1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9028: Native NAT Traversal Mode for the Host Identity Protocol</title>
<meta content="Ari Keränen" name="author">
<meta content="Jan Melén" name="author">
<meta content="Miika Komu" name="author">
<meta content="
This document specifies a new Network Address Translator (NAT)
traversal mode for the Host Identity Protocol (HIP). The new mode is
based on the Interactive Connectivity Establishment (ICE) methodology
and UDP encapsulation of data and signaling traffic. The main difference
from the previously specified modes is the use of HIP messages instead
of ICE for all NAT traversal procedures due to the kernel-space
dependencies of HIP.
" name="description">
<meta content="xml2rfc 3.9.1" name="generator">
<meta content="HIP" name="keyword">
<meta content="NAT" name="keyword">
<meta content="NAT traversal" name="keyword">
<meta content="9028" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.9.1
Python 3.6.10
appdirs 1.4.4
ConfigArgParse 1.2.3
google-i18n-address 2.3.5
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.2
kitchen 1.2.6
lxml 4.4.2
pycairo 1.19.0
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.3.1
requests 2.22.0
setuptools 40.6.2
six 1.14.0
WeasyPrint 51
-->
<link href="rfc9028.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: avoid-page;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9028" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-hip-native-nat-traversal-33" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9028</td>
<td class="center">HIP Native NAT Traversal Mode</td>
<td class="right">July 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Keränen, et al.</td>
<td class="center">Experimental</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9028" class="eref">9028</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Experimental</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-07" class="published">July 2021</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">A. Keränen</div>
<div class="org">Ericsson</div>
</div>
<div class="author">
<div class="author-name">J. Melén</div>
<div class="org">Ericsson</div>
</div>
<div class="author">
<div class="author-name">M. Komu, <span class="editor">Ed.</span>
</div>
<div class="org">Ericsson</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9028</h1>
<h1 id="title">Native NAT Traversal Mode for the Host Identity Protocol</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1"> This document specifies a new Network Address Translator (NAT)
traversal mode for the Host Identity Protocol (HIP). The new mode is
based on the Interactive Connectivity Establishment (ICE) methodology
and UDP encapsulation of data and signaling traffic. The main difference
from the previously specified modes is the use of HIP messages instead
of ICE for all NAT traversal procedures due to the kernel-space
dependencies of HIP.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF community.
It has received public review and has been approved for publication
by the Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9028">https://www.rfc-editor.org/info/rfc9028</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="ulEmpty ulBare compact toc">
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1" class="keepWithNext"><a href="#section-2" class="xref">2</a>. <a href="#name-terminology" class="xref">Terminology</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1" class="keepWithNext"><a href="#section-3" class="xref">3</a>. <a href="#name-overview-of-operation" class="xref">Overview of Operation</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-protocol-description" class="xref">Protocol Description</a></p>
<ul class="ulEmpty compact ulBare toc">
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-relay-registration" class="xref">Relay Registration</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-transport-address-candidate" class="xref">Transport Address Candidate Gathering at the Relay Client</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-nat-traversal-mode-negotiat" class="xref">NAT Traversal Mode Negotiation</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.4">
<p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>. <a href="#name-connectivity-check-pacing-n" class="xref">Connectivity Check Pacing Negotiation</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.5">
<p id="section-toc.1-1.4.2.5.1"><a href="#section-4.5" class="xref">4.5</a>. <a href="#name-base-exchange-via-control-r" class="xref">Base Exchange via Control Relay Server</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.6">
<p id="section-toc.1-1.4.2.6.1"><a href="#section-4.6" class="xref">4.6</a>. <a href="#name-connectivity-checks" class="xref">Connectivity Checks</a></p>
<ul class="ulEmpty compact ulBare toc">
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.6.2.1">
<p id="section-toc.1-1.4.2.6.2.1.1"><a href="#section-4.6.1" class="xref">4.6.1</a>. <a href="#name-connectivity-check-procedur" class="xref">Connectivity Check Procedure</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.6.2.2">
<p id="section-toc.1-1.4.2.6.2.2.1"><a href="#section-4.6.2" class="xref">4.6.2</a>. <a href="#name-rules-for-connectivity-chec" class="xref">Rules for Connectivity Checks</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.6.2.3">
<p id="section-toc.1-1.4.2.6.2.3.1"><a href="#section-4.6.3" class="xref">4.6.3</a>. <a href="#name-rules-for-concluding-connec" class="xref">Rules for Concluding Connectivity Checks</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.7">
<p id="section-toc.1-1.4.2.7.1"><a href="#section-4.7" class="xref">4.7</a>. <a href="#name-nat-traversal-optimizations" class="xref">NAT Traversal Optimizations</a></p>
<ul class="ulEmpty compact ulBare toc">
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.7.2.1">
<p id="section-toc.1-1.4.2.7.2.1.1"><a href="#section-4.7.1" class="xref">4.7.1</a>. <a href="#name-minimal-nat-traversal-suppo" class="xref">Minimal NAT Traversal Support</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.7.2.2">
<p id="section-toc.1-1.4.2.7.2.2.1"><a href="#section-4.7.2" class="xref">4.7.2</a>. <a href="#name-base-exchange-without-conne" class="xref">Base Exchange without Connectivity Checks</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.7.2.3">
<p id="section-toc.1-1.4.2.7.2.3.1"><a href="#section-4.7.3" class="xref">4.7.3</a>. <a href="#name-initiating-a-base-exchange-" class="xref">Initiating a Base Exchange Both with and without UDP Encapsulation</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.8">
<p id="section-toc.1-1.4.2.8.1"><a href="#section-4.8" class="xref">4.8</a>. <a href="#name-sending-control-packets-aft" class="xref">Sending Control Packets after the Base Exchange</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.9">
<p id="section-toc.1-1.4.2.9.1"><a href="#section-4.9" class="xref">4.9</a>. <a href="#name-mobility-handover-procedure" class="xref">Mobility Handover Procedure</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.10">
<p id="section-toc.1-1.4.2.10.1"><a href="#section-4.10" class="xref">4.10</a>. <a href="#name-nat-keepalives" class="xref">NAT Keepalives</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.11">
<p id="section-toc.1-1.4.2.11.1"><a href="#section-4.11" class="xref">4.11</a>. <a href="#name-closing-procedure" class="xref">Closing Procedure</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.12">
<p id="section-toc.1-1.4.2.12.1"><a href="#section-4.12" class="xref">4.12</a>. <a href="#name-relaying-considerations" class="xref">Relaying Considerations</a></p>
<ul class="ulEmpty compact ulBare toc">
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.12.2.1">
<p id="section-toc.1-1.4.2.12.2.1.1"><a href="#section-4.12.1" class="xref">4.12.1</a>. <a href="#name-forwarding-rules-and-permis" class="xref">Forwarding Rules and Permissions</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.12.2.2">
<p id="section-toc.1-1.4.2.12.2.2.1"><a href="#section-4.12.2" class="xref">4.12.2</a>. <a href="#name-hip-data-relay-and-relaying" class="xref">HIP Data Relay and Relaying of Control Packets</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4.2.12.2.3">
<p id="section-toc.1-1.4.2.12.2.3.1"><a href="#section-4.12.3" class="xref">4.12.3</a>. <a href="#name-handling-conflicting-spi-va" class="xref">Handling Conflicting SPI Values</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-packet-formats" class="xref">Packet Formats</a></p>
<ul class="ulEmpty compact ulBare toc">
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>. <a href="#name-hip-control-packets" class="xref">HIP Control Packets</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>. <a href="#name-connectivity-checks-3" class="xref">Connectivity Checks</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.3">
<p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>. <a href="#name-keepalives" class="xref">Keepalives</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.4">
<p id="section-toc.1-1.5.2.4.1"><a href="#section-5.4" class="xref">5.4</a>. <a href="#name-nat-traversal-mode-paramete" class="xref">NAT Traversal Mode Parameter</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.5">
<p id="section-toc.1-1.5.2.5.1"><a href="#section-5.5" class="xref">5.5</a>. <a href="#name-connectivity-check-transact" class="xref">Connectivity Check Transaction Pacing Parameter</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.6">
<p id="section-toc.1-1.5.2.6.1"><a href="#section-5.6" class="xref">5.6</a>. <a href="#name-relay-and-registration-para" class="xref">Relay and Registration Parameters</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.7">
<p id="section-toc.1-1.5.2.7.1"><a href="#section-5.7" class="xref">5.7</a>. <a href="#name-locator_set-parameter" class="xref">LOCATOR_SET Parameter</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.8">
<p id="section-toc.1-1.5.2.8.1"><a href="#section-5.8" class="xref">5.8</a>. <a href="#name-relay_hmac-parameter" class="xref">RELAY_HMAC Parameter</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.9">
<p id="section-toc.1-1.5.2.9.1"><a href="#section-5.9" class="xref">5.9</a>. <a href="#name-registration-types" class="xref">Registration Types</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.10">
<p id="section-toc.1-1.5.2.10.1"><a href="#section-5.10" class="xref">5.10</a>. <a href="#name-notify-packet-types" class="xref">Notify Packet Types</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.11">
<p id="section-toc.1-1.5.2.11.1"><a href="#section-5.11" class="xref">5.11</a>. <a href="#name-esp-data-packets" class="xref">ESP Data Packets</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.12">
<p id="section-toc.1-1.5.2.12.1"><a href="#section-5.12" class="xref">5.12</a>. <a href="#name-relayed_address-and-mapped_" class="xref">RELAYED_ADDRESS and MAPPED_ADDRESS Parameters</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.13">
<p id="section-toc.1-1.5.2.13.1"><a href="#section-5.13" class="xref">5.13</a>. <a href="#name-peer_permission-parameter" class="xref">PEER_PERMISSION Parameter</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.14">
<p id="section-toc.1-1.5.2.14.1"><a href="#section-5.14" class="xref">5.14</a>. <a href="#name-hip-connectivity-check-pack" class="xref">HIP Connectivity Check Packets</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5.2.15">
<p id="section-toc.1-1.5.2.15.1"><a href="#section-5.15" class="xref">5.15</a>. <a href="#name-nominate-parameter" class="xref">NOMINATE Parameter</a></p>
</li>
</ul>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-iab-considerations" class="xref">IAB Considerations</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
<ul class="ulEmpty compact ulBare toc">
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>. <a href="#name-privacy-considerations" class="xref">Privacy Considerations</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>. <a href="#name-opportunistic-mode" class="xref">Opportunistic Mode</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.7.2.3">
<p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="xref">7.3</a>. <a href="#name-base-exchange-replay-protec" class="xref">Base Exchange Replay Protection for Control Relay Server</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.7.2.4">
<p id="section-toc.1-1.7.2.4.1"><a href="#section-7.4" class="xref">7.4</a>. <a href="#name-demultiplexing-different-hi" class="xref">Demultiplexing Different HIP Associations</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.7.2.5">
<p id="section-toc.1-1.7.2.5.1"><a href="#section-7.5" class="xref">7.5</a>. <a href="#name-reuse-of-ports-at-the-data-" class="xref">Reuse of Ports at the Data Relay Server</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.7.2.6">
<p id="section-toc.1-1.7.2.6.1"><a href="#section-7.6" class="xref">7.6</a>. <a href="#name-amplification-attacks" class="xref">Amplification Attacks</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.7.2.7">
<p id="section-toc.1-1.7.2.7.1"><a href="#section-7.7" class="xref">7.7</a>. <a href="#name-attacks-against-connectivit" class="xref">Attacks against Connectivity Checks and Candidate Gathering</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.7.2.8">
<p id="section-toc.1-1.7.2.8.1"><a href="#section-7.8" class="xref">7.8</a>. <a href="#name-cross-protocol-attacks" class="xref">Cross-Protocol Attacks</a></p>
</li>
</ul>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-references" class="xref">References</a></p>
<ul class="ulEmpty compact ulBare toc">
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.9.2.1">
<p id="section-toc.1-1.9.2.1.1"><a href="#section-9.1" class="xref">9.1</a>. <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.9.2.2">
<p id="section-toc.1-1.9.2.2.1"><a href="#section-9.2" class="xref">9.2</a>. <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#appendix-A" class="xref">Appendix A</a>. <a href="#name-selecting-a-value-for-check" class="xref">Selecting a Value for Check Pacing</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#appendix-B" class="xref">Appendix B</a>. <a href="#name-differences-with-respect-to" class="xref">Differences with Respect to ICE</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#appendix-C" class="xref">Appendix C</a>. <a href="#name-differences-to-base-exchang" class="xref">Differences to Base Exchange and UPDATE Procedures</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#appendix-D" class="xref">Appendix D</a>. <a href="#name-multihoming-considerations" class="xref">Multihoming Considerations</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#appendix-E" class="xref">Appendix E</a>. <a href="#name-dns-considerations" class="xref">DNS Considerations</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.15">
<p id="section-toc.1-1.15.1"><a href="#appendix-F" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.16">
<p id="section-toc.1-1.16.1"><a href="#appendix-G" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a></p>
</li>
<li class="ulEmpty ulBare compact toc" id="section-toc.1-1.17">
<p id="section-toc.1-1.17.1"><a href="#appendix-H" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="sec_intro">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1"> The Host Identity Protocol (HIP) <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span> is specified to run directly on top of IPv4 or
IPv6. However, many middleboxes found in the Internet, such as NATs and
firewalls, often allow only UDP or TCP traffic to pass <span>[<a href="#RFC5207" class="xref">RFC5207</a>]</span>. Also, NATs usually require the host
behind a NAT to create a forwarding state in the NAT before other hosts
outside of the NAT can contact the host behind the NAT. To overcome this
problem, different methods, commonly referred to as NAT traversal
techniques, have been developed.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">As one solution, the HIP experiment report <span>[<a href="#RFC6538" class="xref">RFC6538</a>]</span> mentions Teredo-based NAT traversal for HIP and
related Encapsulating Security Payload (ESP) traffic (with double
tunneling overhead). Another solution is specified in <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>, which will be referred to as
"Legacy ICE-HIP" in this document. The experimental Legacy ICE-HIP
specification combines the Interactive Connectivity Establishment (ICE)
protocol (originally <span>[<a href="#RFC5245" class="xref">RFC5245</a>]</span>) with HIP so that
basically, ICE is responsible for NAT traversal and connectivity
testing, while HIP is responsible for end-host authentication and IPsec
key management. The resulting protocol uses HIP, Session Traversal
Utilities for NAT (STUN), and ESP messages tunneled over a single UDP
flow. The benefit of using ICE and its STUN / Traversal Using Relays
around NAT (TURN) messaging formats is
that one can reuse the NAT traversal infrastructure already available
in the Internet, such as STUN and TURN servers. Also, some middleboxes
may be STUN aware and may be able to do something "smart" when they see
STUN being used for NAT traversal.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">HIP poses a unique challenge to using standard ICE, not only due to
kernel-space dependencies of HIP, but also due to its close integration
with kernel-space IPsec; and, while <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span> provides a technically workable path, HIP incurs
unacceptable performance drawbacks for kernel-space
implementations. Also, implementing and integrating a full ICE/STUN/TURN
protocol stack as specified in Legacy ICE-HIP results in a considerable
amount of effort and code, which could be avoided by reusing and
extending HIP messages and state machines for the same purpose. Thus,
this document specifies an alternative NAT traversal mode referred to as
"Native ICE-HIP" that employs the HIP messaging format instead of STUN
or TURN for the connectivity checks, keepalives, and data relaying.
Native ICE-HIP also specifies how mobility management works in the
context of NAT traversal, which is missing from the Legacy ICE-HIP
specification. The native specification is also based on HIPv2, whereas
the legacy specification is based on HIPv1. The differences to Legacy
ICE-HIP are further elaborated in <a href="#sec_ice_diff" class="xref">Appendix B</a>.<a href="#section-1-3" class="pilcrow">¶</a></p>
<p id="section-1-4">Similar to Legacy ICE-HIP, this specification builds on the HIP
registration extensions <span>[<a href="#RFC8003" class="xref">RFC8003</a>]</span> and
the base exchange procedure <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>
and its closing procedures; therefore, the reader is recommended to get
familiar with the relevant specifications. In a nutshell, the
registration extensions allow a HIP Initiator (usually a "client" host)
to ask for specific services from a HIP Responder (usually a "server"
host). The registration parameters are included in a base exchange,
which is essentially a four-way Diffie-Hellman key exchange
authenticated using the public keys of the end hosts. When the hosts
negotiate support for ESP <span>[<a href="#RFC7402" class="xref">RFC7402</a>]</span>
during the base exchange, they can deliver ESP-protected application
payload to each other. When either of the hosts moves and changes its
IP address, the two hosts re-establish connectivity using the mobility
extensions <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span>. The reader is also
recommended to get familiar with the mobility extensions; basically,
the process is a three-way procedure where the mobile host first
announces its new location to the peer; then, the peer tests
for connectivity (the so-called return routability check); and then, the
mobile host must respond to the announcement in order to activate its
new location. This specification builds on the mobility procedures, but
modifies them to be compatible with ICE. The differences in the mobility
extensions are specified in <a href="#sec_hip_diff" class="xref">Appendix C</a>. It is worth noting that multihoming support as
specified in <span>[<a href="#RFC8047" class="xref">RFC8047</a>]</span> is left for
further study.<a href="#section-1-4" class="pilcrow">¶</a></p>
<p id="section-1-5">This specification builds heavily on the ICE methodology, so it is
recommended that the reader is familiar with the ICE specification <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span> (especially the overview). However,
Native ICE-HIP does not implement all the features in ICE; hence,
the different features of ICE are cross referenced using <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> terminology for clarity. <a href="#sec_ice_diff" class="xref">Appendix B</a> explains the differences to
ICE, and it is recommended that the reader read this section
in addition to the ICE specification.<a href="#section-1-5" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-2">
<h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h2>
<p id="section-2-1">
The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
"<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>",
"<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are
to be interpreted as
described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span>
when, and only when, they appear in all capitals, as shown here.<a href="#section-2-1" class="pilcrow">¶</a></p>
<p id="section-2-2">This document borrows terminology from <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>, <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>, <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span>, <span>[<a href="#RFC9063" class="xref">RFC9063</a>]</span>, <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>, and <span>[<a href="#RFC8489" class="xref">RFC8489</a>]</span>. The following terms recur in the text:<a href="#section-2-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="section-2-3">
<dt id="section-2-3.1">ICE:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.2">Interactive Connectivity Establishment (ICE) protocol as specified
in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>.<a href="#section-2-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.3">Legacy ICE-HIP:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.4">Refers to the "Basic Host Identity Protocol (HIP) Extensions for
Traversal of Network Address Translators" as specified in <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>. The protocol specified in this
document offers an alternative to Legacy ICE-HIP.<a href="#section-2-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.5">Native ICE-HIP:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.6">The protocol specified in this document (Native NAT Traversal Mode
for HIP).<a href="#section-2-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.7">Initiator:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.8">The host that initiates the base exchange using
I1 message <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>.<a href="#section-2-3.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.9">Responder:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.10"> The host that receives the I1 packet from the
Initiator <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>.<a href="#section-2-3.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.11">Control Relay Server</dt>
<dd style="margin-left: 1.5em" id="section-2-3.12">A registrar host that forwards any kind of HIP control plane
packets between the Initiator and the Responder. This host is critical
because it relays the locators between the Initiator and the
Responder so that they can try to establish a direct communication
path with each other. This host is used to replace HIP Rendezvous
Servers <span>[<a href="#RFC8004" class="xref">RFC8004</a>]</span> for hosts operating
in private address realms. In the Legacy ICE-HIP specification <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>, this host is denoted as "HIP
Relay Server".<a href="#section-2-3.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.13">Control Relay Client:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.14">A requester host that registers to a Control Relay Server
requesting it to forward control plane traffic (i.e., HIP control
messages). In the Legacy ICE-HIP specification <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>, this is denoted as "HIP Relay Client".<a href="#section-2-3.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.15">Data Relay Server:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.16">A new entity introduced in this document; a registrar host that
forwards HIP related data plane packets, such as Encapsulating
Security Payload (ESP) <span>[<a href="#RFC7402" class="xref">RFC7402</a>]</span>,
between two hosts. This host implements similar functionality as TURN
servers.<a href="#section-2-3.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.17">Data Relay Client:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.18">A requester host that registers to a Data Relay Server requesting
it to forward data plane traffic (e.g. ESP traffic). This
functionality is a new and introduced in this document.<a href="#section-2-3.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.19">Locator:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.20">
<p id="section-2-3.20.1">As defined in <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span>: "A
name that controls how the packet is routed through the network and
demultiplexed by the end host. It may include a concatenation of
traditional network addresses such as an IPv6 address and end-to-end
identifiers such as an ESP SPI. It may also include transport port
numbers or IPv6 Flow Labels as demultiplexing context, or it may
simply be a network address."<a href="#section-2-3.20.1" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.21">LOCATOR_SET (written in capital letters):</dt>
<dd style="margin-left: 1.5em" id="section-2-3.22">Denotes a HIP control packet parameter that bundles multiple
locators together <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span>.<a href="#section-2-3.22" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.23">HIP offer:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.24">Before two end hosts can establish a communication channel using
the NAT traversal procedures defined in this document, they need to
exchange their locators (i.e., candidates) with each other. In ICE,
this procedure is called Candidate Exchange; it does not specify how
the candidates are exchanged, but Session Description Protocol (SDP)
"offer/answer" is mentioned as an example. In contrast, the Candidate
Exchange in HIP is the base exchange itself or a subsequent UPDATE
procedure occurring after a handover. Following <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span> and SDP-related naming conventions <span>[<a href="#RFC3264" class="xref">RFC3264</a>]</span>, "HIP offer" is the Initiator's
LOCATOR_SET parameter in a HIP I2 or in an UPDATE control packet.<a href="#section-2-3.24" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.25">HIP answer:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.26"> The Responder's LOCATOR_SET parameter in a HIP R2 or UPDATE
control packet. The HIP answer corresponds to the SDP answer parameter <span>[<a href="#RFC3264" class="xref">RFC3264</a>]</span> but is HIP specific. Please refer
also to the longer description of the "HIP offer" term above.<a href="#section-2-3.26" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.27">HIP connectivity checks:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.28"> In order to obtain a direct end-to-end communication path
(without employing a Data Relay Server), two communicating HIP hosts
try to "punch holes" through their NAT boxes using this mechanism. It
is similar to the ICE connectivity checks but implemented using HIP
return routability checks.<a href="#section-2-3.28" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.29">Controlling host:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.30">The controlling host <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span> is
always the Initiator in the context of this specification. It
nominates the candidate pair to be used with the controlled host.<a href="#section-2-3.30" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.31">Controlled host:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.32">The controlled host <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span> is
always the Responder in the context of this specification. It waits
for the controlling host to nominate an address candidate pair.<a href="#section-2-3.32" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.33">Checklist:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.34">A list of address candidate pairs that need to be tested for
connectivity (same as in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>).<a href="#section-2-3.34" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.35">Transport address:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.36">Transport-layer port and the corresponding IPv4/v6 address (same
as in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>).<a href="#section-2-3.36" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.37">Candidate:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.38">A transport address that is a potential point of contact for
receiving data (same as in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>).<a href="#section-2-3.38" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.39">Host candidate:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.40">A candidate obtained by binding to a specific port from an IP
address on the host (same as in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>).<a href="#section-2-3.40" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.41">Server-reflexive candidate:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.42">A translated transport address of a host as observed by a Control
or Data Relay Server (same as in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>).<a href="#section-2-3.42" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.43">Peer-reflexive candidate:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.44">A translated transport address of a host as observed by its peer
(same as in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>).<a href="#section-2-3.44" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.45">Relayed candidate:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.46">A transport address that exists on a Data Relay Server. Packets
that arrive at this address are relayed towards the Data Relay
Client. The concept is the same as in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>, but a Data Relay Server is used instead of a TURN
server.<a href="#section-2-3.46" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.47">Permission:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.48">In the context of Data Relay Server, permission refers to a
concept similar to TURN's <span>[<a href="#RFC8656" class="xref">RFC8656</a>]</span>
channels. Before a host can use a relayed candidate to forward traffic
through a Data Relay Server, the host must activate the relayed
candidate with a specific peer host.<a href="#section-2-3.48" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-3.49">Base:</dt>
<dd style="margin-left: 1.5em" id="section-2-3.50">Similar to that described in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>, the
base of a candidate is the local source address a host uses to send
packets for the associated candidate. For example, the base of a
server-reflexive address is the local address the host used for
registering itself to the associated Control or Data Relay Server. The
base of a host candidate is equal to the host candidate itself.<a href="#section-2-3.50" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-3">
<h2 id="name-overview-of-operation">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-overview-of-operation" class="section-name selfRef">Overview of Operation</a>
</h2>
<span id="name-example-network-configurati"></span><div id="fig_overview">
<figure id="figure-1">
<div class="artwork art-text alignCenter" id="section-3-1.1">
<pre>
+--------------+
| Control |
+--------+ | Relay Server | +--------+
| Data | +----+-----+---+ | Data |
| Relay | / \ | Relay |
| Server | / \ | Server |
+--------+ / \ +--------+
/ \
/ \
/ \
/ <- Signaling -> \
/ \
+-------+ +-------+
| NAT | | NAT |
+-------+ +-------+
/ \
/ \
+-------+ +-------+
| Init- | | Resp- |
| iator | | onder |
+-------+ +-------+
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-example-network-configurati" class="selfRef">Example Network Configuration</a>
</figcaption></figure>
</div>
<p id="section-3-2"> In the example configuration depicted in <a href="#fig_overview" class="xref">Figure 1</a>, both Initiator and Responder are behind one or more
NATs, and both private networks are connected to the public Internet. To
be contacted from behind a NAT, at least the Responder must be
registered with a Control Relay Server reachable on the public
Internet. The Responder may have also registered to a Data Relay Server
that can forward the data plane in case NAT traversal fails. While,
strictly speaking, the Initiator does not need a Data Relay Server, it
may act in the other role with other hosts; connectivity with the
Data Relay Server of the Responder may fail, so the Initiator may also
need to register to a Control and/or Data Relay Server. It is worth
noting that a Control and Data Relay does not forge the source address
of a passing packet but always translates the source address and source
port of a packet to be forwarded (to its own).<a href="#section-3-2" class="pilcrow">¶</a></p>
<p id="section-3-3">We assume, as a starting point, that the Initiator knows both the
Responder's Host Identity Tag (HIT) and the address(es) of the
Responder's Control Relay Server(s) (how the Initiator learns of the
Responder's Control Relay Server is outside of the scope of this
document, but it may be learned through DNS or another name service). The first
steps are for both the Initiator and Responder to register with a
Control Relay Server (need not be the same one) and gather a set of
address candidates. The hosts use either Control Relay Servers or Data
Relay Servers for gathering the candidates. Next, the HIP base exchange
is carried out by encapsulating the HIP control packets in UDP datagrams
and sending them through the Responder's Control Relay Server. As part
of the base exchange, each HIP host learns of the peer's candidate
addresses through the HIP offer/answer procedure embedded in the base
exchange.<a href="#section-3-3" class="pilcrow">¶</a></p>
<p id="section-3-4"> Once the base exchange is completed, two HIP hosts have established
a working communication session (for signaling) via a Control Relay
Server, but the hosts still have to find a better path, preferably
without a Data Relay Server, for the ESP data flow. For this,
connectivity checks are carried out until a working pair of addresses is
discovered. At the end of the procedure, if successful, the hosts will
have established a UDP-based tunnel that traverses both NATs with the
data flowing directly from NAT to NAT or via a Data Relay Server. At
this point, the HIP signaling can also be sent over the same
address/port pair, and is demultiplexed (or, in other words, separated)
from IPsec as described in the UDP encapsulation standard for IPsec
<span>[<a href="#RFC3948" class="xref">RFC3948</a>]</span>. Finally, the two hosts send
NAT keepalives as needed in order keep their UDP-tunnel state active in
the associated NAT boxes.<a href="#section-3-4" class="pilcrow">¶</a></p>
<p id="section-3-5"> If either one of the hosts knows that it is not behind a NAT, hosts
can negotiate during the base exchange a different mode of NAT traversal
that does not use HIP connectivity checks, but only UDP encapsulation of
HIP and ESP. Also, it is possible for the Initiator to simultaneously try
a base exchange with and without UDP encapsulation. If a base exchange
without UDP encapsulation succeeds, no HIP connectivity checks or UDP
encapsulation of ESP are needed.<a href="#section-3-5" class="pilcrow">¶</a></p>
</section>
<div id="sec_protocol">
<section id="section-4">
<h2 id="name-protocol-description">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-protocol-description" class="section-name selfRef">Protocol Description</a>
</h2>
<p id="section-4-1"> This section describes the normative behavior of the "Native
ICE-HIP" protocol extension. Most of the procedures are similar to what
is defined in <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span> but with
different, or additional, parameter types and values. In addition, a new
type of relaying server, Data Relay Server, is specified. Also, it
should be noted that HIP version 2 <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span> <span class="bcp14">MUST</span> be used instead of HIPv1 with
this NAT traversal mode.<a href="#section-4-1" class="pilcrow">¶</a></p>
<div id="sec_registration">
<section id="section-4.1">
<h3 id="name-relay-registration">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-relay-registration" class="section-name selfRef">Relay Registration</a>
</h3>
<p id="section-4.1-1">In order for two hosts to communicate over NATed environments,
they need a reliable way to exchange information. To achieve this,
"HIP Relay Server" is defined in <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>. It supports the relaying of HIP control plane traffic
over UDP in NATed environments and forwards HIP control packets
between the Initiator and the Responder. In this document, the HIP
Relay Server is denoted as "Control Relay Server" for better alignment
with the rest of the terminology. The registration to the Control
Relay Server can be achieved using the RELAY_UDP_HIP parameter as
explained later in this section.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">To also guarantee data plane delivery over varying types of NAT
devices, a host <span class="bcp14">MAY</span> also register for UDP-encapsulated
ESP relaying using Registration Type RELAY_UDP_ESP (value 3). This service may be coupled with the Control Relay Server
or offered separately on another server. If the server supports
relaying of UDP-encapsulated ESP, the host is allowed to register for
a data-relaying service using the registration extensions in <span><a href="https://www.rfc-editor.org/rfc/rfc8003#section-3.3" class="relref">Section 3.3</a> of [<a href="#RFC8003" class="xref">RFC8003</a>]</span>. If the server
has sufficient relaying resources (free port numbers, bandwidth, etc.)
