File: rfc9015.html

package info (click to toggle)
doc-rfc 20230121-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 1,609,944 kB
file content (4929 lines) | stat: -rw-r--r-- 296,719 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9015: BGP Control Plane for the Network Service Header in Service Function Chaining</title>
<meta content="Adrian Farrel" name="author">
<meta content="John Drake" name="author">
<meta content="Eric Rosen" name="author">
<meta content="Jim Uttaro" name="author">
<meta content="Luay Jalil" name="author">
<meta content='
       This document describes the use of BGP as a control plane for networks that support
         service function chaining.  The document introduces a new BGP address family
         called the "Service Function Chain (SFC) Address Family Identifier / Subsequent Address Family Identifier" (SFC
         AFI/SAFI) with two Route Types.  One Route Type is originated by a node to advertise
         that it hosts a particular instance of a specified service function.  This Route Type
         also provides "instructions" on how to send a packet to the hosting node in a way that
         indicates that the service function has to be applied to the packet.  The other Route
         Type is used by a controller to advertise the paths of "chains" of service functions
         and give a unique designator to each such path so that they can be used in
         conjunction with the Network Service Header (NSH) defined in RFC 8300. 
       This document adopts the service function chaining architecture described in RFC 7665. 
    ' name="description">
<meta content="xml2rfc 3.8.0" name="generator">
<meta content="Service Function Chaining" name="keyword">
<meta content="Service Function Chain" name="keyword">
<meta content="Network Service Header" name="keyword">
<meta content="Service Function" name="keyword">
<meta content="Service Function Forwarder" name="keyword">
<meta content="Service Function Path" name="keyword">
<meta content="Service Function Path Route" name="keyword">
<meta content="Service Function Instance" name="keyword">
<meta content="Service Function Instance Route" name="keyword">
<meta content="Service Function Type" name="keyword">
<meta content="Control Plane" name="keyword">
<meta content="9015" name="rfc.number">
<!-- Generator version information:
  xml2rfc 3.8.0
    Python 3.6.10
    appdirs 1.4.4
    ConfigArgParse 1.2.3
    google-i18n-address 2.3.5
    html5lib 1.0.1
    intervaltree 3.0.2
    Jinja2 2.11.2
    kitchen 1.2.6
    lxml 4.4.2
    pycairo 1.19.0
    pycountry 19.8.18
    pyflakes 2.1.1
    PyYAML 5.3.1
    requests 2.22.0
    setuptools 40.6.2
    six 1.14.0
    WeasyPrint 51
-->
<link href="rfc9015.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*

  NOTE: Changes at the bottom of this file overrides some earlier settings.

  Once the style has stabilized and has been adopted as an official RFC style,
  this can be consolidated so that style settings occur only in one place, but
  for now the contents of this file consists first of the initial CSS work as
  provided to the RFC Formatter (xml2rfc) work, followed by itemized and
  commented changes found necssary during the development of the v3
  formatters.

*/

/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */

@viewport {
  zoom: 1.0;
  width: extend-to-zoom;
}
@-ms-viewport {
  width: extend-to-zoom;
  zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
  max-width: 90%;
  margin: 1.5em auto;
  color: #222;
  background-color: #fff;
  font-size: 14px;
  font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
  line-height: 1.6;
  scroll-behavior: smooth;
}
.ears {
  display: none;
}

/* headings */
#title, h1, h2, h3, h4, h5, h6 {
  margin: 1em 0 0.5em;
  font-weight: bold;
  line-height: 1.3;
}
#title {
  clear: both;
  border-bottom: 1px solid #ddd;
  margin: 0 0 0.5em 0;
  padding: 1em 0 0.5em;
}
.author {
  padding-bottom: 4px;
}
h1 {
  font-size: 26px;
  margin: 1em 0;
}
h2 {
  font-size: 22px;
  margin-top: -20px;  /* provide offset for in-page anchors */
  padding-top: 33px;
}
h3 {
  font-size: 18px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h4 {
  font-size: 16px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h5, h6 {
  font-size: 14px;
}
#n-copyright-notice {
  border-bottom: 1px solid #ddd;
  padding-bottom: 1em;
  margin-bottom: 1em;
}
/* general structure */
p {
  padding: 0;
  margin: 0 0 1em 0;
  text-align: left;
}
div, span {
  position: relative;
}
div {
  margin: 0;
}
.alignRight.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignRight.art-text pre {
  padding: 0;
}
.alignRight {
  margin: 1em 0;
}
.alignRight > *:first-child {
  border: none;
  margin: 0;
  float: right;
  clear: both;
}
.alignRight > *:nth-child(2) {
  clear: both;
  display: block;
  border: none;
}
svg {
  display: block;
}
.alignCenter.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
  padding: 0;
}
.alignCenter {
  margin: 1em 0;
}
.alignCenter > *:first-child {
  border: none;
  /* this isn't optimal, but it's an existence proof.  PrinceXML doesn't
     support flexbox yet.
  */
  display: table;
  margin: 0 auto;
}

/* lists */
ol, ul {
  padding: 0;
  margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
  margin-left: 1em;
}
li {
  margin: 0 0 0.25em 0;
}
.ulCompact li {
  margin: 0;
}
ul.empty, .ulEmpty {
  list-style-type: none;
}
ul.empty li, .ulEmpty li {
  margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
  line-height: 100%;
  margin: 0 0 0 2em;
}

/* definition lists */
dl {
}
dl > dt {
  float: left;
  margin-right: 1em;
}
/* 
dl.nohang > dt {
  float: none;
}
*/
dl > dd {
  margin-bottom: .8em;
  min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
  margin-bottom: 0em;
}
dl > dd > dl {
  margin-top: 0.5em;
  margin-bottom: 0em;
}

/* links */
a {
  text-decoration: none;
}
a[href] {
  color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
  background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
  color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
  background-color: transparent;
  cursor: default;
} */

/* Figures */
tt, code, pre, code {
  background-color: #f9f9f9;
  font-family: 'Roboto Mono', monospace;
}
pre {
  border: 1px solid #eee;
  margin: 0;
  padding: 1em;
}
img {
  max-width: 100%;
}
figure {
  margin: 0;
}
figure blockquote {
  margin: 0.8em 0.4em 0.4em;
}
figcaption {
  font-style: italic;
  margin: 0 0 1em 0;
}
@media screen {
  pre {
    overflow-x: auto;
    max-width: 100%;
    max-width: calc(100% - 22px);
  }
}

/* aside, blockquote */
aside, blockquote {
  margin-left: 0;
  padding: 1.2em 2em;
}
blockquote {
  background-color: #f9f9f9;
  color: #111; /* Arlen: WCAG 2019 */
  border: 1px solid #ddd;
  border-radius: 3px;
  margin: 1em 0;
}
cite {
  display: block;
  text-align: right;
  font-style: italic;
}

/* tables */
table {
  width: 100%;
  margin: 0 0 1em;
  border-collapse: collapse;
  border: 1px solid #eee;
}
th, td {
  text-align: left;
  vertical-align: top;
  padding: 0.5em 0.75em;
}
th {
  text-align: left;
  background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
  background-color: #f5f5f5;
}
table caption {
  font-style: italic;
  margin: 0;
  padding: 0;
  text-align: left;
}
table p {
  /* XXX to avoid bottom margin on table row signifiers. If paragraphs should
     be allowed within tables more generally, it would be far better to select on a class. */
  margin: 0;
}

/* pilcrow */
a.pilcrow {
  color: #666; /* Arlen: AHDJ 2019 */
  text-decoration: none;
  visibility: hidden;
  user-select: none;
  -ms-user-select: none;
  -o-user-select:none;
  -moz-user-select: none;
  -khtml-user-select: none;
  -webkit-user-select: none;
  -webkit-touch-callout: none;
}
@media screen {
  aside:hover > a.pilcrow,
  p:hover > a.pilcrow,
  blockquote:hover > a.pilcrow,
  div:hover > a.pilcrow,
  li:hover > a.pilcrow,
  pre:hover > a.pilcrow {
    visibility: visible;
  }
  a.pilcrow:hover {
    background-color: transparent;
  }
}

/* misc */
hr {
  border: 0;
  border-top: 1px solid #eee;
}
.bcp14 {
  font-variant: small-caps;
}

.role {
  font-variant: all-small-caps;
}

/* info block */
#identifiers {
  margin: 0;
  font-size: 0.9em;
}
#identifiers dt {
  width: 3em;
  clear: left;
}
#identifiers dd {
  float: left;
  margin-bottom: 0;
}
#identifiers .authors .author {
  display: inline-block;
  margin-right: 1.5em;
}
#identifiers .authors .org {
  font-style: italic;
}

/* The prepared/rendered info at the very bottom of the page */
.docInfo {
  color: #666; /* Arlen: WCAG 2019 */
  font-size: 0.9em;
  font-style: italic;
  margin-top: 2em;
}
.docInfo .prepared {
  float: left;
}
.docInfo .prepared {
  float: right;
}

/* table of contents */
#toc  {
  padding: 0.75em 0 2em 0;
  margin-bottom: 1em;
}
nav.toc ul {
  margin: 0 0.5em 0 0;
  padding: 0;
  list-style: none;
}
nav.toc li {
  line-height: 1.3em;
  margin: 0.75em 0;
  padding-left: 1.2em;
  text-indent: -1.2em;
}
/* references */
.references dt {
  text-align: right;
  font-weight: bold;
  min-width: 7em;
}
.references dd {
  margin-left: 8em;
  overflow: auto;
}

.refInstance {
  margin-bottom: 1.25em;
}

.references .ascii {
  margin-bottom: 0.25em;
}

/* index */
.index ul {
  margin: 0 0 0 1em;
  padding: 0;
  list-style: none;
}
.index ul ul {
  margin: 0;
}
.index li {
  margin: 0;
  text-indent: -2em;
  padding-left: 2em;
  padding-bottom: 5px;
}
.indexIndex {
  margin: 0.5em 0 1em;
}
.index a {
  font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
  .index ul {
    -moz-column-count: 2;
    -moz-column-gap: 20px;
  }
  .index ul ul {
    -moz-column-count: 1;
    -moz-column-gap: 0;
  }
}

/* authors */
address.vcard {
  font-style: normal;
  margin: 1em 0;
}

address.vcard .nameRole {
  font-weight: 700;
  margin-left: 0;
}
address.vcard .label {
  font-family: "Noto Sans",Arial,Helvetica,sans-serif;
  margin: 0.5em 0;
}
address.vcard .type {
  display: none;
}
.alternative-contact {
  margin: 1.5em 0 1em;
}
hr.addr {
  border-top: 1px dashed;
  margin: 0;
  color: #ddd;
  max-width: calc(100% - 16px);
}

/* temporary notes */
.rfcEditorRemove::before {
  position: absolute;
  top: 0.2em;
  right: 0.2em;
  padding: 0.2em;
  content: "The RFC Editor will remove this note";
  color: #9e2a00; /* Arlen: WCAG 2019 */
  background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
  position: relative;
  padding-top: 1.8em;
  background-color: #ffd; /* Arlen: WCAG 2019 */
  border-radius: 3px;
}
.cref {
  background-color: #ffd; /* Arlen: WCAG 2019 */
  padding: 2px 4px;
}
.crefSource {
  font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
  body {
    padding-top: 2em;
  }
  #title {
    padding: 1em 0;
  }
  h1 {
    font-size: 24px;
  }
  h2 {
    font-size: 20px;
    margin-top: -18px;  /* provide offset for in-page anchors */
    padding-top: 38px;
  }
  #identifiers dd {
    max-width: 60%;
  }
  #toc {
    position: fixed;
    z-index: 2;
    top: 0;
    right: 0;
    padding: 0;
    margin: 0;
    background-color: inherit;
    border-bottom: 1px solid #ccc;
  }
  #toc h2 {
    margin: -1px 0 0 0;
    padding: 4px 0 4px 6px;
    padding-right: 1em;
    min-width: 190px;
    font-size: 1.1em;
    text-align: right;
    background-color: #444;
    color: white;
    cursor: pointer;
  }
  #toc h2::before { /* css hamburger */
    float: right;
    position: relative;
    width: 1em;
    height: 1px;
    left: -164px;
    margin: 6px 0 0 0;
    background: white none repeat scroll 0 0;
    box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
    content: "";
  }
  #toc nav {
    display: none;
    padding: 0.5em 1em 1em;
    overflow: auto;
    height: calc(100vh - 48px);
    border-left: 1px solid #ddd;
  }
}

/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
  body {
    max-width: 724px;
    margin: 42px auto;
    padding-left: 1.5em;
    padding-right: 29em;
  }
  #toc {
    position: fixed;
    top: 42px;
    right: 42px;
    width: 25%;
    margin: 0;
    padding: 0 1em;
    z-index: 1;
  }
  #toc h2 {
    border-top: none;
    border-bottom: 1px solid #ddd;
    font-size: 1em;
    font-weight: normal;
    margin: 0;
    padding: 0.25em 1em 1em 0;
  }
  #toc nav {
    display: block;
    height: calc(90vh - 84px);
    bottom: 0;
    padding: 0.5em 0 0;
    overflow: auto;
  }
  img { /* future proofing */
    max-width: 100%;
    height: auto;
  }
}

/* pagination */
@media print {
  body {

    width: 100%;
  }
  p {
    orphans: 3;
    widows: 3;
  }
  #n-copyright-notice {
    border-bottom: none;
  }
  #toc, #n-introduction {
    page-break-before: always;
  }
  #toc {
    border-top: none;
    padding-top: 0;
  }
  figure, pre {
    page-break-inside: avoid;
  }
  figure {
    overflow: scroll;
  }
  h1, h2, h3, h4, h5, h6 {
    page-break-after: avoid;
  }
  h2+*, h3+*, h4+*, h5+*, h6+* {
    page-break-before: avoid;
  }
  pre {
    white-space: pre-wrap;
    word-wrap: break-word;
    font-size: 10pt;
  }
  table {
    border: 1px solid #ddd;
  }
  td {
    border-top: 1px solid #ddd;
  }
}

/* This is commented out here, as the string-set: doesn't
   pass W3C validation currently */
/*
.ears thead .left {
  string-set: ears-top-left content();
}

.ears thead .center {
  string-set: ears-top-center content();
}

.ears thead .right {
  string-set: ears-top-right content();
}

.ears tfoot .left {
  string-set: ears-bottom-left content();
}

.ears tfoot .center {
  string-set: ears-bottom-center content();
}

.ears tfoot .right {
  string-set: ears-bottom-right content();
}
*/

@page :first {
  padding-top: 0;
  @top-left {
    content: normal;
    border: none;
  }
  @top-center {
    content: normal;
    border: none;
  }
  @top-right {
    content: normal;
    border: none;
  }
}

@page {
  size: A4;
  margin-bottom: 45mm;
  padding-top: 20px;
  /* The follwing is commented out here, but set appropriately by in code, as
     the content depends on the document */
  /*
  @top-left {
    content: 'Internet-Draft';
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-left {
    content: string(ears-top-left);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-center {
    content: string(ears-top-center);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-right {
    content: string(ears-top-right);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @bottom-left {
    content: string(ears-bottom-left);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-center {
    content: string(ears-bottom-center);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-right {
      content: '[Page ' counter(page) ']';
      vertical-align: top;
      border-top: solid 1px #ccc;
  }
  */

}

/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
  z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
  clear: both;
}


/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
  vertical-align: top;
}

/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
  width: 8em;
}

/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
  margin-left: 1em;
}

/* Give floating toc a background color (needed when it's a div inside section */
#toc {
  background-color: white;
}

/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
  #toc h2 a,
  #toc h2 a:link,
  #toc h2 a:focus,
  #toc h2 a:hover,
  #toc a.toplink,
  #toc a.toplink:hover {
    color: white;
    background-color: #444;
    text-decoration: none;
  }
}

/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
  #toc {
    padding: 0 0 1em 1em;
  }
}

/* Style section numbers with more space between number and title */
.section-number {
  padding-right: 0.5em;
}

/* prevent monospace from becoming overly large */
tt, code, pre, code {
  font-size: 95%;
}

/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
  line-height: 1.12;
}


/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
  float: right;
  margin-right: 0.5em;
}

/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
  float: left;
  margin-right: 1em;
}
dl.dlNewline > dt {
  float: none;
}

/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
  text-align: left;
}
table td.text-center,
table th.text-center {
  text-align: center;
}
table td.text-right,
table th.text-right {
  text-align: right;
}

/* Make the alternative author contact informatio look less like just another
   author, and group it closer with the primary author contact information */
.alternative-contact {
  margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
  margin: 0 0 0 2em;
}

/* With it being possible to set tables with alignment
  left, center, and right, { width: 100%; } does not make sense */
table {
  width: auto;
}

/* Avoid reference text that sits in a block with very wide left margin,
   because of a long floating dt label.*/
.references dd {
  overflow: visible;
}

/* Control caption placement */
caption {
  caption-side: bottom;
}

/* Limit the width of the author address vcard, so names in right-to-left
   script don't end up on the other side of the page. */

address.vcard {
  max-width: 30em;
  margin-right: auto;
}

/* For address alignment dependent on LTR or RTL scripts */
address div.left {
  text-align: left;
}
address div.right {
  text-align: right;
}

/* Provide table alignment support.  We can't use the alignX classes above
   since they do unwanted things with caption and other styling. */
table.right {
 margin-left: auto;
 margin-right: 0;
}
table.center {
 margin-left: auto;
 margin-right: auto;
}
table.left {
 margin-left: 0;
 margin-right: auto;
}

/* Give the table caption label the same styling as the figcaption */
caption a[href] {
  color: #222;
}

@media print {
  .toplink {
    display: none;
  }

  /* avoid overwriting the top border line with the ToC header */
  #toc {
    padding-top: 1px;
  }

  /* Avoid page breaks inside dl and author address entries */
  .vcard {
    page-break-inside: avoid;
  }

