1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9015: BGP Control Plane for the Network Service Header in Service Function Chaining</title>
<meta content="Adrian Farrel" name="author">
<meta content="John Drake" name="author">
<meta content="Eric Rosen" name="author">
<meta content="Jim Uttaro" name="author">
<meta content="Luay Jalil" name="author">
<meta content='
This document describes the use of BGP as a control plane for networks that support
service function chaining. The document introduces a new BGP address family
called the "Service Function Chain (SFC) Address Family Identifier / Subsequent Address Family Identifier" (SFC
AFI/SAFI) with two Route Types. One Route Type is originated by a node to advertise
that it hosts a particular instance of a specified service function. This Route Type
also provides "instructions" on how to send a packet to the hosting node in a way that
indicates that the service function has to be applied to the packet. The other Route
Type is used by a controller to advertise the paths of "chains" of service functions
and give a unique designator to each such path so that they can be used in
conjunction with the Network Service Header (NSH) defined in RFC 8300.
This document adopts the service function chaining architecture described in RFC 7665.
' name="description">
<meta content="xml2rfc 3.8.0" name="generator">
<meta content="Service Function Chaining" name="keyword">
<meta content="Service Function Chain" name="keyword">
<meta content="Network Service Header" name="keyword">
<meta content="Service Function" name="keyword">
<meta content="Service Function Forwarder" name="keyword">
<meta content="Service Function Path" name="keyword">
<meta content="Service Function Path Route" name="keyword">
<meta content="Service Function Instance" name="keyword">
<meta content="Service Function Instance Route" name="keyword">
<meta content="Service Function Type" name="keyword">
<meta content="Control Plane" name="keyword">
<meta content="9015" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.8.0
Python 3.6.10
appdirs 1.4.4
ConfigArgParse 1.2.3
google-i18n-address 2.3.5
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.2
kitchen 1.2.6
lxml 4.4.2
pycairo 1.19.0
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.3.1
requests 2.22.0
setuptools 40.6.2
six 1.14.0
WeasyPrint 51
-->
<link href="rfc9015.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: avoid-page;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9015" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-bess-nsh-bgp-control-plane-18" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9015</td>
<td class="center">BGP for NSH SFC</td>
<td class="right">June 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Farrel, et al.</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9015" class="eref">9015</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-06" class="published">June 2021</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">A. Farrel</div>
<div class="org">Old Dog Consulting</div>
</div>
<div class="author">
<div class="author-name">J. Drake</div>
<div class="org">Juniper Networks</div>
</div>
<div class="author">
<div class="author-name">E. Rosen</div>
<div class="org">Juniper Networks</div>
</div>
<div class="author">
<div class="author-name">J. Uttaro</div>
<div class="org">AT&T</div>
</div>
<div class="author">
<div class="author-name">L. Jalil</div>
<div class="org">Verizon</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9015</h1>
<h1 id="title">BGP Control Plane for the Network Service Header in Service Function Chaining</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This document describes the use of BGP as a control plane for networks that support
service function chaining. The document introduces a new BGP address family
called the "Service Function Chain (SFC) Address Family Identifier / Subsequent Address Family Identifier" (SFC
AFI/SAFI) with two Route Types. One Route Type is originated by a node to advertise
that it hosts a particular instance of a specified service function. This Route Type
also provides "instructions" on how to send a packet to the hosting node in a way that
indicates that the service function has to be applied to the packet. The other Route
Type is used by a controller to advertise the paths of "chains" of service functions
and give a unique designator to each such path so that they can be used in
conjunction with the Network Service Header (NSH) defined in RFC 8300.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
<p id="section-abstract-2">This document adopts the service function chaining architecture described in RFC 7665.<a href="#section-abstract-2" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9015">https://www.rfc-editor.org/info/rfc9015</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="ulEmpty toc compact">
<li class="ulEmpty toc compact" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.1.2.1">
<p id="section-toc.1-1.1.2.1.1" class="keepWithNext"><a href="#section-1.1" class="xref">1.1</a>. <a href="#name-requirements-language" class="xref">Requirements Language</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.1.2.2">
<p id="section-toc.1-1.1.2.2.1" class="keepWithNext"><a href="#section-1.2" class="xref">1.2</a>. <a href="#name-terminology" class="xref">Terminology</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-overview" class="xref">Overview</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-overview-of-service-functio" class="xref">Overview of Service Function Chaining</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1"><a href="#section-2.2" class="xref">2.2</a>. <a href="#name-control-plane-overview" class="xref">Control Plane Overview</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-bgp-sfc-routes" class="xref">BGP SFC Routes</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>. <a href="#name-service-function-instance-r" class="xref">Service Function Instance Route (SFIR)</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.3.2.1.2.1">
<p id="section-toc.1-1.3.2.1.2.1.1"><a href="#section-3.1.1" class="xref">3.1.1</a>. <a href="#name-sfir-pool-identifier-extend" class="xref">SFIR Pool Identifier Extended Community</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.3.2.1.2.2">
<p id="section-toc.1-1.3.2.1.2.2.1"><a href="#section-3.1.2" class="xref">3.1.2</a>. <a href="#name-mpls-mixed-swapping-stackin" class="xref">MPLS Mixed Swapping/Stacking Extended Community</a></p>
</li>
</ul>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>. <a href="#name-service-function-path-route" class="xref">Service Function Path Route (SFPR)</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.3.2.2.2.1">
<p id="section-toc.1-1.3.2.2.2.1.1"><a href="#section-3.2.1" class="xref">3.2.1</a>. <a href="#name-the-sfp-attribute" class="xref">The SFP Attribute</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.3.2.2.2.2">
<p id="section-toc.1-1.3.2.2.2.2.1"><a href="#section-3.2.2" class="xref">3.2.2</a>. <a href="#name-general-rules-for-the-sfp-a" class="xref">General Rules for the SFP Attribute</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-mode-of-operation" class="xref">Mode of Operation</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-route-targets" class="xref">Route Targets</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-service-function-instance-ro" class="xref">Service Function Instance Routes</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-service-function-path-routes" class="xref">Service Function Path Routes</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.4.2.4">
<p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>. <a href="#name-classifier-operation" class="xref">Classifier Operation</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.4.2.5">
<p id="section-toc.1-1.4.2.5.1"><a href="#section-4.5" class="xref">4.5</a>. <a href="#name-service-function-forwarder-" class="xref">Service Function Forwarder Operation</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.4.2.5.2.1">
<p id="section-toc.1-1.4.2.5.2.1.1"><a href="#section-4.5.1" class="xref">4.5.1</a>. <a href="#name-processing-with-gaps-in-the" class="xref">Processing with "Gaps" in the SI Sequence</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-selection-within-service-fu" class="xref">Selection within Service Function Paths</a></p>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-looping-jumping-and-branchi" class="xref">Looping, Jumping, and Branching</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-protocol-control-of-looping" class="xref">Protocol Control of Looping, Jumping, and Branching</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-implications-for-forwarding" class="xref">Implications for Forwarding State</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-advanced-topics" class="xref">Advanced Topics</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>. <a href="#name-correlating-service-functio" class="xref">Correlating Service Function Path Instances</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>. <a href="#name-considerations-for-stateful" class="xref">Considerations for Stateful Service Functions</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.7.2.3">
<p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="xref">7.3</a>. <a href="#name-vpn-considerations-and-priv" class="xref">VPN Considerations and Private Service Functions</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.7.2.4">
<p id="section-toc.1-1.7.2.4.1"><a href="#section-7.4" class="xref">7.4</a>. <a href="#name-flow-specification-for-sfc-" class="xref">Flow Specification for SFC Classifiers</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.7.2.5">
<p id="section-toc.1-1.7.2.5.1"><a href="#section-7.5" class="xref">7.5</a>. <a href="#name-choice-of-data-plane-spi-si" class="xref">Choice of Data Plane SPI/SI Representation</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.7.2.5.2.1">
<p id="section-toc.1-1.7.2.5.2.1.1"><a href="#section-7.5.1" class="xref">7.5.1</a>. <a href="#name-mpls-representation-of-the-" class="xref">MPLS Representation of the SPI/SI</a></p>
</li>
</ul>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.7.2.6">
<p id="section-toc.1-1.7.2.6.1"><a href="#section-7.6" class="xref">7.6</a>. <a href="#name-mpls-label-swapping-stackin" class="xref">MPLS Label Swapping/Stacking Operation</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.7.2.7">
<p id="section-toc.1-1.7.2.7.1"><a href="#section-7.7" class="xref">7.7</a>. <a href="#name-support-for-mpls-encapsulat" class="xref">Support for MPLS-Encapsulated NSH Packets</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-examples" class="xref">Examples</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.1">
<p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="xref">8.1</a>. <a href="#name-example-explicit-sfp-with-n" class="xref">Example Explicit SFP with No Choices</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.2">
<p id="section-toc.1-1.8.2.2.1"><a href="#section-8.2" class="xref">8.2</a>. <a href="#name-example-sfp-with-choice-of-" class="xref">Example SFP with Choice of SFIs</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.3">
<p id="section-toc.1-1.8.2.3.1"><a href="#section-8.3" class="xref">8.3</a>. <a href="#name-example-sfp-with-open-choic" class="xref">Example SFP with Open Choice of SFIs</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.4">
<p id="section-toc.1-1.8.2.4.1"><a href="#section-8.4" class="xref">8.4</a>. <a href="#name-example-sfp-with-choice-of-s" class="xref">Example SFP with Choice of SFTs</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.5">
<p id="section-toc.1-1.8.2.5.1"><a href="#section-8.5" class="xref">8.5</a>. <a href="#name-example-correlated-bidirect" class="xref">Example Correlated Bidirectional SFPs</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.6">
<p id="section-toc.1-1.8.2.6.1"><a href="#section-8.6" class="xref">8.6</a>. <a href="#name-example-correlated-asymmetr" class="xref">Example Correlated Asymmetrical Bidirectional SFPs</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.7">
<p id="section-toc.1-1.8.2.7.1"><a href="#section-8.7" class="xref">8.7</a>. <a href="#name-example-looping-in-an-sfp" class="xref">Example Looping in an SFP</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.8">
<p id="section-toc.1-1.8.2.8.1"><a href="#section-8.8" class="xref">8.8</a>. <a href="#name-example-branching-in-an-sfp" class="xref">Example Branching in an SFP</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.9">
<p id="section-toc.1-1.8.2.9.1"><a href="#section-8.9" class="xref">8.9</a>. <a href="#name-examples-of-sfps-with-state" class="xref">Examples of SFPs with Stateful Service Functions</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.9.2.1">
<p id="section-toc.1-1.8.2.9.2.1.1"><a href="#section-8.9.1" class="xref">8.9.1</a>. <a href="#name-forward-and-reverse-choice-" class="xref">Forward and Reverse Choice Made at the SFF</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.9.2.2">
<p id="section-toc.1-1.8.2.9.2.2.1"><a href="#section-8.9.2" class="xref">8.9.2</a>. <a href="#name-parallel-end-to-end-sfps-wi" class="xref">Parallel End-to-End SFPs with Shared SFF</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.9.2.3">
<p id="section-toc.1-1.8.2.9.2.3.1"><a href="#section-8.9.3" class="xref">8.9.3</a>. <a href="#name-parallel-end-to-end-sfps-wit" class="xref">Parallel End-to-End SFPs with Separate SFFs</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.9.2.4">
<p id="section-toc.1-1.8.2.9.2.4.1"><a href="#section-8.9.4" class="xref">8.9.4</a>. <a href="#name-parallel-sfps-downstream-of" class="xref">Parallel SFPs Downstream of the Choice</a></p>
</li>
</ul>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.10">
<p id="section-toc.1-1.8.2.10.1"><a href="#section-8.10" class="xref">8.10</a>. <a href="#name-examples-using-ipv6-address" class="xref">Examples Using IPv6 Addressing</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.10.2.1">
<p id="section-toc.1-1.8.2.10.2.1.1"><a href="#section-8.10.1" class="xref">8.10.1</a>. <a href="#name-example-explicit-sfp-with-no" class="xref">Example Explicit SFP with No Choices</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.10.2.2">
<p id="section-toc.1-1.8.2.10.2.2.1"><a href="#section-8.10.2" class="xref">8.10.2</a>. <a href="#name-example-sfp-with-choice-of-sf" class="xref">Example SFP with Choice of SFIs</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.10.2.3">
<p id="section-toc.1-1.8.2.10.2.3.1"><a href="#section-8.10.3" class="xref">8.10.3</a>. <a href="#name-example-sfp-with-open-choice" class="xref">Example SFP with Open Choice of SFIs</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.8.2.10.2.4">
<p id="section-toc.1-1.8.2.10.2.4.1"><a href="#section-8.10.4" class="xref">8.10.4</a>. <a href="#name-example-sfp-with-choice-of-sft" class="xref">Example SFP with Choice of SFTs</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.10.2.1">
<p id="section-toc.1-1.10.2.1.1"><a href="#section-10.1" class="xref">10.1</a>. <a href="#name-new-bgp-af-safi" class="xref">New BGP AF/SAFI</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.10.2.2">
<p id="section-toc.1-1.10.2.2.1"><a href="#section-10.2" class="xref">10.2</a>. <a href="#name-sfp-attribute-bgp-path-attr" class="xref">"SFP attribute" BGP Path Attribute</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.10.2.3">
<p id="section-toc.1-1.10.2.3.1"><a href="#section-10.3" class="xref">10.3</a>. <a href="#name-sfp-attribute-tlvs-registry" class="xref">"SFP Attribute TLVs" Registry</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.10.2.4">
<p id="section-toc.1-1.10.2.4.1"><a href="#section-10.4" class="xref">10.4</a>. <a href="#name-sfp-association-type-regist" class="xref">"SFP Association Type" Registry</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.10.2.5">
<p id="section-toc.1-1.10.2.5.1"><a href="#section-10.5" class="xref">10.5</a>. <a href="#name-service-function-chaining-s" class="xref">"Service Function Chaining Service Function Types" Registry</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.10.2.6">
<p id="section-toc.1-1.10.2.6.1"><a href="#section-10.6" class="xref">10.6</a>. <a href="#name-flow-specification-for-sfc-c" class="xref">Flow Specification for SFC Classifiers</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.10.2.7">
<p id="section-toc.1-1.10.2.7.1"><a href="#section-10.7" class="xref">10.7</a>. <a href="#name-new-bgp-transitive-extended" class="xref">New BGP Transitive Extended Community Type</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.10.2.8">
<p id="section-toc.1-1.10.2.8.1"><a href="#section-10.8" class="xref">10.8</a>. <a href="#name-sfc-extended-community-sub-" class="xref">"SFC Extended Community Sub-Types" Registry</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.10.2.9">
<p id="section-toc.1-1.10.2.9.1"><a href="#section-10.9" class="xref">10.9</a>. <a href="#name-new-spi-si-representation-s" class="xref">New SPI/SI Representation Sub-TLV</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.10.2.10">
<p id="section-toc.1-1.10.2.10.1"><a href="#section-10.10" class="xref">10.10</a>. <a href="#name-sfc-spi-si-representation-f" class="xref">"SFC SPI/SI Representation Flags" Registry</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>. <a href="#name-references" class="xref">References</a></p>
<ul class="compact toc ulEmpty">
<li class="compact toc ulEmpty" id="section-toc.1-1.11.2.1">
<p id="section-toc.1-1.11.2.1.1"><a href="#section-11.1" class="xref">11.1</a>. <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
<li class="compact toc ulEmpty" id="section-toc.1-1.11.2.2">
<p id="section-toc.1-1.11.2.2.1"><a href="#section-11.2" class="xref">11.2</a>. <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-appendix.a" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a></p>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a></p>
</li>
<li class="ulEmpty toc compact" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#section-appendix.c" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="introduction">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">As described in <span>[<a href="#RFC7498" class="xref">RFC7498</a>]</span>, the delivery of end-to-end services can
require a packet to pass through a series of Service Functions (SFs) --
e.g., WAN and
application accelerators, Deep Packet Inspection (DPI) engines, firewalls, TCP
optimizers, and server load balancers -- in a specified order; this is termed
"service function chaining". There are a number of issues associated with
deploying and maintaining service function chaining in production networks, which are
described below.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">Historically, if a packet needed to travel through a particular service chain, the
nodes hosting the service functions of that chain were placed in the network topology
in such a way that the packet could not reach its ultimate destination without first
passing through all the service functions in the proper order. This need to place the
service functions at particular topological locations limited the ability to adapt a
service function chain to changes in network topology (e.g., link or node failures),
network utilization, or offered service load. These topological restrictions on where
the service functions could be placed raised the following issues:<a href="#section-1-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-1-3">
<li id="section-1-3.1">The process of configuring or modifying a service function chain is operationally
complex and may require changes to the network topology.<a href="#section-1-3.1" class="pilcrow">¶</a>
</li>
<li id="section-1-3.2">Alternate or redundant service functions may need to be co-located with the
primary service functions.<a href="#section-1-3.2" class="pilcrow">¶</a>
</li>
<li id="section-1-3.3">When there is more than one path between source and destination, forwarding may be
asymmetric, and it may be difficult to support bidirectional service function chains
using simple routing methodologies and protocols without adding mechanisms for traffic
steering or traffic engineering.<a href="#section-1-3.3" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-1-4">In order to address these issues, the service function chaining architecture describes service function chains
that are built in their own overlay network (the service function overlay network),
coexisting with other overlay networks, over a common underlay network
<span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>. A service function chain is a sequence of service functions
through which packet flows that satisfy specified criteria will pass.<a href="#section-1-4" class="pilcrow">¶</a></p>
<p id="section-1-5">This document describes the use of BGP as a control plane for networks that support service function chaining. The document introduces a new BGP address family
called the "Service Function Chain (SFC) Address Family Identifier / Subsequent Address Family Identifier"
(SFC AFI/SAFI) with two Route Types. One Route Type is originated by a
node to advertise that it hosts a particular instance of a specified service function.
This Route Type also provides "instructions" on how to send a packet to the hosting
node in a way that indicates that the service function has to be applied to the packet.
The other Route Type is used by a controller (a centralized network component responsible
for planning and coordinating service function chaining within the network) to advertise
the paths of "chains" of service functions and give a unique designator to each such
path so that they can be used in conjunction with the Network Service Header (NSH)
<span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>.<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6">This document adopts the service function chaining architecture described in <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>.<a href="#section-1-6" class="pilcrow">¶</a></p>
<section id="section-1.1">
<h3 id="name-requirements-language">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
</h3>
<p id="section-1.1-1">The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>",
"<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>", "<span class="bcp14">MAY</span>", and
"<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as described in BCP
14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when,
they appear in all capitals, as shown here.<a href="#section-1.1-1" class="pilcrow">¶</a></p>
</section>
<div id="terms">
<section id="section-1.2">
<h3 id="name-terminology">
<a href="#section-1.2" class="section-number selfRef">1.2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h3>
<p id="section-1.2-1">This document uses the following terms from <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>:<a href="#section-1.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1.2-2.1">Bidirectional Service Function Chain<a href="#section-1.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.2-2.2">Classifier<a href="#section-1.2-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.2-2.3">Service Function (SF)<a href="#section-1.2-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.2-2.4">Service Function Chain (SFC)<a href="#section-1.2-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.2-2.5">Service Function Forwarder (SFF)<a href="#section-1.2-2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.2-2.6">Service Function Instance (SFI)<a href="#section-1.2-2.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.2-2.7">Service Function Path (SFP)<a href="#section-1.2-2.7" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.2-2.8">SFC branching<a href="#section-1.2-2.8" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-1.2-3">Additionally, this document uses the following terms from <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>:<a href="#section-1.2-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1.2-4.1">Network Service Header (NSH)<a href="#section-1.2-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.2-4.2">Service Index (SI)<a href="#section-1.2-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.2-4.3">Service Path Identifier (SPI)<a href="#section-1.2-4.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-1.2-5">This document introduces the following terms:<a href="#section-1.2-5" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-1.2-6">
<dt id="section-1.2-6.1">Service Function Instance Route (SFIR):</dt>
<dd style="margin-left: 1.5em" id="section-1.2-6.2">A new BGP Route Type advertised by the
node that hosts an SFI to describe the SFI and to announce the way to forward a
packet to the node through the underlay network.<a href="#section-1.2-6.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.2-6.3">Service Function Overlay Network:</dt>
<dd style="margin-left: 1.5em" id="section-1.2-6.4">The logical network comprised of classifiers,
SFFs, and SFIs that are connected by paths or tunnels through underlay transport
networks.<a href="#section-1.2-6.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.2-6.5">Service Function Path Route (SFPR):</dt>
<dd style="margin-left: 1.5em" id="section-1.2-6.6">A new BGP Route Type originated by controllers to
advertise the details of each SFP.<a href="#section-1.2-6.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.2-6.7">Service Function Type (SFT):</dt>
<dd style="margin-left: 1.5em" id="section-1.2-6.8">An indication of the function and features of an SFI.<a href="#section-1.2-6.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
</section>
</div>
<div id="overview">
<section id="section-2">
<h2 id="name-overview">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-overview" class="section-name selfRef">Overview</a>
</h2>
<p id="section-2-1">This section provides an overview of service function chaining in general and the control
plane defined in this document. After reading this section, readers may find it helpful to
look through <a href="#example" class="xref">Section 8</a> for some simple worked examples.<a href="#section-2-1" class="pilcrow">¶</a></p>
<div id="funcover">
<section id="section-2.1">
<h3 id="name-overview-of-service-functio">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-overview-of-service-functio" class="section-name selfRef">Overview of Service Function Chaining</a>
</h3>
<p id="section-2.1-1">In <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>, a Service Function Chain (SFC) is an ordered list of
Service Functions (SFs). A Service Function Path (SFP) is an indication of which instances
of SFs are acceptable to be traversed in an instantiation of an SFC in a service function
overlay network. The Service Path Identifier (SPI) is a 24-bit number that identifies
a specific SFP, and a Service Index (SI) is an 8-bit number that identifies a specific point
in that path. In the context of a particular SFP (identified by an SPI), an SI represents a
particular service function and indicates the order of that SF in the SFP.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">Within the context of a specific SFP, an SI references a set of one or more SFs. Each of those SFs
may be supported by one or more Service Function Instances (SFIs). Thus, an SI may represent a choice
of SFIs of one or more service function types. By deploying multiple SFIs for a single SF, one
can provide load balancing and redundancy.<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<p id="section-2.1-3">A special functional element, called a "classifier", is located at each ingress point to a service
function overlay network. It assigns the packets of a given packet flow to a specific SFP. This may be done by comparing specific fields in a packet's header with
local policy, which may be customer/network/service specific. The classifier picks an SFP and
sets the SPI accordingly; it then sets the SI to the value of the SI for the first hop in the
SFP, and then prepends a Network Service Header (NSH) <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>
containing the assigned SPI/SI to that packet. Note that the classifier and the node that
hosts the first SF in an SFP need not be located at the same
point in the service function overlay network.<a href="#section-2.1-3" class="pilcrow">¶</a></p>
<p id="section-2.1-4">Note that the presence of the NSH can make it difficult for nodes in the underlay network
to locate the fields in the original packet that would normally be
used to constrain equal-cost multipath (ECMP) forwarding. Therefore,
it is recommended that the node prepending the
NSH also provide some form of entropy indicator that can be used in the underlay network. How
this indicator is generated and supplied, and how an SFF generates a new entropy indicator
when it forwards a packet to the next SFF, are out of the scope of this document.<a href="#section-2.1-4" class="pilcrow">¶</a></p>
<p id="section-2.1-5">The Service Function Forwarder (SFF) receives a packet from the previous node in an SFP, removes the packet's link layer or tunnel encapsulation, and hands the
packet and the NSH to the SFI for processing. The SFI has no knowledge
of the SFP.<a href="#section-2.1-5" class="pilcrow">¶</a></p>
<p id="section-2.1-6">When the SFF receives the packet and the NSH back from the SFI, it must select the next SFI
along the path using the SPI and SI in the NSH and potentially choosing between multiple SFIs
(possibly of different SFTs), as described in <a href="#selection" class="xref">Section 5</a>. In
the normal case, the SPI remains unchanged, and the SI will have been decremented to indicate the
next SF along the path. But other possibilities exist if the SF makes other changes to the NSH
through a process of reclassification:<a href="#section-2.1-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-7.1">
<p id="section-2.1-7.1.1">The SI in the NSH may indicate:<a href="#section-2.1-7.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-7.1.2.1">A previous SF in the path; this is known as "looping" (see
<a href="#looping" class="xref">Section 6</a>).<a href="#section-2.1-7.1.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.1-7.1.2.2">An SF further down the path; this is known as "jumping"
(again see <a href="#looping" class="xref">Section 6</a>).<a href="#section-2.1-7.1.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="normal" id="section-2.1-7.2">The SPI and the SI may point to an SF on a different SFP; this is known as "branching" (see
<a href="#looping" class="xref">Section 6</a>).<a href="#section-2.1-7.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.1-8">Such modifications are limited to within the same service function overlay network. That is, an
SPI is known within the scope of service function overlay network. Furthermore, the new SI value
is interpreted in the context of the SFP identified by the SPI.<a href="#section-2.1-8" class="pilcrow">¶</a></p>
<p id="section-2.1-9">As described in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>, an SPI that is unknown or not valid is treated as an error, and
the SFF drops the packet; such errors should be logged, and such logs are subject to rate limits.<a href="#section-2.1-9" class="pilcrow">¶</a></p>
<p id="section-2.1-10">Also, as described in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>, an SFF receiving an SI that is unknown in the
context of the SPI can reduce the value to the next meaningful SI value in the SFP indicated by
the SPI. If no such value exists, or if the SFF does not support reducing the SI, the SFF drops the
packet and should log the event; such logs are also subject to rate limits.<a href="#section-2.1-10" class="pilcrow">¶</a></p>
<p id="section-2.1-11">The SFF then selects an SFI that provides the SF denoted by the SPI/SI and forwards the packet
to the SFF that supports that SFI.<a href="#section-2.1-11" class="pilcrow">¶</a></p>
<p id="section-2.1-12"><span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> makes it clear that the intended scope is for use within a single
provider's operational domain.<a href="#section-2.1-12" class="pilcrow">¶</a></p>
<p id="section-2.1-13">This document adopts the service function chaining architecture described in <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span> and adds a
control plane to support the functions, as described in <a href="#ctrlover" class="xref">Section 2.2</a>. An essential
component of this solution is the controller. This is a network component responsible for
planning SFPs within the network. It gathers information about the availability of SFIs and SFFs,
instructs the control plane about the SFPs to be programmed, and instructs the classifiers how
to assign traffic flows to individual SFPs.<a href="#section-2.1-13" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ctrlover">
<section id="section-2.2">
<h3 id="name-control-plane-overview">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-control-plane-overview" class="section-name selfRef">Control Plane Overview</a>
</h3>
<p id="section-2.2-1">To accomplish the function described in <a href="#funcover" class="xref">Section 2.1</a>, this document
introduces the Service Function Type (SFT), which is the category of SF that is supported
by an SFF (such as "firewall"). An IANA registry of service function types is introduced
in <a href="#SFTreg" class="xref">Section 10.5</a> and is consistent with types used in other work, such as
<span>[<a href="#I-D.dawra-idr-bgp-ls-sr-service-segments" class="xref">BGP-LS-SR</a>]</span>. An SFF may support SFs of
multiple different SFTs, and it may support multiple SFIs of each SF.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2">The registry of SFT values (see <a href="#SFTreg" class="xref">Section 10.5</a>) is split into three ranges with assignment
policies per <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>:<a href="#section-2.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.2-3.1">The special-purpose SFT values range is assigned through Standards Action.
