1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9030: An Architecture for IPv6 over the Time-Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH)</title>
<meta content="Pascal Thubert" name="author">
<meta content="
This document describes a network architecture that provides
low-latency, low-jitter, and high-reliability packet delivery. It
combines a high-speed powered backbone and subnetworks using IEEE
802.15.4 time-slotted channel hopping (TSCH) to meet the
requirements of low-power wireless deterministic applications.
" name="description">
<meta content="xml2rfc 3.8.0" name="generator">
<meta content="deterministic wireless" name="keyword">
<meta content="radio" name="keyword">
<meta content="mesh" name="keyword">
<meta content="9030" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.8.0
Python 3.6.10
appdirs 1.4.4
ConfigArgParse 1.2.3
google-i18n-address 2.3.5
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.2
kitchen 1.2.6
lxml 4.4.2
pycairo 1.19.0
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.3.1
requests 2.22.0
setuptools 40.6.2
six 1.14.0
WeasyPrint 51
-->
<link href="rfc9030.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: avoid-page;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9030" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-6tisch-architecture-30" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9030</td>
<td class="center">6TiSCH Architecture</td>
<td class="right">May 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Thubert</td>
<td class="center">Informational</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9030" class="eref">9030</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Informational</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-05" class="published">May 2021</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Author:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">P. Thubert, <span class="editor">Ed.</span>
</div>
<div class="org">Cisco Systems</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9030</h1>
<h1 id="title">An Architecture for IPv6 over the Time-Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH)</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1"> This document describes a network architecture that provides
low-latency, low-jitter, and high-reliability packet delivery. It
combines a high-speed powered backbone and subnetworks using IEEE
802.15.4 time-slotted channel hopping (TSCH) to meet the
requirements of low-power wireless deterministic applications.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for informational purposes.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9030">https://www.rfc-editor.org/info/rfc9030</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-terminology" class="xref">Terminology</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-new-terms" class="xref">New Terms</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1" class="keepWithNext"><a href="#section-2.2" class="xref">2.2</a>. <a href="#name-abbreviations" class="xref">Abbreviations</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.2.2.3">
<p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="xref">2.3</a>. <a href="#name-related-documents" class="xref">Related Documents</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-high-level-architecture" class="xref">High-Level Architecture</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>. <a href="#name-a-non-broadcast-multi-acces" class="xref">A Non-broadcast Multi-access Radio Mesh Network</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>. <a href="#name-a-multi-link-subnet-model" class="xref">A Multi-Link Subnet Model</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.3.2.3">
<p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>. <a href="#name-tsch-a-deterministic-mac-la" class="xref">TSCH: a Deterministic MAC Layer</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.3.2.4">
<p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="xref">3.4</a>. <a href="#name-scheduling-tsch" class="xref">Scheduling TSCH</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.3.2.5">
<p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="xref">3.5</a>. <a href="#name-distributed-vs-centralized-" class="xref">Distributed vs. Centralized Routing</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.3.2.6">
<p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="xref">3.6</a>. <a href="#name-forwarding-over-tsch" class="xref">Forwarding over TSCH</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.3.2.7">
<p id="section-toc.1-1.3.2.7.1"><a href="#section-3.7" class="xref">3.7</a>. <a href="#name-6tisch-stack" class="xref">6TiSCH Stack</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.3.2.8">
<p id="section-toc.1-1.3.2.8.1"><a href="#section-3.8" class="xref">3.8</a>. <a href="#name-communication-paradigms-and" class="xref">Communication Paradigms and Interaction Models</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-architecture-components" class="xref">Architecture Components</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-6lowpan-and-rpl" class="xref">6LoWPAN (and RPL)</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.1.2.1">