}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
  font-variant: small-caps;
  font-weight: bold;
  font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
 h2 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 31px;
 }
 h3 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
 h4 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
/* Float artwork pilcrow to the right */
@media screen {
  .artwork a.pilcrow {
    display: block;
    line-height: 0.7;
    margin-top: 0.15em;
  }
}
/* Make pilcrows on dd visible */
@media screen {
  dd:hover > a.pilcrow {
    visibility: visible;
  }
}
/* Make the placement of figcaption match that of a table's caption
   by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
   margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
  margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
   possibly even requiring a new line */
@media print {
  a.pilcrow {
    display: none;
  }
}
/* Styling for the external metadata */
div#external-metadata {
  background-color: #eee;
  padding: 0.5em;
  margin-bottom: 0.5em;
  display: none;
}
div#internal-metadata {
  padding: 0.5em;                       /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
  clear: both;
  margin: 0 0 -1em;
  padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
  margin-bottom: 0.25em;
  min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
  border-left: 1px solid #ddd;
  margin: 1em 0 1em 2em;
  padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
  margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
  figcaption, table caption {
    page-break-before: avoid;
  }
}
/* Font size adjustments for print */
@media print {
  body  { font-size: 10pt;      line-height: normal; max-width: 96%; }
  h1    { font-size: 1.72em;    padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
  h2    { font-size: 1.44em;    padding-top: 1.5em; } /* 1*1.2*1.2 */
  h3    { font-size: 1.2em;     padding-top: 1.5em; } /* 1*1.2 */
  h4    { font-size: 1em;       padding-top: 1.5em; }
  h5, h6 { font-size: 1em;      margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
  .artwork,
  .sourcecode {
    margin-bottom: 1em;
  }
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
  min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
  border: 1px solid #ddd;
}
td {
  border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
  background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
  #toc nav { display: none; }
  #toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
  break-after: avoid-page;
  break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
  break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode  {
  break-before: avoid-page;
  break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
  break-before: auto;
  break-inside: auto;
}
dt {
  break-before: auto;
  break-after: avoid-page;
}
dd {
  break-before: avoid-page;
  break-after: auto;
  orphans: 3;
  widows: 3
}
span.break, dd.break {
  margin-bottom: 0;
  min-height: 0;
  break-before: auto;
  break-inside: auto;
  break-after: auto;
}
/* Undo break-before ToC */
@media print {
  #toc {
    break-before: auto;
  }
}
/* Text in compact lists should not get extra bottim margin space,
   since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
 margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
  margin-bottom: 1em;                    /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
   backgrounds.  Changed to something a bit more selective. */
tt, code {
  background-color: transparent;
}
p tt, p code, li tt, li code {
  background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
   margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
  line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
  margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
  clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
  content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
  margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
  margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9015" rel="alternate">
  <link href="urn:issn:2070-1721" rel="alternate">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-bess-nsh-bgp-control-plane-18" rel="prev">
  </head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9015</td>
<td class="center">BGP for NSH SFC</td>
<td class="right">June 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Farrel, et al.</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9015" class="eref">9015</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-06" class="published">June 2021</time>
    </dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
      <div class="author-name">A. Farrel</div>
<div class="org">Old Dog Consulting</div>
</div>
<div class="author">
      <div class="author-name">J. Drake</div>
<div class="org">Juniper Networks</div>
</div>
<div class="author">
      <div class="author-name">E. Rosen</div>
<div class="org">Juniper Networks</div>
</div>
<div class="author">
      <div class="author-name">J. Uttaro</div>
<div class="org">AT&amp;T</div>
</div>
<div class="author">
      <div class="author-name">L. Jalil</div>
<div class="org">Verizon</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9015</h1>
<h1 id="title">BGP Control Plane for the Network Service Header in Service Function Chaining</h1>
<section id="section-abstract">
      <h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This document describes the use of BGP as a control plane for networks that support
         service function chaining.  The document introduces a new BGP address family
         called the "Service Function Chain (SFC) Address Family Identifier / Subsequent Address Family Identifier" (SFC
         AFI/SAFI) with two Route Types.  One Route Type is originated by a node to advertise
         that it hosts a particular instance of a specified service function.  This Route Type
         also provides "instructions" on how to send a packet to the hosting node in a way that
         indicates that the service function has to be applied to the packet.  The other Route
         Type is used by a controller to advertise the paths of "chains" of service functions
         and give a unique designator to each such path so that they can be used in
         conjunction with the Network Service Header (NSH) defined in RFC 8300.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
<p id="section-abstract-2">This document adopts the service function chaining architecture described in RFC 7665.<a href="#section-abstract-2" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
        <h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
        </h2>
<p id="section-boilerplate.1-1">
            This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further
            information on Internet Standards is available in Section 2 of 
            RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <span><a href="https://www.rfc-editor.org/info/rfc9015">https://www.rfc-editor.org/info/rfc9015</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
        <h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
        </h2>
<p id="section-boilerplate.2-1">
            Copyright (c) 2021 IETF Trust and the persons identified as the
            document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
        <a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
        </h2>
<nav class="toc"><ul class="ulEmpty toc compact">
<li class="ulEmpty toc compact" id="section-toc.1-1.1">
            <p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>.  <a href="#name-introduction" class="xref">Introduction</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.1.2.1">
                <p id="section-toc.1-1.1.2.1.1" class="keepWithNext"><a href="#section-1.1" class="xref">1.1</a>.  <a href="#name-requirements-language" class="xref">Requirements Language</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.1.2.2">
                <p id="section-toc.1-1.1.2.2.1" class="keepWithNext"><a href="#section-1.2" class="xref">1.2</a>.  <a href="#name-terminology" class="xref">Terminology</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.2">
            <p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>.  <a href="#name-overview" class="xref">Overview</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.2.2.1">
                <p id="section-toc.1-1.2.2.1.1"><a href="#section-2.1" class="xref">2.1</a>.  <a href="#name-overview-of-service-functio" class="xref">Overview of Service Function Chaining</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.2.2.2">
                <p id="section-toc.1-1.2.2.2.1"><a href="#section-2.2" class="xref">2.2</a>.  <a href="#name-control-plane-overview" class="xref">Control Plane Overview</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.3">
            <p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>.  <a href="#name-bgp-sfc-routes" class="xref">BGP SFC Routes</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.3.2.1">
                <p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>.  <a href="#name-service-function-instance-r" class="xref">Service Function Instance Route (SFIR)</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.3.2.1.2.1">
                    <p id="section-toc.1-1.3.2.1.2.1.1"><a href="#section-3.1.1" class="xref">3.1.1</a>.  <a href="#name-sfir-pool-identifier-extend" class="xref">SFIR Pool Identifier Extended Community</a></p>
</li>
                  <li class="compact toc ulEmpty" id="section-toc.1-1.3.2.1.2.2">
                    <p id="section-toc.1-1.3.2.1.2.2.1"><a href="#section-3.1.2" class="xref">3.1.2</a>.  <a href="#name-mpls-mixed-swapping-stackin" class="xref">MPLS Mixed Swapping/Stacking Extended Community</a></p>
</li>
                </ul>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.3.2.2">
                <p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>.  <a href="#name-service-function-path-route" class="xref">Service Function Path Route (SFPR)</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.3.2.2.2.1">
                    <p id="section-toc.1-1.3.2.2.2.1.1"><a href="#section-3.2.1" class="xref">3.2.1</a>.  <a href="#name-the-sfp-attribute" class="xref">The SFP Attribute</a></p>
</li>
                  <li class="compact toc ulEmpty" id="section-toc.1-1.3.2.2.2.2">
                    <p id="section-toc.1-1.3.2.2.2.2.1"><a href="#section-3.2.2" class="xref">3.2.2</a>.  <a href="#name-general-rules-for-the-sfp-a" class="xref">General Rules for the SFP Attribute</a></p>
</li>
                </ul>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.4">
            <p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.  <a href="#name-mode-of-operation" class="xref">Mode of Operation</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.4.2.1">
                <p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>.  <a href="#name-route-targets" class="xref">Route Targets</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.4.2.2">
                <p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>.  <a href="#name-service-function-instance-ro" class="xref">Service Function Instance Routes</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.4.2.3">
                <p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>.  <a href="#name-service-function-path-routes" class="xref">Service Function Path Routes</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.4.2.4">
                <p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>.  <a href="#name-classifier-operation" class="xref">Classifier Operation</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.4.2.5">
                <p id="section-toc.1-1.4.2.5.1"><a href="#section-4.5" class="xref">4.5</a>.  <a href="#name-service-function-forwarder-" class="xref">Service Function Forwarder Operation</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.4.2.5.2.1">
                    <p id="section-toc.1-1.4.2.5.2.1.1"><a href="#section-4.5.1" class="xref">4.5.1</a>.  <a href="#name-processing-with-gaps-in-the" class="xref">Processing with "Gaps" in the SI Sequence</a></p>
</li>
                </ul>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.5">
            <p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.  <a href="#name-selection-within-service-fu" class="xref">Selection within Service Function Paths</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.6">
            <p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.  <a href="#name-looping-jumping-and-branchi" class="xref">Looping, Jumping, and Branching</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.6.2.1">
                <p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>.  <a href="#name-protocol-control-of-looping" class="xref">Protocol Control of Looping, Jumping, and Branching</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.6.2.2">
                <p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>.  <a href="#name-implications-for-forwarding" class="xref">Implications for Forwarding State</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.7">
            <p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>.  <a href="#name-advanced-topics" class="xref">Advanced Topics</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.7.2.1">
                <p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>.  <a href="#name-correlating-service-functio" class="xref">Correlating Service Function Path Instances</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.7.2.2">
                <p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>.  <a href="#name-considerations-for-stateful" class="xref">Considerations for Stateful Service Functions</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.7.2.3">
                <p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="xref">7.3</a>.  <a href="#name-vpn-considerations-and-priv" class="xref">VPN Considerations and Private Service Functions</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.7.2.4">
                <p id="section-toc.1-1.7.2.4.1"><a href="#section-7.4" class="xref">7.4</a>.  <a href="#name-flow-specification-for-sfc-" class="xref">Flow Specification for SFC Classifiers</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.7.2.5">
                <p id="section-toc.1-1.7.2.5.1"><a href="#section-7.5" class="xref">7.5</a>.  <a href="#name-choice-of-data-plane-spi-si" class="xref">Choice of Data Plane SPI/SI Representation</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.7.2.5.2.1">
                    <p id="section-toc.1-1.7.2.5.2.1.1"><a href="#section-7.5.1" class="xref">7.5.1</a>.  <a href="#name-mpls-representation-of-the-" class="xref">MPLS Representation of the SPI/SI</a></p>
</li>
                </ul>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.7.2.6">
                <p id="section-toc.1-1.7.2.6.1"><a href="#section-7.6" class="xref">7.6</a>.  <a href="#name-mpls-label-swapping-stackin" class="xref">MPLS Label Swapping/Stacking Operation</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.7.2.7">
                <p id="section-toc.1-1.7.2.7.1"><a href="#section-7.7" class="xref">7.7</a>.  <a href="#name-support-for-mpls-encapsulat" class="xref">Support for MPLS-Encapsulated NSH Packets</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.8">
            <p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>.  <a href="#name-examples" class="xref">Examples</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.1">
                <p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="xref">8.1</a>.  <a href="#name-example-explicit-sfp-with-n" class="xref">Example Explicit SFP with No Choices</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.2">
                <p id="section-toc.1-1.8.2.2.1"><a href="#section-8.2" class="xref">8.2</a>.  <a href="#name-example-sfp-with-choice-of-" class="xref">Example SFP with Choice of SFIs</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.3">
                <p id="section-toc.1-1.8.2.3.1"><a href="#section-8.3" class="xref">8.3</a>.  <a href="#name-example-sfp-with-open-choic" class="xref">Example SFP with Open Choice of SFIs</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.4">
                <p id="section-toc.1-1.8.2.4.1"><a href="#section-8.4" class="xref">8.4</a>.  <a href="#name-example-sfp-with-choice-of-s" class="xref">Example SFP with Choice of SFTs</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.5">
                <p id="section-toc.1-1.8.2.5.1"><a href="#section-8.5" class="xref">8.5</a>.  <a href="#name-example-correlated-bidirect" class="xref">Example Correlated Bidirectional SFPs</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.6">
                <p id="section-toc.1-1.8.2.6.1"><a href="#section-8.6" class="xref">8.6</a>.  <a href="#name-example-correlated-asymmetr" class="xref">Example Correlated Asymmetrical Bidirectional SFPs</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.7">
                <p id="section-toc.1-1.8.2.7.1"><a href="#section-8.7" class="xref">8.7</a>.  <a href="#name-example-looping-in-an-sfp" class="xref">Example Looping in an SFP</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.8">
                <p id="section-toc.1-1.8.2.8.1"><a href="#section-8.8" class="xref">8.8</a>.  <a href="#name-example-branching-in-an-sfp" class="xref">Example Branching in an SFP</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.9">
                <p id="section-toc.1-1.8.2.9.1"><a href="#section-8.9" class="xref">8.9</a>.  <a href="#name-examples-of-sfps-with-state" class="xref">Examples of SFPs with Stateful Service Functions</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.9.2.1">
                    <p id="section-toc.1-1.8.2.9.2.1.1"><a href="#section-8.9.1" class="xref">8.9.1</a>.  <a href="#name-forward-and-reverse-choice-" class="xref">Forward and Reverse Choice Made at the SFF</a></p>
</li>
                  <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.9.2.2">
                    <p id="section-toc.1-1.8.2.9.2.2.1"><a href="#section-8.9.2" class="xref">8.9.2</a>.  <a href="#name-parallel-end-to-end-sfps-wi" class="xref">Parallel End-to-End SFPs with Shared SFF</a></p>
</li>
                  <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.9.2.3">
                    <p id="section-toc.1-1.8.2.9.2.3.1"><a href="#section-8.9.3" class="xref">8.9.3</a>.  <a href="#name-parallel-end-to-end-sfps-wit" class="xref">Parallel End-to-End SFPs with Separate SFFs</a></p>
</li>
                  <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.9.2.4">
                    <p id="section-toc.1-1.8.2.9.2.4.1"><a href="#section-8.9.4" class="xref">8.9.4</a>.  <a href="#name-parallel-sfps-downstream-of" class="xref">Parallel SFPs Downstream of the Choice</a></p>
</li>
                </ul>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.10">
                <p id="section-toc.1-1.8.2.10.1"><a href="#section-8.10" class="xref">8.10</a>. <a href="#name-examples-using-ipv6-address" class="xref">Examples Using IPv6 Addressing</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.10.2.1">
                    <p id="section-toc.1-1.8.2.10.2.1.1"><a href="#section-8.10.1" class="xref">8.10.1</a>.  <a href="#name-example-explicit-sfp-with-no" class="xref">Example Explicit SFP with No Choices</a></p>
</li>
                  <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.10.2.2">
                    <p id="section-toc.1-1.8.2.10.2.2.1"><a href="#section-8.10.2" class="xref">8.10.2</a>.  <a href="#name-example-sfp-with-choice-of-sf" class="xref">Example SFP with Choice of SFIs</a></p>
</li>
                  <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.10.2.3">
                    <p id="section-toc.1-1.8.2.10.2.3.1"><a href="#section-8.10.3" class="xref">8.10.3</a>.  <a href="#name-example-sfp-with-open-choice" class="xref">Example SFP with Open Choice of SFIs</a></p>
</li>
                  <li class="compact toc ulEmpty" id="section-toc.1-1.8.2.10.2.4">
                    <p id="section-toc.1-1.8.2.10.2.4.1"><a href="#section-8.10.4" class="xref">8.10.4</a>.  <a href="#name-example-sfp-with-choice-of-sft" class="xref">Example SFP with Choice of SFTs</a></p>
</li>
                </ul>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.9">
            <p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>.  <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.10">
            <p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.10.2.1">
                <p id="section-toc.1-1.10.2.1.1"><a href="#section-10.1" class="xref">10.1</a>.  <a href="#name-new-bgp-af-safi" class="xref">New BGP AF/SAFI</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.10.2.2">
                <p id="section-toc.1-1.10.2.2.1"><a href="#section-10.2" class="xref">10.2</a>.  <a href="#name-sfp-attribute-bgp-path-attr" class="xref">"SFP attribute" BGP Path Attribute</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.10.2.3">
                <p id="section-toc.1-1.10.2.3.1"><a href="#section-10.3" class="xref">10.3</a>.  <a href="#name-sfp-attribute-tlvs-registry" class="xref">"SFP Attribute TLVs" Registry</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.10.2.4">
                <p id="section-toc.1-1.10.2.4.1"><a href="#section-10.4" class="xref">10.4</a>.  <a href="#name-sfp-association-type-regist" class="xref">"SFP Association Type" Registry</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.10.2.5">
                <p id="section-toc.1-1.10.2.5.1"><a href="#section-10.5" class="xref">10.5</a>.  <a href="#name-service-function-chaining-s" class="xref">"Service Function Chaining Service Function Types" Registry</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.10.2.6">
                <p id="section-toc.1-1.10.2.6.1"><a href="#section-10.6" class="xref">10.6</a>.  <a href="#name-flow-specification-for-sfc-c" class="xref">Flow Specification for SFC Classifiers</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.10.2.7">
                <p id="section-toc.1-1.10.2.7.1"><a href="#section-10.7" class="xref">10.7</a>.  <a href="#name-new-bgp-transitive-extended" class="xref">New BGP Transitive Extended Community Type</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.10.2.8">
                <p id="section-toc.1-1.10.2.8.1"><a href="#section-10.8" class="xref">10.8</a>.  <a href="#name-sfc-extended-community-sub-" class="xref">"SFC Extended Community Sub-Types" Registry</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.10.2.9">
                <p id="section-toc.1-1.10.2.9.1"><a href="#section-10.9" class="xref">10.9</a>.  <a href="#name-new-spi-si-representation-s" class="xref">New SPI/SI Representation Sub-TLV</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.10.2.10">
                <p id="section-toc.1-1.10.2.10.1"><a href="#section-10.10" class="xref">10.10</a>. <a href="#name-sfc-spi-si-representation-f" class="xref">"SFC SPI/SI Representation Flags" Registry</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.11">
            <p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>. <a href="#name-references" class="xref">References</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.11.2.1">
                <p id="section-toc.1-1.11.2.1.1"><a href="#section-11.1" class="xref">11.1</a>.  <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
              <li class="compact toc ulEmpty" id="section-toc.1-1.11.2.2">
                <p id="section-toc.1-1.11.2.2.1"><a href="#section-11.2" class="xref">11.2</a>.  <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.12">
            <p id="section-toc.1-1.12.1"><a href="#section-appendix.a" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.13">
            <p id="section-toc.1-1.13.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.14">
            <p id="section-toc.1-1.14.1"><a href="#section-appendix.c" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
        </ul>
</nav>
</section>
</div>
<div id="introduction">
<section id="section-1">
      <h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
      </h2>
<p id="section-1-1">As described in <span>[<a href="#RFC7498" class="xref">RFC7498</a>]</span>, the delivery of end-to-end services can
       require a packet to pass through a series of Service Functions (SFs) --
       e.g., WAN and
       application accelerators, Deep Packet Inspection (DPI) engines, firewalls, TCP
       optimizers, and server load balancers -- in a specified order; this is termed
       "service function chaining".  There are a number of issues associated with
       deploying and maintaining service function chaining in production networks, which are
       described below.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">Historically, if a packet needed to travel through a particular service chain, the
       nodes hosting the service functions of that chain were placed in the network topology
       in such a way that the packet could not reach its ultimate destination without first
       passing through all the service functions in the proper order.  This need to place the
       service functions at particular topological locations limited the ability to adapt a
       service function chain to changes in network topology (e.g., link or node failures),
       network utilization, or offered service load.  These topological restrictions on where
       the service functions could be placed raised the following issues:<a href="#section-1-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-1-3">
<li id="section-1-3.1">The process of configuring or modifying a service function chain is operationally
            complex and may require changes to the network topology.<a href="#section-1-3.1" class="pilcrow">¶</a>
</li>
        <li id="section-1-3.2">Alternate or redundant service functions may need to be co-located with the
            primary service functions.<a href="#section-1-3.2" class="pilcrow">¶</a>
</li>
        <li id="section-1-3.3">When there is more than one path between source and destination, forwarding may be
            asymmetric, and it may be difficult to support bidirectional service function chains
            using simple routing methodologies and protocols without adding mechanisms for traffic
            steering or traffic engineering.<a href="#section-1-3.3" class="pilcrow">¶</a>
</li>
      </ol>
<p id="section-1-4">In order to address these issues, the service function chaining architecture describes service function chains
       that are built in their own overlay network (the service function overlay network),
       coexisting with other overlay networks, over a common underlay network
       <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>.  A service function chain is a sequence of service functions
       through which packet flows that satisfy specified criteria will pass.<a href="#section-1-4" class="pilcrow">¶</a></p>
<p id="section-1-5">This document describes the use of BGP as a control plane for networks that support service function chaining.  The document introduces a new BGP address family
       called the "Service Function Chain (SFC) Address Family Identifier / Subsequent Address Family Identifier"
       (SFC AFI/SAFI) with two Route Types.  One Route Type is originated by a
       node to advertise that it hosts a particular instance of a specified service function.
       This Route Type also provides "instructions" on how to send a packet to the hosting
       node in a way that indicates that the service function has to be applied to the packet.
       The other Route Type is used by a controller (a centralized network component responsible
       for planning and coordinating service function chaining within the network) to advertise
       the paths of "chains" of service functions and give a unique designator to each such
       path so that they can be used in conjunction with the Network Service Header (NSH)
       <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>.<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6">This document adopts the service function chaining architecture described in <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>.<a href="#section-1-6" class="pilcrow">¶</a></p>
<section id="section-1.1">
        <h3 id="name-requirements-language">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
        </h3>
<p id="section-1.1-1">The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>",
         "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>", "<span class="bcp14">MAY</span>", and
         "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as described in BCP
         14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when,
         they appear in all capitals, as shown here.<a href="#section-1.1-1" class="pilcrow">¶</a></p>
</section>
<div id="terms">
<section id="section-1.2">
        <h3 id="name-terminology">
<a href="#section-1.2" class="section-number selfRef">1.2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
        </h3>
<p id="section-1.2-1">This document uses the following terms from <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>:<a href="#section-1.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1.2-2.1">Bidirectional Service Function Chain<a href="#section-1.2-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-1.2-2.2">Classifier<a href="#section-1.2-2.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-1.2-2.3">Service Function (SF)<a href="#section-1.2-2.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-1.2-2.4">Service Function Chain (SFC)<a href="#section-1.2-2.4" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-1.2-2.5">Service Function Forwarder (SFF)<a href="#section-1.2-2.5" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-1.2-2.6">Service Function Instance (SFI)<a href="#section-1.2-2.6" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-1.2-2.7">Service Function Path (SFP)<a href="#section-1.2-2.7" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-1.2-2.8">SFC branching<a href="#section-1.2-2.8" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-1.2-3">Additionally, this document uses the following terms from <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>:<a href="#section-1.2-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1.2-4.1">Network Service Header (NSH)<a href="#section-1.2-4.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-1.2-4.2">Service Index (SI)<a href="#section-1.2-4.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-1.2-4.3">Service Path Identifier (SPI)<a href="#section-1.2-4.3" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-1.2-5">This document introduces the following terms:<a href="#section-1.2-5" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-1.2-6">
          <dt id="section-1.2-6.1">Service Function Instance Route (SFIR):</dt>
          <dd style="margin-left: 1.5em" id="section-1.2-6.2">A new BGP Route Type advertised by the
                node that hosts an SFI to describe the SFI and to announce the way to forward a
                packet to the node through the underlay network.<a href="#section-1.2-6.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.2-6.3">Service Function Overlay Network:</dt>
          <dd style="margin-left: 1.5em" id="section-1.2-6.4">The logical network comprised of classifiers,
                SFFs, and SFIs that are connected by paths or tunnels through underlay transport
                networks.<a href="#section-1.2-6.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.2-6.5">Service Function Path Route (SFPR):</dt>
          <dd style="margin-left: 1.5em" id="section-1.2-6.6">A new BGP Route Type originated by controllers to
                advertise the details of each SFP.<a href="#section-1.2-6.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.2-6.7">Service Function Type (SFT):</dt>
          <dd style="margin-left: 1.5em" id="section-1.2-6.8">An indication of the function and features of an SFI.<a href="#section-1.2-6.8" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
</section>
</div>
</section>
</div>
<div id="overview">
<section id="section-2">
      <h2 id="name-overview">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-overview" class="section-name selfRef">Overview</a>
      </h2>
<p id="section-2-1">This section provides an overview of service function chaining in general and the control
       plane defined in this document.  After reading this section, readers may find it helpful to
       look through <a href="#example" class="xref">Section 8</a> for some simple worked examples.<a href="#section-2-1" class="pilcrow">¶</a></p>
<div id="funcover">
<section id="section-2.1">
        <h3 id="name-overview-of-service-functio">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-overview-of-service-functio" class="section-name selfRef">Overview of Service Function Chaining</a>
        </h3>
<p id="section-2.1-1">In <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>, a Service Function Chain (SFC) is an ordered list of
         Service Functions (SFs).  A Service Function Path (SFP) is an indication of which instances
         of SFs are acceptable to be traversed in an instantiation of an SFC in a service function
         overlay network.  The Service Path Identifier (SPI) is a 24-bit number that identifies
         a specific SFP, and a Service Index (SI) is an 8-bit number that identifies a specific point
         in that path.  In the context of a particular SFP (identified by an SPI), an SI represents a
         particular service function and indicates the order of that SF in the SFP.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">Within the context of a specific SFP, an SI references a set of one or more SFs.  Each of those SFs
         may be supported by one or more Service Function Instances (SFIs).  Thus, an SI may represent a choice
         of SFIs of one or more service function types.  By deploying multiple SFIs for a single SF, one
         can provide load balancing and redundancy.<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<p id="section-2.1-3">A special functional element, called a "classifier", is located at each ingress point to a service
         function overlay network.  It assigns the packets of a given packet flow to a specific SFP.  This may be done by comparing specific fields in a packet's header with
         local policy, which may be customer/network/service specific.  The classifier picks an SFP and
         sets the SPI accordingly; it then sets the SI to the value of the SI for the first hop in the
         SFP, and then prepends a Network Service Header (NSH) <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>
         containing the assigned SPI/SI to that packet.  Note that the classifier and the node that
         hosts the first SF in an SFP need not be located at the same
         point in the service function overlay network.<a href="#section-2.1-3" class="pilcrow">¶</a></p>
<p id="section-2.1-4">Note that the presence of the NSH can make it difficult for nodes in the underlay network
         to locate the fields in the original packet that would normally be
  used to constrain equal-cost multipath (ECMP) forwarding.  Therefore,
  it is recommended that the node prepending the
         NSH also provide some form of entropy indicator that can be used in the underlay network.  How
         this indicator is generated and supplied, and how an SFF generates a new entropy indicator
         when it forwards a packet to the next SFF, are out of the scope of this document.<a href="#section-2.1-4" class="pilcrow">¶</a></p>
<p id="section-2.1-5">The Service Function Forwarder (SFF) receives a packet from the previous node in an SFP, removes the packet's link layer or tunnel encapsulation, and hands the
         packet and the NSH to the SFI for processing.  The SFI has no knowledge
         of the SFP.<a href="#section-2.1-5" class="pilcrow">¶</a></p>
<p id="section-2.1-6">When the SFF receives the packet and the NSH back from the SFI, it must select the next SFI
         along the path using the SPI and SI in the NSH and potentially choosing between multiple SFIs
         (possibly of different SFTs), as described in <a href="#selection" class="xref">Section 5</a>.  In
         the normal case, the SPI remains unchanged, and the SI will have been decremented to indicate the
         next SF along the path.  But other possibilities exist if the SF makes other changes to the NSH
         through a process of reclassification:<a href="#section-2.1-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-7.1">
            <p id="section-2.1-7.1.1">The SI in the NSH may indicate:<a href="#section-2.1-7.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-7.1.2.1">A previous SF in the path; this is known as "looping" (see
       <a href="#looping" class="xref">Section 6</a>).<a href="#section-2.1-7.1.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-2.1-7.1.2.2">An SF further down the path; this is known as "jumping"
       (again see <a href="#looping" class="xref">Section 6</a>).<a href="#section-2.1-7.1.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</li>
          <li class="normal" id="section-2.1-7.2">The SPI and the SI may point to an SF on a different SFP; this is known as "branching" (see
               <a href="#looping" class="xref">Section 6</a>).<a href="#section-2.1-7.2" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-2.1-8">Such modifications are limited to within the same service function overlay network.  That is, an
         SPI is known within the scope of service function overlay network.  Furthermore, the new SI value
         is interpreted in the context of the SFP identified by the SPI.<a href="#section-2.1-8" class="pilcrow">¶</a></p>
<p id="section-2.1-9">As described in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>, an SPI that is unknown or not valid is treated as an error, and
         the SFF drops the packet; such errors should be logged, and such logs are subject to rate limits.<a href="#section-2.1-9" class="pilcrow">¶</a></p>
<p id="section-2.1-10">Also, as described in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>, an SFF receiving an SI that is unknown in the
         context of the SPI can reduce the value to the next meaningful SI value in the SFP indicated by
         the SPI.  If no such value exists, or if the SFF does not support reducing the SI, the SFF drops the
         packet and should log the event; such logs are also subject to rate limits.<a href="#section-2.1-10" class="pilcrow">¶</a></p>
<p id="section-2.1-11">The SFF then selects an SFI that provides the SF denoted by the SPI/SI and forwards the packet
         to the SFF that supports that SFI.<a href="#section-2.1-11" class="pilcrow">¶</a></p>
<p id="section-2.1-12"><span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> makes it clear that the intended scope is for use within a single
         provider's operational domain.<a href="#section-2.1-12" class="pilcrow">¶</a></p>
<p id="section-2.1-13">This document adopts the service function chaining architecture described in <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span> and adds a
         control plane to support the functions, as described in <a href="#ctrlover" class="xref">Section 2.2</a>.  An essential
         component of this solution is the controller.  This is a network component responsible for
         planning SFPs within the network.  It gathers information about the availability of SFIs and SFFs,
         instructs the control plane about the SFPs to be programmed, and instructs the classifiers how
         to assign traffic flows to individual SFPs.<a href="#section-2.1-13" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ctrlover">
<section id="section-2.2">
        <h3 id="name-control-plane-overview">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-control-plane-overview" class="section-name selfRef">Control Plane Overview</a>
        </h3>
<p id="section-2.2-1">To accomplish the function described in <a href="#funcover" class="xref">Section 2.1</a>, this document
         introduces the Service Function Type (SFT), which is the category of SF that is supported
         by an SFF (such as "firewall").  An IANA registry of service function types is introduced
         in <a href="#SFTreg" class="xref">Section 10.5</a> and is consistent with types used in other work, such as
         <span>[<a href="#I-D.dawra-idr-bgp-ls-sr-service-segments" class="xref">BGP-LS-SR</a>]</span>.  An SFF may support SFs of
         multiple different SFTs, and it may support multiple SFIs of each SF.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2">The registry of SFT values (see <a href="#SFTreg" class="xref">Section 10.5</a>) is split into three ranges with assignment
         policies per <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>:<a href="#section-2.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.2-3.1">The special-purpose SFT values range is assigned through Standards Action.
               Values in that range are used for special SFC operations and do not apply to
               the types of SF that may form part of the SFP.<a href="#section-2.2-3.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.2-3.2">The First Come First Served range tracks assignments of SFT values made by any
               party that defines an SF type. Reference through an Internet-Draft is desirable,
               but not required.<a href="#section-2.2-3.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.2-3.3">The Private Use range is not tracked by IANA and is primarily intended for use
               in private networks where the meaning of the SFT values is locally tracked and
               under the control of a local administrator.<a href="#section-2.2-3.3" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-2.2-4">It is envisaged that the majority of SFT values used will be assigned from the First Come
         First Served space in the registry.  This will ensure interoperability, especially in
         situations where software and hardware from different vendors are deployed in the same
         networks, or when networks are merged. However, operators of private networks may choose
         to develop their own SFs and manage the configuration and operation of their network through
         their own list of SFT values.<a href="#section-2.2-4" class="pilcrow">¶</a></p>
<p id="section-2.2-5">This document also introduces a new BGP AFI/SAFI (values 31 and 9, respectively) for "SFC Routes".
         Two SFC Route Types are defined by this document: the Service Function Instance Route (SFIR) and
         the Service Function Path Route (SFPR).  As detailed in <a href="#sfcBGPRoutes" class="xref">Section 3</a>, the Route
         Type is indicated by a subfield in the Network Layer Reachability Information (NLRI).<a href="#section-2.2-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.2-6.1">The SFIR is advertised by the node that provides access to the service function instance
               (i.e., the SFF).  The SFIR describes a particular instance of a particular SF
               (i.e., an SFI) and the way to forward a packet to it through
        the underlay network, i.e., IP
               address and encapsulation information.<a href="#section-2.2-6.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.2-6.2">
            <p id="section-2.2-6.2.1">The SFPRs are originated by controllers.  One SFPR is originated for each SFP.  The SFPR specifies:<a href="#section-2.2-6.2.1" class="pilcrow">¶</a></p>
<ol start="1" type="A" class="normal type-A" id="section-2.2-6.2.2">
<li id="section-2.2-6.2.2.1">the SPI of the path,<a href="#section-2.2-6.2.2.1" class="pilcrow">¶</a>
</li>
              <li id="section-2.2-6.2.2.2">the sequence of SFTs and/or SFIs of which the path consists, and<a href="#section-2.2-6.2.2.2" class="pilcrow">¶</a>
</li>
              <li id="section-2.2-6.2.2.3">for each such SFT or SFI, the SI that represents it in the identified path.<a href="#section-2.2-6.2.2.3" class="pilcrow">¶</a>
</li>
            </ol>
</li>
        </ul>
<p id="section-2.2-7">This approach assumes that there is an underlay network that provides connectivity between
         SFFs and controllers and that the SFFs are grouped to form one or more service function
         overlay networks through which SFPs are built.  We assume that the controllers have BGP
         connectivity to all SFFs and all classifiers within each service function overlay network.<a href="#section-2.2-7" class="pilcrow">¶</a></p>
<p id="section-2.2-8">When choosing the next SFI in a path, the SFF uses the SPI and SI as well as the SFT to choose
         among the SFIs, applying, for example, a load-balancing algorithm or direct knowledge of the
         underlay network topology, as described in <a href="#mode" class="xref">Section 4</a>.<a href="#section-2.2-8" class="pilcrow">¶</a></p>
<p id="section-2.2-9">The SFF then encapsulates the packet using the encapsulation specified by the SFIR of the
         selected SFI and forwards the packet.  See <a href="#SFCarch" class="xref">Figure 1</a>.<a href="#section-2.2-9" class="pilcrow">¶</a></p>
<p id="section-2.2-10">Thus, the SFF can be seen as a portal in the underlay network through which a particular SFI
         is reached.<a href="#section-2.2-10" class="pilcrow">¶</a></p>
<p id="section-2.2-11"><a href="#SFCarch" class="xref">Figure 1</a> shows a reference model for the service function chaining architecture.  There are four SFFs
         (SFF-1 through SFF-4) connected by tunnels across the underlay network.  Packets arrive at
         a classifier and are channeled along SFPs to destinations reachable through SFF-4.<a href="#section-2.2-11" class="pilcrow">¶</a></p>
<p id="section-2.2-12">SFF-1 and SFF-4 each have one instance of one SF attached (SFa and SFe).  SFF-2 has two types
         of SF attached: one instance of one (SFc) and three instances of the other (SFb).
         SFF-3 has just one instance of an SF (SFd), but in this case, the type of SFd is the same
         type as SFb (SFTx).<a href="#section-2.2-12" class="pilcrow">¶</a></p>
<p id="section-2.2-13">This figure demonstrates how load balancing can be achieved by creating several SFPs that satisfy
         the same SFC.  Suppose an SFC needs to include SFa, an SF of type SFTx, and SFc.  A number of SFPs
         can be constructed using any instance of SFb or using SFd.  Load balancing may be applied at two
         places:<a href="#section-2.2-13" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.2-14.1">The classifier may distribute different flows onto different SFPs to share the load in the
              network and across SFIs.<a href="#section-2.2-14.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.2-14.2">SFF-2 may distribute different flows (on the same SFP) to different instances of SFb to share
              the processing load.<a href="#section-2.2-14.2" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-2.2-15">Note that, for convenience and clarity, <a href="#SFCarch" class="xref">Figure 1</a> shows only a few tunnels between
         SFFs.  There could be a full mesh of such tunnels, or more likely, a selection of tunnels connecting
         key SFFs to enable the construction of SFPs and balance load and traffic in the network.  Further,
         the figure does not show any controllers; these would each have BGP connectivity to the classifier and
         all of the SFFs.<a href="#section-2.2-15" class="pilcrow">¶</a></p>
<span id="name-the-service-function-chaini"></span><div id="SFCarch">
<figure id="figure-1">
          <div class="artwork art-text alignLeft" id="section-2.2-16.1">
<pre>
    Packets
    | | |
 ------------
|            |
| Classifier |
|            |
 ------+-----
       |
    ---+---                 ---------           -------
   |       |    Tunnel     |         |         |       |
   | SFF-1 |===============|  SFF-2  |=========| SFF-4 |
   |       |               |         |         |       |
   |       |                -+-----+-          |       |
   |       |  ,,,,,,,,,,,,,,/,,     \          |       |
   |       | '  .........../.  '   ..\......   |       |
   |       | ' : SFb      /  : '  :   \ SFc :  |       |
   |       | ' :      ---+-  : '  :  --+--  :  |       |
   |       | ' :    -| SFI | : '  : | SFI | :  |       |
   |       | ' :  -|  -----  : '  :  -----  :  |       |
   |       | ' : |  -----    : '   .........   |       |
   |       | ' :  -----      : '               |       |
   |       | '  .............  '               |       |--- Dests
   |       | '                 '               |       |--- Dests
   |       | '    .........    '               |       |
   |       | '   :  -----  :   '               |       |
   |       | '   : | SFI | :   '               |       |
   |       | '   :  --+--  :   '               |       |
   |       | '   :SFd |    :   '               |       |
   |       | '    ....|....    '               |       |
   |       | '        |        '               |       |
   |       | ' SFTx   |        '               |       |
   |       | ',,,,,,,,|,,,,,,,,'               |       |
   |       |          |                        |       |
   |       |       ---+---                     |       |
   |       |      |       |                    |       |
   |       |======| SFF-3 |====================|       |
    ---+---       |       |                     ---+---
       |           -------                         |
   ....|....                                   ....|....
  :    | SFa:                                 :    | SFe:
  :  --+--  :                                 :  --+--  :
  : | SFI | :                                 : | SFI | :
  :  -----  :                                 :  -----  :
   .........                                   .........
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-the-service-function-chaini" class="selfRef">The Service Function Chaining Architecture Reference Model</a>
          </figcaption></figure>
</div>
<p id="section-2.2-17">As previously noted, <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> makes it clear that the mechanisms it defines
         are intended for use within a single provider's operational domain.  This reduces the
        requirements on the control plane function.<a href="#section-2.2-17" class="pilcrow">¶</a></p>
<p id="section-2.2-18"><span><a href="https://www.rfc-editor.org/rfc/rfc7665#section-5.2" class="relref">Section 5.2</a> of [<a href="#RFC7665" class="xref">RFC7665</a>]</span> sets out the functions provided by a control plane for a service function chaining network.
          The functions are broken down into six items, the first four of which are
         completely covered by the mechanisms described in this document:<a href="#section-2.2-18" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-2.2-19">
<li id="section-2.2-19.1">Visibility of all SFs and the SFFs through which they are reached.<a href="#section-2.2-19.1" class="pilcrow">¶</a>
</li>
          <li id="section-2.2-19.2">Computation of SFPs and programming into the network.<a href="#section-2.2-19.2" class="pilcrow">¶</a>
</li>
          <li id="section-2.2-19.3">Selection of SFIs explicitly in the SFP or dynamically within the network.<a href="#section-2.2-19.3" class="pilcrow">¶</a>
</li>
          <li id="section-2.2-19.4">Programming of SFFs with forwarding path information.<a href="#section-2.2-19.4" class="pilcrow">¶</a>
</li>
        </ol>
<p id="section-2.2-20">The fifth and sixth items in the list in RFC 7665 concern the use of metadata.  These are
         more peripheral to the control plane mechanisms defined in this document but are discussed
         in <a href="#classy" class="xref">Section 4.4</a>.<a href="#section-2.2-20" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sfcBGPRoutes">
<section id="section-3">
      <h2 id="name-bgp-sfc-routes">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-bgp-sfc-routes" class="section-name selfRef">BGP SFC Routes</a>
      </h2>
<p id="section-3-1">This document defines a new AFI/SAFI for BGP, known as "SFC", with an NLRI that is described
       in this section.<a href="#section-3-1" class="pilcrow">¶</a></p>
<p id="section-3-2">The format of the SFC NLRI is shown in <a href="#SFCnlriFig" class="xref">Figure 2</a>.<a href="#section-3-2" class="pilcrow">¶</a></p>
<span id="name-the-format-of-the-sfc-nlri"></span><div id="SFCnlriFig">
<figure id="figure-2">
        <div class="artwork art-text alignLeft" id="section-3-3.1">
<pre>
                 +---------------------------------------+
                 |  Route Type (2 octets)                |
                 +---------------------------------------+
                 |  Length (2 octets)                    |
                 +---------------------------------------+
                 |  Route Type specific (variable)       |
                 +---------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-the-format-of-the-sfc-nlri" class="selfRef">The Format of the SFC NLRI</a>
        </figcaption></figure>
</div>
<p id="section-3-4">The "Route Type" field determines the encoding of the rest of the Route Type specific SFC NLRI.<a href="#section-3-4" class="pilcrow">¶</a></p>
<p id="section-3-5">The "Length" field indicates the length, in octets, of the "Route Type specific" field of the SFC
       NLRI.<a href="#section-3-5" class="pilcrow">¶</a></p>
<p id="section-3-6">This document defines the following Route Types:<a href="#section-3-6" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-3-7">
<li id="section-3-7.1">Service Function Instance Route (SFIR)<a href="#section-3-7.1" class="pilcrow">¶</a>
</li>
        <li id="section-3-7.2">Service Function Path Route (SFPR)<a href="#section-3-7.2" class="pilcrow">¶</a>
</li>
      </ol>
<p id="section-3-8">An SFIR is used to identify an SFI.  An SFPR defines a sequence of SFs (each of which has at least one instance advertised in
       an SFIR) that form an SFP.<a href="#section-3-8" class="pilcrow">¶</a></p>
<p id="section-3-9">The detailed encoding and procedures for these Route Types are described in subsequent sections.<a href="#section-3-9" class="pilcrow">¶</a></p>
<p id="section-3-10">The SFC NLRI is carried in BGP <span>[<a href="#RFC4271" class="xref">RFC4271</a>]</span> using BGP Multiprotocol Extensions
       <span>[<a href="#RFC4760" class="xref">RFC4760</a>]</span> with an Address Family Identifier (AFI) of 31 and a Subsequent Address
       Family Identifier (SAFI) of 9.  The "NLRI" field in the MP_REACH_NLRI/MP_UNREACH_NLRI attribute
       contains the SFC NLRI, encoded as specified above.<a href="#section-3-10" class="pilcrow">¶</a></p>
<p id="section-3-11">In order for two BGP speakers to exchange SFC NLRIs, they
      <span class="bcp14">MUST</span> use BGP capabilities advertisements
       to ensure that they both are capable of properly processing such NLRIs.  This is done as specified
       in <span>[<a href="#RFC4760" class="xref">RFC4760</a>]</span>, by using capability code
       1 (Multiprotocol BGP) with an AFI of 31 and
       a SAFI of 9.<a href="#section-3-11" class="pilcrow">¶</a></p>
<p id="section-3-12">The "nexthop" field of the MP_REACH_NLRI attribute of the SFC NLRI <span class="bcp14">MUST</span> be set to a loopback address of
       the advertising SFF.<a href="#section-3-12" class="pilcrow">¶</a></p>
<div id="sfiRoutes">
<section id="section-3.1">
        <h3 id="name-service-function-instance-r">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-service-function-instance-r" class="section-name selfRef">Service Function Instance Route (SFIR)</a>
        </h3>
<p id="section-3.1-1"><a href="#sfiRouteFig" class="xref">Figure 3</a> shows the Route Type specific NLRI of the SFIR.<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<span id="name-sfir-route-type-specific-nl"></span><div id="sfiRouteFig">
<figure id="figure-3">
          <div class="artwork art-text alignLeft" id="section-3.1-2.1">
<pre>
                 +--------------------------------------------+
                 |  Route Distinguisher (RD) (8 octets)       |
                 +--------------------------------------------+
                 |  Service Function Type (2 octets)          |
                 +--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-sfir-route-type-specific-nl" class="selfRef">SFIR Route Type Specific NLRI</a>
          </figcaption></figure>
</div>
<p id="section-3.1-3"><span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span> defines a Route
 Distinguisher (RD) as consisting of a two-byte "Type" field
          and a six-byte "Value" field, and it defines RD types 0, 1, and 2.  In this specification, the RD
          (used for the SFIR) <span class="bcp14">MUST</span> be of type 0, 1, or 2.<a href="#section-3.1-3" class="pilcrow">¶</a></p>
<p id="section-3.1-4">If two SFIRs are originated from different administrative domains (within the same
          provider's operational domain), they <span class="bcp14">MUST</span> have different RDs.  In particular, SFIRs from
          different VPNs (for different service function overlay networks) <span class="bcp14">MUST</span> have different RDs, and
          those RDs <span class="bcp14">MUST</span> be different from any non-VPN SFIRs.<a href="#section-3.1-4" class="pilcrow">¶</a></p>
<p id="section-3.1-5">The SFT identifies the functions/features an
 SF can offer, e.g.,
          classifier, firewall, load balancer.  There may be several SFIs that can perform a given
          service function.  Each node hosting an SFI <span class="bcp14">MUST</span> originate an SFIR for each type of SF that it
          hosts (as indicated by the SFT value), and it <span class="bcp14">MAY</span> advertise an SFIR for each instance of each type of SF.  A minimal
          advertisement allows construction of valid SFPs and leaves the selection of SFIs to the local SFF;
          a detailed advertisement may have scaling concerns but allows a controller that constructs an
          SFP to make an explicit choice of SFI.<a href="#section-3.1-5" class="pilcrow">¶</a></p>
<p id="section-3.1-6">Note that a node may advertise all its SFIs of one SFT in one shot
 using normal BGP UPDATE packing.
          That is, all of the SFIRs in an Update share a common Tunnel Encapsulation and Route Target (RT) attribute.
          See also <a href="#sfpatt" class="xref">Section 3.2.1</a>.<a href="#section-3.1-6" class="pilcrow">¶</a></p>
<p id="section-3.1-7">The SFIR representing a given SFI will contain an NLRI with "RD" field set to an RD as specified above,
          and with the "SFT" field set to identify that SFI's SFT.  The values for the "SFT"
          field are taken from a registry administered by IANA (see <a href="#iana" class="xref">Section 10</a>).  A BGP UPDATE
          containing one or more SFIRs <span class="bcp14">MUST</span> also include a tunnel encapsulation attribute
          <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>.  If a data packet needs to be sent to an SFI identified
          in one of the SFIRs, it will be encapsulated as specified by the tunnel encapsulation attribute and
          then transmitted through the underlay network.<a href="#section-3.1-7" class="pilcrow">¶</a></p>
<p id="section-3.1-8">Note that the tunnel encapsulation attribute <span class="bcp14">MUST</span> contain sufficient information to allow the
          advertising SFF to identify the overlay or VPN network that a received packet is transiting.
          This is because the [SPI, SI] in a received packet is specific to a particular overlay or VPN
          network.<a href="#section-3.1-8" class="pilcrow">¶</a></p>
<div id="poolid">
<section id="section-3.1.1">
          <h4 id="name-sfir-pool-identifier-extend">
<a href="#section-3.1.1" class="section-number selfRef">3.1.1. </a><a href="#name-sfir-pool-identifier-extend" class="section-name selfRef">SFIR Pool Identifier Extended Community</a>
          </h4>
<p id="section-3.1.1-1">This document defines a new transitive Extended Community <span>[<a href="#RFC4360" class="xref">RFC4360</a>]</span> of type 0x0b called
             the "SFC Extended Community".  When used with Sub-Type 1, this is called the "SFIR Pool Identifier extended
             community".  It <span class="bcp14">MAY</span> be included in SFIR
      advertisements, and it is used to indicate the identity of a pool of
             SFIRs to which an SFIR belongs.  Since an SFIR may be a member of
      more than one pool, multiple of these extended
             communities may be present on a single SFIR advertisement.<a href="#section-3.1.1-1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2">SFIR pools allow SFIRs to be grouped for any purpose.  Possible uses include control plane scalability and
             stability.  A pool identifier may be included in an SFPR to indicate a set of SFIs that are acceptable at
             a specific point on an SFP (see Sections <a href="#sfttlv" class="xref">3.2.1.3</a> and <a href="#SFPR" class="xref">4.3</a>).<a href="#section-3.1.1-2" class="pilcrow">¶</a></p>
<p id="section-3.1.1-3">The SFIR Pool Identifier Extended Community is encoded in 8 octets as shown in <a href="#poolFig" class="xref">Figure 4</a>.<a href="#section-3.1.1-3" class="pilcrow">¶</a></p>
<span id="name-the-sfir-pool-identifier-ex"></span><div id="poolFig">
<figure id="figure-4">
            <div class="artwork art-text alignLeft" id="section-3.1.1-4.1">
<pre>
             +--------------------------------------------+
             |  Type = 0x0b (1 octet)                     |
             +--------------------------------------------+
             |  Sub-Type = 1 (1 octet)                    |
             +--------------------------------------------+
             |  SFIR Pool Identifier value (6 octets)     |
             +--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-the-sfir-pool-identifier-ex" class="selfRef">The SFIR Pool Identifier Extended Community</a>
            </figcaption></figure>
</div>
<p id="section-3.1.1-5">The SFIR Pool Identifier value is encoded in a 6-octet field in network byte order, and the value is unique
             within the scope of an overlay network.  This means that pool identifiers need to be centrally managed, which
             is consistent with the assignment of SFIs to pools.<a href="#section-3.1.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="swapnstack">
<section id="section-3.1.2">
          <h4 id="name-mpls-mixed-swapping-stackin">
<a href="#section-3.1.2" class="section-number selfRef">3.1.2. </a><a href="#name-mpls-mixed-swapping-stackin" class="section-name selfRef">MPLS Mixed Swapping/Stacking Extended Community</a>
          </h4>
<p id="section-3.1.2-1">As noted in <a href="#poolid" class="xref">Section 3.1.1</a>, this document defines a new transitive Extended Community of type 0x0b
             called the "SFC Extended Community".  When used with Sub-Type 2, this is called the "MPLS Mixed Swapping/Stacking
             Labels Extended Community".  The community is encoded as shown in <a href="#swapFig" class="xref">Figure 5</a>.
             It contains a pair of MPLS labels: an SFC Context Label and an SF Label, as described in
             <span>[<a href="#RFC8595" class="xref">RFC8595</a>]</span>.  Each label is 20 bits encoded in a 3-octet (24-bit) field with
             4 trailing  bits that <span class="bcp14">MUST</span> be set to zero.<a href="#section-3.1.2-1" class="pilcrow">¶</a></p>
<span id="name-the-mpls-mixed-swapping-sta"></span><div id="swapFig">
<figure id="figure-5">
            <div class="artwork art-text alignLeft" id="section-3.1.2-2.1">
<pre>
             +--------------------------------------------+
             |  Type = 0x0b (1 octet)                     |
             +--------------------------------------------|
             |  Sub-Type = 2 (1 octet)                    |
             +--------------------------------------------|
             |  SFC Context Label (3 octets)              |
             +--------------------------------------------|
             |  SF Label (3 octets)                       |
             +--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-the-mpls-mixed-swapping-sta" class="selfRef">The MPLS Mixed Swapping/Stacking Labels Extended Community</a>
            </figcaption></figure>
</div>
<p id="section-3.1.2-3">Note that it is assumed that each SFF has one or more globally
   unique SFC Context Labels and that the context-label
             space and the SPI-address space are disjoint. In other words, a
      label value cannot be used to indicate both an SFC context and an
      SPI,
             and it can be determined from knowledge of the label spaces
   whether a label indicates an SFC context or an SPI.<a href="#section-3.1.2-3" class="pilcrow">¶</a></p>
<p id="section-3.1.2-4">If an SFF supports SFP Traversal with an MPLS Label Stack, it
   <span class="bcp14">MUST</span> include this Extended Community with the SFIRs
             that it advertises.<a href="#section-3.1.2-4" class="pilcrow">¶</a></p>
<p id="section-3.1.2-5">See <a href="#swapOp" class="xref">Section 7.6</a> for a description of how this Extended Community is used.<a href="#section-3.1.2-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sfpRoutes">
<section id="section-3.2">
        <h3 id="name-service-function-path-route">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-service-function-path-route" class="section-name selfRef">Service Function Path Route (SFPR)</a>
        </h3>
<p id="section-3.2-1"><a href="#sfpRouteFig" class="xref">Figure 6</a> shows the Route Type specific NLRI of the SFPR.<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<span id="name-sfpr-route-type-specific-nl"></span><div id="sfpRouteFig">
<figure id="figure-6">
          <div class="artwork art-text alignLeft" id="section-3.2-2.1">
<pre>
             +-----------------------------------------------+
             |  Route Distinguisher (RD) (8 octets)          |
             +-----------------------------------------------+
             |  Service Path Identifier (SPI) (3 octets)     |
             +-----------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-6" class="selfRef">Figure 6</a>:
<a href="#name-sfpr-route-type-specific-nl" class="selfRef">SFPR Route Type Specific NLRI</a>
          </figcaption></figure>
</div>
<p id="section-3.2-3"><span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span> defines a Route Distinguisher (RD) as consisting of a two-byte "Type" field
          and a six-byte "Value" field, and it defines RD types 0, 1, and 2.  In this specification, the RD
          (used for the SFPR) <span class="bcp14">MUST</span> be of type 0, 1, or 2.<a href="#section-3.2-3" class="pilcrow">¶</a></p>
<p id="section-3.2-4">All SFPs <span class="bcp14">MUST</span> be associated with an RD.  The association of an SFP with
          an RD is determined by provisioning.  If two SFPRs are originated from different controllers, they
          <span class="bcp14">MUST</span> have different RDs.  Additionally, SFPRs from different VPNs (i.e., in different service
          function overlay networks) <span class="bcp14">MUST</span> have different RDs, and those RDs <span class="bcp14">MUST</span> be different from any
          non-VPN SFPRs.<a href="#section-3.2-4" class="pilcrow">¶</a></p>
<p id="section-3.2-5">The Service path identifier is defined in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> and is the value
          to be placed in the "Service Path Identifier" field of the NSH of any packet sent on this
          SFP.  It is expected that one or more controllers will originate
          these routes in order to configure a service function overlay network.<a href="#section-3.2-5" class="pilcrow">¶</a></p>
<p id="section-3.2-6">The SFP is described in a new BGP Path attribute, the SFP attribute.  <a href="#sfpatt" class="xref">Section 3.2.1</a>
          shows the format of that attribute.<a href="#section-3.2-6" class="pilcrow">¶</a></p>
<div id="sfpatt">
<section id="section-3.2.1">
          <h4 id="name-the-sfp-attribute">
<a href="#section-3.2.1" class="section-number selfRef">3.2.1. </a><a href="#name-the-sfp-attribute" class="section-name selfRef">The SFP Attribute</a>
          </h4>
<p id="section-3.2.1-1"><span>[<a href="#RFC4271" class="xref">RFC4271</a>]</span> defines BGP Path attributes.  This document introduces a new
             Optional Transitive Path attribute called the "SFP attribute", with value 37.  The first SFP attribute <span class="bcp14">MUST</span> be processed, and subsequent instances <span class="bcp14">MUST</span> be ignored.<a href="#section-3.2.1-1" class="pilcrow">¶</a></p>
<p id="section-3.2.1-2">The common fields of the SFP attribute are set as follows:<a href="#section-3.2.1-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1-3.1">The Optional bit is set to 1 to indicate that this is an optional attribute.<a href="#section-3.2.1-3.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.1-3.2">The Transitive bit is set to 1 to indicate that this is a transitive attribute.<a href="#section-3.2.1-3.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.1-3.3">The Extended Length bit is set if the length of the SFP attribute is encoded in one
                  octet (set to 0) or two octets (set to 1), as described in <span>[<a href="#RFC4271" class="xref">RFC4271</a>]</span>.<a href="#section-3.2.1-3.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.1-3.4">The Attribute Type Code is set to 37.<a href="#section-3.2.1-3.4" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.2.1-4">The content of the SFP attribute is a series of Type-Length-Value (TLV) constructs.
             Some TLVs may include Sub-TLVs.  All TLVs and Sub-TLVs have a common format:<a href="#section-3.2.1-4" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.2.1-5">
            <dt id="section-3.2.1-5.1">Type:</dt>
            <dd style="margin-left: 1.5em" id="section-3.2.1-5.2"> A single octet indicating the type of the SFP attribute TLV.  Values are
                  taken from the registry described in <a href="#ianasftlv" class="xref">Section 10.3</a>.<a href="#section-3.2.1-5.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-3.2.1-5.3">Length:</dt>
            <dd style="margin-left: 1.5em" id="section-3.2.1-5.4"> A two-octet field indicating the length of the data following the "Length"
                  field, counted in octets.<a href="#section-3.2.1-5.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-3.2.1-5.5">Value:</dt>
            <dd style="margin-left: 1.5em" id="section-3.2.1-5.6"> The contents of the TLV.<a href="#section-3.2.1-5.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-3.2.1-6">The formats of the TLVs defined in this document are shown in the following sections.
             The presence rules and meanings are as follows.<a href="#section-3.2.1-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1-7.1">The SFP attribute contains a sequence of zero or more Association TLVs.  That is, the
                  Association TLV is <span class="bcp14">OPTIONAL</span>.  Each Association TLV provides an association between this
                  SFPR and another SFPR.  Each associated SFPR is indicated using the RD with which it is
                  advertised (we say the SFPR-RD to avoid ambiguity).<a href="#section-3.2.1-7.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.1-7.2">The SFP attribute contains a sequence of one or more Hop TLVs.  Each Hop TLV contains
                  all of the information about a single hop in the SFP.<a href="#section-3.2.1-7.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.1-7.3">Each Hop TLV contains an SI value and a sequence of one or more SFT TLVs.  Each SFT
                  TLV contains an SFI reference for each instance of an SF that is allowed at this hop
                  of the SFP for the specific SFT.  Each SFI is indicated using the RD with which
                  it is advertised (we say the SFIR-RD to avoid ambiguity).<a href="#section-3.2.1-7.3" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.2.1-8"><span><a href="https://www.rfc-editor.org/rfc/rfc4271#section-6" class="relref">Section 6</a> of [<a href="#RFC4271" class="xref">RFC4271</a>]</span> describes the handling of malformed BGP attributes,
             or those that are in error in some way.  <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span> revises BGP error handling
             specifically for the UPDATE message, provides guidelines for the authors of documents
             defining new attributes, and revises the error-handling procedures for a number of existing
             attributes.  This document introduces the SFP attribute and so defines error handling as
             follows:<a href="#section-3.2.1-8" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1-9.1">When parsing a message, an unknown Attribute Type Code or a length that suggests that
                  the attribute is longer than the remaining message is treated as a malformed message,
                  and the "treat-as-withdraw" approach is used as per <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>.<a href="#section-3.2.1-9.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.2.1-9.2">
              <p id="section-3.2.1-9.2.1">When parsing a message that contains an SFP attribute, the following cases constitute
                  errors:<a href="#section-3.2.1-9.2.1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-3.2.1-9.2.2">
<li id="section-3.2.1-9.2.2.1">Optional bit is set to 0 in the SFP attribute.<a href="#section-3.2.1-9.2.2.1" class="pilcrow">¶</a>
</li>
                <li id="section-3.2.1-9.2.2.2">Transitive bit is set to 0 in the SFP attribute.<a href="#section-3.2.1-9.2.2.2" class="pilcrow">¶</a>
</li>
                <li id="section-3.2.1-9.2.2.3">Unknown "TLV Type" field found in the SFP attribute.<a href="#section-3.2.1-9.2.2.3" class="pilcrow">¶</a>
</li>
                <li id="section-3.2.1-9.2.2.4">TLV length that suggests the TLV extends beyond the end of the SFP attribute.<a href="#section-3.2.1-9.2.2.4" class="pilcrow">¶</a>
</li>
                <li id="section-3.2.1-9.2.2.5">Association TLV contains an unknown SFPR-RD.<a href="#section-3.2.1-9.2.2.5" class="pilcrow">¶</a>
</li>
                <li id="section-3.2.1-9.2.2.6">No Hop TLV found in the SFP attribute.<a href="#section-3.2.1-9.2.2.6" class="pilcrow">¶</a>
</li>
                <li id="section-3.2.1-9.2.2.7">No Sub-TLV found in a Hop TLV.<a href="#section-3.2.1-9.2.2.7" class="pilcrow">¶</a>
</li>
                <li id="section-3.2.1-9.2.2.8">Unknown SFIR-RD found in an SFT TLV.<a href="#section-3.2.1-9.2.2.8" class="pilcrow">¶</a>
</li>
              </ol>
</li>
            <li class="normal" id="section-3.2.1-9.3">
              <p id="section-3.2.1-9.3.1">The errors listed above are treated as follows:<a href="#section-3.2.1-9.3.1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.2.1-9.3.2">
                <dt id="section-3.2.1-9.3.2.1">1, 2, 4, 6, 7:</dt>
                <dd style="margin-left: 1.5em" id="section-3.2.1-9.3.2.2">The attribute <span class="bcp14">MUST</span> be treated as malformed and
                      the "treat-as-withdraw" approach used as per <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>.<a href="#section-3.2.1-9.3.2.2" class="pilcrow">¶</a>
</dd>
                <dd class="break"></dd>
<dt id="section-3.2.1-9.3.2.3">3:</dt>
                <dd style="margin-left: 1.5em" id="section-3.2.1-9.3.2.4">Unknown TLVs <span class="bcp14">MUST</span> be ignored, and message processing <span class="bcp14">MUST</span>
                      continue.<a href="#section-3.2.1-9.3.2.4" class="pilcrow">¶</a>
</dd>
                <dd class="break"></dd>
<dt id="section-3.2.1-9.3.2.5">5, 8:</dt>
                <dd style="margin-left: 1.5em" id="section-3.2.1-9.3.2.6">The absence of an RD with which to correlate is nothing more than
                      a soft error.  The receiver <span class="bcp14">SHOULD</span> store the information from the SFP attribute until
                      a corresponding advertisement is received.<a href="#section-3.2.1-9.3.2.6" class="pilcrow">¶</a>
</dd>
              <dd class="break"></dd>
</dl>
</li>
          </ul>
<div id="assoctlv">
<section id="section-3.2.1.1">
            <h5 id="name-the-association-tlv">
<a href="#section-3.2.1.1" class="section-number selfRef">3.2.1.1. </a><a href="#name-the-association-tlv" class="section-name selfRef">The Association TLV</a>
            </h5>
<p id="section-3.2.1.1-1">The Association TLV is an optional TLV in the SFP attribute.  It <span class="bcp14">MAY</span> be present
                multiple times.  Each occurrence provides an association with another SFP as
                advertised in another SFPR.  The format of the Association TLV is shown in
                <a href="#assoctlvfig" class="xref">Figure 7</a>.<a href="#section-3.2.1.1-1" class="pilcrow">¶</a></p>
<span id="name-the-format-of-the-associati"></span><div id="assoctlvfig">
<figure id="figure-7">
              <div class="artwork art-text alignLeft" id="section-3.2.1.1-2.1">
<pre>
             +--------------------------------------------+
             |  Type = 1 (1 octet)                        |
             +--------------------------------------------|
             |  Length (2 octets)                         |
             +--------------------------------------------|
             |  Association Type (1 octet)                |
             +--------------------------------------------|
             |  Associated SFPR-RD (8 octets)             |
             +--------------------------------------------|
             |  Associated SPI (3 octets)                 |
             +--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-7" class="selfRef">Figure 7</a>:
<a href="#name-the-format-of-the-associati" class="selfRef">The Format of the Association TLV</a>
              </figcaption></figure>
</div>
<p id="section-3.2.1.1-3">The fields are as follows:<a href="#section-3.2.1.1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1.1-4.1">"Type" is set to 1 to indicate an Association TLV.<a href="#section-3.2.1.1-4.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2.1.1-4.2">"Length" indicates the length in octets of the "Association Type" and "Associated
                     SFPR-RD" fields.  The value of the "Length" field is 12.<a href="#section-3.2.1.1-4.2" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2.1.1-4.3">The "Association Type" field indicates the type of association.  The values are
                     tracked in an IANA registry (see <a href="#ianaassoc" class="xref">Section 10.4</a>).  Only one value
                     is defined in this document: Type 1 indicates association of two unidirectional
                     SFPs to form a bidirectional SFP.  An SFP attribute <span class="bcp14">SHOULD NOT</span> contain more than
                     one Association TLV with Association Type 1; if more than one is present, the
                     first one <span class="bcp14">MUST</span> be processed, and subsequent instances <span class="bcp14">MUST</span> be ignored.  Note that
                     documents that define new association types must also define the presence rules
                     for Association TLVs of the new type.<a href="#section-3.2.1.1-4.3" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2.1.1-4.4">The Associated SFPR-RD contains the RD of the associated SFP as advertised in an
                     SFPR.<a href="#section-3.2.1.1-4.4" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2.1.1-4.5">The Associated SPI contains the SPI of the associated SFP as advertised in an
                     SFPR.<a href="#section-3.2.1.1-4.5" class="pilcrow">¶</a>
</li>
            </ul>
<p id="section-3.2.1.1-5">Association TLVs with unknown Association Type values <span class="bcp14">SHOULD</span> be ignored.  Association TLVs
                that contain an Associated SFPR-RD value equal to the RD of the SFPR in which they are
                contained <span class="bcp14">SHOULD</span> be ignored.  If the Associated SPI is not equal to the SPI advertised in
                the SFPR indicated by the Associated SFPR-RD, then the Association TLV <span class="bcp14">SHOULD</span> be ignored.
                In all three of these cases, an implementation <span class="bcp14">MAY</span> reject the SFP attribute as malformed and
                use the "treat-as-withdraw" approach per <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>; however, implementors are
                cautioned that such an approach may make an implementation less flexible in the event of
                future extensions to this protocol.<a href="#section-3.2.1.1-5" class="pilcrow">¶</a></p>
<p id="section-3.2.1.1-6">Note that when two SFPRs reference each other using the Association TLV, one SFPR advertisement
                will be received before the other.  Therefore, processing of an association <span class="bcp14">MUST NOT</span> be
                rejected simply because the Associated SFPR-RD is unknown.<a href="#section-3.2.1.1-6" class="pilcrow">¶</a></p>
<p id="section-3.2.1.1-7">Further discussion of correlation of SFPRs is provided in <a href="#correlation" class="xref">Section 7.1</a>.<a href="#section-3.2.1.1-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="hoptlv">
<section id="section-3.2.1.2">
            <h5 id="name-the-hop-tlv">
<a href="#section-3.2.1.2" class="section-number selfRef">3.2.1.2. </a><a href="#name-the-hop-tlv" class="section-name selfRef">The Hop TLV</a>
            </h5>
<p id="section-3.2.1.2-1">There is one Hop TLV in the SFP attribute for each hop in the SFP.  The format of
                the Hop TLV is shown in <a href="#hoptlvfig" class="xref">Figure 8</a>.  At least one Hop TLV <span class="bcp14">MUST</span> be
                present in an SFP attribute.<a href="#section-3.2.1.2-1" class="pilcrow">¶</a></p>
<span id="name-the-format-of-the-hop-tlv"></span><div id="hoptlvfig">
<figure id="figure-8">
              <div class="artwork art-text alignLeft" id="section-3.2.1.2-2.1">
<pre>
             +--------------------------------------------+
             |  Type = 2 (1 octet)                        |
             +--------------------------------------------|
             |  Length (2 octets)                         |
             +--------------------------------------------|
             |  Service Index (1 octet)                   |
             +--------------------------------------------|
             |  Hop Details (variable)                    |
             +--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-8" class="selfRef">Figure 8</a>:
<a href="#name-the-format-of-the-hop-tlv" class="selfRef">The Format of the Hop TLV</a>
              </figcaption></figure>
</div>
<p id="section-3.2.1.2-3">The fields are as follows:<a href="#section-3.2.1.2-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1.2-4.1">"Type" is set to 2 to indicate a Hop TLV.<a href="#section-3.2.1.2-4.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2.1.2-4.2">"Length" indicates the length, in octets, of the "Service Index" and "Hop
                     Details" fields.<a href="#section-3.2.1.2-4.2" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2.1.2-4.3">The Service Index is defined in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> and is the value found in the
                     "Service Index" field of the NSH that an SFF will
      use to look up to which next
                     SFI a packet is to be sent.<a href="#section-3.2.1.2-4.3" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2.1.2-4.4">The "Hop Details" field consists of a sequence of one or more Sub-TLVs.<a href="#section-3.2.1.2-4.4" class="pilcrow">¶</a>
</li>
            </ul>
<p id="section-3.2.1.2-5">Each hop of the SFP may demand that a specific type of SF is executed, and that type is
                indicated in Sub-TLVs of the Hop TLV.  At least one Sub-TLV <span class="bcp14">MUST</span> be present. This document
                defines the SFT Sub-TLV (see <a href="#sfttlv" class="xref">Section 3.2.1.3</a>) and the MPLS Swapping/Stacking Sub-TLV
                (see <a href="#swapTLV" class="xref">Section 3.2.1.4</a>); other Sub-TLVs may be defined in future. The SFT Sub-TLV
                provides a list of which types of SF are acceptable at a specific hop, and for each type it
                allows a degree of control to be imposed on the choice of SFIs of that particular type.  The MPLS 
  Swapping/Stacking Sub-TLV indicates the type of SFC encoding to use
  in an MPLS label stack.<a href="#section-3.2.1.2-5" class="pilcrow">¶</a></p>
<p id="section-3.2.1.2-6">If no Hop TLV is present in an SFP attribute, it is a malformed attribute.<a href="#section-3.2.1.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sfttlv">
<section id="section-3.2.1.3">
            <h5 id="name-the-sft-sub-tlv">
<a href="#section-3.2.1.3" class="section-number selfRef">3.2.1.3. </a><a href="#name-the-sft-sub-tlv" class="section-name selfRef">The SFT Sub-TLV</a>
            </h5>
<p id="section-3.2.1.3-1">The SFT Sub-TLV <span class="bcp14">MAY</span> be included in the list of Sub-TLVs of the Hop TLV.  The format of the SFT Sub-TLV
                is shown in <a href="#sfttlvfig" class="xref">Figure 9</a>.  The Hop Sub-TLV contains a list of SFIR-RD values each taken from
                the advertisement of an SFI.  Together they form a list of acceptable SFIs of the indicated type.<a href="#section-3.2.1.3-1" class="pilcrow">¶</a></p>
<span id="name-the-format-of-the-sft-sub-t"></span><div id="sfttlvfig">
<figure id="figure-9">
              <div class="artwork art-text alignLeft" id="section-3.2.1.3-2.1">
<pre>
             +--------------------------------------------+
             |  Type = 3 (1 octet)                        |
             +--------------------------------------------|
             |  Length (2 octets)                         |
             +--------------------------------------------|
             |  Service Function Type (2 octets)          |
             +--------------------------------------------|
             |  SFIR-RD List (variable)                   |
             +--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-9" class="selfRef">Figure 9</a>:
<a href="#name-the-format-of-the-sft-sub-t" class="selfRef">The Format of the SFT Sub-TLV</a>
              </figcaption></figure>
</div>
<p id="section-3.2.1.3-3">The fields are as follows:<a href="#section-3.2.1.3-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1.3-4.1">"Type" is set to 3 to indicate an SFT Sub-TLV.<a href="#section-3.2.1.3-4.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2.1.3-4.2">"Length" indicates the length, in octets, of the "Service
       Function Type" and "SFIR-RD List" fields.<a href="#section-3.2.1.3-4.2" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2.1.3-4.3">The SFT value indicates the category (type) of SF that is to be
                     executed at this hop.  The types are as advertised for the SFs supported by the SFFs.
                     SFT values in the range 1-31 are special-purpose SFT values and have meanings defined by
                     the documents that describe them -- the value "Change Sequence" is defined in
                     <a href="#changeseq" class="xref">Section 6.1</a> of this document.<a href="#section-3.2.1.3-4.3" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2.1.3-4.4">The hop description is further qualified beyond the specification of the SFTs by listing, for
                     each SFT in each hop, the SFIs that may be used at the hop.  The SFIs are identified using
                     the SFIR-RDs from the advertisements of the SFIs in the SFIRs.  Note that if the list contains
                     one or more SFIR Pool Identifiers, then for each, the SFIR-RD list is effectively expanded to
                     include the SFIR-RD of each SFIR advertised with that SFIR Pool Identifier.  An SFIR-RD of value
                     zero has special meaning, as described in <a href="#selection" class="xref">Section 5</a>.  Each entry in the list
                     is eight octets long, and the number of entries in the list can be deduced from the value of the
                     "Length" field.<a href="#section-3.2.1.3-4.4" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2.1.3-4.5">Note that an SFIR-RD is of type 0, 1, or 2 (as described in
       <a href="#sfiRoutes" class="xref">Section 3.1</a>).  Thus, the
                     high-order octet of an RD found in an SFIR-RD List always
      has a value of 0x00.  However, the high-order octet of an
      SFIR Pool Identifier (an Extended Community with "Type"
      field 0x0b) will always
                     have a nonzero value.  This allows the node processing the SFIR-RD list to distinguish between
                     the two types of list entry.<a href="#section-3.2.1.3-4.5" class="pilcrow">¶</a>
</li>
            </ul>
</section>
</div>
<div id="swapTLV">
<section id="section-3.2.1.4">
            <h5 id="name-mpls-swapping-stacking-sub-">
<a href="#section-3.2.1.4" class="section-number selfRef">3.2.1.4. </a><a href="#name-mpls-swapping-stacking-sub-" class="section-name selfRef">MPLS Swapping/Stacking Sub-TLV</a>
            </h5>
<p id="section-3.2.1.4-1">The MPLS Swapping/Stacking Sub-TLV (Type value 4) is a zero-length Sub-TLV that is <span class="bcp14">OPTIONAL</span> in the Hop TLV
                and is used when the data representation is MPLS (see <a href="#representation" class="xref">Section 7.5</a>).  When present, it indicates to
                the classifier imposing an MPLS label stack that the current hop is to use an {SFC Context Label, SF label} rather
                than an {SPI, SF} label pair.  See <a href="#swapOp" class="xref">Section 7.6</a> for more details.<a href="#section-3.2.1.4-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sfpTraverse">
<section id="section-3.2.1.5">
            <h5 id="name-sfp-traversal-with-mpls-lab">
<a href="#section-3.2.1.5" class="section-number selfRef">3.2.1.5. </a><a href="#name-sfp-traversal-with-mpls-lab" class="section-name selfRef">SFP Traversal With MPLS Label Stack TLV</a>
            </h5>
<p id="section-3.2.1.5-1">The SFP Traversal With MPLS Label Stack TLV (Type value 5) is a zero-length TLV that can be carried in the
                SFP attribute and indicates to the classifier and the SFFs on the SFP that an MPLS label stack with label
                swapping/stacking is to be used for packets traversing the SFP.  All of the SFFs specified at each of the SFP's
                hops <span class="bcp14">MUST</span> have advertised an  MPLS Mixed Swapping/Stacking Extended Community (see <a href="#swapnstack" class="xref">Section 3.1.2</a>)
                for the SFP to be considered usable.<a href="#section-3.2.1.5-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sfparules">
<section id="section-3.2.2">
          <h4 id="name-general-rules-for-the-sfp-a">
<a href="#section-3.2.2" class="section-number selfRef">3.2.2. </a><a href="#name-general-rules-for-the-sfp-a" class="section-name selfRef">General Rules for the SFP Attribute</a>
          </h4>
<p id="section-3.2.2-1">It is possible for the same SFI, as described by an SFIR, to be used in multiple SFPRs.<a href="#section-3.2.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2.2-2">When two SFPRs have the same SPI but different SFPR-RDs, there can be three cases:<a href="#section-3.2.2-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-3.2.2-3">
            <li id="section-3.2.2-3.1">Two or more controllers are originating SFPRs for the same SFP.  In this case, the
                   content of the SFPRs is identical, and the duplication is to ensure receipt and
                   provide controller redundancy.<a href="#section-3.2.2-3.1" class="pilcrow">¶</a>
</li>
            <li id="section-3.2.2-3.2">There is a transition in content of the advertised SFP, and the advertisements may
                   originate from one or more controllers.  In this case, the content of the SFPRs will be
                   different.<a href="#section-3.2.2-3.2" class="pilcrow">¶</a>
</li>
            <li id="section-3.2.2-3.3">The reuse of an SPI may result from a configuration error.<a href="#section-3.2.2-3.3" class="pilcrow">¶</a>
</li>
          </ol>
<p id="section-3.2.2-4">There is no way in any of these cases for the receiving SFF to know which SFPR to process, and the
              SFPRs could be received in any order.  At any point in time, when multiple SFPRs have the
              same SPI but different SFPR-RDs, the SFF <span class="bcp14">MUST</span> use the SFPR with the numerically lowest
              SFPR-RD when interpreting the RDs as 8-octet integers in network byte order.  The SFF
              <span class="bcp14">SHOULD</span> log this occurrence to assist with debugging.<a href="#section-3.2.2-4" class="pilcrow">¶</a></p>
<p id="section-3.2.2-5">Furthermore, a controller that wants to change the content of an SFP is <span class="bcp14">RECOMMENDED</span> to use a
              new SPI and so create a new SFP onto which the classifiers can transition packet flows before
              the SFPR for the old SFP is withdrawn.  This avoids any race conditions with SFPR advertisements.<a href="#section-3.2.2-5" class="pilcrow">¶</a></p>
<p id="section-3.2.2-6">Additionally, a controller <span class="bcp14">SHOULD NOT</span> reuse an SPI after it has withdrawn the SFPR that used it
              until at least a configurable amount of time has passed.  This timer <span class="bcp14">SHOULD</span> have a default of one
              hour.<a href="#section-3.2.2-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="mode">
<section id="section-4">
      <h2 id="name-mode-of-operation">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-mode-of-operation" class="section-name selfRef">Mode of Operation</a>
      </h2>
<p id="section-4-1">This document describes the use of BGP as a control plane to create and manage a service
       function overlay network.<a href="#section-4-1" class="pilcrow">¶</a></p>
<div id="rt">
<section id="section-4.1">
        <h3 id="name-route-targets">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-route-targets" class="section-name selfRef">Route Targets</a>
        </h3>
<p id="section-4.1-1">The main feature introduced by this document is the ability to create multiple service
          function overlay networks through the use of Route Targets (RTs) <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span>.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">Every BGP UPDATE containing an SFIR or SFPR carries one or more RTs.  The RT carried by a particular
          SFIR or SFPR is determined by the provisioning of the route's originator.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">Every node in a service function overlay network is configured with one or more import RTs.
          Thus, each SFF will import only the SFPRs with matching RTs, allowing the construction of
          multiple service function overlay networks or the instantiation of SFCs
          within a Layer 3 Virtual Private Network (L3VPN) or Ethernet VPN (EVPN) instance
          (see <a href="#private" class="xref">Section 7.3</a>).  An SFF that has a presence in multiple service function
          overlay networks (i.e., one that imports more than one RT) will
   usually maintain separate forwarding
          state for each overlay network.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="SFIR">
<section id="section-4.2">
        <h3 id="name-service-function-instance-ro">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-service-function-instance-ro" class="section-name selfRef">Service Function Instance Routes</a>
        </h3>
<p id="section-4.2-1">The SFIR (see <a href="#sfiRoutes" class="xref">Section 3.1</a>) is used to advertise the existence and location
          of a specific SFI; it consists of:<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-2.1">The RT as just described.<a href="#section-4.2-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.2-2.2">A Service Function Type (SFT) that is the type of service function that is
                provided (such as "firewall").<a href="#section-4.2-2.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.2-2.3">A Route Distinguisher (RD) that is unique to a specific overlay.<a href="#section-4.2-2.3" class="pilcrow">¶</a>
</li>
        </ul>
</section>
</div>
<div id="SFPR">
<section id="section-4.3">
        <h3 id="name-service-function-path-routes">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-service-function-path-routes" class="section-name selfRef">Service Function Path Routes</a>
        </h3>
<p id="section-4.3-1">The SFPR (see <a href="#sfpRoutes" class="xref">Section 3.2</a>)
 describes a specific path of an SFC.
          The SFPR contains the Service Path Identifier (SPI) used to identify the SFP in the NSH
          in the data plane.  It also contains a sequence of Service Indexes (SIs).  Each SI
          identifies a hop in the SFP, and each hop is a choice between one or more SFIs.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2">As described in this document, each SFP route is identified in the
          service function overlay network by an RD and an SPI.  The SPI is unique within a single
          VPN instance supported by the underlay network.<a href="#section-4.3-2" class="pilcrow">¶</a></p>
<p id="section-4.3-3">The SFPR advertisement comprises:<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-4.1">An RT as described in <a href="#rt" class="xref">Section 4.1</a>.<a href="#section-4.3-4.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.3-4.2">
            <p id="section-4.3-4.2.1">A tuple that identifies the SFPR.<a href="#section-4.3-4.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-4.2.2.1">An RD that identifies an advertisement of an SFPR.<a href="#section-4.3-4.2.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.3-4.2.2.2">The SPI that uniquely identifies this path within the VPN instance distinguished
                     by the RD.  This SPI also appears in the NSH.<a href="#section-4.3-4.2.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</li>
          <li class="normal" id="section-4.3-4.3">A series of SIs.  Each SI is used in the context of a particular SPI and
               identifies one or more SFs (distinguished by their SFTs). For
        each SF, it identifies a set of
               SFIs that instantiate the SF.  The values of the SI indicate the order in which the
               SFs are to be executed in the SFP that is represented by the SPI.<a href="#section-4.3-4.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.3-4.4">The SI is used in the NSH to identify the entries in the SFP.  Note that the SI values
               have meaning only relative to a specific path.  They have no semantic other than to indicate
               the order of SFs within the path and are assumed to be monotonically
               decreasing from the start to the end of the path <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>.<a href="#section-4.3-4.4" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.3-4.5">
            <p id="section-4.3-4.5.1">Each SI is associated with a set of one or more SFIs
               that can be used to provide the indexed SF within the path.  Each member of
               the set comprises:<a href="#section-4.3-4.5.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-4.5.2.1">The RD used in an SFIR advertisement of the SFI.<a href="#section-4.3-4.5.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.3-4.5.2.2">The SFT that indicates the type of function as used in the same SFIR advertisement
                     of the SFI.<a href="#section-4.3-4.5.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</li>
        </ul>
<p id="section-4.3-5">This may be summarized as follows, where the notations "SFPR-RD" and "SFIR-RD" are used
          to distinguish the two different RDs, and where "*" indicates a multiplier:<a href="#section-4.3-5" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.3-6">
<pre>
   RT, {SFPR-RD, SPI}, m * {SI, {n * {SFT, p * SFIR-RD} } }
</pre><a href="#section-4.3-6" class="pilcrow">¶</a>
</div>
<p id="section-4.3-7">Where:<a href="#section-4.3-7" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.3-8">
          <dt id="section-4.3-8.1">RT:</dt>
          <dd style="margin-left: 1.5em" id="section-4.3-8.2"> Route Target<a href="#section-4.3-8.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.3-8.3">SFPR-RD:</dt>
          <dd style="margin-left: 1.5em" id="section-4.3-8.4">The Route Descriptor of the SFPR advertisement<a href="#section-4.3-8.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.3-8.5">SPI:</dt>
          <dd style="margin-left: 1.5em" id="section-4.3-8.6">Service Path Identifier used in the NSH<a href="#section-4.3-8.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.3-8.7">m:</dt>
          <dd style="margin-left: 1.5em" id="section-4.3-8.8">The number of hops in the SFP<a href="#section-4.3-8.8" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.3-8.9">n:</dt>
          <dd style="margin-left: 1.5em" id="section-4.3-8.10">The number of choices of SFT for a specific hop<a href="#section-4.3-8.10" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.3-8.11">p:</dt>
          <dd style="margin-left: 1.5em" id="section-4.3-8.12">The number of choices of SFI
   for a given SFT in a specific hop<a href="#section-4.3-8.12" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.3-8.13">SI:</dt>
          <dd style="margin-left: 1.5em" id="section-4.3-8.14">Service Index used in the NSH to indicate a specific hop<a href="#section-4.3-8.14" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.3-8.15">SFT:</dt>
          <dd style="margin-left: 1.5em" id="section-4.3-8.16">The Service Function Type used in the same advertisement of the SFIR<a href="#section-4.3-8.16" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.3-8.17">SFIR-RD:</dt>
          <dd style="margin-left: 1.5em" id="section-4.3-8.18">The Route Descriptor used in an advertisement of the SFIR<a href="#section-4.3-8.18" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-4.3-9">That is, there can be multiple SFTs at a given hop, as described in <a href="#selection" class="xref">Section 5</a>.<a href="#section-4.3-9" class="pilcrow">¶</a></p>
<p id="section-4.3-10">Note that the values of SI are from the set {255, ..., 1} and are monotonically decreasing
          within the SFP.  SIs <span class="bcp14">MUST</span> appear in order within the SFPR (i.e., monotonically decreasing)
          and <span class="bcp14">MUST NOT</span> appear more than once.  Gaps <span class="bcp14">MAY</span> appear in the sequence, as described in
          <a href="#lacunae" class="xref">Section 4.5.1</a>.  Malformed SFPRs <span class="bcp14">MUST</span> be discarded and <span class="bcp14">MUST</span> cause any
          previous instance of the SFPR (same SFPR-RD and SPI) to be discarded.<a href="#section-4.3-10" class="pilcrow">¶</a></p>
<p id="section-4.3-11">Note that if the SFIR-RD list in an SFT TLV contains one or more SFIR Pool Identifiers, then
          in the above expression, "p" is the sum of the number of individual SFIR-RD values
          and the sum for each SFIR Pool Identifier of the number of SFIRs advertised with that SFIR Pool
          Identifier.  In other words, the list of SFIR-RD values is effectively expanded to include the SFIR-RD
          of each SFIR advertised with each SFIR Pool Identifier in the SFIR-RD list.<a href="#section-4.3-11" class="pilcrow">¶</a></p>
<p id="section-4.3-12">The choice of SFI is explained further in <a href="#selection" class="xref">Section 5</a>.  Note that an SFIR-RD
          value of zero has special meaning, as described in that section.<a href="#section-4.3-12" class="pilcrow">¶</a></p>
</section>
</div>
<div id="classy">
<section id="section-4.4">
        <h3 id="name-classifier-operation">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-classifier-operation" class="section-name selfRef">Classifier Operation</a>
        </h3>
<p id="section-4.4-1">As shown in <a href="#SFCarch" class="xref">Figure 1</a>, the classifier is a component that is used to assign
           packets to an SFP.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<p id="section-4.4-2">The classifier is responsible for determining to which packet flow a packet belongs.  The
           mechanism it uses to achieve that classification is out of the scope of this document but might
           include inspection of the packet header.  The classifier has been instructed (by the controller
           or through some other configuration mechanism -- see <a href="#fspecclassy" class="xref">Section 7.4</a>) which flows
           are to be assigned to which SFPs, and so it can impose an NSH on each packet and initialize the
           NSH with the SPI of the selected SFP and the SI of its first hop.<a href="#section-4.4-2" class="pilcrow">¶</a></p>
<p id="section-4.4-3">Note that instructions delivered to the classifier may include information about the metadata
           to encode (and the format for that encoding) on packets that are classified by the classifier
           to a particular SFP.  As mentioned in <a href="#ctrlover" class="xref">Section 2.2</a>, this corresponds to the
           fifth element of control plane functionality described in <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>.  Such
           instructions fall outside the scope of this specification (but
    see <a href="#fspecclassy" class="xref">Section 7.4</a>),
           as do instructions to other service function chaining elements on how to interpret metadata (as described in the
           sixth element of control plane functionality described in <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>).<a href="#section-4.4-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="SFF">
<section id="section-4.5">
        <h3 id="name-service-function-forwarder-">
<a href="#section-4.5" class="section-number selfRef">4.5. </a><a href="#name-service-function-forwarder-" class="section-name selfRef">Service Function Forwarder Operation</a>
        </h3>
<p id="section-4.5-1">Each packet sent to an SFF is transmitted encapsulated in an NSH.  The NSH includes an SPI
          and SI: the SPI indicates the SFPR advertisement that announced the SFP;
          the tuple SPI/SI indicates a specific hop in a specific path and maps to the RD/SFT of a
          particular SFIR advertisement.<a href="#section-4.5-1" class="pilcrow">¶</a></p>
<p id="section-4.5-2">When an SFF gets an SFPR advertisement, it will first determine whether to import the route
          by examining the RT.  If the SFPR is imported, the SFF then determines whether it is on the
          SFP by looking for its own SFIR-RDs or any SFIR-RD with value zero in the SFPR.  For each
          occurrence in the SFP, the SFF creates forwarding state for incoming packets and forwarding
          state for outgoing packets that have been processed by the specified SFI.<a href="#section-4.5-2" class="pilcrow">¶</a></p>
<p id="section-4.5-3">The SFF creates local forwarding state for packets that it receives from other SFFs.  This
          state makes the association between the SPI/SI in the NSH of the received packet and one or
          more specific local SFIs, as identified by the SFIR-RD/SFT.  If there are multiple local SFIs
          that match, this is because a single advertisement was made for a set of equivalent SFIs, and
          the SFF may use local policy (such as load balancing) to determine to which SFI to forward a
          received packet.<a href="#section-4.5-3" class="pilcrow">¶</a></p>
<p id="section-4.5-4">The SFF also creates next-hop forwarding state for packets received back from the local SFI
          that need to be forwarded to the next hop in the SFP.  There may be a choice of next hops,
          as described in <a href="#SFPR" class="xref">Section 4.3</a>.  The SFF could install forwarding state for all
          potential next hops or it could choose to only install forwarding state for a subset of the
          potential next hops.  If a choice is made, then it will be as described in
          <a href="#selection" class="xref">Section 5</a>.<a href="#section-4.5-4" class="pilcrow">¶</a></p>
<p id="section-4.5-5">The installed forwarding state may change over time, reacting to changes in the underlay network
          and the availability of particular SFIs.  Note that the forwarding state describes how one SFF
          sends packets to another SFF, but not how those packets are routed through the underlay network.
          SFFs may be connected by tunnels across the underlay, or packets may be sent addressed to the
          next SFF and routed through the underlay.  In any case, transmission across the underlay requires
          encapsulation of packets with a header for transport in the underlay network.<a href="#section-4.5-5" class="pilcrow">¶</a></p>
<p id="section-4.5-6">Note that SFFs only create and store forwarding state for the SFPs on which they are included.
          They do not retain state for all SFPs advertised.<a href="#section-4.5-6" class="pilcrow">¶</a></p>
<p id="section-4.5-7">An SFF may also install forwarding state to support looping, jumping, and branching.
          The protocol mechanism for explicit control of looping, jumping, and
          branching uses a specific reserved SFT value at a given hop of an SFPR and is described in
          <a href="#changeseq" class="xref">Section 6.1</a>.<a href="#section-4.5-7" class="pilcrow">¶</a></p>
<div id="lacunae">
<section id="section-4.5.1">
          <h4 id="name-processing-with-gaps-in-the">
<a href="#section-4.5.1" class="section-number selfRef">4.5.1. </a><a href="#name-processing-with-gaps-in-the" class="section-name selfRef">Processing with "Gaps" in the SI Sequence</a>
          </h4>
<p id="section-4.5.1-1">The behavior of an SF, as described in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>, is to decrement
             the value of the "SI" field in the NSH by one before returning a packet to the local SFF for
             further processing.  This means that there is a good reason to assume that the SFP is
             composed of a series of SFs, each indicated by an SI value one less than the previous.<a href="#section-4.5.1-1" class="pilcrow">¶</a></p>
<p id="section-4.5.1-2">However,  there is an advantage to having nonsuccessive SIs in an SPI.  Consider the case
             where an SPI needs to be modified by the insertion or removal of an SF.  In the latter case,
             this would lead to a "gap" in the sequence of SIs, and in the former case, this could only
             be achieved if a gap already existed into which the new SF with its new SI value could be
             inserted.  Otherwise, all "downstream" SFs would need to be renumbered.<a href="#section-4.5.1-2" class="pilcrow">¶</a></p>
<p id="section-4.5.1-3">Now, of course, such renumbering could be performed, but it would lead to a significant
             disruption to the SFC as all the SFFs along the SFP were "reprogrammed".  Thus, to achieve
             dynamic modification of an SFP (and even in-service modification), it is desirable to be
             able to make these modifications without changing the SIs of the elements that were
             present before the modification.  This will produce much more consistent/predictable
             behavior during the convergence period, where otherwise the change would need to be
             fully propagated.<a href="#section-4.5.1-3" class="pilcrow">¶</a></p>
<p id="section-4.5.1-4">Another approach says that any change to an SFP simply creates a new SFP that can be
             assigned a new SPI.  All that would be needed would be to give a new instruction to the
             classifier, and traffic would be switched to the new SFP that contains the new set of SFs.
             This approach is practical but neglects to consider that the SFP may be referenced by
             other SFPs (through "branch" instructions) and used by many classifiers.  In those cases,
             the corresponding configuration resulting from a change in SPI may have wide ripples and
             create scope for errors that are hard to trace.<a href="#section-4.5.1-4" class="pilcrow">¶</a></p>
<p id="section-4.5.1-5">Therefore, while this document requires that the SI values in an SFP are monotonically decreasing,
             it makes no assumption that the SI values are sequential.  Configuration tools may apply
             that rule, but they are not required to.  To support this, an SFF <span class="bcp14">SHOULD</span> process as follows
             when it receives a packet:<a href="#section-4.5.1-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.5.1-6.1">If the SI indicates a known entry in the SFP, the SFF <span class="bcp14">MUST</span> process the packet as
                   normal, looking up the SI and determining to which local SFI to deliver the packet.<a href="#section-4.5.1-6.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.5.1-6.2">If the SI does not match an entry in the SFP, the SFF <span class="bcp14">MUST</span> reduce the SI value to the
                   next (smaller) value present in the SFP and process the packet using that SI.<a href="#section-4.5.1-6.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.5.1-6.3">If there is no smaller SI (i.e., if the end of the SFP has been reached), the SFF <span class="bcp14">MUST</span>
                   treat the SI value as not valid, as described in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>.<a href="#section-4.5.1-6.3" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-4.5.1-7">
             This makes the behavior described in this document a superset of the function in
             <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>.  That is, an implementation that strictly follows RFC 8300 in
             performing SI decrements in units of one is perfectly in line with the mechanisms
             defined in this document.<a href="#section-4.5.1-7" class="pilcrow">¶</a></p>
<p id="section-4.5.1-8">SFF implementations <span class="bcp14">MAY</span> choose to only support contiguous SI values in an SFP.  Such an
             implementation will not support receiving an SI value that is not present in the SFP and
             will discard the packets as described in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>.<a href="#section-4.5.1-8" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="selection">
<section id="section-5">
      <h2 id="name-selection-within-service-fu">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-selection-within-service-fu" class="section-name selfRef">Selection within Service Function Paths</a>
      </h2>
<p id="section-5-1">As described in <a href="#overview" class="xref">Section 2</a>, the SPI/SI in the NSH passed back from an SFI to
       the SFF may leave the SFF with a choice of next-hop SFTs and a choice of SFIs for each SFT.
       That is, the SPI indicates an SFPR, and the SI indicates an entry in that SFPR.  Each entry in
       an SFPR is a set of one or more SFT/SFIR-RD pairs.  The SFF <span class="bcp14">MUST</span> choose one of these, identify
       the SFF that supports the chosen SFI, and send the packet to that next-hop SFF.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">The choice be may offered for load balancing across multiple SFIs, or for discrimination between
       different actions necessary at a specific hop in the SFP.  Different SFT values may exist at
       a given hop in an SFP to support several cases:<a href="#section-5-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5-3.1">There may be multiple instances of similar service functions that are distinguished by
            different SFT values.  For example, firewalls made by vendor A and vendor B may need to
            be identified by different SFT values because, while they have similar functionality, their
            behavior is not identical.  Then, some SFPs may limit the choice of SF at a given hop by
            specifying the SFT for vendor A, but other SFPs might not need to control which vendor's
            SF is used and so can indicate that either SFT can be used.<a href="#section-5-3.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-5-3.2">There may be an obvious branch needed in an SFP, such as the processing after a firewall
            where admitted packets continue along the SFP, but suspect packets are diverted to a
            "penalty box".  In this case, the next hop in the SFP will be indicated with two
            different SFT values.<a href="#section-5-3.2" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-5-4">In the typical case, the SFF chooses a next-hop SFF by looking at the set of all SFFs that
       support the SFs identified by the SI (that set having been advertised in individual SFIR
       advertisements), finding the one or more that are "nearest" in the underlay network, and
       choosing between next-hop SFFs using its own load-balancing algorithm.<a href="#section-5-4" class="pilcrow">¶</a></p>
<p id="section-5-5">An SFI may influence this choice process by passing additional information back, along
       with the packet and NSH.  This information may influence local policy
       at the SFF to either cause it to favor a next-hop SFF (perhaps selecting one
       that is not nearest in the underlay) or influence the load-balancing algorithm.<a href="#section-5-5" class="pilcrow">¶</a></p>
<p id="section-5-6">This selection applies to the normal case but also applies in the case of looping,
       jumping, and branching (see <a href="#looping" class="xref">Section 6</a>).<a href="#section-5-6" class="pilcrow">¶</a></p>
<p id="section-5-7">Suppose an SFF in a particular service function overlay network (identified by a particular import
       RT, RT-z) needs to forward an NSH-encapsulated packet whose SPI is SPI-x and whose SI is SI-y.
       It does the following:<a href="#section-5-7" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-5-8">
<li id="section-5-8.1">It looks for an installed SFPR that carries RT-z and has SPI-x in its NLRI.
             If there is none, then such packets cannot be forwarded.<a href="#section-5-8.1" class="pilcrow">¶</a>
</li>
        <li id="section-5-8.2">From the SFP attribute of that SFPR, it finds the Hop TLV with SI value set to SI-y.
             If there is no such Hop TLV, then such packets cannot be forwarded.<a href="#section-5-8.2" class="pilcrow">¶</a>
</li>
        <li id="section-5-8.3">
          <p id="section-5-8.3.1">It then finds the "relevant" set of SFIRs by going through the list of SFT TLVs
             contained in the Hop TLV as follows:<a href="#section-5-8.3.1" class="pilcrow">¶</a></p>
<ol start="1" type="A" class="normal type-A" id="section-5-8.3.2">
<li id="section-5-8.3.2.1">An SFIR is relevant if it carries RT-z, the SFT in its NLRI matches
                   the SFT value in one of the SFT TLVs, and the RD value in its NLRI matches
                   an entry in the list of SFIR-RDs in that SFT TLV.<a href="#section-5-8.3.2.1" class="pilcrow">¶</a>
</li>
            <li id="section-5-8.3.2.2">If an entry in the SFIR-RD list of an SFT TLV contains the value zero, then
                   an SFIR is relevant if it carries RT-z and the SFT in its NLRI matches
                   the SFT value in that SFT TLV.  That is, any SFIR in the service function
                   overlay network defined by RT-z and with the correct SFT is relevant.<a href="#section-5-8.3.2.2" class="pilcrow">¶</a>
</li>
            <li id="section-5-8.3.2.3">If a pool identifier is in use, then an SFIR is relevant if it is a member of
                   the pool.<a href="#section-5-8.3.2.3" class="pilcrow">¶</a>
</li>
          </ol>
</li>
      </ol>
<p id="section-5-9">Each of the relevant SFIRs identifies a single SFI and contains a tunnel encapsulation
       attribute that specifies how to send a packet to that SFI.  For a particular packet, the
       SFF chooses a particular SFI from the set of relevant SFIRs.  This choice is made according
       to local policy.<a href="#section-5-9" class="pilcrow">¶</a></p>
<p id="section-5-10">A typical policy might be to figure out the set of SFIs that are closest and load balance
       among them.  But this is not the only possible policy.<a href="#section-5-10" class="pilcrow">¶</a></p>
<p id="section-5-11">Thus, at any point in time when an SFF selects its next hop, it chooses from the intersection
       of the set of next-hop RDs contained in the SFPR and the RDs contained in the SFF's local set of
       SFIRs (i.e., according to the determination of "relevance", above).  If the intersection is
       null, the SFPR is unusable.  Similarly, when this condition applies on the controller that originated
       the SFPR, it <span class="bcp14">SHOULD</span> either withdraw the SFPR or re-advertise it with a new set of RDs for the affected
       hop.<a href="#section-5-11" class="pilcrow">¶</a></p>
</section>
</div>
<div id="looping">
<section id="section-6">
      <h2 id="name-looping-jumping-and-branchi">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-looping-jumping-and-branchi" class="section-name selfRef">Looping, Jumping, and Branching</a>
      </h2>
<p id="section-6-1">As described in <a href="#overview" class="xref">Section 2</a>, an SFI or an SFF may cause a packet to
       "loop back" to a previous SF on a path in order that a sequence of functions may be
       re-executed.  This is simply achieved by replacing the SI in the NSH with a higher value,
       instead of decreasing it as would normally be the case, to determine the next hop in the
       path.<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2"><a href="#overview" class="xref">Section 2</a> also describes how an SFI or SFF may cause a packet to
       "jump forward" to an SF on a path that is not the immediate next SF in the SFP.  This
       is simply achieved by replacing the SI in the NSH with a lower value than would be
       achieved by decreasing it by the normal amount.<a href="#section-6-2" class="pilcrow">¶</a></p>
<p id="section-6-3">A more complex option to move packets from one SFP to another is described in
       <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> and <a href="#overview" class="xref">Section 2</a>, where it is termed
       "branching".  This mechanism allows an SFI or SFF to make a choice of downstream
       treatments for packets based on local policy and the output of the local SF.  Branching is
       achieved by changing the SPI in the NSH to indicate the new path and setting the SI to
       indicate the point in the path at which the packets enter.<a href="#section-6-3" class="pilcrow">¶</a></p>
<p id="section-6-4">Note that the NSH does not include a marker to indicate whether a specific packet has
       been around a loop before.  Therefore, the use of NSH metadata <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>
       may be required in order to prevent infinite loops.<a href="#section-6-4" class="pilcrow">¶</a></p>
<div id="changeseq">
<section id="section-6.1">
        <h3 id="name-protocol-control-of-looping">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-protocol-control-of-looping" class="section-name selfRef">Protocol Control of Looping, Jumping, and Branching</a>
        </h3>
<p id="section-6.1-1">If the SFT value in an SFT TLV in an SFPR has the special-purpose SFT value "Change
          Sequence" (see <a href="#iana" class="xref">Section 10</a>), then this is an indication that the SFF may
          make a loop, jump, or branch according to local policy and information returned by
          the local SFI.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">In this case, the SPI and SI of the next hop are encoded in the eight bytes of an entry
          in the SFIR-RD list as follows:<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<ul class="ulEmpty normal">
<li class="ulEmpty normal" id="section-6.1-3.1">3 bytes SPI<a href="#section-6.1-3.1" class="pilcrow">¶</a>
</li>
          <li class="ulEmpty normal" id="section-6.1-3.2">1 byte SI<a href="#section-6.1-3.2" class="pilcrow">¶</a>
</li>
          <li class="ulEmpty normal" id="section-6.1-3.3">4 bytes Reserved (<span class="bcp14">SHOULD</span> be set to zero and ignored)<a href="#section-6.1-3.3" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-6.1-4">If the SI in this encoding is not part of the SFPR indicated by the SPI in this
          encoding, then this is an explicit error that <span class="bcp14">SHOULD</span> be detected by the SFF when it
          parses the SFPR.  The SFPR <span class="bcp14">SHOULD NOT</span> cause any forwarding state to be installed in
          the SFF, and packets received with the SPI that indicates this SFPR <span class="bcp14">SHOULD</span> be silently
          discarded.<a href="#section-6.1-4" class="pilcrow">¶</a></p>
<p id="section-6.1-5">If the SPI in this encoding is unknown, the SFF <span class="bcp14">SHOULD NOT</span> install any forwarding state
          for this SFPR but <span class="bcp14">MAY</span> hold the SFPR pending receipt of another SFPR that does use the
          encoded SPI.<a href="#section-6.1-5" class="pilcrow">¶</a></p>
<p id="section-6.1-6">If the SPI matches the current SPI for the path, this is a loop or jump.  In this case,
          if the SI is greater than or equal to the current SI, it is a loop.  If the SPI matches and the SI
          is less than the next SI, it is a jump.<a href="#section-6.1-6" class="pilcrow">¶</a></p>
<p id="section-6.1-7">If the SPI indicates another path, this is a branch, and the SI indicates the point at
          which to enter that path.<a href="#section-6.1-7" class="pilcrow">¶</a></p>
<p id="section-6.1-8">The Change Sequence SFT is just another SFT that may appear in a set of SFI/SFT tuples
          within an SI and is selected as described in <a href="#selection" class="xref">Section 5</a>.<a href="#section-6.1-8" class="pilcrow">¶</a></p>
<p id="section-6.1-9">Note that special-purpose SFTs <span class="bcp14">MUST NOT</span> be advertised in SFIRs.  If such an SFIR is
          received, it <span class="bcp14">SHOULD</span> be ignored.<a href="#section-6.1-9" class="pilcrow">¶</a></p>
</section>
</div>
<div id="implications">
<section id="section-6.2">
        <h3 id="name-implications-for-forwarding">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-implications-for-forwarding" class="section-name selfRef">Implications for Forwarding State</a>
        </h3>
<p id="section-6.2-1">Support for looping and jumping requires that the SFF has forwarding state established
        to an SFF that provides access to an instance of the appropriate SF.

