1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9010: Routing for RPL (Routing Protocol for Low-Power and Lossy Networks) Leaves</title>
<meta content="Pascal Thubert" name="author">
<meta content="Michael C. Richardson" name="author">
<meta content="
This specification provides a mechanism for a host that implements a
routing-agnostic interface based on IPv6 over Low-Power Wireless Personal Area
Network (6LoWPAN) Neighbor Discovery to obtain reachability services across a
network that leverages RFC 6550 for its routing operations. It updates RFCs 6550,
6775, and 8505.
" name="description">
<meta content="xml2rfc 3.7.0" name="generator">
<meta content="IPv6" name="keyword">
<meta content="ND" name="keyword">
<meta content="Redistribution" name="keyword">
<meta content="9010" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.7.0
Python 3.6.10
appdirs 1.4.4
ConfigArgParse 1.2.3
google-i18n-address 2.3.5
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.2
kitchen 1.2.6
lxml 4.4.2
pycairo 1.19.0
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.3.1
requests 2.22.0
setuptools 40.6.2
six 1.14.0
WeasyPrint 51
-->
<link href="rfc9010.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: avoid-page;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9010" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-roll-unaware-leaves-30" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9010</td>
<td class="center">RPL-Unaware Leaves</td>
<td class="right">April 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Thubert & Richardson</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9010" class="eref">9010</a></dd>
<dt class="label-updates">Updates:</dt>
<dd class="updates">
<a href="https://www.rfc-editor.org/rfc/rfc6550" class="eref">6550</a>, <a href="https://www.rfc-editor.org/rfc/rfc6775" class="eref">6775</a>, <a href="https://www.rfc-editor.org/rfc/rfc8505" class="eref">8505</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-04" class="published">April 2021</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">P. Thubert, <span class="editor">Ed.</span>
</div>
<div class="org">Cisco Systems</div>
</div>
<div class="author">
<div class="author-name">M. Richardson</div>
<div class="org">Sandelman</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9010</h1>
<h1 id="title">Routing for RPL (Routing Protocol for Low-Power and Lossy Networks) Leaves</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">
This specification provides a mechanism for a host that implements a
routing-agnostic interface based on IPv6 over Low-Power Wireless Personal Area
Network (6LoWPAN) Neighbor Discovery to obtain reachability services across a
network that leverages RFC 6550 for its routing operations. It updates RFCs 6550,
6775, and 8505.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9010">https://www.rfc-editor.org/info/rfc9010</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-terminology" class="xref">Terminology</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-requirements-language" class="xref">Requirements Language</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1" class="keepWithNext"><a href="#section-2.2" class="xref">2.2</a>. <a href="#name-glossary" class="xref">Glossary</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.2.2.3">
<p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="xref">2.3</a>. <a href="#name-related-documents" class="xref">Related Documents</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-rpl-external-routes-and-dat" class="xref">RPL External Routes and Data-Plane Artifacts</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-6lowpan-neighbor-discovery" class="xref">6LoWPAN Neighbor Discovery</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-address-registration-per-rf" class="xref">Address Registration per RFC 6775</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-extended-address-registrati" class="xref">Extended Address Registration per RFC 8505</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.2.2.1">
<p id="section-toc.1-1.4.2.2.2.1.1"><a href="#section-4.2.1" class="xref">4.2.1</a>. <a href="#name-r-flag" class="xref">R Flag</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.2.2.2">
<p id="section-toc.1-1.4.2.2.2.2.1"><a href="#section-4.2.2" class="xref">4.2.2</a>. <a href="#name-tid-i-field-and-opaque-fiel" class="xref">TID, "I" Field, and Opaque Field</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.2.2.3">
<p id="section-toc.1-1.4.2.2.2.3.1"><a href="#section-4.2.3" class="xref">4.2.3</a>. <a href="#name-route-ownership-verifier" class="xref">Route Ownership Verifier</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-edar-edac-per-rfc-8505" class="xref">EDAR/EDAC per RFC 8505</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.4.2.3.2.1">
<p id="section-toc.1-1.4.2.3.2.1.1"><a href="#section-4.3.1" class="xref">4.3.1</a>. <a href="#name-capability-indication-optio" class="xref">Capability Indication Option per RFC 7400</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-requirements-for-the-rpl-un" class="xref">Requirements for the RPL-Unaware Leaf</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>. <a href="#name-support-of-6lowpan-nd" class="xref">Support of 6LoWPAN ND</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>. <a href="#name-support-of-ipv6-encapsulati" class="xref">Support of IPv6 Encapsulation</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.5.2.3">
<p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>. <a href="#name-support-of-the-hop-by-hop-h" class="xref">Support of the Hop-by-Hop Header</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.5.2.4">
<p id="section-toc.1-1.5.2.4.1"><a href="#section-5.4" class="xref">5.4</a>. <a href="#name-support-of-the-routing-head" class="xref">Support of the Routing Header</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-enhancements-to-rfc-6550" class="xref">Enhancements to RFC 6550</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-updated-rpl-target-option" class="xref">Updated RPL Target Option</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-additional-flag-in-the-rpl-" class="xref">Additional Flag in the RPL DODAG Configuration Option</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.6.2.3">
<p id="section-toc.1-1.6.2.3.1"><a href="#section-6.3" class="xref">6.3</a>. <a href="#name-updated-rpl-status" class="xref">Updated RPL Status</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-enhancements-to-rfc-9009" class="xref">Enhancements to RFC 9009</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-enhancements-to-rfcs-6775-a" class="xref">Enhancements to RFCs 6775 and 8505</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-protocol-operations-for-uni" class="xref">Protocol Operations for Unicast Addresses</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.9.2.1">
<p id="section-toc.1-1.9.2.1.1"><a href="#section-9.1" class="xref">9.1</a>. <a href="#name-general-flow" class="xref">General Flow</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.9.2.2">
<p id="section-toc.1-1.9.2.2.1"><a href="#section-9.2" class="xref">9.2</a>. <a href="#name-detailed-operation" class="xref">Detailed Operation</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.9.2.2.2.1">
<p id="section-toc.1-1.9.2.2.2.1.1"><a href="#section-9.2.1" class="xref">9.2.1</a>. <a href="#name-perspective-of-the-6ln-acti" class="xref">Perspective of the 6LN Acting as a RUL</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.9.2.2.2.2">
<p id="section-toc.1-1.9.2.2.2.2.1"><a href="#section-9.2.2" class="xref">9.2.2</a>. <a href="#name-perspective-of-the-6lr-acti" class="xref">Perspective of the 6LR Acting as a Border Router</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.9.2.2.2.3">
<p id="section-toc.1-1.9.2.2.2.3.1"><a href="#section-9.2.3" class="xref">9.2.3</a>. <a href="#name-perspective-of-the-rpl-doda" class="xref">Perspective of the RPL DODAG Root</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.9.2.2.2.4">
<p id="section-toc.1-1.9.2.2.2.4.1"><a href="#section-9.2.4" class="xref">9.2.4</a>. <a href="#name-perspective-of-the-6lbr" class="xref">Perspective of the 6LBR</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-protocol-operations-for-mul" class="xref">Protocol Operations for Multicast Addresses</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-12" class="xref">12</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.12.2.1">
<p id="section-toc.1-1.12.2.1.1"><a href="#section-12.1" class="xref">12.1</a>. <a href="#name-fixing-the-address-registra" class="xref">Fixing the Address Registration Option Flags</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.12.2.2">
<p id="section-toc.1-1.12.2.2.1"><a href="#section-12.2" class="xref">12.2</a>. <a href="#name-resizing-the-aro-status-val" class="xref">Resizing the ARO Status Values</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.12.2.3">
<p id="section-toc.1-1.12.2.3.1"><a href="#section-12.3" class="xref">12.3</a>. <a href="#name-new-rpl-dodag-configuration" class="xref">New RPL DODAG Configuration Option Flag</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.12.2.4">
<p id="section-toc.1-1.12.2.4.1"><a href="#section-12.4" class="xref">12.4</a>. <a href="#name-rpl-target-option-flags-reg" class="xref">RPL Target Option Flags Registry</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.12.2.5">
<p id="section-toc.1-1.12.2.5.1"><a href="#section-12.5" class="xref">12.5</a>. <a href="#name-new-subregistry-for-rpl-non" class="xref">New Subregistry for RPL Non-Rejection Status Values</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.12.2.6">
<p id="section-toc.1-1.12.2.6.1"><a href="#section-12.6" class="xref">12.6</a>. <a href="#name-new-subregistry-for-rpl-rej" class="xref">New Subregistry for RPL Rejection Status Values</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#section-13" class="xref">13</a>. <a href="#name-references" class="xref">References</a></p>
<ul class="toc ulEmpty compact">
<li class="toc ulEmpty compact" id="section-toc.1-1.13.2.1">
<p id="section-toc.1-1.13.2.1.1"><a href="#section-13.1" class="xref">13.1</a>. <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.13.2.2">
<p id="section-toc.1-1.13.2.2.1"><a href="#section-13.2" class="xref">13.2</a>. <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#section-appendix.a" class="xref">Appendix A</a>. <a href="#name-example-compression" class="xref">Example Compression</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.15">
<p id="section-toc.1-1.15.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a></p>
</li>
<li class="toc ulEmpty compact" id="section-toc.1-1.16">
<p id="section-toc.1-1.16.1"><a href="#section-appendix.c" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="introduction">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">The design of Low-Power and Lossy Networks (LLNs) is generally focused on
saving energy, which is the most constrained resource of all. Other design
constraints, such as a limited memory capacity, duty cycling of the LLN
devices, and low-power lossy transmissions, derive from that primary concern.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">The IETF produced "<a href="#RFC6550" class="xref">RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks</a>" <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> to provide routing services for IPv6 <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span> within such constraints. RPL belongs to the class of
distance-vector protocols -- which, compared to link-state protocols, limit
the amount of topological knowledge that needs to be installed and maintained
in each node -- and does not require convergence to avoid micro-loops.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">
To save signaling and routing state in constrained networks,
RPL allows a path stretch (see <span>[<a href="#RFC6687" class="xref">RFC6687</a>]</span>), whereby routing
is only performed along a Destination-Oriented Directed Acyclic Graph (DODAG) that is optimized to reach a root node, as opposed to along the shortest path
between two peers, whatever that would mean in a given LLN.
This trades the quality of peer-to-peer (P2P) paths for a vastly reduced
amount of control traffic and routing state that would be required to
operate an any-to-any shortest-path protocol. Additionally,
broken routes may be fixed lazily and on demand, based on data-plane
inconsistency discovery, which avoids wasting energy in the proactive repair
of unused paths.<a href="#section-1-3" class="pilcrow">¶</a></p>
<p id="section-1-4">
For many of the nodes, though not all, the DODAG provides multiple
forwarding solutions towards the root of the topology via so-called parents.
RPL installs the routes proactively, but to adapt to fuzzy connectivity
-- whereby the physical topology cannot be expected to reach a stable state --
it uses a lazy route maintenance operation that may only fix them reactively,
upon actual traffic.
The result is that RPL provides reachability for most of the LLN nodes, most
of the time, but may not converge in the classical sense.<a href="#section-1-4" class="pilcrow">¶</a></p>
<p id="section-1-5">
RPL can be deployed in conjunction with IPv6 Neighbor Discovery (ND)
<span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span> <span>[<a href="#RFC4862" class="xref">RFC4862</a>]</span> and IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) ND
<span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span> <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> to maintain reachability
within a Non-Broadcast Multi-Access (NBMA) multi-link subnet.<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6">
In that mode, IPv6 addresses are advertised individually as host routes.
Some nodes may act as routers and participate in the forwarding operations,
whereas others will only receive/originate packets, acting as hosts in the
data plane.
Per the terminology of <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>, an IPv6 host <span>[<a href="#RFC8504" class="xref">RFC8504</a>]</span>
that is reachable over the RPL network is called a "leaf".<a href="#section-1-6" class="pilcrow">¶</a></p>
<p id="section-1-7">
<span><a href="https://www.rfc-editor.org/rfc/rfc9008#section-2" class="relref">Section 2</a> of [<a href="#RFC9008" class="xref">RFC9008</a>]</span> defines the terms
"RPL leaf", "RPL-Aware Leaf" (RAL), and "RPL-Unaware Leaf" (RUL).
A RPL leaf is a host attached to one or more RPL routers; as such, it
relies on the RPL router(s) to forward its traffic across the RPL domain but
does not forward traffic from another node. As opposed to the RAL, the RUL does not
participate in RPL and relies on its RPL router(s) to also inject the
routes to its IPv6 addresses in the RPL domain.<a href="#section-1-7" class="pilcrow">¶</a></p>
<p id="section-1-8">
A RUL may be unable to participate because it is very energy constrained
or code-space constrained, or because it would be unsafe to let it inject
routes in RPL. Using 6LoWPAN ND as opposed to RPL as the host-to-router
interface limits the surface of the possible attacks by the RUL against the
RPL domain. If all RULs and RPL-Aware Nodes (RANs) use 6LoWPAN ND for the neighbor discovery process, it is
also possible to protect the address ownership of all nodes, including the
RULs.<a href="#section-1-8" class="pilcrow">¶</a></p>
<p id="section-1-9">
This document specifies how the router injects the host routes in the RPL
domain on behalf of the RUL. <a href="#prereq" class="xref">Section 5</a> details how the RUL
can leverage 6LoWPAN ND to obtain the routing services from the router.
In that model, the RUL is also a 6LoWPAN Node (6LN) and the RPL-aware router
is also a 6LoWPAN Router (6LR). Using the 6LoWPAN ND Address Registration
mechanism, the RUL signals that the router must inject a host route for the
Registered Address.<a href="#section-1-9" class="pilcrow">¶</a></p>
<span id="name-injecting-routes-on-behalf-"></span><div id="injectfig">
<figure id="figure-1">
<div class="artwork art-text alignLeft" id="section-1-10.1">
<pre>
------+---------
| Internet
|
+-----+
| | <------------- 6LBR / RPL DODAG Root
+-----+ ^
| |
o o o o | RPL
o o o o o o o o |
o o o o o o o o o o | +
o o o o o o o |
o o o o o o o o o | 6LoWPAN ND
o o o o o o |
o o o o v
o o o <------------- 6LR / RPL Border Router
^
| 6LoWPAN ND only
v
u <------------- 6LN / RPL-Unaware Leaf</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-injecting-routes-on-behalf-" class="selfRef">Injecting Routes on Behalf of RULs</a>
</figcaption></figure>
</div>
<p id="section-1-11">
The RPL Non-Storing mode mechanism is used to extend the routing state with
connectivity to the RULs even when the DODAG is operated in Storing mode.
The unicast packet-forwarding operation by the 6LR serving a RUL is described
in <span><a href="https://www.rfc-editor.org/rfc/rfc9008#section-4.1.1" class="relref">Section 4.1.1</a> of [<a href="#RFC9008" class="xref">RFC9008</a>]</span>.<a href="#section-1-11" class="pilcrow">¶</a></p>
<p id="section-1-12">
Examples of possible RULs include severely energy-constrained sensors such as
window smash sensors (alarm system) and kinetically powered light switches.