Values in that range are used for special SFC operations and do not apply to
the types of SF that may form part of the SFP.<a href="#section-2.2-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.2-3.2">The First Come First Served range tracks assignments of SFT values made by any
party that defines an SF type. Reference through an Internet-Draft is desirable,
but not required.<a href="#section-2.2-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.2-3.3">The Private Use range is not tracked by IANA and is primarily intended for use
in private networks where the meaning of the SFT values is locally tracked and
under the control of a local administrator.<a href="#section-2.2-3.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.2-4">It is envisaged that the majority of SFT values used will be assigned from the First Come
First Served space in the registry. This will ensure interoperability, especially in
situations where software and hardware from different vendors are deployed in the same
networks, or when networks are merged. However, operators of private networks may choose
to develop their own SFs and manage the configuration and operation of their network through
their own list of SFT values.<a href="#section-2.2-4" class="pilcrow">¶</a></p>
<p id="section-2.2-5">This document also introduces a new BGP AFI/SAFI (values 31 and 9, respectively) for "SFC Routes".
Two SFC Route Types are defined by this document: the Service Function Instance Route (SFIR) and
the Service Function Path Route (SFPR). As detailed in <a href="#sfcBGPRoutes" class="xref">Section 3</a>, the Route
Type is indicated by a subfield in the Network Layer Reachability Information (NLRI).<a href="#section-2.2-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.2-6.1">The SFIR is advertised by the node that provides access to the service function instance
(i.e., the SFF). The SFIR describes a particular instance of a particular SF
(i.e., an SFI) and the way to forward a packet to it through
the underlay network, i.e., IP
address and encapsulation information.<a href="#section-2.2-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.2-6.2">
<p id="section-2.2-6.2.1">The SFPRs are originated by controllers. One SFPR is originated for each SFP. The SFPR specifies:<a href="#section-2.2-6.2.1" class="pilcrow">¶</a></p>
<ol start="1" type="A" class="normal type-A" id="section-2.2-6.2.2">
<li id="section-2.2-6.2.2.1">the SPI of the path,<a href="#section-2.2-6.2.2.1" class="pilcrow">¶</a>
</li>
<li id="section-2.2-6.2.2.2">the sequence of SFTs and/or SFIs of which the path consists, and<a href="#section-2.2-6.2.2.2" class="pilcrow">¶</a>
</li>
<li id="section-2.2-6.2.2.3">for each such SFT or SFI, the SI that represents it in the identified path.<a href="#section-2.2-6.2.2.3" class="pilcrow">¶</a>
</li>
</ol>
</li>
</ul>
<p id="section-2.2-7">This approach assumes that there is an underlay network that provides connectivity between
SFFs and controllers and that the SFFs are grouped to form one or more service function
overlay networks through which SFPs are built. We assume that the controllers have BGP
connectivity to all SFFs and all classifiers within each service function overlay network.<a href="#section-2.2-7" class="pilcrow">¶</a></p>
<p id="section-2.2-8">When choosing the next SFI in a path, the SFF uses the SPI and SI as well as the SFT to choose
among the SFIs, applying, for example, a load-balancing algorithm or direct knowledge of the
underlay network topology, as described in <a href="#mode" class="xref">Section 4</a>.<a href="#section-2.2-8" class="pilcrow">¶</a></p>
<p id="section-2.2-9">The SFF then encapsulates the packet using the encapsulation specified by the SFIR of the
selected SFI and forwards the packet. See <a href="#SFCarch" class="xref">Figure 1</a>.<a href="#section-2.2-9" class="pilcrow">¶</a></p>
<p id="section-2.2-10">Thus, the SFF can be seen as a portal in the underlay network through which a particular SFI
is reached.<a href="#section-2.2-10" class="pilcrow">¶</a></p>
<p id="section-2.2-11"><a href="#SFCarch" class="xref">Figure 1</a> shows a reference model for the service function chaining architecture. There are four SFFs
(SFF-1 through SFF-4) connected by tunnels across the underlay network. Packets arrive at
a classifier and are channeled along SFPs to destinations reachable through SFF-4.<a href="#section-2.2-11" class="pilcrow">¶</a></p>
<p id="section-2.2-12">SFF-1 and SFF-4 each have one instance of one SF attached (SFa and SFe). SFF-2 has two types
of SF attached: one instance of one (SFc) and three instances of the other (SFb).
SFF-3 has just one instance of an SF (SFd), but in this case, the type of SFd is the same
type as SFb (SFTx).<a href="#section-2.2-12" class="pilcrow">¶</a></p>
<p id="section-2.2-13">This figure demonstrates how load balancing can be achieved by creating several SFPs that satisfy
the same SFC. Suppose an SFC needs to include SFa, an SF of type SFTx, and SFc. A number of SFPs
can be constructed using any instance of SFb or using SFd. Load balancing may be applied at two
places:<a href="#section-2.2-13" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.2-14.1">The classifier may distribute different flows onto different SFPs to share the load in the
network and across SFIs.<a href="#section-2.2-14.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.2-14.2">SFF-2 may distribute different flows (on the same SFP) to different instances of SFb to share
the processing load.<a href="#section-2.2-14.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.2-15">Note that, for convenience and clarity, <a href="#SFCarch" class="xref">Figure 1</a> shows only a few tunnels between
SFFs. There could be a full mesh of such tunnels, or more likely, a selection of tunnels connecting
key SFFs to enable the construction of SFPs and balance load and traffic in the network. Further,
the figure does not show any controllers; these would each have BGP connectivity to the classifier and
all of the SFFs.<a href="#section-2.2-15" class="pilcrow">¶</a></p>
<span id="name-the-service-function-chaini"></span><div id="SFCarch">
<figure id="figure-1">
<div class="artwork art-text alignLeft" id="section-2.2-16.1">
<pre>
Packets
| | |
------------
| |
| Classifier |
| |
------+-----
|
---+--- --------- -------
| | Tunnel | | | |
| SFF-1 |===============| SFF-2 |=========| SFF-4 |
| | | | | |
| | -+-----+- | |
| | ,,,,,,,,,,,,,,/,, \ | |
| | ' .........../. ' ..\...... | |
| | ' : SFb / : ' : \ SFc : | |
| | ' : ---+- : ' : --+-- : | |
| | ' : -| SFI | : ' : | SFI | : | |
| | ' : -| ----- : ' : ----- : | |
| | ' : | ----- : ' ......... | |
| | ' : ----- : ' | |
| | ' ............. ' | |--- Dests
| | ' ' | |--- Dests
| | ' ......... ' | |
| | ' : ----- : ' | |
| | ' : | SFI | : ' | |
| | ' : --+-- : ' | |
| | ' :SFd | : ' | |
| | ' ....|.... ' | |
| | ' | ' | |
| | ' SFTx | ' | |
| | ',,,,,,,,|,,,,,,,,' | |
| | | | |
| | ---+--- | |
| | | | | |
| |======| SFF-3 |====================| |
---+--- | | ---+---
| ------- |
....|.... ....|....
: | SFa: : | SFe:
: --+-- : : --+-- :
: | SFI | : : | SFI | :
: ----- : : ----- :
......... .........
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-the-service-function-chaini" class="selfRef">The Service Function Chaining Architecture Reference Model</a>
</figcaption></figure>
</div>
<p id="section-2.2-17">As previously noted, <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> makes it clear that the mechanisms it defines
are intended for use within a single provider's operational domain. This reduces the
requirements on the control plane function.<a href="#section-2.2-17" class="pilcrow">¶</a></p>
<p id="section-2.2-18"><span><a href="https://www.rfc-editor.org/rfc/rfc7665#section-5.2" class="relref">Section 5.2</a> of [<a href="#RFC7665" class="xref">RFC7665</a>]</span> sets out the functions provided by a control plane for a service function chaining network.
The functions are broken down into six items, the first four of which are
completely covered by the mechanisms described in this document:<a href="#section-2.2-18" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-2.2-19">
<li id="section-2.2-19.1">Visibility of all SFs and the SFFs through which they are reached.<a href="#section-2.2-19.1" class="pilcrow">¶</a>
</li>
<li id="section-2.2-19.2">Computation of SFPs and programming into the network.<a href="#section-2.2-19.2" class="pilcrow">¶</a>
</li>
<li id="section-2.2-19.3">Selection of SFIs explicitly in the SFP or dynamically within the network.<a href="#section-2.2-19.3" class="pilcrow">¶</a>
</li>
<li id="section-2.2-19.4">Programming of SFFs with forwarding path information.<a href="#section-2.2-19.4" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-2.2-20">The fifth and sixth items in the list in RFC 7665 concern the use of metadata. These are
more peripheral to the control plane mechanisms defined in this document but are discussed
in <a href="#classy" class="xref">Section 4.4</a>.<a href="#section-2.2-20" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sfcBGPRoutes">
<section id="section-3">
<h2 id="name-bgp-sfc-routes">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-bgp-sfc-routes" class="section-name selfRef">BGP SFC Routes</a>
</h2>
<p id="section-3-1">This document defines a new AFI/SAFI for BGP, known as "SFC", with an NLRI that is described
in this section.<a href="#section-3-1" class="pilcrow">¶</a></p>
<p id="section-3-2">The format of the SFC NLRI is shown in <a href="#SFCnlriFig" class="xref">Figure 2</a>.<a href="#section-3-2" class="pilcrow">¶</a></p>
<span id="name-the-format-of-the-sfc-nlri"></span><div id="SFCnlriFig">
<figure id="figure-2">
<div class="artwork art-text alignLeft" id="section-3-3.1">
<pre>
+---------------------------------------+
| Route Type (2 octets) |
+---------------------------------------+
| Length (2 octets) |
+---------------------------------------+
| Route Type specific (variable) |
+---------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-the-format-of-the-sfc-nlri" class="selfRef">The Format of the SFC NLRI</a>
</figcaption></figure>
</div>
<p id="section-3-4">The "Route Type" field determines the encoding of the rest of the Route Type specific SFC NLRI.<a href="#section-3-4" class="pilcrow">¶</a></p>
<p id="section-3-5">The "Length" field indicates the length, in octets, of the "Route Type specific" field of the SFC
NLRI.<a href="#section-3-5" class="pilcrow">¶</a></p>
<p id="section-3-6">This document defines the following Route Types:<a href="#section-3-6" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-3-7">
<li id="section-3-7.1">Service Function Instance Route (SFIR)<a href="#section-3-7.1" class="pilcrow">¶</a>
</li>
<li id="section-3-7.2">Service Function Path Route (SFPR)<a href="#section-3-7.2" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-3-8">An SFIR is used to identify an SFI. An SFPR defines a sequence of SFs (each of which has at least one instance advertised in
an SFIR) that form an SFP.<a href="#section-3-8" class="pilcrow">¶</a></p>
<p id="section-3-9">The detailed encoding and procedures for these Route Types are described in subsequent sections.<a href="#section-3-9" class="pilcrow">¶</a></p>
<p id="section-3-10">The SFC NLRI is carried in BGP <span>[<a href="#RFC4271" class="xref">RFC4271</a>]</span> using BGP Multiprotocol Extensions
<span>[<a href="#RFC4760" class="xref">RFC4760</a>]</span> with an Address Family Identifier (AFI) of 31 and a Subsequent Address
Family Identifier (SAFI) of 9. The "NLRI" field in the MP_REACH_NLRI/MP_UNREACH_NLRI attribute
contains the SFC NLRI, encoded as specified above.<a href="#section-3-10" class="pilcrow">¶</a></p>
<p id="section-3-11">In order for two BGP speakers to exchange SFC NLRIs, they
<span class="bcp14">MUST</span> use BGP capabilities advertisements
to ensure that they both are capable of properly processing such NLRIs. This is done as specified
in <span>[<a href="#RFC4760" class="xref">RFC4760</a>]</span>, by using capability code
1 (Multiprotocol BGP) with an AFI of 31 and
a SAFI of 9.<a href="#section-3-11" class="pilcrow">¶</a></p>
<p id="section-3-12">The "nexthop" field of the MP_REACH_NLRI attribute of the SFC NLRI <span class="bcp14">MUST</span> be set to a loopback address of
the advertising SFF.<a href="#section-3-12" class="pilcrow">¶</a></p>
<div id="sfiRoutes">
<section id="section-3.1">
<h3 id="name-service-function-instance-r">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-service-function-instance-r" class="section-name selfRef">Service Function Instance Route (SFIR)</a>
</h3>
<p id="section-3.1-1"><a href="#sfiRouteFig" class="xref">Figure 3</a> shows the Route Type specific NLRI of the SFIR.<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<span id="name-sfir-route-type-specific-nl"></span><div id="sfiRouteFig">
<figure id="figure-3">
<div class="artwork art-text alignLeft" id="section-3.1-2.1">
<pre>
+--------------------------------------------+
| Route Distinguisher (RD) (8 octets) |
+--------------------------------------------+
| Service Function Type (2 octets) |
+--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-sfir-route-type-specific-nl" class="selfRef">SFIR Route Type Specific NLRI</a>
</figcaption></figure>
</div>
<p id="section-3.1-3"><span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span> defines a Route
Distinguisher (RD) as consisting of a two-byte "Type" field
and a six-byte "Value" field, and it defines RD types 0, 1, and 2. In this specification, the RD
(used for the SFIR) <span class="bcp14">MUST</span> be of type 0, 1, or 2.<a href="#section-3.1-3" class="pilcrow">¶</a></p>
<p id="section-3.1-4">If two SFIRs are originated from different administrative domains (within the same
provider's operational domain), they <span class="bcp14">MUST</span> have different RDs. In particular, SFIRs from
different VPNs (for different service function overlay networks) <span class="bcp14">MUST</span> have different RDs, and
those RDs <span class="bcp14">MUST</span> be different from any non-VPN SFIRs.<a href="#section-3.1-4" class="pilcrow">¶</a></p>
<p id="section-3.1-5">The SFT identifies the functions/features an
SF can offer, e.g.,
classifier, firewall, load balancer. There may be several SFIs that can perform a given
service function. Each node hosting an SFI <span class="bcp14">MUST</span> originate an SFIR for each type of SF that it
hosts (as indicated by the SFT value), and it <span class="bcp14">MAY</span> advertise an SFIR for each instance of each type of SF. A minimal
advertisement allows construction of valid SFPs and leaves the selection of SFIs to the local SFF;
a detailed advertisement may have scaling concerns but allows a controller that constructs an
SFP to make an explicit choice of SFI.<a href="#section-3.1-5" class="pilcrow">¶</a></p>
<p id="section-3.1-6">Note that a node may advertise all its SFIs of one SFT in one shot
using normal BGP UPDATE packing.
That is, all of the SFIRs in an Update share a common Tunnel Encapsulation and Route Target (RT) attribute.
See also <a href="#sfpatt" class="xref">Section 3.2.1</a>.<a href="#section-3.1-6" class="pilcrow">¶</a></p>
<p id="section-3.1-7">The SFIR representing a given SFI will contain an NLRI with "RD" field set to an RD as specified above,
and with the "SFT" field set to identify that SFI's SFT. The values for the "SFT"
field are taken from a registry administered by IANA (see <a href="#iana" class="xref">Section 10</a>). A BGP UPDATE
containing one or more SFIRs <span class="bcp14">MUST</span> also include a tunnel encapsulation attribute
<span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>. If a data packet needs to be sent to an SFI identified
in one of the SFIRs, it will be encapsulated as specified by the tunnel encapsulation attribute and
then transmitted through the underlay network.<a href="#section-3.1-7" class="pilcrow">¶</a></p>
<p id="section-3.1-8">Note that the tunnel encapsulation attribute <span class="bcp14">MUST</span> contain sufficient information to allow the
advertising SFF to identify the overlay or VPN network that a received packet is transiting.
This is because the [SPI, SI] in a received packet is specific to a particular overlay or VPN
network.<a href="#section-3.1-8" class="pilcrow">¶</a></p>
<div id="poolid">
<section id="section-3.1.1">
<h4 id="name-sfir-pool-identifier-extend">
<a href="#section-3.1.1" class="section-number selfRef">3.1.1. </a><a href="#name-sfir-pool-identifier-extend" class="section-name selfRef">SFIR Pool Identifier Extended Community</a>
</h4>
<p id="section-3.1.1-1">This document defines a new transitive Extended Community <span>[<a href="#RFC4360" class="xref">RFC4360</a>]</span> of type 0x0b called
the "SFC Extended Community". When used with Sub-Type 1, this is called the "SFIR Pool Identifier extended
community". It <span class="bcp14">MAY</span> be included in SFIR
advertisements, and it is used to indicate the identity of a pool of
SFIRs to which an SFIR belongs. Since an SFIR may be a member of
more than one pool, multiple of these extended
communities may be present on a single SFIR advertisement.<a href="#section-3.1.1-1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2">SFIR pools allow SFIRs to be grouped for any purpose. Possible uses include control plane scalability and
stability. A pool identifier may be included in an SFPR to indicate a set of SFIs that are acceptable at
a specific point on an SFP (see Sections <a href="#sfttlv" class="xref">3.2.1.3</a> and <a href="#SFPR" class="xref">4.3</a>).<a href="#section-3.1.1-2" class="pilcrow">¶</a></p>
<p id="section-3.1.1-3">The SFIR Pool Identifier Extended Community is encoded in 8 octets as shown in <a href="#poolFig" class="xref">Figure 4</a>.<a href="#section-3.1.1-3" class="pilcrow">¶</a></p>
<span id="name-the-sfir-pool-identifier-ex"></span><div id="poolFig">
<figure id="figure-4">
<div class="artwork art-text alignLeft" id="section-3.1.1-4.1">
<pre>
+--------------------------------------------+
| Type = 0x0b (1 octet) |
+--------------------------------------------+
| Sub-Type = 1 (1 octet) |
+--------------------------------------------+
| SFIR Pool Identifier value (6 octets) |
+--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-the-sfir-pool-identifier-ex" class="selfRef">The SFIR Pool Identifier Extended Community</a>
</figcaption></figure>
</div>
<p id="section-3.1.1-5">The SFIR Pool Identifier value is encoded in a 6-octet field in network byte order, and the value is unique
within the scope of an overlay network. This means that pool identifiers need to be centrally managed, which
is consistent with the assignment of SFIs to pools.<a href="#section-3.1.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="swapnstack">
<section id="section-3.1.2">
<h4 id="name-mpls-mixed-swapping-stackin">
<a href="#section-3.1.2" class="section-number selfRef">3.1.2. </a><a href="#name-mpls-mixed-swapping-stackin" class="section-name selfRef">MPLS Mixed Swapping/Stacking Extended Community</a>
</h4>
<p id="section-3.1.2-1">As noted in <a href="#poolid" class="xref">Section 3.1.1</a>, this document defines a new transitive Extended Community of type 0x0b
called the "SFC Extended Community". When used with Sub-Type 2, this is called the "MPLS Mixed Swapping/Stacking
Labels Extended Community". The community is encoded as shown in <a href="#swapFig" class="xref">Figure 5</a>.
It contains a pair of MPLS labels: an SFC Context Label and an SF Label, as described in
<span>[<a href="#RFC8595" class="xref">RFC8595</a>]</span>. Each label is 20 bits encoded in a 3-octet (24-bit) field with
4 trailing bits that <span class="bcp14">MUST</span> be set to zero.<a href="#section-3.1.2-1" class="pilcrow">¶</a></p>
<span id="name-the-mpls-mixed-swapping-sta"></span><div id="swapFig">
<figure id="figure-5">
<div class="artwork art-text alignLeft" id="section-3.1.2-2.1">
<pre>
+--------------------------------------------+
| Type = 0x0b (1 octet) |
+--------------------------------------------|
| Sub-Type = 2 (1 octet) |
+--------------------------------------------|
| SFC Context Label (3 octets) |
+--------------------------------------------|
| SF Label (3 octets) |
+--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-the-mpls-mixed-swapping-sta" class="selfRef">The MPLS Mixed Swapping/Stacking Labels Extended Community</a>
</figcaption></figure>
</div>
<p id="section-3.1.2-3">Note that it is assumed that each SFF has one or more globally
unique SFC Context Labels and that the context-label
space and the SPI-address space are disjoint. In other words, a
label value cannot be used to indicate both an SFC context and an
SPI,
and it can be determined from knowledge of the label spaces
whether a label indicates an SFC context or an SPI.<a href="#section-3.1.2-3" class="pilcrow">¶</a></p>
<p id="section-3.1.2-4">If an SFF supports SFP Traversal with an MPLS Label Stack, it
<span class="bcp14">MUST</span> include this Extended Community with the SFIRs
that it advertises.<a href="#section-3.1.2-4" class="pilcrow">¶</a></p>
<p id="section-3.1.2-5">See <a href="#swapOp" class="xref">Section 7.6</a> for a description of how this Extended Community is used.<a href="#section-3.1.2-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sfpRoutes">
<section id="section-3.2">
<h3 id="name-service-function-path-route">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-service-function-path-route" class="section-name selfRef">Service Function Path Route (SFPR)</a>
</h3>
<p id="section-3.2-1"><a href="#sfpRouteFig" class="xref">Figure 6</a> shows the Route Type specific NLRI of the SFPR.<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<span id="name-sfpr-route-type-specific-nl"></span><div id="sfpRouteFig">
<figure id="figure-6">
<div class="artwork art-text alignLeft" id="section-3.2-2.1">
<pre>
+-----------------------------------------------+
| Route Distinguisher (RD) (8 octets) |
+-----------------------------------------------+
| Service Path Identifier (SPI) (3 octets) |
+-----------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-6" class="selfRef">Figure 6</a>:
<a href="#name-sfpr-route-type-specific-nl" class="selfRef">SFPR Route Type Specific NLRI</a>
</figcaption></figure>
</div>
<p id="section-3.2-3"><span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span> defines a Route Distinguisher (RD) as consisting of a two-byte "Type" field
and a six-byte "Value" field, and it defines RD types 0, 1, and 2. In this specification, the RD
(used for the SFPR) <span class="bcp14">MUST</span> be of type 0, 1, or 2.<a href="#section-3.2-3" class="pilcrow">¶</a></p>
<p id="section-3.2-4">All SFPs <span class="bcp14">MUST</span> be associated with an RD. The association of an SFP with
an RD is determined by provisioning. If two SFPRs are originated from different controllers, they
<span class="bcp14">MUST</span> have different RDs. Additionally, SFPRs from different VPNs (i.e., in different service
function overlay networks) <span class="bcp14">MUST</span> have different RDs, and those RDs <span class="bcp14">MUST</span> be different from any
non-VPN SFPRs.<a href="#section-3.2-4" class="pilcrow">¶</a></p>
<p id="section-3.2-5">The Service path identifier is defined in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> and is the value
to be placed in the "Service Path Identifier" field of the NSH of any packet sent on this
SFP. It is expected that one or more controllers will originate
these routes in order to configure a service function overlay network.<a href="#section-3.2-5" class="pilcrow">¶</a></p>
<p id="section-3.2-6">The SFP is described in a new BGP Path attribute, the SFP attribute. <a href="#sfpatt" class="xref">Section 3.2.1</a>
shows the format of that attribute.<a href="#section-3.2-6" class="pilcrow">¶</a></p>
<div id="sfpatt">
<section id="section-3.2.1">
<h4 id="name-the-sfp-attribute">
<a href="#section-3.2.1" class="section-number selfRef">3.2.1. </a><a href="#name-the-sfp-attribute" class="section-name selfRef">The SFP Attribute</a>
</h4>
<p id="section-3.2.1-1"><span>[<a href="#RFC4271" class="xref">RFC4271</a>]</span> defines BGP Path attributes. This document introduces a new
Optional Transitive Path attribute called the "SFP attribute", with value 37. The first SFP attribute <span class="bcp14">MUST</span> be processed, and subsequent instances <span class="bcp14">MUST</span> be ignored.<a href="#section-3.2.1-1" class="pilcrow">¶</a></p>
<p id="section-3.2.1-2">The common fields of the SFP attribute are set as follows:<a href="#section-3.2.1-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1-3.1">The Optional bit is set to 1 to indicate that this is an optional attribute.<a href="#section-3.2.1-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1-3.2">The Transitive bit is set to 1 to indicate that this is a transitive attribute.<a href="#section-3.2.1-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1-3.3">The Extended Length bit is set if the length of the SFP attribute is encoded in one
octet (set to 0) or two octets (set to 1), as described in <span>[<a href="#RFC4271" class="xref">RFC4271</a>]</span>.<a href="#section-3.2.1-3.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1-3.4">The Attribute Type Code is set to 37.<a href="#section-3.2.1-3.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2.1-4">The content of the SFP attribute is a series of Type-Length-Value (TLV) constructs.