 This means
          that the SFF must have seen the relevant SFIR advertisements and mush have known that it needed to
          create the forwarding state.  This is a matter of local configuration and implementation;
          for example, an implementation could be configured to install forwarding state for specific
          looping/jumping.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<p id="section-6.2-2">Support for branching requires that the SFF has forwarding state established to an SFF that
          provides access to an instance of the appropriate entry SF on the other SFP.  This means
          that the SFF must have seen the relevant SFIR and SFPR advertisements and known that it
          needed to create the forwarding state.  This is a matter of local configuration and
          implementation; for example, an implementation could be configured to install forwarding
          state for specific branching (identified by SPI and SI).<a href="#section-6.2-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="advanced">
<section id="section-7">
      <h2 id="name-advanced-topics">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-advanced-topics" class="section-name selfRef">Advanced Topics</a>
      </h2>
<p id="section-7-1">This section highlights several advanced topics introduced elsewhere in this document.<a href="#section-7-1" class="pilcrow">¶</a></p>
<div id="correlation">
<section id="section-7.1">
        <h3 id="name-correlating-service-functio">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-correlating-service-functio" class="section-name selfRef">Correlating Service Function Path Instances</a>
        </h3>
<p id="section-7.1-1">It is often useful to create bidirectional SFPs to enable packet
 flows to traverse the same
         set of SFs, but in the reverse order.  However, packets on SFPs in the data plane (per
         <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>) do not contain a direction indicator, so each direction
         must use a different SPI.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
<p id="section-7.1-2">As described in <a href="#assoctlv" class="xref">Section 3.2.1.1</a>, an SFPR can contain one or more correlators
        encoded in Association TLVs.
 If the Association Type indicates "Bidirectional SFP", then
         the SFP advertised in the SFPR is one direction of a bidirectional pair of SFPs, where the
         other in the pair is advertised in the SFPR with RD as carried in the "Associated SFPR-RD"
         field of the Association TLV.  The SPI carried in the "Associated SPI" field of the
         Association TLV provides a cross-check against the SPI advertised in the SFPR with
         RD as carried in the "Associated SFPR-RD" field of the Association TLV.<a href="#section-7.1-2" class="pilcrow">¶</a></p>
<p id="section-7.1-3">As noted in <a href="#assoctlv" class="xref">Section 3.2.1.1</a>, when SFPRs reference each other, one SFPR advertisement
         will be received before the other.  Therefore, processing of an association will require
         that the first SFPR not be rejected simply because the Associated SFPR-RD it carries is
         unknown.  However, the SFP defined by the first SFPR is valid and <span class="bcp14">SHOULD</span> be available for
         use as a unidirectional SFP, even in the absence of an advertisement of its partner.<a href="#section-7.1-3" class="pilcrow">¶</a></p>
<p id="section-7.1-4">Furthermore, in error cases where SFPR-a associates with SFPR-b, but SFPR-b associates
         with SFPR-c such that a bidirectional pair of SFPs cannot be formed, the individual SFPs
         are still valid and <span class="bcp14">SHOULD</span> be available for use as unidirectional SFPs.  An implementation
         <span class="bcp14">SHOULD</span> log this situation, because it represents a controller error.<a href="#section-7.1-4" class="pilcrow">¶</a></p>
<p id="section-7.1-5">Usage of a bidirectional SFP may be programmed into the classifiers by the controller.
         Alternatively, a classifier may look at incoming packets on a bidirectional packet flow,
         extract the SPI from the received NSH, and look up the SFPR to find the reverse-direction
         SFP to use when it sends packets.<a href="#section-7.1-5" class="pilcrow">¶</a></p>
<p id="section-7.1-6">See <a href="#example" class="xref">Section 8</a> for an example of how this works.<a href="#section-7.1-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="stateful">
<section id="section-7.2">
        <h3 id="name-considerations-for-stateful">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-considerations-for-stateful" class="section-name selfRef">Considerations for Stateful Service Functions</a>
        </h3>
<p id="section-7.2-1">Some service functions are stateful.  That means that they build and maintain state derived
         from configuration or the packet flows that they handle.  In such cases, it can be
         important or necessary that all packets from a flow continue to traverse the same instance
         of a service function so that the state can be leveraged and does not need to be regenerated.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
<p id="section-7.2-2">In the case of bidirectional SFPs, it may be necessary to traverse the same instances of a
         stateful service function in both directions.  A firewall is a good example of such a service
         function.<a href="#section-7.2-2" class="pilcrow">¶</a></p>
<p id="section-7.2-3">This issue becomes a concern where there are multiple parallel instances of a service function
         and a determination of which one to use could normally be left to the SFF as a load-balancing
         or local-policy choice.<a href="#section-7.2-3" class="pilcrow">¶</a></p>
<p id="section-7.2-4">For the forward-direction SFP, the concern is that the same choice of SF is made
         for all packets of a flow under normal network conditions.  It may be possible to guarantee
         that the load-balancing functions applied in the SFFs are stable and repeatable, but a controller
         that constructs SFPs might not want to trust to this.  The controller can, in these cases, build
         a number of more specific SFPs, each traversing a specific instance of the stateful SFs.  In this
         case, the load-balancing choice can be left up to the classifier.  Thus, the classifier selects
         which instance of a stateful SF is used by a particular flow by selecting the SFP that the flow
         uses.<a href="#section-7.2-4" class="pilcrow">¶</a></p>
<p id="section-7.2-5">For bidirectional SFPs where the same instance of a stateful SF must be traversed in both
         directions, it is not enough to leave the choice of SFI as a local choice,
         even if the load balancing is stable, because coordination would be required between the decision
         points in the forward and reverse directions, and this may be hard to achieve in all cases except
         where it is the same SFF that makes the choice in both directions.<a href="#section-7.2-5" class="pilcrow">¶</a></p>
<p id="section-7.2-6">Note that this approach necessarily increases the amount of SFP state in the network (i.e., there
         are more SFPs).  It is possible to mitigate this effect by careful construction of SFPs built
         from a concatenation of other SFPs.<a href="#section-7.2-6" class="pilcrow">¶</a></p>
<p id="section-7.2-7"><a href="#examplestate" class="xref">Section 8.9</a> includes some simple examples of SFPs for stateful SFs.<a href="#section-7.2-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="private">
<section id="section-7.3">
        <h3 id="name-vpn-considerations-and-priv">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-vpn-considerations-and-priv" class="section-name selfRef">VPN Considerations and Private Service Functions</a>
        </h3>
<p id="section-7.3-1">Likely deployments include reserving specific instances of SFs for specific
         customers or allowing customers to deploy their own SFs within the network.
         Building SFs in such environments requires that suitable identifiers be used
         to ensure that SFFs distinguish which SFIs can be used and which cannot.<a href="#section-7.3-1" class="pilcrow">¶</a></p>
<p id="section-7.3-2">This problem is similar to a problem in the way that VPNs are supported and is solved in a similar way.  The "RT"
         field is used to indicate a set of SFs from which all choices must be made.<a href="#section-7.3-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="fspecclassy">
<section id="section-7.4">
        <h3 id="name-flow-specification-for-sfc-">
<a href="#section-7.4" class="section-number selfRef">7.4. </a><a href="#name-flow-specification-for-sfc-" class="section-name selfRef">Flow Specification for SFC Classifiers</a>
        </h3>
<p id="section-7.4-1"><span>[<a href="#RFC8955" class="xref">RFC8955</a>]</span> defines a set of BGP
         routes that can be used to identify the packets in a given flow using fields in the header of
         each packet, and a set of actions -- encoded as Extended Communities -- that can be used to
         disposition those packets.  This document enables the use of these mechanisms by SFC
         classifiers by defining a new action Extended Community called "Flow Specification for SFC Classifiers",
         identified by the value 0x0d.  Note that implementation of this section of this specification will be
         controllers or classifiers communicating with each other directly for the purpose of instructing the
         classifier how to place packets onto an SFP.  So that the implementation of classifiers can be
         kept simple, and to avoid the confusion between the purposes of different Extended Communities, a
         controller <span class="bcp14">MUST NOT</span> include other action Extended Communities at the same time as a "Flow Specification
         for SFC Classifiers" Extended Community. A "Flow Specification for SFC Classifiers" Traffic Filtering Action
         Extended Community advertised with any other Traffic Filtering Action Extended Community <span class="bcp14">MUST</span> be treated as
         malformed in line with <span>[<a href="#RFC8955" class="xref">RFC8955</a>]</span> and result in the flow-specification
         UPDATE message being handled as "treat-as-withdraw", according to
 <span>[<a href="#RFC7606" class="xref">RFC7606</a>], <a href="https://www.rfc-editor.org/rfc/rfc7606#section-2" class="relref">Section 2</a></span>.<a href="#section-7.4-1" class="pilcrow">¶</a></p>
<p id="section-7.4-2">To put the flow specification into context, when multiple service function chaining overlays are present in one
         network, each FlowSpec update <span class="bcp14">MUST</span> be tagged with the route target of the overlay or VPN
         network for which it is intended.<a href="#section-7.4-2" class="pilcrow">¶</a></p>
<p id="section-7.4-3">This Extended Community is encoded as an 8-octet value, as shown in <a href="#fspecclassyfig" class="xref">Figure 10</a>.<a href="#section-7.4-3" class="pilcrow">¶</a></p>
<span id="name-the-format-of-the-flow-spec"></span><div id="fspecclassyfig">
<figure id="figure-10">
          <div class="artwork art-text alignLeft" id="section-7.4-4.1">
<pre>
                      1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Type=0x80     | Sub-Type=0x0d |  SPI                          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  SPI  (cont.) |   SI          |  SFT                          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-10" class="selfRef">Figure 10</a>:
<a href="#name-the-format-of-the-flow-spec" class="selfRef">The Format of the Flow Specification for SFC Classifiers Extended Community</a>
          </figcaption></figure>
</div>
<p id="section-7.4-5">The Extended Community contains the Service Path Identifier (SPI), Service Index (SI), and
         Service Function Type (SFT), as defined elsewhere in this document.  Thus, each action extended
         community defines the entry point (not necessarily the first hop) into a specific SFP.  This allows, for example, different flows to enter the same SFP at different points.<a href="#section-7.4-5" class="pilcrow">¶</a></p>
<p id="section-7.4-6">Note that, according to <span>[<a href="#RFC8955" class="xref">RFC8955</a>]</span>, a given flow-specification
         update may include multiple of these action Extended Communities.  If a given action extended
         community does not contain an installed SFPR with the specified {SPI, SI, SFT}, it <span class="bcp14">MUST NOT</span> be
         used for dispositioning the packets of the specified flow.<a href="#section-7.4-6" class="pilcrow">¶</a></p>
<p id="section-7.4-7">The normal case of packet classification for service function chaining will see a packet enter the SFP at its first
         hop.  In this case, the SI in the Extended Community is superfluous, and the SFT may also be
         unnecessary.  To allow these cases to be handled, a special meaning is assigned to an SI of zero (not a valid value) and an SFT of zero (a reserved value in the registry -- see
         <a href="#SFTreg" class="xref">Section 10.5</a>).<a href="#section-7.4-7" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.4-8.1">If an SFC Classifiers Extended Community is received with SI = 0, then it means that the
              first hop of the SFP indicated by the SPI <span class="bcp14">MUST</span> be used.<a href="#section-7.4-8.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.4-8.2">
            <p id="section-7.4-8.2.1">If an SFC Classifiers Extended Community is received with SFT = 0, then there are two
              subcases:<a href="#section-7.4-8.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.4-8.2.2.1">If there is a choice of SFT in the hop indicated by the value of the SI (including
                    SI = 0), then SFT = 0 means there is a free choice of
       which SFT to use, according to local policy).<a href="#section-7.4-8.2.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-7.4-8.2.2.2">If there is no choice of SFT in the hop indicated by the value of SI, then SFT = 0
                    means that the value of the SFT at that hop, as indicated in the SFPR for the
                    indicated SPI, <span class="bcp14">MUST</span> be used.<a href="#section-7.4-8.2.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</li>
        </ul>
<p id="section-7.4-9">One of the filters that the flow specification may describe is the VPN to which the traffic belongs.
         Additionally, as noted above, to put the indicated SPI into context when multiple SFC overlays are
         present in one network, each FlowSpec update <span class="bcp14">MUST</span> be tagged with the route target of the
         overlay or VPN network for which it is intended.<a href="#section-7.4-9" class="pilcrow">¶</a></p>
<p id="section-7.4-10">Note that future extensions might be made to the Flow Specification for SFC Classifiers Extended Community
         to provide instruction to the classifier about what metadata to add to packets that it classifies
         for forwarding on a specific SFP; however, that is outside the scope of this document.<a href="#section-7.4-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="representation">
<section id="section-7.5">
        <h3 id="name-choice-of-data-plane-spi-si">
<a href="#section-7.5" class="section-number selfRef">7.5. </a><a href="#name-choice-of-data-plane-spi-si" class="section-name selfRef">Choice of Data Plane SPI/SI Representation</a>
        </h3>
<p id="section-7.5-1">This document ties together the control and data planes of a service function chaining overlay network through the use
         of the SPI/SI that is nominally carried in the NSH of a given packet.  However, in order to handle
         situations in which the NSH is not ubiquitously deployed, it is also possible to use alternative
         data plane representations of the SPI/SI by carrying the identical semantics in other protocol fields,
         such as MPLS labels <span>[<a href="#RFC8595" class="xref">RFC8595</a>]</span>.<a href="#section-7.5-1" class="pilcrow">¶</a></p>
<p id="section-7.5-2">This document defines a new Sub-TLV for the tunnel encapsulation attribute <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>,
         the SPI/SI Representation Sub-TLV of type 16.  This Sub-TLV <span class="bcp14">MAY</span> be present in each Tunnel TLV contained
         in a tunnel encapsulation attribute when the attribute is carried by an SFIR.  The "Value" field of this
         Sub-TLV is a two-octet field of flags numbered counting from the most significant bit, each of which
         describes how the originating SFF expects to see the SPI/SI represented in the data plane for packets
         carried in the tunnels described by the Tunnel TLV.<a href="#section-7.5-2" class="pilcrow">¶</a></p>
<p id="section-7.5-3">The following bits are defined by this document and are tracked in an IANA registry described in
         <a href="#IANAbits" class="xref">Section 10.10</a>:<a href="#section-7.5-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-7.5-4">
          <dt id="section-7.5-4.1">Bit 0:</dt>
          <dd style="margin-left: 1.5em" id="section-7.5-4.2">If this bit is set, the NSH is to be used to carry the SPI/SI in the data plane.<a href="#section-7.5-4.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-7.5-4.3">Bit 1:</dt>
          <dd style="margin-left: 1.5em" id="section-7.5-4.4">If this bit is set, two labels in an MPLS label stack are to be used as described in
                                <a href="#MPLS-NSH" class="xref">Section 7.5.1</a>.<a href="#section-7.5-4.4" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-7.5-5">If a given Tunnel TLV does not contain an SPI/SI Representation Sub-TLV, then it <span class="bcp14">MUST</span> be processed as if
         such a Sub-TLV is present with Bit 0 set and no other bits set.  That is, the absence of the Sub-TLV
         <span class="bcp14">SHALL</span> be interpreted to mean that the NSH is to be used.<a href="#section-7.5-5" class="pilcrow">¶</a></p>
<p id="section-7.5-6">If a given Tunnel TLV contains an SPI/SI Representation Sub-TLV
 with a "Value" field that has no flag set, then
         the tunnel indicated by the Tunnel TLV <span class="bcp14">MUST NOT</span> be used for forwarding SFC packets.  If a given Tunnel TLV
         contains an SPI/SI Representation Sub-TLV with both bit 0 and bit 1 set, then the tunnel indicated by the
         Tunnel TLV <span class="bcp14">MUST NOT</span> be used for forwarding SFC
  packets.  The meaning and rules for the presence of other bits
         is to be defined in future documents, but implementations of this specification <span class="bcp14">MUST</span> set other bits to
         zero and ignore them on receipt.<a href="#section-7.5-6" class="pilcrow">¶</a></p>
<p id="section-7.5-7">If a given Tunnel TLV contains more than one SPI/SI Representation Sub-TLV, then the first one <span class="bcp14">MUST</span> be
         considered and subsequent instances <span class="bcp14">MUST</span> be ignored.<a href="#section-7.5-7" class="pilcrow">¶</a></p>
<p id="section-7.5-8">Note that the MPLS representation of the logical NSH may be used even if the tunnel is not an MPLS tunnel.
         Conversely, MPLS tunnels may be used to carry other encodings of the logical NSH (specifically, the NSH
         itself).  It is a requirement that both ends of a tunnel over the underlay network know that the tunnel is
         used for service function chaining and know what form of NSH representation is used.  The signaling mechanism described here
         allows coordination of this information.<a href="#section-7.5-8" class="pilcrow">¶</a></p>
<div id="MPLS-NSH">
<section id="section-7.5.1">
          <h4 id="name-mpls-representation-of-the-">
<a href="#section-7.5.1" class="section-number selfRef">7.5.1. </a><a href="#name-mpls-representation-of-the-" class="section-name selfRef">MPLS Representation of the SPI/SI</a>
          </h4>
<p id="section-7.5.1-1">If bit 1 is set in the SPI/SI Representation Sub-TLV, then labels in the MPLS label stack are
            used to indicate SFC forwarding and processing instructions to achieve the semantics of a logical NSH.
            The label stack is encoded as shown in <span>[<a href="#RFC8595" class="xref">RFC8595</a>]</span>.<a href="#section-7.5.1-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="swapOp">
<section id="section-7.6">
        <h3 id="name-mpls-label-swapping-stackin">
<a href="#section-7.6" class="section-number selfRef">7.6. </a><a href="#name-mpls-label-swapping-stackin" class="section-name selfRef">MPLS Label Swapping/Stacking Operation</a>
        </h3>
<p id="section-7.6-1">When a classifier constructs an MPLS label stack for an SFP, it starts with that SFP's last hop.  If the
         last hop requires an {SPI, SI} label pair for label swapping, it pushes the SI (set to the SI value of the
         last hop) and the SFP's SPI onto the MPLS label stack.  If the last hop requires a {context label, SFI
         label} label pair for label stacking, it selects a specific SFIR and pushes that SFIR's SFI label and
         context label onto the MPLS label stack.<a href="#section-7.6-1" class="pilcrow">¶</a></p>
<p id="section-7.6-2">The classifier then moves sequentially back through the SFP one hop at a time.  For each hop, if the hop
         requires an {SPI, SI} and there is an {SPI, SI} at the top of the MPLS label stack, the SI is set to the
         SI value of the current hop.  If there is not an {SPI, SI} at the top of the MPLS label stack, it pushes
         the SI (set to the SI value of the current hop) and the SFP's SPI onto the MPLS label stack.<a href="#section-7.6-2" class="pilcrow">¶</a></p>
<p id="section-7.6-3">If the hop requires a {context label, SFI label}, it selects a specific SFIR and pushes that SFIR's
         SFI label and context label onto the MPLS label stack.<a href="#section-7.6-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="mpls-encaps">
<section id="section-7.7">
        <h3 id="name-support-for-mpls-encapsulat">
<a href="#section-7.7" class="section-number selfRef">7.7. </a><a href="#name-support-for-mpls-encapsulat" class="section-name selfRef">Support for MPLS-Encapsulated NSH Packets</a>
        </h3>
<p id="section-7.7-1"><span>[<a href="#RFC8596" class="xref">RFC8596</a>]</span> describes how to transport SFC packets using the NSH 
        over an MPLS transport network.