Other applications of this specification may include a smart grid network that
controls appliances -- such as washing machines or the heating system -- in the
home. Appliances may not participate in the RPL protocol operated in the
smart grid network but can still interact with the smart grid for control and/or
metering.<a href="#section-1-12" class="pilcrow">¶</a></p>
<p id="section-1-13">
This specification can be deployed incrementally in a network that implements
<span>[<a href="#RFC9008" class="xref">RFC9008</a>]</span>. Only the root and the 6LRs that
connect the RULs need to be upgraded. The RPL routers on the path will only see
unicast IPv6 traffic between the root and the 6LR.<a href="#section-1-13" class="pilcrow">¶</a></p>
<p id="section-1-14">
This document is organized as follows:<a href="#section-1-14" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1-15.1">
Sections <a href="#prereqv6" class="xref">3</a> and <a href="#lpnd" class="xref">4</a> present in a
non-normative fashion the salient aspects of RPL and 6LoWPAN ND,
respectively, that are leveraged in this specification to provide
connectivity to a 6LN acting as a RUL across a RPL network.<a href="#section-1-15.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-15.2">
<a href="#prereq" class="xref">Section 5</a> lists the requirements that a RUL needs to match
in order to be served by a RPL router that complies with this specification.<a href="#section-1-15.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-15.3">
<a href="#upd" class="xref">Section 6</a> presents the changes made to <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>;
a new behavior is introduced whereby the 6LR advertises the 6LN's addresses in a RPL Destination Advertisement Object (DAO) message based on the ND registration by the 6LN, and the RPL DODAG root performs the Extended Duplicate Address Request / Extended Duplicate Address Confirmation (EDAR/EDAC) exchange with the 6LoWPAN Border Router (6LBR) on behalf of the 6LR;
modifications are introduced to some RPL options and to the RPL Status to
facilitate the integration of the protocols.<a href="#section-1-15.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-15.4">
<a href="#updnpdao" class="xref">Section 7</a> presents the changes made to
<span>[<a href="#RFC9009" class="xref">RFC9009</a>]</span>; the use of the Destination Cleanup Object (DCO) message is extended to the Non-Storing RPL Mode of Operation (MOP) to report asynchronous issues from the root to the 6LR.<a href="#section-1-15.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-15.5">
<a href="#upd2" class="xref">Section 8</a> presents the changes made to <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span>
and <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>; the range of the Address Registration Option / Extended Address Registration Option (ARO/EARO) Status values is reduced
to 64 values, and the remaining bits in the original status field are
now reserved.<a href="#section-1-15.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-15.6">
Sections <a href="#op" class="xref">9</a> and <a href="#multiop" class="xref">10</a> present the operation of
this specification for unicast and multicast flows, respectively, and
<a href="#security-considerations" class="xref">Section 11</a> presents associated security
considerations.<a href="#section-1-15.6" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<section id="section-2">
<h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h2>
<div id="bcp">
<section id="section-2.1">
<h3 id="name-requirements-language">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
</h3>
<p id="section-2.1-1">The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
"<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>",
"<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>",
"<span class="bcp14">SHOULD NOT</span>",
"<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document
are to be interpreted as described in BCP 14
<span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only
when, they appear in all capitals, as shown here.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="gloss">
<section id="section-2.2">
<h3 id="name-glossary">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-glossary" class="section-name selfRef">Glossary</a>
</h3>
<p id="section-2.2-1"> This document uses the following abbreviations:<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel dlCompact" id="section-2.2-2">
<dt id="section-2.2-2.1">6BBR:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.2">6LoWPAN Backbone Router<a href="#section-2.2-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.3">6CIO:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.4">6LoWPAN Capability Indication Option<a href="#section-2.2-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.5">6LBR:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.6">6LoWPAN Border Router<a href="#section-2.2-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.7">6LN:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.8">6LoWPAN Node (a low-power host or router)<a href="#section-2.2-2.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.9">6LoRH:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.10">6LoWPAN Routing Header<a href="#section-2.2-2.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.11">6LoWPAN:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.12">IPv6 over Low-Power Wireless Personal Area Network<a href="#section-2.2-2.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.13">6LR:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.14">6LoWPAN Router<a href="#section-2.2-2.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.15">AP-ND:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.16">Address-Protected Neighbor Discovery<a href="#section-2.2-2.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.17">ARO:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.18">Address Registration Option<a href="#section-2.2-2.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.19">DAC:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.20">Duplicate Address Confirmation<a href="#section-2.2-2.20" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.21">DAD:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.22">Duplicate Address Detection<a href="#section-2.2-2.22" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.23">DAO:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.24">Destination Advertisement Object (a RPL message)<a href="#section-2.2-2.24" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.25">DAR:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.26">Duplicate Address Request<a href="#section-2.2-2.26" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.27">DCO:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.28">Destination Cleanup Object (a RPL message)<a href="#section-2.2-2.28" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.29">DIO:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.30">DODAG Information Object (a RPL message)<a href="#section-2.2-2.30" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.31">DODAG:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.32">Destination-Oriented Directed Acyclic Graph<a href="#section-2.2-2.32" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.33">EARO:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.34">Extended Address Registration Option<a href="#section-2.2-2.34" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.35">EDAC:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.36">Extended Duplicate Address Confirmation<a href="#section-2.2-2.36" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.37">EDAR:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.38">Extended Duplicate Address Request<a href="#section-2.2-2.38" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.39">EUI:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.40">Extended Unique Identifier<a href="#section-2.2-2.40" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.41">LLN:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.42">Low-Power and Lossy Network<a href="#section-2.2-2.42" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.43">MLD:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.44">Multicast Listener Discovery<a href="#section-2.2-2.44" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.45">MOP:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.46">RPL Mode of Operation<a href="#section-2.2-2.46" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.47">NA:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.48">Neighbor Advertisement<a href="#section-2.2-2.48" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.49">NBMA:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.50">Non-Broadcast Multi-Access<a href="#section-2.2-2.50" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.51">NCE:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.52">Neighbor Cache Entry<a href="#section-2.2-2.52" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.53">ND:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.54">Neighbor Discovery<a href="#section-2.2-2.54" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.55">NS:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.56">Neighbor Solicitation<a href="#section-2.2-2.56" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.57">PIO:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.58">Prefix Information Option<a href="#section-2.2-2.58" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.59">RA:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.60">Router Advertisement<a href="#section-2.2-2.60" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.61">RAL:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.62">RPL-Aware Leaf<a href="#section-2.2-2.62" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.63">RAN:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.64">RPL-Aware Node (either a RPL router or a RPL-Aware Leaf)<a href="#section-2.2-2.64" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.65">RH3:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.66">Routing Header for IPv6 (type 3)<a href="#section-2.2-2.66" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.67">ROVR:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.68">Registration Ownership Verifier<a href="#section-2.2-2.68" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.69">RPI:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.70">RPL Packet Information<a href="#section-2.2-2.70" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.71">RPL:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.72">Routing Protocol for Low-Power and Lossy Networks<a href="#section-2.2-2.72" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.73">RUL:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.74">RPL-Unaware Leaf<a href="#section-2.2-2.74" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.75">SAVI:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.76">Source Address Validation Improvement<a href="#section-2.2-2.76" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.77">SLAAC:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.78">Stateless Address Autoconfiguration<a href="#section-2.2-2.78" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.79">SRH:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.80">Source Routing Header<a href="#section-2.2-2.80" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.81">TID:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.82">Transaction ID (a sequence counter in the EARO)<a href="#section-2.2-2.82" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.83">TIO:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.84">Transit Information Option<a href="#section-2.2-2.84" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="lo">
<section id="section-2.3">
<h3 id="name-related-documents">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-related-documents" class="section-name selfRef">Related Documents</a>
</h3>
<p id="section-2.3-1">
The terminology used in this document is consistent with, and incorporates
the terms provided in, "<a href="#RFC7102" class="xref">Terms Used in Routing for Low-Power and Lossy Networks</a>" <span>[<a href="#RFC7102" class="xref">RFC7102</a>]</span>. A glossary of classical 6LoWPAN abbreviations is given in <a href="#gloss" class="xref">Section 2.2</a>.
Other terms in use in LLNs are found in "<a href="#RFC7228" class="xref">Terminology for Constrained-Node Networks</a>" <span>[<a href="#RFC7228" class="xref">RFC7228</a>]</span>.
This specification uses the terms "6LN" and "6LR" to refer specifically to nodes
that implement the 6LN and 6LR roles in 6LoWPAN ND and does not expect other
functionality such as 6LoWPAN Header Compression <span>[<a href="#RFC6282" class="xref">RFC6282</a>]</span>
from those nodes.<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<p id="section-2.3-2">"RPL", "RPI", "RPL Instance" (indexed by a
RPLInstanceID), "up", and "down" are defined in "<a href="#RFC6550" class="xref">RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks</a>" <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>. The RPI is the abstract
information that RPL defines to be placed in data packets, e.g., as the RPL
Option <span>[<a href="#RFC6553" class="xref">RFC6553</a>]</span> within the IPv6 Hop-By-Hop Header.
By extension, the term "RPI" is often used to refer to the RPL Option itself.
The DAO and DIO messages are also specified in
<span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>. The DCO message is defined in <span>[<a href="#RFC9009" class="xref">RFC9009</a>]</span>.<a href="#section-2.3-2" class="pilcrow">¶</a></p>
<p id="section-2.3-3">
This document uses the terms "RUL", "RAN", and "RAL" consistently with <span>[<a href="#RFC9008" class="xref">RFC9008</a>]</span>.
A RAN is either a RAL or a RPL router. As opposed to a RUL, a RAN manages
the reachability of its addresses and prefixes by injecting them in RPL by
itself.<a href="#section-2.3-3" class="pilcrow">¶</a></p>
<p id="section-2.3-4">
In this document, readers will encounter terms and concepts
that are discussed in the following documents:<a href="#section-2.3-4" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-2.3-5">
<dt id="section-2.3-5.1">Classical IPv6 ND:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-5.2">"<a href="#RFC4861" class="xref">Neighbor Discovery for IP version 6 (IPv6)</a>" <span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span> and
"<a href="#RFC4862" class="xref">IPv6 Stateless Address Autoconfiguration</a>" <span>[<a href="#RFC4862" class="xref">RFC4862</a>]</span>,<a href="#section-2.3-5.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3-5.3">6LoWPAN:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-5.4">"<a href="#RFC6606" class="xref">Problem Statement and Requirements for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing</a>" <span>[<a href="#RFC6606" class="xref">RFC6606</a>]</span> and "<a href="#RFC4919" class="xref">IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals</a>" <span>[<a href="#RFC4919" class="xref">RFC4919</a>]</span>, and<a href="#section-2.3-5.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3-5.5">6LoWPAN ND:</dt>
<dd style="margin-left: 1.5em" id="section-2.3-5.6">"<a href="#RFC6775" class="xref">Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)</a>" <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span>,
"<a href="#RFC8505" class="xref">Registration Extensions for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery</a>" <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>,
"<a href="#RFC8928" class="xref">Address-Protected Neighbor Discovery for Low-Power and Lossy Networks</a>" <span>[<a href="#RFC8928" class="xref">RFC8928</a>]</span>, and "<a href="#RFC8929" class="xref">IPv6 Backbone Router</a>" <span>[<a href="#RFC8929" class="xref">RFC8929</a>]</span>.<a href="#section-2.3-5.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
</section>
<div id="prereqv6">
<section id="section-3">
<h2 id="name-rpl-external-routes-and-dat">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-rpl-external-routes-and-dat" class="section-name selfRef">RPL External Routes and Data-Plane Artifacts</a>
</h2>
<p id="section-3-1">
RPL was initially designed to build stub networks whereby the only border
router would be the RPL DODAG root (typically co-located with the 6LBR) and all
the nodes in the stub would be RPL aware. But <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> was also prepared to be extended for external routes ("targets" in RPL parlance), via
the External ('E') flag in the Transit Information Option (TIO).
External targets provide the ability to reach destinations that are outside the RPL domain
and connected to the RPL domain via RPL border routers that are not the root.
<span><a href="https://www.rfc-editor.org/rfc/rfc9008#section-4.1" class="relref">Section 4.1</a> of [<a href="#RFC9008" class="xref">RFC9008</a>]</span> provides a set of
rules (summarized below) that must be followed for routing packets to and from
an external destination. A RUL is a special case of an external target that
is also a host directly connected to the RPL domain.<a href="#section-3-1" class="pilcrow">¶</a></p>
<p id="section-3-2">
A 6LR that acts as a border router for external routes advertises them using
Non-Storing mode DAO messages that are unicast directly to the root, even if
the DODAG is operated in Storing mode.
Non-Storing mode routes are not visible inside the RPL domain, and all packets
are routed via the root. The RPL DODAG root tunnels the data packets directly to the
6LR that advertised the external route, which decapsulates and forwards the
original (inner) packets.<a href="#section-3-2" class="pilcrow">¶</a></p>
<p id="section-3-3">
The RPL Non-Storing MOP signaling and the associated IPv6-in-IPv6 encapsulated
packets appear as normal traffic to the intermediate routers. Support
of external routes only impacts the root and the 6LR. It can be operated with
legacy intermediate routers and does not add to the amount of state that must
be maintained in those routers.
A RUL is an example of a destination that is reachable via an external route
that happens to also be a host route.<a href="#section-3-3" class="pilcrow">¶</a></p>
<p id="section-3-4">
The RPL data packets typically carry a Hop-by-Hop Header with a RPL Option
<span>[<a href="#RFC6553" class="xref">RFC6553</a>]</span> that contains the RPI (the RPL Packet Information, as defined
in <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-11.2" class="relref">Section 11.2</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>).
Unless the RUL already placed a RPL Option in the outer header chain, the packets
from and to the RUL are encapsulated using an IPv6-in-IPv6 tunnel between the
root and the 6LR that serves the RUL
(see Sections <a href="https://www.rfc-editor.org/rfc/rfc9008#section-7" class="relref">7</a> and <a href="https://www.rfc-editor.org/rfc/rfc9008#section-8" class="relref">8</a> of <span>[<a href="#RFC9008" class="xref">RFC9008</a>]</span> for details).
If the packet from the RUL has an RPI, the 6LR acting as a RPL border router
rewrites the RPI to indicate the selected RPL Instance and set the flags,
but it does not need to encapsulate the packet (see <a href="#lr" class="xref">Section 9.2.2</a>).<a href="#section-3-4" class="pilcrow">¶</a></p>
<p id="section-3-5">
In Non-Storing mode, packets going down the DODAG carry a Source Routing Header (SRH). The IPv6-in-IPv6 encapsulation, the RPI, and the SRH are collectively called the
"RPL artifacts" and can be compressed using the method defined in <span>[<a href="#RFC8138" class="xref">RFC8138</a>]</span>.
<a href="#u8138" class="xref">Appendix A</a> presents an example compressed format for a packet
forwarded by the root to a RUL in a Storing mode DODAG.<a href="#section-3-5" class="pilcrow">¶</a></p>
<p id="section-3-6">
The inner packet that is forwarded to the RUL may carry some RPL artifacts,
e.g., an RPI if the original packet was generated with it, and an SRH in a
Non-Storing mode DODAG.
<span>[<a href="#RFC9008" class="xref">RFC9008</a>]</span> expects the RUL to support the
basic IPv6 node requirements per <span>[<a href="#RFC8504" class="xref">RFC8504</a>]</span> and, in particular,
the mandates in Sections <a href="https://www.rfc-editor.org/rfc/rfc8200#section-4.2" class="relref">4.2</a> and <a href="https://www.rfc-editor.org/rfc/rfc8200#section-4.4" class="relref">4.4</a> of <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span>. As such,
the RUL is expected to ignore the RPL artifacts that may be left over -- either
an SRH whose Segments Left is zero or a RPL Option in the Hop-by-Hop Header
(which can be skipped when not recognized; see <a href="#prereqv6hh" class="xref">Section 5.3</a> for
details).<a href="#section-3-6" class="pilcrow">¶</a></p>
<p id="section-3-7">
A RUL is not expected to support the compression method defined in
<span>[<a href="#RFC8138" class="xref">RFC8138</a>]</span>. For that reason, the border router (the 6LR here)
uncompresses the packet before forwarding it over an external route to a RUL
<span>[<a href="#RFC9008" class="xref">RFC9008</a>]</span>.<a href="#section-3-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="lpnd">
<section id="section-4">
<h2 id="name-6lowpan-neighbor-discovery">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-6lowpan-neighbor-discovery" class="section-name selfRef">6LoWPAN Neighbor Discovery</a>
</h2>
<p id="section-4-1">
This section goes through the 6LoWPAN ND mechanisms that this specification leverages, as a non-normative reference to the reader.
The full normative text is to be found in <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span>, <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>, and <span>[<a href="#RFC8928" class="xref">RFC8928</a>]</span>.<a href="#section-4-1" class="pilcrow">¶</a></p>
<div id="R6775">
<section id="section-4.1">
<h3 id="name-address-registration-per-rf">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-address-registration-per-rf" class="section-name selfRef">Address Registration per RFC 6775</a>
</h3>
<p id="section-4.1-1">
The classical IPv6 Neighbor Discovery (IPv6 ND) protocol
<span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span> <span>[<a href="#RFC4862" class="xref">RFC4862</a>]</span> was defined for serial
links and transit media such as Ethernet. It is a reactive protocol that
relies heavily on multicast operations for Address Discovery (aka address lookup) and
Duplicate Address Detection (DAD).<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">
"<a href="#RFC6775" class="xref">Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)</a>" <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span>
adapts IPv6 ND for operations over energy-constrained LLNs.
The main functions of <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span> are to proactively establish
the Neighbor Cache Entry (NCE) in the 6LR and to prevent address duplication.
To that effect, <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span> introduces a unicast Address
Registration mechanism that contributes to reducing the use of multicast
messages compared to the classical IPv6 ND protocol.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3"><span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span> also introduces the Address
Registration Option (ARO), which is carried in the unicast
Neighbor Solicitation (NS) and Neighbor Advertisement (NA) messages between
the 6LoWPAN Node (6LN) and the 6LoWPAN router (6LR).
It also defines the Duplicate Address Request (DAR) and Duplicate
Address Confirmation (DAC) messages between the 6LR and the 6LBR).
In an LLN, the 6LBR is the central repository of all the Registered Addresses
in its domain and the source of truth for uniqueness and ownership.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="R8505E">
<section id="section-4.2">
<h3 id="name-extended-address-registrati">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-extended-address-registrati" class="section-name selfRef">Extended Address Registration per RFC 8505</a>
</h3>
<p id="section-4.2-1">
"<a href="#RFC8505" class="xref">Registration Extensions for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery</a>" <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>
updates RFC 6775 with a generic Address Registration mechanism that can be
used to access services such as routing and ND proxy functions. To that effect,
<span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> defines the Extended Address Registration Option
(EARO), as shown in <a href="#EARO" class="xref">Figure 2</a>:<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<span id="name-earo-format"></span><div id="EARO">
<figure id="figure-2">
<div class="artwork art-text alignCenter" id="section-4.2-2.1">
<pre> 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Status | Opaque |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Rsvd | I |R|T| TID | Registration Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... Registration Ownership Verifier (ROVR) ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-earo-format" class="selfRef">EARO Format</a>
</figcaption></figure>
</div>
<div id="R8505ER">
<section id="section-4.2.1">
<h4 id="name-r-flag">
<a href="#section-4.2.1" class="section-number selfRef">4.2.1. </a><a href="#name-r-flag" class="section-name selfRef">R Flag</a>
</h4>
<p id="section-4.2.1-1">
<span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> introduces the R flag in the EARO.
The Registering Node sets the R flag to indicate whether the 6LR should
ensure reachability for the Registered Address.
If the R flag is set to 0, then the Registering Node handles the reachability
of the Registered Address by other means. In a RPL network, this means that
either it is a RAN that injects the route by itself or it uses another
RPL router for reachability services.<a href="#section-4.2.1-1" class="pilcrow">¶</a></p>
<p id="section-4.2.1-2">
This document specifies how the R flag is used in the context of RPL.