<p id="section-toc.1-1.4.2.1.2.1.1"><a href="#section-4.1.1" class="xref">4.1.1</a>. <a href="#name-rpl-unaware-leaves-and-6low" class="xref">RPL-Unaware Leaves and 6LoWPAN ND</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.1.2.2">
<p id="section-toc.1-1.4.2.1.2.2.1"><a href="#section-4.1.2" class="xref">4.1.2</a>. <a href="#name-6lbr-and-rpl-root" class="xref">6LBR and RPL Root</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-network-access-and-addressi" class="xref">Network Access and Addressing</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.2.2.1">
<p id="section-toc.1-1.4.2.2.2.1.1"><a href="#section-4.2.1" class="xref">4.2.1</a>. <a href="#name-join-process" class="xref">Join Process</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.2.2.2">
<p id="section-toc.1-1.4.2.2.2.2.1"><a href="#section-4.2.2" class="xref">4.2.2</a>. <a href="#name-registration" class="xref">Registration</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-tsch-and-6top" class="xref">TSCH and 6top</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.3.2.1">
<p id="section-toc.1-1.4.2.3.2.1.1"><a href="#section-4.3.1" class="xref">4.3.1</a>. <a href="#name-6top" class="xref">6top</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.3.2.2">
<p id="section-toc.1-1.4.2.3.2.2.1"><a href="#section-4.3.2" class="xref">4.3.2</a>. <a href="#name-scheduling-functions-and-th" class="xref">Scheduling Functions and the 6top Protocol</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.3.2.3">
<p id="section-toc.1-1.4.2.3.2.3.1"><a href="#section-4.3.3" class="xref">4.3.3</a>. <a href="#name-6top-and-rpl-objective-func" class="xref">6top and RPL Objective Function Operations</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.3.2.4">
<p id="section-toc.1-1.4.2.3.2.4.1"><a href="#section-4.3.4" class="xref">4.3.4</a>. <a href="#name-network-synchronization" class="xref">Network Synchronization</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.3.2.5">
<p id="section-toc.1-1.4.2.3.2.5.1"><a href="#section-4.3.5" class="xref">4.3.5</a>. <a href="#name-slotframes-and-cdu-matrix" class="xref">Slotframes and CDU Matrix</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.3.2.6">
<p id="section-toc.1-1.4.2.3.2.6.1"><a href="#section-4.3.6" class="xref">4.3.6</a>. <a href="#name-distributing-the-reservatio" class="xref">Distributing the Reservation of Cells</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.4">
<p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>. <a href="#name-schedule-management-mechani" class="xref">Schedule Management Mechanisms</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.4.2.1">
<p id="section-toc.1-1.4.2.4.2.1.1"><a href="#section-4.4.1" class="xref">4.4.1</a>. <a href="#name-static-scheduling" class="xref">Static Scheduling</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.4.2.2">
<p id="section-toc.1-1.4.2.4.2.2.1"><a href="#section-4.4.2" class="xref">4.4.2</a>. <a href="#name-neighbor-to-neighbor-schedu" class="xref">Neighbor-to-Neighbor Scheduling</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.4.2.3">
<p id="section-toc.1-1.4.2.4.2.3.1"><a href="#section-4.4.3" class="xref">4.4.3</a>. <a href="#name-remote-monitoring-and-sched" class="xref">Remote Monitoring and Schedule Management</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.4.2.4">
<p id="section-toc.1-1.4.2.4.2.4.1"><a href="#section-4.4.4" class="xref">4.4.4</a>. <a href="#name-hop-by-hop-scheduling" class="xref">Hop-by-Hop Scheduling</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.5">
<p id="section-toc.1-1.4.2.5.1"><a href="#section-4.5" class="xref">4.5</a>. <a href="#name-on-tracks" class="xref">On Tracks</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.5.2.1">
<p id="section-toc.1-1.4.2.5.2.1.1"><a href="#section-4.5.1" class="xref">4.5.1</a>. <a href="#name-general-behavior-of-tracks" class="xref">General Behavior of Tracks</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.5.2.2">
<p id="section-toc.1-1.4.2.5.2.2.1"><a href="#section-4.5.2" class="xref">4.5.2</a>. <a href="#name-serial-track" class="xref">Serial Track</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.5.2.3">
<p id="section-toc.1-1.4.2.5.2.3.1"><a href="#section-4.5.3" class="xref">4.5.3</a>. <a href="#name-complex-track-with-replicat" class="xref">Complex Track with Replication and Elimination</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.5.2.4">
<p id="section-toc.1-1.4.2.5.2.4.1"><a href="#section-4.5.4" class="xref">4.5.4</a>. <a href="#name-detnet-end-to-end-path" class="xref">DetNet End-to-End Path</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.5.2.5">
<p id="section-toc.1-1.4.2.5.2.5.1"><a href="#section-4.5.5" class="xref">4.5.5</a>. <a href="#name-cell-reuse" class="xref">Cell Reuse</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.6">