Some TLVs may include Sub-TLVs. All TLVs and Sub-TLVs have a common format:<a href="#section-3.2.1-4" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.2.1-5">
<dt id="section-3.2.1-5.1">Type:</dt>
<dd style="margin-left: 1.5em" id="section-3.2.1-5.2"> A single octet indicating the type of the SFP attribute TLV. Values are
taken from the registry described in <a href="#ianasftlv" class="xref">Section 10.3</a>.<a href="#section-3.2.1-5.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.2.1-5.3">Length:</dt>
<dd style="margin-left: 1.5em" id="section-3.2.1-5.4"> A two-octet field indicating the length of the data following the "Length"
field, counted in octets.<a href="#section-3.2.1-5.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.2.1-5.5">Value:</dt>
<dd style="margin-left: 1.5em" id="section-3.2.1-5.6"> The contents of the TLV.<a href="#section-3.2.1-5.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.2.1-6">The formats of the TLVs defined in this document are shown in the following sections.
The presence rules and meanings are as follows.<a href="#section-3.2.1-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1-7.1">The SFP attribute contains a sequence of zero or more Association TLVs. That is, the
Association TLV is <span class="bcp14">OPTIONAL</span>. Each Association TLV provides an association between this
SFPR and another SFPR. Each associated SFPR is indicated using the RD with which it is
advertised (we say the SFPR-RD to avoid ambiguity).<a href="#section-3.2.1-7.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1-7.2">The SFP attribute contains a sequence of one or more Hop TLVs. Each Hop TLV contains
all of the information about a single hop in the SFP.<a href="#section-3.2.1-7.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1-7.3">Each Hop TLV contains an SI value and a sequence of one or more SFT TLVs. Each SFT
TLV contains an SFI reference for each instance of an SF that is allowed at this hop
of the SFP for the specific SFT. Each SFI is indicated using the RD with which
it is advertised (we say the SFIR-RD to avoid ambiguity).<a href="#section-3.2.1-7.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2.1-8"><span><a href="https://www.rfc-editor.org/rfc/rfc4271#section-6" class="relref">Section 6</a> of [<a href="#RFC4271" class="xref">RFC4271</a>]</span> describes the handling of malformed BGP attributes,
or those that are in error in some way. <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span> revises BGP error handling
specifically for the UPDATE message, provides guidelines for the authors of documents
defining new attributes, and revises the error-handling procedures for a number of existing
attributes. This document introduces the SFP attribute and so defines error handling as
follows:<a href="#section-3.2.1-8" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1-9.1">When parsing a message, an unknown Attribute Type Code or a length that suggests that
the attribute is longer than the remaining message is treated as a malformed message,
and the "treat-as-withdraw" approach is used as per <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>.<a href="#section-3.2.1-9.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1-9.2">
<p id="section-3.2.1-9.2.1">When parsing a message that contains an SFP attribute, the following cases constitute
errors:<a href="#section-3.2.1-9.2.1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-3.2.1-9.2.2">
<li id="section-3.2.1-9.2.2.1">Optional bit is set to 0 in the SFP attribute.<a href="#section-3.2.1-9.2.2.1" class="pilcrow">¶</a>
</li>
<li id="section-3.2.1-9.2.2.2">Transitive bit is set to 0 in the SFP attribute.<a href="#section-3.2.1-9.2.2.2" class="pilcrow">¶</a>
</li>
<li id="section-3.2.1-9.2.2.3">Unknown "TLV Type" field found in the SFP attribute.<a href="#section-3.2.1-9.2.2.3" class="pilcrow">¶</a>
</li>
<li id="section-3.2.1-9.2.2.4">TLV length that suggests the TLV extends beyond the end of the SFP attribute.<a href="#section-3.2.1-9.2.2.4" class="pilcrow">¶</a>
</li>
<li id="section-3.2.1-9.2.2.5">Association TLV contains an unknown SFPR-RD.<a href="#section-3.2.1-9.2.2.5" class="pilcrow">¶</a>
</li>
<li id="section-3.2.1-9.2.2.6">No Hop TLV found in the SFP attribute.<a href="#section-3.2.1-9.2.2.6" class="pilcrow">¶</a>
</li>
<li id="section-3.2.1-9.2.2.7">No Sub-TLV found in a Hop TLV.<a href="#section-3.2.1-9.2.2.7" class="pilcrow">¶</a>
</li>
<li id="section-3.2.1-9.2.2.8">Unknown SFIR-RD found in an SFT TLV.<a href="#section-3.2.1-9.2.2.8" class="pilcrow">¶</a>
</li>
</ol>
</li>
<li class="normal" id="section-3.2.1-9.3">
<p id="section-3.2.1-9.3.1">The errors listed above are treated as follows:<a href="#section-3.2.1-9.3.1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.2.1-9.3.2">
<dt id="section-3.2.1-9.3.2.1">1, 2, 4, 6, 7:</dt>
<dd style="margin-left: 1.5em" id="section-3.2.1-9.3.2.2">The attribute <span class="bcp14">MUST</span> be treated as malformed and
the "treat-as-withdraw" approach used as per <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>.<a href="#section-3.2.1-9.3.2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.2.1-9.3.2.3">3:</dt>
<dd style="margin-left: 1.5em" id="section-3.2.1-9.3.2.4">Unknown TLVs <span class="bcp14">MUST</span> be ignored, and message processing <span class="bcp14">MUST</span>
continue.<a href="#section-3.2.1-9.3.2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.2.1-9.3.2.5">5, 8:</dt>
<dd style="margin-left: 1.5em" id="section-3.2.1-9.3.2.6">The absence of an RD with which to correlate is nothing more than
a soft error. The receiver <span class="bcp14">SHOULD</span> store the information from the SFP attribute until
a corresponding advertisement is received.<a href="#section-3.2.1-9.3.2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</li>
</ul>
<div id="assoctlv">
<section id="section-3.2.1.1">
<h5 id="name-the-association-tlv">
<a href="#section-3.2.1.1" class="section-number selfRef">3.2.1.1. </a><a href="#name-the-association-tlv" class="section-name selfRef">The Association TLV</a>
</h5>
<p id="section-3.2.1.1-1">The Association TLV is an optional TLV in the SFP attribute. It <span class="bcp14">MAY</span> be present
multiple times. Each occurrence provides an association with another SFP as
advertised in another SFPR. The format of the Association TLV is shown in
<a href="#assoctlvfig" class="xref">Figure 7</a>.<a href="#section-3.2.1.1-1" class="pilcrow">¶</a></p>
<span id="name-the-format-of-the-associati"></span><div id="assoctlvfig">
<figure id="figure-7">
<div class="artwork art-text alignLeft" id="section-3.2.1.1-2.1">
<pre>
+--------------------------------------------+
| Type = 1 (1 octet) |
+--------------------------------------------|
| Length (2 octets) |
+--------------------------------------------|
| Association Type (1 octet) |
+--------------------------------------------|
| Associated SFPR-RD (8 octets) |
+--------------------------------------------|
| Associated SPI (3 octets) |
+--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-7" class="selfRef">Figure 7</a>:
<a href="#name-the-format-of-the-associati" class="selfRef">The Format of the Association TLV</a>
</figcaption></figure>
</div>
<p id="section-3.2.1.1-3">The fields are as follows:<a href="#section-3.2.1.1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1.1-4.1">"Type" is set to 1 to indicate an Association TLV.<a href="#section-3.2.1.1-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1.1-4.2">"Length" indicates the length in octets of the "Association Type" and "Associated
SFPR-RD" fields. The value of the "Length" field is 12.<a href="#section-3.2.1.1-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1.1-4.3">The "Association Type" field indicates the type of association. The values are
tracked in an IANA registry (see <a href="#ianaassoc" class="xref">Section 10.4</a>). Only one value
is defined in this document: Type 1 indicates association of two unidirectional
SFPs to form a bidirectional SFP. An SFP attribute <span class="bcp14">SHOULD NOT</span> contain more than
one Association TLV with Association Type 1; if more than one is present, the
first one <span class="bcp14">MUST</span> be processed, and subsequent instances <span class="bcp14">MUST</span> be ignored. Note that
documents that define new association types must also define the presence rules
for Association TLVs of the new type.<a href="#section-3.2.1.1-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1.1-4.4">The Associated SFPR-RD contains the RD of the associated SFP as advertised in an
SFPR.<a href="#section-3.2.1.1-4.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1.1-4.5">The Associated SPI contains the SPI of the associated SFP as advertised in an
SFPR.<a href="#section-3.2.1.1-4.5" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2.1.1-5">Association TLVs with unknown Association Type values <span class="bcp14">SHOULD</span> be ignored. Association TLVs
that contain an Associated SFPR-RD value equal to the RD of the SFPR in which they are
contained <span class="bcp14">SHOULD</span> be ignored. If the Associated SPI is not equal to the SPI advertised in
the SFPR indicated by the Associated SFPR-RD, then the Association TLV <span class="bcp14">SHOULD</span> be ignored.
In all three of these cases, an implementation <span class="bcp14">MAY</span> reject the SFP attribute as malformed and
use the "treat-as-withdraw" approach per <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>; however, implementors are
cautioned that such an approach may make an implementation less flexible in the event of
future extensions to this protocol.<a href="#section-3.2.1.1-5" class="pilcrow">¶</a></p>
<p id="section-3.2.1.1-6">Note that when two SFPRs reference each other using the Association TLV, one SFPR advertisement
will be received before the other. Therefore, processing of an association <span class="bcp14">MUST NOT</span> be
rejected simply because the Associated SFPR-RD is unknown.<a href="#section-3.2.1.1-6" class="pilcrow">¶</a></p>
<p id="section-3.2.1.1-7">Further discussion of correlation of SFPRs is provided in <a href="#correlation" class="xref">Section 7.1</a>.<a href="#section-3.2.1.1-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="hoptlv">
<section id="section-3.2.1.2">
<h5 id="name-the-hop-tlv">
<a href="#section-3.2.1.2" class="section-number selfRef">3.2.1.2. </a><a href="#name-the-hop-tlv" class="section-name selfRef">The Hop TLV</a>
</h5>
<p id="section-3.2.1.2-1">There is one Hop TLV in the SFP attribute for each hop in the SFP. The format of
the Hop TLV is shown in <a href="#hoptlvfig" class="xref">Figure 8</a>. At least one Hop TLV <span class="bcp14">MUST</span> be
present in an SFP attribute.<a href="#section-3.2.1.2-1" class="pilcrow">¶</a></p>
<span id="name-the-format-of-the-hop-tlv"></span><div id="hoptlvfig">
<figure id="figure-8">
<div class="artwork art-text alignLeft" id="section-3.2.1.2-2.1">
<pre>
+--------------------------------------------+
| Type = 2 (1 octet) |
+--------------------------------------------|
| Length (2 octets) |
+--------------------------------------------|
| Service Index (1 octet) |
+--------------------------------------------|
| Hop Details (variable) |
+--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-8" class="selfRef">Figure 8</a>:
<a href="#name-the-format-of-the-hop-tlv" class="selfRef">The Format of the Hop TLV</a>
</figcaption></figure>
</div>
<p id="section-3.2.1.2-3">The fields are as follows:<a href="#section-3.2.1.2-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1.2-4.1">"Type" is set to 2 to indicate a Hop TLV.<a href="#section-3.2.1.2-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1.2-4.2">"Length" indicates the length, in octets, of the "Service Index" and "Hop
Details" fields.<a href="#section-3.2.1.2-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1.2-4.3">The Service Index is defined in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> and is the value found in the
"Service Index" field of the NSH that an SFF will
use to look up to which next
SFI a packet is to be sent.<a href="#section-3.2.1.2-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1.2-4.4">The "Hop Details" field consists of a sequence of one or more Sub-TLVs.<a href="#section-3.2.1.2-4.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2.1.2-5">Each hop of the SFP may demand that a specific type of SF is executed, and that type is
indicated in Sub-TLVs of the Hop TLV. At least one Sub-TLV <span class="bcp14">MUST</span> be present. This document
defines the SFT Sub-TLV (see <a href="#sfttlv" class="xref">Section 3.2.1.3</a>) and the MPLS Swapping/Stacking Sub-TLV
(see <a href="#swapTLV" class="xref">Section 3.2.1.4</a>); other Sub-TLVs may be defined in future. The SFT Sub-TLV
provides a list of which types of SF are acceptable at a specific hop, and for each type it
allows a degree of control to be imposed on the choice of SFIs of that particular type. The MPLS
Swapping/Stacking Sub-TLV indicates the type of SFC encoding to use
in an MPLS label stack.<a href="#section-3.2.1.2-5" class="pilcrow">¶</a></p>
<p id="section-3.2.1.2-6">If no Hop TLV is present in an SFP attribute, it is a malformed attribute.<a href="#section-3.2.1.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sfttlv">
<section id="section-3.2.1.3">
<h5 id="name-the-sft-sub-tlv">
<a href="#section-3.2.1.3" class="section-number selfRef">3.2.1.3. </a><a href="#name-the-sft-sub-tlv" class="section-name selfRef">The SFT Sub-TLV</a>
</h5>
<p id="section-3.2.1.3-1">The SFT Sub-TLV <span class="bcp14">MAY</span> be included in the list of Sub-TLVs of the Hop TLV. The format of the SFT Sub-TLV
is shown in <a href="#sfttlvfig" class="xref">Figure 9</a>. The Hop Sub-TLV contains a list of SFIR-RD values each taken from
the advertisement of an SFI. Together they form a list of acceptable SFIs of the indicated type.<a href="#section-3.2.1.3-1" class="pilcrow">¶</a></p>
<span id="name-the-format-of-the-sft-sub-t"></span><div id="sfttlvfig">
<figure id="figure-9">
<div class="artwork art-text alignLeft" id="section-3.2.1.3-2.1">
<pre>
+--------------------------------------------+
| Type = 3 (1 octet) |
+--------------------------------------------|
| Length (2 octets) |
+--------------------------------------------|
| Service Function Type (2 octets) |
+--------------------------------------------|
| SFIR-RD List (variable) |
+--------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-9" class="selfRef">Figure 9</a>:
<a href="#name-the-format-of-the-sft-sub-t" class="selfRef">The Format of the SFT Sub-TLV</a>
</figcaption></figure>
</div>
<p id="section-3.2.1.3-3">The fields are as follows:<a href="#section-3.2.1.3-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2.1.3-4.1">"Type" is set to 3 to indicate an SFT Sub-TLV.<a href="#section-3.2.1.3-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1.3-4.2">"Length" indicates the length, in octets, of the "Service
Function Type" and "SFIR-RD List" fields.<a href="#section-3.2.1.3-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1.3-4.3">The SFT value indicates the category (type) of SF that is to be
executed at this hop. The types are as advertised for the SFs supported by the SFFs.
SFT values in the range 1-31 are special-purpose SFT values and have meanings defined by
the documents that describe them -- the value "Change Sequence" is defined in
<a href="#changeseq" class="xref">Section 6.1</a> of this document.<a href="#section-3.2.1.3-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1.3-4.4">The hop description is further qualified beyond the specification of the SFTs by listing, for
each SFT in each hop, the SFIs that may be used at the hop. The SFIs are identified using
the SFIR-RDs from the advertisements of the SFIs in the SFIRs. Note that if the list contains
one or more SFIR Pool Identifiers, then for each, the SFIR-RD list is effectively expanded to
include the SFIR-RD of each SFIR advertised with that SFIR Pool Identifier. An SFIR-RD of value
zero has special meaning, as described in <a href="#selection" class="xref">Section 5</a>. Each entry in the list
is eight octets long, and the number of entries in the list can be deduced from the value of the
"Length" field.<a href="#section-3.2.1.3-4.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2.1.3-4.5">Note that an SFIR-RD is of type 0, 1, or 2 (as described in
<a href="#sfiRoutes" class="xref">Section 3.1</a>). Thus, the
high-order octet of an RD found in an SFIR-RD List always
has a value of 0x00. However, the high-order octet of an
SFIR Pool Identifier (an Extended Community with "Type"
field 0x0b) will always
have a nonzero value. This allows the node processing the SFIR-RD list to distinguish between
the two types of list entry.<a href="#section-3.2.1.3-4.5" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="swapTLV">
<section id="section-3.2.1.4">
<h5 id="name-mpls-swapping-stacking-sub-">
<a href="#section-3.2.1.4" class="section-number selfRef">3.2.1.4. </a><a href="#name-mpls-swapping-stacking-sub-" class="section-name selfRef">MPLS Swapping/Stacking Sub-TLV</a>
</h5>
<p id="section-3.2.1.4-1">The MPLS Swapping/Stacking Sub-TLV (Type value 4) is a zero-length Sub-TLV that is <span class="bcp14">OPTIONAL</span> in the Hop TLV
and is used when the data representation is MPLS (see <a href="#representation" class="xref">Section 7.5</a>). When present, it indicates to
the classifier imposing an MPLS label stack that the current hop is to use an {SFC Context Label, SF label} rather
than an {SPI, SF} label pair. See <a href="#swapOp" class="xref">Section 7.6</a> for more details.<a href="#section-3.2.1.4-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sfpTraverse">
<section id="section-3.2.1.5">
<h5 id="name-sfp-traversal-with-mpls-lab">
<a href="#section-3.2.1.5" class="section-number selfRef">3.2.1.5. </a><a href="#name-sfp-traversal-with-mpls-lab" class="section-name selfRef">SFP Traversal With MPLS Label Stack TLV</a>
</h5>
<p id="section-3.2.1.5-1">The SFP Traversal With MPLS Label Stack TLV (Type value 5) is a zero-length TLV that can be carried in the
SFP attribute and indicates to the classifier and the SFFs on the SFP that an MPLS label stack with label
swapping/stacking is to be used for packets traversing the SFP. All of the SFFs specified at each of the SFP's
hops <span class="bcp14">MUST</span> have advertised an MPLS Mixed Swapping/Stacking Extended Community (see <a href="#swapnstack" class="xref">Section 3.1.2</a>)
for the SFP to be considered usable.<a href="#section-3.2.1.5-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sfparules">
<section id="section-3.2.2">
<h4 id="name-general-rules-for-the-sfp-a">
<a href="#section-3.2.2" class="section-number selfRef">3.2.2. </a><a href="#name-general-rules-for-the-sfp-a" class="section-name selfRef">General Rules for the SFP Attribute</a>
</h4>
<p id="section-3.2.2-1">It is possible for the same SFI, as described by an SFIR, to be used in multiple SFPRs.<a href="#section-3.2.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2.2-2">When two SFPRs have the same SPI but different SFPR-RDs, there can be three cases:<a href="#section-3.2.2-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-3.2.2-3">
<li id="section-3.2.2-3.1">Two or more controllers are originating SFPRs for the same SFP. In this case, the
content of the SFPRs is identical, and the duplication is to ensure receipt and
provide controller redundancy.<a href="#section-3.2.2-3.1" class="pilcrow">¶</a>
</li>
<li id="section-3.2.2-3.2">There is a transition in content of the advertised SFP, and the advertisements may
originate from one or more controllers. In this case, the content of the SFPRs will be
different.<a href="#section-3.2.2-3.2" class="pilcrow">¶</a>
</li>
<li id="section-3.2.2-3.3">The reuse of an SPI may result from a configuration error.<a href="#section-3.2.2-3.3" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-3.2.2-4">There is no way in any of these cases for the receiving SFF to know which SFPR to process, and the
SFPRs could be received in any order. At any point in time, when multiple SFPRs have the
same SPI but different SFPR-RDs, the SFF <span class="bcp14">MUST</span> use the SFPR with the numerically lowest
SFPR-RD when interpreting the RDs as 8-octet integers in network byte order. The SFF
<span class="bcp14">SHOULD</span> log this occurrence to assist with debugging.<a href="#section-3.2.2-4" class="pilcrow">¶</a></p>
<p id="section-3.2.2-5">Furthermore, a controller that wants to change the content of an SFP is <span class="bcp14">RECOMMENDED</span> to use a
new SPI and so create a new SFP onto which the classifiers can transition packet flows before
the SFPR for the old SFP is withdrawn. This avoids any race conditions with SFPR advertisements.<a href="#section-3.2.2-5" class="pilcrow">¶</a></p>
<p id="section-3.2.2-6">Additionally, a controller <span class="bcp14">SHOULD NOT</span> reuse an SPI after it has withdrawn the SFPR that used it
until at least a configurable amount of time has passed. This timer <span class="bcp14">SHOULD</span> have a default of one
hour.<a href="#section-3.2.2-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="mode">
<section id="section-4">
<h2 id="name-mode-of-operation">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-mode-of-operation" class="section-name selfRef">Mode of Operation</a>
</h2>
<p id="section-4-1">This document describes the use of BGP as a control plane to create and manage a service
function overlay network.<a href="#section-4-1" class="pilcrow">¶</a></p>
<div id="rt">
<section id="section-4.1">
<h3 id="name-route-targets">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-route-targets" class="section-name selfRef">Route Targets</a>
</h3>
<p id="section-4.1-1">The main feature introduced by this document is the ability to create multiple service
function overlay networks through the use of Route Targets (RTs) <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span>.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">Every BGP UPDATE containing an SFIR or SFPR carries one or more RTs. The RT carried by a particular
SFIR or SFPR is determined by the provisioning of the route's originator.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">Every node in a service function overlay network is configured with one or more import RTs.
Thus, each SFF will import only the SFPRs with matching RTs, allowing the construction of
multiple service function overlay networks or the instantiation of SFCs
within a Layer 3 Virtual Private Network (L3VPN) or Ethernet VPN (EVPN) instance
(see <a href="#private" class="xref">Section 7.3</a>). An SFF that has a presence in multiple service function
overlay networks (i.e., one that imports more than one RT) will
usually maintain separate forwarding
state for each overlay network.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="SFIR">
<section id="section-4.2">
<h3 id="name-service-function-instance-ro">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-service-function-instance-ro" class="section-name selfRef">Service Function Instance Routes</a>
</h3>
<p id="section-4.2-1">The SFIR (see <a href="#sfiRoutes" class="xref">Section 3.1</a>) is used to advertise the existence and location
of a specific SFI; it consists of:<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-2.1">The RT as just described.<a href="#section-4.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-2.2">A Service Function Type (SFT) that is the type of service function that is
provided (such as "firewall").<a href="#section-4.2-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-2.3">A Route Distinguisher (RD) that is unique to a specific overlay.<a href="#section-4.2-2.3" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="SFPR">
<section id="section-4.3">
<h3 id="name-service-function-path-routes">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-service-function-path-routes" class="section-name selfRef">Service Function Path Routes</a>
</h3>
<p id="section-4.3-1">The SFPR (see <a href="#sfpRoutes" class="xref">Section 3.2</a>)
describes a specific path of an SFC.
