</a>), and thus an implementation of RFCs 6126 and
7557 will not correctly ignore a TLV that carries an unknown mandatory
sub-TLV; depending on the sub-TLV, this might cause routing pathologies.<a href="#section-appendix.f-2" class="pilcrow">¶</a></p>
<p id="section-appendix.f-3">An implementation of this specification that never sends Unicast or
unscheduled Hellos and doesn't implement any extensions that use mandatory
sub-TLVs is safe to deploy in a network in which some nodes implement the
protocol described in RFCs 6126 and 7557.<a href="#section-appendix.f-3" class="pilcrow">¶</a></p>
<p id="section-appendix.f-4">Two changes need to be made to an implementation of RFCs 6126 and 7557
so that it can safely interoperate in all cases with implementations of
this protocol. First, it needs to be modified either to ignore or to process
Unicast and unscheduled Hellos. Second, it needs to be modified to parse
sub-TLVs of all the TLVs that it understands and that allow sub-TLVs, and
to ignore the TLV if an unknown mandatory sub-TLV is found. It is not
necessary to parse unknown TLVs, as these are ignored in any case.<a href="#section-appendix.f-4" class="pilcrow">¶</a></p>
<p id="section-appendix.f-5">There are other changes, but these are not of a nature to prevent
interoperability:<a href="#section-appendix.f-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-appendix.f-6.1">the conditions on route acquisition (<a href="#route-acquisition" class="xref">Section 3.5.3</a>)
have been relaxed;<a href="#section-appendix.f-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-appendix.f-6.2">route selection should no longer use the route's sequence number
(<a href="#route-selection" class="xref">Section 3.6</a>);<a href="#section-appendix.f-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-appendix.f-6.3">the format of the packet trailer has been defined
(<a href="#packet-format" class="xref">Section 4.2</a>);<a href="#section-appendix.f-6.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-appendix.f-6.4">router-ids with a value of all-zeros or all-ones have been forbidden
(<a href="#router-id-def" class="xref">Section 4.1.3</a>);<a href="#section-appendix.f-6.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-appendix.f-6.5">the compression state is now specific to an address family rather than
an address encoding (<a href="#parser-state" class="xref">Section 4.5</a>);<a href="#section-appendix.f-6.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-appendix.f-6.6">packet pacing is now recommended
(<a href="#transmission-reception" class="xref">Section 3.1</a>).<a href="#section-appendix.f-6.6" class="pilcrow">¶</a>
</li>
</ul>
</section>
<section id="section-appendix.g">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<p id="section-appendix.g-1">A number of people have contributed text and ideas to this
specification. The authors are particularly indebted to <span class="contact-name">Matthieu Boutier</span>,
<span class="contact-name">Gwendoline Chouasne</span>, <span class="contact-name">Margaret Cullen</span>,
<span class="contact-name">Donald Eastlake</span>, <span class="contact-name">Toke Høiland-Jørgensen</span>,
<span class="contact-name">Benjamin Kaduk</span>, <span class="contact-name">Joao Sobrinho</span>, and
<span class="contact-name">Martin Vigoureux</span>.
The previous version of this specification <span>[<a href="#RFC6126" class="xref">RFC6126</a>]</span>
greatly benefited from the input of <span class="contact-name">Joel Halpern</span>. The address compression
technique was inspired by <span>[<a href="#RFC5444" class="xref">PACKETBB</a>]</span>.<a href="#section-appendix.g-1" class="pilcrow">¶</a></p>
</section>
<div id="authors-addresses">
<section id="section-appendix.h">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Juliusz Chroboczek</span></div>
<div dir="auto" class="left"><span class="org">IRIF, University of Paris-Diderot</span></div>
<div dir="auto" class="left"><span class="street-address">Case 7014</span></div>
<div dir="auto" class="left">
<span class="postal-code">75205</span> <span class="locality">Paris CEDEX 13</span>
</div>
<div dir="auto" class="left"><span class="country-name">France</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jch@irif.fr" class="email">jch@irif.fr</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">David Schinazi</span></div>
<div dir="auto" class="left"><span class="org">Google LLC</span></div>
<div dir="auto" class="left"><span class="street-address">1600 Amphitheatre Parkway</span></div>
<div dir="auto" class="left">
<span class="locality">Mountain View</span>, <span class="region">California</span> <span class="postal-code">94043</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:dschinazi.ietf@gmail.com" class="email">dschinazi.ietf@gmail.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|