available, it opens a UDP port on one of its addresses and signals the
address and port to the registering host using the RELAYED_ADDRESS
parameter (as defined in <a href="#sec_relayed_address" class="xref">Section 5.12</a> in this document). If the Data Relay Server would
accept the data-relaying request but does not currently have enough
resources to provide data-relaying service, it <span class="bcp14">MUST</span>
reject the request with Failure Type "Insufficient resources" <span>[<a href="#RFC8003" class="xref">RFC8003</a>]</span>.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">The registration process follows the generic registration
extensions defined in <span>[<a href="#RFC8003" class="xref">RFC8003</a>]</span>. The
HIP control plane relaying registration follows <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>, but the data plane registration is different. It
is worth noting that if the HIP control and data plane relay services
reside on different hosts, the client has to register separately to
each of them. In the example shown in <a href="#fig_reg" class="xref">Figure 2</a>, the two services are coupled on a single host. The
text uses "Relay Client" and "Relay Server" as a shorthand when the
procedures apply both to control and data cases.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<span id="name-example-registration-with-a"></span><div id="fig_reg">
<figure id="figure-2">
<div class="artwork art-text alignCenter" id="section-4.1-4.1">
<pre>
Control/Data Control/Data
Relay Client (Initiator) Relay Server (Responder)
| 1. UDP(I1) |
+---------------------------------------------------------------->|
| |
| 2. UDP(R1(REG_INFO(RELAY_UDP_HIP,[RELAY_UDP_ESP]))) |
|<----------------------------------------------------------------+
| |
| 3. UDP(I2(REG_REQ(RELAY_UDP_HIP),[RELAY_UDP_ESP])) |
+---------------------------------------------------------------->|
| |
| 4. UDP(R2(REG_RES(RELAY_UDP_HIP,[RELAY_UDP_ESP]), REG_FROM, |
| [RELAYED_ADDRESS])) |
|<----------------------------------------------------------------+
| |
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-example-registration-with-a" class="selfRef">Example Registration with a HIP Relay</a>
</figcaption></figure>
</div>
<p id="section-4.1-5"> In step 1, the Relay Client (Initiator) starts the registration
procedure by sending an I1 packet over UDP to the Relay Server. It is
<span class="bcp14">RECOMMENDED</span> that the Relay Client select a random
source port number from the ephemeral port range 49152-65535 for
initiating a base exchange. Alternatively, a host <span class="bcp14">MAY</span>
also use a single fixed port for initiating all outgoing
connections. However, the allocated port <span class="bcp14">MUST</span> be
maintained until all of the corresponding HIP associations are
closed. It is <span class="bcp14">RECOMMENDED</span> that the Relay Server listen
to incoming connections at UDP port 10500. If some other port number
is used, it needs to be known by potential Relay Clients.<a href="#section-4.1-5" class="pilcrow">¶</a></p>
<p id="section-4.1-6"> In step 2, the Relay Server (Responder) lists the services that it
supports in the R1 packet. The support for HIP control plane over UDP
relaying is denoted by the Registration Type value RELAY_UDP_HIP (see
<a href="#sec_reg-types" class="xref">Section 5.9</a>). If the server also
supports the relaying of ESP traffic over UDP, it also includes
the Registration Type value RELAY_UDP_ESP.<a href="#section-4.1-6" class="pilcrow">¶</a></p>
<p id="section-4.1-7"> In step 3, the Relay Client selects the services for which it
registers and lists them in the REG_REQ parameter. The Relay Client
registers for the Control Relay service by listing the RELAY_UDP_HIP
value in the request parameter. If the Relay Client also requires ESP
relaying over UDP, it lists also RELAY_UDP_ESP.<a href="#section-4.1-7" class="pilcrow">¶</a></p>
<p id="section-4.1-8"> In step 4, the Relay Server concludes the registration procedure
with an R2 packet and acknowledges the registered services in the
REG_RES parameter. The Relay Server denotes unsuccessful registrations
(if any) in the REG_FAILED parameter of R2. The Relay Server also
includes a REG_FROM parameter that contains the transport address of
the Relay Client as observed by the Relay Server (server-reflexive
candidate). If the Relay Client registered to ESP-relaying service,
the Relay Server includes a RELAYED_ADDRESS parameter that describes the
UDP port allocated to the Relay Client for ESP relaying. It is worth
noting that the Data Relay Client must first activate this UDP port by
sending an UPDATE message to the Data Relay Server that includes a
PEER_PERMISSION parameter as described in <a href="#sec_forwarding" class="xref">Section 4.12.1</a> both after base exchange
and handover procedures. Also, the Data Relay Server should follow the
port allocation recommendations in <a href="#sec_reuse" class="xref">Section 7.5</a>.<a href="#section-4.1-8" class="pilcrow">¶</a></p>
<p id="section-4.1-9">After the registration, the Relay Client periodically sends NAT
keepalives to the Relay Server in order to keep the NAT bindings
between the Relay Client and the relay alive. The keepalive extensions
are described in <a href="#sec_nat-keepalives" class="xref">Section 4.10</a>.<a href="#section-4.1-9" class="pilcrow">¶</a></p>
<p id="section-4.1-10"> The Data Relay Client <span class="bcp14">MUST</span> maintain an active HIP
association with the Data Relay Server as long as it requires the
data-relaying service. When the HIP association is closed (or times
out), or the registration lifetime passes without the Data Relay
Client refreshing the registration, the Data Relay Server
<span class="bcp14">MUST</span> stop relaying packets for that host and close the
corresponding UDP port (unless other Data Relay Clients are still
using it).<a href="#section-4.1-10" class="pilcrow">¶</a></p>
<p id="section-4.1-11"> The Data Relay Server <span class="bcp14">SHOULD</span> offer a different
relayed address and port for each Data Relay Client because not doing
so can cause problems with stateful firewalls (see <a href="#sec_reuse" class="xref">Section 7.5</a>).<a href="#section-4.1-11" class="pilcrow">¶</a></p>
<p id="section-4.1-12">When a Control Relay Client sends an UPDATE (e.g., due to host
movement or to renew service registration), the Control Relay Server
<span class="bcp14">MUST</span> follow the general guidelines defined in <span>[<a href="#RFC8003" class="xref">RFC8003</a>]</span>, with the difference that all
UPDATE messages are delivered on top of UDP. In addition to this, the
Control Relay Server <span class="bcp14">MUST</span> include the REG_FROM
parameter in all UPDATE responses sent to the Control Relay Client.
This applies to both renewals of service registration and to host
movement. It is especially important for the case of host
movement, as this is the mechanism that allows the Control Relay
Client to learn its new server-reflexive address candidate.<a href="#section-4.1-12" class="pilcrow">¶</a></p>
<p id="section-4.1-13">A Data Relay Client can request multiple relayed candidates from
the Data Relay Server (e.g., for the reasons described in <a href="#sec_conflicting" class="xref">Section 4.12.3</a>). After the base exchange
with registration, the Data Relay Client can request additional
relayed candidates similarly as during the base exchange. The Data
Relay Client sends an UPDATE message REG_REQ parameter requesting for
the RELAY_UDP_ESP service. The UPDATE message <span class="bcp14">MUST</span> also
include a SEQ and an ECHO_REQUEST_SIGNED parameter. The Data Relay
Server <span class="bcp14">MUST</span> respond with an UPDATE message that
includes the corresponding response parameters: REG_RES, ACK and
ECHO_REQUEST_SIGNED. In case the Data Relay Server allocated a new
relayed UDP port for the Data Relay Client, the REG_RES parameter
<span class="bcp14">MUST</span> list RELAY_UDP_ESP as a service and the UPDATE
message <span class="bcp14">MUST</span> also include a RELAYED_ADDRESS parameter
describing the relayed UDP port. The Data Relay Server
<span class="bcp14">MUST</span> also include the server-reflexive candidate in a
REG_FROM parameter. It is worth mentioning that the Data Relay Client
<span class="bcp14">MUST</span> activate the UDP port as described in <a href="#sec_forwarding" class="xref">Section 4.12.1</a> before it can be used for
any ESP relaying.<a href="#section-4.1-13" class="pilcrow">¶</a></p>
<p id="section-4.1-14">A Data Relay Client may unregister a relayed candidate in
two ways. It can wait for its lifetime to expire or it can
explicitly request it with zero lifetime using the UPDATE
mechanism. The Data Relay Client can send a REG_REQ parameter
with zero lifetime to the Data Relay Server in order to expire
all relayed candidates. To expire a specific relayed
candidate, the Data Relay Client <span class="bcp14">MUST</span> also include
a RELAYED_ADDRESS parameter as sent by the server in the UPDATE
message. Upon closing the HIP association (CLOSE-CLOSE-ACK
procedure initiated by either party), the Data Relay Server
<span class="bcp14">MUST</span> also expire all relayed candidates.<a href="#section-4.1-14" class="pilcrow">¶</a></p>
<p id="section-4.1-15">Please also refer to <a href="#sec_cross_protocol" class="xref">Section 7.8</a> for protection against cross-protocol attacks for
both Control Relay Client and Server.<a href="#section-4.1-15" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_gathering">
<section id="section-4.2">
<h3 id="name-transport-address-candidate">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-transport-address-candidate" class="section-name selfRef">Transport Address Candidate Gathering at the Relay Client</a>
</h3>
<p id="section-4.2-1"> An Initiator needs to gather a set of address candidates
before contacting a (non-relay) Responder. The candidates are
needed for connectivity checks that allow two hosts to
discover a direct, non-relayed path for communicating with
each other. One server-reflexive candidate can be discovered
during the registration with the Control Relay Server from the
REG_FROM parameter (and another from Data Relay Server if one
is employed).<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2-2"> The candidate gathering can be done at any time, but it needs to be
done before sending an I2 or R2 in the base exchange if ICE-HIP-UDP mode is to be
used for the connectivity checks. It is <span class="bcp14">RECOMMENDED</span> that all three
types of candidates (host, server reflexive, and relayed) are gathered
to maximize the probability of successful NAT traversal. However, if no
Data Relay Server is used, and the host has only a single local IP address to
use, the host <span class="bcp14">MAY</span> use the local address as the only host candidate and
the address from the REG_FROM parameter discovered during the Control Relay Server
registration as a server-reflexive candidate. In this case, no further
candidate gathering is needed.<a href="#section-4.2-2" class="pilcrow">¶</a></p>
<p id="section-4.2-3">A Data Relay Client <span class="bcp14">MAY</span> register only a single
relayed candidate that it uses with multiple other peers. However, it
is <span class="bcp14">RECOMMENDED</span> that a Data Relay Client registers a new
server relayed candidate for each of its peers for the reasons
described in <a href="#sec_conflicting" class="xref">Section 4.12.3</a>. The
procedures for registering multiple relayed candidates are described
in <a href="#sec_registration" class="xref">Section 4.1</a>.<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<p id="section-4.2-4"> If a Relay Client has more than one network interface, it
can discover additional server-reflexive candidates by sending
UPDATE messages from each of its interfaces to the Relay
Server. Each such UPDATE message <span class="bcp14">MUST</span> include the following
parameters: the registration request (REG_REQ) parameter with
Registration Type CANDIDATE_DISCOVERY (value 4)
and the ECHO_REQUEST_SIGNED parameter. When a Control Relay Server
receives an UPDATE message with registration request
containing a CANDIDATE_DISCOVERY type, it <span class="bcp14">MUST</span> include a
REG_FROM parameter, containing the same information as if this
were a Control Relay Server registration, to the response (in
addition to the mandatory ECHO_RESPONSE_SIGNED parameter). This request
type <span class="bcp14">SHOULD NOT</span> create any state at the Control Relay
Server.<a href="#section-4.2-4" class="pilcrow">¶</a></p>
<p id="section-4.2-5">The rules in <span><a href="https://www.rfc-editor.org/rfc/rfc8445#section-5.1.1" class="relref">Section 5.1.1</a> of [<a href="#RFC8445" class="xref">RFC8445</a>]</span> for candidate gathering are followed here. A number
of host candidates (loopback, anycast and others) should be excluded as
described in the ICE specification (<span><a href="https://www.rfc-editor.org/rfc/rfc8445#section-5.1.1.1" class="relref">Section 5.1.1.1</a> of [<a href="#RFC8445" class="xref">RFC8445</a>]</span>). Relayed candidates
<span class="bcp14">SHOULD</span> be gathered in order to guarantee successful NAT
traversal, and implementations <span class="bcp14">SHOULD</span> support this
functionality even if it will not be used in deployments in order to
enable it by software configuration update if needed at some point.
Similarly, as explained in the ICE specification (<span><a href="https://www.rfc-editor.org/rfc/rfc8445#section-5.1.1.2" class="relref">Section 5.1.1.2</a> of [<a href="#RFC8445" class="xref">RFC8445</a>]</span>), if an
IPv6-only host is in a network that utilizes NAT64 <span>[<a href="#RFC6146" class="xref">RFC6146</a>]</span> and DNS64 <span>[<a href="#RFC6147" class="xref">RFC6147</a>]</span> technologies, it may also gather IPv4
server-reflexive and/or relayed candidates from IPv4-only Control or
Data Relay Servers. IPv6-only hosts <span class="bcp14">SHOULD</span> also
utilize IPv6 prefix discovery <span>[<a href="#RFC7050" class="xref">RFC7050</a>]</span> to discover the IPv6 prefix used by NAT64 (if any)
and generate server-reflexive candidates for each IPv6-only interface,
accordingly. The NAT64 server-reflexive candidates are prioritized
like IPv4 server-reflexive candidates.<a href="#section-4.2-5" class="pilcrow">¶</a></p>
<p id="section-4.2-6">HIP-based connectivity can be utilized by IPv4 applications using
Local Scope Identifiers (LSIs) and by IPv6-based applications using
HITs. The LSIs and HITs of the local virtual interfaces
<span class="bcp14">MUST</span> be excluded in the candidate gathering phase as
well to avoid creating unnecessary loopback connectivity tests.<a href="#section-4.2-6" class="pilcrow">¶</a></p>
<p id="section-4.2-7">Gathering of candidates <span class="bcp14">MAY</span> also be performed by other
means than described in this section. For example, the candidates could
be gathered as specified in <span><a href="https://www.rfc-editor.org/rfc/rfc5770#section-4.2" class="relref">Section 4.2</a> of [<a href="#RFC5770" class="xref">RFC5770</a>]</span> if STUN servers are available, or if
the host has just a single interface and no STUN or Data Relay Server
are available.<a href="#section-4.2-7" class="pilcrow">¶</a></p>
<p id="section-4.2-8">Each local address candidate <span class="bcp14">MUST</span> be assigned a
priority. The following recommended formula (as described in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>) <span class="bcp14">SHOULD</span> be
used:<a href="#section-4.2-8" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-4.2-9">
priority = (2<sup>24</sup>)*(type preference) +
(2<sup>8</sup>)*(local preference) +
(2<sup>0</sup>)*(256 - component ID)<a href="#section-4.2-9" class="pilcrow">¶</a></p>
<p id="section-4.2-10">In the formula, the type preference follows the ICE specification
(as defined in <span><a href="https://www.rfc-editor.org/rfc/rfc8445#section-5.1.2.1" class="relref">Section 5.1.2.1</a> of [<a href="#RFC8445" class="xref">RFC8445</a>]</span>): the <span class="bcp14">RECOMMENDED</span> values are 126
for host candidates, 100 for server-reflexive candidates, 110 for
peer-reflexive candidates, and 0 for relayed candidates. The highest
value is 126 (the most preferred) and lowest is 0 (last resort). For
all candidates of the same type, the preference type value
<span class="bcp14">MUST</span> be identical, and, correspondingly, the value
<span class="bcp14">MUST</span> be different for different types. For
peer-reflexive values, the type preference value <span class="bcp14">MUST</span>
be higher than for server-reflexive types. It should be noted that
peer-reflexive values are learned later during connectivity
checks.<a href="#section-4.2-10" class="pilcrow">¶</a></p>
<p id="section-4.2-11">Following the ICE specification, the local preference
<span class="bcp14">MUST</span> be an integer from 0 (lowest preference) to 65535
(highest preference) inclusive. In the case the host has only a single
address candidate, the value <span class="bcp14">SHOULD</span> be 65535. In the
case of multiple candidates, each local preference value
<span class="bcp14">MUST</span> be unique. Dual-stack considerations for IPv6 also
apply here as defined in <span><a href="https://www.rfc-editor.org/rfc/rfc8445#section-5.1.2.2" class="relref">Section 5.1.2.2</a> of [<a href="#RFC8445" class="xref">RFC8445</a>]</span>.<a href="#section-4.2-11" class="pilcrow">¶</a></p>
<p id="section-4.2-12">Unlike with SDP used in conjunction with ICE, this protocol only
creates a single UDP flow between the two communicating hosts, so only
a single component exists. Hence, the component ID value
<span class="bcp14">MUST</span> always be set to 1.<a href="#section-4.2-12" class="pilcrow">¶</a></p>
<p id="section-4.2-13">As defined in <span><a href="https://www.rfc-editor.org/rfc/rfc8445#section-14.3" class="relref">Section 14.3</a> of [<a href="#RFC8445" class="xref">RFC8445</a>]</span>, the retransmission timeout (RTO) for address
gathering from a Control/Data Relay Server <span class="bcp14">SHOULD</span> be
calculated as follows:<a href="#section-4.2-13" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-4.2-14">
RTO = MAX (1000 ms, Ta * (Num-Of-Cands))<a href="#section-4.2-14" class="pilcrow">¶</a></p>
<p id="section-4.2-15">where Ta is the value used for the connectivity check pacing and
Num-Of-Cands is the number of server-reflexive and relay candidates. A
smaller value than 1000 ms for the RTO <span class="bcp14">MUST NOT</span> be
used.<a href="#section-4.2-15" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_nat_traversal_mode">
<section id="section-4.3">
<h3 id="name-nat-traversal-mode-negotiat">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-nat-traversal-mode-negotiat" class="section-name selfRef">NAT Traversal Mode Negotiation</a>
</h3>
<p id="section-4.3-1"> This section describes the usage of a non-critical parameter type
called NAT_TRAVERSAL_MODE with a new mode called ICE-HIP-UDP. The
presence of the new mode in the NAT_TRAVERSAL_MODE parameter in a HIP
base exchange means that the end host supports NAT traversal
extensions described in this document. As the parameter is
non-critical (as defined in <span><a href="https://www.rfc-editor.org/rfc/rfc7401#section-5.2.1" class="relref">Section 5.2.1</a> of [<a href="#RFC7401" class="xref">RFC7401</a>]</span>), it can be ignored by an end host, which means that
the host is not required to support it or may decline to use it.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2"> With registration with a Control/Data Relay Server, it is usually
sufficient to use the UDP-ENCAPSULATION mode of NAT traversal since
the Relay Server is assumed to be in public address space. Thus, the
Relay Server <span class="bcp14">SHOULD</span> propose the UDP-ENCAPSULATION mode
as the preferred or only mode. The NAT traversal mode negotiation in
a HIP base exchange is illustrated in <a href="#fig_nat_traversal_mode" class="xref">Figure 3</a>. It is worth noting
that the Relay Server could be located between the hosts, but is
omitted here for simplicity.<a href="#section-4.3-2" class="pilcrow">¶</a></p>
<span id="name-negotiation-of-nat-traversa"></span><div id="fig_nat_traversal_mode">
<figure id="figure-3">
<div class="artwork art-text alignCenter" id="section-4.3-3.1">
<pre>
Initiator Responder
| 1. UDP(I1) |
+----------------------------------------------------------------->|
| |
| 2. UDP(R1(.., NAT_TRAVERSAL_MODE(ICE-HIP-UDP), ..)) |
|<-----------------------------------------------------------------+
| |
| 3. UDP(I2(.., NAT_TRAVERSAL_MODE(ICE-HIP-UDP), ENC(LOC_SET), ..))|
+----------------------------------------------------------------->|
| |
| 4. UDP(R2(.., ENC(LOC_SET), ..)) |
|<-----------------------------------------------------------------+
| |
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-negotiation-of-nat-traversa" class="selfRef">Negotiation of NAT Traversal Mode</a>
</figcaption></figure>
</div>
<p id="section-4.3-4"> In step 1, the Initiator sends an I1 to the Responder.<a href="#section-4.3-4" class="pilcrow">¶</a></p>
<p id="section-4.3-5">In step 2,
the Responder responds with an R1. As specified in <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>, the NAT_TRAVERSAL_MODE parameter
in R1 contains a list of NAT traversal modes the Responder
supports. The mode specified in this document is ICE-HIP-UDP (value
3).<a href="#section-4.3-5" class="pilcrow">¶</a></p>
<p id="section-4.3-6"> In step 3, the Initiator sends an I2 that includes a
NAT_TRAVERSAL_MODE parameter. It contains the mode selected by the
Initiator from the list of modes offered by the Responder. If
ICE-HIP-UDP mode was selected, the I2 also includes the "Transport
address" locators (as defined in <a href="#sec_locator_format" class="xref">Section 5.7</a>) of the Initiator in a LOCATOR_SET parameter
(denoted here with LOC_SET). With ICE-HIP-UDP mode, the LOCATOR_SET
parameter <span class="bcp14">MUST</span> be encapsulated within an ENCRYPTED
parameter (denoted here with ENC) according to the procedures in
Sections <a href="https://www.rfc-editor.org/rfc/rfc7401#section-5.2.18" class="relref">5.2.18</a> and <a href="https://www.rfc-editor.org/rfc/rfc7401#section-6.5" class="relref">6.5</a> in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>. The locators in I2 are the "HIP offer".<a href="#section-4.3-6" class="pilcrow">¶</a></p>
<p id="section-4.3-7"> In step 4, the Responder concludes the base exchange with an R2
packet. If the Initiator chose ICE-HIP-UDP traversal mode, the
Responder includes a LOCATOR_SET parameter in the R2 packet. With
ICE-HIP-UDP mode, the LOCATOR_SET parameter <span class="bcp14">MUST</span> be
encapsulated within an ENCRYPTED parameter according to the procedures
in Sections <a href="https://www.rfc-editor.org/rfc/rfc7401#section-5.2.18" class="relref">5.2.18</a> and <a href="https://www.rfc-editor.org/rfc/rfc7401#section-6.5" class="relref">6.5</a> in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>. The locators in R2, encoded like the locators in
I2, are the "ICE answer". If the NAT traversal mode selected by the
Initiator is not supported by the Responder, the Responder
<span class="bcp14">SHOULD</span> reply with a NOTIFY packet with type
NO_VALID_NAT_TRAVERSAL_MODE_PARAMETER and abort the base exchange.<a href="#section-4.3-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_check_pacing_neg">
<section id="section-4.4">
<h3 id="name-connectivity-check-pacing-n">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-connectivity-check-pacing-n" class="section-name selfRef">Connectivity Check Pacing Negotiation</a>
</h3>
<p id="section-4.4-1"> As explained in Legacy ICE-HIP <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>, when a NAT
traversal mode with connectivity checks is used, new transactions
should not be started too fast to avoid congestion and overwhelming the
NATs. For this purpose, during the base exchange, hosts can negotiate a
transaction pacing value, Ta, using a TRANSACTION_PACING parameter in
R1 and I2 packets. The parameter contains the minimum time (expressed
in milliseconds) the host would wait between two NAT traversal
transactions, such as starting a new connectivity check or retrying a
previous check. The value that is used by both of the hosts is the higher
of the two offered values.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<p id="section-4.4-2"> The minimum Ta value <span class="bcp14">SHOULD</span> be configurable, and if
no value is configured, a value of 50 ms <span class="bcp14">MUST</span> be
used. Guidelines for selecting a Ta value are given in <a href="#sec_selecting_pacing_value" class="xref">Appendix A</a>. Hosts
<span class="bcp14">MUST NOT</span> use values smaller than 5 ms for the minimum
Ta, since such values may not work well with some NATs (as explained
in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>). The Initiator
<span class="bcp14">MUST NOT</span> propose a smaller value than what the
Responder offered. If a host does not include the TRANSACTION_PACING
parameter in the base exchange, a Ta value of 50 ms
<span class="bcp14">MUST</span> be used as that host's minimum value.<a href="#section-4.4-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_relay_bex">
<section id="section-4.5">
<h3 id="name-base-exchange-via-control-r">
<a href="#section-4.5" class="section-number selfRef">4.5. </a><a href="#name-base-exchange-via-control-r" class="section-name selfRef">Base Exchange via Control Relay Server</a>
</h3>
<p id="section-4.5-1"> This section describes how the Initiator and Responder perform a
base exchange through a Control Relay Server. Connectivity pacing
(denoted as TA_P here) was described in <a href="#sec_check_pacing_neg" class="xref">Section 4.4</a> and is not repeated
here. Similarly, the NAT traversal mode negotiation process (denoted
as NAT_TM in the example) was described in <a href="#sec_nat_traversal_mode" class="xref">Section 4.3</a> and is also not
repeated here. If a Control Relay Server receives an R1 or I2 packet
without the NAT traversal mode parameter, it <span class="bcp14">MUST</span> drop
it and <span class="bcp14">SHOULD</span> send a NOTIFY error packet with type
NO_VALID_NAT_TRAVERSAL_MODE_PARAMETER to the sender of the R1 or
I2.<a href="#section-4.5-1" class="pilcrow">¶</a></p>
<p id="section-4.5-2"> It is <span class="bcp14">RECOMMENDED</span> that the Initiator send an I1 packet
encapsulated in UDP when it is destined to an IP address of the
Responder. Respectively, the Responder <span class="bcp14">MUST</span> respond to such an I1
packet with a UDP-encapsulated R1 packet, and also the rest of the communication
related to the HIP association <span class="bcp14">MUST</span> also use UDP encapsulation.<a href="#section-4.5-2" class="pilcrow">¶</a></p>
<p id="section-4.5-3"><a href="#fig_bex" class="xref">Figure 4</a> illustrates a base
exchange via a Control Relay Server. We assume that the Responder
(i.e., a Control Relay Client) has already registered to the Control
Relay Server. The Initiator may have also registered to another (or
the same Control Relay Server), but the base exchange will traverse
always through the Control Relay Server of the Responder.<a href="#section-4.5-3" class="pilcrow">¶</a></p>
<span id="name-base-exchange-via-a-hip-rel"></span><div id="fig_bex">
<figure id="figure-4">
<div class="artwork art-text alignCenter" id="section-4.5-4.1">
<pre>
Initiator Control Relay Server Responder
| 1. UDP(I1) | |
+--------------------------------->| 2. UDP(I1(RELAY_FROM)) |
| +------------------------------->|
| | |
| | 3. UDP(R1(RELAY_TO, NAT_TM, |
| | TA_P)) |
| 4. UDP(R1(RELAY_TO, NAT_TM, |<-------------------------------+
| TA_P)) | |
|<---------------------------------+ |
| | |
| 5. UDP(I2(ENC(LOC_SET)), | |
| NAT_TM, TA_P)) | |
+--------------------------------->| 6. UDP(I2(ENC(LOC_SET), |
| | RELAY_FROM, NAT_TM, TA_P))|
| +------------------------------->|
| | |
| | 7. UDP(R2(ENC(LOC_SET), |
| 8. UDP(R2(ENC(LOC_SET), | RELAY_TO)) |
| RELAY_TO)) |<-------------------------------+
|<---------------------------------+ |
| | |
</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-base-exchange-via-a-hip-rel" class="selfRef">Base Exchange via a HIP Relay Server</a>
</figcaption></figure>
</div>
<p id="section-4.5-5"> In step 1 of <a href="#fig_bex" class="xref">Figure 4</a>, the
Initiator sends an I1 packet over UDP via the Control Relay Server to
the Responder. In the HIP header, the source HIT belongs to the
Initiator and the destination HIT to the Responder. The Initiator
sends the I1 packet from its IP address to the IP address of the
Control Relay Server over UDP.<a href="#section-4.5-5" class="pilcrow">¶</a></p>
<p id="section-4.5-6"> In step 2, the Control Relay Server receives the I1 packet. If the
destination HIT belongs to a successfully registered Control Relay
Client (i.e., the host marked "Responder" in <a href="#fig_bex" class="xref">Figure 4</a>), the Control Relay Server processes the
packet. Otherwise, the Control Relay Server <span class="bcp14">MUST</span> drop
the packet silently. The Control Relay Server appends a RELAY_FROM
parameter to the I1 packet, which contains the transport source
address and port of the I1 as observed by the Control Relay
Server. The Control Relay Server protects the I1 packet with
RELAY_HMAC, except that the parameter type is different as described
in <a href="#sec_relay-hmac" class="xref">Section 5.8</a>. The Control Relay
Server changes the source and destination ports and IP addresses of
the packet to match the values the Responder used when registering to
the Control Relay Server, i.e., the reverse of the R2 used in the
registration. The Control Relay Server <span class="bcp14">MUST</span> recalculate
the transport checksum and forward the packet to the Responder.<a href="#section-4.5-6" class="pilcrow">¶</a></p>
<p id="section-4.5-7"> In step 3, the Responder receives the I1 packet. The Responder
processes it according to the rules in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>. In addition, the Responder validates the
RELAY_HMAC according to <a href="#sec_relay-hmac" class="xref">Section 5.8</a> and silently drops the packet if the validation
fails. The Responder replies with an R1 packet to which it includes
RELAY_TO and NAT traversal mode parameters. The Responder