   Signaling that this approach is in use is supported by this document
  as follows:<a href="#section-7.7-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.7-2.1">A "BGP Tunnel Encapsulation Attribute" Sub-TLV is included with the
    codepoint 10 (representing "MPLS Label Stack") from the "BGP Tunnel
    Encapsulation Attribute Sub-TLVs" registry defined in
    <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>.<a href="#section-7.7-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.7-2.2">An "SFP Traversal With MPLS Label Stack" TLV is included containing
    an "SPI/SI Representation" Sub-TLV with bit 0 set and bit 1 cleared.<a href="#section-7.7-2.2" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-7.7-3">In this case, the MPLS label stack constructed by the SFF to forward a packet to the next SFF on the
          SFP will consist of the labels needed to reach that SFF, and if label stacking is used, it will also
          include the labels advertised in the MPLS Label Stack Sub-TLV and the labels remaining in the stack
          needed to traverse the remainder of the SFP.<a href="#section-7.7-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="example">
<section id="section-8">
      <h2 id="name-examples">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-examples" class="section-name selfRef">Examples</a>
      </h2>
<p id="section-8-1">Most of the examples in this section use IPv4 addressing.  But there is nothing special about
       IPv4 in the mechanisms described in this document, and they are equally applicable to IPv6.  A
       few examples using IPv6 addressing are provided in <a href="#v6samples" class="xref">Section 8.10</a>.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">Assume we have a service function overlay network with four SFFs (SFF1, SFF2, SFF3, and SFF4).
       The SFFs have addresses in the underlay network as follows:<a href="#section-8-2" class="pilcrow">¶</a></p>
<div id="section-8-3">
<pre class="sourcecode">
   SFF1 192.0.2.1
   SFF2 192.0.2.2
   SFF3 192.0.2.3
   SFF4 192.0.2.4
</pre><a href="#section-8-3" class="pilcrow">¶</a>
</div>
<p id="section-8-4">Each SFF provides access to some SFIs from the four SFTs, SFT=41, SFT=42,
       SFT=43, and SFT=44, as follows:<a href="#section-8-4" class="pilcrow">¶</a></p>
<div id="section-8-5">
<pre class="sourcecode">
   SFF1 SFT=41 and SFT=42
   SFF2 SFT=41 and SFT=43
   SFF3 SFT=42 and SFT=44
   SFF4 SFT=43 and SFT=44
</pre><a href="#section-8-5" class="pilcrow">¶</a>
</div>
<p id="section-8-6">The service function network also contains a controller with address 198.51.100.1.<a href="#section-8-6" class="pilcrow">¶</a></p>
<p id="section-8-7">This example service function overlay network is shown in <a href="#examplefig" class="xref">Figure 11</a>.<a href="#section-8-7" class="pilcrow">¶</a></p>
<span id="name-example-service-function-ov"></span><div id="examplefig">
<figure id="figure-11">
        <div class="artwork art-text alignLeft" id="section-8-8.1">
<pre>
       --------------
      |  Controller  |
      | 198.51.100.1 |   ------     ------    ------     ------
       --------------   | SFI  |   | SFI  |  | SFI  |   | SFI  |
                        |SFT=41|   |SFT=42|  |SFT=41|   |SFT=43|
                         ------     ------    ------     ------
                              \     /              \     /
                             ---------            ---------
               ----------   |   SFF1  |          |   SFF2  |
   Packet --&gt; |          |  |192.0.2.1|          |192.0.2.2|
   Flows  --&gt; |Classifier|   ---------            ---------  --&gt;Dest
              |          |                                   --&gt;
               ----------    ---------            ---------
                            |   SFF3  |          |   SFF4  |
                            |192.0.2.3|          |192.0.2.4|
                             ---------            ---------
                              /     \              /     \
                         ------     ------    ------     ------
                        | SFI  |   | SFI  |  | SFI  |   | SFI  |
                        |SFT=42|   |SFT=44|  |SFT=43|   |SFT=44|
                         ------     ------    ------     ------
</pre>
</div>
<figcaption><a href="#figure-11" class="selfRef">Figure 11</a>:
<a href="#name-example-service-function-ov" class="selfRef">Example Service Function Overlay Network</a>
        </figcaption></figure>
</div>
<p id="section-8-9">The SFFs advertise routes to the SFIs they support.  These advertisements
       contain RDs that are set according to the network operator's
       configuration model.  In all of these IPv4 examples, we use RDs of Type 1 such that the
       available six octets are partitioned as four octets for the IPv4 address of the advertising
       SFF, and two octets that are a local index of the SFI.  This scheme is chosen purely for
       convenience of documentation, and an operator is totally free to use any other scheme so
       long as it conforms to the definitions of SFIR and SFPR in Sections
       <a href="#sfiRoutes" class="xref">3.1</a> and
       <a href="#sfpRoutes" class="xref">3.2</a>.<a href="#section-8-9" class="pilcrow">¶</a></p>
<p id="section-8-10">Thus, we see the following SFIRs advertised:<a href="#section-8-10" class="pilcrow">¶</a></p>
<div id="section-8-11">
<pre class="sourcecode">
   RD = 192.0.2.1/1, SFT = 41
   RD = 192.0.2.1/2, SFT = 42
   RD = 192.0.2.2/1, SFT = 41
   RD = 192.0.2.2/2, SFT = 43
   RD = 192.0.2.3/7, SFT = 42
   RD = 192.0.2.3/8, SFT = 44
   RD = 192.0.2.4/5, SFT = 43
   RD = 192.0.2.4/6, SFT = 44
</pre><a href="#section-8-11" class="pilcrow">¶</a>
</div>
<p id="section-8-12">Note that the addressing used for communicating between SFFs is taken
       from the tunnel encapsulation attribute of the SFIR and not from the SFIR-RD.<a href="#section-8-12" class="pilcrow">¶</a></p>
<div id="exampleexplicit">
<section id="section-8.1">
        <h3 id="name-example-explicit-sfp-with-n">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-example-explicit-sfp-with-n" class="section-name selfRef">Example Explicit SFP with No Choices</a>
        </h3>
<p id="section-8.1-1">Consider the following SFPR.<a href="#section-8.1-1" class="pilcrow">¶</a></p>
<div id="section-8.1-2">
<pre class="sourcecode">
   SFP1:  RD = 198.51.100.1/101, SPI = 15,
          [SI = 255, SFT = 41, RD = 192.0.2.1/1],
          [SI = 250, SFT = 43, RD = 192.0.2.2/2]
</pre><a href="#section-8.1-2" class="pilcrow">¶</a>
</div>
<p id="section-8.1-3">The SFP consists of an SF of Type 41 located at SFF1, followed by an SF
          of Type 43 located at SFF2.  This path is fully explicit, and each SFF is
          offered no choice in forwarding packets along the path.<a href="#section-8.1-3" class="pilcrow">¶</a></p>
<p id="section-8.1-4">SFF1 will receive packets on the path from the classifier and will identify the path
          from the SPI (15).  The initial SI will be 255, and so SFF1 will deliver the packets to the
          SFI for SFT 41.<a href="#section-8.1-4" class="pilcrow">¶</a></p>
<p id="section-8.1-5">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for the next hop.
           SFF1 has no flexibility in the choice of SFF to support the next-hop SFI and will forward
           the packet to SFF2, which will send the packets to the SFI that supports SFT 43 before
           forwarding the packets to their destinations.<a href="#section-8.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="examplechoice">
<section id="section-8.2">
        <h3 id="name-example-sfp-with-choice-of-">
<a href="#section-8.2" class="section-number selfRef">8.2. </a><a href="#name-example-sfp-with-choice-of-" class="section-name selfRef">Example SFP with Choice of SFIs</a>
        </h3>
<div id="section-8.2-1">
<pre class="sourcecode">
   SFP2:  RD = 198.51.100.1/102, SPI = 16,
          [SI = 255, SFT = 41, RD = 192.0.2.1/1],
          [SI = 250, SFT = 43, {RD = 192.0.2.2/2,
                                RD = 192.0.2.4/5 } ]
</pre><a href="#section-8.2-1" class="pilcrow">¶</a>
</div>
<p id="section-8.2-2">In this example, the path also consists of an SF of Type 41 located at SFF1, and this is
          followed by an SF of Type 43. However, in this case, the SI = 250 contains a choice between the
          SFI located at SFF2 and the SFI located at SFF4.<a href="#section-8.2-2" class="pilcrow">¶</a></p>
<p id="section-8.2-3">SFF1 will receive packets on the path from the classifier and will identify the path
          from the SPI (16).  The initial SI will be 255, and so SFF1 will deliver the packets to the
          SFI for SFT 41.<a href="#section-8.2-3" class="pilcrow">¶</a></p>
<p id="section-8.2-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
           the next hop.  SFF1 now has a choice of next-hop SFFs to execute the next hop in the path.
           It can either forward packets to SFF2 or SFF4 to execute a function of Type 43.  It uses
           its local load-balancing algorithm to make this choice.  The chosen SFF will send the
           packets to the SFI that supports SFT 43 before forwarding the packets to their
           destinations.<a href="#section-8.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="exampleopen">
<section id="section-8.3">
        <h3 id="name-example-sfp-with-open-choic">
<a href="#section-8.3" class="section-number selfRef">8.3. </a><a href="#name-example-sfp-with-open-choic" class="section-name selfRef">Example SFP with Open Choice of SFIs</a>
        </h3>
<div id="section-8.3-1">
<pre class="sourcecode">
   SFP3:  RD = 198.51.100.1/103, SPI = 17,
          [SI = 255, SFT = 41, RD = 192.0.2.1/1],
          [SI = 250, SFT = 44, RD = 0]
</pre><a href="#section-8.3-1" class="pilcrow">¶</a>
</div>
<p id="section-8.3-2">In this example, the path also consists of an SF of Type 41 located at SFF1, and this is
          followed by an SI with an RD of zero and SF of Type 44.  This means that a choice can be
          made between any SFF that supports an SFI of Type 44.<a href="#section-8.3-2" class="pilcrow">¶</a></p>
<p id="section-8.3-3">SFF1 will receive packets on the path from the classifier and will identify the path
          from the SPI (17).  The initial SI will be 255, and so SFF1 will deliver the packets to the
          SFI for SFT 41.<a href="#section-8.3-3" class="pilcrow">¶</a></p>
<p id="section-8.3-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
           the next hop.  SFF1 now has a free choice of next-hop SFFs to execute the next hop in the
           path, selecting between all SFFs that support SFs of Type 44.  Looking at the SFIRs it
           has received, SFF1 knows that SF Type 44 is supported by SFF3 and SFF4.  SFF1 uses its
           local load-balancing algorithm to make this choice.  The chosen SFF will send the packets
           to the SFI that supports SFT 44 before forwarding the packets to their destinations.<a href="#section-8.3-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="examplesft">
<section id="section-8.4">
        <h3 id="name-example-sfp-with-choice-of-s">
<a href="#section-8.4" class="section-number selfRef">8.4. </a><a href="#name-example-sfp-with-choice-of-s" class="section-name selfRef">Example SFP with Choice of SFTs</a>
        </h3>
<div id="section-8.4-1">
<pre class="sourcecode">
   SFP4:  RD = 198.51.100.1/104, SPI = 18,
          [SI = 255, SFT = 41, RD = 192.0.2.1/1],
          [SI = 250, {SFT = 43, RD = 192.0.2.2/2,
                      SFT = 44, RD = 192.0.2.3/8 } ]
</pre><a href="#section-8.4-1" class="pilcrow">¶</a>
</div>
<p id="section-8.4-2">This example provides a choice of SF type in the second hop in the path.  The SI of 250
          indicates a choice between SF Type 43 located at SF2 and SF Type 44 located at SF3.<a href="#section-8.4-2" class="pilcrow">¶</a></p>
<p id="section-8.4-3">SFF1 will receive packets on the path from the classifier and will identify the path
          from the SPI (18).  The initial SI will be 255, and so SFF1 will deliver the packets to the
          SFI for SFT 41.<a href="#section-8.4-3" class="pilcrow">¶</a></p>
<p id="section-8.4-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
          the next hop.  SFF1 now has a free choice of next-hop SFFs to execute the next hop in the
          path, selecting between all SFFs that support an SF of Type 43 and
   SFF3, which supports an
          SF of Type 44.  These may be completely different functions that are to be executed dependent
          on specific conditions, or they may be similar functions identified with different type
          identifiers (such as firewalls from different vendors).  SFF1 uses
   its local policy and load-balancing algorithm to make this choice
   and may use additional information passed back from
          the local SFI to help inform its selection.  The chosen SFF will send the packets to the SFI
          that supports the chosen SFT before forwarding the packets to their destinations.<a href="#section-8.4-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="exampleco">
<section id="section-8.5">
        <h3 id="name-example-correlated-bidirect">
<a href="#section-8.5" class="section-number selfRef">8.5. </a><a href="#name-example-correlated-bidirect" class="section-name selfRef">Example Correlated Bidirectional SFPs</a>
        </h3>
<div id="section-8.5-1">
<pre class="sourcecode">
  SFP5:  RD = 198.51.100.1/105, SPI = 19,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/106, Assoc-SPI = 20,
         [SI = 255, SFT = 41, RD = 192.0.2.1/1],
         [SI = 250, SFT = 43, RD = 192.0.2.2/2]