<p id="section-toc.1-1.4.2.6.1"><a href="#section-4.6" class="xref">4.6</a>. <a href="#name-forwarding-models" class="xref">Forwarding Models</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.6.2.1">
<p id="section-toc.1-1.4.2.6.2.1.1"><a href="#section-4.6.1" class="xref">4.6.1</a>. <a href="#name-track-forwarding" class="xref">Track Forwarding</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.6.2.2">
<p id="section-toc.1-1.4.2.6.2.2.1"><a href="#section-4.6.2" class="xref">4.6.2</a>. <a href="#name-ipv6-forwarding" class="xref">IPv6 Forwarding</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.6.2.3">
<p id="section-toc.1-1.4.2.6.2.3.1"><a href="#section-4.6.3" class="xref">4.6.3</a>. <a href="#name-fragment-forwarding" class="xref">Fragment Forwarding</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.7">
<p id="section-toc.1-1.4.2.7.1"><a href="#section-4.7" class="xref">4.7</a>. <a href="#name-advanced-6tisch-routing" class="xref">Advanced 6TiSCH Routing</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.7.2.1">
<p id="section-toc.1-1.4.2.7.2.1.1"><a href="#section-4.7.1" class="xref">4.7.1</a>. <a href="#name-packet-marking-and-handling" class="xref">Packet Marking and Handling</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.4.2.7.2.2">
<p id="section-toc.1-1.4.2.7.2.2.1"><a href="#section-4.7.2" class="xref">4.7.2</a>. <a href="#name-replication-retries-and-eli" class="xref">Replication, Retries, and Elimination</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-availability-of-remote-serv" class="xref">Availability of Remote Services</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-selective-jamming" class="xref">Selective Jamming</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.6.2.3">
<p id="section-toc.1-1.6.2.3.1"><a href="#section-6.3" class="xref">6.3</a>. <a href="#name-mac-layer-security" class="xref">MAC-Layer Security</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.6.2.4">
<p id="section-toc.1-1.6.2.4.1"><a href="#section-6.4" class="xref">6.4</a>. <a href="#name-time-synchronization" class="xref">Time Synchronization</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.6.2.5">
<p id="section-toc.1-1.6.2.5.1"><a href="#section-6.5" class="xref">6.5</a>. <a href="#name-validating-asn" class="xref">Validating ASN</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.6.2.6">
<p id="section-toc.1-1.6.2.6.1"><a href="#section-6.6" class="xref">6.6</a>. <a href="#name-network-keying-and-rekeying" class="xref">Network Keying and Rekeying</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-references" class="xref">References</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>. <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>. <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-appendix.a" class="xref">Appendix A</a>. <a href="#name-related-work-in-progress" class="xref">Related Work in Progress</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.8.2.1">
<p id="section-toc.1-1.8.2.1.1"><a href="#section-a.1" class="xref">A.1</a>. <a href="#name-unchartered-ietf-work-items" class="xref">Unchartered IETF Work Items</a></p>
<ul class="compact ulEmpty toc">
<li class="compact ulEmpty toc" id="section-toc.1-1.8.2.1.2.1">
<p id="section-toc.1-1.8.2.1.2.1.1"><a href="#section-a.1.1" class="xref">A.1.1</a>. <a href="#name-6tisch-zero-touch-security" class="xref">6TiSCH Zero-Touch Security</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.8.2.1.2.2">
<p id="section-toc.1-1.8.2.1.2.2.1"><a href="#section-a.1.2" class="xref">A.1.2</a>. <a href="#name-6tisch-track-setup" class="xref">6TiSCH Track Setup</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.8.2.1.2.3">
<p id="section-toc.1-1.8.2.1.2.3.1"><a href="#section-a.1.3" class="xref">A.1.3</a>. <a href="#name-using-bier-in-a-6tisch-netw" class="xref">Using BIER in a 6TiSCH Network</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.8.2.2">
<p id="section-toc.1-1.8.2.2.1"><a href="#section-a.2" class="xref">A.2</a>. <a href="#name-external-non-ietf-work-item" class="xref">External (Non-IETF) Work Items</a></p>
</li>
</ul>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-appendix.b" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-appendix.c" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a></p>
</li>
<li class="compact ulEmpty toc" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-appendix.d" class="xref"></a><a href="#name-authors-address" class="xref">Author's Address</a></p>
</li>
</ul>
</nav>
</section>
</div>
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">
Wireless networks enable a wide variety of devices of any size
to get interconnected, often at a very low marginal cost per device,
at any range, and in circumstances where wiring may be impractical,
for instance, on fast-moving or rotating devices.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">
On the other hand, Deterministic Networking maximizes the packet
delivery ratio within a bounded latency so as to enable
mission-critical machine-to-machine (M2M) operations.