<span class="bcp14">MUST</span> include ICE-HIP-UDP in the NAT traversal
modes. The RELAY_TO parameter <span class="bcp14">MUST</span> contain the same
information as the RELAY_FROM parameter, i.e., the Initiator's
transport address, but the type of the parameter is different. The
RELAY_TO parameter is not integrity protected by the signature of the
R1 to allow pre-created R1 packets at the Responder.<a href="#section-4.5-7" class="pilcrow">¶</a></p>
<p id="section-4.5-8"> In step 4, the Control Relay Server receives the R1 packet. The
Control Relay Server drops the packet silently if the source HIT
belongs to a Control Relay Client that has not successfully
registered. The Control Relay Server <span class="bcp14">MAY</span> verify the
signature of the R1 packet and drop it if the signature is
invalid. Otherwise, the Control Relay Server rewrites the source
address and port, and changes the destination address and port to
match RELAY_TO information. Finally, the Control Relay Server
recalculates the transport checksum and forwards the packet.<a href="#section-4.5-8" class="pilcrow">¶</a></p>
<p id="section-4.5-9"> In step 5, the Initiator receives the R1 packet and processes it
according to <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>. The Initiator
<span class="bcp14">MAY</span> use the address in the RELAY_TO parameter as a
local peer-reflexive candidate for this HIP association if it is
different from all known local candidates. The Initiator replies with
an I2 packet that uses the destination transport address of R1 as the
source address and port. The I2 packet contains a LOCATOR_SET
parameter inside an ENCRYPTED parameter that lists all the HIP
candidates (HIP offer) of the Initiator. The candidates are encoded
using the format defined in <a href="#sec_locator_format" class="xref">Section 5.7</a>. The I2 packet <span class="bcp14">MUST</span> also contain a
NAT traversal mode parameter that includes ICE-HIP-UDP mode. The
ENCRYPTED parameter along with its key material generation is
described in detail in Sections <a href="https://www.rfc-editor.org/rfc/rfc7401#section-5.2.18" class="relref">5.2.18</a> and <a href="https://www.rfc-editor.org/rfc/rfc7401#section-6.5" class="relref">6.5</a> in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>.<a href="#section-4.5-9" class="pilcrow">¶</a></p>
<p id="section-4.5-10"> In step 6, the Control Relay Server receives the I2 packet. The
Control Relay Server appends a RELAY_FROM and a RELAY_HMAC to the I2
packet similar to that explained in step 2, and forwards the packet to
the Responder.<a href="#section-4.5-10" class="pilcrow">¶</a></p>
<p id="section-4.5-11"> In step 7, the Responder receives the I2 packet and processes it
according to <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>. The Responder
validates the RELAY_HMAC according to <a href="#sec_relay-hmac" class="xref">Section 5.8</a> and silently drops the packet if the validation
fails. It replies with an R2 packet and includes a RELAY_TO parameter
as explained in step 3. The R2 packet includes a LOCATOR_SET parameter
inside an ENCRYPTED parameter that lists all the HIP candidates (ICE
answer) of the Responder. The RELAY_TO parameter is protected by the
Hashed Message Authentication Code (HMAC). The ENCRYPTED parameter
along with its key material generation is described in detail in
Sections <a href="https://www.rfc-editor.org/rfc/rfc7401#section-5.2.18" class="relref">5.2.18</a> and <a href="https://www.rfc-editor.org/rfc/rfc7401#section-6.5" class="relref">6.5</a> in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>.<a href="#section-4.5-11" class="pilcrow">¶</a></p>
<p id="section-4.5-12"> In step 8, the Control Relay Server processes the R2 as described
in step 4. The Control Relay Server forwards the packet to the
Initiator. After the Initiator has received the R2 and processed it
successfully, the base exchange is completed.<a href="#section-4.5-12" class="pilcrow">¶</a></p>
<p id="section-4.5-13"> Hosts <span class="bcp14">MUST</span> include the address of one or more
Control Relay Servers (including the one that is being used for the
initial signaling) in the LOCATOR_SET parameter in I2 and R2 messages
if they intend to use such servers for relaying HIP signaling
immediately after the base exchange completes. The traffic type of
these addresses <span class="bcp14">MUST</span> be "HIP signaling" (see <a href="#sec_locator_format" class="xref">Section 5.7</a>) and they <span class="bcp14">MUST NOT</span> be used for the connectivity tests described in <a href="#sec_conn_checks" class="xref">Section 4.6</a>. If the Control Relay
Server locator used for relaying the base exchange is not included in
I2 or R2 LOCATOR_SET parameters, it <span class="bcp14">SHOULD NOT</span> be used
after the base exchange. Instead, further HIP signaling
<span class="bcp14">SHOULD</span> use the same path as the data traffic. It is
<span class="bcp14">RECOMMENDED</span> to use the same Control Relay Server
throughout the lifetime of the host association that was used for
forwarding the base exchange if the Responder includes it in the
locator parameter of the R2 message.<a href="#section-4.5-13" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_conn_checks">
<section id="section-4.6">
<h3 id="name-connectivity-checks">
<a href="#section-4.6" class="section-number selfRef">4.6. </a><a href="#name-connectivity-checks" class="section-name selfRef">Connectivity Checks</a>
</h3>
<p id="section-4.6-1">When the Initiator and Responder complete the base exchange through
the Control Relay Server, both of them employ the IP address of the
Control Relay Server as the destination address for the packets. The
address of the Control Relay Server <span class="bcp14">MUST NOT</span> be used as
a destination for data plane traffic unless the server also supports
Data Relay Server functionality, and the Client has successfully
registered to use it. When NAT traversal mode with ICE-HIP-UDP was
successfully negotiated and selected, the Initiator and Responder
<span class="bcp14">MUST</span> start the connectivity checks in order to attempt
to obtain direct end-to-end connectivity through NAT devices. It is
worth noting that the connectivity checks <span class="bcp14">MUST</span> be
completed even though no ESP_TRANSFORM would be negotiated and
selected.<a href="#section-4.6-1" class="pilcrow">¶</a></p>
<p id="section-4.6-2">The connectivity checks follow the ICE methodology <span>[<a href="#I-D.rosenberg-mmusic-ice-nonsip" class="xref">ICE-NONSIP</a>]</span>, but
UDP-encapsulated HIP control messages are used instead of ICE
messages. As stated in the ICE specification, the basic procedure for
connectivity checks has three phases: sorting the candidate pairs
according to their priority, sending checks in the prioritized order,
and acknowledging the checks from the peer host.<a href="#section-4.6-2" class="pilcrow">¶</a></p>
<p id="section-4.6-3">The Initiator <span class="bcp14">MUST</span> take the role of controlling
host, and the Responder acts as the controlled host. The roles
<span class="bcp14">MUST</span> persist throughout the HIP associate lifetime (to
be reused even during mobility UPDATE procedures). In the case in
which both communicating nodes are initiating communication to
each other using an I1 packet, the conflict is resolved as defined in
<span><a href="https://www.rfc-editor.org/rfc/rfc7401#section-6.7" class="relref">Section 6.7</a> of [<a href="#RFC7401" class="xref">RFC7401</a>]</span>; the host
with the "larger" HIT changes its role to Responder. In such a
case, the host changing its role to Responder <span class="bcp14">MUST</span> also
switch to the controlled role.<a href="#section-4.6-3" class="pilcrow">¶</a></p>
<p id="section-4.6-4">The protocol follows standard HIP UPDATE sending and processing
rules as defined in Sections <a href="https://www.rfc-editor.org/rfc/rfc7401#section-6.11" class="relref">6.11</a> and <a href="https://www.rfc-editor.org/rfc/rfc7401#section-6.12" class="relref">6.12</a> in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>,
but some new parameters are introduced (CANDIDATE_PRIORITY,
MAPPED_ADDRESS, NOMINATE, PEER_PERMISSION, and RELAYED_ADDRESS).<a href="#section-4.6-4" class="pilcrow">¶</a></p>
<div id="sec_conn_check_proc">
<section id="section-4.6.1">
<h4 id="name-connectivity-check-procedur">
<a href="#section-4.6.1" class="section-number selfRef">4.6.1. </a><a href="#name-connectivity-check-procedur" class="section-name selfRef">Connectivity Check Procedure</a>
</h4>
<p id="section-4.6.1-1"><a href="#fig_cc1" class="xref">Figure 5</a> illustrates connectivity checks
in a simplified scenario where the Initiator and Responder
have only a single candidate pair to check. Typically, NATs
drop messages until both sides have sent messages using the
same port pair. In this scenario, the Responder sends a
connectivity check first but the NAT of the Initiator drops
it. However, the connectivity check from the Initiator
reaches the Responder because it uses the same port pair as
the first message. It is worth noting that the message flow
in this section is idealistic, and, in practice, more
messages would be dropped, especially in the beginning. For
instance, connectivity tests always start with the
candidates with the highest priority, which would be host
candidates (which would not reach the recipient in this
scenario).<a href="#section-4.6.1-1" class="pilcrow">¶</a></p>
<span id="name-connectivity-checks-2"></span><div id="fig_cc1">
<figure id="figure-5">
<div class="artwork art-text alignCenter" id="section-4.6.1-2.1">
<pre>
Initiator NAT1 NAT2 Responder
| | 1. UDP(UPDATE(SEQ, CAND_PRIO, | |
| | ECHO_REQ_SIGN)) | |
| X<-----------------------------------+----------------+
| | | |
| 2. UDP(UPDATE(SEQ, ECHO_REQ_SIGN, CAND_PRIO)) | |
+-------------+------------------------------------+--------------->|
| | | |
| 3. UDP(UPDATE(ACK, ECHO_RESP_SIGN, MAPPED_ADDR)) | |
|<------------+------------------------------------+----------------+
| | | |
| 4. UDP(UPDATE(SEQ, ECHO_REQ_SIGN, CAND_PRIO)) | |
|<------------+------------------------------------+----------------+
| | | |
| 5. UDP(UPDATE(ACK, ECHO_RESP_SIGN, MAPPED_ADDR)) | |
+-------------+------------------------------------+--------------->|
| | | |
| 6. Other connectivity checks using UPDATE over UDP |
|<------------+------------------------------------+---------------->
| | | |
| 7. UDP(UPDATE(SEQ, ECHO_REQ_SIGN, CAND_PRIO, NOMINATE)) |
+-------------+------------------------------------+--------------->|
| | | |
| 8. UDP(UPDATE(SEQ, ACK, ECHO_REQ_SIGN, ECHO_RESP_SIGN, |
| NOMINATE)) | |
|<------------+------------------------------------+----------------+
| | | |
| 9. UDP(UPDATE(ACK, ECHO_RESP_SIGN)) | |
+-------------+------------------------------------+--------------->+
| | | |
| 10. ESP data traffic over UDP | |
+<------------+------------------------------------+--------------->+
| | | |
</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-connectivity-checks-2" class="selfRef">Connectivity Checks</a>
</figcaption></figure>
</div>
<p id="section-4.6.1-3">In step 1, the Responder sends a connectivity check to the
Initiator that the NAT of the Initiator drops. The message includes
a number of parameters. As specified in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>, the SEQ parameter includes a running sequence
identifier for the connectivity check. The candidate priority
(denoted CAND_PRIO in the figure) describes the priority of the
address candidate being tested. The ECHO_REQUEST_SIGNED (denoted
ECHO_REQ_SIGN in the figure) includes a nonce that the recipient
must sign and echo back as it is.<a href="#section-4.6.1-3" class="pilcrow">¶</a></p>
<p id="section-4.6.1-4">In step 2, the Initiator sends a connectivity check, using
the same address pair candidate as in the previous step, and the
message successfully traverses the NAT boxes. The message
includes the same parameters as in the previous step. It
should be noted that the sequence identifier is locally
assigned by the Initiator, so it can be different than in
the previous step.<a href="#section-4.6.1-4" class="pilcrow">¶</a></p>
<p id="section-4.6.1-5">In step 3, the Responder has successfully received the previous
connectivity check from the Initiator and starts to build a response
message. Since the message from the Initiator included a SEQ, the
Responder must acknowledge it using an ACK parameter. Also, the
nonce contained in the echo request must be echoed back in an
ECHO_RESPONSE_SIGNED (denoted ECHO_RESP_SIGN) parameter. The
Responder also includes a MAPPED_ADDRESS parameter (denoted
MAPPED_ADDR in the figure) that contains the transport address of
the Initiator as observed by the Responder (i.e., peer-reflexive
candidate). This message is successfully delivered to the Initiator;
upon reception, the Initiator marks the candidate pair as valid.<a href="#section-4.6.1-5" class="pilcrow">¶</a></p>
<p id="section-4.6.1-6">In step 4, the Responder retransmits the connectivity
check sent in the first step, since it was not acknowledged
yet.<a href="#section-4.6.1-6" class="pilcrow">¶</a></p>
<p id="section-4.6.1-7">In step 5, the Initiator responds to the previous
connectivity check message from the Responder. The Initiator
acknowledges the SEQ parameter from the previous message
using an ACK parameter and the ECHO_REQUEST_SIGNED parameter with
ECHO_RESPONSE_SIGNED. In addition, it includes the MAPPED_ADDR
parameter that includes the peer-reflexive candidate. This
response message is successfully delivered to the
Responder; upon reception, the Initiator marks the candidate pair as valid.<a href="#section-4.6.1-7" class="pilcrow">¶</a></p>
<p id="section-4.6.1-8">In step 6, despite the two hosts now having valid address
candidates, the hosts still test the remaining address candidates
in a similar way as in the previous steps. It should be noted that each
connectivity check has a unique sequence number in the SEQ
parameter.<a href="#section-4.6.1-8" class="pilcrow">¶</a></p>
<p id="section-4.6.1-9">In step 7, the Initiator has completed testing all
address candidates and nominates one address candidate to be
used. It sends an UPDATE message using the selected address
candidates that includes a number of parameters: SEQ,
ECHO_REQUEST_SIGNED, CANDIDATE_PRIORITY, and the NOMINATE parameter.<a href="#section-4.6.1-9" class="pilcrow">¶</a></p>
<p id="section-4.6.1-10">In step 8, the Responder receives the message with the NOMINATE
parameter from the Initiator. It sends a response that includes the
NOMINATE parameter in addition to a number of other parameters. The
ACK and ECHO_RESPONSE_SIGNED parameters acknowledge the SEQ and
ECHO_REQUEST_SIGNED parameters from the previous message from the
Initiator. The Responder includes SEQ and ECHO_REQUEST_SIGNED
parameters in order to receive an acknowledgment from the
Responder.<a href="#section-4.6.1-10" class="pilcrow">¶</a></p>
<p id="section-4.6.1-11">In step 9, the Initiator completes the candidate
nomination process by confirming the message reception to
the Responder. In the confirmation message, the ACK and
ECHO_RESPONSE_SIGNED parameters correspond to the SEQ and
ECHO_REQUEST_SIGNED parameters in the message sent by the
Responder in the previous step.<a href="#section-4.6.1-11" class="pilcrow">¶</a></p>
<p id="section-4.6.1-12">In step 10, the Initiator and Responder can start sending
application payload over the successfully nominated address
candidates.<a href="#section-4.6.1-12" class="pilcrow">¶</a></p>
<p id="section-4.6.1-13">It is worth noting that if either host has registered a relayed
address candidate from a Data Relay Server, the host
<span class="bcp14">MUST</span> activate the address before connectivity checks
by sending an UPDATE message containing the PEER_PERMISSION parameter as
described in <a href="#sec_forwarding" class="xref">Section 4.12.1</a>. Otherwise, the Data Relay Server drops ESP
packets using the relayed address.<a href="#section-4.6.1-13" class="pilcrow">¶</a></p>
<p id="section-4.6.1-14">It should be noted that in the case in which both the Initiator and
Responder are advertising their own relayed address
candidates, it is possible that the two hosts choose the two
relayed addresses as a result of the ICE nomination
algorithm. While this is possible (and even could be
desirable for privacy reasons), it can be unlikely due to
low priority assigned for the relayed address candidates. In
such an event, the nominated address pair is always
symmetric; the nomination algorithm prevents asymmetric
address pairs (i.e., each side choosing different pair) such
as a Data Relay Client using its own Data Relay Server to
send data directly to its peer while receiving data from the
Data Relay Server of its peer.<a href="#section-4.6.1-14" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.6.2">
<h4 id="name-rules-for-connectivity-chec">
<a href="#section-4.6.2" class="section-number selfRef">4.6.2. </a><a href="#name-rules-for-connectivity-chec" class="section-name selfRef">Rules for Connectivity Checks</a>
</h4>
<p id="section-4.6.2-1">The HITs of the two communicating hosts <span class="bcp14">MUST</span> be
used as credentials in this protocol (in contrast to ICE, which
employs username-password fragments). A HIT pair uniquely identifies
the corresponding HIT association, and a SEQ number in an UPDATE
message identifies a particular connectivity check.<a href="#section-4.6.2-1" class="pilcrow">¶</a></p>
<p id="section-4.6.2-2">All of the connectivity check messages <span class="bcp14">MUST</span> be
protected with HIP_HMAC and signatures (even though the
illustrations in this specification omit them for simplicity)
according to <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>. Each
connectivity check sent by a host <span class="bcp14">MUST</span> include a SEQ
parameter and ECHO_REQUEST_SIGNED parameter; correspondingly, the
peer <span class="bcp14">MUST</span> respond to these using ACK and
ECHO_RESPONSE_SIGNED according to the rules specified in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>.<a href="#section-4.6.2-2" class="pilcrow">¶</a></p>
<p id="section-4.6.2-3">The host sending a connectivity check <span class="bcp14">MUST</span> validate that
the response uses the same pair of UDP ports, and drop the
packet if this is not the case.<a href="#section-4.6.2-3" class="pilcrow">¶</a></p>
<p id="section-4.6.2-4">A host may receive a connectivity check before it has received
the candidates from its peer. In such a case, the host
<span class="bcp14">MUST</span> immediately queue a response by placing it in
the triggered-check queue and then continue waiting for the
candidates. A host <span class="bcp14">MUST NOT</span> select a candidate pair
until it has verified the pair using a connectivity check as defined
in <a href="#sec_conn_check_proc" class="xref">Section 4.6.1</a>.<a href="#section-4.6.2-4" class="pilcrow">¶</a></p>
<p id="section-4.6.2-5"><span><a href="https://www.rfc-editor.org/rfc/rfc7401#section-5.3.5" class="relref">Section 5.3.5</a> of [<a href="#RFC7401" class="xref">RFC7401</a>]</span>
states that UPDATE packets have to include either a SEQ or ACK
parameter (but can include both). In the connectivity check
procedure specified in <a href="#sec_conn_check_proc" class="xref">Section 4.6.1</a>, each SEQ parameter should be acknowledged
separately. In the context of NATs, this means that some of the SEQ
parameters sent in connectivity checks will be lost or arrive out of
order. From the viewpoint of the recipient, this is not a problem
since the recipient will just "blindly" acknowledge the
SEQ. However, the sender needs to be prepared for lost sequence
identifiers and ACK parameters that arrive out of order.<a href="#section-4.6.2-5" class="pilcrow">¶</a></p>
<p id="section-4.6.2-6">As specified in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>, an ACK
parameter may acknowledge multiple sequence
identifiers. While the examples in the previous sections do
not illustrate such functionality, it is also permitted when
employing ICE-HIP-UDP mode.<a href="#section-4.6.2-6" class="pilcrow">¶</a></p>
<p id="section-4.6.2-7">In ICE-HIP-UDP mode, a retransmission of a connectivity check
<span class="bcp14">SHOULD</span> be sent with the same sequence identifier in
the SEQ parameter. Some tested address candidates will never produce
a working address pair and may thus cause retransmissions. Upon
successful nomination of an address pair, a host
<span class="bcp14">SHOULD</span> immediately stop sending such
retransmissions.<a href="#section-4.6.2-7" class="pilcrow">¶</a></p>
<p id="section-4.6.2-8">Full ICE procedures for prioritizing candidates, eliminating
redundant candidates, forming checklists (including pruning), and
triggered-check queues <span class="bcp14">MUST</span> be followed as specified
in <span><a href="https://www.rfc-editor.org/rfc/rfc8445#section-6.1" class="relref">Section 6.1</a> of [<a href="#RFC8445" class="xref">RFC8445</a>]</span>, with
the exception being that the foundation, frozen candidates, and
default candidates are not used. From the viewpoint of the ICE
specification <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>, the
protocol specified in this document operates using a component ID of
1 on all candidates, and the foundation of all candidates is
unique. This specification defines only "full ICE" mode, and the
"lite ICE" is not supported. The reasoning behind the missing
features is described in <a href="#sec_ice_diff" class="xref">Appendix B</a>.<a href="#section-4.6.2-8" class="pilcrow">¶</a></p>
<p id="section-4.6.2-9"> The connectivity check messages <span class="bcp14">MUST</span> be paced by
the Ta value negotiated during the base exchange as described in
<a href="#sec_check_pacing_neg" class="xref">Section 4.4</a>. If neither
one of the hosts announced a minimum pacing value, a value of 50 ms
<span class="bcp14">MUST</span> be used.<a href="#section-4.6.2-9" class="pilcrow">¶</a></p>
<p id="section-4.6.2-10">Both hosts <span class="bcp14">MUST</span> form a
priority ordered checklist and begin to check transactions every Ta
milliseconds as long as the checks are running and there are candidate
pairs whose tests have not started. The retransmission timeout (RTO)
for the connectivity check UPDATE packets <span class="bcp14">SHOULD</span> be
calculated as follows:<a href="#section-4.6.2-10" class="pilcrow">¶</a></p>
<p style="margin-left: 1.5em" id="section-4.6.2-11">
RTO = MAX (1000 ms, Ta * (Num-Waiting + Num-In-Progress))<a href="#section-4.6.2-11" class="pilcrow">¶</a></p>
<p id="section-4.6.2-12"> In the RTO formula, Ta is the value used for the connectivity
check pacing, Num-Waiting is the number of pairs in the checklist in
the "Waiting" state, and Num-In-Progress is the number of pairs in
the "In-Progress" state. This is identical to the formula in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span> when there is only one
checklist. A smaller value than 1000 ms for the RTO <span class="bcp14">MUST NOT</span> be used.<a href="#section-4.6.2-12" class="pilcrow">¶</a></p>
<p id="section-4.6.2-13"> Each connectivity check request packet <span class="bcp14">MUST</span> contain a
CANDIDATE_PRIORITY parameter (see <a href="#sec_con-check" class="xref">Section 5.14</a>) with
the priority value that would be assigned to a peer-reflexive candidate
if one was learned from the corresponding check. An UPDATE packet that acknowledges
a connectivity check request <span class="bcp14">MUST</span> be sent from the same address that
received the check and delivered to the same address where the check was received
from. Each acknowledgment UPDATE packet <span class="bcp14">MUST</span> contain a MAPPED_ADDRESS
parameter with the port, protocol, and IP address of the address where
the connectivity check request was received from.<a href="#section-4.6.2-13" class="pilcrow">¶</a></p>
<p id="section-4.6.2-14">Following the ICE guidelines <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>, it is <span class="bcp14">RECOMMENDED</span> to restrict the
total number of connectivity checks to 100 for each host
association. This can be achieved by limiting the connectivity
checks to the 100 candidate pairs with the highest priority.<a href="#section-4.6.2-14" class="pilcrow">¶</a></p>
</section>
<section id="section-4.6.3">
<h4 id="name-rules-for-concluding-connec">
<a href="#section-4.6.3" class="section-number selfRef">4.6.3. </a><a href="#name-rules-for-concluding-connec" class="section-name selfRef">Rules for Concluding Connectivity Checks</a>
</h4>
<p id="section-4.6.3-1">The controlling agent may find multiple working candidate
pairs. To conclude the connectivity checks, it <span class="bcp14">SHOULD</span>
nominate the pair with the highest priority. The controlling agent
<span class="bcp14">MUST</span> nominate a candidate pair essentially by
repeating a connectivity check using an UPDATE message that contains
a SEQ parameter (with a new sequence number), an ECHO_REQUEST_SIGNED
parameter, the priority of the candidate in a CANDIDATE_PRIORITY
parameter, and a NOMINATE parameter to signify conclusion of the
connectivity checks. Since the nominated address pair has already
been tested for reachability, the controlled host should be able to
receive the message. Upon reception, the controlled host
<span class="bcp14">SHOULD</span> select the nominated address pair. The
response message <span class="bcp14">MUST</span> include a SEQ parameter with a
new sequence identifier, acknowledgment of the sequence from the controlling
host in an ACK parameter, a new ECHO_REQUEST_SIGNED parameter,
an ECHO_RESPONSE_SIGNED parameter corresponding to the
ECHO_REQUEST_SIGNED parameter from the controlling host, and the
NOMINATE parameter. After sending this packet, the controlled host
can create IPsec security associations using the nominated address
candidate for delivering application payload to the controlling
host. Since the message from the controlled host included a new
sequence identifier echo request for the signature, the controlling host
<span class="bcp14">MUST</span> acknowledge this with a new UPDATE message that
includes an ACK and ECHO_RESPONSE_SIGNED parameters. After this
final concluding message, the controlling host also can create IPsec
security associations for delivering application payload to the
controlled host.<a href="#section-4.6.3-1" class="pilcrow">¶</a></p>
<p id="section-4.6.3-2">It is possible that packets are delayed by the network. Both
hosts <span class="bcp14">MUST</span> continue to respond to any connectivity
checks despite an address pair having been nominated.<a href="#section-4.6.3-2" class="pilcrow">¶</a></p>
<p id="section-4.6.3-3"> If all the connectivity checks have failed, the hosts
<span class="bcp14">MUST NOT</span> send ESP traffic to each other but
<span class="bcp14">MAY</span> continue communicating using HIP packets and the
locators used for the base exchange. Also, the hosts
<span class="bcp14">SHOULD</span> notify each other about the failure with a
CONNECTIVITY_CHECKS_FAILED NOTIFY packet (see <a href="#sec_notify-types" class="xref">Section 5.10</a>).<a href="#section-4.6.3-3" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="sec_alternatives">
<section id="section-4.7">
<h3 id="name-nat-traversal-optimizations">
<a href="#section-4.7" class="section-number selfRef">4.7. </a><a href="#name-nat-traversal-optimizations" class="section-name selfRef">NAT Traversal Optimizations</a>
</h3>
<div id="sec_minimal">
<section id="section-4.7.1">
<h4 id="name-minimal-nat-traversal-suppo">
<a href="#section-4.7.1" class="section-number selfRef">4.7.1. </a><a href="#name-minimal-nat-traversal-suppo" class="section-name selfRef">Minimal NAT Traversal Support</a>
</h4>
<p id="section-4.7.1-1">If the Responder has a fixed and publicly reachable IPv4
address and does not employ a Control Relay Server, the explicit NAT
traversal mode negotiation <span class="bcp14">MAY</span> be omitted; thus, even the
UDP-ENCAPSULATION mode does not have to be negotiated. In
such a scenario, the Initiator sends an I1 message over UDP
and the Responder responds with an R1 message over UDP without
including any NAT traversal mode parameter. The rest of the
base exchange follows the procedures defined in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>, except that the control and
data plane use UDP encapsulation. Here, the use of UDP for NAT
traversal is agreed upon implicitly. This way of operation is still
subject to NAT timeouts, and the hosts <span class="bcp14">MUST</span> employ
NAT keepalives as defined in <a href="#sec_nat-keepalives" class="xref">Section 4.10</a>.<a href="#section-4.7.1-1" class="pilcrow">¶</a></p>
<p id="section-4.7.1-2">When UDP-ENCAPSULATION mode is chosen either explicitly or
implicitly, the connectivity checks as defined in this document
<span class="bcp14">MUST NOT</span> be used. When hosts lose connectivity, they
<span class="bcp14">MUST</span> instead utilize <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span> or <span>[<a href="#RFC8047" class="xref">RFC8047</a>]</span>
procedures, but with the difference being that UDP-based tunneling
<span class="bcp14">MUST</span> be employed for the entire lifetime of the
corresponding HIP association.<a href="#section-4.7.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_no_relay">
<section id="section-4.7.2">
<h4 id="name-base-exchange-without-conne">
<a href="#section-4.7.2" class="section-number selfRef">4.7.2. </a><a href="#name-base-exchange-without-conne" class="section-name selfRef">Base Exchange without Connectivity Checks</a>
</h4>
<p id="section-4.7.2-1">It is possible to run a base exchange without any connectivity
checks as defined in Legacy ICE-HIP (<span><a href="https://www.rfc-editor.org/rfc/rfc5770#section-4.8" class="relref">Section 4.8</a> of [<a href="#RFC5770" class="xref">RFC5770</a>]</span>). The procedure is also applicable
in the context of this specification, so it is repeated here for
completeness.<a href="#section-4.7.2-1" class="pilcrow">¶</a></p>
<p id="section-4.7.2-2"> In certain network environments, the connectivity checks can be
omitted to reduce initial connection setup latency because a base
exchange acts as an implicit connectivity test itself. For this to
work, the Initiator <span class="bcp14">MUST</span> be able to reach the Responder by simply UDP
encapsulating HIP and ESP packets sent to the Responder's address.