  SFP6:  RD = 198.51.100.1/106, SPI = 20,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/105, Assoc-SPI = 19,
         [SI = 254, SFT = 43, RD = 192.0.2.2/2],
         [SI = 249, SFT = 41, RD = 192.0.2.1/1]
</pre><a href="#section-8.5-1" class="pilcrow">¶</a>
</div>
<p id="section-8.5-2">This example demonstrates correlation of two SFPs to form a bidirectional SFP, as
          described in <a href="#correlation" class="xref">Section 7.1</a>.<a href="#section-8.5-2" class="pilcrow">¶</a></p>
<p id="section-8.5-3">Two SFPRs are advertised by the controller.  They have different SPIs (19 and 20),
          so they are known to be separate SFPs, but they both have Association TLVs with Association Type
          set to 1, indicating bidirectional SFPs.  Each has an "Associated SFPR-RD" field containing the value
          of the other SFPR-RD to correlate the two SFPs as a bidirectional pair.<a href="#section-8.5-3" class="pilcrow">¶</a></p>
<p id="section-8.5-4">As can be seen from the SFPRs in this example, the paths are symmetric: the hops in
          SFP5 appear in the reverse order in SFP6.<a href="#section-8.5-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="exampleass">
<section id="section-8.6">
        <h3 id="name-example-correlated-asymmetr">
<a href="#section-8.6" class="section-number selfRef">8.6. </a><a href="#name-example-correlated-asymmetr" class="section-name selfRef">Example Correlated Asymmetrical Bidirectional SFPs</a>
        </h3>
<div id="section-8.6-1">
<pre class="sourcecode">
  SFP7:  RD = 198.51.100.1/107, SPI = 21,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/108, Assoc-SPI = 22,
         [SI = 255, SFT = 41, RD = 192.0.2.1/1],
         [SI = 250, SFT = 43, RD = 192.0.2.2/2]