The SFPR contains the Service Path Identifier (SPI) used to identify the SFP in the NSH
in the data plane. It also contains a sequence of Service Indexes (SIs). Each SI
identifies a hop in the SFP, and each hop is a choice between one or more SFIs.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2">As described in this document, each SFP route is identified in the
service function overlay network by an RD and an SPI. The SPI is unique within a single
VPN instance supported by the underlay network.<a href="#section-4.3-2" class="pilcrow">¶</a></p>
<p id="section-4.3-3">The SFPR advertisement comprises:<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-4.1">An RT as described in <a href="#rt" class="xref">Section 4.1</a>.<a href="#section-4.3-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.3-4.2">
<p id="section-4.3-4.2.1">A tuple that identifies the SFPR.<a href="#section-4.3-4.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-4.2.2.1">An RD that identifies an advertisement of an SFPR.<a href="#section-4.3-4.2.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.3-4.2.2.2">The SPI that uniquely identifies this path within the VPN instance distinguished
by the RD. This SPI also appears in the NSH.<a href="#section-4.3-4.2.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="normal" id="section-4.3-4.3">A series of SIs. Each SI is used in the context of a particular SPI and
identifies one or more SFs (distinguished by their SFTs). For
each SF, it identifies a set of
SFIs that instantiate the SF. The values of the SI indicate the order in which the
SFs are to be executed in the SFP that is represented by the SPI.<a href="#section-4.3-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.3-4.4">The SI is used in the NSH to identify the entries in the SFP. Note that the SI values
have meaning only relative to a specific path. They have no semantic other than to indicate
the order of SFs within the path and are assumed to be monotonically
decreasing from the start to the end of the path <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>.<a href="#section-4.3-4.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.3-4.5">
<p id="section-4.3-4.5.1">Each SI is associated with a set of one or more SFIs
that can be used to provide the indexed SF within the path. Each member of
the set comprises:<a href="#section-4.3-4.5.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-4.5.2.1">The RD used in an SFIR advertisement of the SFI.<a href="#section-4.3-4.5.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.3-4.5.2.2">The SFT that indicates the type of function as used in the same SFIR advertisement
of the SFI.<a href="#section-4.3-4.5.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-4.3-5">This may be summarized as follows, where the notations "SFPR-RD" and "SFIR-RD" are used
to distinguish the two different RDs, and where "*" indicates a multiplier:<a href="#section-4.3-5" class="pilcrow">¶</a></p>
<div class="artwork art-text alignLeft" id="section-4.3-6">
<pre>
RT, {SFPR-RD, SPI}, m * {SI, {n * {SFT, p * SFIR-RD} } }
</pre><a href="#section-4.3-6" class="pilcrow">¶</a>
</div>
<p id="section-4.3-7">Where:<a href="#section-4.3-7" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.3-8">
<dt id="section-4.3-8.1">RT:</dt>
<dd style="margin-left: 1.5em" id="section-4.3-8.2"> Route Target<a href="#section-4.3-8.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3-8.3">SFPR-RD:</dt>
<dd style="margin-left: 1.5em" id="section-4.3-8.4">The Route Descriptor of the SFPR advertisement<a href="#section-4.3-8.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3-8.5">SPI:</dt>
<dd style="margin-left: 1.5em" id="section-4.3-8.6">Service Path Identifier used in the NSH<a href="#section-4.3-8.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3-8.7">m:</dt>
<dd style="margin-left: 1.5em" id="section-4.3-8.8">The number of hops in the SFP<a href="#section-4.3-8.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3-8.9">n:</dt>
<dd style="margin-left: 1.5em" id="section-4.3-8.10">The number of choices of SFT for a specific hop<a href="#section-4.3-8.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3-8.11">p:</dt>
<dd style="margin-left: 1.5em" id="section-4.3-8.12">The number of choices of SFI
for a given SFT in a specific hop<a href="#section-4.3-8.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3-8.13">SI:</dt>
<dd style="margin-left: 1.5em" id="section-4.3-8.14">Service Index used in the NSH to indicate a specific hop<a href="#section-4.3-8.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3-8.15">SFT:</dt>
<dd style="margin-left: 1.5em" id="section-4.3-8.16">The Service Function Type used in the same advertisement of the SFIR<a href="#section-4.3-8.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.3-8.17">SFIR-RD:</dt>
<dd style="margin-left: 1.5em" id="section-4.3-8.18">The Route Descriptor used in an advertisement of the SFIR<a href="#section-4.3-8.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.3-9">That is, there can be multiple SFTs at a given hop, as described in <a href="#selection" class="xref">Section 5</a>.<a href="#section-4.3-9" class="pilcrow">¶</a></p>
<p id="section-4.3-10">Note that the values of SI are from the set {255, ..., 1} and are monotonically decreasing
within the SFP. SIs <span class="bcp14">MUST</span> appear in order within the SFPR (i.e., monotonically decreasing)
and <span class="bcp14">MUST NOT</span> appear more than once. Gaps <span class="bcp14">MAY</span> appear in the sequence, as described in
<a href="#lacunae" class="xref">Section 4.5.1</a>. Malformed SFPRs <span class="bcp14">MUST</span> be discarded and <span class="bcp14">MUST</span> cause any
previous instance of the SFPR (same SFPR-RD and SPI) to be discarded.<a href="#section-4.3-10" class="pilcrow">¶</a></p>
<p id="section-4.3-11">Note that if the SFIR-RD list in an SFT TLV contains one or more SFIR Pool Identifiers, then
in the above expression, "p" is the sum of the number of individual SFIR-RD values
and the sum for each SFIR Pool Identifier of the number of SFIRs advertised with that SFIR Pool
Identifier. In other words, the list of SFIR-RD values is effectively expanded to include the SFIR-RD
of each SFIR advertised with each SFIR Pool Identifier in the SFIR-RD list.<a href="#section-4.3-11" class="pilcrow">¶</a></p>
<p id="section-4.3-12">The choice of SFI is explained further in <a href="#selection" class="xref">Section 5</a>. Note that an SFIR-RD
value of zero has special meaning, as described in that section.<a href="#section-4.3-12" class="pilcrow">¶</a></p>
</section>
</div>
<div id="classy">
<section id="section-4.4">
<h3 id="name-classifier-operation">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-classifier-operation" class="section-name selfRef">Classifier Operation</a>
</h3>
<p id="section-4.4-1">As shown in <a href="#SFCarch" class="xref">Figure 1</a>, the classifier is a component that is used to assign
packets to an SFP.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<p id="section-4.4-2">The classifier is responsible for determining to which packet flow a packet belongs. The
mechanism it uses to achieve that classification is out of the scope of this document but might
include inspection of the packet header. The classifier has been instructed (by the controller
or through some other configuration mechanism -- see <a href="#fspecclassy" class="xref">Section 7.4</a>) which flows
are to be assigned to which SFPs, and so it can impose an NSH on each packet and initialize the
NSH with the SPI of the selected SFP and the SI of its first hop.<a href="#section-4.4-2" class="pilcrow">¶</a></p>
<p id="section-4.4-3">Note that instructions delivered to the classifier may include information about the metadata
to encode (and the format for that encoding) on packets that are classified by the classifier
to a particular SFP. As mentioned in <a href="#ctrlover" class="xref">Section 2.2</a>, this corresponds to the
fifth element of control plane functionality described in <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>. Such
instructions fall outside the scope of this specification (but
see <a href="#fspecclassy" class="xref">Section 7.4</a>),
as do instructions to other service function chaining elements on how to interpret metadata (as described in the
sixth element of control plane functionality described in <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>).<a href="#section-4.4-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="SFF">
<section id="section-4.5">
<h3 id="name-service-function-forwarder-">
<a href="#section-4.5" class="section-number selfRef">4.5. </a><a href="#name-service-function-forwarder-" class="section-name selfRef">Service Function Forwarder Operation</a>
</h3>
<p id="section-4.5-1">Each packet sent to an SFF is transmitted encapsulated in an NSH. The NSH includes an SPI
and SI: the SPI indicates the SFPR advertisement that announced the SFP;
the tuple SPI/SI indicates a specific hop in a specific path and maps to the RD/SFT of a
particular SFIR advertisement.<a href="#section-4.5-1" class="pilcrow">¶</a></p>
<p id="section-4.5-2">When an SFF gets an SFPR advertisement, it will first determine whether to import the route
by examining the RT. If the SFPR is imported, the SFF then determines whether it is on the
SFP by looking for its own SFIR-RDs or any SFIR-RD with value zero in the SFPR. For each
occurrence in the SFP, the SFF creates forwarding state for incoming packets and forwarding
state for outgoing packets that have been processed by the specified SFI.<a href="#section-4.5-2" class="pilcrow">¶</a></p>
<p id="section-4.5-3">The SFF creates local forwarding state for packets that it receives from other SFFs. This
state makes the association between the SPI/SI in the NSH of the received packet and one or
more specific local SFIs, as identified by the SFIR-RD/SFT. If there are multiple local SFIs
that match, this is because a single advertisement was made for a set of equivalent SFIs, and
the SFF may use local policy (such as load balancing) to determine to which SFI to forward a
received packet.<a href="#section-4.5-3" class="pilcrow">¶</a></p>
<p id="section-4.5-4">The SFF also creates next-hop forwarding state for packets received back from the local SFI
that need to be forwarded to the next hop in the SFP. There may be a choice of next hops,
as described in <a href="#SFPR" class="xref">Section 4.3</a>. The SFF could install forwarding state for all
potential next hops or it could choose to only install forwarding state for a subset of the
potential next hops. If a choice is made, then it will be as described in
<a href="#selection" class="xref">Section 5</a>.<a href="#section-4.5-4" class="pilcrow">¶</a></p>
<p id="section-4.5-5">The installed forwarding state may change over time, reacting to changes in the underlay network
and the availability of particular SFIs. Note that the forwarding state describes how one SFF
sends packets to another SFF, but not how those packets are routed through the underlay network.
SFFs may be connected by tunnels across the underlay, or packets may be sent addressed to the
next SFF and routed through the underlay. In any case, transmission across the underlay requires
encapsulation of packets with a header for transport in the underlay network.<a href="#section-4.5-5" class="pilcrow">¶</a></p>
<p id="section-4.5-6">Note that SFFs only create and store forwarding state for the SFPs on which they are included.
They do not retain state for all SFPs advertised.<a href="#section-4.5-6" class="pilcrow">¶</a></p>
<p id="section-4.5-7">An SFF may also install forwarding state to support looping, jumping, and branching.
The protocol mechanism for explicit control of looping, jumping, and
branching uses a specific reserved SFT value at a given hop of an SFPR and is described in
<a href="#changeseq" class="xref">Section 6.1</a>.<a href="#section-4.5-7" class="pilcrow">¶</a></p>
<div id="lacunae">
<section id="section-4.5.1">
<h4 id="name-processing-with-gaps-in-the">
<a href="#section-4.5.1" class="section-number selfRef">4.5.1. </a><a href="#name-processing-with-gaps-in-the" class="section-name selfRef">Processing with "Gaps" in the SI Sequence</a>
</h4>
<p id="section-4.5.1-1">The behavior of an SF, as described in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>, is to decrement
the value of the "SI" field in the NSH by one before returning a packet to the local SFF for
further processing. This means that there is a good reason to assume that the SFP is
composed of a series of SFs, each indicated by an SI value one less than the previous.<a href="#section-4.5.1-1" class="pilcrow">¶</a></p>
<p id="section-4.5.1-2">However, there is an advantage to having nonsuccessive SIs in an SPI. Consider the case
where an SPI needs to be modified by the insertion or removal of an SF. In the latter case,
this would lead to a "gap" in the sequence of SIs, and in the former case, this could only
be achieved if a gap already existed into which the new SF with its new SI value could be
inserted. Otherwise, all "downstream" SFs would need to be renumbered.<a href="#section-4.5.1-2" class="pilcrow">¶</a></p>
<p id="section-4.5.1-3">Now, of course, such renumbering could be performed, but it would lead to a significant
disruption to the SFC as all the SFFs along the SFP were "reprogrammed". Thus, to achieve
dynamic modification of an SFP (and even in-service modification), it is desirable to be
able to make these modifications without changing the SIs of the elements that were
present before the modification. This will produce much more consistent/predictable
behavior during the convergence period, where otherwise the change would need to be
fully propagated.<a href="#section-4.5.1-3" class="pilcrow">¶</a></p>
<p id="section-4.5.1-4">Another approach says that any change to an SFP simply creates a new SFP that can be
assigned a new SPI. All that would be needed would be to give a new instruction to the
classifier, and traffic would be switched to the new SFP that contains the new set of SFs.
This approach is practical but neglects to consider that the SFP may be referenced by
other SFPs (through "branch" instructions) and used by many classifiers. In those cases,
the corresponding configuration resulting from a change in SPI may have wide ripples and
create scope for errors that are hard to trace.<a href="#section-4.5.1-4" class="pilcrow">¶</a></p>
<p id="section-4.5.1-5">Therefore, while this document requires that the SI values in an SFP are monotonically decreasing,
it makes no assumption that the SI values are sequential. Configuration tools may apply
that rule, but they are not required to. To support this, an SFF <span class="bcp14">SHOULD</span> process as follows
when it receives a packet:<a href="#section-4.5.1-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.5.1-6.1">If the SI indicates a known entry in the SFP, the SFF <span class="bcp14">MUST</span> process the packet as
normal, looking up the SI and determining to which local SFI to deliver the packet.<a href="#section-4.5.1-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.5.1-6.2">If the SI does not match an entry in the SFP, the SFF <span class="bcp14">MUST</span> reduce the SI value to the
next (smaller) value present in the SFP and process the packet using that SI.<a href="#section-4.5.1-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.5.1-6.3">If there is no smaller SI (i.e., if the end of the SFP has been reached), the SFF <span class="bcp14">MUST</span>
treat the SI value as not valid, as described in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>.<a href="#section-4.5.1-6.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.5.1-7">
This makes the behavior described in this document a superset of the function in
<span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>. That is, an implementation that strictly follows RFC 8300 in
performing SI decrements in units of one is perfectly in line with the mechanisms
defined in this document.<a href="#section-4.5.1-7" class="pilcrow">¶</a></p>
<p id="section-4.5.1-8">SFF implementations <span class="bcp14">MAY</span> choose to only support contiguous SI values in an SFP. Such an
implementation will not support receiving an SI value that is not present in the SFP and
will discard the packets as described in <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>.<a href="#section-4.5.1-8" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="selection">
<section id="section-5">
<h2 id="name-selection-within-service-fu">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-selection-within-service-fu" class="section-name selfRef">Selection within Service Function Paths</a>
</h2>
<p id="section-5-1">As described in <a href="#overview" class="xref">Section 2</a>, the SPI/SI in the NSH passed back from an SFI to
the SFF may leave the SFF with a choice of next-hop SFTs and a choice of SFIs for each SFT.
That is, the SPI indicates an SFPR, and the SI indicates an entry in that SFPR. Each entry in
an SFPR is a set of one or more SFT/SFIR-RD pairs. The SFF <span class="bcp14">MUST</span> choose one of these, identify
the SFF that supports the chosen SFI, and send the packet to that next-hop SFF.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">The choice be may offered for load balancing across multiple SFIs, or for discrimination between
different actions necessary at a specific hop in the SFP. Different SFT values may exist at
a given hop in an SFP to support several cases:<a href="#section-5-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5-3.1">There may be multiple instances of similar service functions that are distinguished by
different SFT values. For example, firewalls made by vendor A and vendor B may need to
be identified by different SFT values because, while they have similar functionality, their
behavior is not identical. Then, some SFPs may limit the choice of SF at a given hop by
specifying the SFT for vendor A, but other SFPs might not need to control which vendor's
SF is used and so can indicate that either SFT can be used.<a href="#section-5-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5-3.2">There may be an obvious branch needed in an SFP, such as the processing after a firewall
where admitted packets continue along the SFP, but suspect packets are diverted to a
"penalty box". In this case, the next hop in the SFP will be indicated with two
different SFT values.<a href="#section-5-3.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5-4">In the typical case, the SFF chooses a next-hop SFF by looking at the set of all SFFs that
support the SFs identified by the SI (that set having been advertised in individual SFIR
advertisements), finding the one or more that are "nearest" in the underlay network, and
choosing between next-hop SFFs using its own load-balancing algorithm.<a href="#section-5-4" class="pilcrow">¶</a></p>
<p id="section-5-5">An SFI may influence this choice process by passing additional information back, along
with the packet and NSH. This information may influence local policy
at the SFF to either cause it to favor a next-hop SFF (perhaps selecting one
that is not nearest in the underlay) or influence the load-balancing algorithm.<a href="#section-5-5" class="pilcrow">¶</a></p>
<p id="section-5-6">This selection applies to the normal case but also applies in the case of looping,
jumping, and branching (see <a href="#looping" class="xref">Section 6</a>).<a href="#section-5-6" class="pilcrow">¶</a></p>
<p id="section-5-7">Suppose an SFF in a particular service function overlay network (identified by a particular import
RT, RT-z) needs to forward an NSH-encapsulated packet whose SPI is SPI-x and whose SI is SI-y.
It does the following:<a href="#section-5-7" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-5-8">
<li id="section-5-8.1">It looks for an installed SFPR that carries RT-z and has SPI-x in its NLRI.
If there is none, then such packets cannot be forwarded.<a href="#section-5-8.1" class="pilcrow">¶</a>
</li>
<li id="section-5-8.2">From the SFP attribute of that SFPR, it finds the Hop TLV with SI value set to SI-y.
If there is no such Hop TLV, then such packets cannot be forwarded.<a href="#section-5-8.2" class="pilcrow">¶</a>
</li>
<li id="section-5-8.3">
<p id="section-5-8.3.1">It then finds the "relevant" set of SFIRs by going through the list of SFT TLVs
contained in the Hop TLV as follows:<a href="#section-5-8.3.1" class="pilcrow">¶</a></p>
<ol start="1" type="A" class="normal type-A" id="section-5-8.3.2">
<li id="section-5-8.3.2.1">An SFIR is relevant if it carries RT-z, the SFT in its NLRI matches
the SFT value in one of the SFT TLVs, and the RD value in its NLRI matches
an entry in the list of SFIR-RDs in that SFT TLV.<a href="#section-5-8.3.2.1" class="pilcrow">¶</a>
</li>
<li id="section-5-8.3.2.2">If an entry in the SFIR-RD list of an SFT TLV contains the value zero, then
an SFIR is relevant if it carries RT-z and the SFT in its NLRI matches
the SFT value in that SFT TLV. That is, any SFIR in the service function
overlay network defined by RT-z and with the correct SFT is relevant.<a href="#section-5-8.3.2.2" class="pilcrow">¶</a>
</li>
<li id="section-5-8.3.2.3">If a pool identifier is in use, then an SFIR is relevant if it is a member of
the pool.<a href="#section-5-8.3.2.3" class="pilcrow">¶</a>
</li>
</ol>
</li>
</ol>
<p id="section-5-9">Each of the relevant SFIRs identifies a single SFI and contains a tunnel encapsulation
attribute that specifies how to send a packet to that SFI. For a particular packet, the
SFF chooses a particular SFI from the set of relevant SFIRs. This choice is made according
to local policy.<a href="#section-5-9" class="pilcrow">¶</a></p>
<p id="section-5-10">A typical policy might be to figure out the set of SFIs that are closest and load balance
among them. But this is not the only possible policy.<a href="#section-5-10" class="pilcrow">¶</a></p>
<p id="section-5-11">Thus, at any point in time when an SFF selects its next hop, it chooses from the intersection
of the set of next-hop RDs contained in the SFPR and the RDs contained in the SFF's local set of
SFIRs (i.e., according to the determination of "relevance", above). If the intersection is
null, the SFPR is unusable. Similarly, when this condition applies on the controller that originated
the SFPR, it <span class="bcp14">SHOULD</span> either withdraw the SFPR or re-advertise it with a new set of RDs for the affected
hop.<a href="#section-5-11" class="pilcrow">¶</a></p>
</section>
</div>
<div id="looping">
<section id="section-6">
<h2 id="name-looping-jumping-and-branchi">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-looping-jumping-and-branchi" class="section-name selfRef">Looping, Jumping, and Branching</a>
</h2>
<p id="section-6-1">As described in <a href="#overview" class="xref">Section 2</a>, an SFI or an SFF may cause a packet to
"loop back" to a previous SF on a path in order that a sequence of functions may be
re-executed. This is simply achieved by replacing the SI in the NSH with a higher value,
instead of decreasing it as would normally be the case, to determine the next hop in the
path.<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2"><a href="#overview" class="xref">Section 2</a> also describes how an SFI or SFF may cause a packet to
"jump forward" to an SF on a path that is not the immediate next SF in the SFP. This
is simply achieved by replacing the SI in the NSH with a lower value than would be
achieved by decreasing it by the normal amount.<a href="#section-6-2" class="pilcrow">¶</a></p>
<p id="section-6-3">A more complex option to move packets from one SFP to another is described in
<span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> and <a href="#overview" class="xref">Section 2</a>, where it is termed
"branching". This mechanism allows an SFI or SFF to make a choice of downstream
treatments for packets based on local policy and the output of the local SF. Branching is
achieved by changing the SPI in the NSH to indicate the new path and setting the SI to
indicate the point in the path at which the packets enter.<a href="#section-6-3" class="pilcrow">¶</a></p>
<p id="section-6-4">Note that the NSH does not include a marker to indicate whether a specific packet has
been around a loop before. Therefore, the use of NSH metadata <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>
may be required in order to prevent infinite loops.<a href="#section-6-4" class="pilcrow">¶</a></p>
<div id="changeseq">
<section id="section-6.1">
<h3 id="name-protocol-control-of-looping">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-protocol-control-of-looping" class="section-name selfRef">Protocol Control of Looping, Jumping, and Branching</a>
</h3>
<p id="section-6.1-1">If the SFT value in an SFT TLV in an SFPR has the special-purpose SFT value "Change
Sequence" (see <a href="#iana" class="xref">Section 10</a>), then this is an indication that the SFF may
make a loop, jump, or branch according to local policy and information returned by
the local SFI.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">In this case, the SPI and SI of the next hop are encoded in the eight bytes of an entry
in the SFIR-RD list as follows:<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<ul class="ulEmpty normal">
<li class="ulEmpty normal" id="section-6.1-3.1">3 bytes SPI<a href="#section-6.1-3.1" class="pilcrow">¶</a>
</li>
<li class="ulEmpty normal" id="section-6.1-3.2">1 byte SI<a href="#section-6.1-3.2" class="pilcrow">¶</a>
</li>
<li class="ulEmpty normal" id="section-6.1-3.3">4 bytes Reserved (<span class="bcp14">SHOULD</span> be set to zero and ignored)<a href="#section-6.1-3.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6.1-4">If the SI in this encoding is not part of the SFPR indicated by the SPI in this
encoding, then this is an explicit error that <span class="bcp14">SHOULD</span> be detected by the SFF when it
parses the SFPR. The SFPR <span class="bcp14">SHOULD NOT</span> cause any forwarding state to be installed in
the SFF, and packets received with the SPI that indicates this SFPR <span class="bcp14">SHOULD</span> be silently
discarded.<a href="#section-6.1-4" class="pilcrow">¶</a></p>
<p id="section-6.1-5">If the SPI in this encoding is unknown, the SFF <span class="bcp14">SHOULD NOT</span> install any forwarding state
for this SFPR but <span class="bcp14">MAY</span> hold the SFPR pending receipt of another SFPR that does use the
encoded SPI.<a href="#section-6.1-5" class="pilcrow">¶</a></p>
<p id="section-6.1-6">If the SPI matches the current SPI for the path, this is a loop or jump. In this case,
if the SI is greater than or equal to the current SI, it is a loop. If the SPI matches and the SI
is less than the next SI, it is a jump.<a href="#section-6.1-6" class="pilcrow">¶</a></p>
<p id="section-6.1-7">If the SPI indicates another path, this is a branch, and the SI indicates the point at
which to enter that path.<a href="#section-6.1-7" class="pilcrow">¶</a></p>
<p id="section-6.1-8">The Change Sequence SFT is just another SFT that may appear in a set of SFI/SFT tuples
within an SI and is selected as described in <a href="#selection" class="xref">Section 5</a>.<a href="#section-6.1-8" class="pilcrow">¶</a></p>
<p id="section-6.1-9">Note that special-purpose SFTs <span class="bcp14">MUST NOT</span> be advertised in SFIRs. If such an SFIR is
received, it <span class="bcp14">SHOULD</span> be ignored.<a href="#section-6.1-9" class="pilcrow">¶</a></p>
</section>
</div>
<div id="implications">
<section id="section-6.2">
<h3 id="name-implications-for-forwarding">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-implications-for-forwarding" class="section-name selfRef">Implications for Forwarding State</a>
</h3>
<p id="section-6.2-1">Support for looping and jumping requires that the SFF has forwarding state established
to an SFF that provides access to an instance of the appropriate SF.
This means
that the SFF must have seen the relevant SFIR advertisements and mush have known that it needed to
create the forwarding state. This is a matter of local configuration and implementation;
for example, an implementation could be configured to install forwarding state for specific
looping/jumping.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<p id="section-6.2-2">Support for branching requires that the SFF has forwarding state established to an SFF that
provides access to an instance of the appropriate entry SF on the other SFP. This means
that the SFF must have seen the relevant SFIR and SFPR advertisements and known that it
needed to create the forwarding state. This is a matter of local configuration and
implementation; for example, an implementation could be configured to install forwarding
state for specific branching (identified by SPI and SI).<a href="#section-6.2-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="advanced">
<section id="section-7">
<h2 id="name-advanced-topics">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-advanced-topics" class="section-name selfRef">Advanced Topics</a>
</h2>
<p id="section-7-1">This section highlights several advanced topics introduced elsewhere in this document.<a href="#section-7-1" class="pilcrow">¶</a></p>
<div id="correlation">
<section id="section-7.1">
<h3 id="name-correlating-service-functio">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-correlating-service-functio" class="section-name selfRef">Correlating Service Function Path Instances</a>
</h3>
<p id="section-7.1-1">It is often useful to create bidirectional SFPs to enable packet
flows to traverse the same
set of SFs, but in the reverse order. However, packets on SFPs in the data plane (per
<span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>) do not contain a direction indicator, so each direction
must use a different SPI.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
<p id="section-7.1-2">As described in <a href="#assoctlv" class="xref">Section 3.2.1.1</a>, an SFPR can contain one or more correlators
encoded in Association TLVs.
If the Association Type indicates "Bidirectional SFP", then
the SFP advertised in the SFPR is one direction of a bidirectional pair of SFPs, where the
other in the pair is advertised in the SFPR with RD as carried in the "Associated SFPR-RD"
field of the Association TLV. The SPI carried in the "Associated SPI" field of the
Association TLV provides a cross-check against the SPI advertised in the SFPR with
RD as carried in the "Associated SFPR-RD" field of the Association TLV.<a href="#section-7.1-2" class="pilcrow">¶</a></p>
<p id="section-7.1-3">As noted in <a href="#assoctlv" class="xref">Section 3.2.1.1</a>, when SFPRs reference each other, one SFPR advertisement
will be received before the other. Therefore, processing of an association will require
that the first SFPR not be rejected simply because the Associated SFPR-RD it carries is
unknown. However, the SFP defined by the first SFPR is valid and <span class="bcp14">SHOULD</span> be available for
use as a unidirectional SFP, even in the absence of an advertisement of its partner.<a href="#section-7.1-3" class="pilcrow">¶</a></p>
<p id="section-7.1-4">Furthermore, in error cases where SFPR-a associates with SFPR-b, but SFPR-b associates
with SFPR-c such that a bidirectional pair of SFPs cannot be formed, the individual SFPs
are still valid and <span class="bcp14">SHOULD</span> be available for use as unidirectional SFPs. An implementation
<span class="bcp14">SHOULD</span> log this situation, because it represents a controller error.<a href="#section-7.1-4" class="pilcrow">¶</a></p>
<p id="section-7.1-5">Usage of a bidirectional SFP may be programmed into the classifiers by the controller.