Applications that need such networks are presented in
<span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span>
and
<span>[<a href="#I-D.ietf-raw-use-cases" class="xref">RAW-USE-CASES</a>]</span>, which presents a number
of additional use cases for Reliable and Available Wireless networks (RAW).
The considered applications include professional media, Industrial
Automation and Control Systems (IACS), building
automation, in-vehicle command and control, commercial automation and
asset tracking with mobile scenarios, as well as gaming, drones and
edge robotic control, and home automation applications.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">
The Time-Slotted Channel Hopping (TSCH) <span>[<a href="#RFC7554" class="xref">RFC7554</a>]</span> mode
of the IEEE Std 802.15.4 <span>[<a href="#IEEE802154" class="xref">IEEE802154</a>]</span> Medium Access
Control (MAC) was introduced with the IEEE Std 802.15.4e
<span>[<a href="#IEEE802154e" class="xref">IEEE802154e</a>]</span> amendment and is now retrofitted in the
main standard. For all practical purposes, this document
is expected to be insensitive to the revisions of that standard,
which is thus referenced without a date.
TSCH is both a Time-Division Multiplexing (TDM) and a Frequency-Division
Multiplexing (FDM) technique, whereby a different channel can be used for
each transmission. TSCH allows the scheduling of transmissions for
deterministic operations and applies to the slower and most
energy-constrained wireless use cases.<a href="#section-1-3" class="pilcrow">¶</a></p>
<p id="section-1-4">
The scheduled operation provides for a more reliable experience, which
can be used to monitor and manage resources, e.g., energy and water, in
a more efficient fashion.<a href="#section-1-4" class="pilcrow">¶</a></p>
<p id="section-1-5">
Proven deterministic networking standards for use in process control,
including ISA100.11a <span>[<a href="#ISA100.11a" class="xref">ISA100.11a</a>]</span> and WirelessHART
<span>[<a href="#WirelessHART" class="xref">WirelessHART</a>]</span>, have demonstrated the capabilities
of the IEEE Std 802.15.4 TSCH MAC for high reliability against interference,
low-power consumption on well-known flows, and its applicability for
Traffic Engineering (TE) from a central controller.<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6">To enable the convergence of information technology (IT) and
operational technology (OT) in Low-Power and Lossy
Networks (LLNs), the 6TiSCH architecture supports an IETF suite of
protocols over the IEEE Std 802.15.4 TSCH MAC to provide
IP connectivity for energy and otherwise constrained wireless devices.<a href="#section-1-6" class="pilcrow">¶</a></p>
<p id="section-1-7">
The 6TiSCH architecture relies on IPv6 <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span> and the
use of routing to provide large scaling capabilities. The addition of a
high-speed federating backbone adds yet another degree of scalability
to the design. The backbone is typically a Layer 2 transit link such as
an Ethernet bridged network, but it can also be a more complex routed
structure.<a href="#section-1-7" class="pilcrow">¶</a></p>
<p id="section-1-8">
The 6TiSCH architecture introduces an IPv6 multi-link subnet model that
is composed of a federating backbone and a number of IEEE Std 802.15.4
TSCH low-power wireless networks federated and synchronized by Backbone
Routers. If the backbone is a Layer 2 transit link, then the Backbone
Routers can operate as an IPv6 Neighbor Discovery (IPv6 ND) proxy
<span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span>.<a href="#section-1-8" class="pilcrow">¶</a></p>
<p id="section-1-9">
The 6TiSCH architecture leverages 6LoWPAN <span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span> to adapt IPv6
to the constrained media and the
Routing Protocol for Low-Power and Lossy Networks (RPL) <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> for the
distributed routing operations.<a href="#section-1-9" class="pilcrow">¶</a></p>
<p id="section-1-10">
Centralized routing refers to a model where routes are computed
and resources are allocated from a central controller. This is
particularly helpful to schedule deterministic multihop transmissions.