Detecting and configuring this particular scenario is prone to failure
unless carefully planned.<a href="#section-4.7.2-2" class="pilcrow">¶</a></p>
<p id="section-4.7.2-3"> In such a scenario, the Responder <span class="bcp14">MAY</span> include
UDP-ENCAPSULATION NAT traversal mode as one of the supported modes
in the R1 packet. If the Responder has registered to a Control Relay
Server in order to discover its address candidates, it
<span class="bcp14">MUST</span> also include a LOCATOR_SET parameter
encapsulated inside an ENCRYPTED parameter in an R1 message that
contains a preferred address where the Responder is able to receive
UDP-encapsulated ESP and HIP packets. This locator
<span class="bcp14">MUST</span> be of type "Transport address", its Traffic type
<span class="bcp14">MUST</span> be "both", and it <span class="bcp14">MUST</span> have the
"Preferred bit" set (see <a href="#tbl_locator" class="xref">Table 2</a>). If there is no such locator in R1, the
Initiator <span class="bcp14">MUST</span> use the source address of the R1 as
the Responder's preferred address.<a href="#section-4.7.2-3" class="pilcrow">¶</a></p>
<p id="section-4.7.2-4"> The Initiator <span class="bcp14">MAY</span> choose the UDP-ENCAPSULATION
mode if the Responder listed it in the supported modes and the
Initiator does not wish to use the connectivity checks defined in
this document for searching for a more optimal path. In this case,
the Initiator sends the I2 with UDP-ENCAPSULATION mode in the NAT
traversal mode parameter directly to the Responder's preferred
address (i.e., to the preferred locator in R1 or to the address
where R1 was received from if there was no preferred locator in
R1). The Initiator <span class="bcp14">MAY</span> include locators in I2 but
they <span class="bcp14">MUST NOT</span> be taken as address candidates, since
connectivity checks defined in this document will not be used for
connections with UDP-ENCAPSULATION NAT traversal mode. Instead, if
R2 and I2 are received and processed successfully, a security
association can be created and UDP-encapsulated ESP can be exchanged
between the hosts after the base exchange completes according to the
rules in <span><a href="https://www.rfc-editor.org/rfc/rfc7401#section-4.4" class="relref">Section 4.4</a> of [<a href="#RFC7401" class="xref">RFC7401</a>]</span>.<a href="#section-4.7.2-4" class="pilcrow">¶</a></p>
<p id="section-4.7.2-5">The Control Relay Server can be used for discovering address
candidates but it is not intended to be used for relaying end-host
packets using the UDP-ENCAPSULATION NAT mode. Since an I2 packet
with UDP-ENCAPSULATION NAT traversal mode selected <span class="bcp14">MUST NOT</span> be sent via a Control Relay Server, the Responder
<span class="bcp14">SHOULD</span> reject such I2 packets and reply with a
NO_VALID_NAT_TRAVERSAL_MODE_PARAMETER NOTIFY packet (see <a href="#sec_notify-types" class="xref">Section 5.10</a>).<a href="#section-4.7.2-5" class="pilcrow">¶</a></p>
<p id="section-4.7.2-6"> If there is no answer for the I2 packet sent directly to the
Responder's preferred address, the Initiator <span class="bcp14">MAY</span> send
another I2 via the Control Relay Server, but it <span class="bcp14">MUST NOT</span> choose UDP-ENCAPSULATION NAT traversal mode for that
I2.<a href="#section-4.7.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_no_udp">
<section id="section-4.7.3">
<h4 id="name-initiating-a-base-exchange-">
<a href="#section-4.7.3" class="section-number selfRef">4.7.3. </a><a href="#name-initiating-a-base-exchange-" class="section-name selfRef">Initiating a Base Exchange Both with and without UDP Encapsulation</a>
</h4>
<p id="section-4.7.3-1">It is possible to run a base exchange in parallel both with and
without UDP encapsulation as defined in Legacy ICE-HIP (<span><a href="https://www.rfc-editor.org/rfc/rfc5770#section-4.9" class="relref">Section 4.9</a> of [<a href="#RFC5770" class="xref">RFC5770</a>]</span>). The procedure
is also applicable in the context of this specification, so it is
repeated here for completeness.<a href="#section-4.7.3-1" class="pilcrow">¶</a></p>
<p id="section-4.7.3-2">The Initiator <span class="bcp14">MAY</span> also try to simultaneously
perform a base exchange with the Responder without UDP
encapsulation. In such a case, the Initiator sends two I1 packets,
one without and one with UDP encapsulation, to the Responder. The
Initiator <span class="bcp14">MAY</span> wait for a while before sending the
other I1. How long to wait and in which order to send the I1 packets
can be decided based on local policy. For retransmissions, the
procedure is repeated.<a href="#section-4.7.3-2" class="pilcrow">¶</a></p>
<p id="section-4.7.3-3">The I1 packet without UDP encapsulation may arrive directly,
without passing a Control Relay Server, at the Responder. When
this happens, the procedures in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span> are followed for the rest of the base
exchange. The Initiator may receive multiple R1 packets, with and
without UDP encapsulation, from the Responder. However, after
receiving a valid R1 and answering it with an I2, further R1 packets
that are not retransmissions of the R1 message received first
<span class="bcp14">MUST</span> be ignored.<a href="#section-4.7.3-3" class="pilcrow">¶</a></p>
<p id="section-4.7.3-4">The I1 packet without UDP encapsulation may also arrive at a
HIP-capable middlebox. When the middlebox is a HIP Rendezvous Server
and the Responder has successfully registered with the rendezvous
service, the middlebox follows rendezvous procedures in <span>[<a href="#RFC8004" class="xref">RFC8004</a>]</span>.<a href="#section-4.7.3-4" class="pilcrow">¶</a></p>
<p id="section-4.7.3-5">If the Initiator receives a NAT traversal mode parameter in R1
without UDP encapsulation, the Initiator <span class="bcp14">MAY</span> ignore
this parameter and send an I2 without UDP encapsulation and without
any selected NAT traversal mode. When the Responder receives the I2
without UDP encapsulation and without NAT traversal mode, it will
assume that no NAT traversal mechanism is needed. The packet
processing will be done as described in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>. The Initiator <span class="bcp14">MAY</span> store the NAT
traversal modes for future use, e.g., in case of a mobility or
multihoming event that causes NAT traversal to be used during the
lifetime of the HIP association.<a href="#section-4.7.3-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec_control_no_relay">
<section id="section-4.8">
<h3 id="name-sending-control-packets-aft">
<a href="#section-4.8" class="section-number selfRef">4.8. </a><a href="#name-sending-control-packets-aft" class="section-name selfRef">Sending Control Packets after the Base Exchange</a>
</h3>
<p id="section-4.8-1">The same considerations with regard to sending control packets after the base
exchange as described in Legacy ICE-HIP (<span><a href="https://www.rfc-editor.org/rfc/rfc5770#section-5.10" class="relref">Section 5.10</a> of [<a href="#RFC5770" class="xref">RFC5770</a>]</span>) also apply here, so they are
repeated here for completeness.<a href="#section-4.8-1" class="pilcrow">¶</a></p>
<p id="section-4.8-2">After the base exchange, the two end hosts <span class="bcp14">MAY</span> send
HIP control packets directly to each other using the transport address
pair established for a data channel without sending the control
packets through any Control Relay Servers. When a host does not
receive acknowledgments, e.g., to an UPDATE or CLOSE packet after a
timeout based on local policies, a host <span class="bcp14">SHOULD</span> resend
the packet through the associated Data Relay Server of the peer (if
the peer listed it in its LOCATOR_SET parameter in the base exchange
according to the rules specified in <span><a href="https://www.rfc-editor.org/rfc/rfc7401#section-4.4.2" class="relref">Section 4.4.2</a> of [<a href="#RFC7401" class="xref">RFC7401</a>]</span>).<a href="#section-4.8-2" class="pilcrow">¶</a></p>
<p id="section-4.8-3"> If a Control Relay Client sends a packet through a Control Relay
Server, the Control Relay Client <span class="bcp14">MUST</span> always utilize
the RELAY_TO parameter. The Control Relay Server <span class="bcp14">SHOULD</span>
forward HIP control packets originating from a Control Relay Client to
the address denoted in the RELAY_TO parameter. In the other direction,
the Control Relay Server <span class="bcp14">SHOULD</span> forward HIP control
packets to the Control Relay Clients and <span class="bcp14">MUST</span> add a
RELAY_FROM parameter to the control packets it relays to the Control
Relay Clients.<a href="#section-4.8-3" class="pilcrow">¶</a></p>
<p id="section-4.8-4"> If the Control Relay Server is not willing or able to relay a HIP
packet, it <span class="bcp14">MAY</span> notify the sender of the packet with a
MESSAGE_NOT_RELAYED error notification (see <a href="#sec_notify-types" class="xref">Section 5.10</a>).<a href="#section-4.8-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_mobility">
<section id="section-4.9">
<h3 id="name-mobility-handover-procedure">
<a href="#section-4.9" class="section-number selfRef">4.9. </a><a href="#name-mobility-handover-procedure" class="section-name selfRef">Mobility Handover Procedure</a>
</h3>
<p id="section-4.9-1">A host may move after base exchange and connectivity
checks. Mobility extensions for HIP <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span> define handover procedures
without NATs. In this section, we define how two hosts
interact with handover procedures in scenarios involving
NATs. The specified extensions define only simple mobility
using a pair of security associations, and multihoming
extensions are left to be defined in later specifications.
The procedures in this section offer the same functionality as "ICE
restart" specified in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>. The
example described in this section shows only a Control Relay Server
for the peer host for the sake of simplicity, but the
mobile host may also have a Control Relay Server.<a href="#section-4.9-1" class="pilcrow">¶</a></p>
<p id="section-4.9-2">The assumption here is that the two hosts have successfully negotiated
and chosen the ICE-HIP-UDP mode during the base exchange as
defined in <a href="#sec_nat_traversal_mode" class="xref">Section 4.3</a>. The Initiator of the base
exchange <span class="bcp14">MUST</span> store information that it was the controlling
host during the base exchange. Similarly, the Responder <span class="bcp14">MUST</span>
store information that it was the controlled host during the
base exchange.<a href="#section-4.9-2" class="pilcrow">¶</a></p>
<p id="section-4.9-3">Prior to starting the handover procedures with all peer hosts, the
mobile host <span class="bcp14">SHOULD</span> first send its locators in UPDATE
messages to its Control and Data Relay Servers if it has registered to
such. It <span class="bcp14">SHOULD</span> wait for all of them to respond for a
configurable time, by default two minutes, and then continue with the
handover procedure without information from the Relay Server that did
not respond. As defined in <a href="#sec_registration" class="xref">Section 4.1</a>, a response message from a Control Relay Server
includes a REG_FROM parameter that describes the server-reflexive
candidate of the mobile host to be used in the candidate exchange
during the handover. Similarly, an UPDATE to a Data Relay Server is
necessary to make sure the Data Relay Server can forward data to the
correct IP address after a handover.<a href="#section-4.9-3" class="pilcrow">¶</a></p>
<p id="section-4.9-4">The mobility extensions for NAT traversal are illustrated
in <a href="#fig_update" class="xref">Figure 6</a>. The mobile host is the
host that has changed its locators, and the peer host is the
host it has a host association with. The mobile host may have
multiple peers, and it repeats the process with all of its
peers. In the figure, the Control Relay Server belongs to the peer host,
i.e., the peer host is a Control Relay Client for the Control Relay Server.
Note that the figure corresponds to figure 3 in <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span>, but the difference is that the main
UPDATE procedure is carried over the relay and the
connectivity is tested separately. Next, we describe the
procedure of that figure in detail.<a href="#section-4.9-4" class="pilcrow">¶</a></p>
<span id="name-hip-update-procedure"></span><div id="fig_update">
<figure id="figure-6">
<div class="artwork art-text alignCenter" id="section-4.9-5.1">
<pre>
Mobile Host Control Relay Server Peer Host
| 1. UDP(UPDATE(ESP_INFO, | |
| ENC(LOC_SET), SEQ)) | |
+--------------------------------->| 2. UDP(UPDATE(ESP_INFO, |
| | ENC(LOC_SET), SEQ, |
| | RELAY_FROM)) |
| +------------------------------->|
| | |
| | 3. UDP(UPDATE(ESP_INFO, SEQ, |
| | ACK, ECHO_REQ_SIGN, |
| | RELAY_TO)) |
| 4. UDP(UPDATE(ESP_INFO, SEQ, |<-------------------------------+
| ACK, ECHO_REQ_SIGN, | |
| RELAY_TO)) | |
|<---------------------------------+ |
| | |
| 5. UDP(UPDATE(ACK, | |
| ECHO_RESP_SIGNED)) | |
+--------------------------------->| 6. UDP(UPDATE(ACK, |
| | ECHO_RESP_SIGNED, |
| | RELAY_FROM)) |
| +------------------------------->|
| | |
| 7. connectivity checks over UDP |
+<----------------------------------------------------------------->+
| | |
| 8. ESP data over UDP |
+<----------------------------------------------------------------->+
| | |
</pre>
</div>
<figcaption><a href="#figure-6" class="selfRef">Figure 6</a>:
<a href="#name-hip-update-procedure" class="selfRef">HIP UPDATE Procedure</a>
</figcaption></figure>
</div>
<p id="section-4.9-6">In step 1, the mobile host has changed location and sends a
location update to its peer through the Control Relay Server of the
peer. It sends an UPDATE packet with the source HIT belonging to
itself and destination HIT belonging to the peer host. In the packet,
the source IP address belongs to the mobile host and the destination
to the Control Relay Server. The packet contains an ESP_INFO parameter
where, in this case, the OLD SPI and NEW SPI parameters both contain
the pre-existing incoming SPI. The packet also contains the locators
of the mobile host in a LOCATOR_SET parameter, encapsulated inside an
ENCRYPTED parameter (see Sections <a href="https://www.rfc-editor.org/rfc/rfc7401#section-5.2.18" class="relref">5.2.18</a> and <a href="https://www.rfc-editor.org/rfc/rfc7401#section-6.5" class="relref">6.5</a> in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span> for details on the ENCRYPTED parameter). The packet
also contains a SEQ number to be acknowledged by the peer. As
specified in <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span>, the packet may
also include a HOST_ID (for middlebox inspection) and DIFFIE_HELLMAN
parameter for rekeying.<a href="#section-4.9-6" class="pilcrow">¶</a></p>
<p id="section-4.9-7">In step 2, the Control Relay Server receives the UPDATE packet and forwards it
to the peer host (i.e., Control Relay Client). The Control Relay Server
rewrites the destination IP address and appends a RELAY_FROM
parameter to the message.<a href="#section-4.9-7" class="pilcrow">¶</a></p>
<p id="section-4.9-8">In step 3, the peer host receives the UPDATE packet,
processes it, and responds with another UPDATE message. The
message is destined to the HIT of the mobile host and to the IP
address of the Control Relay Server. The message includes an ESP_INFO
parameter where, in this case, the OLD SPI and NEW SPI
parameters both contain the pre-existing incoming SPI. The
peer includes a new SEQ and ECHO_REQUEST_SIGNED parameter to be
acknowledged by the mobile host. The message acknowledges the
SEQ parameter of the earlier message with an ACK parameter.
The RELAY_TO parameter specifies the address of the mobile host where the
Control Relay Server should forward the message.<a href="#section-4.9-8" class="pilcrow">¶</a></p>
<p id="section-4.9-9">In step 4, the Control Relay Server receives the message, rewrites the
destination IP address and UDP port according to the RELAY_TO parameter, and
then forwards the modified message to the mobile host.<a href="#section-4.9-9" class="pilcrow">¶</a></p>
<p id="section-4.9-10">In step 5, the mobile host receives the UPDATE packet and processes
it. The mobile host concludes the handover procedure by acknowledging
the received SEQ parameter with an ACK parameter and the
ECHO_REQUEST_SIGNED parameter with an ECHO_RESPONSE_SIGNED
parameter. The mobile host sends the packet to the HIT of the peer and
to the address of the HIP relay. The mobile host can start
connectivity checks after this packet.<a href="#section-4.9-10" class="pilcrow">¶</a></p>
<p id="section-4.9-11">In step 6, the HIP relay receives the UPDATE packet and
forwards it to the peer host (i.e., Relay Client). The HIP
relay rewrites the destination IP address and port, and then appends a
RELAY_FROM parameter to the message. When the peer host
receives this concluding UPDATE packet, it can initiate the
connectivity checks.<a href="#section-4.9-11" class="pilcrow">¶</a></p>
<p id="section-4.9-12">In step 7, the two hosts test for connectivity across NATs
according to procedures described in <a href="#sec_conn_checks" class="xref">Section 4.6</a>. The original Initiator of the
communications is the controlling host and the original Responder is
the controlled host.<a href="#section-4.9-12" class="pilcrow">¶</a></p>
<p id="section-4.9-13">In step 8, the connectivity checks are successfully
completed and the controlling host has nominated one address
pair to be used. The hosts set up security associations to
deliver the application payload.<a href="#section-4.9-13" class="pilcrow">¶</a></p>
<p id="section-4.9-14">It is worth noting that the Control and Data Relay Client
do not have to reregister for the related services after a
handover. However, if a Data Relay Client has registered a
relayed address candidate from a Data Relay Server, the Data
Relay Client <span class="bcp14">MUST</span> reactivate the address before the
connectivity checks by sending an UPDATE message containing
the PEER_PERMISSION parameter as described in <a href="#sec_forwarding" class="xref">Section 4.12.1</a>. Otherwise, the Data Relay
Server
drops ESP packets sent to the relayed address.<a href="#section-4.9-14" class="pilcrow">¶</a></p>
<p id="section-4.9-15">In the so-called "double jump" or simultaneous mobility
scenario, both peers change their location simultaneously. In
such a case, both peers trigger the procedure described
earlier in this section at the same time. In other words, both
of the communicating hosts send an UPDATE packet carrying
locators at the same time or with some delay. When the
locators are exchanged almost simultaneously (reliably via
Control Relay Servers), the two hosts can continue with
connectivity checks after both have completed separately the
steps in <a href="#fig_update" class="xref">Figure 6</a>. The problematic case
occurs when one of the hosts (referred to here as host "M")
moves later during the connectivity checks. In such a case,
host M sends a locator to the peer, which is in the middle of
connectivity checks. Upon receiving the UPDATE message, the
peer responds with an UPDATE with ECHO_REQ_SIGN as described
in step 3 in <a href="#fig_update" class="xref">Figure 6</a>. Upon receiving the
valid response from host M as described in step 6, the peer
host <span class="bcp14">MUST</span> restart the connectivity checks with host M. This
way, both hosts start the connectivity checks roughly in a
synchronized way. It is also important that the peer host does not
restart the connectivity checks until step 6 is
successfully completed, because the UPDATE message
carrying locators in step 1 could be replayed by an attacker.<a href="#section-4.9-15" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_nat-keepalives">
<section id="section-4.10">
<h3 id="name-nat-keepalives">
<a href="#section-4.10" class="section-number selfRef">4.10. </a><a href="#name-nat-keepalives" class="section-name selfRef">NAT Keepalives</a>
</h3>
<p id="section-4.10-1">To prevent NAT states from expiring, communicating hosts
<span class="bcp14">MUST</span> send periodic keepalives to other hosts with which
they have established a HIP association every 15 seconds (the
so-called Tr value in ICE). Other values <span class="bcp14">MAY</span> be used,
but a Tr value smaller than 15 seconds <span class="bcp14">MUST NOT</span> be
used. Both a Control/Data Relay Client and Control/Data Relay Server,
as well as two peers employing UDP-ENCAPSULATION or ICE-HIP-UDP mode,
<span class="bcp14">SHOULD</span> send HIP NOTIFY packets unless they have
exchanged some other traffic over the used UDP ports. However, the
Data Relay Client and Data Relay Server <span class="bcp14">MUST</span> employ
only HIP NOTIFY packets in order to keep the server-reflexive
candidates alive. The keepalive message encoding format is defined in
<a href="#sec_keepalive" class="xref">Section 5.3</a>.