Alternatively, a classifier may look at incoming packets on a bidirectional packet flow,
extract the SPI from the received NSH, and look up the SFPR to find the reverse-direction
SFP to use when it sends packets.<a href="#section-7.1-5" class="pilcrow">¶</a></p>
<p id="section-7.1-6">See <a href="#example" class="xref">Section 8</a> for an example of how this works.<a href="#section-7.1-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="stateful">
<section id="section-7.2">
<h3 id="name-considerations-for-stateful">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-considerations-for-stateful" class="section-name selfRef">Considerations for Stateful Service Functions</a>
</h3>
<p id="section-7.2-1">Some service functions are stateful. That means that they build and maintain state derived
from configuration or the packet flows that they handle. In such cases, it can be
important or necessary that all packets from a flow continue to traverse the same instance
of a service function so that the state can be leveraged and does not need to be regenerated.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
<p id="section-7.2-2">In the case of bidirectional SFPs, it may be necessary to traverse the same instances of a
stateful service function in both directions. A firewall is a good example of such a service
function.<a href="#section-7.2-2" class="pilcrow">¶</a></p>
<p id="section-7.2-3">This issue becomes a concern where there are multiple parallel instances of a service function
and a determination of which one to use could normally be left to the SFF as a load-balancing
or local-policy choice.<a href="#section-7.2-3" class="pilcrow">¶</a></p>
<p id="section-7.2-4">For the forward-direction SFP, the concern is that the same choice of SF is made
for all packets of a flow under normal network conditions. It may be possible to guarantee
that the load-balancing functions applied in the SFFs are stable and repeatable, but a controller
that constructs SFPs might not want to trust to this. The controller can, in these cases, build
a number of more specific SFPs, each traversing a specific instance of the stateful SFs. In this
case, the load-balancing choice can be left up to the classifier. Thus, the classifier selects
which instance of a stateful SF is used by a particular flow by selecting the SFP that the flow
uses.<a href="#section-7.2-4" class="pilcrow">¶</a></p>
<p id="section-7.2-5">For bidirectional SFPs where the same instance of a stateful SF must be traversed in both
directions, it is not enough to leave the choice of SFI as a local choice,
even if the load balancing is stable, because coordination would be required between the decision
points in the forward and reverse directions, and this may be hard to achieve in all cases except
where it is the same SFF that makes the choice in both directions.<a href="#section-7.2-5" class="pilcrow">¶</a></p>
<p id="section-7.2-6">Note that this approach necessarily increases the amount of SFP state in the network (i.e., there
are more SFPs). It is possible to mitigate this effect by careful construction of SFPs built
from a concatenation of other SFPs.<a href="#section-7.2-6" class="pilcrow">¶</a></p>
<p id="section-7.2-7"><a href="#examplestate" class="xref">Section 8.9</a> includes some simple examples of SFPs for stateful SFs.<a href="#section-7.2-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="private">
<section id="section-7.3">
<h3 id="name-vpn-considerations-and-priv">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-vpn-considerations-and-priv" class="section-name selfRef">VPN Considerations and Private Service Functions</a>
</h3>
<p id="section-7.3-1">Likely deployments include reserving specific instances of SFs for specific
customers or allowing customers to deploy their own SFs within the network.
Building SFs in such environments requires that suitable identifiers be used
to ensure that SFFs distinguish which SFIs can be used and which cannot.<a href="#section-7.3-1" class="pilcrow">¶</a></p>
<p id="section-7.3-2">This problem is similar to a problem in the way that VPNs are supported and is solved in a similar way. The "RT"
field is used to indicate a set of SFs from which all choices must be made.<a href="#section-7.3-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="fspecclassy">
<section id="section-7.4">
<h3 id="name-flow-specification-for-sfc-">
<a href="#section-7.4" class="section-number selfRef">7.4. </a><a href="#name-flow-specification-for-sfc-" class="section-name selfRef">Flow Specification for SFC Classifiers</a>
</h3>
<p id="section-7.4-1"><span>[<a href="#RFC8955" class="xref">RFC8955</a>]</span> defines a set of BGP
routes that can be used to identify the packets in a given flow using fields in the header of
each packet, and a set of actions -- encoded as Extended Communities -- that can be used to
disposition those packets. This document enables the use of these mechanisms by SFC
classifiers by defining a new action Extended Community called "Flow Specification for SFC Classifiers",
identified by the value 0x0d. Note that implementation of this section of this specification will be
controllers or classifiers communicating with each other directly for the purpose of instructing the
classifier how to place packets onto an SFP. So that the implementation of classifiers can be
kept simple, and to avoid the confusion between the purposes of different Extended Communities, a
controller <span class="bcp14">MUST NOT</span> include other action Extended Communities at the same time as a "Flow Specification
for SFC Classifiers" Extended Community. A "Flow Specification for SFC Classifiers" Traffic Filtering Action
Extended Community advertised with any other Traffic Filtering Action Extended Community <span class="bcp14">MUST</span> be treated as
malformed in line with <span>[<a href="#RFC8955" class="xref">RFC8955</a>]</span> and result in the flow-specification
UPDATE message being handled as "treat-as-withdraw", according to
<span>[<a href="#RFC7606" class="xref">RFC7606</a>], <a href="https://www.rfc-editor.org/rfc/rfc7606#section-2" class="relref">Section 2</a></span>.<a href="#section-7.4-1" class="pilcrow">¶</a></p>
<p id="section-7.4-2">To put the flow specification into context, when multiple service function chaining overlays are present in one
network, each FlowSpec update <span class="bcp14">MUST</span> be tagged with the route target of the overlay or VPN
network for which it is intended.<a href="#section-7.4-2" class="pilcrow">¶</a></p>
<p id="section-7.4-3">This Extended Community is encoded as an 8-octet value, as shown in <a href="#fspecclassyfig" class="xref">Figure 10</a>.<a href="#section-7.4-3" class="pilcrow">¶</a></p>
<span id="name-the-format-of-the-flow-spec"></span><div id="fspecclassyfig">
<figure id="figure-10">
<div class="artwork art-text alignLeft" id="section-7.4-4.1">
<pre>
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type=0x80 | Sub-Type=0x0d | SPI |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SPI (cont.) | SI | SFT |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-10" class="selfRef">Figure 10</a>:
<a href="#name-the-format-of-the-flow-spec" class="selfRef">The Format of the Flow Specification for SFC Classifiers Extended Community</a>
</figcaption></figure>
</div>
<p id="section-7.4-5">The Extended Community contains the Service Path Identifier (SPI), Service Index (SI), and
Service Function Type (SFT), as defined elsewhere in this document. Thus, each action extended
community defines the entry point (not necessarily the first hop) into a specific SFP. This allows, for example, different flows to enter the same SFP at different points.<a href="#section-7.4-5" class="pilcrow">¶</a></p>
<p id="section-7.4-6">Note that, according to <span>[<a href="#RFC8955" class="xref">RFC8955</a>]</span>, a given flow-specification
update may include multiple of these action Extended Communities. If a given action extended
community does not contain an installed SFPR with the specified {SPI, SI, SFT}, it <span class="bcp14">MUST NOT</span> be
used for dispositioning the packets of the specified flow.<a href="#section-7.4-6" class="pilcrow">¶</a></p>
<p id="section-7.4-7">The normal case of packet classification for service function chaining will see a packet enter the SFP at its first
hop. In this case, the SI in the Extended Community is superfluous, and the SFT may also be
unnecessary. To allow these cases to be handled, a special meaning is assigned to an SI of zero (not a valid value) and an SFT of zero (a reserved value in the registry -- see
<a href="#SFTreg" class="xref">Section 10.5</a>).<a href="#section-7.4-7" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.4-8.1">If an SFC Classifiers Extended Community is received with SI = 0, then it means that the
first hop of the SFP indicated by the SPI <span class="bcp14">MUST</span> be used.<a href="#section-7.4-8.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.4-8.2">
<p id="section-7.4-8.2.1">If an SFC Classifiers Extended Community is received with SFT = 0, then there are two
subcases:<a href="#section-7.4-8.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.4-8.2.2.1">If there is a choice of SFT in the hop indicated by the value of the SI (including
SI = 0), then SFT = 0 means there is a free choice of
which SFT to use, according to local policy).<a href="#section-7.4-8.2.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.4-8.2.2.2">If there is no choice of SFT in the hop indicated by the value of SI, then SFT = 0
means that the value of the SFT at that hop, as indicated in the SFPR for the
indicated SPI, <span class="bcp14">MUST</span> be used.<a href="#section-7.4-8.2.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-7.4-9">One of the filters that the flow specification may describe is the VPN to which the traffic belongs.
Additionally, as noted above, to put the indicated SPI into context when multiple SFC overlays are
present in one network, each FlowSpec update <span class="bcp14">MUST</span> be tagged with the route target of the
overlay or VPN network for which it is intended.<a href="#section-7.4-9" class="pilcrow">¶</a></p>
<p id="section-7.4-10">Note that future extensions might be made to the Flow Specification for SFC Classifiers Extended Community
to provide instruction to the classifier about what metadata to add to packets that it classifies
for forwarding on a specific SFP; however, that is outside the scope of this document.<a href="#section-7.4-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="representation">
<section id="section-7.5">
<h3 id="name-choice-of-data-plane-spi-si">
<a href="#section-7.5" class="section-number selfRef">7.5. </a><a href="#name-choice-of-data-plane-spi-si" class="section-name selfRef">Choice of Data Plane SPI/SI Representation</a>
</h3>
<p id="section-7.5-1">This document ties together the control and data planes of a service function chaining overlay network through the use
of the SPI/SI that is nominally carried in the NSH of a given packet. However, in order to handle
situations in which the NSH is not ubiquitously deployed, it is also possible to use alternative
data plane representations of the SPI/SI by carrying the identical semantics in other protocol fields,
such as MPLS labels <span>[<a href="#RFC8595" class="xref">RFC8595</a>]</span>.<a href="#section-7.5-1" class="pilcrow">¶</a></p>
<p id="section-7.5-2">This document defines a new Sub-TLV for the tunnel encapsulation attribute <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>,
the SPI/SI Representation Sub-TLV of type 16. This Sub-TLV <span class="bcp14">MAY</span> be present in each Tunnel TLV contained
in a tunnel encapsulation attribute when the attribute is carried by an SFIR. The "Value" field of this
Sub-TLV is a two-octet field of flags numbered counting from the most significant bit, each of which
describes how the originating SFF expects to see the SPI/SI represented in the data plane for packets
carried in the tunnels described by the Tunnel TLV.<a href="#section-7.5-2" class="pilcrow">¶</a></p>
<p id="section-7.5-3">The following bits are defined by this document and are tracked in an IANA registry described in
<a href="#IANAbits" class="xref">Section 10.10</a>:<a href="#section-7.5-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-7.5-4">
<dt id="section-7.5-4.1">Bit 0:</dt>
<dd style="margin-left: 1.5em" id="section-7.5-4.2">If this bit is set, the NSH is to be used to carry the SPI/SI in the data plane.<a href="#section-7.5-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.5-4.3">Bit 1:</dt>
<dd style="margin-left: 1.5em" id="section-7.5-4.4">If this bit is set, two labels in an MPLS label stack are to be used as described in
<a href="#MPLS-NSH" class="xref">Section 7.5.1</a>.<a href="#section-7.5-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-7.5-5">If a given Tunnel TLV does not contain an SPI/SI Representation Sub-TLV, then it <span class="bcp14">MUST</span> be processed as if
such a Sub-TLV is present with Bit 0 set and no other bits set. That is, the absence of the Sub-TLV
<span class="bcp14">SHALL</span> be interpreted to mean that the NSH is to be used.<a href="#section-7.5-5" class="pilcrow">¶</a></p>
<p id="section-7.5-6">If a given Tunnel TLV contains an SPI/SI Representation Sub-TLV
with a "Value" field that has no flag set, then
the tunnel indicated by the Tunnel TLV <span class="bcp14">MUST NOT</span> be used for forwarding SFC packets. If a given Tunnel TLV
contains an SPI/SI Representation Sub-TLV with both bit 0 and bit 1 set, then the tunnel indicated by the
Tunnel TLV <span class="bcp14">MUST NOT</span> be used for forwarding SFC
packets. The meaning and rules for the presence of other bits
is to be defined in future documents, but implementations of this specification <span class="bcp14">MUST</span> set other bits to
zero and ignore them on receipt.<a href="#section-7.5-6" class="pilcrow">¶</a></p>
<p id="section-7.5-7">If a given Tunnel TLV contains more than one SPI/SI Representation Sub-TLV, then the first one <span class="bcp14">MUST</span> be
considered and subsequent instances <span class="bcp14">MUST</span> be ignored.<a href="#section-7.5-7" class="pilcrow">¶</a></p>
<p id="section-7.5-8">Note that the MPLS representation of the logical NSH may be used even if the tunnel is not an MPLS tunnel.
Conversely, MPLS tunnels may be used to carry other encodings of the logical NSH (specifically, the NSH
itself). It is a requirement that both ends of a tunnel over the underlay network know that the tunnel is
used for service function chaining and know what form of NSH representation is used. The signaling mechanism described here
allows coordination of this information.<a href="#section-7.5-8" class="pilcrow">¶</a></p>
<div id="MPLS-NSH">
<section id="section-7.5.1">
<h4 id="name-mpls-representation-of-the-">
<a href="#section-7.5.1" class="section-number selfRef">7.5.1. </a><a href="#name-mpls-representation-of-the-" class="section-name selfRef">MPLS Representation of the SPI/SI</a>
</h4>
<p id="section-7.5.1-1">If bit 1 is set in the SPI/SI Representation Sub-TLV, then labels in the MPLS label stack are
used to indicate SFC forwarding and processing instructions to achieve the semantics of a logical NSH.
The label stack is encoded as shown in <span>[<a href="#RFC8595" class="xref">RFC8595</a>]</span>.<a href="#section-7.5.1-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="swapOp">
<section id="section-7.6">
<h3 id="name-mpls-label-swapping-stackin">
<a href="#section-7.6" class="section-number selfRef">7.6. </a><a href="#name-mpls-label-swapping-stackin" class="section-name selfRef">MPLS Label Swapping/Stacking Operation</a>
</h3>
<p id="section-7.6-1">When a classifier constructs an MPLS label stack for an SFP, it starts with that SFP's last hop. If the
last hop requires an {SPI, SI} label pair for label swapping, it pushes the SI (set to the SI value of the
last hop) and the SFP's SPI onto the MPLS label stack. If the last hop requires a {context label, SFI
label} label pair for label stacking, it selects a specific SFIR and pushes that SFIR's SFI label and
context label onto the MPLS label stack.<a href="#section-7.6-1" class="pilcrow">¶</a></p>
<p id="section-7.6-2">The classifier then moves sequentially back through the SFP one hop at a time. For each hop, if the hop
requires an {SPI, SI} and there is an {SPI, SI} at the top of the MPLS label stack, the SI is set to the
SI value of the current hop. If there is not an {SPI, SI} at the top of the MPLS label stack, it pushes
the SI (set to the SI value of the current hop) and the SFP's SPI onto the MPLS label stack.<a href="#section-7.6-2" class="pilcrow">¶</a></p>
<p id="section-7.6-3">If the hop requires a {context label, SFI label}, it selects a specific SFIR and pushes that SFIR's
SFI label and context label onto the MPLS label stack.<a href="#section-7.6-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="mpls-encaps">
<section id="section-7.7">
<h3 id="name-support-for-mpls-encapsulat">
<a href="#section-7.7" class="section-number selfRef">7.7. </a><a href="#name-support-for-mpls-encapsulat" class="section-name selfRef">Support for MPLS-Encapsulated NSH Packets</a>
</h3>
<p id="section-7.7-1"><span>[<a href="#RFC8596" class="xref">RFC8596</a>]</span> describes how to transport SFC packets using the NSH
over an MPLS transport network.
Signaling that this approach is in use is supported by this document
as follows:<a href="#section-7.7-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.7-2.1">A "BGP Tunnel Encapsulation Attribute" Sub-TLV is included with the
codepoint 10 (representing "MPLS Label Stack") from the "BGP Tunnel
Encapsulation Attribute Sub-TLVs" registry defined in
<span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>.<a href="#section-7.7-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.7-2.2">An "SFP Traversal With MPLS Label Stack" TLV is included containing
an "SPI/SI Representation" Sub-TLV with bit 0 set and bit 1 cleared.<a href="#section-7.7-2.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-7.7-3">In this case, the MPLS label stack constructed by the SFF to forward a packet to the next SFF on the
SFP will consist of the labels needed to reach that SFF, and if label stacking is used, it will also
include the labels advertised in the MPLS Label Stack Sub-TLV and the labels remaining in the stack
needed to traverse the remainder of the SFP.<a href="#section-7.7-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="example">
<section id="section-8">
<h2 id="name-examples">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-examples" class="section-name selfRef">Examples</a>
</h2>
<p id="section-8-1">Most of the examples in this section use IPv4 addressing. But there is nothing special about
IPv4 in the mechanisms described in this document, and they are equally applicable to IPv6. A
few examples using IPv6 addressing are provided in <a href="#v6samples" class="xref">Section 8.10</a>.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">Assume we have a service function overlay network with four SFFs (SFF1, SFF2, SFF3, and SFF4).
The SFFs have addresses in the underlay network as follows:<a href="#section-8-2" class="pilcrow">¶</a></p>
<div id="section-8-3">
<pre class="sourcecode">
SFF1 192.0.2.1
SFF2 192.0.2.2
SFF3 192.0.2.3
SFF4 192.0.2.4
</pre><a href="#section-8-3" class="pilcrow">¶</a>
</div>
<p id="section-8-4">Each SFF provides access to some SFIs from the four SFTs, SFT=41, SFT=42,
SFT=43, and SFT=44, as follows:<a href="#section-8-4" class="pilcrow">¶</a></p>
<div id="section-8-5">
<pre class="sourcecode">
SFF1 SFT=41 and SFT=42
SFF2 SFT=41 and SFT=43
SFF3 SFT=42 and SFT=44
SFF4 SFT=43 and SFT=44
</pre><a href="#section-8-5" class="pilcrow">¶</a>
</div>
<p id="section-8-6">The service function network also contains a controller with address 198.51.100.1.<a href="#section-8-6" class="pilcrow">¶</a></p>
<p id="section-8-7">This example service function overlay network is shown in <a href="#examplefig" class="xref">Figure 11</a>.<a href="#section-8-7" class="pilcrow">¶</a></p>
<span id="name-example-service-function-ov"></span><div id="examplefig">
<figure id="figure-11">
<div class="artwork art-text alignLeft" id="section-8-8.1">
<pre>
--------------
| Controller |
| 198.51.100.1 | ------ ------ ------ ------
-------------- | SFI | | SFI | | SFI | | SFI |
|SFT=41| |SFT=42| |SFT=41| |SFT=43|
------ ------ ------ ------
\ / \ /
--------- ---------
---------- | SFF1 | | SFF2 |
Packet --> | | |192.0.2.1| |192.0.2.2|
Flows --> |Classifier| --------- --------- -->Dest
| | -->
---------- --------- ---------
| SFF3 | | SFF4 |
|192.0.2.3| |192.0.2.4|
--------- ---------
/ \ / \
------ ------ ------ ------
| SFI | | SFI | | SFI | | SFI |
|SFT=42| |SFT=44| |SFT=43| |SFT=44|
------ ------ ------ ------
</pre>
</div>
<figcaption><a href="#figure-11" class="selfRef">Figure 11</a>:
<a href="#name-example-service-function-ov" class="selfRef">Example Service Function Overlay Network</a>
</figcaption></figure>
</div>
<p id="section-8-9">The SFFs advertise routes to the SFIs they support. These advertisements
contain RDs that are set according to the network operator's
configuration model. In all of these IPv4 examples, we use RDs of Type 1 such that the
available six octets are partitioned as four octets for the IPv4 address of the advertising
SFF, and two octets that are a local index of the SFI. This scheme is chosen purely for
convenience of documentation, and an operator is totally free to use any other scheme so
long as it conforms to the definitions of SFIR and SFPR in Sections
<a href="#sfiRoutes" class="xref">3.1</a> and
<a href="#sfpRoutes" class="xref">3.2</a>.<a href="#section-8-9" class="pilcrow">¶</a></p>
<p id="section-8-10">Thus, we see the following SFIRs advertised:<a href="#section-8-10" class="pilcrow">¶</a></p>
<div id="section-8-11">
<pre class="sourcecode">
RD = 192.0.2.1/1, SFT = 41
RD = 192.0.2.1/2, SFT = 42
RD = 192.0.2.2/1, SFT = 41
RD = 192.0.2.2/2, SFT = 43
RD = 192.0.2.3/7, SFT = 42
RD = 192.0.2.3/8, SFT = 44
RD = 192.0.2.4/5, SFT = 43
RD = 192.0.2.4/6, SFT = 44
</pre><a href="#section-8-11" class="pilcrow">¶</a>
</div>
<p id="section-8-12">Note that the addressing used for communicating between SFFs is taken
from the tunnel encapsulation attribute of the SFIR and not from the SFIR-RD.<a href="#section-8-12" class="pilcrow">¶</a></p>
<div id="exampleexplicit">
<section id="section-8.1">
<h3 id="name-example-explicit-sfp-with-n">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-example-explicit-sfp-with-n" class="section-name selfRef">Example Explicit SFP with No Choices</a>
</h3>
<p id="section-8.1-1">Consider the following SFPR.<a href="#section-8.1-1" class="pilcrow">¶</a></p>
<div id="section-8.1-2">
<pre class="sourcecode">
SFP1: RD = 198.51.100.1/101, SPI = 15,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, SFT = 43, RD = 192.0.2.2/2]
</pre><a href="#section-8.1-2" class="pilcrow">¶</a>
</div>
<p id="section-8.1-3">The SFP consists of an SF of Type 41 located at SFF1, followed by an SF
of Type 43 located at SFF2. This path is fully explicit, and each SFF is
offered no choice in forwarding packets along the path.<a href="#section-8.1-3" class="pilcrow">¶</a></p>
<p id="section-8.1-4">SFF1 will receive packets on the path from the classifier and will identify the path
from the SPI (15). The initial SI will be 255, and so SFF1 will deliver the packets to the
SFI for SFT 41.<a href="#section-8.1-4" class="pilcrow">¶</a></p>
<p id="section-8.1-5">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for the next hop.
SFF1 has no flexibility in the choice of SFF to support the next-hop SFI and will forward
the packet to SFF2, which will send the packets to the SFI that supports SFT 43 before
forwarding the packets to their destinations.<a href="#section-8.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="examplechoice">
<section id="section-8.2">
<h3 id="name-example-sfp-with-choice-of-">
<a href="#section-8.2" class="section-number selfRef">8.2. </a><a href="#name-example-sfp-with-choice-of-" class="section-name selfRef">Example SFP with Choice of SFIs</a>
</h3>
<div id="section-8.2-1">
<pre class="sourcecode">
SFP2: RD = 198.51.100.1/102, SPI = 16,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, SFT = 43, {RD = 192.0.2.2/2,
RD = 192.0.2.4/5 } ]
</pre><a href="#section-8.2-1" class="pilcrow">¶</a>
</div>
<p id="section-8.2-2">In this example, the path also consists of an SF of Type 41 located at SFF1, and this is
followed by an SF of Type 43. However, in this case, the SI = 250 contains a choice between the
SFI located at SFF2 and the SFI located at SFF4.<a href="#section-8.2-2" class="pilcrow">¶</a></p>
<p id="section-8.2-3">SFF1 will receive packets on the path from the classifier and will identify the path
from the SPI (16). The initial SI will be 255, and so SFF1 will deliver the packets to the
SFI for SFT 41.<a href="#section-8.2-3" class="pilcrow">¶</a></p>
<p id="section-8.2-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
the next hop. SFF1 now has a choice of next-hop SFFs to execute the next hop in the path.