A RPL leaf that implements the 6LN functionality from <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>
requires reachability services for an IPv6 address if and only if it sets
the R flag in the NS(EARO) used to register the address to a 6LR acting as
a RPL border router. Upon receiving the NS(EARO), the RPL router
generates a DAO message for the Registered Address if and only if the R
flag is set to 1.<a href="#section-4.2.1-2" class="pilcrow">¶</a></p>
<p id="section-4.2.1-3">
<a href="#oper" class="xref">Section 9.2</a> specifies additional operations when the R flag is set to 1 in an EARO that is placed in either an NS message or an NA message.<a href="#section-4.2.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="R8505ETID">
<section id="section-4.2.2">
<h4 id="name-tid-i-field-and-opaque-fiel">
<a href="#section-4.2.2" class="section-number selfRef">4.2.2. </a><a href="#name-tid-i-field-and-opaque-fiel" class="section-name selfRef">TID, "I" Field, and Opaque Field</a>
</h4>
<p id="section-4.2.2-1">
When the T flag is set to 1, the EARO includes a sequence counter called the
"Transaction ID" (TID), which is needed to fill the Path Sequence field in the
RPL Transit Information Option (TIO). For this reason, support of <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>
by the RUL, as opposed to only <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span>, is a prerequisite for
this specification; this requirement is fully explained in
<a href="#prereq6lp" class="xref">Section 5.1</a>. The EARO also
transports an Opaque field and an associated "I" field that describes what
the Opaque field transports and how to use it.<a href="#section-4.2.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2.2-2">
<a href="#ln" class="xref">Section 9.2.1</a> specifies the use of the "I" field and the Opaque
field by a RUL.<a href="#section-4.2.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="R8505EROVR">
<section id="section-4.2.3">
<h4 id="name-route-ownership-verifier">
<a href="#section-4.2.3" class="section-number selfRef">4.2.3. </a><a href="#name-route-ownership-verifier" class="section-name selfRef">Route Ownership Verifier</a>
</h4>
<p id="section-4.2.3-1">
<span><a href="https://www.rfc-editor.org/rfc/rfc8505#section-5.3" class="relref">Section 5.3</a> of [<a href="#RFC8505" class="xref">RFC8505</a>]</span> introduces the Registration
Ownership Verifier (ROVR) field, which has a variable length of 64 to 256 bits.
The ROVR replaces the 64-bit Extended Unique Identifier (EUI‑64) in the ARO
<span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span>, which was used to uniquely identify an Address
Registration with the link-layer address of the owner but provided no
protection against spoofing.<a href="#section-4.2.3-1" class="pilcrow">¶</a></p>
<p id="section-4.2.3-2">
"<a href="#RFC8928" class="xref">Address-Protected Neighbor Discovery for Low-Power and Lossy Networks</a>" <span>[<a href="#RFC8928" class="xref">RFC8928</a>]</span>
leverages the ROVR field as a
cryptographic proof of ownership to prevent a rogue third party from
registering an address that is already owned.
The use of the ROVR field enables the 6LR to block traffic that is not
sourced at an owned address.<a href="#section-4.2.3-2" class="pilcrow">¶</a></p>
<p id="section-4.2.3-3">
This specification does not address how the protection offered by
<span>[<a href="#RFC8928" class="xref">RFC8928</a>]</span> could be extended for use in RPL.
On the other hand, it adds the ROVR to the DAO to build the proxied EDAR at the root (see <a href="#tgt" class="xref">Section 6.1</a>), which means that nodes that are aware of the host route are also aware of the ROVR associated to the Target Address.<a href="#section-4.2.3-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="R8505D">
<section id="section-4.3">
<h3 id="name-edar-edac-per-rfc-8505">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-edar-edac-per-rfc-8505" class="section-name selfRef">EDAR/EDAC per RFC 8505</a>
</h3>
<p id="section-4.3-1">
<span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> updates the DAR/DAC messages to EDAR/EDAC messages to carry the ROVR field.
The EDAR/EDAC exchange takes place
between the 6LR and the 6LBR. It is triggered by an NS(EARO) message from a 6LN to create, refresh, and delete the corresponding state in the 6LBR.
The exchange is protected by the retry mechanism specified in <span><a href="https://www.rfc-editor.org/rfc/rfc6775#section-8.2.6" class="relref">Section 8.2.6</a> of [<a href="#RFC6775" class="xref">RFC6775</a>]</span>, though in an LLN, a duration longer than
the default value of the RetransTimer (RETRANS_TIMER)
<span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span> of 1 second may be necessary to
cover the round-trip delay between the 6LR and the 6LBR.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2">
RPL <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> specifies a periodic DAO from the 6LN all the way to
the root that maintains the routing state in the RPL network for the lifetime
indicated by the source of the DAO.
This means that for each address, there are two keep-alive messages
that traverse the whole network: one to the root and one to the 6LBR.<a href="#section-4.3-2" class="pilcrow">¶</a></p>
<p id="section-4.3-3">
This specification avoids the periodic EDAR/EDAC exchange across the LLN.
The 6LR turns
the periodic NS(EARO) from the RUL into a DAO message to the
root on every refresh, but it only generates the EDAR upon the first
registration, for the purpose of DAD, which must be verified before the
address is injected in RPL.
Upon the DAO message, the root proxies the EDAR exchange to refresh the state at the 6LBR on behalf of the 6LR, as illustrated in <a href="#fReg2" class="xref">Figure 8</a> in <a href="#flow" class="xref">Section 9.1</a>.<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<div id="R7400">
<section id="section-4.3.1">
<h4 id="name-capability-indication-optio">
<a href="#section-4.3.1" class="section-number selfRef">4.3.1. </a><a href="#name-capability-indication-optio" class="section-name selfRef">Capability Indication Option per RFC 7400</a>
</h4>
<p id="section-4.3.1-1">
"<a href="#RFC7400" class="xref">6LoWPAN-GHC: Generic Header Compression for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)</a>" <span>[<a href="#RFC7400" class="xref">RFC7400</a>]</span>
defines the 6LoWPAN Capability Indication Option (6CIO), which enables a node to expose its
capabilities in Router Advertisement (RA) messages.<a href="#section-4.3.1-1" class="pilcrow">¶</a></p>
<p id="section-4.3.1-2">
<span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> defines a number of bits in the 6CIO; in particular:<a href="#section-4.3.1-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel dlCompact" id="section-4.3.1-3">
<dt id="section-4.3.1-3.1">L:</dt>
<dd style="margin-left: 2.0em" id="section-4.3.1-3.2">The node is a 6LR.<a href="#section-4.3.1-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3.1-3.3">E:</dt>
<dd style="margin-left: 2.0em" id="section-4.3.1-3.4">The node is an IPv6 ND Registrar -- i.e., it supports
registrations based on EARO.<a href="#section-4.3.1-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3.1-3.5">P:</dt>
<dd style="margin-left: 2.0em" id="section-4.3.1-3.6">The node is a Routing Registrar -- i.e., an IPv6 ND Registrar
that also provides reachability services for the Registered Address.<a href="#section-4.3.1-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<span id="name-6cio-flags"></span><div id="CIO">
<figure id="figure-3">
<div class="artwork art-text alignCenter" id="section-4.3.1-4.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length = 1 | Reserved |D|L|B|P|E|G|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-6cio-flags" class="selfRef">6CIO Flags</a>
</figcaption></figure>
</div>
<p id="section-4.3.1-5">
A 6LR that provides reachability services for a RUL in a RPL network
as specified in this document includes a 6CIO in its RA messages and
set the L, P, and E flags to 1 as prescribed by <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>;
this is fully explained in <a href="#oper" class="xref">Section 9.2</a>.<a href="#section-4.3.1-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="prereq">
<section id="section-5">
<h2 id="name-requirements-for-the-rpl-un">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-requirements-for-the-rpl-un" class="section-name selfRef">Requirements for the RPL-Unaware Leaf</a>
</h2>
<p id="section-5-1">
This document describes how RPL routing can be extended to reach a RUL.
This section specifies the minimal RPL-independent functionality that the RUL
needs to implement in order to obtain routing services for its addresses.<a href="#section-5-1" class="pilcrow">¶</a></p>
<div id="prereq6lp">
<section id="section-5.1">
<h3 id="name-support-of-6lowpan-nd">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-support-of-6lowpan-nd" class="section-name selfRef">Support of 6LoWPAN ND</a>
</h3>
<p id="section-5.1-1">
To obtain routing services from a router that implements this specification,
a RUL needs to implement <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> and sets the "R" and "T"
flags in the EARO to 1 as discussed in Sections <a href="#R8505ER" class="xref">4.2.1</a> and
<a href="#R8505ETID" class="xref">4.2.2</a>, respectively. <a href="#ln" class="xref">Section 9.2.1</a> specifies new behaviors for the RUL, e.g., when the R flag set to 1 in an NS(EARO) is not echoed in the NA(EARO), which indicates that the route injection failed.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<p id="section-5.1-2">
The RUL is expected to request routing services from a router only if that router originates RA messages with a 6CIO that has the L, P, and E flags all set to 1
as discussed in <a href="#R7400" class="xref">Section 4.3.1</a>, unless configured to do so.
It is suggested that the RUL also implement
<span>[<a href="#RFC8928" class="xref">RFC8928</a>]</span> to protect the ownership of its addresses.<a href="#section-5.1-2" class="pilcrow">¶</a></p>
<p id="section-5.1-3">
A RUL that may attach to multiple 6LRs is expected to prefer those that provide routing services.
The RUL needs to register with all the 6LRs from which it desires routing services.<a href="#section-5.1-3" class="pilcrow">¶</a></p>
<p id="section-5.1-4">
Parallel Address Registrations to several 6LRs should be performed in a rapid sequence, using the same EARO for the same address. Gaps between
the Address Registrations will invalidate some of the routes until the Address
Registration finally shows on those routes.<a href="#section-5.1-4" class="pilcrow">¶</a></p>
<p id="section-5.1-5"><span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> introduces error Status values in the NA(EARO)
that can be received synchronously upon an NS(EARO) or asynchronously. The
RUL needs to support both cases and refrain from using the address
when the Status value indicates a rejection (see <a href="#stat" class="xref">Section 6.3</a>).<a href="#section-5.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="prereqv6ip">
<section id="section-5.2">
<h3 id="name-support-of-ipv6-encapsulati">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-support-of-ipv6-encapsulati" class="section-name selfRef">Support of IPv6 Encapsulation</a>
</h3>
<p id="section-5.2-1">
<span><a href="https://www.rfc-editor.org/rfc/rfc9008#section-4.1.1" class="relref">Section 4.1.1</a> of [<a href="#RFC9008" class="xref">RFC9008</a>]</span> defines the rules
for signaling an external destination (e.g., a RUL) and tunneling to its
attachment router (designated as a 6LR). In order to terminate the IPv6-in-IPv6
tunnel, the RUL, as an IPv6 host, would have to be capable of decapsulating
the tunneled packet and either drop the encapsulated packet if it is not the
final destination or pass it to the upper layer for further processing.
As indicated in <span><a href="https://www.rfc-editor.org/rfc/rfc9008#section-4.1" class="relref">Section 4.1</a> of [<a href="#RFC9008" class="xref">RFC9008</a>]</span>,
this is not mandated by <span>[<a href="#RFC8504" class="xref">RFC8504</a>]</span>, and the IPv6-in-IPv6 tunnel
from the root is terminated at the parent 6LR. It is thus not necessary
for a RUL to support IPv6-in-IPv6 decapsulation.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="prereqv6hh">
<section id="section-5.3">
<h3 id="name-support-of-the-hop-by-hop-h">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-support-of-the-hop-by-hop-h" class="section-name selfRef">Support of the Hop-by-Hop Header</a>
</h3>
<p id="section-5.3-1">
A RUL is expected to process an Option Type in a Hop-by-Hop Header as
prescribed by <span><a href="https://www.rfc-editor.org/rfc/rfc8200#section-4.2" class="relref">Section 4.2</a> of [<a href="#RFC8200" class="xref">RFC8200</a>]</span>.
An RPI with an Option Type of 0x23 <span>[<a href="#RFC9008" class="xref">RFC9008</a>]</span> is thus skipped when not recognized.<a href="#section-5.3-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="prereqv6rh">
<section id="section-5.4">
<h3 id="name-support-of-the-routing-head">
<a href="#section-5.4" class="section-number selfRef">5.4. </a><a href="#name-support-of-the-routing-head" class="section-name selfRef">Support of the Routing Header</a>
</h3>
<p id="section-5.4-1">
A RUL is expected to process an unknown Routing Header Type as
prescribed by <span><a href="https://www.rfc-editor.org/rfc/rfc8200#section-4.4" class="relref">Section 4.4</a> of [<a href="#RFC8200" class="xref">RFC8200</a>]</span>.
This implies that the SRH, which has a Routing Type of 3
<span>[<a href="#RFC6554" class="xref">RFC6554</a>]</span>, is ignored when Segments Left is zero.
When Segments Left is non-zero, the RUL discards the packet and
sends an ICMP Parameter Problem message with Code 0 to the packet's
source address, pointing to the unrecognized Routing Type.<a href="#section-5.4-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="upd">
<section id="section-6">
<h2 id="name-enhancements-to-rfc-6550">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-enhancements-to-rfc-6550" class="section-name selfRef">Enhancements to RFC 6550</a>
</h2>
<p id="section-6-1">
This document specifies a new behavior whereby a 6LR injects DAO messages
for unicast addresses (see <a href="#op" class="xref">Section 9</a>) and multicast addresses
(see <a href="#multiop" class="xref">Section 10</a>) on behalf of leaves that are not aware of RPL.
The RUL addresses are exposed as external targets <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>.
Conforming to
<span>[<a href="#RFC9008" class="xref">RFC9008</a>]</span>, IPv6-in-IPv6 encapsulation between the 6LR and the RPL DODAG root is used to carry the RPL artifacts and remove them when forwarding outside the RPL domain, e.g., to a RUL.<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2">
This document also synchronizes the liveness monitoring at the root and the
6LBR. The same lifetime value is used for both, and a single keep-alive
message, the RPL DAO, traverses the RPL network. Another new behavior is introduced
whereby the RPL DODAG root proxies the EDAR message to the 6LBR on behalf of the
6LR (see <a href="#upd2" class="xref">Section 8</a>), for any leaf node that implements the
6LN functionality described in <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>.<a href="#section-6-2" class="pilcrow">¶</a></p>
<p id="section-6-3">
<span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-6.7.7" class="relref">Section 6.7.7</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span> introduces the RPL Target option,
which can be used in RPL control messages such as the DAO message to signal a
destination prefix. This document adds capabilities for
transporting the ROVR field (see <a href="#R8505EROVR" class="xref">Section 4.2.3</a>) and the
IPv6 address of the prefix advertiser when the Target is a shorter prefix.
Their use is signaled by a new ROVR Size field being non-zero
and a new "Advertiser address in Full (F)" flag set to 1, respectively; see <a href="#tgt" class="xref">Section 6.1</a>.<a href="#section-6-3" class="pilcrow">¶</a></p>
<p id="section-6-4">
This specification defines a new flag, "Root Proxies EDAR/EDAC (P)", in the
RPL DODAG Configuration option; see <a href="#pflag" class="xref">Section 6.2</a>.<a href="#section-6-4" class="pilcrow">¶</a></p>
<p id="section-6-5">
Furthermore, this
specification provides the ability to carry the EARO Status defined for 6LoWPAN ND
in RPL DAO and DCO messages, embedded in a RPL Status; see
<a href="#stat" class="xref">Section 6.3</a>.<a href="#section-6-5" class="pilcrow">¶</a></p>
<p id="section-6-6">
<span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-12" class="relref">Section 12</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span> details RPL support for
multicast flows when the RPL Instance is operated with a MOP setting of 3
("Storing Mode of Operation with multicast support").
This specification extends the RPL DODAG root operation to proxy-relay the MLDv2 operation <span>[<a href="#RFC3810" class="xref">RFC3810</a>]</span> between the RUL and the 6LR; see <a href="#multiop" class="xref">Section 10</a>.<a href="#section-6-6" class="pilcrow">¶</a></p>
<div id="tgt">
<section id="section-6.1">
<h3 id="name-updated-rpl-target-option">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-updated-rpl-target-option" class="section-name selfRef">Updated RPL Target Option</a>
</h3>
<p id="section-6.1-1"> This specification updates the RPL Target option to transport the ROVR
that was also defined for 6LoWPAN ND messages.
This enables the RPL DODAG root to generate the proxied EDAR message to the 6LBR.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">
The Target Prefix of the RPL Target option is left (high bit) justified and
contains the advertised prefix; its size may be smaller than 128 when
it indicates a prefix route. The Prefix Length field signals the number
of bits that correspond to the advertised prefix; it is 128 for a
host route or less in the case of a prefix route. This remains unchanged.<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1-3">
This specification defines the new 'F' flag. When it is set to 1, the size of
the Target Prefix field <span class="bcp14">MUST</span> be 128 bits and it <span class="bcp14">MUST</span> contain an IPv6 address
of the advertising node taken from the advertised prefix. In that case, the
Target Prefix field carries two distinct pieces of information: a route that
can be a host route or a prefix route, depending on the Prefix Length; and an
IPv6 address that can be used to reach the advertising node and validate the
route.<a href="#section-6.1-3" class="pilcrow">¶</a></p>
<p id="section-6.1-4">
If the 'F' flag is set to 0, the Target Prefix field can be shorter than
128 bits, and it <span class="bcp14">MUST</span> be aligned to the next byte boundary after the end of
the prefix.
Any additional bits in the rightmost octet are filled with padding bits.
Padding bits are reserved and set to 0 as specified in <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-6.7.7" class="relref">Section 6.7.7</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>.<a href="#section-6.1-4" class="pilcrow">¶</a></p>
<p id="section-6.1-5">
With this specification, the ROVR is the remainder of the RPL Target option.
The size of the ROVR is indicated in a new ROVR Size field that is encoded
to map one to one with the Code Suffix in the EDAR message
(see Table 4 of <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>). The ROVR Size field is taken
from the Flags field, which is an update to the "RPL Target Option Flags" IANA registry.<a href="#section-6.1-5" class="pilcrow">¶</a></p>
<p id="section-6.1-6">
The updated format is illustrated in <a href="#frpltgt" class="xref">Figure 4</a>.