If the base exchange or mobility handover procedure occurs during an
extremely slow path, a host (with a HIP association with the peer)
<span class="bcp14">MAY</span> also
send HIP NOTIFY packets every 15 seconds to keep the path active with the recipient.<a href="#section-4.10-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_close">
<section id="section-4.11">
<h3 id="name-closing-procedure">
<a href="#section-4.11" class="section-number selfRef">4.11. </a><a href="#name-closing-procedure" class="section-name selfRef">Closing Procedure</a>
</h3>
<p id="section-4.11-1">The two-way procedure for closing a HIP association and the related
security associations is defined in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>. One host initiates the procedure by sending a
CLOSE message and the recipient confirms it with CLOSE_ACK. All
packets are protected using HMACs and signatures, and the CLOSE
messages include an ECHO_REQUEST_SIGNED parameter to protect against
replay attacks.<a href="#section-4.11-1" class="pilcrow">¶</a></p>
<p id="section-4.11-2">The same procedure for closing HIP associations also applies here,
but the messaging occurs using the UDP-encapsulated tunnel that the
two hosts employ. A host sending the CLOSE message
<span class="bcp14">SHOULD</span> first send the message over a direct link. After
a number of retransmissions, it <span class="bcp14">MUST</span> send over a
Control Relay Server of the recipient if one exists. The host
receiving the CLOSE message directly without a Control Relay Server
<span class="bcp14">SHOULD</span> respond directly. If the CLOSE message came via a
Control Relay Server, the host <span class="bcp14">SHOULD</span> respond using the
same Control Relay Server.<a href="#section-4.11-2" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.12">
<h3 id="name-relaying-considerations">
<a href="#section-4.12" class="section-number selfRef">4.12. </a><a href="#name-relaying-considerations" class="section-name selfRef">Relaying Considerations</a>
</h3>
<div id="sec_forwarding">
<section id="section-4.12.1">
<h4 id="name-forwarding-rules-and-permis">
<a href="#section-4.12.1" class="section-number selfRef">4.12.1. </a><a href="#name-forwarding-rules-and-permis" class="section-name selfRef">Forwarding Rules and Permissions</a>
</h4>
<p id="section-4.12.1-1"> The Data Relay Server uses a similar permission model as a
TURN server: before the Data Relay Server forwards any ESP data
packets from a peer to a Data Relay Client (or the other direction),
the client <span class="bcp14">MUST</span> set a permission for the peer's address. The
permissions also install a forwarding rule for each direction, similar to
TURN's channels, based on the Security Parameter Index (SPI)
values in the ESP packets.<a href="#section-4.12.1-1" class="pilcrow">¶</a></p>
<p id="section-4.12.1-2">Permissions are not required for HIP control packets.
However, if a relayed address (as conveyed in the RELAYED_ADDRESS
parameter from the Data Relay Server) is selected to be used for
data, the Control Relay Client <span class="bcp14">MUST</span> send an UPDATE message to the
Data Relay Server containing a PEER_PERMISSION parameter (see <a href="#sec_peer_permission" class="xref">Section 5.13</a>) with the following
information: the UDP port and address for the server-reflexive
address, the UDP port and
address of the peer, and the inbound and outbound SPIs used for ESP.
The packet <span class="bcp14">MUST</span> be sent to the same UDP tunnel
the Client employed in the base exchange to contact the Server
(i.e., not to the port occupied by the server-reflexive candidate).
To avoid packet
dropping of ESP packets, the Control Relay Client <span class="bcp14">SHOULD</span> send the
PEER_PERMISSION parameter before connectivity checks both in
the case of base exchange and a mobility handover. It is
worth noting that the UPDATE message includes a SEQ
parameter (as specified in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>) that
the Data Relay Server must acknowledge, so that the Control Relay Client
can resend the message with the PEER_PERMISSION parameter if it
gets lost.<a href="#section-4.12.1-2" class="pilcrow">¶</a></p>
<p id="section-4.12.1-3"> When a Data Relay Server receives an UPDATE with a
PEER_PERMISSION parameter, it <span class="bcp14">MUST</span> check if the
sender of the UPDATE is registered for data-relaying service, and
drop the UPDATE if the host was not registered. If the host was
registered, the Data Relay Server checks if there is a permission
with matching information (protocol, addresses, ports, and SPI
values). If there is no such permission, a new permission
<span class="bcp14">MUST</span> be created and its lifetime <span class="bcp14">MUST</span>
be set to 5 minutes. If an identical permission already existed, it
<span class="bcp14">MUST</span> be refreshed by setting the lifetime to 5
minutes. A Data Relay Client <span class="bcp14">SHOULD</span> refresh
permissions 1 minute before the expiration when the permission is
still needed.<a href="#section-4.12.1-3" class="pilcrow">¶</a></p>
<p id="section-4.12.1-4">When a Data Relay Server receives an UPDATE from a registered
client but without a PEER_PERMISSION parameter and with a new
locator set, the Data Relay Server can assume that the mobile host
has changed its location and is thus not reachable in its previous
location. In such an event, the Data Relay Server
<span class="bcp14">SHOULD</span> deactivate the permission and stop relaying
data plane traffic to the client.<a href="#section-4.12.1-4" class="pilcrow">¶</a></p>
<p id="section-4.12.1-5">The relayed address <span class="bcp14">MUST</span> be activated with the
PEER_PERMISSION parameter both after a base exchange and after a
handover procedure with another ICE-HIP-UDP-capable host. Unless
activated, the Data Relay Server <span class="bcp14">MUST</span> drop all ESP
packets. It is worth noting that a Data Relay Client does not have
to renew its registration upon a change of location UPDATE, but only
when the lifetime of the registration is close to end.<a href="#section-4.12.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.12.2">
<h4 id="name-hip-data-relay-and-relaying">
<a href="#section-4.12.2" class="section-number selfRef">4.12.2. </a><a href="#name-hip-data-relay-and-relaying" class="section-name selfRef">HIP Data Relay and Relaying of Control Packets</a>
</h4>
<p id="section-4.12.2-1">When a Data Relay Server accepts to relay UDP-encapsulated ESP
between a Data Relay Client and its peer, the Data Relay Server
opens a UDP port (relayed address) for this purpose as described in
<a href="#sec_registration" class="xref">Section 4.1</a>. This port can be
used for also delivering control packets because connectivity checks
also cover the path through the Data Relay Server. If the Data Relay
Server receives a UDP-encapsulated HIP control packet on that port,
it <span class="bcp14">MUST</span> forward the packet to the Data Relay Client
and add a RELAY_FROM parameter to the packet as if the Data Relay
Server were acting as a Control Relay Server. When the Data Relay
Client replies to a control packet with a RELAY_FROM parameter via
its Data Relay Server, the Data Relay Client <span class="bcp14">MUST</span> add
a RELAY_TO parameter containing the peer's address and use the
address of its Data Relay Server as the destination
address. Further, the Data Relay Server <span class="bcp14">MUST</span> send
this packet to the peer's address from the relayed address.<a href="#section-4.12.2-1" class="pilcrow">¶</a></p>
<p id="section-4.12.2-2"> If the Data Relay Server receives a UDP packet that is not a
HIP control packet to the relayed address, it <span class="bcp14">MUST</span> check if
it has a permission set for the peer the packet is arriving
from (i.e., the sender's address and SPI value matches to an
installed permission). If permissions are set, the Data Relay Server
<span class="bcp14">MUST</span> forward the packet to the Data Relay Client that
created the permission. The Data Relay Server <span class="bcp14">MUST</span> also implement
the similar checks for the reverse direction (i.e., ESP packets
from the Data Relay Client to the peer). Packets without a
permission <span class="bcp14">MUST</span> be dropped silently.<a href="#section-4.12.2-2" class="pilcrow">¶</a></p>
</section>
<div id="sec_conflicting">
<section id="section-4.12.3">
<h4 id="name-handling-conflicting-spi-va">
<a href="#section-4.12.3" class="section-number selfRef">4.12.3. </a><a href="#name-handling-conflicting-spi-va" class="section-name selfRef">Handling Conflicting SPI Values</a>
</h4>
<p id="section-4.12.3-1">From the viewpoint of a host, its remote peers can have
overlapping inbound SPI numbers because the IPsec also uses the
destination IP address to index the remote peer host. However, a
Data Relay Server can represent multiple remote peers, thus
masquerading the actual destination. Since a Data Relay Server may
have to deal with a multitude of Relay Clients and their peers, a
Data Relay Server may experience collisions in the SPI namespace,
thus being unable to forward datagrams to the correct
destination. Since the SPI space is 32 bits and the SPI values
should be random, the probability for a conflicting SPI value is
fairly small but could occur on a busy Data Relay Server. The two
problematic cases are described in this section.<a href="#section-4.12.3-1" class="pilcrow">¶</a></p>
<p id="section-4.12.3-2">In the first scenario, the SPI collision problem occurs
if two hosts have registered to the same Data Relay Server
and a third host initiates base exchange with both of
them. Here, the two Responders (i.e., Data Relay Clients)
claim the same inbound SPI number with the same Initiator
(peer). However, in this case, the Data Relay Server has
allocated separate UDP ports for the two Data Relay Clients
acting now as Responders (as recommended in <a href="#sec_reuse" class="xref">Section 7.5</a>). When the third host sends an ESP packet,
the Data Relay Server is able to forward the packet to the
correct Data Relay Client because the destination UDP port
is different for each of the clients.<a href="#section-4.12.3-2" class="pilcrow">¶</a></p>
<p id="section-4.12.3-3">In the second scenario, an SPI collision may occur when
two Initiators run a base exchange to the same Responder
(i.e., Data Relay Client), and both of the Initiators claim
the same inbound SPI at the Data Relay Server using
the PEER_PERMISSION parameter. In this case, the Data Relay
Server cannot disambiguate the correct destination of an ESP
packet originating from the Data Relay Client because the
SPI could belong to either of the peers (and the destination IP
and UDP port belonging to the Data Relay Server are not
unique either). The recommended way and a contingency plan
to solve this issue are described below.<a href="#section-4.12.3-3" class="pilcrow">¶</a></p>
<p id="section-4.12.3-4">The recommend way to mitigate the problem is as follows. For each
new HIP association, a Data Relay Client acting as a Responder
<span class="bcp14">SHOULD</span> register a new server-reflexive candidate as
described in <a href="#sec_gathering" class="xref">Section 4.2</a>. Similarly, the Data Relay Server <span class="bcp14">SHOULD NOT</span> reuse the port numbers as described in <a href="#sec_reuse" class="xref">Section 7.5</a>. This way, each
server-reflexive candidate for the Data Relay Client has a separate
UDP port that the Data Relay Server can use to disambiguate packet
destinations in case of SPI collisions.<a href="#section-4.12.3-4" class="pilcrow">¶</a></p>
<p id="section-4.12.3-5">When the Data Relay Client is not registering or failed
to register a new relay candidate for a new peer, the Data
Relay Client <span class="bcp14">MUST</span> follow a contingency plan as follows.
Upon receiving an I2 with a colliding SPI, the Data Relay
Client acting as the Responder <span class="bcp14">MUST NOT</span> include the relayed
address candidate in the R2 message because the Data Relay
Server would not be able to demultiplex the related ESP packet
to the correct Initiator. The same also applies to the
handover procedures; the Data Relay Client <span class="bcp14">MUST NOT</span> include
the relayed address candidate when sending its new locator
set in an UPDATE to its peer if it would cause an SPI
conflict with another peer.<a href="#section-4.12.3-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</section>
</div>
<div id="sec_format">
<section id="section-5">
<h2 id="name-packet-formats">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-packet-formats" class="section-name selfRef">Packet Formats</a>
</h2>
<p id="section-5-1"> The following subsections define the parameter and packet encodings
for the HIP and ESP packets. All values <span class="bcp14">MUST</span> be in
network byte order.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">It is worth noting that all of the parameters are shown for the sake
of completeness even though they are specified already in Legacy ICE-HIP
<span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>. New parameters are explicitly
described as new.<a href="#section-5-2" class="pilcrow">¶</a></p>
<div id="sec_udphip">
<section id="section-5.1">
<h3 id="name-hip-control-packets">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-hip-control-packets" class="section-name selfRef">HIP Control Packets</a>
</h3>
<p id="section-5.1-1"><a href="#fig_udphip" class="xref">Figure 7</a> illustrates the packet
format for UDP-encapsulated HIP. The format is identical to Legacy
ICE-HIP <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<span id="name-format-of-udp-encapsulated-"></span><div id="fig_udphip">
<figure id="figure-7">
<div class="artwork art-text alignCenter" id="section-5.1-2.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port | Destination Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 32 bits of zeroes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ HIP Header and Parameters ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-7" class="selfRef">Figure 7</a>:
<a href="#name-format-of-udp-encapsulated-" class="selfRef">Format of UDP-Encapsulated HIP Control Packets</a>
</figcaption></figure>
</div>
<p id="section-5.1-3"> HIP control packets are encapsulated in UDP packets as defined in
<span><a href="https://www.rfc-editor.org/rfc/rfc3948#section-2.2" class="relref">Section 2.2</a> of [<a href="#RFC3948" class="xref">RFC3948</a>]</span>, "IKE Header
Format for Port 4500", except that a different port number is
used. <a href="#fig_udphip" class="xref">Figure 7</a> illustrates the
encapsulation. The UDP header is followed by 32 zero bits that can be
used to differentiate HIP control packets from ESP packets. The HIP
header and parameters follow the conventions of <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span> with the exception that the HIP header checksum
<span class="bcp14">MUST</span> be zero. The HIP header checksum is zero for two
reasons. First, the UDP header already contains a checksum. Second,
the checksum definition in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>
includes the IP addresses in the checksum calculation. The NATs that
are unaware of HIP cannot recompute the HIP checksum after changing IP
addresses.<a href="#section-5.1-3" class="pilcrow">¶</a></p>
<p id="section-5.1-4"> A Control/Data Relay Server or a non-relay Responder
<span class="bcp14">SHOULD</span> listen at UDP port 10500 for incoming
UDP-encapsulated HIP control packets. If some other port number is
used, it needs to be known by potential Initiators.<a href="#section-5.1-4" class="pilcrow">¶</a></p>
<p id="section-5.1-5">UDP encapsulation of HIP packets reduces the Maximum
Transmission Unit (MTU) size of the control plane by 12 bytes
(8-byte UDP header plus 4-byte zero SPI marker), and the data
plane by 8 bytes. Additional HIP relay parameters, such as
RELAY_HMAC, RELAY_UDP_HIP, RELAY_UDP_ESP, etc., further
increase the size of certain HIP packets. In regard to MTU,
the following aspects need to be considered in an
implementation:<a href="#section-5.1-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5.1-6.1">A HIP host <span class="bcp14">SHOULD</span> implement ICMP message handling
to support Path MTU Discovery (PMTUD) as described in
<span>[<a href="#RFC1191" class="xref">RFC1191</a>]</span> and <span>[<a href="#RFC8201" class="xref">RFC8201</a>]</span>.<a href="#section-5.1-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-6.2">Reliance on IP fragmentation is unlikely to be a viable strategy
through NATs. If ICMP MTU discovery is not working, MTU-related path
black holes may occur.<a href="#section-5.1-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-6.3">A mitigation strategy is to constrain the MTU, especially for
virtual interfaces, to expected safe MTU values, e.g., 1400 bytes
for the underlying interfaces that support 1500 bytes MTU.<a href="#section-5.1-6.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-6.4">Further extensions to this specification may define a HIP-based
mechanism to find a working path MTU without unnecessary
constraining that size using Packetization Layer Path MTU Discovery
for Datagram Transports <span>[<a href="#RFC8899" class="xref">RFC8899</a>]</span>. For
instance, such a mechanism could be implemented between a HIP Relay
Client and HIP Relay Server.<a href="#section-5.1-6.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-6.5">It is worth noting that further HIP extensions can trim off 8
bytes in the ESP header by negotiating implicit initialization
vector (IV) support in the ESP_TRANSFORM parameter as described in
<span>[<a href="#RFC8750" class="xref">RFC8750</a>]</span>.<a href="#section-5.1-6.5" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="sec_con_checks">
<section id="section-5.2">
<h3 id="name-connectivity-checks-3">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-connectivity-checks-3" class="section-name selfRef">Connectivity Checks</a>
</h3>
<p id="section-5.2-1">HIP connectivity checks are HIP UPDATE packets. The format
is specified in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_keepalive">
<section id="section-5.3">
<h3 id="name-keepalives">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-keepalives" class="section-name selfRef">Keepalives</a>
</h3>
<p id="section-5.3-1">The <span class="bcp14">RECOMMENDED</span> encoding format for keepalives is
HIP NOTIFY packets as specified in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span> with the Notify message type field set to
NAT_KEEPALIVE (16385) and with an empty Notification data field. It is
worth noting that the sending of such a HIP NOTIFY message
<span class="bcp14">SHOULD</span> be omitted if the host is sending some other
traffic (HIP or ESP) to the peer host over the related UDP tunnel
during the Tr period. For instance, the host <span class="bcp14">MAY</span>
actively send ICMPv6 requests (or respond with an ICMPv6 response)
inside the ESP tunnel to test the health of the associated IPsec
security association. Alternatively, the host <span class="bcp14">MAY</span> use
UPDATE packets as a substitute. A minimal UPDATE packet would consist
of a SEQ and a single ECHO_REQ_SIGN parameter, and a more complex one
would involve rekeying procedures as specified in <span><a href="https://www.rfc-editor.org/rfc/rfc7402#section-6.8" class="relref">Section 6.8</a> of [<a href="#RFC7402" class="xref">RFC7402</a>]</span>. It is worth
noting that a host actively sending periodic UPDATE packets to a busy
server may increase the computational load of the server since it has
to verify HMACs and signatures in UPDATE messages.<a href="#section-5.3-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_nat_tm-param">
<section id="section-5.4">
<h3 id="name-nat-traversal-mode-paramete">
<a href="#section-5.4" class="section-number selfRef">5.4. </a><a href="#name-nat-traversal-mode-paramete" class="section-name selfRef">NAT Traversal Mode Parameter</a>
</h3>
<p id="section-5.4-1">The format of the NAT traversal mode parameter is defined in Legacy
ICE-HIP <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span> but repeated here
for completeness. The format of the NAT_TRAVERSAL_MODE parameter is
similar to the format of the ESP_TRANSFORM parameter in <span>[<a href="#RFC7402" class="xref">RFC7402</a>]</span> and is shown in <a href="#fig_nat_tfm" class="xref">Figure 8</a>. The Native ICE-HIP extension
specified in this document defines the new NAT traversal mode
identifier for ICE-HIP-UDP and reuses the UDP-ENCAPSULATION mode from
Legacy ICE-HIP <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>. The
identifier named RESERVED is reserved for future use. Future
specifications may define more traversal modes.<a href="#section-5.4-1" class="pilcrow">¶</a></p>
<span id="name-format-of-the-nat_traversal"></span><div id="fig_nat_tfm">
<figure id="figure-8">
<div class="artwork art-text alignCenter" id="section-5.4-2.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Mode ID #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Mode ID #2 | Mode ID #3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Mode ID #n | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-8" class="selfRef">Figure 8</a>:
<a href="#name-format-of-the-nat_traversal" class="selfRef">Format of the NAT_TRAVERSAL_MODE Parameter</a>
</figcaption></figure>
</div>
<span class="break"></span><dl class="dlParallel" id="section-5.4-3">
<dt id="section-5.4-3.1">Type:</dt>
<dd style="margin-left: 6.0em" id="section-5.4-3.2">608<a href="#section-5.4-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.4-3.3">Length:</dt>
<dd style="margin-left: 6.0em" id="section-5.4-3.4">Length in octets, excluding Type, Length, and Padding<a href="#section-5.4-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.4-3.5">Reserved:</dt>
<dd style="margin-left: 6.0em" id="section-5.4-3.6">Zero when sent, ignored when received<a href="#section-5.4-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.4-3.7">Mode ID:</dt>
<dd style="margin-left: 6.0em" id="section-5.4-3.8">Defines the proposed or selected NAT traversal mode(s)<a href="#section-5.4-3.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-5.4-4">The following NAT traversal mode IDs are defined:<a href="#section-5.4-4" class="pilcrow">¶</a></p>
<span id="name-nat-traversal-mode-ids"></span><table class="center" id="table-1">
<caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-nat-traversal-mode-ids" class="selfRef">NAT Traversal Mode IDs</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">ID name</th>
<th class="text-left" rowspan="1" colspan="1">Value</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">RESERVED</td>
<td class="text-left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">UDP-ENCAPSULATION</td>
<td class="text-left" rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ICE-STUN-UDP</td>
<td class="text-left" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">ICE-HIP-UDP</td>
<td class="text-left" rowspan="1" colspan="1">3</td>
</tr>
</tbody>
</table>
<p id="section-5.4-6"> The sender of a NAT_TRAVERSAL_MODE parameter <span class="bcp14">MUST</span> make sure that
there are no more than six (6) Mode IDs in one NAT_TRAVERSAL_MODE
parameter. Conversely, a recipient <span class="bcp14">MUST</span> be prepared to handle received
NAT traversal mode parameters that contain more than six Mode IDs by
accepting the first six Mode IDs and dropping the rest. The limited
number of Mode IDs sets the maximum size of the NAT_TRAVERSAL_MODE
parameter. The modes <span class="bcp14">MUST</span> be in preference order, most preferred
mode(s) first.<a href="#section-5.4-6" class="pilcrow">¶</a></p>
<p id="section-5.4-7">Implementations conforming to this specification
<span class="bcp14">MUST</span> implement UDP-ENCAPSULATION and
<span class="bcp14">SHOULD</span> implement ICE-HIP-UDP modes.<a href="#section-5.4-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_check-pacing-param">
<section id="section-5.5">
<h3 id="name-connectivity-check-transact">
<a href="#section-5.5" class="section-number selfRef">5.5. </a><a href="#name-connectivity-check-transact" class="section-name selfRef">Connectivity Check Transaction Pacing Parameter</a>
</h3>
<p id="section-5.5-1"> The TRANSACTION_PACING parameter is defined in <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span> but repeated in <a href="#fig_check_pacing" class="xref">Figure 9</a> for completeness. It contains only the connectivity
check pacing value, expressed in milliseconds, as a 32-bit unsigned
integer.<a href="#section-5.5-1" class="pilcrow">¶</a></p>
<span id="name-format-of-the-transaction_p"></span><div id="fig_check_pacing">
<figure id="figure-9">
<div class="artwork art-text alignLeft" id="section-5.5-2.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Min Ta |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-9" class="selfRef">Figure 9</a>:
<a href="#name-format-of-the-transaction_p" class="selfRef">Format of the TRANSACTION_PACING Parameter</a>
</figcaption></figure>
</div>
<span class="break"></span><dl class="dlParallel" id="section-5.5-3">
<dt id="section-5.5-3.1">Type:</dt>
<dd style="margin-left: 6.0em" id="section-5.5-3.2">610<a href="#section-5.5-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.5-3.3">Length:</dt>
<dd style="margin-left: 6.0em" id="section-5.5-3.4">4<a href="#section-5.5-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.5-3.5">Min Ta:</dt>
<dd style="margin-left: 6.0em" id="section-5.5-3.6">The minimum connectivity check transaction pacing value the host would
use (in milliseconds)<a href="#section-5.5-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="sec_rel-reg-params">
<section id="section-5.6">
<h3 id="name-relay-and-registration-para">
<a href="#section-5.6" class="section-number selfRef">5.6. </a><a href="#name-relay-and-registration-para" class="section-name selfRef">Relay and Registration Parameters</a>
</h3>
<p id="section-5.6-1"> The format of the REG_FROM, RELAY_FROM, and RELAY_TO parameters is
shown in <a href="#fig_reg_from" class="xref">Figure 10</a>. All
parameters are identical except for the type. Of the three, only
REG_FROM is covered by the signature.<a href="#section-5.6-1" class="pilcrow">¶</a></p>
<span id="name-format-of-the-reg_from-rela"></span><div id="fig_reg_from">
<figure id="figure-10">
<div class="artwork art-text alignCenter" id="section-5.6-2.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Port | Protocol | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Address |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-10" class="selfRef">Figure 10</a>:
<a href="#name-format-of-the-reg_from-rela" class="selfRef">Format of the REG_FROM, RELAY_FROM, and RELAY_TO Parameters</a>
</figcaption></figure>
</div>
<span class="break"></span><dl class="dlParallel" id="section-5.6-3">
<dt id="section-5.6-3.1">Type:</dt>
<dd style="margin-left: 6.0em" id="section-5.6-3.2">
<span class="break"></span><dl class="dlParallel dlCompact" id="section-5.6-3.2.1">
<dt id="section-5.6-3.2.1.1">REG_FROM:</dt>
<dd style="margin-left: 1.5em" id="section-5.6-3.2.1.2">950<a href="#section-5.6-3.2.1.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.6-3.2.1.3">RELAY_FROM:</dt>
<dd style="margin-left: 1.5em" id="section-5.6-3.2.1.4">63998<a href="#section-5.6-3.2.1.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.6-3.2.1.5">RELAY_TO:</dt>
<dd style="margin-left: 1.5em" id="section-5.6-3.2.1.6">64002<a href="#section-5.6-3.2.1.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</dd>
<dd class="break"></dd>
<dt id="section-5.6-3.3">Length:</dt>
<dd style="margin-left: 6.0em" id="section-5.6-3.4">20<a href="#section-5.6-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.6-3.5">Port:</dt>
<dd style="margin-left: 6.0em" id="section-5.6-3.6">Transport port number; zero when plain IP is used<a href="#section-5.6-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.6-3.7">Protocol:</dt>
<dd style="margin-left: 6.0em" id="section-5.6-3.8">IANA-assigned, Internet Protocol number. 17 for UDP; 0 for plain
IP<a href="#section-5.6-3.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.6-3.9">Reserved:</dt>
<dd style="margin-left: 6.0em" id="section-5.6-3.10">Reserved for future use; zero when sent, ignored when received<a href="#section-5.6-3.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.6-3.11">Address:</dt>
<dd style="margin-left: 6.0em" id="section-5.6-3.12">An IPv6 address or an IPv4 address in "IPv4-mapped IPv6 address"
format<a href="#section-5.6-3.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-5.6-4"> REG_FROM contains the transport address and protocol from which the Control
Relay Server sees the registration coming. RELAY_FROM contains the
address from which the relayed packet was received by the Control Relay Server
and the protocol that was used. RELAY_TO contains the same information
about the address to which a packet should be forwarded.<a href="#section-5.6-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_locator_format">
<section id="section-5.7">
<h3 id="name-locator_set-parameter">
<a href="#section-5.7" class="section-number selfRef">5.7. </a><a href="#name-locator_set-parameter" class="section-name selfRef">LOCATOR_SET Parameter</a>
</h3>
<p id="section-5.7-1">This specification reuses the format for UDP-based locators as
specified in Legacy ICE-HIP <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>
to be used for communicating the address candidates between two
hosts. The generic and NAT-traversal-specific locator parameters are
illustrated in <a href="#fig_locator" class="xref">Figure 11</a>.<a href="#section-5.7-1" class="pilcrow">¶</a></p>
<span id="name-locator_set-parameter-2"></span><div id="fig_locator">
<figure id="figure-11">
<div class="artwork art-text alignCenter" id="section-5.7-2.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Traffic Type | Locator Type | Locator Length| Reserved |P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Locator Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Locator |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Traffic Type | Loc Type = 2 | Locator Length| Reserved |P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Locator Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transport Port | Transp. Proto| Kind |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SPI |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Address |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-11" class="selfRef">Figure 11</a>:
<a href="#name-locator_set-parameter-2" class="selfRef">LOCATOR_SET Parameter</a>
</figcaption></figure>
</div>
<p id="section-5.7-3"> The individual fields in the LOCATOR_SET parameter are described in
<a href="#tbl_locator" class="xref">Table 2</a>.<a href="#section-5.7-3" class="pilcrow">¶</a></p>
<span id="name-fields-of-the-locator_set-p"></span><div id="tbl_locator">
<table class="center" id="table-2">
<caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-fields-of-the-locator_set-p" class="selfRef">Fields of the LOCATOR_SET Parameter</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Field</th>
<th class="text-left" rowspan="1" colspan="1">Value(s)</th>
<th class="text-left" rowspan="1" colspan="1">Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">Type</td>
<td class="text-left" rowspan="1" colspan="1">193</td>
<td class="text-left" rowspan="1" colspan="1">Parameter type</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Length</td>
<td class="text-left" rowspan="1" colspan="1">Variable</td>
<td class="text-left" rowspan="1" colspan="1">Length in octets, excluding Type and Length fields and padding</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Traffic Type</td>
<td class="text-left" rowspan="1" colspan="1">0-2</td>
<td class="text-left" rowspan="1" colspan="1">The locator for either HIP signaling (1) or ESP (2), or for
both (0)</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Locator Type</td>
<td class="text-left" rowspan="1" colspan="1">2</td>
<td class="text-left" rowspan="1" colspan="1">"Transport address" locator type</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Locator Length</td>
<td class="text-left" rowspan="1" colspan="1">7</td>
<td class="text-left" rowspan="1" colspan="1">Length of the fields after Locator Lifetime in 4-octet units</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Reserved</td>
<td class="text-left" rowspan="1" colspan="1">0</td>
<td class="text-left" rowspan="1" colspan="1">Reserved for future extensions</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Preferred (P) bit</td>
<td class="text-left" rowspan="1" colspan="1">0 or 1</td>
<td class="text-left" rowspan="1" colspan="1">Set to 1 for a Locator in R1 if the Responder can use it for the
rest of the base exchange, otherwise set to zero</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Locator Lifetime</td>
<td class="text-left" rowspan="1" colspan="1">Variable</td>
<td class="text-left" rowspan="1" colspan="1">Locator lifetime in seconds, see
<span><a href="https://www.rfc-editor.org/rfc/rfc8046#section-4" class="relref">Section 4</a> of [<a href="#RFC8046" class="xref">RFC8046</a>]</span>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Transport Port</td>
<td class="text-left" rowspan="1" colspan="1">Variable</td>
<td class="text-left" rowspan="1" colspan="1">Transport-layer port number</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Transport Protocol</td>
<td class="text-left" rowspan="1" colspan="1">Variable</td>
<td class="text-left" rowspan="1" colspan="1">IANA-assigned, transport-layer Internet Protocol number.