It can either forward packets to SFF2 or SFF4 to execute a function of Type 43. It uses
its local load-balancing algorithm to make this choice. The chosen SFF will send the
packets to the SFI that supports SFT 43 before forwarding the packets to their
destinations.<a href="#section-8.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="exampleopen">
<section id="section-8.3">
<h3 id="name-example-sfp-with-open-choic">
<a href="#section-8.3" class="section-number selfRef">8.3. </a><a href="#name-example-sfp-with-open-choic" class="section-name selfRef">Example SFP with Open Choice of SFIs</a>
</h3>
<div id="section-8.3-1">
<pre class="sourcecode">
SFP3: RD = 198.51.100.1/103, SPI = 17,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, SFT = 44, RD = 0]
</pre><a href="#section-8.3-1" class="pilcrow">¶</a>
</div>
<p id="section-8.3-2">In this example, the path also consists of an SF of Type 41 located at SFF1, and this is
followed by an SI with an RD of zero and SF of Type 44. This means that a choice can be
made between any SFF that supports an SFI of Type 44.<a href="#section-8.3-2" class="pilcrow">¶</a></p>
<p id="section-8.3-3">SFF1 will receive packets on the path from the classifier and will identify the path
from the SPI (17). The initial SI will be 255, and so SFF1 will deliver the packets to the
SFI for SFT 41.<a href="#section-8.3-3" class="pilcrow">¶</a></p>
<p id="section-8.3-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
the next hop. SFF1 now has a free choice of next-hop SFFs to execute the next hop in the
path, selecting between all SFFs that support SFs of Type 44. Looking at the SFIRs it
has received, SFF1 knows that SF Type 44 is supported by SFF3 and SFF4. SFF1 uses its
local load-balancing algorithm to make this choice. The chosen SFF will send the packets
to the SFI that supports SFT 44 before forwarding the packets to their destinations.<a href="#section-8.3-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="examplesft">
<section id="section-8.4">
<h3 id="name-example-sfp-with-choice-of-s">
<a href="#section-8.4" class="section-number selfRef">8.4. </a><a href="#name-example-sfp-with-choice-of-s" class="section-name selfRef">Example SFP with Choice of SFTs</a>
</h3>
<div id="section-8.4-1">
<pre class="sourcecode">
SFP4: RD = 198.51.100.1/104, SPI = 18,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, {SFT = 43, RD = 192.0.2.2/2,
SFT = 44, RD = 192.0.2.3/8 } ]
</pre><a href="#section-8.4-1" class="pilcrow">¶</a>
</div>
<p id="section-8.4-2">This example provides a choice of SF type in the second hop in the path. The SI of 250
indicates a choice between SF Type 43 located at SF2 and SF Type 44 located at SF3.<a href="#section-8.4-2" class="pilcrow">¶</a></p>
<p id="section-8.4-3">SFF1 will receive packets on the path from the classifier and will identify the path
from the SPI (18). The initial SI will be 255, and so SFF1 will deliver the packets to the
SFI for SFT 41.<a href="#section-8.4-3" class="pilcrow">¶</a></p>
<p id="section-8.4-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
the next hop. SFF1 now has a free choice of next-hop SFFs to execute the next hop in the
path, selecting between all SFFs that support an SF of Type 43 and
SFF3, which supports an
SF of Type 44. These may be completely different functions that are to be executed dependent
on specific conditions, or they may be similar functions identified with different type
identifiers (such as firewalls from different vendors). SFF1 uses
its local policy and load-balancing algorithm to make this choice
and may use additional information passed back from
the local SFI to help inform its selection. The chosen SFF will send the packets to the SFI
that supports the chosen SFT before forwarding the packets to their destinations.<a href="#section-8.4-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="exampleco">
<section id="section-8.5">
<h3 id="name-example-correlated-bidirect">
<a href="#section-8.5" class="section-number selfRef">8.5. </a><a href="#name-example-correlated-bidirect" class="section-name selfRef">Example Correlated Bidirectional SFPs</a>
</h3>
<div id="section-8.5-1">
<pre class="sourcecode">
SFP5: RD = 198.51.100.1/105, SPI = 19,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/106, Assoc-SPI = 20,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, SFT = 43, RD = 192.0.2.2/2]
SFP6: RD = 198.51.100.1/106, SPI = 20,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/105, Assoc-SPI = 19,
[SI = 254, SFT = 43, RD = 192.0.2.2/2],
[SI = 249, SFT = 41, RD = 192.0.2.1/1]
</pre><a href="#section-8.5-1" class="pilcrow">¶</a>
</div>
<p id="section-8.5-2">This example demonstrates correlation of two SFPs to form a bidirectional SFP, as
described in <a href="#correlation" class="xref">Section 7.1</a>.<a href="#section-8.5-2" class="pilcrow">¶</a></p>
<p id="section-8.5-3">Two SFPRs are advertised by the controller. They have different SPIs (19 and 20),
so they are known to be separate SFPs, but they both have Association TLVs with Association Type
set to 1, indicating bidirectional SFPs. Each has an "Associated SFPR-RD" field containing the value
of the other SFPR-RD to correlate the two SFPs as a bidirectional pair.<a href="#section-8.5-3" class="pilcrow">¶</a></p>
<p id="section-8.5-4">As can be seen from the SFPRs in this example, the paths are symmetric: the hops in
SFP5 appear in the reverse order in SFP6.<a href="#section-8.5-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="exampleass">
<section id="section-8.6">
<h3 id="name-example-correlated-asymmetr">
<a href="#section-8.6" class="section-number selfRef">8.6. </a><a href="#name-example-correlated-asymmetr" class="section-name selfRef">Example Correlated Asymmetrical Bidirectional SFPs</a>
</h3>
<div id="section-8.6-1">
<pre class="sourcecode">
SFP7: RD = 198.51.100.1/107, SPI = 21,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/108, Assoc-SPI = 22,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, SFT = 43, RD = 192.0.2.2/2]
SFP8: RD = 198.51.100.1/108, SPI = 22,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/107, Assoc-SPI = 21,
[SI = 254, SFT = 44, RD = 192.0.2.4/6],
[SI = 249, SFT = 41, RD = 192.0.2.1/1]
</pre><a href="#section-8.6-1" class="pilcrow">¶</a>
</div>
<p id="section-8.6-2">Asymmetric bidirectional SFPs can also be created. This example shows a pair of SFPs
with distinct SPIs (21 and 22) that are correlated in the same way as in the example in
<a href="#exampleco" class="xref">Section 8.5</a>.<a href="#section-8.6-2" class="pilcrow">¶</a></p>
<p id="section-8.6-3">However, unlike in that example, the SFPs are different in each direction. Both paths
include a hop of SF Type 41, but SFP7 includes a hop of SF Type 43 supported at SFF2, while
SFP8 includes a hop of SF Type 44 supported at SFF4.<a href="#section-8.6-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="exampleloop">
<section id="section-8.7">
<h3 id="name-example-looping-in-an-sfp">
<a href="#section-8.7" class="section-number selfRef">8.7. </a><a href="#name-example-looping-in-an-sfp" class="section-name selfRef">Example Looping in an SFP</a>
</h3>
<div id="section-8.7-1">
<pre class="sourcecode">
SFP9: RD = 198.51.100.1/109, SPI = 23,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, SFT = 44, RD = 192.0.2.4/5],
[SI = 245, {SFT = 1, RD = {SPI=23, SI=255, Rsv=0},
SFT = 42, RD = 192.0.2.3/7 } ]
</pre><a href="#section-8.7-1" class="pilcrow">¶</a>
</div>
<p id="section-8.7-2">Looping and jumping are described in <a href="#looping" class="xref">Section 6</a>. This example shows
an SFP that contains an explicit loop-back instruction that is presented as a choice
within an SFP hop.<a href="#section-8.7-2" class="pilcrow">¶</a></p>
<p id="section-8.7-3">The first two hops in the path (SI = 255 and SI = 250) are normal. That is, the packets
will be delivered to SFF1 and SFF4 in turn for execution of SFs of Type 41 and 44,
respectively.<a href="#section-8.7-3" class="pilcrow">¶</a></p>
<p id="section-8.7-4">The third hop (SI = 245) presents SFF4 with a choice of next hop. It can either forward
the packets to SFF3 for an SF of Type 42 (the second choice) or it can loop back.<a href="#section-8.7-4" class="pilcrow">¶</a></p>
<p id="section-8.7-5">The loop-back entry in the SFPR for SI = 245 is indicated by the special-purpose SFT value
1 ("Change Sequence"). Within this hop, the RD is interpreted as encoding the SPI and SI
of the next hop (see <a href="#changeseq" class="xref">Section 6.1</a>).
In this case, the SPI is 23, which
indicates that this is a loop or branch, i.e., the next hop is on the same SFP. The SI is
set to 255; this is a higher number than the current SI (245), indicating a loop.<a href="#section-8.7-5" class="pilcrow">¶</a></p>
<p id="section-8.7-6">SFF4 must make a choice between these two next hops. The packet
will be either forwarded to SFF3 with the NSH SI decreased
to 245 or looped back to SFF1 with the NSH SI reset to 255.
This choice will be made according to local policy, information passed back by the local SFI,
and details in the packets' metadata that are used to prevent infinite looping.<a href="#section-8.7-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="examplebranch">
<section id="section-8.8">
<h3 id="name-example-branching-in-an-sfp">
<a href="#section-8.8" class="section-number selfRef">8.8. </a><a href="#name-example-branching-in-an-sfp" class="section-name selfRef">Example Branching in an SFP</a>
</h3>
<div id="section-8.8-1">
<pre class="sourcecode">
SFP10: RD = 198.51.100.1/110, SPI = 24,
[SI = 254, SFT = 42, RD = 192.0.2.3/7],
[SI = 249, SFT = 43, RD = 192.0.2.2/2]
SFP11: RD = 198.51.100.1/111, SPI = 25,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, SFT = 1, RD = {SPI=24, SI=254, Rsv=0}]
</pre><a href="#section-8.8-1" class="pilcrow">¶</a>
</div>
<p id="section-8.8-2">Branching follows a similar procedure to that for looping (and jumping), as shown in
<a href="#exampleloop" class="xref">Section 8.7</a>. However, there are two SFPs involved.<a href="#section-8.8-2" class="pilcrow">¶</a></p>
<p id="section-8.8-3">SFP10 shows a normal path with packets forwarded to SFF3 and SFF2 for execution of
service functions of Type 42 and 43, respectively.<a href="#section-8.8-3" class="pilcrow">¶</a></p>
<p id="section-8.8-4">SFP11 starts as normal (SFF1 for an SF of Type 41), but then SFF1 processes the
next hop in the path and finds a "Change Sequence" special-purpose SFT. The "SFIR-RD"
field includes an SPI of 24, which indicates SFP10, not the current SFP. The SI in the
SFIR-RD is 254, so SFF1 knows that it must set the SPI/SI in the NSH to 24/254 and
send the packets to the appropriate SFF, as advertised in the SFPR for SFP10 (that is,
SFF3).<a href="#section-8.8-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="examplestate">
<section id="section-8.9">
<h3 id="name-examples-of-sfps-with-state">
<a href="#section-8.9" class="section-number selfRef">8.9. </a><a href="#name-examples-of-sfps-with-state" class="section-name selfRef">Examples of SFPs with Stateful Service Functions</a>
</h3>
<p id="section-8.9-1">This section provides some examples to demonstrate establishing SFPs when there is a choice
of service functions at a particular hop, and where consistency of choice is required in
both directions. The scenarios that give rise to this requirement are discussed in
<a href="#stateful" class="xref">Section 7.2</a>.<a href="#section-8.9-1" class="pilcrow">¶</a></p>
<div id="stateegsff">
<section id="section-8.9.1">
<h4 id="name-forward-and-reverse-choice-">
<a href="#section-8.9.1" class="section-number selfRef">8.9.1. </a><a href="#name-forward-and-reverse-choice-" class="section-name selfRef">Forward and Reverse Choice Made at the SFF</a>
</h4>
<p id="section-8.9.1-1">Consider the topology shown in <a href="#egsfffig" class="xref">Figure 12</a>. There are three SFFs
arranged neatly in a line, and the middle one (SFF2) supports three SFIs all of
SFT 42. These three instances can be used by SFF2 to load balance so that no
one instance is swamped.<a href="#section-8.9.1-1" class="pilcrow">¶</a></p>
<span id="name-example-where-choice-is-mad"></span><div id="egsfffig">
<figure id="figure-12">
<div class="artwork art-text alignLeft" id="section-8.9.1-2.1">
<pre>
------ ------ ------ ------ ------
| SFI | | SFIa | | SFIb | | SFIc | | SFI |
|SFT=41| |SFT=42| |SFT=42| |SFT=42| |SFT=43|
------ ------\ ------ /------ ------
\ \ | / /
--------- --------- ---------
---------- | SFF1 | | SFF2 | | SFF3 |
--> | |..|192.0.2.1|...|192.0.2.2|...|192.0.2.3|-->
--> |Classifier| --------- --------- ---------
| |
----------
</pre>
</div>
<figcaption><a href="#figure-12" class="selfRef">Figure 12</a>:
<a href="#name-example-where-choice-is-mad" class="selfRef">Example Where Choice Is Made at the SFF</a>
</figcaption></figure>
</div>
<p id="section-8.9.1-3">This leads to the following SFIRs being advertised.<a href="#section-8.9.1-3" class="pilcrow">¶</a></p>
<div id="section-8.9.1-4">
<pre class="sourcecode">
RD = 192.0.2.1/11, SFT = 41
RD = 192.0.2.2/11, SFT = 42 (for SFIa)
RD = 192.0.2.2/12, SFT = 42 (for SFIb)
RD = 192.0.2.2/13, SFT = 42 (for SFIc)
RD = 192.0.2.3/11, SFT = 43
</pre><a href="#section-8.9.1-4" class="pilcrow">¶</a>
</div>
<p id="section-8.9.1-5">The controller can create a single forward SFP (SFP12), giving SFF2 the choice
of which SFI to use to provide a function of SFT 42, as follows. The
load-balancing choice between the three available SFIs is assumed to be
within the capabilities of the SFF, and if the SFs are stateful, it is
assumed that the SFF knows this and arranges load balancing in a stable,
flow-dependent way.<a href="#section-8.9.1-5" class="pilcrow">¶</a></p>
<div id="section-8.9.1-6">
<pre class="sourcecode">
SFP12: RD = 198.51.100.1/112, SPI = 26,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/113, Assoc-SPI = 27,
[SI = 255, SFT = 41, RD = 192.0.2.1/11],
[SI = 254, SFT = 42, {RD = 192.0.2.2/11,
192.0.2.2/12,
192.0.2.2/13 }],
[SI = 253, SFT = 43, RD = 192.0.2.3/11]
</pre><a href="#section-8.9.1-6" class="pilcrow">¶</a>
</div>
<p id="section-8.9.1-7">The reverse SFP (SFP13) in this case may also be created as shown below, using
association with the forward SFP and giving the load-balancing choice to
SFF2. This is safe, even in the case that the SFs of Type 42 are stateful,
because SFF2 is doing the load balancing in both directions and can apply
the same algorithm to ensure that packets associated with the same flow use
the same SFI regardless of the direction of travel.<a href="#section-8.9.1-7" class="pilcrow">¶</a></p>
<div id="section-8.9.1-8">
<pre class="sourcecode">
SFP13: RD = 198.51.100.1/113, SPI = 27,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/112, Assoc-SPI = 26,
[SI = 255, SFT = 43, RD = 192.0.2.3/11],
[SI = 254, SFT = 42, {RD = 192.0.2.2/11,
192.0.2.2/12,
192.0.2.2/13 }],
[SI = 253, SFT = 41, RD = 192.0.2.1/11]
</pre><a href="#section-8.9.1-8" class="pilcrow">¶</a>
</div>
<p id="section-8.9.1-9">How an SFF knows that an attached SFI is stateful is out of the scope of this
document. It is assumed that this will form part of the process by which
SFIs are registered as local to SFFs. <a href="#stateful" class="xref">Section 7.2</a> provides
additional observations about the coordination of the use of stateful SFIs
in the case of bidirectional SFPs.<a href="#section-8.9.1-9" class="pilcrow">¶</a></p>
<p id="section-8.9.1-10">In general, the problems of load balancing and the selection of the same SFIs
in both directions of a bidirectional SFP can be addressed by using sufficiently
precisely specified SFPs (specifying the exact SFIs to use) and suitable
programming of the classifiers at each end of the SFPs to make sure that the
matching pair of SFPs are used.<a href="#section-8.9.1-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="stateeg1pll">
<section id="section-8.9.2">
<h4 id="name-parallel-end-to-end-sfps-wi">
<a href="#section-8.9.2" class="section-number selfRef">8.9.2. </a><a href="#name-parallel-end-to-end-sfps-wi" class="section-name selfRef">Parallel End-to-End SFPs with Shared SFF</a>
</h4>
<p id="section-8.9.2-1">The mechanism described in <a href="#stateegsff" class="xref">Section 8.9.1</a> might not be desirable because of
the functional assumptions it places on SFF2 to be able to load balance with suitable flow
identification, stability, and equality in both directions. Instead, it may be desirable
to place the responsibility for flow classification in the classifier and let it determine
load balancing with the implied choice of SFIs.<a href="#section-8.9.2-1" class="pilcrow">¶</a></p>
<p id="section-8.9.2-2">Consider the network graph as shown in <a href="#egsfffig" class="xref">Figure 12</a> and with the same set of
SFIRs as listed in <a href="#stateegsff" class="xref">Section 8.9.1</a>.
In this case, the controller could specify
three forward SFPs with their corresponding associated reverse SFPs. Each bidirectional
pair of SFPs uses a different SFI for the SF of Type 42. The controller can instruct the
classifier how to place traffic on the three bidirectional SFPs,
or it can treat them as a group,
leaving the classifier responsible for balancing the load.<a href="#section-8.9.2-2" class="pilcrow">¶</a></p>
<div id="section-8.9.2-3">
<pre class="sourcecode">
SFP14: RD = 198.51.100.1/114, SPI = 28,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/117, Assoc-SPI = 31,
[SI = 255, SFT = 41, RD = 192.0.2.1/11],
[SI = 254, SFT = 42, RD = 192.0.2.2/11],
[SI = 253, SFT = 43, RD = 192.0.2.3/11]
SFP15: RD = 198.51.100.1/115, SPI = 29,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/118, Assoc-SPI = 32,
[SI = 255, SFT = 41, RD = 192.0.2.1/11],
[SI = 254, SFT = 42, RD = 192.0.2.2/12],
[SI = 253, SFT = 43, RD = 192.0.2.3/11]
SFP16: RD = 198.51.100.1/116, SPI = 30,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/119, Assoc-SPI = 33,
[SI = 255, SFT = 41, RD = 192.0.2.1/11],
[SI = 254, SFT = 42, RD = 192.0.2.2/13],
[SI = 253, SFT = 43, RD = 192.0.2.3/11]
SFP17: RD = 198.51.100.1/117, SPI = 31,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/114, Assoc-SPI = 28,
[SI = 255, SFT = 43, RD = 192.0.2.3/11],
[SI = 254, SFT = 42, RD = 192.0.2.2/11],
[SI = 253, SFT = 41, RD = 192.0.2.1/11]
SFP18: RD = 198.51.100.1/118, SPI = 32,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/115, Assoc-SPI = 29,
[SI = 255, SFT = 43, RD = 192.0.2.3/11],
[SI = 254, SFT = 42, RD = 192.0.2.2/12],
[SI = 253, SFT = 41, RD = 192.0.2.1/11]
SFP19: RD = 198.51.100.1/119, SPI = 33,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/116, Assoc-SPI = 30,
[SI = 255, SFT = 43, RD = 192.0.2.3/11],
[SI = 254, SFT = 42, RD = 192.0.2.2/13],
[SI = 253, SFT = 41, RD = 192.0.2.1/11]
</pre><a href="#section-8.9.2-3" class="pilcrow">¶</a>
</div>
</section>
</div>
<div id="stateeg2pll">
<section id="section-8.9.3">
<h4 id="name-parallel-end-to-end-sfps-wit">
<a href="#section-8.9.3" class="section-number selfRef">8.9.3. </a><a href="#name-parallel-end-to-end-sfps-wit" class="section-name selfRef">Parallel End-to-End SFPs with Separate SFFs</a>
</h4>
<p id="section-8.9.3-1">While the examples in Sections <a href="#stateegsff" class="xref">8.9.1</a> and <a href="#stateeg1pll" class="xref">8.9.2</a>
place the choice of SFI as subtended from the same SFF, it is also possible that the
SFIs are each subtended from a different SFF, as shown in <a href="#eg2pllfig" class="xref">Figure 13</a>.
In this case, it is harder to coordinate the choices for forward and reverse paths
without some form of coordination between SFF1 and SFF3. Therefore, it would be
normal to consider end-to-end parallel SFPs, as described in <a href="#stateeg1pll" class="xref">Section 8.9.2</a>.<a href="#section-8.9.3-1" class="pilcrow">¶</a></p>
<span id="name-second-example-with-paralle"></span><div id="eg2pllfig">
<figure id="figure-13">
<div class="artwork art-text alignLeft" id="section-8.9.3-2.1">
<pre>
------
| SFIa |
|SFT=42|
------
------ |
| SFI | ---------
|SFT=41| | SFF5 |
------ ..|192.0.2.5|..
| ..: --------- :..
---------.: :.---------
---------- | SFF1 | --------- | SFF3 |
--> | |..|192.0.2.1|....| SFF6 |....|192.0.2.3| -->
--> |Classifier| ---------: |192.0.2.6| :---------
| | : --------- : |
---------- : | : ------
: ------ : | SFI |
:.. | SFIb | ..: |SFT=43|
:.. |SFT=42| ..: ------
: ------ :
:.---------.:
| SFF7 |
|192.0.2.7|
---------
|
------
| SFIc |
|SFT=42|
------
</pre>
</div>
<figcaption><a href="#figure-13" class="selfRef">Figure 13</a>:
<a href="#name-second-example-with-paralle" class="selfRef">Second Example with Parallel End-to-End SFPs</a>
</figcaption></figure>
</div>
<p id="section-8.9.3-3">In this case, five SFIRs are advertised as follows:<a href="#section-8.9.3-3" class="pilcrow">¶</a></p>
<div id="section-8.9.3-4">
<pre class="sourcecode">
RD = 192.0.2.1/11, SFT = 41
RD = 192.0.2.5/11, SFT = 42 (for SFIa)
RD = 192.0.2.6/11, SFT = 42 (for SFIb)
RD = 192.0.2.7/11, SFT = 42 (for SFIc)
RD = 192.0.2.3/11, SFT = 43
</pre><a href="#section-8.9.3-4" class="pilcrow">¶</a>
</div>
<p id="section-8.9.3-5">In this case, the controller could specify three forward SFPs with their corresponding
associated reverse SFPs. Each bidirectional pair of SFPs uses a different SFF and SFI
for the middle hop (for an SF of Type 42). The controller can instruct the classifier how
to place traffic on the three bidirectional SFPs, or it can treat them as a group, leaving
the classifier responsible for balancing the load.<a href="#section-8.9.3-5" class="pilcrow">¶</a></p>
<div id="section-8.9.3-6">
<pre class="sourcecode">
SFP20: RD = 198.51.100.1/120, SPI = 34,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/123, Assoc-SPI = 37,
[SI = 255, SFT = 41, RD = 192.0.2.1/11],
[SI = 254, SFT = 42, RD = 192.0.2.5/11],
[SI = 253, SFT = 43, RD = 192.0.2.3/11]
SFP21: RD = 198.51.100.1/121, SPI = 35,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/124, Assoc-SPI = 38,
[SI = 255, SFT = 41, RD = 192.0.2.1/11],
[SI = 254, SFT = 42, RD = 192.0.2.6/11],
[SI = 253, SFT = 43, RD = 192.0.2.3/11]
SFP22: RD = 198.51.100.1/122, SPI = 36,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/125, Assoc-SPI = 39,
[SI = 255, SFT = 41, RD = 192.0.2.1/11],
[SI = 254, SFT = 42, RD = 192.0.2.7/11],
[SI = 253, SFT = 43, RD = 192.0.2.3/11]
SFP23: RD = 198.51.100.1/123, SPI = 37,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/120, Assoc-SPI = 34,
[SI = 255, SFT = 43, RD = 192.0.2.3/11],
[SI = 254, SFT = 42, RD = 192.0.2.5/11],
[SI = 253, SFT = 41, RD = 192.0.2.1/11]
SFP24: RD = 198.51.100.1/124, SPI = 38,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/121, Assoc-SPI = 35,
[SI = 255, SFT = 43, RD = 192.0.2.3/11],
[SI = 254, SFT = 42, RD = 192.0.2.6/11],
[SI = 253, SFT = 41, RD = 192.0.2.1/11]
SFP25: RD = 198.51.100.1/125, SPI = 39,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/122, Assoc-SPI = 36,
[SI = 255, SFT = 43, RD = 192.0.2.3/11],
[SI = 254, SFT = 42, RD = 192.0.2.7/11],
[SI = 253, SFT = 41, RD = 192.0.2.1/11]
</pre><a href="#section-8.9.3-6" class="pilcrow">¶</a>
</div>
</section>
</div>
<div id="stateegpllchc">
<section id="section-8.9.4">
<h4 id="name-parallel-sfps-downstream-of">
<a href="#section-8.9.4" class="section-number selfRef">8.9.4. </a><a href="#name-parallel-sfps-downstream-of" class="section-name selfRef">Parallel SFPs Downstream of the Choice</a>
</h4>
<p id="section-8.9.4-1">The mechanism of parallel SFPs demonstrated in <a href="#stateeg2pll" class="xref">Section 8.9.3</a>
is perfectly functional and may be practical in many environments. However,
there may be scaling concerns because of the large amount of state (knowledge
of SFPs -- i.e., SFPR advertisements retained) if there is a very large number
of possible SFIs (for example, tens of instances of the same stateful SF) or
if there are multiple choices of stateful SF along a path. This situation may
be mitigated using SFP fragments that are combined to form the end-to-end SFPs.<a href="#section-8.9.4-1" class="pilcrow">¶</a></p>
<p id="section-8.9.4-2">The example presented here is necessarily simplistic but should convey the
basic principle. The example presented in <a href="#eg2pllchcfig" class="xref">Figure 14</a> is
similar to that in <a href="#stateeg2pll" class="xref">Section 8.9.3</a> but with an additional first
hop.<a href="#section-8.9.4-2" class="pilcrow">¶</a></p>
<span id="name-example-with-parallel-sfps-"></span><div id="eg2pllchcfig">
<figure id="figure-14">
<div class="artwork art-text alignLeft" id="section-8.9.4-3.1">
<pre>
------
| SFIa |
|SFT=43|
------
------ ------ |
| SFI | | SFI | ---------
|SFT=41| |SFT=42| | SFF5 |
------ ------ ..|192.0.2.5|..
| | ..: --------- :..
--------- ---------.: :.---------
------ | SFF1 | | SFF2 | --------- | SFF3 |
-->|Class-|.|192.0.2.1|.|192.0.2.2|....| SFF6 |....|192.0.2.3|-->
-->| ifier| --------- ---------: |192.0.2.6| :---------
------ : --------- : |
: | : ------
: ------ : | SFI |
:.. | SFIb | ..: |SFT=44|
:.. |SFT=43| ..: ------
: ------ :
:.---------.:
| SFF7 |
|192.0.2.7|
---------
|
------
| SFIc |
|SFT=43|
------
</pre>
</div>
<figcaption><a href="#figure-14" class="selfRef">Figure 14</a>:
<a href="#name-example-with-parallel-sfps-" class="selfRef">Example with Parallel SFPs Downstream of Choice</a>
</figcaption></figure>
</div>
<p id="section-8.9.4-4">The six SFIs are advertised as follows:<a href="#section-8.9.4-4" class="pilcrow">¶</a></p>
<div id="section-8.9.4-5">
<pre class="sourcecode">
RD = 192.0.2.1/11, SFT = 41
RD = 192.0.2.2/11, SFT = 42
RD = 192.0.2.5/11, SFT = 43 (for SFIa)
RD = 192.0.2.6/11, SFT = 43 (for SFIb)
RD = 192.0.2.7/11, SFT = 43 (for SFIc)
RD = 192.0.2.3/11, SFT = 44
</pre><a href="#section-8.9.4-5" class="pilcrow">¶</a>
</div>
<p id="section-8.9.4-6">SFF2 is the point at which a load-balancing choice must be made. So "tail-end"
SFPs are constructed as follows. Each takes in a different SFF that provides
access to an SF of Type 43.<a href="#section-8.9.4-6" class="pilcrow">¶</a></p>
<div id="section-8.9.4-7">
<pre class="sourcecode">
SFP26: RD = 198.51.100.1/126, SPI = 40,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/130, Assoc-SPI = 44,
[SI = 255, SFT = 43, RD = 192.0.2.5/11],
[SI = 254, SFT = 44, RD = 192.0.2.3/11]
SFP27: RD = 198.51.100.1/127, SPI = 41,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/131, Assoc-SPI = 45,
[SI = 255, SFT = 43, RD = 192.0.2.6/11],
[SI = 254, SFT = 44, RD = 192.0.2.3/11]
SFP28: RD = 198.51.100.1/128, SPI = 42,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/132, Assoc-SPI = 46,
[SI = 255, SFT = 43, RD = 192.0.2.7/11],
[SI = 254, SFT = 44, RD = 192.0.2.3/11]
</pre><a href="#section-8.9.4-7" class="pilcrow">¶</a>
</div>
<p id="section-8.9.4-8">Now an end-to-end SFP with load-balancing choice can be constructed as follows.