It is backward compatible with the Target option defined in
<span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>.
It is recommended that the updated format be used as a replacement in new
implementations in all MOPs in preparation for upcoming route ownership
validation mechanisms based on the ROVR, unless the device or the network is
so constrained that this is not feasible.<a href="#section-6.1-6" class="pilcrow">¶</a></p>
<span id="name-updated-target-option"></span><div id="frpltgt">
<figure id="figure-4">
<div class="artwork art-text alignLeft" id="section-6.1-7.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x05 | Option Length |F|X|Flg|ROVRsz | Prefix Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Target Prefix (Variable Length) |
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
... Registration Ownership Verifier (ROVR) ...
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-updated-target-option" class="selfRef">Updated Target Option</a>
</figcaption></figure>
</div>
<p id="section-6.1-8"> New fields:<a href="#section-6.1-8" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-6.1-9">
<dt id="section-6.1-9.1">F:</dt>
<dd style="margin-left: 2.0em" id="section-6.1-9.2"> 1-bit flag. Set to 1 to indicate that the Target Prefix field
contains the complete (128-bit) IPv6 address of the advertising node.<a href="#section-6.1-9.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-6.1-9.3">X:</dt>
<dd style="margin-left: 2.0em" id="section-6.1-9.4">
<p id="section-6.1-9.4.1">1-bit flag. Set to 1 to request that the root perform a
proxy EDAR/EDAC exchange.<a href="#section-6.1-9.4.1" class="pilcrow">¶</a></p>
<p id="section-6.1-9.4.2">The 'X' flag can only be set to 1 if the DODAG is
operating in Non-Storing mode and if the root sets the "Root Proxies EDAR/EDAC
(P)" flag to 1 in the DODAG Configuration option; see <a href="#pflag" class="xref">Section 6.2</a>.<a href="#section-6.1-9.4.2" class="pilcrow">¶</a></p>
<p id="section-6.1-9.4.3">
The 'X' flag can be set for host routes to RULs and RANs; it can also be set
for internal prefix routes if the 'F' flag is set, using the node's address
in the Target Prefix field to form the EDAR, but it cannot be used otherwise.<a href="#section-6.1-9.4.3" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-6.1-9.5">Flg (Flags):</dt>
<dd style="margin-left: 2.0em" id="section-6.1-9.6"> The 2 bits remaining unused in the Flags field
are reserved for flags. The field <span class="bcp14">MUST</span> be initialized to 0 by the sender
and <span class="bcp14">MUST</span> be ignored by the receiver.<a href="#section-6.1-9.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-6.1-9.7">ROVRsz (ROVR Size):</dt>
<dd style="margin-left: 2.0em" id="section-6.1-9.8">
<p id="section-6.1-9.8.1"> Indicates the size of the ROVR.
It <span class="bcp14">MUST</span> be set to 1, 2, 3, or 4, indicating a ROVR size of 64, 128, 192,
or 256 bits, respectively.<a href="#section-6.1-9.8.1" class="pilcrow">¶</a></p>
<p id="section-6.1-9.8.2">
If a legacy Target option is used, then the value must
remain 0, as specified in <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>.<a href="#section-6.1-9.8.2" class="pilcrow">¶</a></p>
<p id="section-6.1-9.8.3">
In the case of a value above 4, the size of the ROVR is undetermined and
this node cannot validate the ROVR; an implementation <span class="bcp14">SHOULD</span> propagate
the whole Target option upwards as received to enable the verification
by an ancestor that would support the upgraded ROVR.<a href="#section-6.1-9.8.3" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-6.1-9.9">Registration Ownership Verifier (ROVR):</dt>
<dd style="margin-left: 2.0em" id="section-6.1-9.10">
This is the same field as in the EARO;
see <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>.<a href="#section-6.1-9.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="pflag">
<section id="section-6.2">
<h3 id="name-additional-flag-in-the-rpl-">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-additional-flag-in-the-rpl-" class="section-name selfRef">Additional Flag in the RPL DODAG Configuration Option</a>
</h3>
<p id="section-6.2-1">
The DODAG Configuration option is defined in <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-6.7.6" class="relref">Section 6.7.6</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>. Its purpose is extended to distribute configuration
information affecting the construction and maintenance of the DODAG, as
well as operational parameters for RPL on the DODAG, through the DODAG.
This option was originally designed with four bit positions reserved for future use as flags.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<span id="name-dodag-configuration-option-"></span><div id="RPLDCO">
<figure id="figure-5">
<div class="artwork art-text alignCenter" id="section-6.2-2.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x04 |Opt Length = 14| |P| | |A| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
|4 bits |</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-dodag-configuration-option-" class="selfRef">DODAG Configuration Option (Partial View)</a>
</figcaption></figure>
</div>
<p id="section-6.2-3">
This specification defines a new flag, "Root Proxies EDAR/EDAC (P)".
The 'P' flag is encoded
in bit position 1 of the reserved flags in the DODAG Configuration option
(counting from bit 0 as the most significant bit), and it is set to 0 in
legacy implementations as specified in Sections <a href="https://www.rfc-editor.org/rfc/rfc6550#section-20.14" class="relref">20.14</a> and <a href="https://www.rfc-editor.org/rfc/rfc6550#section-6.7.6" class="relref">6.7.6</a> of <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>, respectively.<a href="#section-6.2-3" class="pilcrow">¶</a></p>
<p id="section-6.2-4">
The 'P' flag is set to 1 to indicate that the root performs the proxy
operation, which implies that it supports this specification and the updated
RPL Target option (see <a href="#tgt" class="xref">Section 6.1</a>).<a href="#section-6.2-4" class="pilcrow">¶</a></p>
<p id="section-6.2-5">
<span><a href="https://www.rfc-editor.org/rfc/rfc9008#section-4.1.3" class="relref">Section 4.1.3</a> of [<a href="#RFC9008" class="xref">RFC9008</a>]</span> updates
<span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> to indicate that the definition of the flags applies
to MOP values from zero (0) to six (6) only. For a MOP value of 7, the implementation <span class="bcp14">MUST</span> assume that the root
performs the proxy operation.<a href="#section-6.2-5" class="pilcrow">¶</a></p>
<p id="section-6.2-6">
The RPL DODAG Configuration option is typically placed in
a DODAG Information Object (DIO) message. The DIO message propagates down the
DODAG to form and then maintain its structure. The DODAG Configuration option
is copied unmodified from parents to children.
<span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> states that "Nodes other than the DODAG root <span class="bcp14">MUST NOT</span> modify this information when propagating the DODAG Configuration option."
Therefore, a legacy parent propagates the 'P' flag as set by the root, and
when the 'P' flag is set to 1, it is transparently flooded to all the nodes
in the DODAG.<a href="#section-6.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="stat">
<section id="section-6.3">
<h3 id="name-updated-rpl-status">
<a href="#section-6.3" class="section-number selfRef">6.3. </a><a href="#name-updated-rpl-status" class="section-name selfRef">Updated RPL Status</a>
</h3>
<p id="section-6.3-1">The RPL Status is defined in <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-6.5.1" class="relref">Section 6.5.1</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span> for use in the DAO-ACK message. Values are assigned as follows:<a href="#section-6.3-1" class="pilcrow">¶</a></p>
<span id="name-rpl-status-per-rfc-6550"></span><div id="irplStatusbl">
<table class="center" id="table-1">
<caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-rpl-status-per-rfc-6550" class="selfRef">RPL Status per RFC 6550</a>
</caption>
<thead>
<tr>
<td class="text-left" rowspan="1" colspan="1">Range</td>
<td class="text-left" rowspan="1" colspan="1">Meaning</td>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Success / Unqualified acceptance</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1-127</td>
<td class="text-left" rowspan="1" colspan="1">Not an outright rejection</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">128-255</td>
<td class="text-left" rowspan="1" colspan="1">Rejection</td>
</tr>
</tbody>
</table>
</div>
<p id="section-6.3-3">
The 6LoWPAN ND Status was defined for use in the EARO; see <span><a href="https://www.rfc-editor.org/rfc/rfc8505#section-4.1" class="relref">Section 4.1</a> of [<a href="#RFC8505" class="xref">RFC8505</a>]</span>.
This specification adds the ability to allow the carriage of 6LoWPAN ND
Status values in RPL DAO and DCO messages, embedded in the RPL Status field.<a href="#section-6.3-3" class="pilcrow">¶</a></p>
<p id="section-6.3-4">
To achieve this, the range of the ARO/EARO Status values is reduced to 0-63,
which updates the IANA registry created for <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span>.
This reduction ensures that the values fit within a RPL Status as shown in
<a href="#rpst" class="xref">Figure 6</a>. See Sections <a href="#iana-aro" class="xref">12.2</a>,
<a href="#iana-stats-nonrej" class="xref">12.5</a>, and <a href="#iana-stats-rej" class="xref">12.6</a>
for the respective IANA declarations.
These updates are reasonable because the associated registry relies on
the Standards Action policy <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span> for registration and only values up to 10 are currently allocated.<a href="#section-6.3-4" class="pilcrow">¶</a></p>
<span id="name-rpl-status-format"></span><div id="rpst">
<figure id="figure-6">
<div class="artwork art-text alignCenter" id="section-6.3-5.1">
<pre>
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|U|A|StatusValue|
+-+-+-+-+-+-+-+-+</pre>
</div>
<figcaption><a href="#figure-6" class="selfRef">Figure 6</a>:
<a href="#name-rpl-status-format" class="selfRef">RPL Status Format</a>
</figcaption></figure>
</div>
<p id="section-6.3-6"> This specification updates the RPL Status with the following subfields:<a href="#section-6.3-6" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-6.3-7">
<dt id="section-6.3-7.1">U:</dt>
<dd style="margin-left: 2.0em" id="section-6.3-7.2"> 1-bit flag. Set to 1 to indicate a rejection. When set to 0, a Status value of 0
indicates Success / Unqualified acceptance and other values indicate "Not an
outright rejection" as per RFC 6550.<a href="#section-6.3-7.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-6.3-7.3">A:</dt>
<dd style="margin-left: 2.0em" id="section-6.3-7.4">1-bit flag. Indicates the type of the RPL Status value.<a href="#section-6.3-7.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-6.3-7.5">Status Value:</dt>
<dd style="margin-left: 2.0em" id="section-6.3-7.6">
<p id="section-6.3-7.6.1">6-bit unsigned integer.<a href="#section-6.3-7.6.1" class="pilcrow">¶</a></p>
<p id="section-6.3-7.6.2">If the 'A' flag is set to 1, this field transports a value defined for the
6LoWPAN ND EARO Status.<a href="#section-6.3-7.6.2" class="pilcrow">¶</a></p>
<p id="section-6.3-7.6.3">
When the 'A' flag is set to 0, this field transports a Status value defined
for RPL.<a href="#section-6.3-7.6.3" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-6.3-8">
When building a DCO or a DAO-ACK message upon an IPv6 ND NA or an EDAC message,
the RPL DODAG root <span class="bcp14">MUST</span> copy the 6LoWPAN ND status code unchanged in the RPL Status Value field and set the 'A' flag to 1.
The RPL DODAG root <span class="bcp14">MUST</span> set the 'U' flag to 1 for all rejection and unknown status codes. The status codes in the 1-10 range <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> are all considered rejections.<a href="#section-6.3-8" class="pilcrow">¶</a></p>
<p id="section-6.3-9">
Reciprocally, upon a DCO or a DAO-ACK message from the RPL DODAG root with a RPL
Status that has the 'A' flag set, the 6LR <span class="bcp14">MUST</span> copy the RPL Status value
unchanged in the Status field of the EARO when generating an NA to the RUL.<a href="#section-6.3-9" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="updnpdao">
<section id="section-7">
<h2 id="name-enhancements-to-rfc-9009">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-enhancements-to-rfc-9009" class="section-name selfRef">Enhancements to RFC 9009</a>
</h2>
<p id="section-7-1">
<span>[<a href="#RFC9009" class="xref">RFC9009</a>]</span> defines the DCO message for RPL Storing mode only, with a link-local scope. All nodes in the RPL network are expected to support the specification, since the message is processed hop by hop along the path that is being cleaned up.<a href="#section-7-1" class="pilcrow">¶</a></p>
<p id="section-7-2">
This specification extends the use of the DCO message to the Non-Storing MOP, whereby the DCO is sent end to end by the root directly to the RAN that injected the DAO message for the considered target. In that case, intermediate nodes do not need to support <span>[<a href="#RFC9009" class="xref">RFC9009</a>]</span>; they forward the DCO message as a plain IPv6 packet between the root and the RAN.<a href="#section-7-2" class="pilcrow">¶</a></p>
<p id="section-7-3">
In the case of a RUL, the 6LR that serves the RUL acts as the RAN that receives
the Non-Storing DCO.
This specification leverages the Non-Storing DCO between the root and the 6LR that serves as the attachment router for a RUL. A 6LR and a root that support this specification <span class="bcp14">MUST</span> implement the Non-Storing DCO.<a href="#section-7-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="upd2">
<section id="section-8">
<h2 id="name-enhancements-to-rfcs-6775-a">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-enhancements-to-rfcs-6775-a" class="section-name selfRef">Enhancements to RFCs 6775 and 8505</a>
</h2>
<p id="section-8-1">
This document updates <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span> and <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>
to reduce the range of the ARO/EARO Status values to 64 values. The two most significant (leftmost) bits of the original ND Status field are now reserved; they <span class="bcp14">MUST</span> be set to 0 by the sender and ignored by the receiver.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">
This document also updates the behavior of a 6LR acting as a RPL router and of a 6LN acting as a RUL in the 6LoWPAN ND Address Registration as follows:<a href="#section-8-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-8-3.1">
If the RPL DODAG root advertises the ability to proxy the EDAR/EDAC
exchange to the 6LBR, the 6LR refrains from sending the keep-alive EDAR
message. If it is separated from the 6LBR, the root regenerates the
EDAR message to the 6LBR periodically, upon a DAO message that signals the liveliness of the address.<a href="#section-8-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-8-3.2">
The use of the R flag is extended to the NA(EARO) to confirm whether the route was installed.<a href="#section-8-3.2" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="op">
<section id="section-9">
<h2 id="name-protocol-operations-for-uni">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-protocol-operations-for-uni" class="section-name selfRef">Protocol Operations for Unicast Addresses</a>
</h2>
<p id="section-9-1">
The description below assumes that the root sets the 'P' flag in the
DODAG Configuration option and performs the EDAR proxy operation presented in
<a href="#R8505D" class="xref">Section 4.3</a>.<a href="#section-9-1" class="pilcrow">¶</a></p>
<p id="section-9-2">
If the 'P' flag is set to 0, the 6LR <span class="bcp14">MUST</span> generate the periodic EDAR messages and
process the returned status as specified in <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>.
If the EDAC indicates success, the rest of the flow takes place as presented
but without the proxied EDAR/EDAC exchange.<a href="#section-9-2" class="pilcrow">¶</a></p>
<p id="section-9-3">
<a href="#flow" class="xref">Section 9.1</a> provides an overview of the route injection in RPL, whereas <a href="#oper" class="xref">Section 9.2</a> offers more details from the perspective of the
different nodes involved in the flow.<a href="#section-9-3" class="pilcrow">¶</a></p>
<div id="flow">
<section id="section-9.1">
<h3 id="name-general-flow">
<a href="#section-9.1" class="section-number selfRef">9.1. </a><a href="#name-general-flow" class="section-name selfRef">General Flow</a>
</h3>
<p id="section-9.1-1">
This specification eliminates the need to exchange keep-alive EDAR and EDAC messages all the way from a 6LN to the 6LBR across a RPL mesh.
Instead, the EDAR/EDAC exchange with the 6LBR is proxied
by the RPL DODAG root upon the DAO message that refreshes the RPL routing state.
The first EDAR upon a new Address Registration cannot be proxied, though, as it
is generated for the purpose of DAD, which must be verified before the address is
injected in RPL.<a href="#section-9.1-1" class="pilcrow">¶</a></p>
<p id="section-9.1-2">
In a RPL
network where the function is enabled, refreshing the state in the 6LBR is
the responsibility of the root. Consequently, only addresses that are
injected in RPL will be kept alive at the 6LBR by the RPL DODAG root.
Since RULs are advertised using Non-Storing mode, the DAO message flow
and the keep-alive EDAR/EDAC can be nested within the Address
(re)Registration flow.
<a href="#fReg1" class="xref">Figure 7</a> illustrates that, for the first Address Registration,
both the DAD and the keep-alive EDAR/EDAC exchanges happen in the same
sequence.<a href="#section-9.1-2" class="pilcrow">¶</a></p>
<span id="name-first-rul-registration-flow"></span><div id="fReg1">
<figure id="figure-7">
<div class="artwork art-text alignCenter" id="section-9.1-3.1">
<pre>
6LN/RUL 6LR <6LR*> Root 6LBR
|<---Using ND--->|<--Using RPL->|<-----Using ND---->|
| |<-----------Using ND------------->|
| | | |
| NS(EARO) | | |
|--------------->| |
| | EDAR |
| |--------------------------------->|
| | |
| | EDAC |
| |<---------------------------------|
| | |
| | DAO(X=0) | |
| |------------->| |
| | |
| | DAO-ACK | |
| |<-------------| |
| NA(EARO) | | |
|<---------------| | |
| | | |</pre>
</div>
<figcaption><a href="#figure-7" class="selfRef">Figure 7</a>:
<a href="#name-first-rul-registration-flow" class="selfRef">First RUL Registration Flow</a>
</figcaption></figure>
</div>
<p id="section-9.1-4">
This flow requires that the lifetimes and sequence counters in 6LoWPAN ND and RPL be aligned.<a href="#section-9.1-4" class="pilcrow">¶</a></p>
<p id="section-9.1-5">
To achieve this, the Path
Sequence and the Path Lifetime in the DAO message are taken from the
Transaction ID and the Address Registration lifetime in the NS(EARO) message
from the 6LN.<a href="#section-9.1-5" class="pilcrow">¶</a></p>
<p id="section-9.1-6">
On the first Address Registration, illustrated in <a href="#fReg1" class="xref">Figure 7</a>
for RPL Non-Storing mode, the EDAR/EDAC exchange takes place
as prescribed by <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>. If the exchange fails, the 6LR returns an NA message with a non-zero status to the 6LN, the NCE is not created, and the address is not injected in RPL.