  SFP8:  RD = 198.51.100.1/108, SPI = 22,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/107, Assoc-SPI = 21,
         [SI = 254, SFT = 44, RD = 192.0.2.4/6],
         [SI = 249, SFT = 41, RD = 192.0.2.1/1]
</pre><a href="#section-8.6-1" class="pilcrow">¶</a>
</div>
<p id="section-8.6-2">Asymmetric bidirectional SFPs can also be created.  This example shows a pair of SFPs
          with distinct SPIs (21 and 22) that are correlated in the same way as in the example in
          <a href="#exampleco" class="xref">Section 8.5</a>.<a href="#section-8.6-2" class="pilcrow">¶</a></p>
<p id="section-8.6-3">However, unlike in that example, the SFPs are different in each direction.  Both paths
          include a hop of SF Type 41, but SFP7 includes a hop of SF Type 43 supported at SFF2, while
          SFP8 includes a hop of SF Type 44 supported at SFF4.<a href="#section-8.6-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="exampleloop">
<section id="section-8.7">
        <h3 id="name-example-looping-in-an-sfp">
<a href="#section-8.7" class="section-number selfRef">8.7. </a><a href="#name-example-looping-in-an-sfp" class="section-name selfRef">Example Looping in an SFP</a>
        </h3>
<div id="section-8.7-1">
<pre class="sourcecode">
   SFP9:  RD = 198.51.100.1/109, SPI = 23,
          [SI = 255, SFT = 41, RD = 192.0.2.1/1],
          [SI = 250, SFT = 44, RD = 192.0.2.4/5],
          [SI = 245, {SFT = 1, RD = {SPI=23, SI=255, Rsv=0},
                      SFT = 42, RD = 192.0.2.3/7 } ]
</pre><a href="#section-8.7-1" class="pilcrow">¶</a>
</div>
<p id="section-8.7-2">Looping and jumping are described in <a href="#looping" class="xref">Section 6</a>.  This example shows
          an SFP that contains an explicit loop-back instruction that is presented as a choice
          within an SFP hop.<a href="#section-8.7-2" class="pilcrow">¶</a></p>
<p id="section-8.7-3">The first two hops in the path (SI = 255 and SI = 250) are normal.  That is, the packets
          will be delivered to SFF1 and SFF4 in turn for execution of SFs of Type 41 and 44,
          respectively.<a href="#section-8.7-3" class="pilcrow">¶</a></p>
<p id="section-8.7-4">The third hop (SI = 245) presents SFF4 with a choice of next hop.  It can either forward
          the packets to SFF3 for an SF of Type 42 (the second choice) or it can loop back.<a href="#section-8.7-4" class="pilcrow">¶</a></p>
<p id="section-8.7-5">The loop-back entry in the SFPR for SI = 245 is indicated by the special-purpose SFT value
          1 ("Change Sequence").  Within this hop, the RD is interpreted as encoding the SPI and SI
          of the next hop (see <a href="#changeseq" class="xref">Section 6.1</a>).
   In this case, the SPI is 23, which
          indicates that this is a loop or branch, i.e., the next hop is on the same SFP.  The SI is
          set to 255; this is a higher number than the current SI (245), indicating a loop.<a href="#section-8.7-5" class="pilcrow">¶</a></p>
<p id="section-8.7-6">SFF4 must make a choice between these two next hops. The packet
 will be either forwarded to SFF3 with the NSH SI decreased
 to 245 or looped back to SFF1 with the NSH SI reset to 255.
          This choice will be made according to local policy, information passed back by the local SFI,
          and details in the packets' metadata that are used to prevent infinite looping.<a href="#section-8.7-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="examplebranch">
<section id="section-8.8">
        <h3 id="name-example-branching-in-an-sfp">
<a href="#section-8.8" class="section-number selfRef">8.8. </a><a href="#name-example-branching-in-an-sfp" class="section-name selfRef">Example Branching in an SFP</a>
        </h3>
<div id="section-8.8-1">
<pre class="sourcecode">
   SFP10:  RD = 198.51.100.1/110, SPI = 24,
          [SI = 254, SFT = 42, RD = 192.0.2.3/7],
          [SI = 249, SFT = 43, RD = 192.0.2.2/2]

   SFP11:  RD = 198.51.100.1/111, SPI = 25,
          [SI = 255, SFT = 41, RD = 192.0.2.1/1],
          [SI = 250, SFT = 1, RD = {SPI=24, SI=254, Rsv=0}]
</pre><a href="#section-8.8-1" class="pilcrow">¶</a>
</div>
<p id="section-8.8-2">Branching follows a similar procedure to that for looping (and jumping), as shown in
          <a href="#exampleloop" class="xref">Section 8.7</a>. However, there are two SFPs involved.<a href="#section-8.8-2" class="pilcrow">¶</a></p>
<p id="section-8.8-3">SFP10 shows a normal path with packets forwarded to SFF3 and SFF2 for execution of
          service functions of Type 42 and 43, respectively.<a href="#section-8.8-3" class="pilcrow">¶</a></p>
<p id="section-8.8-4">SFP11 starts as normal (SFF1 for an SF of Type 41), but then SFF1 processes the
          next hop in the path and finds a "Change Sequence" special-purpose SFT.  The "SFIR-RD"
          field includes an SPI of 24, which indicates SFP10, not the current SFP.  The SI in the
          SFIR-RD is 254, so SFF1 knows that it must set the SPI/SI in the NSH to 24/254 and
          send the packets to the appropriate SFF, as advertised in the SFPR for SFP10 (that is,
          SFF3).<a href="#section-8.8-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="examplestate">
<section id="section-8.9">
        <h3 id="name-examples-of-sfps-with-state">
<a href="#section-8.9" class="section-number selfRef">8.9. </a><a href="#name-examples-of-sfps-with-state" class="section-name selfRef">Examples of SFPs with Stateful Service Functions</a>
        </h3>
<p id="section-8.9-1">This section provides some examples to demonstrate establishing SFPs when there is a choice
          of service functions at a particular hop, and where consistency of choice is required in
          both directions.  The scenarios that give rise to this requirement are discussed in
          <a href="#stateful" class="xref">Section 7.2</a>.<a href="#section-8.9-1" class="pilcrow">¶</a></p>
<div id="stateegsff">
<section id="section-8.9.1">
          <h4 id="name-forward-and-reverse-choice-">
<a href="#section-8.9.1" class="section-number selfRef">8.9.1. </a><a href="#name-forward-and-reverse-choice-" class="section-name selfRef">Forward and Reverse Choice Made at the SFF</a>
          </h4>
<p id="section-8.9.1-1">Consider the topology shown in <a href="#egsfffig" class="xref">Figure 12</a>.  There are three SFFs
             arranged neatly in a line, and the middle one (SFF2) supports three SFIs all of
             SFT 42.  These three instances can be used by SFF2 to load balance so that no
             one instance is swamped.<a href="#section-8.9.1-1" class="pilcrow">¶</a></p>
<span id="name-example-where-choice-is-mad"></span><div id="egsfffig">
<figure id="figure-12">
            <div class="artwork art-text alignLeft" id="section-8.9.1-2.1">
<pre>
                ------     ------   ------   ------    ------
               | SFI  |   | SFIa | | SFIb | | SFIc |  | SFI  |
               |SFT=41|   |SFT=42| |SFT=42| |SFT=42|  |SFT=43|
                ------     ------\  ------  /------    ------
                     \            \   |    /           /
                    ---------     ---------     ---------
      ----------   |   SFF1  |   |   SFF2  |   |   SFF3  |
 --&gt; |          |..|192.0.2.1|...|192.0.2.2|...|192.0.2.3|--&gt;
 --&gt; |Classifier|   ---------     ---------     ---------
     |          |
      ----------
</pre>
</div>
<figcaption><a href="#figure-12" class="selfRef">Figure 12</a>:
<a href="#name-example-where-choice-is-mad" class="selfRef">Example Where Choice Is Made at the SFF</a>
            </figcaption></figure>
</div>
<p id="section-8.9.1-3">This leads to the following SFIRs being advertised.<a href="#section-8.9.1-3" class="pilcrow">¶</a></p>
<div id="section-8.9.1-4">
<pre class="sourcecode">
   RD = 192.0.2.1/11, SFT = 41
   RD = 192.0.2.2/11, SFT = 42  (for SFIa)
   RD = 192.0.2.2/12, SFT = 42  (for SFIb)
   RD = 192.0.2.2/13, SFT = 42  (for SFIc)
   RD = 192.0.2.3/11, SFT = 43
</pre><a href="#section-8.9.1-4" class="pilcrow">¶</a>
</div>
<p id="section-8.9.1-5">The controller can create a single forward SFP (SFP12), giving SFF2 the choice
             of which SFI to use to provide a function of SFT 42, as follows.  The
             load-balancing choice between the three available SFIs is assumed to be
             within the capabilities of the SFF, and if the SFs are stateful, it is
             assumed that the SFF knows this and arranges load balancing in a stable,
             flow-dependent way.<a href="#section-8.9.1-5" class="pilcrow">¶</a></p>
<div id="section-8.9.1-6">
<pre class="sourcecode">
   SFP12:  RD = 198.51.100.1/112, SPI = 26,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/113, Assoc-SPI = 27,
          [SI = 255, SFT = 41, RD = 192.0.2.1/11],
          [SI = 254, SFT = 42, {RD = 192.0.2.2/11,
                                     192.0.2.2/12,
                                     192.0.2.2/13 }],
          [SI = 253, SFT = 43, RD = 192.0.2.3/11]
</pre><a href="#section-8.9.1-6" class="pilcrow">¶</a>
</div>
<p id="section-8.9.1-7">The reverse SFP (SFP13) in this case may also be created as shown below, using
            association with the forward SFP and giving the load-balancing choice to
            SFF2.  This is safe, even in the case that the SFs of Type 42 are stateful,
            because SFF2 is doing the load balancing in both directions and can apply
            the same algorithm to ensure that packets associated with the same flow use
            the same SFI regardless of the direction of travel.<a href="#section-8.9.1-7" class="pilcrow">¶</a></p>
<div id="section-8.9.1-8">
<pre class="sourcecode">
   SFP13:  RD = 198.51.100.1/113, SPI = 27,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/112, Assoc-SPI = 26,
          [SI = 255, SFT = 43, RD = 192.0.2.3/11],
          [SI = 254, SFT = 42, {RD = 192.0.2.2/11,
                                     192.0.2.2/12,
                                     192.0.2.2/13 }],
          [SI = 253, SFT = 41, RD = 192.0.2.1/11]
</pre><a href="#section-8.9.1-8" class="pilcrow">¶</a>
</div>
<p id="section-8.9.1-9">How an SFF knows that an attached SFI is stateful is out of the scope of this
            document.  It is assumed that this will form part of the process by which
            SFIs are registered as local to SFFs.  <a href="#stateful" class="xref">Section 7.2</a> provides
            additional observations about the coordination of the use of stateful SFIs
            in the case of bidirectional SFPs.<a href="#section-8.9.1-9" class="pilcrow">¶</a></p>
<p id="section-8.9.1-10">In general, the problems of load balancing and the selection of the same SFIs
            in both directions of a bidirectional SFP can be addressed by using sufficiently
            precisely specified SFPs (specifying the exact SFIs to use) and suitable
            programming of the classifiers at each end of the SFPs to make sure that the
            matching pair of SFPs are used.<a href="#section-8.9.1-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="stateeg1pll">
<section id="section-8.9.2">
          <h4 id="name-parallel-end-to-end-sfps-wi">
<a href="#section-8.9.2" class="section-number selfRef">8.9.2. </a><a href="#name-parallel-end-to-end-sfps-wi" class="section-name selfRef">Parallel End-to-End SFPs with Shared SFF</a>
          </h4>
<p id="section-8.9.2-1">The mechanism described in <a href="#stateegsff" class="xref">Section 8.9.1</a> might not be desirable because of
            the functional assumptions it places on SFF2 to be able to load balance with suitable flow
            identification, stability, and equality in both directions.  Instead, it may be desirable
            to place the responsibility for flow classification in the classifier and let it determine
            load balancing with the implied choice of SFIs.<a href="#section-8.9.2-1" class="pilcrow">¶</a></p>
<p id="section-8.9.2-2">Consider the network graph as shown in <a href="#egsfffig" class="xref">Figure 12</a> and with the same set of
            SFIRs as listed in <a href="#stateegsff" class="xref">Section 8.9.1</a>.
     In this case, the controller could specify
            three forward SFPs with their corresponding associated reverse SFPs.  Each bidirectional
            pair of SFPs uses a different SFI for the SF of Type 42.  The controller can instruct the
            classifier how to place traffic on the three bidirectional SFPs,
     or it can treat them as a group,
            leaving the classifier responsible for balancing the load.<a href="#section-8.9.2-2" class="pilcrow">¶</a></p>
<div id="section-8.9.2-3">
<pre class="sourcecode">
   SFP14:  RD = 198.51.100.1/114, SPI = 28,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/117, Assoc-SPI = 31,
          [SI = 255, SFT = 41, RD = 192.0.2.1/11],
          [SI = 254, SFT = 42, RD = 192.0.2.2/11],
          [SI = 253, SFT = 43, RD = 192.0.2.3/11]

   SFP15:  RD = 198.51.100.1/115, SPI = 29,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/118, Assoc-SPI = 32,
          [SI = 255, SFT = 41, RD = 192.0.2.1/11],
          [SI = 254, SFT = 42, RD = 192.0.2.2/12],
          [SI = 253, SFT = 43, RD = 192.0.2.3/11]

   SFP16:  RD = 198.51.100.1/116, SPI = 30,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/119, Assoc-SPI = 33,
          [SI = 255, SFT = 41, RD = 192.0.2.1/11],
          [SI = 254, SFT = 42, RD = 192.0.2.2/13],
          [SI = 253, SFT = 43, RD = 192.0.2.3/11]

   SFP17:  RD = 198.51.100.1/117, SPI = 31,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/114, Assoc-SPI = 28,
          [SI = 255, SFT = 43, RD = 192.0.2.3/11],
          [SI = 254, SFT = 42, RD = 192.0.2.2/11],
          [SI = 253, SFT = 41, RD = 192.0.2.1/11]

   SFP18:  RD = 198.51.100.1/118, SPI = 32,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/115, Assoc-SPI = 29,
          [SI = 255, SFT = 43, RD = 192.0.2.3/11],
          [SI = 254, SFT = 42, RD = 192.0.2.2/12],
          [SI = 253, SFT = 41, RD = 192.0.2.1/11]

   SFP19:  RD = 198.51.100.1/119, SPI = 33,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/116, Assoc-SPI = 30,
          [SI = 255, SFT = 43, RD = 192.0.2.3/11],
          [SI = 254, SFT = 42, RD = 192.0.2.2/13],
          [SI = 253, SFT = 41, RD = 192.0.2.1/11]
</pre><a href="#section-8.9.2-3" class="pilcrow">¶</a>
</div>
</section>
</div>
<div id="stateeg2pll">
<section id="section-8.9.3">
          <h4 id="name-parallel-end-to-end-sfps-wit">
<a href="#section-8.9.3" class="section-number selfRef">8.9.3. </a><a href="#name-parallel-end-to-end-sfps-wit" class="section-name selfRef">Parallel End-to-End SFPs with Separate SFFs</a>
          </h4>
<p id="section-8.9.3-1">While the examples in Sections <a href="#stateegsff" class="xref">8.9.1</a> and <a href="#stateeg1pll" class="xref">8.9.2</a>
            place the choice of SFI as subtended from the same SFF, it is also possible that the
            SFIs are each subtended from a different SFF, as shown in <a href="#eg2pllfig" class="xref">Figure 13</a>.
            In this case, it is harder to coordinate the choices for forward and reverse paths
            without some form of coordination between SFF1 and SFF3.  Therefore, it would be
            normal to consider end-to-end parallel SFPs, as described in <a href="#stateeg1pll" class="xref">Section 8.9.2</a>.<a href="#section-8.9.3-1" class="pilcrow">¶</a></p>
<span id="name-second-example-with-paralle"></span><div id="eg2pllfig">
<figure id="figure-13">
            <div class="artwork art-text alignLeft" id="section-8.9.3-2.1">
<pre>
                                     ------
                                    | SFIa |
                                    |SFT=42|
                                     ------
                      ------           |
                     | SFI  |      ---------
                     |SFT=41|     |   SFF5  |
                      ------    ..|192.0.2.5|..
                        |     ..:  ---------  :..
                    ---------.:                 :.---------
      ----------   |   SFF1  |     ---------     |   SFF3  |
 --&gt; |          |..|192.0.2.1|....|   SFF6  |....|192.0.2.3| --&gt;
 --&gt; |Classifier|   ---------:    |192.0.2.6|    :---------
     |          |            :     ---------     :    |
      ----------             :         |         :  ------
                             :       ------      : | SFI  |
                             :..    | SFIb |   ..: |SFT=43|
                               :..  |SFT=42| ..:    ------
                                 :   ------  :
                                 :.---------.:
                                  |   SFF7  |
                                  |192.0.2.7|
                                   ---------
                                       |
                                     ------
                                    | SFIc |
                                    |SFT=42|
                                     ------
</pre>
</div>
<figcaption><a href="#figure-13" class="selfRef">Figure 13</a>:
<a href="#name-second-example-with-paralle" class="selfRef">Second Example with Parallel End-to-End SFPs</a>
            </figcaption></figure>
</div>
<p id="section-8.9.3-3">In this case, five SFIRs are advertised as follows:<a href="#section-8.9.3-3" class="pilcrow">¶</a></p>
<div id="section-8.9.3-4">
<pre class="sourcecode">
   RD = 192.0.2.1/11, SFT = 41
   RD = 192.0.2.5/11, SFT = 42  (for SFIa)
   RD = 192.0.2.6/11, SFT = 42  (for SFIb)
   RD = 192.0.2.7/11, SFT = 42  (for SFIc)
   RD = 192.0.2.3/11, SFT = 43
</pre><a href="#section-8.9.3-4" class="pilcrow">¶</a>
</div>
<p id="section-8.9.3-5">In this case, the controller could specify three forward SFPs with their corresponding
            associated reverse SFPs.  Each bidirectional pair of SFPs uses a different SFF and SFI
            for the middle hop (for an SF of Type 42).  The controller can instruct the classifier how
            to place traffic on the three bidirectional SFPs, or it can treat them as a group, leaving
            the classifier responsible for balancing the load.<a href="#section-8.9.3-5" class="pilcrow">¶</a></p>
<div id="section-8.9.3-6">
<pre class="sourcecode">
   SFP20:  RD = 198.51.100.1/120, SPI = 34,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/123, Assoc-SPI = 37,
          [SI = 255, SFT = 41, RD = 192.0.2.1/11],
          [SI = 254, SFT = 42, RD = 192.0.2.5/11],
          [SI = 253, SFT = 43, RD = 192.0.2.3/11]

   SFP21:  RD = 198.51.100.1/121, SPI = 35,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/124, Assoc-SPI = 38,
          [SI = 255, SFT = 41, RD = 192.0.2.1/11],
          [SI = 254, SFT = 42, RD = 192.0.2.6/11],
          [SI = 253, SFT = 43, RD = 192.0.2.3/11]

   SFP22:  RD = 198.51.100.1/122, SPI = 36,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/125, Assoc-SPI = 39,
          [SI = 255, SFT = 41, RD = 192.0.2.1/11],
          [SI = 254, SFT = 42, RD = 192.0.2.7/11],
          [SI = 253, SFT = 43, RD = 192.0.2.3/11]

   SFP23:  RD = 198.51.100.1/123, SPI = 37,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/120, Assoc-SPI = 34,
          [SI = 255, SFT = 43, RD = 192.0.2.3/11],
          [SI = 254, SFT = 42, RD = 192.0.2.5/11],
          [SI = 253, SFT = 41, RD = 192.0.2.1/11]

   SFP24:  RD = 198.51.100.1/124, SPI = 38,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/121, Assoc-SPI = 35,
          [SI = 255, SFT = 43, RD = 192.0.2.3/11],
          [SI = 254, SFT = 42, RD = 192.0.2.6/11],
          [SI = 253, SFT = 41, RD = 192.0.2.1/11]