Currently, only UDP (17) is supported.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Kind</td>
<td class="text-left" rowspan="1" colspan="1">Variable</td>
<td class="text-left" rowspan="1" colspan="1">0 for host, 1 for server reflexive, 2 for peer
reflexive (currently unused), or 3 for relayed address</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Priority</td>
<td class="text-left" rowspan="1" colspan="1">Variable</td>
<td class="text-left" rowspan="1" colspan="1">Locator's priority as described in <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>. It is worth noting that
while the priority of a single locator candidate is 32 bits, an
implementation should a 64-bit integer to calculate the priority
of a candidate pair for the ICE priority algorithm.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">SPI</td>
<td class="text-left" rowspan="1" colspan="1">Variable</td>
<td class="text-left" rowspan="1" colspan="1">Security Parameter Index (SPI) value that the
host expects to see in incoming ESP packets that use this
locator</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Address</td>
<td class="text-left" rowspan="1" colspan="1">Variable</td>
<td class="text-left" rowspan="1" colspan="1">IPv6 address or an "IPv4-mapped IPv6 address"
format IPv4 address <span>[<a href="#RFC4291" class="xref">RFC4291</a>]</span>
</td>
</tr>
</tbody>
</table>
</div>
<p id="section-5.7-5">The LOCATOR parameter <span class="bcp14">MUST</span> be encapsulated inside an
ENCRYPTED parameter.<a href="#section-5.7-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_relay-hmac">
<section id="section-5.8">
<h3 id="name-relay_hmac-parameter">
<a href="#section-5.8" class="section-number selfRef">5.8. </a><a href="#name-relay_hmac-parameter" class="section-name selfRef">RELAY_HMAC Parameter</a>
</h3>
<p id="section-5.8-1">As specified in Legacy ICE-HIP <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>, the RELAY_HMAC parameter value has the TLV type
65520. It has the same semantics as RVS_HMAC as specified in <span><a href="https://www.rfc-editor.org/rfc/rfc8004#section-4.2.1" class="relref">Section 4.2.1</a> of [<a href="#RFC8004" class="xref">RFC8004</a>]</span>. Similar to
RVS_HMAC, RELAY_HMAC is also keyed with the HIP integrity key
(HIP-lg or HIP-gl as specified in <span><a href="https://www.rfc-editor.org/rfc/rfc7401#section-6.5" class="relref">Section 6.5</a> of [<a href="#RFC7401" class="xref">RFC7401</a>]</span>), established during the relay registration
procedure as described in <a href="#sec_registration" class="xref">Section 4.1</a>.<a href="#section-5.8-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_reg-types">
<section id="section-5.9">
<h3 id="name-registration-types">
<a href="#section-5.9" class="section-number selfRef">5.9. </a><a href="#name-registration-types" class="section-name selfRef">Registration Types</a>
</h3>
<p id="section-5.9-1"> The REG_INFO, REG_REQ, REG_RESP, and REG_FAILED parameters contain
Registration Type <span>[<a href="#RFC8003" class="xref">RFC8003</a>]</span> values for
Control Relay Server registration. The value for RELAY_UDP_HIP is 2 as
specified in Legacy ICE-HIP <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>. The value for RELAY_UDP_ESP is 3.<a href="#section-5.9-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_notify-types">
<section id="section-5.10">
<h3 id="name-notify-packet-types">
<a href="#section-5.10" class="section-number selfRef">5.10. </a><a href="#name-notify-packet-types" class="section-name selfRef">Notify Packet Types</a>
</h3>
<p id="section-5.10-1">A Control/Data Relay Server and end hosts can use NOTIFY packets to
signal different error conditions. The NOTIFY packet types are the
same as in Legacy ICE-HIP <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>
except for the two last ones, which are new.<a href="#section-5.10-1" class="pilcrow">¶</a></p>
<p id="section-5.10-2">The Notify Packet Types <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>
are shown below. The Notification Data field for the error
notifications <span class="bcp14">SHOULD</span> contain the HIP header of the
rejected packet and <span class="bcp14">SHOULD</span> be empty for the
CONNECTIVITY_CHECKS_FAILED type.<a href="#section-5.10-2" class="pilcrow">¶</a></p>
<span id="name-notify-packet-types-2"></span><div id="notif-param-error-types">
<table class="center" id="table-3">
<caption>
<a href="#table-3" class="selfRef">Table 3</a>:
<a href="#name-notify-packet-types-2" class="selfRef">Notify Packet Types</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">NOTIFICATION PARAMETER - ERROR TYPES</th>
<th class="text-left" rowspan="1" colspan="1">Value</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<p id="section-5.10-3.2.1.1.1">NO_VALID_NAT_TRAVERSAL_MODE_PARAMETER<a href="#section-5.10-3.2.1.1.1" class="pilcrow">¶</a></p>
<p id="section-5.10-3.2.1.1.2">If a Control Relay Server does not forward a base exchange packet due
to a missing NAT traversal mode parameter, or the Initiator selects a
NAT traversal mode that the (non-relay) Responder did not expect, the
Control Relay Server or the Responder may send back a NOTIFY error
packet with this type.<a href="#section-5.10-3.2.1.1.2" class="pilcrow">¶</a></p>
</td>
<td class="text-left" rowspan="1" colspan="1">60</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<p id="section-5.10-3.2.2.1.1">CONNECTIVITY_CHECKS_FAILED<a href="#section-5.10-3.2.2.1.1" class="pilcrow">¶</a></p>
<p id="section-5.10-3.2.2.1.2">Used by the end hosts to signal that NAT traversal
connectivity checks failed and did not produce a working path.<a href="#section-5.10-3.2.2.1.2" class="pilcrow">¶</a></p>
</td>
<td class="text-left" rowspan="1" colspan="1">61</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<p id="section-5.10-3.2.3.1.1">MESSAGE_NOT_RELAYED<a href="#section-5.10-3.2.3.1.1" class="pilcrow">¶</a></p>
<p id="section-5.10-3.2.3.1.2">Used by a Control Relay Server to signal that it was not able or
willing to relay a HIP packet.<a href="#section-5.10-3.2.3.1.2" class="pilcrow">¶</a></p>
</td>
<td class="text-left" rowspan="1" colspan="1">62</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<p id="section-5.10-3.2.4.1.1">SERVER_REFLEXIVE_CANDIDATE_ALLOCATION_FAILED<a href="#section-5.10-3.2.4.1.1" class="pilcrow">¶</a></p>
<p id="section-5.10-3.2.4.1.2">Used by a Data Relay Server to signal that it was not able or
willing to allocate a new server-reflexive candidate for the Data
Relay Client.<a href="#section-5.10-3.2.4.1.2" class="pilcrow">¶</a></p>
</td>
<td class="text-left" rowspan="1" colspan="1">63</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<p id="section-5.10-3.2.5.1.1">RVS_HMAC_PROHIBITED_WITH_RELAY<a href="#section-5.10-3.2.5.1.1" class="pilcrow">¶</a></p>
<p id="section-5.10-3.2.5.1.2">In the unintended event that a Control Relay Server sends any HIP
message with an RVS_HMAC parameter, the Control Relay Client drops the
received HIP message and sends a notify message back to the Control
Relay Server using this notify type.<a href="#section-5.10-3.2.5.1.2" class="pilcrow">¶</a></p>
</td>
<td class="text-left" rowspan="1" colspan="1">64</td>
</tr>
</tbody>
</table>
</div>
</section>
</div>
<div id="sec_udpesp">
<section id="section-5.11">
<h3 id="name-esp-data-packets">
<a href="#section-5.11" class="section-number selfRef">5.11. </a><a href="#name-esp-data-packets" class="section-name selfRef">ESP Data Packets</a>
</h3>
<p id="section-5.11-1">The format for ESP data packets is identical to Legacy ICE-HIP
<span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>.<a href="#section-5.11-1" class="pilcrow">¶</a></p>
<p id="section-5.11-2"> <span>[<a href="#RFC3948" class="xref">RFC3948</a>]</span> describes the UDP encapsulation of the
IPsec ESP transport and tunnel mode. On the wire, the HIP ESP packets
do not differ from the transport mode ESP; thus, the encapsulation
of the HIP ESP packets is same as the UDP encapsulation transport mode
ESP. However, the (semantic) difference to Bound End-to-End Tunnel
(BEET) mode ESP packets used by HIP is that the IP header is not used in
BEET integrity protection calculation.<a href="#section-5.11-2" class="pilcrow">¶</a></p>
<p id="section-5.11-3"> During the HIP base exchange, the two peers exchange parameters
that enable them to define a pair of IPsec ESP security associations
(SAs) as described in <span>[<a href="#RFC7402" class="xref">RFC7402</a>]</span>. When two peers perform
a UDP-encapsulated base exchange, they <span class="bcp14">MUST</span> define a pair of IPsec SAs
that produces UDP-encapsulated ESP data traffic.<a href="#section-5.11-3" class="pilcrow">¶</a></p>
<p id="section-5.11-4"> The management of encryption/authentication protocols and SPIs is
defined in <span>[<a href="#RFC7402" class="xref">RFC7402</a>]</span>. The UDP
encapsulation format and processing of HIP ESP traffic is described in
<span><a href="https://www.rfc-editor.org/rfc/rfc7402#section-6.1" class="relref">Section 6.1</a> of [<a href="#RFC7402" class="xref">RFC7402</a>]</span>.<a href="#section-5.11-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_relayed_address">
<section id="section-5.12">
<h3 id="name-relayed_address-and-mapped_">
<a href="#section-5.12" class="section-number selfRef">5.12. </a><a href="#name-relayed_address-and-mapped_" class="section-name selfRef">RELAYED_ADDRESS and MAPPED_ADDRESS Parameters</a>
</h3>
<p id="section-5.12-1">While the type values are new, the format of the RELAYED_ADDRESS
and MAPPED_ADDRESS parameters (<a href="#fig_relayed_address" class="xref">Figure 12</a>) is identical to REG_FROM, RELAY_FROM, and RELAY_TO
parameters. This document specifies only the use of UDP relaying;
thus, only protocol 17 is allowed. However, future documents may
specify support for other protocols.<a href="#section-5.12-1" class="pilcrow">¶</a></p>
<span id="name-format-of-the-relayed_addre"></span><div id="fig_relayed_address">
<figure id="figure-12">
<div class="artwork art-text alignCenter" id="section-5.12-2.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Port | Protocol | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Address |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-12" class="selfRef">Figure 12</a>:
<a href="#name-format-of-the-relayed_addre" class="selfRef">Format of the RELAYED_ADDRESS and MAPPED_ADDRESS Parameters</a>
</figcaption></figure>
</div>
<span class="break"></span><dl class="dlParallel" id="section-5.12-3">
<dt id="section-5.12-3.1">Type:</dt>
<dd style="margin-left: 6.0em" id="section-5.12-3.2">
<span class="break"></span><dl class="dlParallel dlCompact" id="section-5.12-3.2.1">
<dt id="section-5.12-3.2.1.1">RELAYED_ADDRESS:</dt>
<dd style="margin-left: 1.5em" id="section-5.12-3.2.1.2">4650<a href="#section-5.12-3.2.1.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.12-3.2.1.3">MAPPED_ADDRESS:</dt>
<dd style="margin-left: 1.5em" id="section-5.12-3.2.1.4">4660<a href="#section-5.12-3.2.1.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</dd>
<dd class="break"></dd>
<dt id="section-5.12-3.3">Length:</dt>
<dd style="margin-left: 6.0em" id="section-5.12-3.4">20<a href="#section-5.12-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.12-3.5">Port:</dt>
<dd style="margin-left: 6.0em" id="section-5.12-3.6">The UDP port number<a href="#section-5.12-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.12-3.7">Protocol:</dt>
<dd style="margin-left: 6.0em" id="section-5.12-3.8">IANA-assigned, Internet Protocol number (17 for UDP)<a href="#section-5.12-3.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.12-3.9">Reserved:</dt>
<dd style="margin-left: 6.0em" id="section-5.12-3.10">Reserved for future use; zero when sent, ignored when received<a href="#section-5.12-3.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.12-3.11">Address:</dt>
<dd style="margin-left: 6.0em" id="section-5.12-3.12">An IPv6 address or an IPv4 address in "IPv4-mapped IPv6 address"
format<a href="#section-5.12-3.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="sec_peer_permission">
<section id="section-5.13">
<h3 id="name-peer_permission-parameter">
<a href="#section-5.13" class="section-number selfRef">5.13. </a><a href="#name-peer_permission-parameter" class="section-name selfRef">PEER_PERMISSION Parameter</a>
</h3>
<p id="section-5.13-1"> The format of the new PEER_PERMISSION parameter is shown in <a href="#fig_peer_permission" class="xref">Figure 13</a>. The parameter is used
for setting up and refreshing forwarding rules and the permissions for
data packets at the Data Relay Server. The parameter contains one or
more sets of Port, Protocol, Address, Outbound SPI (OSPI), and Inbound
SPI (ISPI) values. One set defines a rule for one peer address.<a href="#section-5.13-1" class="pilcrow">¶</a></p>
<span id="name-format-of-the-peer_permissi"></span><div id="fig_peer_permission">
<figure id="figure-13">
<div class="artwork art-text alignCenter" id="section-5.13-2.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RPort | PPort |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Protocol | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| RAddress |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| PAddress |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OSPI |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ISPI |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-13" class="selfRef">Figure 13</a>:
<a href="#name-format-of-the-peer_permissi" class="selfRef">Format of the PEER_PERMISSION Parameter</a>
</figcaption></figure>
</div>
<span class="break"></span><dl class="dlParallel" id="section-5.13-3">
<dt id="section-5.13-3.1">Type:</dt>
<dd style="margin-left: 6.0em" id="section-5.13-3.2">4680<a href="#section-5.13-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.13-3.3">Length:</dt>
<dd style="margin-left: 6.0em" id="section-5.13-3.4">48<a href="#section-5.13-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.13-3.5">RPort:</dt>
<dd style="margin-left: 6.0em" id="section-5.13-3.6">The transport-layer (UDP) port at the Data Relay Server (i.e., the port
of the server-reflexive candidate)<a href="#section-5.13-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.13-3.7">PPort:</dt>
<dd style="margin-left: 6.0em" id="section-5.13-3.8">The transport-layer (UDP) port number of the peer<a href="#section-5.13-3.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.13-3.9">Protocol:</dt>
<dd style="margin-left: 6.0em" id="section-5.13-3.10">IANA-assigned, Internet Protocol number (17 for UDP)<a href="#section-5.13-3.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.13-3.11">Reserved:</dt>
<dd style="margin-left: 6.0em" id="section-5.13-3.12">Reserved for future use; zero when sent, ignored when received<a href="#section-5.13-3.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.13-3.13">RAddress:</dt>
<dd style="margin-left: 6.0em" id="section-5.13-3.14">An IPv6 address, or an IPv4 address in "IPv4-mapped IPv6 address"
format, of the server-reflexive candidate<a href="#section-5.13-3.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.13-3.15">PAddress:</dt>
<dd style="margin-left: 6.0em" id="section-5.13-3.16">An IPv6 address, or an IPv4 address in "IPv4-mapped IPv6 address"
format, of the peer<a href="#section-5.13-3.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.13-3.17">OSPI:</dt>
<dd style="margin-left: 6.0em" id="section-5.13-3.18">The outbound SPI value the Data Relay Client is using for the peer<a href="#section-5.13-3.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.13-3.19">ISPI:</dt>
<dd style="margin-left: 6.0em" id="section-5.13-3.20">The inbound SPI value the Data Relay Client is using for the peer<a href="#section-5.13-3.20" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="sec_con-check">
<section id="section-5.14">
<h3 id="name-hip-connectivity-check-pack">
<a href="#section-5.14" class="section-number selfRef">5.14. </a><a href="#name-hip-connectivity-check-pack" class="section-name selfRef">HIP Connectivity Check Packets</a>
</h3>
<p id="section-5.14-1">The connectivity request messages are HIP UPDATE packets containing
a new CANDIDATE_PRIORITY parameter (<a href="#fig_candidate_priority" class="xref">Figure 14</a>). Response UPDATE
packets contain a MAPPED_ADDRESS parameter (<a href="#fig_relayed_address" class="xref">Figure 12</a>).<a href="#section-5.14-1" class="pilcrow">¶</a></p>
<span id="name-format-of-the-candidate_pri"></span><div id="fig_candidate_priority">
<figure id="figure-14">
<div class="artwork art-text alignCenter" id="section-5.14-2.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-14" class="selfRef">Figure 14</a>:
<a href="#name-format-of-the-candidate_pri" class="selfRef">Format of the CANDIDATE_PRIORITY Parameter</a>
</figcaption></figure>
</div>
<span class="break"></span><dl class="dlParallel" id="section-5.14-3">
<dt id="section-5.14-3.1">Type:</dt>
<dd style="margin-left: 6.0em" id="section-5.14-3.2">4700<a href="#section-5.14-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.14-3.3">Length:</dt>
<dd style="margin-left: 6.0em" id="section-5.14-3.4">4<a href="#section-5.14-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.14-3.5">Priority:</dt>
<dd style="margin-left: 6.0em" id="section-5.14-3.6">The priority of a (potential) peer-reflexive candidate<a href="#section-5.14-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="sec_nominate">
<section id="section-5.15">
<h3 id="name-nominate-parameter">
<a href="#section-5.15" class="section-number selfRef">5.15. </a><a href="#name-nominate-parameter" class="section-name selfRef">NOMINATE Parameter</a>
</h3>
<p id="section-5.15-1"><a href="#fig_nominate" class="xref">Figure 15</a> shows the NOMINATE
parameter that is used to conclude the candidate nomination
process.<a href="#section-5.15-1" class="pilcrow">¶</a></p>
<span id="name-format-of-the-nominate-para"></span><div id="fig_nominate">
<figure id="figure-15">
<div class="artwork art-text alignCenter" id="section-5.15-2.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-15" class="selfRef">Figure 15</a>:
<a href="#name-format-of-the-nominate-para" class="selfRef">Format of the NOMINATE Parameter</a>
</figcaption></figure>
</div>
<span class="break"></span><dl class="dlParallel" id="section-5.15-3">
<dt id="section-5.15-3.1">Type:</dt>
<dd style="margin-left: 6.0em" id="section-5.15-3.2">4710<a href="#section-5.15-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.15-3.3">Length:</dt>
<dd style="margin-left: 6.0em" id="section-5.15-3.4">4<a href="#section-5.15-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.15-3.5">Reserved:</dt>
<dd style="margin-left: 6.0em" id="section-5.15-3.6">Reserved for future extension purposes<a href="#section-5.15-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
</section>
</div>
<section id="section-6">
<h2 id="name-iab-considerations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-iab-considerations" class="section-name selfRef">IAB Considerations</a>
</h2>
<p id="section-6-1">The ICE specification <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span> discusses
"Unilateral Self-Address Fixing" in Section <a href="https://www.rfc-editor.org/rfc/rfc8445#section-18" class="relref">18</a>. This protocol is based on ICE; thus,
the same considerations also apply here.<a href="#section-6-1" class="pilcrow">¶</a></p>
</section>
<section id="section-7">
<h2 id="name-security-considerations">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-7-1">Since the control plane protocol and Control Relay Server are
essentially the same (with some minor differences) in this document as
in Legacy ICE-HIP <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>, the same
security considerations (in Sections <a href="#sec_privacy" class="xref">7.1</a>, <a href="#sec_opportunistic" class="xref">7.2</a>,
<a href="#sec_bex_replay" class="xref">7.3</a>, and <a href="#sec_demux" class="xref">7.4</a>) are still valid, but are
repeated here for the sake of completeness. New security considerations
related to the new Data Relay Server are discussed in <a href="#sec_reuse" class="xref">Section 7.5</a>, and considerations related to the
new connectivity check protocol are discussed in Sections <a href="#sec_amplification" class="xref">7.6</a> and <a href="#sec_conn_attack" class="xref">7.7</a>.<a href="#section-7-1" class="pilcrow">¶</a></p>
<div id="sec_privacy">
<section id="section-7.1">
<h3 id="name-privacy-considerations">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-privacy-considerations" class="section-name selfRef">Privacy Considerations</a>
</h3>
<p id="section-7.1-1"> It is also possible that end users may not want to reveal all
locators to each other. For example, tracking the physical location of
a multihoming end host may become easier if it reveals all locators to
its peer during a base exchange. Also, revealing host addresses exposes
information about the local topology that may not be allowed in all
corporate environments.
For these two local policy reasons, it might be tempting to exclude
certain host addresses from the LOCATOR_SET parameter of an end host, but
this is <span class="bcp14">NOT RECOMMENDED</span>.
For instance, such
behavior creates non-optimal paths when the hosts are located behind
the same NAT. Especially, this could be problematic with a legacy NAT
that does not support routing from the private address realm back to
itself through the outer address of the NAT. This scenario is referred
to as the hairpin problem <span>[<a href="#RFC5128" class="xref">RFC5128</a>]</span>. With such a legacy
NAT, the only option left would be to use a relayed transport address
from a Data Relay Server.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
<p id="section-7.1-2"> The use of Control and Data Relay Servers can also be useful for
privacy purposes. For example, a privacy-concerned Responder may reveal
only its Control Relay Server and Relayed candidates to Initiators. This
partially protects the Responder against Denial-of-Service (DoS)
attacks by allowing the Responder to initiate new connections even if
its relays would be unavailable due to a DoS attack.<a href="#section-7.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_opportunistic">
<section id="section-7.2">
<h3 id="name-opportunistic-mode">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-opportunistic-mode" class="section-name selfRef">Opportunistic Mode</a>
</h3>
<p id="section-7.2-1">In opportunistic HIP mode (cf. <span><a href="https://www.rfc-editor.org/rfc/rfc7401#section-4.1.8" class="relref">Section 4.1.8</a> of [<a href="#RFC7401" class="xref">RFC7401</a>]</span>), an Initiator sends an I1
without setting the destination HIT of the Responder (i.e., the
Control Relay Client). A Control Relay Server <span class="bcp14">SHOULD</span>
have a unique IP address per the Control Relay Client when the Control
Relay Server is serving more than one Control Relay Client and
supports opportunistic mode. Otherwise, the Control Relay Server
cannot guarantee to deliver the I1 packet to the intended recipient.