Otherwise, the 6LR creates an NCE and injects the Registered
Address in the RPL routing using a DAO/DAO-ACK exchange with the RPL DODAG
root.<a href="#section-9.1-6" class="pilcrow">¶</a></p>
<p id="section-9.1-7">
An Address Registration refresh is performed by the 6LN to keep the NCE
in the 6LR alive before the lifetime expires. Upon the refresh of a
registration, the 6LR reinjects the corresponding route in RPL before it expires, as illustrated in <a href="#fReg2" class="xref">Figure 8</a>.<a href="#section-9.1-7" class="pilcrow">¶</a></p>
<span id="name-next-rul-registration-flow"></span><div id="fReg2">
<figure id="figure-8">
<div class="artwork art-text alignCenter" id="section-9.1-8.1">
<pre>
6LN/RUL <-ND-> 6LR <-RPL-> Root <-ND-> 6LBR
| | | |
| NS(EARO) | | |
|--------------->| | |
| | DAO(X=1) | |
| |------------->| |
| | | EDAR |
| | |------------------>|
| | | EDAC |
| | |<------------------|
| | DAO-ACK | |
| |<-------------| |
| NA(EARO) | | |
|<---------------| | |</pre>
</div>
<figcaption><a href="#figure-8" class="selfRef">Figure 8</a>:
<a href="#name-next-rul-registration-flow" class="selfRef">Next RUL Registration Flow</a>
</figcaption></figure>
</div>
<p id="section-9.1-9">
This is what causes the RPL DODAG root to refresh the state in the 6LBR, using an
EDAC message.
In the case of an error in the proxied EDAR flow, the error is
returned in the DAO-ACK using a RPL Status with the 'A' flag set to 1, which embeds
a 6LoWPAN Status value as discussed in <a href="#stat" class="xref">Section 6.3</a>.<a href="#section-9.1-9" class="pilcrow">¶</a></p>
<p id="section-9.1-10">
The 6LR may receive a requested DAO-ACK after it received an asynchronous
Non-Storing DCO, but the non-zero status in the DCO supersedes a positive
status in the DAO-ACK, regardless of the order in which they are received.
Upon the DAO-ACK -- or the DCO, if one arrives first -- the 6LR responds to the
RUL with an NA(EARO).<a href="#section-9.1-10" class="pilcrow">¶</a></p>
<p id="section-9.1-11">
An issue may be detected later, e.g., the address moves to a different
DODAG with the 6LBR attached to a different 6LoWPAN Backbone Router (6BBR);
see Figure 5 in <span><a href="https://www.rfc-editor.org/rfc/rfc8929#section-3.3" class="relref">Section 3.3</a> of [<a href="#RFC8929" class="xref">RFC8929</a>]</span>.
The 6BBR may send a negative ND Status, e.g., in an asynchronous NA(EARO)
to the 6LBR.<a href="#section-9.1-11" class="pilcrow">¶</a></p>
<p id="section-9.1-12">
<span>[<a href="#RFC8929" class="xref">RFC8929</a>]</span> expects that the 6LBR is co-located with the RPL DODAG root, but if not, the 6LBR <span class="bcp14">MUST</span> forward the status code to the originator of the EDAR -- either the 6LR or the RPL DODAG root that proxies for it.
The ND status code is mapped in a RPL Status value by the RPL DODAG root, and then back to an ND Status by the 6LR to the 6LN.
Note that a legacy RAN that receives a Non-Storing DCO that it does not
support will ignore it silently, as specified in <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-6" class="relref">Section 6</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>. The result is that it will remain unaware that it is no longer reachable until its next RPL exchange happens. This situation will be cleared upon the next Non-Storing DAO
exchange if the error is returned in a DAO-ACK.<a href="#section-9.1-12" class="pilcrow">¶</a></p>
<p id="section-9.1-13">
<a href="#fReg1.5" class="xref">Figure 9</a> illustrates this in the case where the 6LBR and the root are not co-located, and the root proxies the EDAR/EDAC flow.<a href="#section-9.1-13" class="pilcrow">¶</a></p>
<span id="name-asynchronous-issue"></span><div id="fReg1.5">
<figure id="figure-9">
<div class="artwork art-text alignCenter" id="section-9.1-14.1">
<pre>
6LN/RUL <-ND-> 6LR <-RPL-> Root <-ND-> 6LBR <-ND-> 6BBR
| | | | |
| | | | NA(EARO) |
| | | |<------------|
| | | EDAC | |
| | |<-------------| |
| | DCO | | |
| |<------------| | |
| NA(EARO) | | | |
|<-------------| | | |
| | | | |</pre>
</div>
<figcaption><a href="#figure-9" class="selfRef">Figure 9</a>:
<a href="#name-asynchronous-issue" class="selfRef">Asynchronous Issue</a>
</figcaption></figure>
</div>
<p id="section-9.1-15">
If the root does not proxy, then the EDAC with a non-zero status reaches the
6LR directly. In that case, the 6LR <span class="bcp14">MUST</span> clean up the route using a DAO with
a Lifetime of 0, and it <span class="bcp14">MUST</span> propagate the status back to the RUL in an NA(EARO) with the R flag set to 0.<a href="#section-9.1-15" class="pilcrow">¶</a></p>
<p id="section-9.1-16">
The RUL may terminate the registration at any time by using a Registration
Lifetime of 0.
This specification requires that the RPL Target option transport the ROVR.
This way, the same flow as the heartbeat flow is sufficient to inform the
6LBR using the root as a proxy, as illustrated in <a href="#fReg2" class="xref">Figure 8</a>.<a href="#section-9.1-16" class="pilcrow">¶</a></p>
<p id="section-9.1-17">
All or any combination of the 6LR, the root, and the 6LBR might be
collapsed in a single node.<a href="#section-9.1-17" class="pilcrow">¶</a></p>
</section>
</div>
<div id="oper">
<section id="section-9.2">
<h3 id="name-detailed-operation">
<a href="#section-9.2" class="section-number selfRef">9.2. </a><a href="#name-detailed-operation" class="section-name selfRef">Detailed Operation</a>
</h3>
<p id="section-9.2-1">
The following sections specify the behavior of (1) the 6LN acting as
a RUL, (2) the 6LR acting as a border router and serving the
6LN, (3) the RPL DODAG root, and (4) the 6LBR in the control flows that
enable RPL routing back to the RUL, respectively.<a href="#section-9.2-1" class="pilcrow">¶</a></p>
<div id="ln">
<section id="section-9.2.1">
<h4 id="name-perspective-of-the-6ln-acti">
<a href="#section-9.2.1" class="section-number selfRef">9.2.1. </a><a href="#name-perspective-of-the-6ln-acti" class="section-name selfRef">Perspective of the 6LN Acting as a RUL</a>
</h4>
<p id="section-9.2.1-1">
This specification builds on the operation of a 6LoWPAN ND-compliant
6LN/RUL, which is expected to operate as follows:<a href="#section-9.2.1-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-9.2.1-2">
<li id="section-9.2.1-2.1">
The 6LN selects a 6LR that provides reachability services for a RUL. This
is signaled by a 6CIO in the RA messages with the L, P, and E flags set to 1
as prescribed by <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>.<a href="#section-9.2.1-2.1" class="pilcrow">¶</a>
</li>
<li id="section-9.2.1-2.2">
The 6LN obtains an IPv6 global address, via either (1) Stateless Address Autoconfiguration (SLAAC) <span>[<a href="#RFC4862" class="xref">RFC4862</a>]</span> based on a Prefix
Information Option (PIO) <span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span> found in an RA message or
(2) some other means, such as DHCPv6 <span>[<a href="#RFC8415" class="xref">RFC8415</a>]</span>.<a href="#section-9.2.1-2.2" class="pilcrow">¶</a>
</li>
<li id="section-9.2.1-2.3">
Once it has formed an address, the 6LN registers its address and refreshes its registration periodically, early enough
within the lifetime of the previous Address Registration, as prescribed by
<span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span>, to refresh the NCE before the lifetime indicated
in the EARO expires. It sets the T flag to 1 as prescribed in <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>.
The TID is incremented each time and wraps in a lollipop fashion (see
<span><a href="https://www.rfc-editor.org/rfc/rfc8505#section-5.2.1" class="relref">Section 5.2.1</a> of [<a href="#RFC8505" class="xref">RFC8505</a>]</span>, which is fully compatible with
<span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-7.2" class="relref">Section 7.2</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>).<a href="#section-9.2.1-2.3" class="pilcrow">¶</a>
</li>
<li id="section-9.2.1-2.4">
As stated in <span><a href="https://www.rfc-editor.org/rfc/rfc8505#section-5.2" class="relref">Section 5.2</a> of [<a href="#RFC8505" class="xref">RFC8505</a>]</span>, the 6LN can register
with more than one 6LR at the same time.
In that case, all the fields in the EARO are set to the same value
for all of the parallel Address Registrations, with the exception
of the Registration Lifetime field and the R flag, which may be set to
different values.
The 6LN may cancel a subset of its registrations or may transfer a
registration from one or more old 6LRs to one or more new 6LRs. To do
so, the 6LN sends a series of NS(EARO) messages, all with the same TID,
with a zero Registration Lifetime to the old 6LR(s) and
with a non-zero Registration Lifetime to the new 6LR(s). In that process,
the 6LN <span class="bcp14">SHOULD</span> send the NS(EARO) with a non-zero Registration Lifetime and
ensure that at least one succeeds before it sends an NS(EARO) that
terminates another registration. This avoids the churn related to transient
route invalidation in the RPL network above the common parent of the
involved 6LRs.<a href="#section-9.2.1-2.4" class="pilcrow">¶</a>
</li>
<li id="section-9.2.1-2.5">
Following <span><a href="https://www.rfc-editor.org/rfc/rfc8505#section-5.1" class="relref">Section 5.1</a> of [<a href="#RFC8505" class="xref">RFC8505</a>]</span>,
a 6LN acting as a RUL sets the R flag in the EARO of its registration(s)
for which it requires routing services. If the R flag is not echoed in the
NA, the RUL <span class="bcp14">MUST</span> assume that establishing the routing services via this 6LR
failed, and it <span class="bcp14">SHOULD</span> attempt to use another 6LR.
The RUL <span class="bcp14">SHOULD</span> ensure that one registration succeeds before setting the R flag to 0. In the case of a conflict with the preceding rule regarding the lifetime, the rule regarding the lifetime has precedence.<a href="#section-9.2.1-2.5" class="pilcrow">¶</a>
</li>
<li id="section-9.2.1-2.6">
The 6LN may use any of the 6LRs to which it registered as the default
gateway.
Using a 6LR to which the 6LN is not registered may result in packets dropped
at the 6LR by a Source Address Validation Improvement (SAVI) function <span>[<a href="#RFC7039" class="xref">RFC7039</a>]</span> and thus is not recommended.<a href="#section-9.2.1-2.6" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-9.2.1-3">
Even without support for RPL, the RUL may be configured with an opaque value
to be provided to the routing protocol. If the RUL has knowledge of the RPL
Instance into which the packet should be injected, then it <span class="bcp14">SHOULD</span> set the Opaque
field in the EARO to the RPLInstanceID; otherwise, it <span class="bcp14">MUST</span> leave the Opaque
field as 0.<a href="#section-9.2.1-3" class="pilcrow">¶</a></p>
<p id="section-9.2.1-4">
Regardless of the setting of the Opaque field, the 6LN <span class="bcp14">MUST</span> set the "I"
field to 0 to signal "topological information to be passed to a routing
process", as specified in <span><a href="https://www.rfc-editor.org/rfc/rfc8505#section-5.1" class="relref">Section 5.1</a> of [<a href="#RFC8505" class="xref">RFC8505</a>]</span>.<a href="#section-9.2.1-4" class="pilcrow">¶</a></p>
<p id="section-9.2.1-5">
A RUL is not expected to produce RPL artifacts in the data packets, but it
may do so. For instance, if the RUL has minimal awareness of the RPL
Instance, then it can build an RPI. A RUL that places an RPI in a data packet
<span class="bcp14">SHOULD</span> indicate the RPLInstanceID of the RPL Instance where the
packet should be forwarded. It is up to the 6LR (e.g., by policy) to use the
RPLInstanceID information provided by the RUL or rewrite it to the selected
RPLInstanceID for forwarding inside the RPL domain.
All the flags and the SenderRank field are set
to 0 as specified by <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-11.2" class="relref">Section 11.2</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>.<a href="#section-9.2.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="lr">
<section id="section-9.2.2">
<h4 id="name-perspective-of-the-6lr-acti">
<a href="#section-9.2.2" class="section-number selfRef">9.2.2. </a><a href="#name-perspective-of-the-6lr-acti" class="section-name selfRef">Perspective of the 6LR Acting as a Border Router</a>
</h4>
<p id="section-9.2.2-1">
A 6LR that provides reachability services for a RUL in a RPL network
as specified in this document <span class="bcp14">MUST</span> include a 6CIO in its RA messages and
set the L, P, and E flags to 1 as prescribed by <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>.<a href="#section-9.2.2-1" class="pilcrow">¶</a></p>
<p id="section-9.2.2-2">
As prescribed by <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>,
the 6LR generates an EDAR message upon reception of a valid NS(EARO)
message for the registration of a new IPv6 address by a 6LN.
If the initial EDAR/EDAC exchange succeeds, then the 6LR installs an NCE
for the Registration Lifetime.<a href="#section-9.2.2-2" class="pilcrow">¶</a></p>
<p id="section-9.2.2-3">
If the R flag is set to 1 in the NS(EARO), the 6LR <span class="bcp14">SHOULD</span> inject the
host route in RPL, unless this is barred for other reasons, such as the saturation of the RPL parents. The 6LR <span class="bcp14">MUST</span> use RPL Non-Storing mode
signaling and the updated Target option (see <a href="#tgt" class="xref">Section 6.1</a>). To avoid a
redundant EDAR/EDAC flow to the 6LBR, the 6LR <span class="bcp14">SHOULD</span> refrain from setting the 'X' flag.
The 6LR <span class="bcp14">MUST</span> request a DAO-ACK by setting the 'K' flag in the
DAO message. Successfully injecting the route to the RUL's address will be indicated via
the 'U' flag set to 0 in the RPL Status of the DAO-ACK message.<a href="#section-9.2.2-3" class="pilcrow">¶</a></p>
<p id="section-9.2.2-4">
For the registration refreshes, if the RPL DODAG root sets the 'P' flag in the DODAG Configuration option to 1, then the 6LR <span class="bcp14">MUST</span> refrain from sending the keep-alive EDAR; instead, it <span class="bcp14">MUST</span> set the 'X' flag to 1 in the Target option of the DAO messages, to request that the root proxy the keep-alive EDAR/EDAC exchange with the 6LBR (see <a href="#upd" class="xref">Section 6</a>); if the 'P' flag is set to 0,
then the 6LR <span class="bcp14">MUST</span> set the 'X' flag to 0 and handle the EDAR/EDAC flow itself.<a href="#section-9.2.2-4" class="pilcrow">¶</a></p>
<p id="section-9.2.2-5">
The Opaque field in the EARO provides a means to signal which RPL Instance is to be used for the DAO advertisements and the forwarding of packets sourced at the Registered Address when there is no RPI in the packet.<a href="#section-9.2.2-5" class="pilcrow">¶</a></p>
<p id="section-9.2.2-6">
As described in <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>, if the "I" field is 0, then the Opaque field is expected to carry the RPLInstanceID suggested by the 6LN; otherwise, there is no suggested RPL Instance.
If the 6LR participates in the suggested RPL Instance, then the
6LR <span class="bcp14">MUST</span> use that RPL Instance for the Registered Address.<a href="#section-9.2.2-6" class="pilcrow">¶</a></p>
<p id="section-9.2.2-7">
If there is no suggested RPL Instance or if the 6LR does not participate in
the suggested RPL Instance, it is expected that the packets coming from the 6LN "can unambiguously be associated to at least one RPL Instance" <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> by the 6LR, e.g., using a policy that
maps the 6-tuple to a RPL Instance.<a href="#section-9.2.2-7" class="pilcrow">¶</a></p>
<p id="section-9.2.2-8">
The DAO message advertising the Registered Address <span class="bcp14">MUST</span> be constructed as
follows:<a href="#section-9.2.2-8" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-9.2.2-9">
<li id="section-9.2.2-9.1">The Registered Address is signaled as the Target Prefix in the updated Target option in the DAO message; the Prefix Length is set to 128 but the 'F' flag is set to 0, since the advertiser is not the RUL. The ROVR field is copied unchanged from the EARO (see <a href="#tgt" class="xref">Section 6.1</a>).<a href="#section-9.2.2-9.1" class="pilcrow">¶</a>
</li>
<li id="section-9.2.2-9.2">
The 6LR indicates one of its global or unique-local IPv6 unicast addresses as the Parent Address in the TIO associated with the Target option.<a href="#section-9.2.2-9.2" class="pilcrow">¶</a>
</li>
<li id="section-9.2.2-9.3">
The 6LR sets the External ('E') flag in the TIO to indicate that it is redistributing
an external target into the RPL network.<a href="#section-9.2.2-9.3" class="pilcrow">¶</a>
</li>
<li id="section-9.2.2-9.4">
<p id="section-9.2.2-9.4.1">
The Path Lifetime in the TIO is computed from the Registration Lifetime in the EARO. This operation converts seconds to the Lifetime Units used in the RPL operation. This creates the deployment constraint that the Lifetime Unit is reasonably compatible with the expression of the Registration Lifetime; e.g., a Lifetime Unit of 0x4000 maps the most significant byte of the Registration Lifetime to the Path Lifetime.<a href="#section-9.2.2-9.4.1" class="pilcrow">¶</a></p>
<p id="section-9.2.2-9.4.2">
In that operation, the Path Lifetime must be set to ensure that the path has a longer lifetime than the registration and also covers the round-trip time to the root.<a href="#section-9.2.2-9.4.2" class="pilcrow">¶</a></p>
<p id="section-9.2.2-9.4.3">
Note that if the Registration Lifetime is 0, then the Path Lifetime is also 0 and the DAO message becomes a No-Path DAO, which cleans up the routes down to the RUL's address; this also causes the root as a proxy to send an EDAR message to the 6LBR with a Lifetime of 0.<a href="#section-9.2.2-9.4.3" class="pilcrow">¶</a></p>
</li>
<li id="section-9.2.2-9.5">
The Path Sequence in the TIO is set to the TID value found in the EARO.<a href="#section-9.2.2-9.5" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-9.2.2-10">
Upon receiving or timing out the DAO-ACK after an implementation-specific
number of retries, the 6LR <span class="bcp14">MUST</span> send the corresponding NA(EARO) to the RUL.