   SFP25:  RD = 198.51.100.1/125, SPI = 39,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/122, Assoc-SPI = 36,
          [SI = 255, SFT = 43, RD = 192.0.2.3/11],
          [SI = 254, SFT = 42, RD = 192.0.2.7/11],
          [SI = 253, SFT = 41, RD = 192.0.2.1/11]
</pre><a href="#section-8.9.3-6" class="pilcrow">¶</a>
</div>
</section>
</div>
<div id="stateegpllchc">
<section id="section-8.9.4">
          <h4 id="name-parallel-sfps-downstream-of">
<a href="#section-8.9.4" class="section-number selfRef">8.9.4. </a><a href="#name-parallel-sfps-downstream-of" class="section-name selfRef">Parallel SFPs Downstream of the Choice</a>
          </h4>
<p id="section-8.9.4-1">The mechanism of parallel SFPs demonstrated in <a href="#stateeg2pll" class="xref">Section 8.9.3</a>
            is perfectly functional and may be practical in many environments.  However,
            there may be scaling concerns because of the large amount of state (knowledge
            of SFPs -- i.e., SFPR advertisements retained) if there is a very large number
            of possible SFIs (for example, tens of instances of the same stateful SF) or
            if there are multiple choices of stateful SF along a path.  This situation may
            be mitigated using SFP fragments that are combined to form the end-to-end SFPs.<a href="#section-8.9.4-1" class="pilcrow">¶</a></p>
<p id="section-8.9.4-2">The example presented here is necessarily simplistic but should convey the
            basic principle.  The example presented in <a href="#eg2pllchcfig" class="xref">Figure 14</a> is
            similar to that in <a href="#stateeg2pll" class="xref">Section 8.9.3</a> but with an additional first
            hop.<a href="#section-8.9.4-2" class="pilcrow">¶</a></p>
<span id="name-example-with-parallel-sfps-"></span><div id="eg2pllchcfig">
<figure id="figure-14">
            <div class="artwork art-text alignLeft" id="section-8.9.4-3.1">
<pre>
                                          ------
                                         | SFIa |
                                         |SFT=43|
                                          ------
               ------      ------           |
              | SFI  |    | SFI  |      ---------
              |SFT=41|    |SFT=42|     |   SFF5  |
               ------      ------    ..|192.0.2.5|..
                 |           |     ..:  ---------  :..
             ---------   ---------.:                 :.---------
    ------  |   SFF1  | |   SFF2  |     ---------     |   SFF3  |
--&gt;|Class-|.|192.0.2.1|.|192.0.2.2|....|   SFF6  |....|192.0.2.3|--&gt;
--&gt;| ifier|  ---------   ---------:    |192.0.2.6|    :---------
    ------                        :     ---------     :    |
                                  :         |         :  ------
                                  :       ------      : | SFI  |
                                  :..    | SFIb |   ..: |SFT=44|
                                    :..  |SFT=43| ..:    ------
                                      :   ------  :
                                      :.---------.:
                                       |   SFF7  |
                                       |192.0.2.7|
                                        ---------
                                            |
                                          ------
                                         | SFIc |
                                         |SFT=43|
                                          ------
</pre>
</div>
<figcaption><a href="#figure-14" class="selfRef">Figure 14</a>:
<a href="#name-example-with-parallel-sfps-" class="selfRef">Example with Parallel SFPs Downstream of Choice</a>
            </figcaption></figure>
</div>
<p id="section-8.9.4-4">The six SFIs are advertised as follows:<a href="#section-8.9.4-4" class="pilcrow">¶</a></p>
<div id="section-8.9.4-5">
<pre class="sourcecode">
   RD = 192.0.2.1/11, SFT = 41
   RD = 192.0.2.2/11, SFT = 42
   RD = 192.0.2.5/11, SFT = 43  (for SFIa)
   RD = 192.0.2.6/11, SFT = 43  (for SFIb)
   RD = 192.0.2.7/11, SFT = 43  (for SFIc)
   RD = 192.0.2.3/11, SFT = 44
</pre><a href="#section-8.9.4-5" class="pilcrow">¶</a>
</div>
<p id="section-8.9.4-6">SFF2 is the point at which a load-balancing choice must be made.  So "tail-end"
            SFPs are constructed as follows.  Each takes in a different SFF that provides
            access to an SF of Type 43.<a href="#section-8.9.4-6" class="pilcrow">¶</a></p>
<div id="section-8.9.4-7">
<pre class="sourcecode">
   SFP26:  RD = 198.51.100.1/126, SPI = 40,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/130, Assoc-SPI = 44,
          [SI = 255, SFT = 43, RD = 192.0.2.5/11],
          [SI = 254, SFT = 44, RD = 192.0.2.3/11]

   SFP27:  RD = 198.51.100.1/127, SPI = 41,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/131, Assoc-SPI = 45,
          [SI = 255, SFT = 43, RD = 192.0.2.6/11],
          [SI = 254, SFT = 44, RD = 192.0.2.3/11]

   SFP28:  RD = 198.51.100.1/128, SPI = 42,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/132, Assoc-SPI = 46,
          [SI = 255, SFT = 43, RD = 192.0.2.7/11],
          [SI = 254, SFT = 44, RD = 192.0.2.3/11]
</pre><a href="#section-8.9.4-7" class="pilcrow">¶</a>
</div>
<p id="section-8.9.4-8">Now an end-to-end SFP with load-balancing choice can be constructed as follows.
            The choice made by SFF2 is expressed in terms of entering one of the three
            "tail-end" SFPs.<a href="#section-8.9.4-8" class="pilcrow">¶</a></p>
<div id="section-8.9.4-9">
<pre class="sourcecode">
   SFP29:  RD = 198.51.100.1/129, SPI = 43,
          [SI = 255, SFT = 41, RD = 192.0.2.1/11],
          [SI = 254, SFT = 42, RD = 192.0.2.2/11],
          [SI = 253, {SFT = 1, RD = {SPI=40, SI=255, Rsv=0},
                               RD = {SPI=41, SI=255, Rsv=0},
                               RD = {SPI=42, SI=255, Rsv=0} } ]
</pre><a href="#section-8.9.4-9" class="pilcrow">¶</a>
</div>
<p id="section-8.9.4-10">Now, despite the load-balancing choice being made elsewhere than at the initial
            classifier, it is possible for the reverse SFPs to be well constructed without
            any ambiguity.  The three reverse paths appear as follows.<a href="#section-8.9.4-10" class="pilcrow">¶</a></p>
<div id="section-8.9.4-11">
<pre class="sourcecode">
   SFP30:  RD = 198.51.100.1/130, SPI = 44,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/126, Assoc-SPI = 40,
          [SI = 255, SFT = 44, RD = 192.0.2.4/11],
          [SI = 254, SFT = 43, RD = 192.0.2.5/11],
          [SI = 253, SFT = 42, RD = 192.0.2.2/11],
          [SI = 252, SFT = 41, RD = 192.0.2.1/11]

   SFP31:  RD = 198.51.100.1/131, SPI = 45,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/127, Assoc-SPI = 41,
          [SI = 255, SFT = 44, RD = 192.0.2.4/11],
          [SI = 254, SFT = 43, RD = 192.0.2.6/11],
          [SI = 253, SFT = 42, RD = 192.0.2.2/11],
          [SI = 252, SFT = 41, RD = 192.0.2.1/11]

   SFP32:  RD = 198.51.100.1/132, SPI = 46,
         Assoc-Type = 1, Assoc-RD = 198.51.100.1/128, Assoc-SPI = 42,
          [SI = 255, SFT = 44, RD = 192.0.2.4/11],
          [SI = 254, SFT = 43, RD = 192.0.2.7/11],
          [SI = 253, SFT = 42, RD = 192.0.2.2/11],
          [SI = 252, SFT = 41, RD = 192.0.2.1/11]
</pre><a href="#section-8.9.4-11" class="pilcrow">¶</a>
</div>
</section>
</div>
</section>
</div>
<div id="v6samples">
<section id="section-8.10">
        <h3 id="name-examples-using-ipv6-address">
<a href="#section-8.10" class="section-number selfRef">8.10. </a><a href="#name-examples-using-ipv6-address" class="section-name selfRef">Examples Using IPv6 Addressing</a>
        </h3>
<p id="section-8.10-1">This section provides several examples using IPv6 addressing.  As
          will be seen from the examples, there is nothing special or clever
          about using IPv6 addressing rather than IPv4 addressing.<a href="#section-8.10-1" class="pilcrow">¶</a></p>
<p id="section-8.10-2">The reference network for these IPv6 examples is based on that described
          at the top of <a href="#example" class="xref">Section 8</a> and shown in <a href="#examplefig" class="xref">Figure 11</a>.<a href="#section-8.10-2" class="pilcrow">¶</a></p>
<p id="section-8.10-3">Assume we have a service function overlay network with four SFFs (SFF1, SFF3, SFF3, and SFF4).
          The SFFs have addresses in the underlay network as follows:<a href="#section-8.10-3" class="pilcrow">¶</a></p>
<div id="section-8.10-4">
<pre class="sourcecode">
      SFF1 2001:db8::192:0:2:1
      SFF2 2001:db8::192:0:2:2
      SFF3 2001:db8::192:0:2:3
      SFF4 2001:db8::192:0:2:4
</pre><a href="#section-8.10-4" class="pilcrow">¶</a>
</div>
<p id="section-8.10-5">Each SFF provides access to some SFIs from the four service function types SFT=41, SFT=42,
          SFT=43, and SFT=44, just as before:<a href="#section-8.10-5" class="pilcrow">¶</a></p>
<div id="section-8.10-6">
<pre class="sourcecode">
      SFF1 SFT=41 and SFT=42
      SFF2 SFT=41 and SFT=43
      SFF3 SFT=42 and SFT=44
      SFF4 SFT=43 and SFT=44
</pre><a href="#section-8.10-6" class="pilcrow">¶</a>
</div>
<p id="section-8.10-7">The service function network also contains a controller with address 2001:db8::198:51:100:1.<a href="#section-8.10-7" class="pilcrow">¶</a></p>
<p id="section-8.10-8">This example service function overlay network is shown in <a href="#eg6fig" class="xref">Figure 15</a>.<a href="#section-8.10-8" class="pilcrow">¶</a></p>
<span id="name-example-service-function-ove"></span><div id="eg6fig">
<figure id="figure-15">
          <div class="artwork art-text alignLeft" id="section-8.10-9.1">
<pre>
       ------------------------
      |       Controller       |
      | 2001:db8::198:51:100:1 |
       ------------------------
                    ------     ------        ------     ------
                   | SFI  |   | SFI  |      | SFI  |   | SFI  |
                   |SFT=41|   |SFT=42|      |SFT=41|   |SFT=43|
                    ------     ------        ------     ------
                         \     /                  \     /
                    -------------------     -------------------
                   |       SFF1        |   |       SFF2        |
                   |2001:db8::192:0:2:1|   |2001:db8::192:0:2:2|
                    -------------------     -------------------
               ----------
   Packet --&gt; |          |                                    --&gt;
   Flows  --&gt; |Classifier|                                    --&gt;Dest
              |          |                                    --&gt;
               ----------
                   -------------------      -------------------
                  |       SFF3        |    |       SFF4        |
                  |2001:db8::192:0:2:3|    |2001:db8::192:0:2:4|
                   -------------------      -------------------
                         /     \                  /     \
                    ------     ------        ------     ------
                   | SFI  |   | SFI  |      | SFI  |   | SFI  |
                   |SFT=42|   |SFT=44|      |SFT=43|   |SFT=44|
                    ------     ------        ------     ------
</pre>
</div>
<figcaption><a href="#figure-15" class="selfRef">Figure 15</a>:
<a href="#name-example-service-function-ove" class="selfRef">Example Service Function Overlay Network</a>
          </figcaption></figure>
</div>
<p id="section-8.10-10">The SFFs advertise routes to the SFIs they support.  These advertisements
       contain RDs that are set according to the network operator's
       configuration model.  Note that in an IPv6 network, the RD is not large enough to
       contain the full IPv6 address, as only six octets are available. So, in all of these IPv6
       examples, we use RDs of Type 1 such that the available six octets are partitioned as four
       octets for an IPv4 address of the advertising SFF, and two octets that are a local index
       of the SFI.  Furthermore, we have chosen an IPv6 addressing scheme so that the low-order
       four octets of the IPv6 address match an IPv4 address of the advertising node.  This scheme
       is chosen purely for convenience of documentation, and an operator is totally free to use
       any other scheme so long as it conforms to the definitions of SFIR and
       SFPR in Sections
       <a href="#sfiRoutes" class="xref">3.1</a> and <a href="#sfpRoutes" class="xref">3.2</a>.<a href="#section-8.10-10" class="pilcrow">¶</a></p>
<p id="section-8.10-11">Observant readers will notice that this makes the BGP advertisements shown in these examples
       exactly the same as in the previous examples.  All that is different is that the advertising
       SFFs and controller have IPv6 addresses.<a href="#section-8.10-11" class="pilcrow">¶</a></p>
<p id="section-8.10-12">Thus, we see the following SFIRs advertised.<a href="#section-8.10-12" class="pilcrow">¶</a></p>
<p id="section-8.10-13">The SFFs advertise routes to the SFIs they support.  So we see the following
          SFIRs:<a href="#section-8.10-13" class="pilcrow">¶</a></p>
<div id="section-8.10-14">
<pre class="sourcecode">
      RD = 192.0.2.1/1, SFT = 41
      RD = 192.0.2.1/2, SFT = 42
      RD = 192.0.2.2/1, SFT = 41
      RD = 192.0.2.2/2, SFT = 43
      RD = 192.0.2.3/7, SFT = 42
      RD = 192.0.2.3/8, SFT = 44
      RD = 192.0.2.4/5, SFT = 43
      RD = 192.0.2.4/6, SFT = 44
</pre><a href="#section-8.10-14" class="pilcrow">¶</a>
</div>
<p id="section-8.10-15">Note that the addressing used for communicating between SFFs is taken
          from the tunnel encapsulation attribute of the SFIR and not from the SFIR-RD.<a href="#section-8.10-15" class="pilcrow">¶</a></p>
<div id="eg6explicit">
<section id="section-8.10.1">
          <h4 id="name-example-explicit-sfp-with-no">
<a href="#section-8.10.1" class="section-number selfRef">8.10.1. </a><a href="#name-example-explicit-sfp-with-no" class="section-name selfRef">Example Explicit SFP with No Choices</a>
          </h4>
<p id="section-8.10.1-1">Consider the following SFPR similar to that in <a href="#exampleexplicit" class="xref">Section 8.1</a>.<a href="#section-8.10.1-1" class="pilcrow">¶</a></p>
<div id="section-8.10.1-2">
<pre class="sourcecode">
      SFP1:  RD = 198.51.100.1/101, SPI = 15,
             [SI = 255, SFT = 41, RD = 192.0.2.1/1],
             [SI = 250, SFT = 43, RD = 192.0.2.2/2]
</pre><a href="#section-8.10.1-2" class="pilcrow">¶</a>
</div>
<p id="section-8.10.1-3">The SFP consists of an SF of Type 41 located at SFF1, followed by an SF
             of Type 43 located at SFF2.  This path is fully explicit, and each SFF is
             offered no choice in forwarding a packet along the path.<a href="#section-8.10.1-3" class="pilcrow">¶</a></p>
<p id="section-8.10.1-4">SFF1 will receive packets on the path from the classifier and will identify the path
             from the SPI (15).  The initial SI will be 255, and so SFF1 will deliver the packets to the
             SFI for SFT 41.<a href="#section-8.10.1-4" class="pilcrow">¶</a></p>
<p id="section-8.10.1-5">When the packets are returned to SFF1 by the SFI, the SI will be
   decreased to 250 for the next hop.
              SFF1 has no flexibility in the choice of SFF to support the next-hop SFI and will forward
              the packet to SFF2, which will send the packets to the SFI that supports SFT 43 before
              forwarding the packets to their destinations.<a href="#section-8.10.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="eg6choice">
<section id="section-8.10.2">
          <h4 id="name-example-sfp-with-choice-of-sf">
<a href="#section-8.10.2" class="section-number selfRef">8.10.2. </a><a href="#name-example-sfp-with-choice-of-sf" class="section-name selfRef">Example SFP with Choice of SFIs</a>
          </h4>
<div id="section-8.10.2-1">
<pre class="sourcecode">
      SFP2:  RD = 198.51.100.1/102, SPI = 16,
             [SI = 255, SFT = 41, RD = 192.0.2.1/1],
             [SI = 250, SFT = 43, {RD = 192.0.2.2/2,
                                   RD = 192.0.2.4/5 } ]
</pre><a href="#section-8.10.2-1" class="pilcrow">¶</a>
</div>
<p id="section-8.10.2-2">In this example, like that in <a href="#examplechoice" class="xref">Section 8.2</a>, the path also consists of an
             SF of Type 41 located at SFF1, and this is followed by an SF of
      Type 43; but in this case, the
             SI = 250 contains a choice between the SFI located at SFF2 and the SFI located at SFF4.<a href="#section-8.10.2-2" class="pilcrow">¶</a></p>
<p id="section-8.10.2-3">SFF1 will receive packets on the path from the classifier and will identify the path
             from the SPI (16).  The initial SI will be 255, and so SFF1 will deliver the packets to the
             SFI for SFT 41.<a href="#section-8.10.2-3" class="pilcrow">¶</a></p>
<p id="section-8.10.2-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
              the next hop.  SFF1 now has a choice of next-hop SFFs to execute the next hop in the path.
              It can either forward packets to SFF2 or SFF4 to execute a function of Type 43.  It uses
              its local load-balancing algorithm to make this choice.  The chosen SFF will send the
              packets to the SFI that supports SFT 43 before forwarding the packets to their
              destinations.<a href="#section-8.10.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="eg6open">
<section id="section-8.10.3">
          <h4 id="name-example-sfp-with-open-choice">
<a href="#section-8.10.3" class="section-number selfRef">8.10.3. </a><a href="#name-example-sfp-with-open-choice" class="section-name selfRef">Example SFP with Open Choice of SFIs</a>
          </h4>
<div id="section-8.10.3-1">
<pre class="sourcecode">
      SFP3:  RD = 198.51.100.1/103, SPI = 17,
             [SI = 255, SFT = 41, RD = 192.0.2.1/1],
             [SI = 250, SFT = 44, RD = 0]
</pre><a href="#section-8.10.3-1" class="pilcrow">¶</a>
</div>
<p id="section-8.10.3-2">In this example, like that in <a href="#exampleopen" class="xref">Section 8.3</a>, the path also consists of an
             SF of Type 41 located at SFF1, and this is followed by an SI with an RD of zero and SF of
             Type 44.  This means that a choice can be made between any SFF that supports an SFI of
             Type 44.<a href="#section-8.10.3-2" class="pilcrow">¶</a></p>
<p id="section-8.10.3-3">SFF1 will receive packets on the path from the classifier and will identify the path
             from the SPI (17).  The initial SI will be 255, and so SFF1 will deliver the packets to the
             SFI for SFT 41.<a href="#section-8.10.3-3" class="pilcrow">¶</a></p>
<p id="section-8.10.3-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
              the next hop.  SFF1 now has a free choice of next-hop SFFs to execute the next hop in the
              path, selecting between all SFFs that support SFs of Type 44.  Looking at the SFIRs it
              has received, SFF1 knows that SF Type 44 is supported by SFF3 and SFF4.  SFF1 uses its
              local load-balancing algorithm to make this choice.  The chosen SFF will send the packets
              to the SFI that supports SFT 44 before forwarding the packets to their destinations.<a href="#section-8.10.3-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="eg6sft">
<section id="section-8.10.4">
          <h4 id="name-example-sfp-with-choice-of-sft">
<a href="#section-8.10.4" class="section-number selfRef">8.10.4. </a><a href="#name-example-sfp-with-choice-of-sft" class="section-name selfRef">Example SFP with Choice of SFTs</a>
          </h4>
<div id="section-8.10.4-1">
<pre class="sourcecode">
      SFP4:  RD = 198.51.100.1/104, SPI = 18,
             [SI = 255, SFT = 41, RD = 192.0.2.1/1],
             [SI = 250, {SFT = 43, RD = 192.0.2.2/2,
                         SFT = 44, RD = 192.0.2.3/8 } ]
</pre><a href="#section-8.10.4-1" class="pilcrow">¶</a>
</div>
<p id="section-8.10.4-2">This example, similar to that in <a href="#examplesft" class="xref">Section 8.4</a>, provides a choice of SF type
             in the second hop in the path.  The SI of 250 indicates a choice between SF Type 43 located
             through SF2 and SF Type 44 located at SF3.<a href="#section-8.10.4-2" class="pilcrow">¶</a></p>
<p id="section-8.10.4-3">SFF1 will receive packets on the path from the classifier and will identify the path
             from the SPI (18).  The initial SI will be 255, and so SFF1 will deliver the packets to the
             SFI for SFT 41.<a href="#section-8.10.4-3" class="pilcrow">¶</a></p>
<p id="section-8.10.4-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
             the next hop.  SFF1 now has a free choice of next-hop SFFs to execute the next hop in the
             path, selecting between all SFFs that support an SF of Type 43
      and SFF3, which supports an
             SF of Type 44.  These may be completely different functions that are to be executed dependent
             on specific conditions, or they may be similar functions identified with different type
             identifiers (such as firewalls from different vendors).  SFF1
      uses its local policy and load-balancing algorithm to make this
      choice, and it may use additional information passed back from
             the local SFI to help inform its selection.  The chosen SFF will send the packets to the SFI
             that supports the chosen SFT before forwarding the packets to their destinations.<a href="#section-8.10.4-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="security">
<section id="section-9">
      <h2 id="name-security-considerations">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
      </h2>
<p id="section-9-1">The mechanisms in this document use BGP for the control plane.
       Hence, techniques such as those discussed in <span>[<a href="#RFC5925" class="xref">RFC5925</a>]</span>
       can be used to help authenticate BGP sessions and, thus, the messages
       between BGP peers, making it harder to spoof updates (which
       could be used to install bogus SFPs or advertise false SIs)
       or withdrawals.<a href="#section-9-1" class="pilcrow">¶</a></p>
<p id="section-9-2">Further discussion of security considerations for BGP may be found in
       the BGP specification itself <span>[<a href="#RFC4271" class="xref">RFC4271</a>]</span> and the security
       analysis for BGP <span>[<a href="#RFC4272" class="xref">RFC4272</a>]</span>.