Future extensions of this document may allow opportunistic mode to be
used with non-unique IP addresses to be utilized either as a HIP-level
anycast or multicast mechanism. Both of the mentioned cases would
require separate registration parameters that the Control Relay
Server proposes and the Control Client Server accepts during
registration.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_bex_replay">
<section id="section-7.3">
<h3 id="name-base-exchange-replay-protec">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-base-exchange-replay-protec" class="section-name selfRef">Base Exchange Replay Protection for Control Relay Server</a>
</h3>
<p id="section-7.3-1"> In certain scenarios, it is possible that an attacker, or two
attackers, can replay an earlier base exchange through a Control Relay Server
by masquerading as the original Initiator and Responder. The
attack does not require the attacker(s) to compromise the private
key(s) of the attacked host(s). However, for this attack to succeed,
the legitimate Responder has to be disconnected from the Control Relay Server.<a href="#section-7.3-1" class="pilcrow">¶</a></p>
<p id="section-7.3-2"> The Control Relay Server can protect itself against replay attacks by becoming
involved in the base exchange by introducing nonces that the end hosts
(Initiator and Responder) are required to sign. One way to do this is
to add ECHO_REQUEST_M parameters to the R1 and I2 packets as described
in <span>[<a href="#I-D.heer-hip-middle-auth" class="xref">HIP-MIDDLEBOXES</a>]</span> and drop the I2 or R2
packets if the corresponding ECHO_RESPONSE_M parameters are not
present.<a href="#section-7.3-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_demux">
<section id="section-7.4">
<h3 id="name-demultiplexing-different-hi">
<a href="#section-7.4" class="section-number selfRef">7.4. </a><a href="#name-demultiplexing-different-hi" class="section-name selfRef">Demultiplexing Different HIP Associations</a>
</h3>
<p id="section-7.4-1"><span><a href="https://www.rfc-editor.org/rfc/rfc3948#section-5.1" class="relref">Section 5.1</a> of [<a href="#RFC3948" class="xref">RFC3948</a>]</span> describes
a security issue for the UDP encapsulation in the standard IP tunnel
mode when two hosts behind different NATs have the same private IP
address and initiate communication to the same Responder in the public
Internet. The Responder cannot distinguish between two hosts because
security associations are based on the same inner IP addresses.<a href="#section-7.4-1" class="pilcrow">¶</a></p>
<p id="section-7.4-2"> This issue does not exist with the UDP encapsulation of HIP ESP
transport format because the Responder uses HITs to distinguish between
different Initiators.<a href="#section-7.4-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_reuse">
<section id="section-7.5">
<h3 id="name-reuse-of-ports-at-the-data-">
<a href="#section-7.5" class="section-number selfRef">7.5. </a><a href="#name-reuse-of-ports-at-the-data-" class="section-name selfRef">Reuse of Ports at the Data Relay Server</a>
</h3>
<p id="section-7.5-1"> If the Data Relay Server uses the same relayed address and port
(as conveyed in the RELAYED_ADDRESS parameter) for multiple Data Relay
Clients, it appears to all the peers, and their firewalls, that all
the Data Relay Clients are at the same address. Thus, a stateful
firewall may allow packets to pass from hosts that would not normally be
able to send packets to a peer behind the firewall. Therefore, a Data
Relay Server <span class="bcp14">SHOULD NOT</span> reuse the port numbers. If
port numbers need to be reused, the Data Relay Server
<span class="bcp14">SHOULD</span> have a sufficiently large pool of port numbers
and randomly select ports from the pool to decrease the chances of a
Data Relay Client obtaining the same address that another host
behind the same firewall is using.<a href="#section-7.5-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_amplification">
<section id="section-7.6">
<h3 id="name-amplification-attacks">
<a href="#section-7.6" class="section-number selfRef">7.6. </a><a href="#name-amplification-attacks" class="section-name selfRef">Amplification Attacks</a>
</h3>
<p id="section-7.6-1">A malicious host may send an invalid list of candidates to
its peer that are used for targeting a victim host by flooding
it with connectivity checks. To mitigate the attack, this
protocol adopts the ICE mechanism to cap the total amount of
connectivity checks as defined in <a href="#sec_alternatives" class="xref">Section 4.7</a>.<a href="#section-7.6-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_conn_attack">
<section id="section-7.7">
<h3 id="name-attacks-against-connectivit">
<a href="#section-7.7" class="section-number selfRef">7.7. </a><a href="#name-attacks-against-connectivit" class="section-name selfRef">Attacks against Connectivity Checks and Candidate Gathering</a>
</h3>
<p id="section-7.7-1"><span><a href="https://www.rfc-editor.org/rfc/rfc8445#section-19.2" class="relref">Section 19.2</a> of [<a href="#RFC8445" class="xref">RFC8445</a>]</span>
describes attacks against ICE connectivity checks. HIP bases its
control plane security on Diffie-Hellman key exchange, public keys,
and Hashed Message Authentication codes, meaning that the mentioned
security concerns do not apply to HIP either. The mentioned section
also discusses man-in-the-middle replay attacks that are difficult to
prevent. The connectivity checks in this protocol are effectively
immune against replay attacks because a connectivity request includes
a random nonce that the recipient must sign and send back as a
response.<a href="#section-7.7-1" class="pilcrow">¶</a></p>
<p id="section-7.7-2"><span><a href="https://www.rfc-editor.org/rfc/rfc8445#section-19.3" class="relref">Section 19.3</a> of [<a href="#RFC8445" class="xref">RFC8445</a>]</span>
describes attacks on server-reflexive address
gathering. Similarly here, if the DNS, a Control Relay Server, or a Data Relay Server
has been compromised, not much can be done. However,
the case where attackers can inject fake messages (located on a
shared network segment like Wi-Fi) does not apply here. HIP
messages are integrity and replay protected, so it is not
possible to inject fake server-reflexive address candidates.<a href="#section-7.7-2" class="pilcrow">¶</a></p>
<p id="section-7.7-3"><span><a href="https://www.rfc-editor.org/rfc/rfc8445#section-19.4" class="relref">Section 19.4</a> of [<a href="#RFC8445" class="xref">RFC8445</a>]</span>
describes attacks on relayed candidate gathering. Similarly to
ICE TURN servers, a Data Relay Server requires an authenticated base
exchange that protects relayed address gathering against fake
requests and responses. Further, replay attacks are not
possible because the HIP base exchange (and also UPDATE
procedure) is protected against replay attacks.<a href="#section-7.7-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_cross_protocol">
<section id="section-7.8">
<h3 id="name-cross-protocol-attacks">
<a href="#section-7.8" class="section-number selfRef">7.8. </a><a href="#name-cross-protocol-attacks" class="section-name selfRef">Cross-Protocol Attacks</a>
</h3>
<p id="section-7.8-1"><a href="#sec_registration" class="xref">Section 4.1</a> explains how a
Control Relay Client registers for the RELAY_UDP_HIP service from a
Control Relay Server. However, the same server may also offer
Rendezvous functionality; thus, a client can register both to a
RELAY_UDP_HIP and a RENDEZVOUS (see <span>[<a href="#RFC8004" class="xref">RFC8004</a>]</span>) service from the same server. Potentially, this
introduces a cross-protocol attack (or actually a "cross-message"
attack) because the key material is the same for the Control Relay
Service and Rendezvous HMACs. While the problem could be avoided by
deriving different keys for the Control Relay Service, a more simple
measure was chosen because the exact attack scenario was
unclear. Consequently, this section defines a mandatory mitigation
mechanism against the cross-protocol attack that works by preventing
the simultaneous use of Rendezvous and Control Relay Service in the
context of a single HIP Association.<a href="#section-7.8-1" class="pilcrow">¶</a></p>
<p id="section-7.8-2">The registration involves three parameters typically
delivered sequentially in R1 (REG_INFO parameter), I2
(REG_REQUEST), and R2 (REG_RESPONSE) messages but can also be
delivered in UPDATE messages as described in <span>[<a href="#RFC8003" class="xref">RFC8003</a>]</span>. The parameters and the
modifications to their processing are described below:<a href="#section-7.8-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-7.8-3">
<dt id="section-7.8-3.1">REG_INFO:</dt>
<dd style="margin-left: 1.5em" id="section-7.8-3.2">The Control Relay Server advertises its available services using
this parameter. RELAY_UDP_HIP and RENDEZVOUS services
<span class="bcp14">MAY</span> be included in the first advertisement for the
HIP association, but subsequent ones <span class="bcp14">MUST</span> include only
one of them as agreed in earlier registrations (see steps 2 and
3).<a href="#section-7.8-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.8-3.3">REG_REQUEST:</dt>
<dd style="margin-left: 1.5em" id="section-7.8-3.4">The Control Relay Client chooses the services it requires using
this parameter. If the Control Relay Server offered both RENDEZVOUS
or RELAY_UDP_HIP, the Control Relay Client <span class="bcp14">MUST</span>
choose only one of them in the REG_REQUEST parameter. Upon choosing
one of the two, it persists throughout the lifetime of the HIP
association, and the Control Relay Client <span class="bcp14">MUST NOT</span>
register the other remaining one in a subsequent UPDATE
message.<a href="#section-7.8-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.8-3.5">REG_RESPONSE:</dt>
<dd style="margin-left: 1.5em" id="section-7.8-3.6">The Control Relay Server verifies the services requested by the
Control Relay Client using this parameter. If the Control Relay
Server offered both RENDEZVOUS and RELAY_UDP_HIP service, and the
Control Relay Client requested for both of them, the Control Relay
Client <span class="bcp14">MUST</span> offer only RELAY_UDP_HIP service in the
REG_RESPONSE parameter and include a REG_FAILED parameter in the
same message, with RENDEZVOUS as the Registration Type and
9 as the Failure Type.<a href="#section-7.8-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-7.8-4">As a further measure against cross-protocol attacks, the Control Relay
Client <span class="bcp14">MUST</span> drop any HIP message that includes an
RVS_HMAC parameter when it originates from a successfully registered
Control Relay Server. Upon such an (unintended) event, the Control
Relay Client <span class="bcp14">MUST</span> send a NOTIFY message with
RVS_HMAC_PROHIBITED_WITH_RELAY as the Notify Message Type to the
Control Relay Server.<a href="#section-7.8-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<div id="sec_iana">
<section id="section-8">
<h2 id="name-iana-considerations">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-8-1"> This section is to be interpreted according to <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">This document reuses the same default UDP port number 10500 as
specified by Legacy ICE-HIP <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>
for tunneling both HIP control and data plane traffic. The port was
registered separately for <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span> to
coauthor <span class="contact-name">Ari Keränen</span> originally, but it has been
reassigned for IESG control. With the permission of <span class="contact-name">Ari Keränen</span>, the new assignee is the IESG and the contact
is <chair@ietf.org>. In addition, IANA has added a reference to
this document in the entry for UDP port 10500 in the "Service Name and
Transport Protocol Port Number Registry". The selection between Legacy
ICE-HIP and Native ICE-HIP mode is negotiated using the
NAT_TRAVERSAL_MODE parameter during the base exchange. By default, hosts
listen to this port for incoming UDP datagrams and can also use it for
sending UDP datagrams. Other ephemeral port numbers are negotiated and
utilized dynamically.<a href="#section-8-2" class="pilcrow">¶</a></p>
<p id="section-8-3">IANA has assigned the following values in the HIP "Parameter Types" registry
<span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>:
4650 for RELAYED_ADDRESS (length 20),
4660 for MAPPED_ADDRESS (length 20; defined in <a href="#sec_relayed_address" class="xref">Section 5.12</a>),
4680 for PEER_PERMISSION (length 48; defined in <a href="#sec_peer_permission" class="xref">Section 5.13</a>),
4700 for CANDIDATE_PRIORITY
(length 4; defined in <a href="#sec_con-check" class="xref">Section 5.14</a>), and
4710 for NOMINATE (length 4; defined in <a href="#sec_nominate" class="xref">Section 5.15</a>).<a href="#section-8-3" class="pilcrow">¶</a></p>
<p id="section-8-4">IANA has assigned the following value in the "HIP NAT Traversal Modes"
registry specified in Legacy ICE-HIP <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>:
3 for ICE-HIP-UDP (defined in <a href="#sec_nat_tm-param" class="xref">Section 5.4</a>).<a href="#section-8-4" class="pilcrow">¶</a></p>
<p id="section-8-5">IANA has assigned the following values in the HIP "Notify Message Types" registry:
16385 for NAT_KEEPALIVE in <a href="#sec_keepalive" class="xref">Section 5.3</a>, 63 for
SERVER_REFLEXIVE_CANDIDATE_ALLOCATION_FAILED in <a href="#sec_notify-types" class="xref">Section 5.10</a>, and 64 for
RVS_HMAC_PROHIBITED_WITH_RELAY in <a href="#sec_notify-types" class="xref">Section 5.10</a>.<a href="#section-8-5" class="pilcrow">¶</a></p>
<p id="section-8-6"> IANA has assigned the following values in the "Registration Types" registry for the HIP
Registration Extension <span>[<a href="#RFC8003" class="xref">RFC8003</a>]</span>:
3 for RELAY_UDP_ESP (defined in <a href="#sec_reg-types" class="xref">Section 5.9</a>) for allowing registration with a Data Relay Server for ESP-relaying service, and
4 for CANDIDATE_DISCOVERY (defined in <a href="#sec_gathering" class="xref">Section 4.2</a>) for performing server-reflexive candidate discovery.<a href="#section-8-6" class="pilcrow">¶</a></p>
<p id="section-8-7">IANA has assigned one value in the "Registration Failure Types" registry as
defined in <a href="#sec_cross_protocol" class="xref">Section 7.8</a>. The
value is 9, and the Registration Failure Type is
"Simultaneous Rendezvous and Control Relay Service usage
prohibited".<a href="#section-8-7" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-9">
<h2 id="name-references">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-9.1">
<h3 id="name-normative-references">
<a href="#section-9.1" class="section-number selfRef">9.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC1191">[RFC1191]</dt>
<dd>
<span class="refAuthor">Mogul, J.</span> and <span class="refAuthor">S. Deering</span>, <span class="refTitle">"Path MTU discovery"</span>, <span class="seriesInfo">RFC 1191</span>, <span class="seriesInfo">DOI 10.17487/RFC1191</span>, <time datetime="1990-11" class="refDate">November 1990</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1191">https://www.rfc-editor.org/info/rfc1191</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4291">[RFC4291]</dt>
<dd>
<span class="refAuthor">Hinden, R.</span> and <span class="refAuthor">S. Deering</span>, <span class="refTitle">"IP Version 6 Addressing Architecture"</span>, <span class="seriesInfo">RFC 4291</span>, <span class="seriesInfo">DOI 10.17487/RFC4291</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4291">https://www.rfc-editor.org/info/rfc4291</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5770">[RFC5770]</dt>
<dd>
<span class="refAuthor">Komu, M.</span>, <span class="refAuthor">Henderson, T.</span>, <span class="refAuthor">Tschofenig, H.</span>, <span class="refAuthor">Melen, J.</span>, and <span class="refAuthor">A. Keranen, Ed.</span>, <span class="refTitle">"Basic Host Identity Protocol (HIP) Extensions for Traversal of Network Address Translators"</span>, <span class="seriesInfo">RFC 5770</span>, <span class="seriesInfo">DOI 10.17487/RFC5770</span>, <time datetime="2010-04" class="refDate">April 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5770">https://www.rfc-editor.org/info/rfc5770</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7050">[RFC7050]</dt>
<dd>
<span class="refAuthor">Savolainen, T.</span>, <span class="refAuthor">Korhonen, J.</span>, and <span class="refAuthor">D. Wing</span>, <span class="refTitle">"Discovery of the IPv6 Prefix Used for IPv6 Address Synthesis"</span>, <span class="seriesInfo">RFC 7050</span>, <span class="seriesInfo">DOI 10.17487/RFC7050</span>, <time datetime="2013-11" class="refDate">November 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7050">https://www.rfc-editor.org/info/rfc7050</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7401">[RFC7401]</dt>
<dd>
<span class="refAuthor">Moskowitz, R., Ed.</span>, <span class="refAuthor">Heer, T.</span>, <span class="refAuthor">Jokela, P.</span>, and <span class="refAuthor">T. Henderson</span>, <span class="refTitle">"Host Identity Protocol Version 2 (HIPv2)"</span>, <span class="seriesInfo">RFC 7401</span>, <span class="seriesInfo">DOI 10.17487/RFC7401</span>, <time datetime="2015-04" class="refDate">April 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7401">https://www.rfc-editor.org/info/rfc7401</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7402">[RFC7402]</dt>
<dd>
<span class="refAuthor">Jokela, P.</span>, <span class="refAuthor">Moskowitz, R.</span>, and <span class="refAuthor">J. Melen</span>, <span class="refTitle">"Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP)"</span>, <span class="seriesInfo">RFC 7402</span>, <span class="seriesInfo">DOI 10.17487/RFC7402</span>, <time datetime="2015-04" class="refDate">April 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7402">https://www.rfc-editor.org/info/rfc7402</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8003">[RFC8003]</dt>
<dd>
<span class="refAuthor">Laganier, J.</span> and <span class="refAuthor">L. Eggert</span>, <span class="refTitle">"Host Identity Protocol (HIP) Registration Extension"</span>, <span class="seriesInfo">RFC 8003</span>, <span class="seriesInfo">DOI 10.17487/RFC8003</span>, <time datetime="2016-10" class="refDate">October 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8003">https://www.rfc-editor.org/info/rfc8003</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8004">[RFC8004]</dt>
<dd>
<span class="refAuthor">Laganier, J.</span> and <span class="refAuthor">L. Eggert</span>, <span class="refTitle">"Host Identity Protocol (HIP) Rendezvous Extension"</span>, <span class="seriesInfo">RFC 8004</span>, <span class="seriesInfo">DOI 10.17487/RFC8004</span>, <time datetime="2016-10" class="refDate">October 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8004">https://www.rfc-editor.org/info/rfc8004</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8005">[RFC8005]</dt>
<dd>
<span class="refAuthor">Laganier, J.</span>, <span class="refTitle">"Host Identity Protocol (HIP) Domain Name System (DNS) Extension"</span>, <span class="seriesInfo">RFC 8005</span>, <span class="seriesInfo">DOI 10.17487/RFC8005</span>, <time datetime="2016-10" class="refDate">October 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8005">https://www.rfc-editor.org/info/rfc8005</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8046">[RFC8046]</dt>
<dd>
<span class="refAuthor">Henderson, T., Ed.</span>, <span class="refAuthor">Vogt, C.</span>, and <span class="refAuthor">J. Arkko</span>, <span class="refTitle">"Host Mobility with the Host Identity Protocol"</span>, <span class="seriesInfo">RFC 8046</span>, <span class="seriesInfo">DOI 10.17487/RFC8046</span>, <time datetime="2017-02" class="refDate">February 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8046">https://www.rfc-editor.org/info/rfc8046</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8047">[RFC8047]</dt>
<dd>
<span class="refAuthor">Henderson, T., Ed.</span>, <span class="refAuthor">Vogt, C.</span>, and <span class="refAuthor">J. Arkko</span>, <span class="refTitle">"Host Multihoming with the Host Identity Protocol"</span>, <span class="seriesInfo">RFC 8047</span>, <span class="seriesInfo">DOI 10.17487/RFC8047</span>, <time datetime="2017-02" class="refDate">February 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8047">https://www.rfc-editor.org/info/rfc8047</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8126">[RFC8126]</dt>
<dd>
<span class="refAuthor">Cotton, M.</span>, <span class="refAuthor">Leiba, B.</span>, and <span class="refAuthor">T. Narten</span>, <span class="refTitle">"Guidelines for Writing an IANA Considerations Section in RFCs"</span>, <span class="seriesInfo">BCP 26</span>, <span class="seriesInfo">RFC 8126</span>, <span class="seriesInfo">DOI 10.17487/RFC8126</span>, <time datetime="2017-06" class="refDate">June 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8201">[RFC8201]</dt>
<dd>
<span class="refAuthor">McCann, J.</span>, <span class="refAuthor">Deering, S.</span>, <span class="refAuthor">Mogul, J.</span>, and <span class="refAuthor">R. Hinden, Ed.</span>, <span class="refTitle">"Path MTU Discovery for IP version 6"</span>, <span class="seriesInfo">STD 87</span>, <span class="seriesInfo">RFC 8201</span>, <span class="seriesInfo">DOI 10.17487/RFC8201</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8201">https://www.rfc-editor.org/info/rfc8201</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8445">[RFC8445]</dt>
<dd>
<span class="refAuthor">Keranen, A.</span>, <span class="refAuthor">Holmberg, C.</span>, and <span class="refAuthor">J. Rosenberg</span>, <span class="refTitle">"Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal"</span>, <span class="seriesInfo">RFC 8445</span>, <span class="seriesInfo">DOI 10.17487/RFC8445</span>, <time datetime="2018-07" class="refDate">July 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8445">https://www.rfc-editor.org/info/rfc8445</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8489">[RFC8489]</dt>
<dd>
<span class="refAuthor">Petit-Huguenin, M.</span>, <span class="refAuthor">Salgueiro, G.</span>, <span class="refAuthor">Rosenberg, J.</span>, <span class="refAuthor">Wing, D.</span>, <span class="refAuthor">Mahy, R.</span>, and <span class="refAuthor">P. Matthews</span>, <span class="refTitle">"Session Traversal Utilities for NAT (STUN)"</span>, <span class="seriesInfo">RFC 8489</span>, <span class="seriesInfo">DOI 10.17487/RFC8489</span>, <time datetime="2020-02" class="refDate">February 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8489">https://www.rfc-editor.org/info/rfc8489</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8961">[RFC8961]</dt>
<dd>
<span class="refAuthor">Allman, M.</span>, <span class="refTitle">"Requirements for Time-Based Loss Detection"</span>, <span class="seriesInfo">BCP 233</span>, <span class="seriesInfo">RFC 8961</span>, <span class="seriesInfo">DOI 10.17487/RFC8961</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8961">https://www.rfc-editor.org/info/rfc8961</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-9.2">
<h3 id="name-informative-references">
<a href="#section-9.2" class="section-number selfRef">9.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="I-D.heer-hip-middle-auth">[HIP-MIDDLEBOXES]</dt>
<dd>
<span class="refAuthor">Heer, T.</span>, <span class="refAuthor">Hummen, R.</span>, <span class="refAuthor">Wehrle, K.</span>, and <span class="refAuthor">M. Komu</span>, <span class="refTitle">"End-Host Authentication for HIP Middleboxes"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-heer-hip-middle-auth-04</span>, <time datetime="2011-10-31" class="refDate">31 October 2011</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-heer-hip-middle-auth-04">https://datatracker.ietf.org/doc/html/draft-heer-hip-middle-auth-04</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.rosenberg-mmusic-ice-nonsip">[ICE-NONSIP]</dt>
<dd>
<span class="refAuthor">Rosenberg, J.</span>, <span class="refTitle">"Guidelines for Usage of Interactive Connectivity Establishment (ICE) by non Session Initiation Protocol (SIP) Protocols"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-rosenberg-mmusic-ice-nonsip-01</span>, <time datetime="2008-07-14" class="refDate">14 July 2008</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-rosenberg-mmusic-ice-nonsip-01">https://datatracker.ietf.org/doc/html/draft-rosenberg-mmusic-ice-nonsip-01</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2475">[RFC2475]</dt>
<dd>
<span class="refAuthor">Blake, S.</span>, <span class="refAuthor">Black, D.</span>, <span class="refAuthor">Carlson, M.</span>, <span class="refAuthor">Davies, E.</span>, <span class="refAuthor">Wang, Z.</span>, and <span class="refAuthor">W. Weiss</span>, <span class="refTitle">"An Architecture for Differentiated Services"</span>, <span class="seriesInfo">RFC 2475</span>, <span class="seriesInfo">DOI 10.17487/RFC2475</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2475">https://www.rfc-editor.org/info/rfc2475</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3264">[RFC3264]</dt>
<dd>
<span class="refAuthor">Rosenberg, J.</span> and <span class="refAuthor">H. Schulzrinne</span>, <span class="refTitle">"An Offer/Answer Model with Session Description Protocol (SDP)"</span>, <span class="seriesInfo">RFC 3264</span>, <span class="seriesInfo">DOI 10.17487/RFC3264</span>, <time datetime="2002-06" class="refDate">June 2002</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3264">https://www.rfc-editor.org/info/rfc3264</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3948">[RFC3948]</dt>
<dd>
<span class="refAuthor">Huttunen, A.</span>, <span class="refAuthor">Swander, B.</span>, <span class="refAuthor">Volpe, V.</span>, <span class="refAuthor">DiBurro, L.</span>, and <span class="refAuthor">M. Stenberg</span>, <span class="refTitle">"UDP Encapsulation of IPsec ESP Packets"</span>, <span class="seriesInfo">RFC 3948</span>, <span class="seriesInfo">DOI 10.17487/RFC3948</span>, <time datetime="2005-01" class="refDate">January 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3948">https://www.rfc-editor.org/info/rfc3948</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5128">[RFC5128]</dt>
<dd>
<span class="refAuthor">Srisuresh, P.</span>, <span class="refAuthor">Ford, B.</span>, and <span class="refAuthor">D. Kegel</span>, <span class="refTitle">"State of Peer-to-Peer (P2P) Communication across Network Address Translators (NATs)"</span>, <span class="seriesInfo">RFC 5128</span>, <span class="seriesInfo">DOI 10.17487/RFC5128</span>, <time datetime="2008-03" class="refDate">March 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5128">https://www.rfc-editor.org/info/rfc5128</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5207">[RFC5207]</dt>
<dd>
<span class="refAuthor">Stiemerling, M.</span>, <span class="refAuthor">Quittek, J.</span>, and <span class="refAuthor">L. Eggert</span>, <span class="refTitle">"NAT and Firewall Traversal Issues of Host Identity Protocol (HIP) Communication"</span>, <span class="seriesInfo">RFC 5207</span>, <span class="seriesInfo">DOI 10.17487/RFC5207</span>, <time datetime="2008-04" class="refDate">April 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5207">https://www.rfc-editor.org/info/rfc5207</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5245">[RFC5245]</dt>
<dd>
<span class="refAuthor">Rosenberg, J.</span>, <span class="refTitle">"Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols"</span>, <span class="seriesInfo">RFC 5245</span>, <span class="seriesInfo">DOI 10.17487/RFC5245</span>, <time datetime="2010-04" class="refDate">April 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5245">https://www.rfc-editor.org/info/rfc5245</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6146">[RFC6146]</dt>
<dd>
<span class="refAuthor">Bagnulo, M.</span>, <span class="refAuthor">Matthews, P.</span>, and <span class="refAuthor">I. van Beijnum</span>, <span class="refTitle">"Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers"</span>, <span class="seriesInfo">RFC 6146</span>, <span class="seriesInfo">DOI 10.17487/RFC6146</span>, <time datetime="2011-04" class="refDate">April 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6146">https://www.rfc-editor.org/info/rfc6146</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6147">[RFC6147]</dt>
<dd>
<span class="refAuthor">Bagnulo, M.</span>, <span class="refAuthor">Sullivan, A.</span>, <span class="refAuthor">Matthews, P.</span>, and <span class="refAuthor">I. van Beijnum</span>, <span class="refTitle">"DNS64: DNS Extensions for Network Address Translation from IPv6 Clients to IPv4 Servers"</span>, <span class="seriesInfo">RFC 6147</span>, <span class="seriesInfo">DOI 10.17487/RFC6147</span>, <time datetime="2011-04" class="refDate">April 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6147">https://www.rfc-editor.org/info/rfc6147</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6538">[RFC6538]</dt>
<dd>
<span class="refAuthor">Henderson, T.</span> and <span class="refAuthor">A. Gurtov</span>, <span class="refTitle">"The Host Identity Protocol (HIP) Experiment Report"</span>, <span class="seriesInfo">RFC 6538</span>, <span class="seriesInfo">DOI 10.17487/RFC6538</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6538">https://www.rfc-editor.org/info/rfc6538</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8656">[RFC8656]</dt>
<dd>
<span class="refAuthor">Reddy, T., Ed.</span>, <span class="refAuthor">Johnston, A., Ed.</span>, <span class="refAuthor">Matthews, P.</span>, and <span class="refAuthor">J. Rosenberg</span>, <span class="refTitle">"Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)"</span>, <span class="seriesInfo">RFC 8656</span>, <span class="seriesInfo">DOI 10.17487/RFC8656</span>, <time datetime="2020-02" class="refDate">February 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8656">https://www.rfc-editor.org/info/rfc8656</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8750">[RFC8750]</dt>
<dd>
<span class="refAuthor">Migault, D.</span>, <span class="refAuthor">Guggemos, T.</span>, and <span class="refAuthor">Y. Nir</span>, <span class="refTitle">"Implicit Initialization Vector (IV) for Counter-Based Ciphers in Encapsulating Security Payload (ESP)"</span>, <span class="seriesInfo">RFC 8750</span>, <span class="seriesInfo">DOI 10.17487/RFC8750</span>, <time datetime="2020-03" class="refDate">March 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8750">https://www.rfc-editor.org/info/rfc8750</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8899">[RFC8899]</dt>
<dd>
<span class="refAuthor">Fairhurst, G.</span>, <span class="refAuthor">Jones, T.</span>, <span class="refAuthor">Tüxen, M.</span>, <span class="refAuthor">Rüngeler, I.</span>, and <span class="refAuthor">T. Völker</span>, <span class="refTitle">"Packetization Layer Path MTU Discovery for Datagram Transports"</span>, <span class="seriesInfo">RFC 8899</span>, <span class="seriesInfo">DOI 10.17487/RFC8899</span>, <time datetime="2020-09" class="refDate">September 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8899">https://www.rfc-editor.org/info/rfc8899</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9063">[RFC9063]</dt>