Upon receiving an asynchronous DCO message, it <span class="bcp14">MUST</span> send an asynchronous
NA(EARO) to the RUL immediately but still be capable of processing the
DAO-ACK if one is pending.<a href="#section-9.2.2-10" class="pilcrow">¶</a></p>
<p id="section-9.2.2-11">
The 6LR <span class="bcp14">MUST</span> set the R flag to 1 in the NA(EARO) that it sends back to the 6LN if and only if the 'U' flag in the RPL Status is set to 0, indicating that the 6LR injected the Registered Address in the RPL routing successfully and that the EDAR proxy operation succeeded.<a href="#section-9.2.2-11" class="pilcrow">¶</a></p>
<p id="section-9.2.2-12">
If the 'A' flag in the RPL Status is set to 1, the embedded Status value is passed back to the RUL in the EARO Status.
If the 'U' flag is also set to 1, the registration failed for
6LoWPAN-ND-related reasons, and the NCE is removed.<a href="#section-9.2.2-12" class="pilcrow">¶</a></p>
<p id="section-9.2.2-13">
An error injecting the route causes the 'U' flag to be set to 1. If the error is not related to ND, the 'A' flag is set to 0. In that case, the registration succeeds, but the RPL route is not installed. So, the NA(EARO) is returned
with a status indicating success but the R flag set to 0, which means that
the 6LN obtained a binding but no route.<a href="#section-9.2.2-13" class="pilcrow">¶</a></p>
<p id="section-9.2.2-14">
If the 'A' flag is set to 0 in the RPL Status of the DAO-ACK, then the 6LoWPAN
ND operation succeeded, and an EARO Status of 0 (Success) <span class="bcp14">MUST</span> be returned to
the 6LN. The EARO Status of 0 <span class="bcp14">MUST</span> also be used if the 6LR did not attempt to inject the route but could create the binding after a successful EDAR/EDAC exchange or refresh it.<a href="#section-9.2.2-14" class="pilcrow">¶</a></p>
<p id="section-9.2.2-15">
If the 'U' flag is set to 1 in the RPL Status of the DAO-ACK, then the route was not installed, and the R flag <span class="bcp14">MUST</span> be set to 0 in the NA(EARO). The R flag <span class="bcp14">MUST</span> be set to 0 if the 6LR did not attempt to inject the route.<a href="#section-9.2.2-15" class="pilcrow">¶</a></p>
<p id="section-9.2.2-16">
In a network where Address-Protected Neighbor Discovery (AP-ND) is enabled,
in the case of a DAO-ACK or a DCO transporting an EARO
Status value of 5 (Validation Requested), the 6LR <span class="bcp14">MUST</span>
challenge the 6LN for ownership of the address, as described in <span><a href="https://www.rfc-editor.org/rfc/rfc8928#section-6.1" class="relref">Section 6.1</a> of [<a href="#RFC8928" class="xref">RFC8928</a>]</span>, before the registration is
complete. This flow, illustrated in <a href="#Dynamic-fig" class="xref">Figure 10</a>, ensures that the address is validated before it is injected in the RPL routing.<a href="#section-9.2.2-16" class="pilcrow">¶</a></p>
<span id="name-address-protection"></span><div id="Dynamic-fig">
<figure id="figure-10">
<div class="artwork art-text alignLeft" id="section-9.2.2-17.1">
<pre>
6LN 6LR Root 6LBR
| | | |
|<--------------- RA ---------------------| | |
| | | |
|------ NS(EARO) (ROVR=Crypto-ID) ------->| | |
| | | |
|<-NA(EARO) (Status=Validation Requested)-| | |
| | | |
|---- NS(EARO) and proof of ownership --->| | |
| | | |
| <validate the proof> | |
| | |
|<------- NA(EARO) (Status=10) -----<if failed> | |
| | |
| <else> | |
| | | |
| |--------- EDAR ------->|
| | |
| |<-------- EDAC --------|
| | |
| | | |
| |-DAO(X=0)->| |
| | | |
| |<- DAO-ACK-| |
| | | |
|<---------- NA(EARO) (Status=0) ---------| | |
| | | |
...
| | | |
|------ NS(EARO) (ROVR=Crypto-ID) ------->| | |
| |-DAO(X=1)->| |
| | |-- EDAR -->|
| | | |
| | |<-- EDAC --|
| |<- DAO-ACK-| |
|<---------- NA(EARO) (Status=0) ---------| | |
| | | |
...</pre>
</div>
<figcaption><a href="#figure-10" class="selfRef">Figure 10</a>:
<a href="#name-address-protection" class="selfRef">Address Protection</a>
</figcaption></figure>
</div>
<p id="section-9.2.2-18">
If the challenge succeeded, then the operations continue as normal.
In particular, a DAO message is generated
upon the NS(EARO) that proves the ownership of the address. If the challenge
failed, the 6LR rejects the registration as prescribed by AP-ND and may take
actions to protect itself against Denial-Of-Service (DoS) attacks by a rogue 6LN; see
<a href="#security-considerations" class="xref">Section 11</a>.<a href="#section-9.2.2-18" class="pilcrow">¶</a></p>
<p id="section-9.2.2-19">
The 6LR may, at any time, send a unicast asynchronous NA(EARO) with the R flag set to 0 to signal that it has stopped providing routing services, and/or with an EARO Status of 2 (Neighbor Cache Full) to signal that it removed the NCE. It may also send a final RA -- unicast or multicast -- with a router Lifetime field of 0, to signal that it will cease to serve as the router, as specified in <span><a href="https://www.rfc-editor.org/rfc/rfc4861#section-6.2.5" class="relref">Section 6.2.5</a> of [<a href="#RFC4861" class="xref">RFC4861</a>]</span>. This may happen upon a
DCO or a DAO-ACK message indicating that the path is already removed; otherwise, the
6LR <span class="bcp14">MUST</span> remove the host route to the 6LN using a DAO message with a Path
Lifetime of 0.<a href="#section-9.2.2-19" class="pilcrow">¶</a></p>
<p id="section-9.2.2-20">
A valid NS(EARO) message with the R flag set to 0 and a Registration Lifetime that is not zero signals that the 6LN wishes to maintain the binding but does not require (i.e., no longer requires) the routing services from the 6LR.
Upon this message, if, due to a previous NS(EARO) with the R flag set to 1 the
6LR was injecting the host route to the Registered Address in RPL using DAO
messages, then the 6LR <span class="bcp14">MUST</span> invalidate the host route in RPL using a DAO
with a Path Lifetime of 0.
It is up to the registering 6LN to maintain the corresponding route from then
on, by either (1) keeping it active via a different 6LR or (2) acting as a RAN and managing its own reachability.<a href="#section-9.2.2-20" class="pilcrow">¶</a></p>
<p id="section-9.2.2-21">
When forwarding a packet from the RUL into the RPL domain, if the packet does
not have an RPI, the 6LR <span class="bcp14">MUST</span> encapsulate the packet to the root and add
an RPI. If there is an RPI in the packet, the 6LR <span class="bcp14">MUST</span> rewrite the RPI, but it
does not need to encapsulate.<a href="#section-9.2.2-21" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Root">
<section id="section-9.2.3">
<h4 id="name-perspective-of-the-rpl-doda">
<a href="#section-9.2.3" class="section-number selfRef">9.2.3. </a><a href="#name-perspective-of-the-rpl-doda" class="section-name selfRef">Perspective of the RPL DODAG Root</a>
</h4>
<p id="section-9.2.3-1">
A RPL DODAG root <span class="bcp14">MUST</span> set the 'P' flag to 1 in the RPL DODAG Configuration option of
the DIO messages that it generates (see <a href="#upd" class="xref">Section 6</a>) to signal
that it proxies the EDAR/EDAC exchange and supports the updated RPL Target
option.<a href="#section-9.2.3-1" class="pilcrow">¶</a></p>
<p id="section-9.2.3-2">
Upon reception of a DAO message, for each updated RPL Target option
(see <a href="#tgt" class="xref">Section 6.1</a>) with the 'X' flag set to 1, the root <span class="bcp14">MUST</span> notify
the 6LBR by using a proxied EDAR/EDAC exchange; if the RPL DODAG root and the 6LBR
are integrated, an internal API can be used instead.<a href="#section-9.2.3-2" class="pilcrow">¶</a></p>
<p id="section-9.2.3-3">
The EDAR message <span class="bcp14">MUST</span> be constructed as follows:<a href="#section-9.2.3-3" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-9.2.3-4">
<li id="section-9.2.3-4.1">
The target IPv6 address from the RPL Target option is placed in the
Registered Address field of the EDAR message;<a href="#section-9.2.3-4.1" class="pilcrow">¶</a>
</li>
<li id="section-9.2.3-4.2">
The Registration Lifetime is adapted from the Path Lifetime in the TIO by
converting the Lifetime Units used in RPL into units of 60 seconds used in the
6LoWPAN ND messages;<a href="#section-9.2.3-4.2" class="pilcrow">¶</a>
</li>
<li id="section-9.2.3-4.3">
The TID value is set to the Path Sequence in the TIO and indicated with an ICMP
code of 1 in the EDAR message;<a href="#section-9.2.3-4.3" class="pilcrow">¶</a>
</li>
<li id="section-9.2.3-4.4">
The ROVR in the RPL Target option is copied as is in the
EDAR, and the ICMP Code Suffix is set to the appropriate value as shown in
Table 4 of <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>, depending on the size of the ROVR field.<a href="#section-9.2.3-4.4" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-9.2.3-5">
Upon receiving an EDAC message from the 6LBR, if a DAO is pending, then the
root <span class="bcp14">MUST</span> send a DAO-ACK back to the 6LR. Otherwise, if the status in the EDAC message is not "Success", then it <span class="bcp14">MUST</span> send an asynchronous DCO to the 6LR.<a href="#section-9.2.3-5" class="pilcrow">¶</a></p>
<p id="section-9.2.3-6">
In either case, the EDAC Status is embedded in the RPL Status with the 'A'
flag set to 1.<a href="#section-9.2.3-6" class="pilcrow">¶</a></p>
<p id="section-9.2.3-7">
The proxied EDAR/EDAC exchange <span class="bcp14">MUST</span> be protected with a timer whose
appropriate duration and number of retries (1) are implementation dependent and (2) <span class="bcp14">SHOULD</span> be configurable, since the root and the 6LBR are
typically nodes with a higher capacity and manageability than 6LRs.
Upon timing out, the root <span class="bcp14">MUST</span> send an error back to the 6LR as above, using either a DAO-ACK or a DCO, as appropriate, with the 'A' and 'U' flags set to 1 in the RPL Status, and a RPL Status value of "6LBR Registry Saturated" <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>.<a href="#section-9.2.3-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="lbr">
<section id="section-9.2.4">
<h4 id="name-perspective-of-the-6lbr">
<a href="#section-9.2.4" class="section-number selfRef">9.2.4. </a><a href="#name-perspective-of-the-6lbr" class="section-name selfRef">Perspective of the 6LBR</a>
</h4>
<p id="section-9.2.4-1">
The 6LBR is unaware that the RPL DODAG root is not the new attachment 6LR of the RUL,
so it is not impacted by this specification.<a href="#section-9.2.4-1" class="pilcrow">¶</a></p>
<p id="section-9.2.4-2">
Upon reception of an EDAR message,
the 6LBR behaves as prescribed by <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> and returns an EDAC message to the sender.<a href="#section-9.2.4-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="multiop">
<section id="section-10">
<h2 id="name-protocol-operations-for-mul">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-protocol-operations-for-mul" class="section-name selfRef">Protocol Operations for Multicast Addresses</a>
</h2>
<p id="section-10-1"><span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-12" class="relref">Section 12</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span> details RPL support for
multicast flows. This support is activated by setting the MOP value to 3 ("Storing Mode of Operation with multicast support") in the DIO messages that form the DODAG. This section also applies if and only if the MOP of the RPL Instance is 3.<a href="#section-10-1" class="pilcrow">¶</a></p>
<p id="section-10-2">
RPL support for multicast is not source specific and only operates as
an extension to the Storing mode of operation for unicast packets.
Note that
it is the RPL model that the multicast packet is copied and transmitted as a Layer 2 unicast
to each of the interested children. This remains true when forwarding between the 6LR and the listener 6LN.<a href="#section-10-2" class="pilcrow">¶</a></p>
<p id="section-10-3">
"<a href="#RFC3810" class="xref">Multicast Listener Discovery Version 2 (MLDv2) for IPv6</a>" <span>[<a href="#RFC3810" class="xref">RFC3810</a>]</span>
provides an interface for a listener to register with multicast flows.
In the MLD model, the router is a "querier", and the host is a multicast
listener that registers with the querier to obtain copies of the particular
flows it is interested in.<a href="#section-10-3" class="pilcrow">¶</a></p>
<p id="section-10-4">
The equivalent of the first Address Registration happens as illustrated in <a href="#fReg3" class="xref">Figure 11</a>. The 6LN, as an MLD listener, sends an unsolicited Report to the 6LR. This enables it to start receiving the flow immediately and causes the 6LR to inject the multicast route in RPL.<a href="#section-10-4" class="pilcrow">¶</a></p>
<span id="name-first-multicast-registratio"></span><div id="fReg3">
<figure id="figure-11">
<div class="artwork art-text alignLeft" id="section-10-5.1">
<pre>
6LN/RUL 6LR Root 6LBR
| | | |
| unsolicited Report | | |
|------------------->| | |
| | DAO | |
| |-------------->| |
| | DAO-ACK | |
| |<--------------| |
| | | <if not done already> |
| | | unsolicited Report |
| | |---------------------->|
| | | |</pre>
</div>
<figcaption><a href="#figure-11" class="selfRef">Figure 11</a>:
<a href="#name-first-multicast-registratio" class="selfRef">First Multicast Registration Flow</a>
</figcaption></figure>
</div>
<p id="section-10-6"> This specification does not change MLD but will operate more efficiently
if the asynchronous messages for unsolicited Report and Done are sent by
the 6LN as Layer 2 unicast to the 6LR, particularly on wireless.<a href="#section-10-6" class="pilcrow">¶</a></p>
<p id="section-10-7">
The 6LR acts as a generic MLD querier and generates a DAO with the multicast address as the Target Prefix as described in <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-12" class="relref">Section 12</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>. As for the unicast host routes, the Path Lifetime associated to the Target is mapped from the Query Interval and is set to be larger, to account for variable propagation delays to the root.
The root proxies the MLD exchange as a listener with the 6LBR acting as the
querier, so as to get packets from a source external to the RPL domain.<a href="#section-10-7" class="pilcrow">¶</a></p>
<p id="section-10-8">
Upon a DAO with a Target option for a multicast address, the RPL DODAG root checks to see if it is already registered as a listener for that address, and if not, it performs its own unsolicited Report for the multicast address as described in <span><a href="https://www.rfc-editor.org/rfc/rfc3810#section-6.1" class="relref">Section 6.1</a> of [<a href="#RFC3810" class="xref">RFC3810</a>]</span>. The Report is source independent, so there is no source address listed.<a href="#section-10-8" class="pilcrow">¶</a></p>
<p id="section-10-9">
The equivalent of the registration refresh is pulled periodically by the 6LR acting as the querier. Upon the timing out of the Query Interval, the 6LR sends a Multicast Address Specific Query to each of its listeners, for each multicast address. The listeners respond with a Report. Based on the Reports, the 6LR maintains the aggregated list of all the multicast addresses for which there is a listener and advertises them using DAO messages as specified in <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-12" class="relref">Section 12</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>. Optionally, the 6LR <span class="bcp14">MAY</span> send a General Query, where the Multicast Address field is set to 0. In that case, the multicast packet is passed as a Layer 2 unicast to each of the interested children.<a href="#section-10-9" class="pilcrow">¶</a></p>
<p id="section-10-10">
Upon a Report, the 6LR generates a DAO with as many Target options as there are Multicast Address Records in the Report message, copying the
Multicast Address field in the Target Prefix of the RPL Target option.