The choice made by SFF2 is expressed in terms of entering one of the three
"tail-end" SFPs.<a href="#section-8.9.4-8" class="pilcrow">¶</a></p>
<div id="section-8.9.4-9">
<pre class="sourcecode">
SFP29: RD = 198.51.100.1/129, SPI = 43,
[SI = 255, SFT = 41, RD = 192.0.2.1/11],
[SI = 254, SFT = 42, RD = 192.0.2.2/11],
[SI = 253, {SFT = 1, RD = {SPI=40, SI=255, Rsv=0},
RD = {SPI=41, SI=255, Rsv=0},
RD = {SPI=42, SI=255, Rsv=0} } ]
</pre><a href="#section-8.9.4-9" class="pilcrow">¶</a>
</div>
<p id="section-8.9.4-10">Now, despite the load-balancing choice being made elsewhere than at the initial
classifier, it is possible for the reverse SFPs to be well constructed without
any ambiguity. The three reverse paths appear as follows.<a href="#section-8.9.4-10" class="pilcrow">¶</a></p>
<div id="section-8.9.4-11">
<pre class="sourcecode">
SFP30: RD = 198.51.100.1/130, SPI = 44,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/126, Assoc-SPI = 40,
[SI = 255, SFT = 44, RD = 192.0.2.4/11],
[SI = 254, SFT = 43, RD = 192.0.2.5/11],
[SI = 253, SFT = 42, RD = 192.0.2.2/11],
[SI = 252, SFT = 41, RD = 192.0.2.1/11]
SFP31: RD = 198.51.100.1/131, SPI = 45,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/127, Assoc-SPI = 41,
[SI = 255, SFT = 44, RD = 192.0.2.4/11],
[SI = 254, SFT = 43, RD = 192.0.2.6/11],
[SI = 253, SFT = 42, RD = 192.0.2.2/11],
[SI = 252, SFT = 41, RD = 192.0.2.1/11]
SFP32: RD = 198.51.100.1/132, SPI = 46,
Assoc-Type = 1, Assoc-RD = 198.51.100.1/128, Assoc-SPI = 42,
[SI = 255, SFT = 44, RD = 192.0.2.4/11],
[SI = 254, SFT = 43, RD = 192.0.2.7/11],
[SI = 253, SFT = 42, RD = 192.0.2.2/11],
[SI = 252, SFT = 41, RD = 192.0.2.1/11]
</pre><a href="#section-8.9.4-11" class="pilcrow">¶</a>
</div>
</section>
</div>
</section>
</div>
<div id="v6samples">
<section id="section-8.10">
<h3 id="name-examples-using-ipv6-address">
<a href="#section-8.10" class="section-number selfRef">8.10. </a><a href="#name-examples-using-ipv6-address" class="section-name selfRef">Examples Using IPv6 Addressing</a>
</h3>
<p id="section-8.10-1">This section provides several examples using IPv6 addressing. As
will be seen from the examples, there is nothing special or clever
about using IPv6 addressing rather than IPv4 addressing.<a href="#section-8.10-1" class="pilcrow">¶</a></p>
<p id="section-8.10-2">The reference network for these IPv6 examples is based on that described
at the top of <a href="#example" class="xref">Section 8</a> and shown in <a href="#examplefig" class="xref">Figure 11</a>.<a href="#section-8.10-2" class="pilcrow">¶</a></p>
<p id="section-8.10-3">Assume we have a service function overlay network with four SFFs (SFF1, SFF3, SFF3, and SFF4).
The SFFs have addresses in the underlay network as follows:<a href="#section-8.10-3" class="pilcrow">¶</a></p>
<div id="section-8.10-4">
<pre class="sourcecode">
SFF1 2001:db8::192:0:2:1
SFF2 2001:db8::192:0:2:2
SFF3 2001:db8::192:0:2:3
SFF4 2001:db8::192:0:2:4
</pre><a href="#section-8.10-4" class="pilcrow">¶</a>
</div>
<p id="section-8.10-5">Each SFF provides access to some SFIs from the four service function types SFT=41, SFT=42,
SFT=43, and SFT=44, just as before:<a href="#section-8.10-5" class="pilcrow">¶</a></p>
<div id="section-8.10-6">
<pre class="sourcecode">
SFF1 SFT=41 and SFT=42
SFF2 SFT=41 and SFT=43
SFF3 SFT=42 and SFT=44
SFF4 SFT=43 and SFT=44
</pre><a href="#section-8.10-6" class="pilcrow">¶</a>
</div>
<p id="section-8.10-7">The service function network also contains a controller with address 2001:db8::198:51:100:1.<a href="#section-8.10-7" class="pilcrow">¶</a></p>
<p id="section-8.10-8">This example service function overlay network is shown in <a href="#eg6fig" class="xref">Figure 15</a>.<a href="#section-8.10-8" class="pilcrow">¶</a></p>
<span id="name-example-service-function-ove"></span><div id="eg6fig">
<figure id="figure-15">
<div class="artwork art-text alignLeft" id="section-8.10-9.1">
<pre>
------------------------
| Controller |
| 2001:db8::198:51:100:1 |
------------------------
------ ------ ------ ------
| SFI | | SFI | | SFI | | SFI |
|SFT=41| |SFT=42| |SFT=41| |SFT=43|
------ ------ ------ ------
\ / \ /
------------------- -------------------
| SFF1 | | SFF2 |
|2001:db8::192:0:2:1| |2001:db8::192:0:2:2|
------------------- -------------------
----------
Packet --> | | -->
Flows --> |Classifier| -->Dest
| | -->
----------
------------------- -------------------
| SFF3 | | SFF4 |
|2001:db8::192:0:2:3| |2001:db8::192:0:2:4|
------------------- -------------------
/ \ / \
------ ------ ------ ------
| SFI | | SFI | | SFI | | SFI |
|SFT=42| |SFT=44| |SFT=43| |SFT=44|
------ ------ ------ ------
</pre>
</div>
<figcaption><a href="#figure-15" class="selfRef">Figure 15</a>:
<a href="#name-example-service-function-ove" class="selfRef">Example Service Function Overlay Network</a>
</figcaption></figure>
</div>
<p id="section-8.10-10">The SFFs advertise routes to the SFIs they support. These advertisements
contain RDs that are set according to the network operator's
configuration model. Note that in an IPv6 network, the RD is not large enough to
contain the full IPv6 address, as only six octets are available. So, in all of these IPv6
examples, we use RDs of Type 1 such that the available six octets are partitioned as four
octets for an IPv4 address of the advertising SFF, and two octets that are a local index
of the SFI. Furthermore, we have chosen an IPv6 addressing scheme so that the low-order
four octets of the IPv6 address match an IPv4 address of the advertising node. This scheme
is chosen purely for convenience of documentation, and an operator is totally free to use
any other scheme so long as it conforms to the definitions of SFIR and
SFPR in Sections
<a href="#sfiRoutes" class="xref">3.1</a> and <a href="#sfpRoutes" class="xref">3.2</a>.<a href="#section-8.10-10" class="pilcrow">¶</a></p>
<p id="section-8.10-11">Observant readers will notice that this makes the BGP advertisements shown in these examples
exactly the same as in the previous examples. All that is different is that the advertising
SFFs and controller have IPv6 addresses.<a href="#section-8.10-11" class="pilcrow">¶</a></p>
<p id="section-8.10-12">Thus, we see the following SFIRs advertised.<a href="#section-8.10-12" class="pilcrow">¶</a></p>
<p id="section-8.10-13">The SFFs advertise routes to the SFIs they support. So we see the following
SFIRs:<a href="#section-8.10-13" class="pilcrow">¶</a></p>
<div id="section-8.10-14">
<pre class="sourcecode">
RD = 192.0.2.1/1, SFT = 41
RD = 192.0.2.1/2, SFT = 42
RD = 192.0.2.2/1, SFT = 41
RD = 192.0.2.2/2, SFT = 43
RD = 192.0.2.3/7, SFT = 42
RD = 192.0.2.3/8, SFT = 44
RD = 192.0.2.4/5, SFT = 43
RD = 192.0.2.4/6, SFT = 44
</pre><a href="#section-8.10-14" class="pilcrow">¶</a>
</div>
<p id="section-8.10-15">Note that the addressing used for communicating between SFFs is taken
from the tunnel encapsulation attribute of the SFIR and not from the SFIR-RD.<a href="#section-8.10-15" class="pilcrow">¶</a></p>
<div id="eg6explicit">
<section id="section-8.10.1">
<h4 id="name-example-explicit-sfp-with-no">
<a href="#section-8.10.1" class="section-number selfRef">8.10.1. </a><a href="#name-example-explicit-sfp-with-no" class="section-name selfRef">Example Explicit SFP with No Choices</a>
</h4>
<p id="section-8.10.1-1">Consider the following SFPR similar to that in <a href="#exampleexplicit" class="xref">Section 8.1</a>.<a href="#section-8.10.1-1" class="pilcrow">¶</a></p>
<div id="section-8.10.1-2">
<pre class="sourcecode">
SFP1: RD = 198.51.100.1/101, SPI = 15,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, SFT = 43, RD = 192.0.2.2/2]
</pre><a href="#section-8.10.1-2" class="pilcrow">¶</a>
</div>
<p id="section-8.10.1-3">The SFP consists of an SF of Type 41 located at SFF1, followed by an SF
of Type 43 located at SFF2. This path is fully explicit, and each SFF is
offered no choice in forwarding a packet along the path.<a href="#section-8.10.1-3" class="pilcrow">¶</a></p>
<p id="section-8.10.1-4">SFF1 will receive packets on the path from the classifier and will identify the path
from the SPI (15). The initial SI will be 255, and so SFF1 will deliver the packets to the
SFI for SFT 41.<a href="#section-8.10.1-4" class="pilcrow">¶</a></p>
<p id="section-8.10.1-5">When the packets are returned to SFF1 by the SFI, the SI will be
decreased to 250 for the next hop.
SFF1 has no flexibility in the choice of SFF to support the next-hop SFI and will forward
the packet to SFF2, which will send the packets to the SFI that supports SFT 43 before
forwarding the packets to their destinations.<a href="#section-8.10.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="eg6choice">
<section id="section-8.10.2">
<h4 id="name-example-sfp-with-choice-of-sf">
<a href="#section-8.10.2" class="section-number selfRef">8.10.2. </a><a href="#name-example-sfp-with-choice-of-sf" class="section-name selfRef">Example SFP with Choice of SFIs</a>
</h4>
<div id="section-8.10.2-1">
<pre class="sourcecode">
SFP2: RD = 198.51.100.1/102, SPI = 16,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, SFT = 43, {RD = 192.0.2.2/2,
RD = 192.0.2.4/5 } ]
</pre><a href="#section-8.10.2-1" class="pilcrow">¶</a>
</div>
<p id="section-8.10.2-2">In this example, like that in <a href="#examplechoice" class="xref">Section 8.2</a>, the path also consists of an
SF of Type 41 located at SFF1, and this is followed by an SF of
Type 43; but in this case, the
SI = 250 contains a choice between the SFI located at SFF2 and the SFI located at SFF4.<a href="#section-8.10.2-2" class="pilcrow">¶</a></p>
<p id="section-8.10.2-3">SFF1 will receive packets on the path from the classifier and will identify the path
from the SPI (16). The initial SI will be 255, and so SFF1 will deliver the packets to the
SFI for SFT 41.<a href="#section-8.10.2-3" class="pilcrow">¶</a></p>
<p id="section-8.10.2-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
the next hop. SFF1 now has a choice of next-hop SFFs to execute the next hop in the path.
It can either forward packets to SFF2 or SFF4 to execute a function of Type 43. It uses
its local load-balancing algorithm to make this choice. The chosen SFF will send the
packets to the SFI that supports SFT 43 before forwarding the packets to their
destinations.<a href="#section-8.10.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="eg6open">
<section id="section-8.10.3">
<h4 id="name-example-sfp-with-open-choice">
<a href="#section-8.10.3" class="section-number selfRef">8.10.3. </a><a href="#name-example-sfp-with-open-choice" class="section-name selfRef">Example SFP with Open Choice of SFIs</a>
</h4>
<div id="section-8.10.3-1">
<pre class="sourcecode">
SFP3: RD = 198.51.100.1/103, SPI = 17,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, SFT = 44, RD = 0]
</pre><a href="#section-8.10.3-1" class="pilcrow">¶</a>
</div>
<p id="section-8.10.3-2">In this example, like that in <a href="#exampleopen" class="xref">Section 8.3</a>, the path also consists of an
SF of Type 41 located at SFF1, and this is followed by an SI with an RD of zero and SF of
Type 44. This means that a choice can be made between any SFF that supports an SFI of
Type 44.<a href="#section-8.10.3-2" class="pilcrow">¶</a></p>
<p id="section-8.10.3-3">SFF1 will receive packets on the path from the classifier and will identify the path
from the SPI (17). The initial SI will be 255, and so SFF1 will deliver the packets to the
SFI for SFT 41.<a href="#section-8.10.3-3" class="pilcrow">¶</a></p>
<p id="section-8.10.3-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
the next hop. SFF1 now has a free choice of next-hop SFFs to execute the next hop in the
path, selecting between all SFFs that support SFs of Type 44. Looking at the SFIRs it
has received, SFF1 knows that SF Type 44 is supported by SFF3 and SFF4. SFF1 uses its
local load-balancing algorithm to make this choice. The chosen SFF will send the packets
to the SFI that supports SFT 44 before forwarding the packets to their destinations.<a href="#section-8.10.3-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="eg6sft">
<section id="section-8.10.4">
<h4 id="name-example-sfp-with-choice-of-sft">
<a href="#section-8.10.4" class="section-number selfRef">8.10.4. </a><a href="#name-example-sfp-with-choice-of-sft" class="section-name selfRef">Example SFP with Choice of SFTs</a>
</h4>
<div id="section-8.10.4-1">
<pre class="sourcecode">
SFP4: RD = 198.51.100.1/104, SPI = 18,
[SI = 255, SFT = 41, RD = 192.0.2.1/1],
[SI = 250, {SFT = 43, RD = 192.0.2.2/2,
SFT = 44, RD = 192.0.2.3/8 } ]
</pre><a href="#section-8.10.4-1" class="pilcrow">¶</a>
</div>
<p id="section-8.10.4-2">This example, similar to that in <a href="#examplesft" class="xref">Section 8.4</a>, provides a choice of SF type
in the second hop in the path. The SI of 250 indicates a choice between SF Type 43 located
through SF2 and SF Type 44 located at SF3.<a href="#section-8.10.4-2" class="pilcrow">¶</a></p>
<p id="section-8.10.4-3">SFF1 will receive packets on the path from the classifier and will identify the path
from the SPI (18). The initial SI will be 255, and so SFF1 will deliver the packets to the
SFI for SFT 41.<a href="#section-8.10.4-3" class="pilcrow">¶</a></p>
<p id="section-8.10.4-4">When the packets are returned to SFF1 by the SFI, the SI will be decreased to 250 for
the next hop. SFF1 now has a free choice of next-hop SFFs to execute the next hop in the
path, selecting between all SFFs that support an SF of Type 43
and SFF3, which supports an
SF of Type 44. These may be completely different functions that are to be executed dependent
on specific conditions, or they may be similar functions identified with different type
identifiers (such as firewalls from different vendors). SFF1
uses its local policy and load-balancing algorithm to make this
choice, and it may use additional information passed back from
the local SFI to help inform its selection. The chosen SFF will send the packets to the SFI
that supports the chosen SFT before forwarding the packets to their destinations.<a href="#section-8.10.4-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="security">
<section id="section-9">
<h2 id="name-security-considerations">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-9-1">The mechanisms in this document use BGP for the control plane.
Hence, techniques such as those discussed in <span>[<a href="#RFC5925" class="xref">RFC5925</a>]</span>
can be used to help authenticate BGP sessions and, thus, the messages
between BGP peers, making it harder to spoof updates (which
could be used to install bogus SFPs or advertise false SIs)
or withdrawals.<a href="#section-9-1" class="pilcrow">¶</a></p>
<p id="section-9-2">Further discussion of security considerations for BGP may be found in
the BGP specification itself <span>[<a href="#RFC4271" class="xref">RFC4271</a>]</span> and the security
analysis for BGP <span>[<a href="#RFC4272" class="xref">RFC4272</a>]</span>.
<span>[<a href="#RFC5925" class="xref">RFC5925</a>]</span> contains a discussion of the inappropriateness of the TCP
MD5 signature option for protecting BGP sessions. <span>[<a href="#RFC6952" class="xref">RFC6952</a>]</span> includes
an analysis of BGP keying and authentication issues.<a href="#section-9-2" class="pilcrow">¶</a></p>
<p id="section-9-3">Additionally, this document depends on other documents that specify BGP
Multiprotocol Extensions and the documents that define the attributes that
are carried by BGP UPDATEs of the SFC AFI/SAFI. <span>[<a href="#RFC4760" class="xref">RFC4760</a>]</span>
observes that the use of AFI/SAFI does not change the underlying security issues
inherent in the existing BGP. Relevant additional security measures are
considered in <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>.<a href="#section-9-3" class="pilcrow">¶</a></p>
<p id="section-9-4">This document does not fundamentally change the security behavior of BGP
deployments, which depend considerably on the network operator's perception
of risk in their network. It may be observed that the application of the
mechanisms described in this document is scoped to a single domain, as implied
by <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span> and noted in <a href="#funcover" class="xref">Section 2.1</a> of this document.
Applicability of BGP within a single domain may enable a network operator to make
easier and more consistent decisions about what security measures to apply, and the
domain boundary, which BGP enforces by definition, provides a safeguard that prevents
leakage of SFC programming in either direction at the boundary.<a href="#section-9-4" class="pilcrow">¶</a></p>
<p id="section-9-5">Service function chaining provides a significant attack opportunity; packets can be diverted
from their normal paths through the network, packets can be made to execute unexpected functions, and
the functions that are instantiated in software can be subverted. However, this specification
does not change the existence of service function chaining, and security issues specific to
service function chaining are covered in <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span> and
<span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>.<a href="#section-9-5" class="pilcrow">¶</a></p>
<p id="section-9-6">This document defines a control plane for service function chaining. Clearly, this provides
an attack vector for a service function chaining system, as an attack on this control plane
could be used to make the system misbehave. Thus, the security of the BGP system is critically
important to the security of the whole service function chaining system. The control plane
mechanisms are very similar to those used for BGP/MPLS IP VPNs as described in
<span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span>, and so the security considerations in that document (Section <a href="https://www.rfc-editor.org/rfc/rfc4364#section-13" class="relref">13</a>)
provide good guidance for securing service function chaining systems reliant on this specification. Of particular
relevance is the need to securely distinguish between messages intended for the control of
different SFC overlays, which is similar to the need to distinguish between different VPNs.
<span><a href="https://www.rfc-editor.org/rfc/rfc7432#section-19" class="relref">Section 19</a> of [<a href="#RFC7432" class="xref">RFC7432</a>]</span> also provides useful guidance on the use of BGP in a
similar environment.<a href="#section-9-6" class="pilcrow">¶</a></p>
<p id="section-9-7">Note that a component of a service function chaining system that uses the procedures described in this document also
requires communications between a controller and the service function chaining network elements (specifically the SFFs
and classifiers). This communication covers instructing the classifiers using BGP mechanisms (see
<a href="#fspecclassy" class="xref">Section 7.4</a>); therefore, the use of BGP security is strongly recommended. But it also
covers other mechanisms for programming the classifier and instructing the SFFs and SFs (for
example, to bind SFs to an SFF, and to cause the establishment of tunnels between SFFs). This
document does not cover these latter mechanisms, and so their security is out of scope, but it
should be noted that these communications provide an attack vector on the service function chaining system, and so
attention must be paid to ensuring that they are secure.<a href="#section-9-7" class="pilcrow">¶</a></p>
<p id="section-9-8">There is an intrinsic assumption in service function chaining systems that nodes that announce support for specific
SFs actually offer those functions and that SFs are not, themselves, attacked or subverted.
This is particularly important when the SFs are implemented as software that can be updated.