<dd>
<span class="refAuthor">Moskowitz, R., Ed.</span> and <span class="refAuthor">M. Komu</span>, <span class="refTitle">"Host Identity Protocol Architecture"</span>, <span class="seriesInfo">RFC 9063</span>, <span class="seriesInfo">DOI 10.17487/RFC9063</span>, <time datetime="2021-07" class="refDate">July 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9063">https://www.rfc-editor.org/info/rfc9063</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="sec_selecting_pacing_value">
<section id="appendix-A">
<h2 id="name-selecting-a-value-for-check">
<a href="#appendix-A" class="section-number selfRef">Appendix A. </a><a href="#name-selecting-a-value-for-check" class="section-name selfRef">Selecting a Value for Check Pacing</a>
</h2>
<p id="appendix-A-1"> Selecting a suitable value for the connectivity check transaction
pacing is essential for the performance of connectivity check-based NAT
traversal. The value should not be so small that the checks cause
network congestion or overwhelm the NATs. On the other hand, a pacing
value that is too high makes the checks last for a long time, thus
increasing the connection setup delay.<a href="#appendix-A-1" class="pilcrow">¶</a></p>
<p id="appendix-A-2"> The Ta value may be configured by the user in environments where the
network characteristics are known beforehand. However, if the
characteristics are not known, it is recommended that the value is
adjusted dynamically. In this case, it is recommended that the hosts
estimate the round-trip time (RTT) between them, and they
<span class="bcp14">SHOULD</span> set the minimum Ta value so that at most a single
connectivity check message is sent on every RTT.<a href="#appendix-A-2" class="pilcrow">¶</a></p>
<p id="appendix-A-3"> One way to estimate the RTT is to use the time that it takes for the
Control Relay Server registration exchange to complete; this would give
an estimate on the registering host's access link's RTT. Also, the I1/R1
exchange could be used for estimating the RTT, but since the R1 can be
cached in the network, or the relaying service can increase the delay
notably, this is not recommended. In general, estimating RTT can be
difficult and error prone; thus, the guidelines for choosing a Ta value
in <a href="#sec_check_pacing_neg" class="xref">Section 4.4</a>
<span class="bcp14">MUST</span> be followed.<a href="#appendix-A-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_ice_diff">
<section id="appendix-B">
<h2 id="name-differences-with-respect-to">
<a href="#appendix-B" class="section-number selfRef">Appendix B. </a><a href="#name-differences-with-respect-to" class="section-name selfRef">Differences with Respect to ICE</a>
</h2>
<p id="appendix-B-1">Legacy ICE-HIP reuses the ICE/STUN/TURN protocol stack as it is. The
benefits of such as an approach include the reuse of STUN/TURN
infrastructure and possibly the reuse of existing software libraries,
but there are also drawbacks with the approach. For example, ICE is
meant for application-layer protocols, whereas HIP operates at layer 3.5
between transport and network layers. This is particularly problematic
because the implementations employ kernel-space IPsec ESP as their data
plane: demultiplexing of incoming ESP, HIP, and TURN messages required
the capturing of all UDP packets destined to port 10500 to the userspace
(due to different, incompatible markers in ESP and STUN), thus causing
additional software complexity and an unnecessary latency/throughput
bottleneck for the dataplane performance. It is also worth noting that
the demultiplexing of STUN packets in the kernel would also incur a
performance impact (albeit smaller than with userspace demultiplexing),
and secure verification of STUN messages would require communication
between the kernel-space STUN detector and HIP daemon typically residing
in the userspace (thus again increasing the performance overhead).<a href="#appendix-B-1" class="pilcrow">¶</a></p>
<p id="appendix-B-2">Legacy ICE-HIP also involves some other complexities when compared to
the approach taken in this document. The relaying of ESP packets via
TURN relays was not considered that simple because TURN relays require
adding and removing extra TURN framing for the relayed packets. Finally,
the developers of the two Legacy ICE-HIP implementations concluded that
effort needed for integrating an ICE library into a HIP implementation turned
out to be quite a bit higher than initially estimated. Also, the amount of
extra code (some 10 kLoC) needed for all the new parsers, state machines,
etc., was quite high and by reusing the HIP code, one should be able to do
with much less. This should result in smaller binary size, less bugs, and
easier debugging.<a href="#appendix-B-2" class="pilcrow">¶</a></p>
<p id="appendix-B-3"> Consequently, the HIP working group decided to follow ICE
methodology but reuse HIP messaging format to achieve the same
functionality as ICE; the result of that is this document, which
specifies the Native ICE-HIP protocol.<a href="#appendix-B-3" class="pilcrow">¶</a></p>
<p id="appendix-B-4">The Native ICE-HIP protocol specified in this document follows the semantics
of ICE as close as possible, and most of the differences are
syntactical due to the use of a different protocol. In this
section, we describe the differences to the ICE protocol.<a href="#appendix-B-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-B-5.1">ICE operates at the application layer, whereas this
protocol operates between transport and network layers, thus
hiding the protocol details from the application.<a href="#appendix-B-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.2">The STUN protocol is not employed. Instead, Native ICE-HIP
reuses the HIP control plane format in order to simplify
the demultiplexing of different protocols. For example, the STUN
binding response is replaced with a HIP UPDATE message
containing an ECHO_REQUEST_SIGNED parameter and the STUN
binding response with a HIP UPDATE message containing an
ECHO_RESPONSE_SIGNED parameter as defined in <a href="#sec_conn_checks" class="xref">Section 4.6</a>. It is worth noting that
a
drawback of not employing STUN is that discovery of the address
candidates requires creating (using HIP base exchange) and
maintaining (using HIP UPDATE procedures) state at the Control Relay Client and
Control Relay Server. Future extensions to this document may define
a stateless, HIP-specific mechanism for an end host to discover its address candidates.<a href="#appendix-B-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.3">The TURN protocol is not utilized. Instead, Native ICE-HIP reuses
Control Relay Servers for the same purpose.<a href="#appendix-B-5.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.4">ICMP errors may be used in ICE to signal failure. In the Native ICE-HIP
protocol, HIP NOTIFY messages are used instead.<a href="#appendix-B-5.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.5">Instead of the ICE username fragment and password mechanism for
credentials, Native ICE-HIP uses the HIT, derived from a public key,
for the same purpose. The username fragments are "transient host
identifiers, bound to a particular session established as part of the
candidate exchange" <span>[<a href="#RFC8445" class="xref">RFC8445</a>]</span>. Generally in HIP, a local public key and the
derived HIT are considered long-term identifiers and invariant across
different host associations and different transport-layer flows.<a href="#appendix-B-5.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.6">In ICE, the conflict when two communicating endpoints take the
same controlling role is solved using random values (a so-called
tie-breaker value). In the Native ICE-HIP protocol, the conflict is solved
by the standard HIP base exchange procedure, where the host with the
"larger" HIT switches to the Responder role, thus also changing to
the controlled role.<a href="#appendix-B-5.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.7">The ICE-CONTROLLED and ICE-CONTROLLING attributes are not
included in the connectivity checks.<a href="#appendix-B-5.7" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.8">The foundation concept is unnecessary in Native ICE-HIP
because only a single UDP flow for the IPsec tunnel will be
negotiated.<a href="#appendix-B-5.8" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.9">Frozen candidates are omitted for the same reason the
foundation concept is excluded.<a href="#appendix-B-5.9" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.10">Components are omitted for the same reason the
foundation concept is excluded.<a href="#appendix-B-5.10" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.11">Native ICE-HIP supports only "full ICE" where the two
communicating hosts participate actively to the connectivity checks,
and the "lite" mode is not supported. This design decision follows
the guidelines of ICE, which recommends full ICE implementations.
However, it should be noted that a publicly reachable Responder may
refuse to negotiate the ICE mode as described in <a href="#sec_no_relay" class="xref">Section 4.7.2</a>. This would result in a HIP
base exchange (as per <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>)
tunneled over UDP, followed by ESP traffic over the same tunnel, without
the connectivity check procedures defined in this document (in some
sense, this mode corresponds to the case where two ICE lite
implementations connect since no connectivity checks are sent).<a href="#appendix-B-5.11" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.12">As the "ICE lite" is not adopted here and both sides are
capable of ICE-HIP-UDP mode (negotiated during the base
exchange), default candidates are not employed in Native ICE-HIP.<a href="#appendix-B-5.12" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.13"> If the agent is using Diffserv Codepoint markings <span>[<a href="#RFC2475" class="xref">RFC2475</a>]</span> in its media packets, it
<span class="bcp14">SHOULD</span> apply those same markings to its connectivity
checks.<a href="#appendix-B-5.13" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.14">Unlike in ICE, the addresses are not XORed in the Native ICE-HIP
protocol but rather encrypted to avoid middlebox tampering.<a href="#appendix-B-5.14" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.15">ICE defines Related Address and Port attributes used for diagnostic/SIP
purposes, but the Native ICE-HIP protocol does not employ these attributes.<a href="#appendix-B-5.15" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B-5.16">The minimum RTO is 500 ms in ICE but 1000 ms in the Native ICE-HIP
protocol in favor of <span>[<a href="#RFC8961" class="xref">RFC8961</a>]</span>.<a href="#appendix-B-5.16" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="sec_hip_diff">
<section id="appendix-C">
<h2 id="name-differences-to-base-exchang">
<a href="#appendix-C" class="section-number selfRef">Appendix C. </a><a href="#name-differences-to-base-exchang" class="section-name selfRef">Differences to Base Exchange and UPDATE Procedures</a>
</h2>
<p id="appendix-C-1">This section gives some design guidance for implementers on how the
extensions in this protocol extend and differ from <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span> and <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span>.<a href="#appendix-C-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-C-2.1">Both the control and data plane are operated on top of UDP, not directly on IP.<a href="#appendix-C-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-C-2.2">A minimal implementation would conform only to Sections <a href="#sec_minimal" class="xref">4.7.1</a> or <a href="#sec_no_relay" class="xref">4.7.2</a>, thus merely tunneling HIP control and data traffic
over UDP. The drawback here is that it works only in the limited cases
where the Responder has a public address.<a href="#appendix-C-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-C-2.3">It is worth noting that while a Rendezvous Server <span>[<a href="#RFC8004" class="xref">RFC8004</a>]</span> has not been designed to be used
in NATed scenarios because it just relays the first I1 packet and does
not employ UDP encapsulation, the Control Relay Server forwards all
control traffic and, hence, is more suitable in NATed
environments. Further, the Data Relay Server guarantees forwarding of
data plane traffic also in cases where the NAT traversal procedures
fail.<a href="#appendix-C-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-C-2.4">Registration procedures with a Control/Data Relay Server are
similar as with a Rendezvous Server. However, a Control/Data Relay
Server has different registration parameters than a Rendezvous Server
because it offers a different service. Also, the Control/Data Relay
Server also includes a REG_FROM parameter that informs the
Control/Data Relay Client about its server-reflexive address. A Data
Relay Server also includes a RELAYED_ADDRESS containing the relayed
address for the Data Relay Client.<a href="#appendix-C-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-C-2.5">In <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>, the Initiator and Responder
can start to exchange application payload immediately after
the base exchange. While exchanging data immediately after a
base exchange via a Data Control Relay would also be possible here, we
follow the ICE methodology to establish a direct path between
two hosts using connectivity checks. This means that there
will be some additional delay after the base exchange before
application payload can be transmitted. The same applies for
the UPDATE procedure as the connectivity checks introduce some
additional delay.<a href="#appendix-C-2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-C-2.6">In HIP without any NAT traversal support, the base exchange
acts as an implicit connectivity check, and the mobility and
multihoming extensions support explicit connectivity
checks. After a base exchange or UPDATE-based connectivity
checks, a host can use the associated address pair for
transmitting application payload. In this Native ICE-HIP extension, we follow
the ICE methodology where one endpoint acting in the
controlled role chooses the used address pair also on behalf
of the other endpoint acting in the controlled role, which is
different from HIP without NAT traversal support. Another
difference is that the process of choosing an address pair is
explicitly signaled using the nomination packets. The
nomination process in this protocol supports only a single
address pair, and multihoming extensions are left for further
study.<a href="#appendix-C-2.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-C-2.7">The UPDATE procedure resembles the mobility extensions
defined in <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span>. The
first UPDATE message from the mobile host is exactly the same
as in the mobility extensions. The second UPDATE message from
the peer host and third from the mobile host are different in
the sense that they merely acknowledge and conclude the
reception of the candidates through the Control Relay Server. In other words,
they do not yet test for connectivity (besides reachability
through the Control Relay Server) unlike in the mobility extensions. The
idea is that the connectivity check procedure follows the ICE
specification, which is somewhat different from the HIP
mobility extensions.<a href="#appendix-C-2.7" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-C-2.8">The connectivity checks as defined in the mobility
extensions <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span> are
triggered only by the peer of the mobile host. Since
successful NAT traversal requires that both endpoints test
connectivity, both the mobile host and its peer host have to
test for connectivity. In addition, this protocol
also validates the UDP ports; the ports in the connectivity
check must match with the response, as required by ICE.<a href="#appendix-C-2.8" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-C-2.9">In HIP mobility extensions <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span>, an outbound locator has some associated state:
UNVERIFIED means that the locator has not been tested for
reachability, ACTIVE means that the address has been verified for
reachability and is being used actively, and DEPRECATED means that the
locator lifetime has expired. In the subset of ICE specifications used
by this protocol, an individual address candidate has only two
properties: type and priority. Instead, the actual state in ICE is
associated with candidate pairs rather than individual addresses. The
subset of ICE specifications utilized by this protocol require the
following attributes for a candidate pair: valid bit, nominated bit,
base, and the state of the connectivity check. The connectivity checks
have the following states: Waiting, In-progress, Succeeded, and
Failed. Handling of this state attribute requires some additional
logic when compared to the mobility extensions, since the state is
associated with a local-remote address pair rather than just a remote
address; thus, the mobility and ICE states do not have an unambiguous
one-to-one mapping.<a href="#appendix-C-2.9" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-C-2.10">Credit-based authorization as defined in <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span> could be used before
candidate nomination has been concluded upon discovering
working candidate pairs. However, this may result in the use
of asymmetric paths for a short time period in the beginning
of communications. Thus, support of credit-based authorization is left
for further study.<a href="#appendix-C-2.10" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="sec_multihoming">
<section id="appendix-D">
<h2 id="name-multihoming-considerations">
<a href="#appendix-D" class="section-number selfRef">Appendix D. </a><a href="#name-multihoming-considerations" class="section-name selfRef">Multihoming Considerations</a>
</h2>
<p id="appendix-D-1">This document allows a host to collect address candidates from
multiple interfaces but does not support activation and the simultaneous
use of multiple address candidates. While multihoming extensions to
support functionality similar to that found in <span>[<a href="#RFC8047" class="xref">RFC8047</a>]</span> are left for further study and experimentation, we
envision here some potential compatibility improvements to support
multihoming:<a href="#appendix-D-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="appendix-D-2">
<dt id="appendix-D-2.1">Data Relay Registration:</dt>
<dd style="margin-left: 1.5em" id="appendix-D-2.2">a Data Relay Client acting as an
Initiator with another peer host should register a new
server-reflexive candidate for each local transport address candidate. A
Data Relay Client acting as a Responder should register a new
server-reflexive candidate for each {local transport address candidate,
new peer host} pair for the reasons described in <a href="#sec_conflicting" class="xref">Section 4.12.3</a>. In both cases, the Data
Relay Client should
request the additional server-reflexive candidates by sending UPDATE
messages originating from each of the local address candidates as
described in <a href="#sec_registration" class="xref">Section 4.1</a>. As the
UPDATE messages are originating from an unknown location from the
viewpoint of the Data Relay Server,
it must also include an ECHO_REQUEST_SIGNED in the response in order to
test for return routability.<a href="#appendix-D-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-D-2.3">Data Relay unregistration:</dt>
<dd style="margin-left: 1.5em" id="appendix-D-2.4">This follows the procedure in <a href="#sec_protocol" class="xref">Section 4</a>, but the Data Relay Client should unregister using
the particular transport address to be unregistered. All transport
address pair registrations can be unregistered when no RELAYED_ADDRESS
parameter is included.<a href="#appendix-D-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-D-2.5">PEER_PERMISSION parameter:</dt>
<dd style="margin-left: 1.5em" id="appendix-D-2.6">This needs to be extended or
an additional parameter is needed to declare the specific local
candidate of the Data Relay Client. Alternatively, the use of
the PEER_PERMISSION could be used as a wild card to open permissions
for a specific peer to all
of the candidates of the Data Relay Client.<a href="#appendix-D-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-D-2.7">Connectivity checks:</dt>
<dd style="margin-left: 1.5em" id="appendix-D-2.8">The controlling host should be able to
nominate multiple candidates (by repeating step 7 in <a href="#fig_cc1" class="xref">Figure 5</a> in <a href="#sec_conn_checks" class="xref">Section 4.6</a> using the additional candidate pairs).<a href="#appendix-D-2.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-D-2.9">Keepalives:</dt>
<dd style="margin-left: 1.5em" id="appendix-D-2.10">These should be sent for all the nominated candidate
pairs. Similarly, the Control/Data Relay Client should send keepalives
from its local candidates to its Control/Data Relay Server transport
addresses.<a href="#appendix-D-2.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="sec_dns">
<section id="appendix-E">
<h2 id="name-dns-considerations">
<a href="#appendix-E" class="section-number selfRef">Appendix E. </a><a href="#name-dns-considerations" class="section-name selfRef">DNS Considerations</a>
</h2>
<p id="appendix-E-1">This section updates <span><a href="https://www.rfc-editor.org/rfc/rfc5770#appendix-B" class="relref">Appendix B</a> of [<a href="#RFC5770" class="xref">RFC5770</a>]</span>, which will be replaced with the mechanism described in
this section.<a href="#appendix-E-1" class="pilcrow">¶</a></p>
<p id="appendix-E-2"><span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span> did not specify how an
end host can look up another end host via DNS and initiate a UDP-based
HIP base exchange with it, so this section makes an attempt to fill this
gap.<a href="#appendix-E-2" class="pilcrow">¶</a></p>
<p id="appendix-E-3"><span>[<a href="#RFC8005" class="xref">RFC8005</a>]</span> specifies how a HIP end
host and its Rendezvous Server is registered to DNS. Essentially, the
public key of the end host is stored as a HI record and its Rendezvous
Server as an A or AAAA record. This way, the Rendezvous Server can act
as an intermediary for the end host and forward packets to it based on
the DNS configuration. The Control Relay Server offers similar
functionality to the Rendezvous Server, with the difference being that the
Control Relay Server forwards all control messages, not just the first
I1 message.<a href="#appendix-E-3" class="pilcrow">¶</a></p>
<p id="appendix-E-4">
Prior to this document, the A and AAAA records in the DNS
refer either to the HIP end host itself or a Rendezvous Server <span>[<a href="#RFC8005" class="xref">RFC8005</a>]</span>,
and control and data plane communication with the associated
host has been assumed to occur directly over IPv4 or
IPv6. However, this specification extends the records to be used for
UDP-based communications.<a href="#appendix-E-4" class="pilcrow">¶</a></p>
<p id="appendix-E-5">Let us consider the case of a HIP Initiator with the default policy
to employ UDP encapsulation and the extensions defined in this document.
The Initiator looks up the Fully Qualified Domain Name (FQDN) of a
Responder, and retrieves its HI, A, and AAAA records. Since the default
policy is to use UDP encapsulation, the Initiator <span class="bcp14">MUST</span>
send the I1 message over UDP to destination port 10500 (either over IPv4
in the case of an A record or over IPv6 in the case of an AAAA
record). It <span class="bcp14">MAY</span> send an I1 message both with and without
UDP encapsulation in parallel.
In the case in which the Initiator receives R1 messages both with and without UDP
encapsulation from the Responder, the Initiator <span class="bcp14">SHOULD</span>
ignore the R1 messages without UDP encapsulation.<a href="#appendix-E-5" class="pilcrow">¶</a></p>
<p id="appendix-E-6">The UDP-encapsulated I1 packet could be received by four different
types of hosts:<a href="#appendix-E-6" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="appendix-E-7">
<dt id="appendix-E-7.1">HIP Control Relay Server:</dt>
<dd style="margin-left: 1.5em" id="appendix-E-7.2">In this case, the A/AAAA records refer to a Control Relay Server,
which will forward the packet to the corresponding Control Relay
Client based on the destination HIT in the I1 packet.<a href="#appendix-E-7.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-E-7.3">HIP Responder supporting UDP encapsulation:</dt>
<dd style="margin-left: 1.5em" id="appendix-E-7.4">In this case, the A/AAAA records refer to the end host. Assuming
the destination HIT belongs to the Responder, the Responder receives
and processes the I1 packet according to the negotiated NAT traversal
mechanism. The support for the protocol defined in this document, as
opposed to the support defined in <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>, is dynamically negotiated during the base
exchange. The details are specified in <a href="#sec_nat_traversal_mode" class="xref">Section 4.3</a>.<a href="#appendix-E-7.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-E-7.5">HIP Rendezvous Server:</dt>
<dd style="margin-left: 1.5em" id="appendix-E-7.6">This entity is not listening to UDP port 10500, so it will drop
the I1 message.<a href="#appendix-E-7.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-E-7.7">HIP Responder not supporting UDP encapsulation:</dt>
<dd style="margin-left: 1.5em" id="appendix-E-7.8">The targeted end host is not listening to UDP port 10500, so it
will drop the I1 message.<a href="#appendix-E-7.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="appendix-E-8">The A/AAAA record <span class="bcp14">MUST NOT</span> be configured to refer to a
Data Relay Server unless the host in question also supports Control
Relay Server functionality.<a href="#appendix-E-8" class="pilcrow">¶</a></p>
<p id="appendix-E-9">It is also worth noting that SRV records are not employed in this
specification. While they could be used for more flexible UDP
port selection, they are not suitable for end-host discovery but
rather would be more suitable for the discovery of HIP-specific infrastructure. Further
extensions to this document may define SRV records for Control
and Data Relay Server discovery within a DNS domain.<a href="#appendix-E-9" class="pilcrow">¶</a></p>
</section>
</div>
<section id="appendix-F">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<p id="appendix-F-1">Thanks to <span class="contact-name">Jonathan Rosenberg</span>, <span class="contact-name">Christer Holmberg</span>, and the rest of the MMUSIC WG folks for
the excellent work on ICE. The authors would also like to thank <span class="contact-name">Andrei Gurtov</span>, <span class="contact-name">Simon Schuetz</span>,
<span class="contact-name">Martin Stiemerling</span>, <span class="contact-name">Lars Eggert</span>, <span class="contact-name">Vivien Schmitt</span>, and <span class="contact-name">Abhinav Pathak</span> for their contributions, and <span class="contact-name">Tobias Heer</span>, <span class="contact-name">Teemu Koponen</span>, <span class="contact-name">Juhana Mattila</span>, <span class="contact-name">Jeffrey M. Ahrenholz</span>,
<span class="contact-name">Kristian Slavov</span>, <span class="contact-name">Janne Lindqvist</span>, <span class="contact-name">Pekka Nikander</span>, <span class="contact-name">Lauri Silvennoinen</span>, <span class="contact-name">Jukka Ylitalo</span>,
<span class="contact-name">Juha Heinanen</span>, <span class="contact-name">Joakim Koskela</span>, <span class="contact-name">Samu Varjonen</span>, <span class="contact-name">Dan Wing</span>, <span class="contact-name">Tom Henderson</span>, <span class="contact-name">Alex Elsayed</span>, <span class="contact-name">Jani Hautakorpi</span>, <span class="contact-name">Tero Kauppinen</span>, and <span class="contact-name">Timo Simanainen</span>
for their comments to <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span> and this
document. Thanks to <span class="contact-name">Éric Vyncke</span>, <span class="contact-name">Alvaro Retana</span>, <span class="contact-name">Adam Roach</span>, <span class="contact-name">Ben Campbell</span>, <span class="contact-name">Eric Rescorla</span>, <span class="contact-name">Mirja Kühlewind</span>, <span class="contact-name">Spencer Dawkins</span>,
<span class="contact-name">Derek Fawcus</span>, <span class="contact-name">Tianran Zhou</span>,
<span class="contact-name">Amanda Barber</span>, <span class="contact-name">Colin Perkins</span>, <span class="contact-name">Roni Even</span>, <span class="contact-name">Alissa Cooper</span>, <span class="contact-name">Carl Wallace</span>, <span class="contact-name">Martin Duke</span>, and <span class="contact-name">Benjamin Kaduk</span> for reviewing this
document.<a href="#appendix-F-1" class="pilcrow">¶</a></p>
<p id="appendix-F-2">This work has been partially funded by the Cyber Trust Program
by Digile/Tekes in Finland.<a href="#appendix-F-2" class="pilcrow">¶</a></p>
</section>
<section id="appendix-G">
<h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
</h2>
<p id="appendix-G-1"><span class="contact-name">Marcelo Bagnulo</span>, <span class="contact-name">Philip Matthews</span>, and <span class="contact-name">Hannes Tschofenig</span> have
contributed to <span>[<a href="#RFC5770" class="xref">RFC5770</a>]</span>. This document
leans heavily on the work in that RFC.<a href="#appendix-G-1" class="pilcrow">¶</a></p>
</section>
<div id="authors-addresses">
<section id="appendix-H">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Ari Keränen</span></div>
<div dir="auto" class="left"><span class="org">Ericsson</span></div>
<div dir="auto" class="left"><span class="street-address">Hirsalantie 11</span></div>
<div dir="auto" class="left">FI-<span class="postal-code">02420</span> <span class="locality">Jorvas</span>
</div>
<div dir="auto" class="left"><span class="country-name">Finland</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ari.keranen@ericsson.com" class="email">ari.keranen@ericsson.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Jan Melén</span></div>
<div dir="auto" class="left"><span class="org">Ericsson</span></div>
<div dir="auto" class="left"><span class="street-address">Hirsalantie 11</span></div>
<div dir="auto" class="left">FI-<span class="postal-code">02420</span> <span class="locality">Jorvas</span>
</div>
<div dir="auto" class="left"><span class="country-name">Finland</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jan.melen@ericsson.com" class="email">jan.melen@ericsson.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Miika Komu (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Ericsson</span></div>
<div dir="auto" class="left"><span class="street-address">Hirsalantie 11</span></div>
<div dir="auto" class="left">FI-<span class="postal-code">02420</span> <span class="locality">Jorvas</span>
</div>
<div dir="auto" class="left"><span class="country-name">Finland</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:miika.komu@ericsson.com" class="email">miika.komu@ericsson.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|