The DAO message is a Storing mode DAO, passed to a selection of the 6LR's
parents.<a href="#section-10-10" class="pilcrow">¶</a></p>
<p id="section-10-11">
Asynchronously to this, a similar procedure happens between the root and a router, such as the 6LBR, that serves multicast flows on the link where the root is located. Again, the Query and Report messages are source independent. The root lists exactly once each multicast address for which it has at least one active multicast DAO state, copying the multicast address in the DAO state in the Multicast Address field of the
Multicast Address Records in the Report message.<a href="#section-10-11" class="pilcrow">¶</a></p>
<p id="section-10-12">
This is illustrated in <a href="#fReg4" class="xref">Figure 12</a>:<a href="#section-10-12" class="pilcrow">¶</a></p>
<span id="name-next-registration-flow"></span><div id="fReg4">
<figure id="figure-12">
<div class="artwork art-text alignLeft" id="section-10-13.1">
<pre>
6LN/RUL 6LR Root 6LBR
| | | |
| Query | | |
|<-------------------| | |
| Report | | |
|------------------->| | |
| | DAO | |
| |-------------->| |
| | DAO-ACK | |
| |<--------------| |
| | | Query |
| | |<-------------------|
| | | Report |
| | |------------------->|
| | | |</pre>
</div>
<figcaption><a href="#figure-12" class="selfRef">Figure 12</a>:
<a href="#name-next-registration-flow" class="selfRef">Next Registration Flow</a>
</figcaption></figure>
</div>
<p id="section-10-14">Note that all or any combination of the 6LR, the root, and the 6LBR might be
collapsed in a single node, in which case the flow above happens internally, and possibly
through internal API calls as opposed to messaging.<a href="#section-10-14" class="pilcrow">¶</a></p>
</section>
</div>
<div id="security-considerations">
<section id="section-11">
<h2 id="name-security-considerations">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-11-1">
It is worth noting that with <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>, every
node in the LLN is RPL aware and can inject any RPL-based attack in the
network. This specification improves this situation by isolating edge nodes
that can only interact with the RPL routers using 6LoWPAN ND, meaning that they cannot perform RPL insider attacks.<a href="#section-11-1" class="pilcrow">¶</a></p>
<p id="section-11-2">
The LLN nodes depend on the 6LBR and the RPL participants for their
operation.
A trust model must be put in place to ensure that the right devices are
acting in these roles, so as to avoid such threats as black-holing
(see <span><a href="https://www.rfc-editor.org/rfc/rfc7416#section-7" class="relref">Section 7</a> of [<a href="#RFC7416" class="xref">RFC7416</a>]</span>),
DoS attacks whereby a rogue 6LR creates a high churn in the RPL network by advertising and removing many forged addresses,
or a bombing attack whereby an impersonated 6LBR would destroy state in
the network by using a status code of 4 ("Removed") <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>.<a href="#section-11-2" class="pilcrow">¶</a></p>
<p id="section-11-3">
This trust model could be,
at a minimum, based on Layer 2 secure joining and link-layer security.
This is a generic 6LoWPAN requirement; see Req-5.1 in
<span><a href="https://www.rfc-editor.org/rfc/rfc8505#appendix-B.5" class="relref">Appendix B.5</a> of [<a href="#RFC8505" class="xref">RFC8505</a>]</span>.<a href="#section-11-3" class="pilcrow">¶</a></p>
<p id="section-11-4">
In a general manner, the Security Considerations sections of <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>,
<span>[<a href="#RFC7416" class="xref">RFC7416</a>]</span>, <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span>, and <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> apply to this specification as well.<a href="#section-11-4" class="pilcrow">¶</a></p>
<p id="section-11-5">
In particular, link-layer security is needed to prevent
DoS attacks whereby a rogue 6LN creates a high churn in the
RPL network by constantly registering and deregistering addresses with the
R flag set to 1 in the EARO.<a href="#section-11-5" class="pilcrow">¶</a></p>
<p id="section-11-6">
<span>[<a href="#RFC8928" class="xref">RFC8928</a>]</span> updated 6LoWPAN ND with AP-ND. AP-ND protects the owner of an address against address theft and impersonation attacks in an LLN. Nodes supporting the extension compute a cryptographic identifier (Crypto-ID) and use it with one or more of their Registered Addresses. The Crypto-ID identifies the owner of the Registered Address and can be used to provide proof of ownership of the Registered Addresses. Once an address is registered with the Crypto‑ID and proof of ownership is provided, only the owner of that address can modify the registration information, thereby enforcing SAVI.
<span>[<a href="#RFC8928" class="xref">RFC8928</a>]</span> reduces even further
the attack perimeter that is available to the edge nodes,
and its use is suggested in this specification.<a href="#section-11-6" class="pilcrow">¶</a></p>
<p id="section-11-7">
Additionally, the trust model could include role validation (e.g., using
role-based authorization) to ensure that the node that
claims to be a 6LBR or a RPL DODAG root is entitled to do so.<a href="#section-11-7" class="pilcrow">¶</a></p>
<p id="section-11-8">
The Opaque field in the EARO enables the RUL to suggest a RPLInstanceID
where its traffic is placed. It is also possible for an attacker RUL to
include an RPI in the packet. This opens the door to attacks where a RPL Instance
would be reserved for critical traffic, e.g., with a specific bandwidth
reservation, that the additional traffic generated by a rogue may disrupt.
The attack may be alleviated by traditional access control and traffic-shaping mechanisms where the 6LR controls the incoming traffic from the
6LN. More importantly, the 6LR is the node that injects the traffic in the
RPL domain, so it has the final word on which RPL Instance is to be used
for the traffic coming from the RUL, per its own policy. In particular, a
policy can override the formal language that forces the use of the Opaque field
or the rewriting of the RPI provided by the RUL, in a situation where the
network administrator finds it relevant.<a href="#section-11-8" class="pilcrow">¶</a></p>
<p id="section-11-9">
At the time of this writing, RPL does not have a route ownership validation
model whereby it is possible to validate the origin of an address that is
injected in a DAO.
This specification makes a first step in that direction by
allowing the root to challenge the RUL via the 6LR that serves it.<a href="#section-11-9" class="pilcrow">¶</a></p>
<p id="section-11-10">
<a href="#tgt" class="xref">Section 6.1</a> indicates that when the length of the ROVR field is unknown, the RPL Target option must be passed on as received in RPL Storing mode. This creates a possible opening for using DAO messages as a
covert channel. Note that DAO messages are rare, and overusing that channel could be detected. An implementation <span class="bcp14">SHOULD</span> notify the network
management system when a RPL Target option is received with an unknown ROVR field size, to ensure that the network administrator is aware of the situation.<a href="#section-11-10" class="pilcrow">¶</a></p>
<p id="section-11-11">
<span>[<a href="#RFC9009" class="xref">RFC9009</a>]</span> introduces the ability for
a rogue common ancestor node to invalidate a route on behalf of the target
node. In this case, the RPL Status in the DCO has the 'A' flag set to 0, and an NA(EARO) is returned to the 6LN with the R flag set to 0. This encourages the 6LN to try another 6LR. If a 6LR exists that does not use
the rogue common ancestor, then the 6LN will eventually succeed gaining
reachability over the RPL network in spite of the rogue node.<a href="#section-11-11" class="pilcrow">¶</a></p>
</section>
</div>
<div id="iana-considerations">
<section id="section-12">
<h2 id="name-iana-considerations">
<a href="#section-12" class="section-number selfRef">12. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<div id="iana-arof">
<section id="section-12.1">
<h3 id="name-fixing-the-address-registra">
<a href="#section-12.1" class="section-number selfRef">12.1. </a><a href="#name-fixing-the-address-registra" class="section-name selfRef">Fixing the Address Registration Option Flags</a>
</h3>
<p id="section-12.1-1"><span><a href="https://www.rfc-editor.org/rfc/rfc8505#section-9.1" class="relref">Section 9.1</a> of [<a href="#RFC8505" class="xref">RFC8505</a>]</span> created a registry for the 8-bit
Address Registration Option Flags field.
IANA has renamed the first column of the table from "ARO Status" to "Bit Number".<a href="#section-12.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="iana-aro">
<section id="section-12.2">
<h3 id="name-resizing-the-aro-status-val">
<a href="#section-12.2" class="section-number selfRef">12.2. </a><a href="#name-resizing-the-aro-status-val" class="section-name selfRef">Resizing the ARO Status Values</a>
</h3>
<p id="section-12.2-1"><span><a href="https://www.rfc-editor.org/rfc/rfc6775#section-12" class="relref">Section 12</a> of [<a href="#RFC6775" class="xref">RFC6775</a>]</span> created the
"Address Registration Option Status Values" registry with a range of 0-255.<a href="#section-12.2-1" class="pilcrow">¶</a></p>
<p id="section-12.2-2">
This specification reduces that range to 0-63; see <a href="#stat" class="xref">Section 6.3</a>.<a href="#section-12.2-2" class="pilcrow">¶</a></p>
<p id="section-12.2-3">
IANA has modified the "Address Registration Option Status Values"
registry so that the upper bound of the unassigned values is 63. This
document has been added as a reference. The registration procedure has
not changed.<a href="#section-12.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="iana-conf">
<section id="section-12.3">
<h3 id="name-new-rpl-dodag-configuration">
<a href="#section-12.3" class="section-number selfRef">12.3. </a><a href="#name-new-rpl-dodag-configuration" class="section-name selfRef">New RPL DODAG Configuration Option Flag</a>
</h3>
<p id="section-12.3-1">
IANA has assigned the following flag in the "DODAG Configuration Option
Flags for MOP 0..6" registry <span>[<a href="#RFC9008" class="xref">RFC9008</a>]</span>:<a href="#section-12.3-1" class="pilcrow">¶</a></p>
<span id="name-new-dodag-configuration-opt"></span><div id="nexndopt">
<table class="center" id="table-2">
<caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-new-dodag-configuration-opt" class="selfRef">New DODAG Configuration Option Flag</a>
</caption>
<thead>
<tr>
<td class="text-left" rowspan="1" colspan="1">Bit Number</td>
<td class="text-left" rowspan="1" colspan="1">Capability Description</td>
<td class="text-left" rowspan="1" colspan="1">Reference</td>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">Root Proxies EDAR/EDAC (P)</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9010</td>
</tr>
</tbody>
</table>
</div>
<p id="section-12.3-3">IANA has added this document as a reference for MOP 7 in the RPL
"Mode of Operation" registry.<a href="#section-12.3-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="iana-full">
<section id="section-12.4">
<h3 id="name-rpl-target-option-flags-reg">
<a href="#section-12.4" class="section-number selfRef">12.4. </a><a href="#name-rpl-target-option-flags-reg" class="section-name selfRef">RPL Target Option Flags Registry</a>
</h3>
<p id="section-12.4-1">
This document modifies the "RPL Target Option Flags" registry initially
created per <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-20.15" class="relref">Section 20.15</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>. The registry now
includes only 4 bits (<a href="#tgt" class="xref">Section 6.1</a>) and lists this
document as an additional reference. The registration procedure has not
changed.<a href="#section-12.4-1" class="pilcrow">¶</a></p>
<p id="section-12.4-2">
<a href="#tgt" class="xref">Section 6.1</a> also defines two new entries in the registry, as follows:<a href="#section-12.4-2" class="pilcrow">¶</a></p>
<span id="name-rpl-target-option-flags-regi"></span><div id="ianatarget">
<table class="center" id="table-3">
<caption>
<a href="#table-3" class="selfRef">Table 3</a>:
<a href="#name-rpl-target-option-flags-regi" class="selfRef">RPL Target Option Flags Registry</a>
</caption>
<thead>
<tr>
<td class="text-left" rowspan="1" colspan="1">Bit Number</td>
<td class="text-left" rowspan="1" colspan="1">Capability Description</td>
<td class="text-left" rowspan="1" colspan="1">Reference</td>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Advertiser address in Full (F)</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9010</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">Proxy EDAR Requested (X)</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9010</td>
</tr>
</tbody>
</table>
</div>
</section>
</div>
<div id="iana-stats-nonrej">
<section id="section-12.5">
<h3 id="name-new-subregistry-for-rpl-non">
<a href="#section-12.5" class="section-number selfRef">12.5. </a><a href="#name-new-subregistry-for-rpl-non" class="section-name selfRef">New Subregistry for RPL Non-Rejection Status Values</a>
</h3>
<p id="section-12.5-1">
IANA has created a new subregistry for the RPL Non-Rejection Status values for use in the RPL DAO-ACK, DCO, and DCO-ACK messages with the 'A' flag set to 0 and the 'U' flag set to 1, under the "Routing Protocol for Low Power and Lossy Networks (RPL)" registry.<a href="#section-12.5-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-12.5-2.1">Possible values are 6-bit unsigned integers (0..63).<a href="#section-12.5-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-12.5-2.2">The registration procedure is IETF Review <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.<a href="#section-12.5-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-12.5-2.3">The initial allocation is as indicated in <a href="#iana-ACK-Status" class="xref">Table 4</a>:<a href="#section-12.5-2.3" class="pilcrow">¶</a>
</li>
</ul>
<span id="name-acceptance-values-of-the-rp"></span><div id="iana-ACK-Status">
<table class="center" id="table-4">
<caption>
<a href="#table-4" class="selfRef">Table 4</a>:
<a href="#name-acceptance-values-of-the-rp" class="selfRef">Acceptance Values of the RPL Status</a>
</caption>
<thead>
<tr>
<td class="text-left" rowspan="1" colspan="1">Value</td>
<td class="text-left" rowspan="1" colspan="1">Meaning</td>
<td class="text-left" rowspan="1" colspan="1">Reference</td>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Success / Unqualified acceptance</td>
<td class="text-left" rowspan="1" colspan="1">RFC 6550 / RFC 9010</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1..63</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</div>
</section>
</div>
<div id="iana-stats-rej">
<section id="section-12.6">
<h3 id="name-new-subregistry-for-rpl-rej">
<a href="#section-12.6" class="section-number selfRef">12.6. </a><a href="#name-new-subregistry-for-rpl-rej" class="section-name selfRef">New Subregistry for RPL Rejection Status Values</a>
</h3>
<p id="section-12.6-1">
IANA has created a new subregistry for the RPL Rejection Status values for use in the RPL DAO-ACK and DCO messages with the 'A' flag set to 0 and the 'U' flag set to 1, under the "Routing Protocol for Low Power and Lossy Networks (RPL)" registry.<a href="#section-12.6-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-12.6-2.1">Possible values are 6-bit unsigned integers (0..63).<a href="#section-12.6-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-12.6-2.2">The registration procedure is IETF Review <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.<a href="#section-12.6-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-12.6-2.3">The initial allocation is as indicated in <a href="#iana-nack-Status" class="xref">Table 5</a>:<a href="#section-12.6-2.3" class="pilcrow">¶</a>
</li>
</ul>
<span id="name-rejection-values-of-the-rpl"></span><div id="iana-nack-Status">
<table class="center" id="table-5">
<caption>
<a href="#table-5" class="selfRef">Table 5</a>:
<a href="#name-rejection-values-of-the-rpl" class="selfRef">Rejection Values of the RPL Status</a>
</caption>
<thead>
<tr>
<td class="text-left" rowspan="1" colspan="1">Value</td>
<td class="text-left" rowspan="1" colspan="1">Meaning</td>
<td class="text-left" rowspan="1" colspan="1">Reference</td>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Unqualified rejection</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9010</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">No routing entry</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9009</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">2..63</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</div>
</section>
</div>
</section>
</div>
<section id="section-13">
<h2 id="name-references">
<a href="#section-13" class="section-number selfRef">13. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-13.1">
<h3 id="name-normative-references">
<a href="#section-13.1" class="section-number selfRef">13.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3810">[RFC3810]</dt>
<dd>
<span class="refAuthor">Vida, R., Ed.</span> and <span class="refAuthor">L. Costa, Ed.</span>, <span class="refTitle">"Multicast Listener Discovery Version 2 (MLDv2) for IPv6"</span>, <span class="seriesInfo">RFC 3810</span>, <span class="seriesInfo">DOI 10.17487/RFC3810</span>, <time datetime="2004-06" class="refDate">June 2004</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3810">https://www.rfc-editor.org/info/rfc3810</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4861">[RFC4861]</dt>
<dd>
<span class="refAuthor">Narten, T.</span>, <span class="refAuthor">Nordmark, E.</span>, <span class="refAuthor">Simpson, W.</span>, and <span class="refAuthor">H. Soliman</span>, <span class="refTitle">"Neighbor Discovery for IP version 6 (IPv6)"</span>, <span class="seriesInfo">RFC 4861</span>, <span class="seriesInfo">DOI 10.17487/RFC4861</span>, <time datetime="2007-09" class="refDate">September 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4861">https://www.rfc-editor.org/info/rfc4861</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6550">[RFC6550]</dt>
<dd>
<span class="refAuthor">Winter, T., Ed.</span>, <span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Brandt, A.</span>, <span class="refAuthor">Hui, J.</span>, <span class="refAuthor">Kelsey, R.</span>, <span class="refAuthor">Levis, P.</span>, <span class="refAuthor">Pister, K.</span>, <span class="refAuthor">Struik, R.</span>, <span class="refAuthor">Vasseur, JP.</span>, and <span class="refAuthor">R. Alexander</span>, <span class="refTitle">"RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks"</span>, <span class="seriesInfo">RFC 6550</span>, <span class="seriesInfo">DOI 10.17487/RFC6550</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6550">https://www.rfc-editor.org/info/rfc6550</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6775">[RFC6775]</dt>
<dd>