<span>[<a href="#RFC5925" class="xref">RFC5925</a>]</span> contains a discussion of the inappropriateness of the TCP
MD5 signature option for protecting BGP sessions.  <span>[<a href="#RFC6952" class="xref">RFC6952</a>]</span> includes
an analysis of BGP keying and authentication issues.<a href="#section-9-2" class="pilcrow">¶</a></p>
<p id="section-9-3">Additionally, this document depends on other documents that specify BGP
       Multiprotocol Extensions and the documents that define the attributes that
       are carried by BGP UPDATEs of the SFC AFI/SAFI.  <span>[<a href="#RFC4760" class="xref">RFC4760</a>]</span>
       observes that the use of AFI/SAFI does not change the underlying security issues
       inherent in the existing BGP.  Relevant additional security measures are
       considered in <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>.<a href="#section-9-3" class="pilcrow">¶</a></p>
<p id="section-9-4">This document does not fundamentally change the security behavior of BGP
       deployments, which depend considerably on the network operator's perception
       of risk in their network.  It may be observed that the application of the
       mechanisms described in this document is scoped to a single domain, as implied
       by <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> and noted in <a href="#funcover" class="xref">Section 2.1</a> of this document.
       Applicability of BGP within a single domain may enable a network operator to make
       easier and more consistent decisions about what security measures to apply, and the
       domain boundary, which BGP enforces by definition, provides a safeguard that prevents
       leakage of SFC programming in either direction at the boundary.<a href="#section-9-4" class="pilcrow">¶</a></p>
<p id="section-9-5">Service function chaining provides a significant attack opportunity; packets can be diverted
       from their normal paths through the network, packets can be made to execute unexpected functions, and
       the functions that are instantiated in software can be subverted.  However, this specification
       does not change the existence of service function chaining, and security issues specific to
       service function chaining are covered in <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span> and
       <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>.<a href="#section-9-5" class="pilcrow">¶</a></p>
<p id="section-9-6">This document defines a control plane for service function chaining.  Clearly, this provides
       an attack vector for a service function chaining system, as an attack on this control plane
       could be used to make the system misbehave.  Thus, the security of the BGP system is critically
       important to the security of the whole service function chaining system.  The control plane
       mechanisms are very similar to those used for BGP/MPLS IP VPNs as described in              
       <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span>, and so the security considerations in that document (Section <a href="https://www.rfc-editor.org/rfc/rfc4364#section-13" class="relref">13</a>)
       provide good guidance for securing service function chaining systems reliant on this specification.  Of particular
       relevance is the need to securely distinguish between messages intended for the control of
       different SFC overlays, which is similar to the need to distinguish between different VPNs.
       <span><a href="https://www.rfc-editor.org/rfc/rfc7432#section-19" class="relref">Section 19</a> of [<a href="#RFC7432" class="xref">RFC7432</a>]</span> also provides useful guidance on the use of BGP in a
       similar environment.<a href="#section-9-6" class="pilcrow">¶</a></p>
<p id="section-9-7">Note that a component of a service function chaining system that uses the procedures described in this document also
       requires communications between a controller and the service function chaining network elements (specifically the SFFs
       and classifiers).  This communication covers instructing the classifiers using BGP mechanisms (see
       <a href="#fspecclassy" class="xref">Section 7.4</a>); therefore, the use of BGP security is strongly recommended.  But it also
       covers other mechanisms for programming the classifier and instructing the SFFs and SFs (for
       example, to bind SFs to an SFF, and to cause the establishment of tunnels between SFFs).  This
       document does not cover these latter mechanisms, and so their security is out of scope, but it
       should be noted that these communications provide an attack vector on the service function chaining system, and so
       attention must be paid to ensuring that they are secure.<a href="#section-9-7" class="pilcrow">¶</a></p>
<p id="section-9-8">There is an intrinsic assumption in service function chaining systems that nodes that announce support for specific
       SFs actually offer those functions and that SFs are not, themselves, attacked or subverted.
       This is particularly important when the SFs are implemented as software that can be updated.
       Protection against this sort of concern forms part of the security of any service function chaining system and so is
       outside the scope of the control plane mechanisms described in this document.<a href="#section-9-8" class="pilcrow">¶</a></p>
<p id="section-9-9">Similarly, there is a vulnerability if a rogue or subverted controller announces SFPs, especially
       if that controller "takes over" an existing SFP and changes its contents.  This corresponds
       to a rogue BGP speaker entering a routing system, or even a Route Reflector becoming
       subverted.  Protection mechanisms, as above, include securing BGP sessions and protecting
       software loads on the controllers.<a href="#section-9-9" class="pilcrow">¶</a></p>
<p id="section-9-10">In an environment where there is concern that rogue controllers might be introduced to the
       network and inject false SFPRs or take over and change existing SFPRs, it is <span class="bcp14">RECOMMENDED</span> that
       each SFF and classifier be configured with the identities of authorized controllers.  Thus, the
       announcement of an SFPR by any other BGP peer would be rejected.<a href="#section-9-10" class="pilcrow">¶</a></p>
<p id="section-9-11">Lastly, note that <a href="#sfparules" class="xref">Section 3.2.2</a> makes two operational suggestions that have
       implications for the stability and security of the mechanisms described in this document:<a href="#section-9-11" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-9-12.1">That modifications to active SFPs not be made.<a href="#section-9-12.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-9-12.2">That SPIs not be immediately reused.<a href="#section-9-12.2" class="pilcrow">¶</a>
</li>
      </ul>
</section>
</div>
<div id="iana">
<section id="section-10">
      <h2 id="name-iana-considerations">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
      </h2>
<div id="afisafi">
<section id="section-10.1">
        <h3 id="name-new-bgp-af-safi">
<a href="#section-10.1" class="section-number selfRef">10.1. </a><a href="#name-new-bgp-af-safi" class="section-name selfRef">New BGP AF/SAFI</a>
        </h3>
<p id="section-10.1-1">IANA maintains the "Address Family Numbers" registry.  IANA has assigned a new
          Address Family Number from the "Standards Action" range called "BGP SFC" (31), with this document as a reference.<a href="#section-10.1-1" class="pilcrow">¶</a></p>
<p id="section-10.1-2">IANA maintains the "Subsequent Address Family Identifiers (SAFI) Parameters" registry.  IANA
          has assigned a new SAFI value from the "Standards Action" range called "BGP SFC"
          (9), with this document as a reference.<a href="#section-10.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ianasfpatt">
<section id="section-10.2">
        <h3 id="name-sfp-attribute-bgp-path-attr">
<a href="#section-10.2" class="section-number selfRef">10.2. </a><a href="#name-sfp-attribute-bgp-path-attr" class="section-name selfRef">"SFP attribute" BGP Path Attribute</a>
        </h3>
<p id="section-10.2-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Parameters" with a subregistry of
          "BGP Path Attributes".  IANA has assigned a new Path attribute called "SFP attribute" with a value of 37 and with this document as a reference.<a href="#section-10.2-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ianasftlv">
<section id="section-10.3">
        <h3 id="name-sfp-attribute-tlvs-registry">
<a href="#section-10.3" class="section-number selfRef">10.3. </a><a href="#name-sfp-attribute-tlvs-registry" class="section-name selfRef">"SFP Attribute TLVs" Registry</a>
        </h3>
<p id="section-10.3-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Parameters".  IANA has created a new subregistry called the "SFP Attribute TLVs" registry.<a href="#section-10.3-1" class="pilcrow">¶</a></p>
<p id="section-10.3-2">Valid values are in the range 0 to 65535.<a href="#section-10.3-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.3-3.1">Values 0 and 65535 are marked "Reserved".<a href="#section-10.3-3.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.3-3.2">Values 1 through 65534 are to be assigned according to the "First Come
               First Served" policy <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.<a href="#section-10.3-3.2" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-10.3-4">This document is a reference for this registry.<a href="#section-10.3-4" class="pilcrow">¶</a></p>
<p id="section-10.3-5">The registry tracks:<a href="#section-10.3-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.3-6.1">Type<a href="#section-10.3-6.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.3-6.2">Name<a href="#section-10.3-6.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.3-6.3">Reference<a href="#section-10.3-6.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.3-6.4">Registration Date<a href="#section-10.3-6.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-10.3-7">The registry is initially populated as follows:<a href="#section-10.3-7" class="pilcrow">¶</a></p>
<span id="name-sfp-attribute-tlvs-subregis"></span><table class="center" id="table-1">
          <caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-sfp-attribute-tlvs-subregis" class="selfRef">SFP Attribute TLVs Subregistry Initial Contents</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">Type</th>
              <th class="text-left" rowspan="1" colspan="1">Name</th>
              <th class="text-left" rowspan="1" colspan="1">Reference</th>
              <th class="text-left" rowspan="1" colspan="1">Registration Date</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">1</td>
              <td class="text-left" rowspan="1" colspan="1">Association TLV</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">2</td>
              <td class="text-left" rowspan="1" colspan="1">Hop TLV</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">3</td>
              <td class="text-left" rowspan="1" colspan="1">SFT TLV</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">4</td>
              <td class="text-left" rowspan="1" colspan="1">MPLS Swapping/Stacking</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">5</td>
              <td class="text-left" rowspan="1" colspan="1">SFP Traversal With MPLS</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
          </tbody>
        </table>
</section>
</div>
<div id="ianaassoc">
<section id="section-10.4">
        <h3 id="name-sfp-association-type-regist">
<a href="#section-10.4" class="section-number selfRef">10.4. </a><a href="#name-sfp-association-type-regist" class="section-name selfRef">"SFP Association Type" Registry</a>
        </h3>
<p id="section-10.4-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Parameters".  IANA has created a new subregistry called the "SFP Association Type" registry.<a href="#section-10.4-1" class="pilcrow">¶</a></p>
<p id="section-10.4-2">Valid values are in the range 0 to 65535.<a href="#section-10.4-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.4-3.1">Values 0 and 65535 are marked "Reserved".<a href="#section-10.4-3.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.4-3.2">Values 1 through 65534 are assigned according to the "First Come
               First Served" policy <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.<a href="#section-10.4-3.2" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-10.4-4">This document is given as a reference for this registry.<a href="#section-10.4-4" class="pilcrow">¶</a></p>
<p id="section-10.4-5">The new registry tracks:<a href="#section-10.4-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.4-6.1">Association Type<a href="#section-10.4-6.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.4-6.2">Name<a href="#section-10.4-6.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.4-6.3">Reference<a href="#section-10.4-6.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.4-6.4">Registration Date<a href="#section-10.4-6.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-10.4-7">The registry should initially be populated as follows:<a href="#section-10.4-7" class="pilcrow">¶</a></p>
<span id="name-sfp-association-type-subreg"></span><table class="center" id="table-2">
          <caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-sfp-association-type-subreg" class="selfRef">SFP Association Type Subregistry Initial Contents</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">Association Type</th>
              <th class="text-left" rowspan="1" colspan="1">Name</th>
              <th class="text-left" rowspan="1" colspan="1">Reference</th>
              <th class="text-left" rowspan="1" colspan="1">Date</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">1</td>
              <td class="text-left" rowspan="1" colspan="1">Bidirectional SFP</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
          </tbody>
        </table>
</section>
</div>
<div id="SFTreg">
<section id="section-10.5">
        <h3 id="name-service-function-chaining-s">
<a href="#section-10.5" class="section-number selfRef">10.5. </a><a href="#name-service-function-chaining-s" class="section-name selfRef">"Service Function Chaining Service Function Types" Registry</a>
        </h3>
<p id="section-10.5-1">IANA has created a new top-level registry called "Service Function Chaining Service Function Types".<a href="#section-10.5-1" class="pilcrow">¶</a></p>
<p id="section-10.5-2">Valid values are in the range 0 to 65535.<a href="#section-10.5-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.5-3.1">Values 0 and 65535 are marked "Reserved".<a href="#section-10.5-3.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.5-3.2">Values 1 through 31 are to be assigned by "Standards Action" <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span> and are referred to
               as the "special-purpose SFT values".<a href="#section-10.5-3.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.5-3.3">Values 32 through 64495 are to be assigned according to the "First Come
               First Served" policy <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.<a href="#section-10.5-3.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.5-3.4">Values 64496 through 65534 are for Private Use and are not to be recorded by IANA.<a href="#section-10.5-3.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-10.5-4">This document is given as a reference for this registry.<a href="#section-10.5-4" class="pilcrow">¶</a></p>
<p id="section-10.5-5">The registry tracks:<a href="#section-10.5-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.5-6.1">Value<a href="#section-10.5-6.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.5-6.2">Name<a href="#section-10.5-6.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.5-6.3">Reference<a href="#section-10.5-6.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-10.5-6.4">Registration Date<a href="#section-10.5-6.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-10.5-7">The registry is initially populated as follows.<a href="#section-10.5-7" class="pilcrow">¶</a></p>
<span id="name-service-function-chaining-se"></span><table class="center" id="table-3">
          <caption>
<a href="#table-3" class="selfRef">Table 3</a>:
<a href="#name-service-function-chaining-se" class="selfRef">Service Function Chaining Service Function Types Registry Initial Contents</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">Value</th>
              <th class="text-left" rowspan="1" colspan="1">Name</th>
              <th class="text-left" rowspan="1" colspan="1">Reference</th>
              <th class="text-left" rowspan="1" colspan="1">Date</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">0</td>
              <td class="text-left" rowspan="1" colspan="1">Reserved</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">1</td>
              <td class="text-left" rowspan="1" colspan="1">Change Sequence</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">2-31</td>
              <td class="text-left" rowspan="1" colspan="1">Unassigned</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">32</td>
              <td class="text-left" rowspan="1" colspan="1">Classifier</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#I-D.dawra-idr-bgp-ls-sr-service-segments" class="xref">BGP-LS-SR</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">33</td>
              <td class="text-left" rowspan="1" colspan="1">Firewall</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#I-D.dawra-idr-bgp-ls-sr-service-segments" class="xref">BGP-LS-SR</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">34</td>
              <td class="text-left" rowspan="1" colspan="1">Load balancer</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#I-D.dawra-idr-bgp-ls-sr-service-segments" class="xref">BGP-LS-SR</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">35</td>
              <td class="text-left" rowspan="1" colspan="1">Deep packet inspection engine</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#I-D.dawra-idr-bgp-ls-sr-service-segments" class="xref">BGP-LS-SR</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">36</td>
              <td class="text-left" rowspan="1" colspan="1">Penalty box</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">37</td>
              <td class="text-left" rowspan="1" colspan="1">WAN accelerator</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>, <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">38</td>
              <td class="text-left" rowspan="1" colspan="1">Application accelerator</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">39</td>
              <td class="text-left" rowspan="1" colspan="1">TCP optimizer</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">40</td>
              <td class="text-left" rowspan="1" colspan="1">Network Address Translator</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">41</td>
              <td class="text-left" rowspan="1" colspan="1">NAT44</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>, <span>[<a href="#RFC3022" class="xref">RFC3022</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">42</td>
              <td class="text-left" rowspan="1" colspan="1">NAT64</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>, <span>[<a href="#RFC6146" class="xref">RFC6146</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">43</td>
              <td class="text-left" rowspan="1" colspan="1">NPTv6</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>, <span>[<a href="#RFC6296" class="xref">RFC6296</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">44</td>
              <td class="text-left" rowspan="1" colspan="1">Lawful intercept</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">45</td>
              <td class="text-left" rowspan="1" colspan="1">HOST_ID injection</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">46</td>
              <td class="text-left" rowspan="1" colspan="1">HTTP header enrichment</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">47</td>
              <td class="text-left" rowspan="1" colspan="1">Caching engine </td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">48-64495</td>
              <td class="text-left" rowspan="1" colspan="1">Unassigned</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">64496-65534</td>
              <td class="text-left" rowspan="1" colspan="1">Reserved for Private Use</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">65535</td>
              <td class="text-left" rowspan="1" colspan="1">Reserved, not to be allocated </td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
          </tbody>
        </table>
</section>
</div>
<div id="ExpExtComreg">
<section id="section-10.6">
        <h3 id="name-flow-specification-for-sfc-c">
<a href="#section-10.6" class="section-number selfRef">10.6. </a><a href="#name-flow-specification-for-sfc-c" class="section-name selfRef">Flow Specification for SFC Classifiers</a>
        </h3>
<p id="section-10.6-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Extended Communities" with a subregistry of
          "Generic Transitive Experimental Use Extended Community Sub-Types".  IANA has assigned a
          new subtype as follows:<a href="#section-10.6-1" class="pilcrow">¶</a></p>
<ul class="ulEmpty normal">
<li class="ulEmpty normal" id="section-10.6-2.1">"Flow Specification for SFC Classifiers" with a value of 0x0d and with this document as the reference.<a href="#section-10.6-2.1" class="pilcrow">¶</a>
</li>
        </ul>
</section>
</div>
<div id="TransExtComreg">
<section id="section-10.7">
        <h3 id="name-new-bgp-transitive-extended">
<a href="#section-10.7" class="section-number selfRef">10.7. </a><a href="#name-new-bgp-transitive-extended" class="section-name selfRef">New BGP Transitive Extended Community Type</a>
        </h3>
<p id="section-10.7-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Extended Communities" with a subregistry of
          "BGP Transitive Extended Community Types".  IANA has assigned a new type as follows:<a href="#section-10.7-1" class="pilcrow">¶</a></p>
<ul class="ulEmpty normal">
<li class="ulEmpty normal" id="section-10.7-2.1">SFC (Sub-Types are defined in the "SFC Extended Community
   Sub-Types" registry) with a value of 0x0b and with this document as
   the reference.<a href="#section-10.7-2.1" class="pilcrow">¶</a>
</li>
        </ul>
</section>
</div>
<div id="SFCExtComreg">
<section id="section-10.8">
        <h3 id="name-sfc-extended-community-sub-">
<a href="#section-10.8" class="section-number selfRef">10.8. </a><a href="#name-sfc-extended-community-sub-" class="section-name selfRef">"SFC Extended Community Sub-Types" Registry</a>
        </h3>
<p id="section-10.8-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Parameters".  IANA has created a new subregistry called the "SFC Extended Community Sub-Types" registry.<a href="#section-10.8-1" class="pilcrow">¶</a></p>
<p id="section-10.8-2">IANA has included the following note:<a href="#section-10.8-2" class="pilcrow">¶</a></p>
<aside id="section-10.8-3">
          <p id="section-10.8-3.1">
          This registry contains values of the second octet (the "Sub-Type"
               field) of an extended community when the value of the first
               octet (the "Type" field) is set to 0x0b.<a href="#section-10.8-3.1" class="pilcrow">¶</a></p>
</aside>
<p id="section-10.8-4">The allocation policy for this registry is First Come First Served.<a href="#section-10.8-4" class="pilcrow">¶</a></p>
<p id="section-10.8-5">Valid values are 0 to 255.  The value 0 is reserved and should not be allocated.<a href="#section-10.8-5" class="pilcrow">¶</a></p>
<p id="section-10.8-6">IANA has populated this registry with the following entries:<a href="#section-10.8-6" class="pilcrow">¶</a></p>
<span id="name-sfc-extended-community-sub-t"></span><table class="center" id="table-4">
          <caption>
<a href="#table-4" class="selfRef">Table 4</a>:
<a href="#name-sfc-extended-community-sub-t" class="selfRef">SFC Extended Community Sub-Types Subregistry Initial Contents</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">Sub-Type                                    
       Value</th>
              <th class="text-left" rowspan="1" colspan="1">Name</th>
              <th class="text-left" rowspan="1" colspan="1">Reference</th>
              <th class="text-left" rowspan="1" colspan="1">Date</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">0</td>
              <td class="text-left" rowspan="1" colspan="1">Reserved</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">1</td>
              <td class="text-left" rowspan="1" colspan="1">SFIR pool identifier</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">2</td>
              <td class="text-left" rowspan="1" colspan="1">MPLS Label Stack Mixed Swapping/Stacking Labels</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
              <td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">3-255</td>
              <td class="text-left" rowspan="1" colspan="1">Unassigned</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
          </tbody>
        </table>
</section>
</div>
<div id="SpiSiRep">
<section id="section-10.9">
        <h3 id="name-new-spi-si-representation-s">
<a href="#section-10.9" class="section-number selfRef">10.9. </a><a href="#name-new-spi-si-representation-s" class="section-name selfRef">New SPI/SI Representation Sub-TLV</a>
        </h3>
<p id="section-10.9-1">IANA has assigned a codepoint from the "BGP Tunnel Encapsulation Attribute
          Sub-TLVs" registry for the "SPI/SI Representation Sub-TLV"  with a value of 16 and with this
          document as the reference.<a href="#section-10.9-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="IANAbits">
<section id="section-10.10">
        <h3 id="name-sfc-spi-si-representation-f">
<a href="#section-10.10" class="section-number selfRef">10.10. </a><a href="#name-sfc-spi-si-representation-f" class="section-name selfRef">"SFC SPI/SI Representation Flags" Registry</a>
        </h3>
<p id="section-10.10-1">IANA maintains the "BGP Tunnel Encapsulation Attribute Sub-TLVs" registry and has created an associated registry called the "SFC SPI/SI Representation Flags" registry.<a href="#section-10.10-1" class="pilcrow">¶</a></p>
<p id="section-10.10-2">Bits are to be assigned by Standards Action. The field is 16 bits long, and bits are counted
         from the most significant bit as bit zero.<a href="#section-10.10-2" class="pilcrow">¶</a></p>
<p id="section-10.10-3">IANA has populated the registry as follows:<a href="#section-10.10-3" class="pilcrow">¶</a></p>
<span id="name-sfc-spi-si-representation-fl"></span><table class="center" id="table-5">
          <caption>
<a href="#table-5" class="selfRef">Table 5</a>:
<a href="#name-sfc-spi-si-representation-fl" class="selfRef">SFC SPI/SI Representation Flags Registry Initial Contents</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">Value</th>
              <th class="text-left" rowspan="1" colspan="1">Name</th>
              <th class="text-left" rowspan="1" colspan="1">Reference</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">0</td>
              <td class="text-left" rowspan="1" colspan="1">NSH data plane</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">1</td>
              <td class="text-left" rowspan="1" colspan="1">MPLS data plane</td>
              <td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
            </tr>
          </tbody>
        </table>
</section>
</div>
</section>
</div>
<section id="section-11">
      <h2 id="name-references">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-references" class="section-name selfRef">References</a>
      </h2>
<section id="section-11.1">
        <h3 id="name-normative-references">
<a href="#section-11.1" class="section-number selfRef">11.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
        </h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
        <dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4271">[RFC4271]</dt>
        <dd>
<span class="refAuthor">Rekhter, Y., Ed.</span>, <span class="refAuthor">Li, T., Ed.</span>, and <span class="refAuthor">S. Hares, Ed.</span>, <span class="refTitle">"A Border Gateway Protocol 4 (BGP-4)"</span>, <span class="seriesInfo">RFC 4271</span>, <span class="seriesInfo">DOI 10.17487/RFC4271</span>, <time datetime="2006-01" class="refDate">January 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4271">https://www.rfc-editor.org/info/rfc4271</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4360">[RFC4360]</dt>
        <dd>
<span class="refAuthor">Sangli, S.</span>, <span class="refAuthor">Tappan, D.</span>, and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"BGP Extended Communities Attribute"</span>, <span class="seriesInfo">RFC 4360</span>, <span class="seriesInfo">DOI 10.17487/RFC4360</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4360">https://www.rfc-editor.org/info/rfc4360</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4364">[RFC4364]</dt>
        <dd>
<span class="refAuthor">Rosen, E.</span> and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"BGP/MPLS IP Virtual Private Networks (VPNs)"</span>, <span class="seriesInfo">RFC 4364</span>, <span class="seriesInfo">DOI 10.17487/RFC4364</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4364">https://www.rfc-editor.org/info/rfc4364</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4760">[RFC4760]</dt>
        <dd>
<span class="refAuthor">Bates, T.</span>, <span class="refAuthor">Chandra, R.</span>, <span class="refAuthor">Katz, D.</span>, and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"Multiprotocol Extensions for BGP-4"</span>, <span class="seriesInfo">RFC 4760</span>, <span class="seriesInfo">DOI 10.17487/RFC4760</span>, <time datetime="2007-01" class="refDate">January 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4760">https://www.rfc-editor.org/info/rfc4760</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7432">[RFC7432]</dt>
        <dd>
<span class="refAuthor">Sajassi, A., Ed.</span>, <span class="refAuthor">Aggarwal, R.</span>, <span class="refAuthor">Bitar, N.</span>, <span class="refAuthor">Isaac, A.</span>, <span class="refAuthor">Uttaro, J.</span>, <span class="refAuthor">Drake, J.</span>, and <span class="refAuthor">W. Henderickx</span>, <span class="refTitle">"BGP MPLS-Based Ethernet VPN"</span>, <span class="seriesInfo">RFC 7432</span>, <span class="seriesInfo">DOI 10.17487/RFC7432</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7432">https://www.rfc-editor.org/info/rfc7432</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7606">[RFC7606]</dt>
        <dd>
<span class="refAuthor">Chen, E., Ed.</span>, <span class="refAuthor">Scudder, J., Ed.</span>, <span class="refAuthor">Mohapatra, P.</span>, and <span class="refAuthor">K. Patel</span>, <span class="refTitle">"Revised Error Handling for BGP UPDATE Messages"</span>, <span class="seriesInfo">RFC 7606</span>, <span class="seriesInfo">DOI 10.17487/RFC7606</span>, <time datetime="2015-08" class="refDate">August 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7606">https://www.rfc-editor.org/info/rfc7606</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7665">[RFC7665]</dt>
        <dd>
<span class="refAuthor">Halpern, J., Ed.</span> and <span class="refAuthor">C. Pignataro, Ed.</span>, <span class="refTitle">"Service Function Chaining (SFC) Architecture"</span>, <span class="seriesInfo">RFC 7665</span>, <span class="seriesInfo">DOI 10.17487/RFC7665</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7665">https://www.rfc-editor.org/info/rfc7665</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8126">[RFC8126]</dt>
        <dd>
<span class="refAuthor">Cotton, M.</span>, <span class="refAuthor">Leiba, B.</span>, and <span class="refAuthor">T. Narten</span>, <span class="refTitle">"Guidelines for Writing an IANA Considerations Section in RFCs"</span>, <span class="seriesInfo">BCP 26</span>, <span class="seriesInfo">RFC 8126</span>, <span class="seriesInfo">DOI 10.17487/RFC8126</span>, <time datetime="2017-06" class="refDate">June 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
        <dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8300">[RFC8300]</dt>
        <dd>
<span class="refAuthor">Quinn, P., Ed.</span>, <span class="refAuthor">Elzur, U., Ed.</span>, and <span class="refAuthor">C. Pignataro, Ed.</span>, <span class="refTitle">"Network Service Header (NSH)"</span>, <span class="seriesInfo">RFC 8300</span>, <span class="seriesInfo">DOI 10.17487/RFC8300</span>, <time datetime="2018-01" class="refDate">January 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8300">https://www.rfc-editor.org/info/rfc8300</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8595">[RFC8595]</dt>
        <dd>
<span class="refAuthor">Farrel, A.</span>, <span class="refAuthor">Bryant, S.</span>, and <span class="refAuthor">J. Drake</span>, <span class="refTitle">"An MPLS-Based Forwarding Plane for Service Function Chaining"</span>, <span class="seriesInfo">RFC 8595</span>, <span class="seriesInfo">DOI 10.17487/RFC8595</span>, <time datetime="2019-06" class="refDate">June 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8595">https://www.rfc-editor.org/info/rfc8595</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8596">[RFC8596]</dt>
        <dd>
<span class="refAuthor">Malis, A.</span>, <span class="refAuthor">Bryant, S.</span>, <span class="refAuthor">Halpern, J.</span>, and <span class="refAuthor">W. Henderickx</span>, <span class="refTitle">"MPLS Transport Encapsulation for the Service Function Chaining (SFC) Network Service Header (NSH)"</span>, <span class="seriesInfo">RFC 8596</span>, <span class="seriesInfo">DOI 10.17487/RFC8596</span>, <time datetime="2019-06" class="refDate">June 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8596">https://www.rfc-editor.org/info/rfc8596</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8955">[RFC8955]</dt>
        <dd>
<span class="refAuthor">Loibl, C.</span>, <span class="refAuthor">Hares, S.</span>, <span class="refAuthor">Raszuk, R.</span>, <span class="refAuthor">McPherson, D.</span>, and <span class="refAuthor">M. Bacher</span>, <span class="refTitle">"Dissemination of Flow Specification Rules"</span>, <span class="seriesInfo">RFC 8955</span>, <span class="seriesInfo">DOI 10.17487/RFC8955</span>, <time datetime="2020-12" class="refDate">December 2020</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8955">https://www.rfc-editor.org/info/rfc8955</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9012">[RFC9012]</dt>
      <dd>
<span class="refAuthor">Patel, K.</span>, <span class="refAuthor">Van de Velde, G.</span>, <span class="refAuthor">Sangli, S.</span>, and <span class="refAuthor">J. Scudder</span>, <span class="refTitle">"The BGP Tunnel Encapsulation Attribute"</span>, <span class="seriesInfo">RFC 9012</span>, <span class="seriesInfo">DOI 10.17487/RFC9012</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9012">https://www.rfc-editor.org/info/rfc9012</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-11.2">
        <h3 id="name-informative-references">
<a href="#section-11.2" class="section-number selfRef">11.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
        </h3>
<dl class="references">
<dt id="I-D.dawra-idr-bgp-ls-sr-service-segments">[BGP-LS-SR]</dt>
        <dd>
<span class="refAuthor">Dawra, G.</span>, <span class="refAuthor">Filsfils, C.</span>, <span class="refAuthor">Talaulikar, K.</span>, <span class="refAuthor">Clad, F.</span>, <span class="refAuthor">Bernier, D.</span>, <span class="refAuthor">Uttaro, J.</span>, <span class="refAuthor">Decraene, B.</span>, <span class="refAuthor">Elmalky, H.</span>, <span class="refAuthor">Xu, X.</span>, <span class="refAuthor">Guichard, J.</span>, and <span class="refAuthor">C. Li</span>, <span class="refTitle">"BGP-LS Advertisement of Segment Routing Service Segments"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-dawra-idr-bgp-ls-sr-service-segments-05</span>, <time datetime="2021-02-15" class="refDate">15 February 2021</time>, <span>&lt;<a href="https://tools.ietf.org/html/draft-dawra-idr-bgp-ls-sr-service-segments-05">https://tools.ietf.org/html/draft-dawra-idr-bgp-ls-sr-service-segments-05</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3022">[RFC3022]</dt>
        <dd>
<span class="refAuthor">Srisuresh, P.</span> and <span class="refAuthor">K. Egevang</span>, <span class="refTitle">"Traditional IP Network Address Translator (Traditional NAT)"</span>, <span class="seriesInfo">RFC 3022</span>, <span class="seriesInfo">DOI 10.17487/RFC3022</span>, <time datetime="2001-01" class="refDate">January 2001</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3022">https://www.rfc-editor.org/info/rfc3022</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4272">[RFC4272]</dt>
        <dd>
<span class="refAuthor">Murphy, S.</span>, <span class="refTitle">"BGP Security Vulnerabilities Analysis"</span>, <span class="seriesInfo">RFC 4272</span>, <span class="seriesInfo">DOI 10.17487/RFC4272</span>, <time datetime="2006-01" class="refDate">January 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4272">https://www.rfc-editor.org/info/rfc4272</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5925">[RFC5925]</dt>
        <dd>
<span class="refAuthor">Touch, J.</span>, <span class="refAuthor">Mankin, A.</span>, and <span class="refAuthor">R. Bonica</span>, <span class="refTitle">"The TCP Authentication Option"</span>, <span class="seriesInfo">RFC 5925</span>, <span class="seriesInfo">DOI 10.17487/RFC5925</span>, <time datetime="2010-06" class="refDate">June 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5925">https://www.rfc-editor.org/info/rfc5925</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6146">[RFC6146]</dt>
        <dd>
<span class="refAuthor">Bagnulo, M.</span>, <span class="refAuthor">Matthews, P.</span>, and <span class="refAuthor">I. van Beijnum</span>, <span class="refTitle">"Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers"</span>, <span class="seriesInfo">RFC 6146</span>, <span class="seriesInfo">DOI 10.17487/RFC6146</span>, <time datetime="2011-04" class="refDate">April 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6146">https://www.rfc-editor.org/info/rfc6146</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6296">[RFC6296]</dt>
        <dd>
<span class="refAuthor">Wasserman, M.</span> and <span class="refAuthor">F. Baker</span>, <span class="refTitle">"IPv6-to-IPv6 Network Prefix Translation"</span>, <span class="seriesInfo">RFC 6296</span>, <span class="seriesInfo">DOI 10.17487/RFC6296</span>, <time datetime="2011-06" class="refDate">June 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6296">https://www.rfc-editor.org/info/rfc6296</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6952">[RFC6952]</dt>
        <dd>
<span class="refAuthor">Jethanandani, M.</span>, <span class="refAuthor">Patel, K.</span>, and <span class="refAuthor">L. Zheng</span>, <span class="refTitle">"Analysis of BGP, LDP, PCEP, and MSDP Issues According to the Keying and Authentication for Routing Protocols (KARP) Design Guide"</span>, <span class="seriesInfo">RFC 6952</span>, <span class="seriesInfo">DOI 10.17487/RFC6952</span>, <time datetime="2013-05" class="refDate">May 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6952">https://www.rfc-editor.org/info/rfc6952</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7498">[RFC7498]</dt>
      <dd>
<span class="refAuthor">Quinn, P., Ed.</span> and <span class="refAuthor">T. Nadeau, Ed.</span>, <span class="refTitle">"Problem Statement for Service Function Chaining"</span>, <span class="seriesInfo">RFC 7498</span>, <span class="seriesInfo">DOI 10.17487/RFC7498</span>, <time datetime="2015-04" class="refDate">April 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7498">https://www.rfc-editor.org/info/rfc7498</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="acks">
<section id="section-appendix.a">
      <h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
      </h2>
<p id="section-appendix.a-1">Thanks to <span class="contact-name">Tony Przygienda</span>, <span class="contact-name">Jeff Haas</span>, and <span class="contact-name">Andy Malis</span> for helpful
      comments, and to
       <span class="contact-name">Joel Halpern</span> for discussions that improved this
       document.  <span class="contact-name">Yuanlong Jiang</span> provided
       a useful review and caught some important issues.  <span class="contact-name">Stephane Litkowski</span> did an
       exceptionally good and detailed Document Shepherd review.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
<p id="section-appendix.a-2"><span class="contact-name">Andy Malis</span> contributed text that formed the
      basis of <a href="#mpls-encaps" class="xref">Section 7.7</a>.<a href="#section-appendix.a-2" class="pilcrow">¶</a></p>
<p id="section-appendix.a-3"><span class="contact-name">Brian Carpenter</span> and <span class="contact-name">Martin       Vigoureux</span> provided useful reviews during IETF Last Call.
       Thanks also to <span class="contact-name">Sheng Jiang</span>, <span class="contact-name">Med Boucadair</span>, <span class="contact-name">Ravi Singh</span>, <span class="contact-name">Benjamin Kaduk</span>, <span class="contact-name">Roman Danyliw</span>,
       <span class="contact-name">Adam Roach</span>, <span class="contact-name">Alvaro Retana</span>, <span class="contact-name">Barry Leiba</span>, and <span class="contact-name">Murray Kucherawy</span> for review comments.
       <span class="contact-name">Ketan Talaulikar</span> provided helpful discussion of
       the SFT codepoint registry.  <span class="contact-name">Ron Bonica</span>
       kept us honest on the difference between an RD and an RT; <span class="contact-name">Benjamin Kaduk</span> kept us on message
       about the difference between an RD and an Extended Community.<a href="#section-appendix.a-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="contributors">
<section id="section-appendix.b">
      <h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Stuart Mackie</span></div>
<div dir="auto" class="left"><span class="org">Juniper Networks</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:wsmackie@juinper.net" class="email">wsmackie@juinper.net</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Keyur Patel</span></div>
<div dir="auto" class="left"><span class="org">Arrcus, Inc.</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:keyur@arrcus.com" class="email">keyur@arrcus.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Avinash Lingala</span></div>
<div dir="auto" class="left"><span class="org">AT&amp;T</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ar977m@att.com" class="email">ar977m@att.com</a>
</div>
</address>
</section>
</div>
<div id="authors-addresses">
<section id="section-appendix.c">
      <h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Adrian Farrel</span></div>
<div dir="auto" class="left"><span class="org">Old Dog Consulting</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:adrian@olddog.co.uk" class="email">adrian@olddog.co.uk</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">John Drake</span></div>
<div dir="auto" class="left"><span class="org">Juniper Networks</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jdrake@juniper.net" class="email">jdrake@juniper.net</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Eric Rosen</span></div>
<div dir="auto" class="left"><span class="org">Juniper Networks</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:erosen52@gmail.com" class="email">erosen52@gmail.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Jim Uttaro</span></div>
<div dir="auto" class="left"><span class="org">AT&amp;T</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ju1738@att.com" class="email">ju1738@att.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Luay Jalil</span></div>
<div dir="auto" class="left"><span class="org">Verizon</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:luay.jalil@verizon.com" class="email">luay.jalil@verizon.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
  toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
  toc.classList.remove("active");
});
</script>
</body>
</html>