Protection against this sort of concern forms part of the security of any service function chaining system and so is
outside the scope of the control plane mechanisms described in this document.<a href="#section-9-8" class="pilcrow">¶</a></p>
<p id="section-9-9">Similarly, there is a vulnerability if a rogue or subverted controller announces SFPs, especially
if that controller "takes over" an existing SFP and changes its contents. This corresponds
to a rogue BGP speaker entering a routing system, or even a Route Reflector becoming
subverted. Protection mechanisms, as above, include securing BGP sessions and protecting
software loads on the controllers.<a href="#section-9-9" class="pilcrow">¶</a></p>
<p id="section-9-10">In an environment where there is concern that rogue controllers might be introduced to the
network and inject false SFPRs or take over and change existing SFPRs, it is <span class="bcp14">RECOMMENDED</span> that
each SFF and classifier be configured with the identities of authorized controllers. Thus, the
announcement of an SFPR by any other BGP peer would be rejected.<a href="#section-9-10" class="pilcrow">¶</a></p>
<p id="section-9-11">Lastly, note that <a href="#sfparules" class="xref">Section 3.2.2</a> makes two operational suggestions that have
implications for the stability and security of the mechanisms described in this document:<a href="#section-9-11" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-9-12.1">That modifications to active SFPs not be made.<a href="#section-9-12.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9-12.2">That SPIs not be immediately reused.<a href="#section-9-12.2" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="iana">
<section id="section-10">
<h2 id="name-iana-considerations">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<div id="afisafi">
<section id="section-10.1">
<h3 id="name-new-bgp-af-safi">
<a href="#section-10.1" class="section-number selfRef">10.1. </a><a href="#name-new-bgp-af-safi" class="section-name selfRef">New BGP AF/SAFI</a>
</h3>
<p id="section-10.1-1">IANA maintains the "Address Family Numbers" registry. IANA has assigned a new
Address Family Number from the "Standards Action" range called "BGP SFC" (31), with this document as a reference.<a href="#section-10.1-1" class="pilcrow">¶</a></p>
<p id="section-10.1-2">IANA maintains the "Subsequent Address Family Identifiers (SAFI) Parameters" registry. IANA
has assigned a new SAFI value from the "Standards Action" range called "BGP SFC"
(9), with this document as a reference.<a href="#section-10.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ianasfpatt">
<section id="section-10.2">
<h3 id="name-sfp-attribute-bgp-path-attr">
<a href="#section-10.2" class="section-number selfRef">10.2. </a><a href="#name-sfp-attribute-bgp-path-attr" class="section-name selfRef">"SFP attribute" BGP Path Attribute</a>
</h3>
<p id="section-10.2-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Parameters" with a subregistry of
"BGP Path Attributes". IANA has assigned a new Path attribute called "SFP attribute" with a value of 37 and with this document as a reference.<a href="#section-10.2-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ianasftlv">
<section id="section-10.3">
<h3 id="name-sfp-attribute-tlvs-registry">
<a href="#section-10.3" class="section-number selfRef">10.3. </a><a href="#name-sfp-attribute-tlvs-registry" class="section-name selfRef">"SFP Attribute TLVs" Registry</a>
</h3>
<p id="section-10.3-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Parameters". IANA has created a new subregistry called the "SFP Attribute TLVs" registry.<a href="#section-10.3-1" class="pilcrow">¶</a></p>
<p id="section-10.3-2">Valid values are in the range 0 to 65535.<a href="#section-10.3-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.3-3.1">Values 0 and 65535 are marked "Reserved".<a href="#section-10.3-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.3-3.2">Values 1 through 65534 are to be assigned according to the "First Come
First Served" policy <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.<a href="#section-10.3-3.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-10.3-4">This document is a reference for this registry.<a href="#section-10.3-4" class="pilcrow">¶</a></p>
<p id="section-10.3-5">The registry tracks:<a href="#section-10.3-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.3-6.1">Type<a href="#section-10.3-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.3-6.2">Name<a href="#section-10.3-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.3-6.3">Reference<a href="#section-10.3-6.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.3-6.4">Registration Date<a href="#section-10.3-6.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-10.3-7">The registry is initially populated as follows:<a href="#section-10.3-7" class="pilcrow">¶</a></p>
<span id="name-sfp-attribute-tlvs-subregis"></span><table class="center" id="table-1">
<caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-sfp-attribute-tlvs-subregis" class="selfRef">SFP Attribute TLVs Subregistry Initial Contents</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Type</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
<th class="text-left" rowspan="1" colspan="1">Registration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">Association TLV</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">2</td>
<td class="text-left" rowspan="1" colspan="1">Hop TLV</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">3</td>
<td class="text-left" rowspan="1" colspan="1">SFT TLV</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">4</td>
<td class="text-left" rowspan="1" colspan="1">MPLS Swapping/Stacking</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">5</td>
<td class="text-left" rowspan="1" colspan="1">SFP Traversal With MPLS</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
</tbody>
</table>
</section>
</div>
<div id="ianaassoc">
<section id="section-10.4">
<h3 id="name-sfp-association-type-regist">
<a href="#section-10.4" class="section-number selfRef">10.4. </a><a href="#name-sfp-association-type-regist" class="section-name selfRef">"SFP Association Type" Registry</a>
</h3>
<p id="section-10.4-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Parameters". IANA has created a new subregistry called the "SFP Association Type" registry.<a href="#section-10.4-1" class="pilcrow">¶</a></p>
<p id="section-10.4-2">Valid values are in the range 0 to 65535.<a href="#section-10.4-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.4-3.1">Values 0 and 65535 are marked "Reserved".<a href="#section-10.4-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.4-3.2">Values 1 through 65534 are assigned according to the "First Come
First Served" policy <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.<a href="#section-10.4-3.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-10.4-4">This document is given as a reference for this registry.<a href="#section-10.4-4" class="pilcrow">¶</a></p>
<p id="section-10.4-5">The new registry tracks:<a href="#section-10.4-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.4-6.1">Association Type<a href="#section-10.4-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.4-6.2">Name<a href="#section-10.4-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.4-6.3">Reference<a href="#section-10.4-6.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.4-6.4">Registration Date<a href="#section-10.4-6.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-10.4-7">The registry should initially be populated as follows:<a href="#section-10.4-7" class="pilcrow">¶</a></p>
<span id="name-sfp-association-type-subreg"></span><table class="center" id="table-2">
<caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-sfp-association-type-subreg" class="selfRef">SFP Association Type Subregistry Initial Contents</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Association Type</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
<th class="text-left" rowspan="1" colspan="1">Date</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">Bidirectional SFP</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
</tbody>
</table>
</section>
</div>
<div id="SFTreg">
<section id="section-10.5">
<h3 id="name-service-function-chaining-s">
<a href="#section-10.5" class="section-number selfRef">10.5. </a><a href="#name-service-function-chaining-s" class="section-name selfRef">"Service Function Chaining Service Function Types" Registry</a>
</h3>
<p id="section-10.5-1">IANA has created a new top-level registry called "Service Function Chaining Service Function Types".<a href="#section-10.5-1" class="pilcrow">¶</a></p>
<p id="section-10.5-2">Valid values are in the range 0 to 65535.<a href="#section-10.5-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.5-3.1">Values 0 and 65535 are marked "Reserved".<a href="#section-10.5-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.5-3.2">Values 1 through 31 are to be assigned by "Standards Action" <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span> and are referred to
as the "special-purpose SFT values".<a href="#section-10.5-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.5-3.3">Values 32 through 64495 are to be assigned according to the "First Come
First Served" policy <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.<a href="#section-10.5-3.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.5-3.4">Values 64496 through 65534 are for Private Use and are not to be recorded by IANA.<a href="#section-10.5-3.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-10.5-4">This document is given as a reference for this registry.<a href="#section-10.5-4" class="pilcrow">¶</a></p>
<p id="section-10.5-5">The registry tracks:<a href="#section-10.5-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-10.5-6.1">Value<a href="#section-10.5-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.5-6.2">Name<a href="#section-10.5-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.5-6.3">Reference<a href="#section-10.5-6.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-10.5-6.4">Registration Date<a href="#section-10.5-6.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-10.5-7">The registry is initially populated as follows.<a href="#section-10.5-7" class="pilcrow">¶</a></p>
<span id="name-service-function-chaining-se"></span><table class="center" id="table-3">
<caption>
<a href="#table-3" class="selfRef">Table 3</a>:
<a href="#name-service-function-chaining-se" class="selfRef">Service Function Chaining Service Function Types Registry Initial Contents</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Value</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
<th class="text-left" rowspan="1" colspan="1">Date</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Reserved</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">Change Sequence</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">2-31</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">32</td>
<td class="text-left" rowspan="1" colspan="1">Classifier</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#I-D.dawra-idr-bgp-ls-sr-service-segments" class="xref">BGP-LS-SR</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">33</td>
<td class="text-left" rowspan="1" colspan="1">Firewall</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#I-D.dawra-idr-bgp-ls-sr-service-segments" class="xref">BGP-LS-SR</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">34</td>
<td class="text-left" rowspan="1" colspan="1">Load balancer</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#I-D.dawra-idr-bgp-ls-sr-service-segments" class="xref">BGP-LS-SR</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">35</td>
<td class="text-left" rowspan="1" colspan="1">Deep packet inspection engine</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#I-D.dawra-idr-bgp-ls-sr-service-segments" class="xref">BGP-LS-SR</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">36</td>
<td class="text-left" rowspan="1" colspan="1">Penalty box</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">37</td>
<td class="text-left" rowspan="1" colspan="1">WAN accelerator</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>, <span>[<a href="#RFC8300" class="xref">RFC8300</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">38</td>
<td class="text-left" rowspan="1" colspan="1">Application accelerator</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">39</td>
<td class="text-left" rowspan="1" colspan="1">TCP optimizer</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">40</td>
<td class="text-left" rowspan="1" colspan="1">Network Address Translator</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">41</td>
<td class="text-left" rowspan="1" colspan="1">NAT44</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>, <span>[<a href="#RFC3022" class="xref">RFC3022</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">42</td>
<td class="text-left" rowspan="1" colspan="1">NAT64</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>, <span>[<a href="#RFC6146" class="xref">RFC6146</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">43</td>
<td class="text-left" rowspan="1" colspan="1">NPTv6</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>, <span>[<a href="#RFC6296" class="xref">RFC6296</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">44</td>
<td class="text-left" rowspan="1" colspan="1">Lawful intercept</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">45</td>
<td class="text-left" rowspan="1" colspan="1">HOST_ID injection</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">46</td>
<td class="text-left" rowspan="1" colspan="1">HTTP header enrichment</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">47</td>
<td class="text-left" rowspan="1" colspan="1">Caching engine </td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015, <span>[<a href="#RFC7665" class="xref">RFC7665</a>]</span>
</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">48-64495</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">64496-65534</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for Private Use</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">65535</td>
<td class="text-left" rowspan="1" colspan="1">Reserved, not to be allocated </td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
</tbody>
</table>
</section>
</div>
<div id="ExpExtComreg">
<section id="section-10.6">
<h3 id="name-flow-specification-for-sfc-c">
<a href="#section-10.6" class="section-number selfRef">10.6. </a><a href="#name-flow-specification-for-sfc-c" class="section-name selfRef">Flow Specification for SFC Classifiers</a>
</h3>
<p id="section-10.6-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Extended Communities" with a subregistry of
"Generic Transitive Experimental Use Extended Community Sub-Types". IANA has assigned a
new subtype as follows:<a href="#section-10.6-1" class="pilcrow">¶</a></p>
<ul class="ulEmpty normal">
<li class="ulEmpty normal" id="section-10.6-2.1">"Flow Specification for SFC Classifiers" with a value of 0x0d and with this document as the reference.<a href="#section-10.6-2.1" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="TransExtComreg">
<section id="section-10.7">
<h3 id="name-new-bgp-transitive-extended">
<a href="#section-10.7" class="section-number selfRef">10.7. </a><a href="#name-new-bgp-transitive-extended" class="section-name selfRef">New BGP Transitive Extended Community Type</a>
</h3>
<p id="section-10.7-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Extended Communities" with a subregistry of
"BGP Transitive Extended Community Types". IANA has assigned a new type as follows:<a href="#section-10.7-1" class="pilcrow">¶</a></p>
<ul class="ulEmpty normal">
<li class="ulEmpty normal" id="section-10.7-2.1">SFC (Sub-Types are defined in the "SFC Extended Community
Sub-Types" registry) with a value of 0x0b and with this document as
the reference.<a href="#section-10.7-2.1" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="SFCExtComreg">
<section id="section-10.8">
<h3 id="name-sfc-extended-community-sub-">
<a href="#section-10.8" class="section-number selfRef">10.8. </a><a href="#name-sfc-extended-community-sub-" class="section-name selfRef">"SFC Extended Community Sub-Types" Registry</a>
</h3>
<p id="section-10.8-1">IANA maintains a registry of "Border Gateway Protocol (BGP) Parameters". IANA has created a new subregistry called the "SFC Extended Community Sub-Types" registry.<a href="#section-10.8-1" class="pilcrow">¶</a></p>
<p id="section-10.8-2">IANA has included the following note:<a href="#section-10.8-2" class="pilcrow">¶</a></p>
<aside id="section-10.8-3">
<p id="section-10.8-3.1">
This registry contains values of the second octet (the "Sub-Type"
field) of an extended community when the value of the first
octet (the "Type" field) is set to 0x0b.<a href="#section-10.8-3.1" class="pilcrow">¶</a></p>
</aside>
<p id="section-10.8-4">The allocation policy for this registry is First Come First Served.<a href="#section-10.8-4" class="pilcrow">¶</a></p>
<p id="section-10.8-5">Valid values are 0 to 255. The value 0 is reserved and should not be allocated.<a href="#section-10.8-5" class="pilcrow">¶</a></p>
<p id="section-10.8-6">IANA has populated this registry with the following entries:<a href="#section-10.8-6" class="pilcrow">¶</a></p>
<span id="name-sfc-extended-community-sub-t"></span><table class="center" id="table-4">
<caption>
<a href="#table-4" class="selfRef">Table 4</a>:
<a href="#name-sfc-extended-community-sub-t" class="selfRef">SFC Extended Community Sub-Types Subregistry Initial Contents</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Sub-Type
Value</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
<th class="text-left" rowspan="1" colspan="1">Date</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Reserved</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">SFIR pool identifier</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">2</td>
<td class="text-left" rowspan="1" colspan="1">MPLS Label Stack Mixed Swapping/Stacking Labels</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
<td class="text-left" rowspan="1" colspan="1">2020-09-02</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">3-255</td>
<td class="text-left" rowspan="1" colspan="1">Unassigned</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</section>
</div>
<div id="SpiSiRep">
<section id="section-10.9">
<h3 id="name-new-spi-si-representation-s">
<a href="#section-10.9" class="section-number selfRef">10.9. </a><a href="#name-new-spi-si-representation-s" class="section-name selfRef">New SPI/SI Representation Sub-TLV</a>
</h3>
<p id="section-10.9-1">IANA has assigned a codepoint from the "BGP Tunnel Encapsulation Attribute
Sub-TLVs" registry for the "SPI/SI Representation Sub-TLV" with a value of 16 and with this
document as the reference.<a href="#section-10.9-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="IANAbits">
<section id="section-10.10">
<h3 id="name-sfc-spi-si-representation-f">
<a href="#section-10.10" class="section-number selfRef">10.10. </a><a href="#name-sfc-spi-si-representation-f" class="section-name selfRef">"SFC SPI/SI Representation Flags" Registry</a>
</h3>
<p id="section-10.10-1">IANA maintains the "BGP Tunnel Encapsulation Attribute Sub-TLVs" registry and has created an associated registry called the "SFC SPI/SI Representation Flags" registry.<a href="#section-10.10-1" class="pilcrow">¶</a></p>
<p id="section-10.10-2">Bits are to be assigned by Standards Action. The field is 16 bits long, and bits are counted
from the most significant bit as bit zero.<a href="#section-10.10-2" class="pilcrow">¶</a></p>
<p id="section-10.10-3">IANA has populated the registry as follows:<a href="#section-10.10-3" class="pilcrow">¶</a></p>
<span id="name-sfc-spi-si-representation-fl"></span><table class="center" id="table-5">
<caption>
<a href="#table-5" class="selfRef">Table 5</a>:
<a href="#name-sfc-spi-si-representation-fl" class="selfRef">SFC SPI/SI Representation Flags Registry Initial Contents</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Value</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">NSH data plane</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">MPLS data plane</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9015</td>
</tr>
</tbody>
</table>
</section>
</div>
</section>
</div>
<section id="section-11">
<h2 id="name-references">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-11.1">
<h3 id="name-normative-references">
<a href="#section-11.1" class="section-number selfRef">11.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4271">[RFC4271]</dt>
<dd>
<span class="refAuthor">Rekhter, Y., Ed.</span>, <span class="refAuthor">Li, T., Ed.</span>, and <span class="refAuthor">S. Hares, Ed.</span>, <span class="refTitle">"A Border Gateway Protocol 4 (BGP-4)"</span>, <span class="seriesInfo">RFC 4271</span>, <span class="seriesInfo">DOI 10.17487/RFC4271</span>, <time datetime="2006-01" class="refDate">January 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4271">https://www.rfc-editor.org/info/rfc4271</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4360">[RFC4360]</dt>
<dd>
<span class="refAuthor">Sangli, S.</span>, <span class="refAuthor">Tappan, D.</span>, and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"BGP Extended Communities Attribute"</span>, <span class="seriesInfo">RFC 4360</span>, <span class="seriesInfo">DOI 10.17487/RFC4360</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4360">https://www.rfc-editor.org/info/rfc4360</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4364">[RFC4364]</dt>
<dd>
<span class="refAuthor">Rosen, E.</span> and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"BGP/MPLS IP Virtual Private Networks (VPNs)"</span>, <span class="seriesInfo">RFC 4364</span>, <span class="seriesInfo">DOI 10.17487/RFC4364</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4364">https://www.rfc-editor.org/info/rfc4364</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4760">[RFC4760]</dt>
<dd>
<span class="refAuthor">Bates, T.</span>, <span class="refAuthor">Chandra, R.</span>, <span class="refAuthor">Katz, D.</span>, and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"Multiprotocol Extensions for BGP-4"</span>, <span class="seriesInfo">RFC 4760</span>, <span class="seriesInfo">DOI 10.17487/RFC4760</span>, <time datetime="2007-01" class="refDate">January 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4760">https://www.rfc-editor.org/info/rfc4760</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7432">[RFC7432]</dt>
<dd>
<span class="refAuthor">Sajassi, A., Ed.</span>, <span class="refAuthor">Aggarwal, R.</span>, <span class="refAuthor">Bitar, N.</span>, <span class="refAuthor">Isaac, A.</span>, <span class="refAuthor">Uttaro, J.</span>, <span class="refAuthor">Drake, J.</span>, and <span class="refAuthor">W. Henderickx</span>, <span class="refTitle">"BGP MPLS-Based Ethernet VPN"</span>, <span class="seriesInfo">RFC 7432</span>, <span class="seriesInfo">DOI 10.17487/RFC7432</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7432">https://www.rfc-editor.org/info/rfc7432</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7606">[RFC7606]</dt>
<dd>
<span class="refAuthor">Chen, E., Ed.</span>, <span class="refAuthor">Scudder, J., Ed.</span>, <span class="refAuthor">Mohapatra, P.</span>, and <span class="refAuthor">K. Patel</span>, <span class="refTitle">"Revised Error Handling for BGP UPDATE Messages"</span>, <span class="seriesInfo">RFC 7606</span>, <span class="seriesInfo">DOI 10.17487/RFC7606</span>, <time datetime="2015-08" class="refDate">August 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7606">https://www.rfc-editor.org/info/rfc7606</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7665">[RFC7665]</dt>
<dd>
<span class="refAuthor">Halpern, J., Ed.</span> and <span class="refAuthor">C. Pignataro, Ed.</span>, <span class="refTitle">"Service Function Chaining (SFC) Architecture"</span>, <span class="seriesInfo">RFC 7665</span>, <span class="seriesInfo">DOI 10.17487/RFC7665</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7665">https://www.rfc-editor.org/info/rfc7665</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8126">[RFC8126]</dt>
<dd>
<span class="refAuthor">Cotton, M.</span>, <span class="refAuthor">Leiba, B.</span>, and <span class="refAuthor">T. Narten</span>, <span class="refTitle">"Guidelines for Writing an IANA Considerations Section in RFCs"</span>, <span class="seriesInfo">BCP 26</span>, <span class="seriesInfo">RFC 8126</span>, <span class="seriesInfo">DOI 10.17487/RFC8126</span>, <time datetime="2017-06" class="refDate">June 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8300">[RFC8300]</dt>
<dd>
<span class="refAuthor">Quinn, P., Ed.</span>, <span class="refAuthor">Elzur, U., Ed.</span>, and <span class="refAuthor">C. Pignataro, Ed.</span>, <span class="refTitle">"Network Service Header (NSH)"</span>, <span class="seriesInfo">RFC 8300</span>, <span class="seriesInfo">DOI 10.17487/RFC8300</span>, <time datetime="2018-01" class="refDate">January 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8300">https://www.rfc-editor.org/info/rfc8300</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8595">[RFC8595]</dt>
<dd>
<span class="refAuthor">Farrel, A.</span>, <span class="refAuthor">Bryant, S.</span>, and <span class="refAuthor">J. Drake</span>, <span class="refTitle">"An MPLS-Based Forwarding Plane for Service Function Chaining"</span>, <span class="seriesInfo">RFC 8595</span>, <span class="seriesInfo">DOI 10.17487/RFC8595</span>, <time datetime="2019-06" class="refDate">June 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8595">https://www.rfc-editor.org/info/rfc8595</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8596">[RFC8596]</dt>
<dd>
<span class="refAuthor">Malis, A.</span>, <span class="refAuthor">Bryant, S.</span>, <span class="refAuthor">Halpern, J.</span>, and <span class="refAuthor">W. Henderickx</span>, <span class="refTitle">"MPLS Transport Encapsulation for the Service Function Chaining (SFC) Network Service Header (NSH)"</span>, <span class="seriesInfo">RFC 8596</span>, <span class="seriesInfo">DOI 10.17487/RFC8596</span>, <time datetime="2019-06" class="refDate">June 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8596">https://www.rfc-editor.org/info/rfc8596</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8955">[RFC8955]</dt>
<dd>
<span class="refAuthor">Loibl, C.</span>, <span class="refAuthor">Hares, S.</span>, <span class="refAuthor">Raszuk, R.</span>, <span class="refAuthor">McPherson, D.</span>, and <span class="refAuthor">M. Bacher</span>, <span class="refTitle">"Dissemination of Flow Specification Rules"</span>, <span class="seriesInfo">RFC 8955</span>, <span class="seriesInfo">DOI 10.17487/RFC8955</span>, <time datetime="2020-12" class="refDate">December 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8955">https://www.rfc-editor.org/info/rfc8955</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9012">[RFC9012]</dt>
<dd>
<span class="refAuthor">Patel, K.</span>, <span class="refAuthor">Van de Velde, G.</span>, <span class="refAuthor">Sangli, S.</span>, and <span class="refAuthor">J. Scudder</span>, <span class="refTitle">"The BGP Tunnel Encapsulation Attribute"</span>, <span class="seriesInfo">RFC 9012</span>, <span class="seriesInfo">DOI 10.17487/RFC9012</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9012">https://www.rfc-editor.org/info/rfc9012</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-11.2">
<h3 id="name-informative-references">
<a href="#section-11.2" class="section-number selfRef">11.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="I-D.dawra-idr-bgp-ls-sr-service-segments">[BGP-LS-SR]</dt>
<dd>
<span class="refAuthor">Dawra, G.</span>, <span class="refAuthor">Filsfils, C.</span>, <span class="refAuthor">Talaulikar, K.</span>, <span class="refAuthor">Clad, F.</span>, <span class="refAuthor">Bernier, D.</span>, <span class="refAuthor">Uttaro, J.</span>, <span class="refAuthor">Decraene, B.</span>, <span class="refAuthor">Elmalky, H.</span>, <span class="refAuthor">Xu, X.</span>, <span class="refAuthor">Guichard, J.</span>, and <span class="refAuthor">C. Li</span>, <span class="refTitle">"BGP-LS Advertisement of Segment Routing Service Segments"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-dawra-idr-bgp-ls-sr-service-segments-05</span>, <time datetime="2021-02-15" class="refDate">15 February 2021</time>, <span><<a href="https://tools.ietf.org/html/draft-dawra-idr-bgp-ls-sr-service-segments-05">https://tools.ietf.org/html/draft-dawra-idr-bgp-ls-sr-service-segments-05</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3022">[RFC3022]</dt>
<dd>
<span class="refAuthor">Srisuresh, P.</span> and <span class="refAuthor">K. Egevang</span>, <span class="refTitle">"Traditional IP Network Address Translator (Traditional NAT)"</span>, <span class="seriesInfo">RFC 3022</span>, <span class="seriesInfo">DOI 10.17487/RFC3022</span>, <time datetime="2001-01" class="refDate">January 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3022">https://www.rfc-editor.org/info/rfc3022</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4272">[RFC4272]</dt>
<dd>
<span class="refAuthor">Murphy, S.</span>, <span class="refTitle">"BGP Security Vulnerabilities Analysis"</span>, <span class="seriesInfo">RFC 4272</span>, <span class="seriesInfo">DOI 10.17487/RFC4272</span>, <time datetime="2006-01" class="refDate">January 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4272">https://www.rfc-editor.org/info/rfc4272</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5925">[RFC5925]</dt>
<dd>
<span class="refAuthor">Touch, J.</span>, <span class="refAuthor">Mankin, A.</span>, and <span class="refAuthor">R. Bonica</span>, <span class="refTitle">"The TCP Authentication Option"</span>, <span class="seriesInfo">RFC 5925</span>, <span class="seriesInfo">DOI 10.17487/RFC5925</span>, <time datetime="2010-06" class="refDate">June 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5925">https://www.rfc-editor.org/info/rfc5925</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6146">[RFC6146]</dt>
<dd>
<span class="refAuthor">Bagnulo, M.</span>, <span class="refAuthor">Matthews, P.</span>, and <span class="refAuthor">I. van Beijnum</span>, <span class="refTitle">"Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers"</span>, <span class="seriesInfo">RFC 6146</span>, <span class="seriesInfo">DOI 10.17487/RFC6146</span>, <time datetime="2011-04" class="refDate">April 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6146">https://www.rfc-editor.org/info/rfc6146</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6296">[RFC6296]</dt>
<dd>
<span class="refAuthor">Wasserman, M.</span> and <span class="refAuthor">F. Baker</span>, <span class="refTitle">"IPv6-to-IPv6 Network Prefix Translation"</span>, <span class="seriesInfo">RFC 6296</span>, <span class="seriesInfo">DOI 10.17487/RFC6296</span>, <time datetime="2011-06" class="refDate">June 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6296">https://www.rfc-editor.org/info/rfc6296</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6952">[RFC6952]</dt>
<dd>
<span class="refAuthor">Jethanandani, M.</span>, <span class="refAuthor">Patel, K.</span>, and <span class="refAuthor">L. Zheng</span>, <span class="refTitle">"Analysis of BGP, LDP, PCEP, and MSDP Issues According to the Keying and Authentication for Routing Protocols (KARP) Design Guide"</span>, <span class="seriesInfo">RFC 6952</span>, <span class="seriesInfo">DOI 10.17487/RFC6952</span>, <time datetime="2013-05" class="refDate">May 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6952">https://www.rfc-editor.org/info/rfc6952</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7498">[RFC7498]</dt>
<dd>
<span class="refAuthor">Quinn, P., Ed.</span> and <span class="refAuthor">T. Nadeau, Ed.</span>, <span class="refTitle">"Problem Statement for Service Function Chaining"</span>, <span class="seriesInfo">RFC 7498</span>, <span class="seriesInfo">DOI 10.17487/RFC7498</span>, <time datetime="2015-04" class="refDate">April 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7498">https://www.rfc-editor.org/info/rfc7498</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="acks">
<section id="section-appendix.a">
<h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
</h2>
<p id="section-appendix.a-1">Thanks to <span class="contact-name">Tony Przygienda</span>, <span class="contact-name">Jeff Haas</span>, and <span class="contact-name">Andy Malis</span> for helpful
comments, and to
<span class="contact-name">Joel Halpern</span> for discussions that improved this
document. <span class="contact-name">Yuanlong Jiang</span> provided
a useful review and caught some important issues. <span class="contact-name">Stephane Litkowski</span> did an
exceptionally good and detailed Document Shepherd review.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
<p id="section-appendix.a-2"><span class="contact-name">Andy Malis</span> contributed text that formed the
basis of <a href="#mpls-encaps" class="xref">Section 7.7</a>.<a href="#section-appendix.a-2" class="pilcrow">¶</a></p>
<p id="section-appendix.a-3"><span class="contact-name">Brian Carpenter</span> and <span class="contact-name">Martin Vigoureux</span> provided useful reviews during IETF Last Call.
Thanks also to <span class="contact-name">Sheng Jiang</span>, <span class="contact-name">Med Boucadair</span>, <span class="contact-name">Ravi Singh</span>, <span class="contact-name">Benjamin Kaduk</span>, <span class="contact-name">Roman Danyliw</span>,
<span class="contact-name">Adam Roach</span>, <span class="contact-name">Alvaro Retana</span>, <span class="contact-name">Barry Leiba</span>, and <span class="contact-name">Murray Kucherawy</span> for review comments.
<span class="contact-name">Ketan Talaulikar</span> provided helpful discussion of
the SFT codepoint registry. <span class="contact-name">Ron Bonica</span>
kept us honest on the difference between an RD and an RT; <span class="contact-name">Benjamin Kaduk</span> kept us on message
about the difference between an RD and an Extended Community.<a href="#section-appendix.a-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="contributors">
<section id="section-appendix.b">
<h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Stuart Mackie</span></div>
<div dir="auto" class="left"><span class="org">Juniper Networks</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:wsmackie@juinper.net" class="email">wsmackie@juinper.net</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Keyur Patel</span></div>
<div dir="auto" class="left"><span class="org">Arrcus, Inc.</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:keyur@arrcus.com" class="email">keyur@arrcus.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Avinash Lingala</span></div>
<div dir="auto" class="left"><span class="org">AT&T</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ar977m@att.com" class="email">ar977m@att.com</a>
</div>
</address>
</section>
</div>
<div id="authors-addresses">
<section id="section-appendix.c">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Adrian Farrel</span></div>
<div dir="auto" class="left"><span class="org">Old Dog Consulting</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:adrian@olddog.co.uk" class="email">adrian@olddog.co.uk</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">John Drake</span></div>
<div dir="auto" class="left"><span class="org">Juniper Networks</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jdrake@juniper.net" class="email">jdrake@juniper.net</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Eric Rosen</span></div>
<div dir="auto" class="left"><span class="org">Juniper Networks</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:erosen52@gmail.com" class="email">erosen52@gmail.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Jim Uttaro</span></div>
<div dir="auto" class="left"><span class="org">AT&T</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ju1738@att.com" class="email">ju1738@att.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Luay Jalil</span></div>
<div dir="auto" class="left"><span class="org">Verizon</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:luay.jalil@verizon.com" class="email">luay.jalil@verizon.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|