<span class="refAuthor">Shelby, Z., Ed.</span>, <span class="refAuthor">Chakrabarti, S.</span>, <span class="refAuthor">Nordmark, E.</span>, and <span class="refAuthor">C. Bormann</span>, <span class="refTitle">"Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)"</span>, <span class="seriesInfo">RFC 6775</span>, <span class="seriesInfo">DOI 10.17487/RFC6775</span>, <time datetime="2012-11" class="refDate">November 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6775">https://www.rfc-editor.org/info/rfc6775</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7102">[RFC7102]</dt>
<dd>
<span class="refAuthor">Vasseur, JP.</span>, <span class="refTitle">"Terms Used in Routing for Low-Power and Lossy Networks"</span>, <span class="seriesInfo">RFC 7102</span>, <span class="seriesInfo">DOI 10.17487/RFC7102</span>, <time datetime="2014-01" class="refDate">January 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7102">https://www.rfc-editor.org/info/rfc7102</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7400">[RFC7400]</dt>
<dd>
<span class="refAuthor">Bormann, C.</span>, <span class="refTitle">"6LoWPAN-GHC: Generic Header Compression for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)"</span>, <span class="seriesInfo">RFC 7400</span>, <span class="seriesInfo">DOI 10.17487/RFC7400</span>, <time datetime="2014-11" class="refDate">November 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7400">https://www.rfc-editor.org/info/rfc7400</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8126">[RFC8126]</dt>
<dd>
<span class="refAuthor">Cotton, M.</span>, <span class="refAuthor">Leiba, B.</span>, and <span class="refAuthor">T. Narten</span>, <span class="refTitle">"Guidelines for Writing an IANA Considerations Section in RFCs"</span>, <span class="seriesInfo">BCP 26</span>, <span class="seriesInfo">RFC 8126</span>, <span class="seriesInfo">DOI 10.17487/RFC8126</span>, <time datetime="2017-06" class="refDate">June 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8200">[RFC8200]</dt>
<dd>
<span class="refAuthor">Deering, S.</span> and <span class="refAuthor">R. Hinden</span>, <span class="refTitle">"Internet Protocol, Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">STD 86</span>, <span class="seriesInfo">RFC 8200</span>, <span class="seriesInfo">DOI 10.17487/RFC8200</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8200">https://www.rfc-editor.org/info/rfc8200</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8504">[RFC8504]</dt>
<dd>
<span class="refAuthor">Chown, T.</span>, <span class="refAuthor">Loughney, J.</span>, and <span class="refAuthor">T. Winters</span>, <span class="refTitle">"IPv6 Node Requirements"</span>, <span class="seriesInfo">BCP 220</span>, <span class="seriesInfo">RFC 8504</span>, <span class="seriesInfo">DOI 10.17487/RFC8504</span>, <time datetime="2019-01" class="refDate">January 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8504">https://www.rfc-editor.org/info/rfc8504</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8505">[RFC8505]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Nordmark, E.</span>, <span class="refAuthor">Chakrabarti, S.</span>, and <span class="refAuthor">C. Perkins</span>, <span class="refTitle">"Registration Extensions for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery"</span>, <span class="seriesInfo">RFC 8505</span>, <span class="seriesInfo">DOI 10.17487/RFC8505</span>, <time datetime="2018-11" class="refDate">November 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8505">https://www.rfc-editor.org/info/rfc8505</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8928">[RFC8928]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Sarikaya, B.</span>, <span class="refAuthor">Sethi, M.</span>, and <span class="refAuthor">R. Struik</span>, <span class="refTitle">"Address-Protected Neighbor Discovery for Low-Power and Lossy Networks"</span>, <span class="seriesInfo">RFC 8928</span>, <span class="seriesInfo">DOI 10.17487/RFC8928</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8928">https://www.rfc-editor.org/info/rfc8928</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9008">[RFC9008]</dt>
<dd>
<span class="refAuthor">Robles, M.I.</span>, <span class="refAuthor">Richardson, M.</span>, and <span class="refAuthor">P. Thubert</span>, <span class="refTitle">"Using RPI Option Type, Routing Header for Source Routes, and IPv6-in-IPv6 Encapsulation in the RPL Data Plane"</span>, <span class="seriesInfo">RFC 9008</span>, <span class="seriesInfo">DOI 10.17487/RFC9008</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9008">https://www.rfc-editor.org/info/rfc9008</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9009">[RFC9009]</dt>
<dd>
<span class="refAuthor">Jadhav, R.A., Ed.</span>, <span class="refAuthor">Thubert, P.</span>, <span class="refAuthor">Sahoo, R.N.</span>, and <span class="refAuthor">Z. Cao</span>, <span class="refTitle">"Efficient Route Invalidation"</span>, <span class="seriesInfo">RFC 9009</span>, <span class="seriesInfo">DOI 10.17487/RFC9009</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9009">https://www.rfc-editor.org/info/rfc9009</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-13.2">
<h3 id="name-informative-references">
<a href="#section-13.2" class="section-number selfRef">13.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="RFC4862">[RFC4862]</dt>
<dd>
<span class="refAuthor">Thomson, S.</span>, <span class="refAuthor">Narten, T.</span>, and <span class="refAuthor">T. Jinmei</span>, <span class="refTitle">"IPv6 Stateless Address Autoconfiguration"</span>, <span class="seriesInfo">RFC 4862</span>, <span class="seriesInfo">DOI 10.17487/RFC4862</span>, <time datetime="2007-09" class="refDate">September 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4862">https://www.rfc-editor.org/info/rfc4862</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4919">[RFC4919]</dt>
<dd>
<span class="refAuthor">Kushalnagar, N.</span>, <span class="refAuthor">Montenegro, G.</span>, and <span class="refAuthor">C. Schumacher</span>, <span class="refTitle">"IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals"</span>, <span class="seriesInfo">RFC 4919</span>, <span class="seriesInfo">DOI 10.17487/RFC4919</span>, <time datetime="2007-08" class="refDate">August 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4919">https://www.rfc-editor.org/info/rfc4919</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6282">[RFC6282]</dt>
<dd>
<span class="refAuthor">Hui, J., Ed.</span> and <span class="refAuthor">P. Thubert</span>, <span class="refTitle">"Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks"</span>, <span class="seriesInfo">RFC 6282</span>, <span class="seriesInfo">DOI 10.17487/RFC6282</span>, <time datetime="2011-09" class="refDate">September 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6282">https://www.rfc-editor.org/info/rfc6282</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6553">[RFC6553]</dt>
<dd>
<span class="refAuthor">Hui, J.</span> and <span class="refAuthor">JP. Vasseur</span>, <span class="refTitle">"The Routing Protocol for Low-Power and Lossy Networks (RPL) Option for Carrying RPL Information in Data-Plane Datagrams"</span>, <span class="seriesInfo">RFC 6553</span>, <span class="seriesInfo">DOI 10.17487/RFC6553</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6553">https://www.rfc-editor.org/info/rfc6553</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6554">[RFC6554]</dt>
<dd>
<span class="refAuthor">Hui, J.</span>, <span class="refAuthor">Vasseur, JP.</span>, <span class="refAuthor">Culler, D.</span>, and <span class="refAuthor">V. Manral</span>, <span class="refTitle">"An IPv6 Routing Header for Source Routes with the Routing Protocol for Low-Power and Lossy Networks (RPL)"</span>, <span class="seriesInfo">RFC 6554</span>, <span class="seriesInfo">DOI 10.17487/RFC6554</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6554">https://www.rfc-editor.org/info/rfc6554</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6606">[RFC6606]</dt>
<dd>
<span class="refAuthor">Kim, E.</span>, <span class="refAuthor">Kaspar, D.</span>, <span class="refAuthor">Gomez, C.</span>, and <span class="refAuthor">C. Bormann</span>, <span class="refTitle">"Problem Statement and Requirements for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing"</span>, <span class="seriesInfo">RFC 6606</span>, <span class="seriesInfo">DOI 10.17487/RFC6606</span>, <time datetime="2012-05" class="refDate">May 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6606">https://www.rfc-editor.org/info/rfc6606</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6687">[RFC6687]</dt>
<dd>
<span class="refAuthor">Tripathi, J., Ed.</span>, <span class="refAuthor">de Oliveira, J., Ed.</span>, and <span class="refAuthor">JP. Vasseur, Ed.</span>, <span class="refTitle">"Performance Evaluation of the Routing Protocol for Low-Power and Lossy Networks (RPL)"</span>, <span class="seriesInfo">RFC 6687</span>, <span class="seriesInfo">DOI 10.17487/RFC6687</span>, <time datetime="2012-10" class="refDate">October 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6687">https://www.rfc-editor.org/info/rfc6687</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7039">[RFC7039]</dt>
<dd>
<span class="refAuthor">Wu, J.</span>, <span class="refAuthor">Bi, J.</span>, <span class="refAuthor">Bagnulo, M.</span>, <span class="refAuthor">Baker, F.</span>, and <span class="refAuthor">C. Vogt, Ed.</span>, <span class="refTitle">"Source Address Validation Improvement (SAVI) Framework"</span>, <span class="seriesInfo">RFC 7039</span>, <span class="seriesInfo">DOI 10.17487/RFC7039</span>, <time datetime="2013-10" class="refDate">October 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7039">https://www.rfc-editor.org/info/rfc7039</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7228">[RFC7228]</dt>
<dd>
<span class="refAuthor">Bormann, C.</span>, <span class="refAuthor">Ersue, M.</span>, and <span class="refAuthor">A. Keranen</span>, <span class="refTitle">"Terminology for Constrained-Node Networks"</span>, <span class="seriesInfo">RFC 7228</span>, <span class="seriesInfo">DOI 10.17487/RFC7228</span>, <time datetime="2014-05" class="refDate">May 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7228">https://www.rfc-editor.org/info/rfc7228</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7416">[RFC7416]</dt>
<dd>
<span class="refAuthor">Tsao, T.</span>, <span class="refAuthor">Alexander, R.</span>, <span class="refAuthor">Dohler, M.</span>, <span class="refAuthor">Daza, V.</span>, <span class="refAuthor">Lozano, A.</span>, and <span class="refAuthor">M. Richardson, Ed.</span>, <span class="refTitle">"A Security Threat Analysis for the Routing Protocol for Low-Power and Lossy Networks (RPLs)"</span>, <span class="seriesInfo">RFC 7416</span>, <span class="seriesInfo">DOI 10.17487/RFC7416</span>, <time datetime="2015-01" class="refDate">January 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7416">https://www.rfc-editor.org/info/rfc7416</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8025">[RFC8025]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span> and <span class="refAuthor">R. Cragie</span>, <span class="refTitle">"IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Paging Dispatch"</span>, <span class="seriesInfo">RFC 8025</span>, <span class="seriesInfo">DOI 10.17487/RFC8025</span>, <time datetime="2016-11" class="refDate">November 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8025">https://www.rfc-editor.org/info/rfc8025</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8138">[RFC8138]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Bormann, C.</span>, <span class="refAuthor">Toutain, L.</span>, and <span class="refAuthor">R. Cragie</span>, <span class="refTitle">"IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing Header"</span>, <span class="seriesInfo">RFC 8138</span>, <span class="seriesInfo">DOI 10.17487/RFC8138</span>, <time datetime="2017-04" class="refDate">April 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8138">https://www.rfc-editor.org/info/rfc8138</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8415">[RFC8415]</dt>
<dd>
<span class="refAuthor">Mrugalski, T.</span>, <span class="refAuthor">Siodelski, M.</span>, <span class="refAuthor">Volz, B.</span>, <span class="refAuthor">Yourtchenko, A.</span>, <span class="refAuthor">Richardson, M.</span>, <span class="refAuthor">Jiang, S.</span>, <span class="refAuthor">Lemon, T.</span>, and <span class="refAuthor">T. Winters</span>, <span class="refTitle">"Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"</span>, <span class="seriesInfo">RFC 8415</span>, <span class="seriesInfo">DOI 10.17487/RFC8415</span>, <time datetime="2018-11" class="refDate">November 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8415">https://www.rfc-editor.org/info/rfc8415</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8929">[RFC8929]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Perkins, C.E.</span>, and <span class="refAuthor">E. Levy-Abegnoli</span>, <span class="refTitle">"IPv6 Backbone Router"</span>, <span class="seriesInfo">RFC 8929</span>, <span class="seriesInfo">DOI 10.17487/RFC8929</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8929">https://www.rfc-editor.org/info/rfc8929</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="u8138">
<section id="section-appendix.a">
<h2 id="name-example-compression">
<a href="#section-appendix.a" class="section-number selfRef">Appendix A. </a><a href="#name-example-compression" class="section-name selfRef">Example Compression</a>
</h2>
<p id="section-appendix.a-1">
<a href="#rtghc" class="xref">Figure 13</a> illustrates the case in Storing mode where the packet
is received from the Internet, then the root encapsulates the packet to
insert the RPI and deliver it to the 6LR that is the parent and last hop to the
final destination, which is not known to support <span>[<a href="#RFC8138" class="xref">RFC8138</a>]</span>.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
<span id="name-encapsulation-to-parent-6lr"></span><div id="rtghc">
<figure id="figure-13">
<div class="artwork art-text alignLeft" id="section-appendix.a-2.1">
<pre>
+-+ ... -+-+ ... +-+- ... -+-+ ... -+-+-+ ... +-+-+ ... -+ ... +-...
|11110001|SRH-6LoRH| RPI- |IP-in-IP| NH=1 |11110CPP| UDP | UDP
|Page 1 |Type1 S=0| 6LoRH | 6LoRH |LOWPAN_IPHC| UDP | hdr |Payld
+-+ ... -+-+ ... +-+- ... -+-+ ... -+-+-+ ... +-+-+ ... -+ ... +-...
<-4 bytes-> <- RFC 6282 ->
<- No RPL artifact ...</pre>
</div>
<figcaption><a href="#figure-13" class="selfRef">Figure 13</a>:
<a href="#name-encapsulation-to-parent-6lr" class="selfRef">Encapsulation to Parent 6LR in Storing Mode</a>
</figcaption></figure>
</div>
<p id="section-appendix.a-3">
The difference from the example presented in Figure 19 of
<span>[<a href="#RFC8138" class="xref">RFC8138</a>]</span> is the addition of an SRH-6LoRH before the RPI-6LoRH
to transport the compressed address of the 6LR as the destination address of
the outer IPv6 header. In Figure 19 of <span>[<a href="#RFC8138" class="xref">RFC8138</a>]</span>, the destination IP of the
outer header was elided and was implicitly the same address as the
destination of the inner header.
Type 1 was arbitrarily chosen, and the size of 0 denotes a single address in
the SRH.<a href="#section-appendix.a-3" class="pilcrow">¶</a></p>
<p id="section-appendix.a-4">
In <a href="#rtghc" class="xref">Figure 13</a>, the source of the IPv6-in-IPv6 encapsulation is
the root, so it is elided in the IPv6-in-IPv6 6LoRH. The destination is
the parent 6LR of the destination of the encapsulated packet, so it
cannot be elided. If the DODAG is operated in Storing mode, it is the
single entry in the SRH-6LoRH and the SRH-6LoRH Size is encoded as 0.
The SRH-6LoRH is the first 6LoRH in the chain.
In this particular example, the 6LR address can
be compressed to 2 bytes, so a Type of 1 is used.
The result is that the total length of the SRH-6LoRH is 4 bytes.<a href="#section-appendix.a-4" class="pilcrow">¶</a></p>
<p id="section-appendix.a-5">
In Non-Storing mode, the encapsulation from the root would be similar
to that represented in <a href="#rtghc" class="xref">Figure 13</a> with possibly more hops
in the SRH‑6LoRH and possibly multiple SRH-6LoRHs if the various
addresses in the routing header are not compressed to the same format.
Note that on the last hop to the parent 6LR, the RH3 is consumed and
removed from the compressed form, so the use of Non-Storing mode vs. Storing mode is indistinguishable from the packet format.<a href="#section-appendix.a-5" class="pilcrow">¶</a></p>
<p id="section-appendix.a-6">
The SRH-6LoRHs are followed by the RPI-6LoRH and then the IPv6-in-IPv6 6LoRH.
When the IPv6-in-IPv6 6LoRH is removed, all the 6LoRH Headers that
precede it are also removed.
The Paging Dispatch <span>[<a href="#RFC8025" class="xref">RFC8025</a>]</span> may also be removed if
there was no previous Page change to a Page other than 0 or 1, since
the LOWPAN_IPHC is encoded in the same fashion in the default Page 0
and in Page 1. The resulting packet to the destination is the
encapsulated packet compressed per <span>[<a href="#RFC6282" class="xref">RFC6282</a>]</span>.<a href="#section-appendix.a-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Acks">
<section id="section-appendix.b">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<p id="section-appendix.b-1">
The authors wish to thank <span class="contact-name">Ines Robles</span>, <span class="contact-name">Georgios Papadopoulos</span>, and
especially <span class="contact-name">Rahul Jadhav</span> and <span class="contact-name">Alvaro Retana</span>
for their reviews and contributions to this document.
Also many thanks to <span class="contact-name">Éric Vyncke</span>, <span class="contact-name">Erik Kline</span>, <span class="contact-name">Murray Kucherawy</span>,
<span class="contact-name">Peter van der Stok</span>, <span class="contact-name">Carl Wallace</span>, <span class="contact-name">Barry Leiba</span>, <span class="contact-name">Julien Meuric</span>,
and especially <span class="contact-name">Benjamin Kaduk</span> and <span class="contact-name">Elwyn Davies</span>,
for their reviews and useful comments
during the IETF Last Call and the IESG review sessions.<a href="#section-appendix.b-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="section-appendix.c">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Pascal Thubert (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems, Inc.</span></div>
<div dir="auto" class="left"><span class="street-address">Building D<br>45 Allee des Ormes - BP1200</span></div>
<div dir="auto" class="left">
<span class="postal-code">06254</span> <span class="locality">MOUGINS - Sophia Antipolis</span>
</div>
<div dir="auto" class="left"><span class="country-name">France</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+33%20497%2023%2026%2034" class="tel">+33 497 23 26 34</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:pthubert@cisco.com" class="email">pthubert@cisco.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Michael C. Richardson</span></div>
<div dir="auto" class="left"><span class="org">Sandelman Software Works</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:mcr+ietf@sandelman.ca" class="email">mcr+ietf@sandelman.ca</a>
</div>
<div class="url">
<span>URI:</span>
<a href="https://www.sandelman.ca/" class="url">https://www.sandelman.ca/</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|