In contrast, distributed routing refers to a model that relies on
concurrent peer-to-peer protocol exchanges for TSCH resource allocation
and routing operations.<a href="#section-1-10" class="pilcrow">¶</a></p>
<p id="section-1-11">
The architecture defines mechanisms to establish and maintain routing
and scheduling in a centralized, distributed, or mixed fashion, for use
in multiple OT environments. It is applicable in particular to highly
scalable solutions such as those used in Advanced Metering Infrastructure
<span>[<a href="#AMI" class="xref">AMI</a>]</span> solutions that leverage distributed routing to
enable multipath forwarding over large LLN meshes.<a href="#section-1-11" class="pilcrow">¶</a></p>
</section>
<section id="section-2">
<h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h2>
<div id="sixTTerminology">
<section id="section-2.1">
<h3 id="name-new-terms">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-new-terms" class="section-name selfRef">New Terms</a>
</h3>
<p id="section-2.1-1">
The document does not reuse terms from the <span><a href="#IEEE802154" class="xref">IEEE Std 802.15.4</a> [<a href="#IEEE802154" class="xref">IEEE802154</a>]</span> standard such as "path" or "link", which bear
a meaning that is quite different from classical IETF parlance.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">This document adds the following terms:<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-2.1-3">
<dt id="section-2.1-3.1">6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.2">
6TiSCH defines an adaptation sublayer for IPv6 over TSCH called 6top,
a set of protocols for setting up a TSCH schedule in distributed
approach, and a security solution. 6TiSCH may be extended in the future for other
MAC/Physical Layer (PHY) pairs providing a service similar to TSCH.<a href="#section-2.1-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.3">6top (6TiSCH Operation Sublayer):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.4">
The next higher layer of the IEEE Std 802.15.4 TSCH MAC layer.
6top provides the abstraction of an IP link over a TSCH MAC,
schedules packets over TSCH cells, and exposes a management
interface to schedule TSCH cells.<a href="#section-2.1-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.5">6P (6top Protocol):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.6">
The protocol defined in <span>[<a href="#RFC8480" class="xref">RFC8480</a>]</span>.
6P enables Layer 2 peers to allocate, move, or de-allocate
cells in their respective schedules to communicate.
6P operates at the 6top sublayer.<a href="#section-2.1-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.7">6P transaction:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.8">
A 2-way or 3-way sequence of 6P messages used by Layer 2
peers to modify their communication schedule.<a href="#section-2.1-3.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.9">ASN (Absolute Slot Number):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.10">
Defined in <span>[<a href="#IEEE802154" class="xref">IEEE802154</a>]</span>, the ASN is the total
number of timeslots that have elapsed since the Epoch time
when the TSCH network started.
Incremented by one at each timeslot.
It is wide enough to not roll over in practice.<a href="#section-2.1-3.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.11">bundle:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.12">
A group of equivalent scheduled cells, i.e., cells
identified by different slotOffset/channelOffset,
which are scheduled for a same purpose, with the same
neighbor, with the same flags, and the same slotframe.
The size of the bundle refers to the number of cells it
contains.
For a given slotframe length, the size of the bundle
translates directly into bandwidth.
A bundle is a local abstraction that represents a
half-duplex link for either sending or receiving,
with bandwidth that amounts to the sum of the cells in the
bundle.<a href="#section-2.1-3.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.13">Layer 2 vs. Layer 3 bundle:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.14">
Bundles are associated with either Layer 2 (switching) or
Layer 3 (routing) forwarding operations. A pair of Layer 3
bundles (one for each direction) maps to an IP link with a
neighbor, whereas a set of Layer 2 bundles (of an
"arbitrary" cardinality and direction) corresponds to the relation
of one or more incoming bundle(s) from the
previous-hop neighbor(s) with one or more outgoing bundle(s)
to the next-hop neighbor(s) along a Track as part of the
switching role, which may include replication and elimination.<a href="#section-2.1-3.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.15">CCA (Clear Channel Assessment):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.16">
A mechanism defined in <span>[<a href="#IEEE802154" class="xref">IEEE802154</a>]</span> whereby
nodes listen to the channel before sending to
detect ongoing transmissions from other parties.
Because the network is synchronized, CCA cannot be used to
detect colliding transmissions within the same network, but
it can be used to detect other radio networks in the vicinity.<a href="#section-2.1-3.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.17">cell:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.18">
A unit of transmission resource in the CDU matrix, a cell is
identified by a slotOffset and a channelOffset.
A cell can be scheduled or unscheduled.<a href="#section-2.1-3.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.19">Channel Distribution/Usage (CDU) matrix:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.20">:
A matrix of cells (i,j) representing the spectrum (channel)
distribution among the different nodes in the 6TiSCH network.
The CDU matrix has width in timeslots equal to the period
of the network scheduling operation, and height equal to
the number of available channels.
Every cell (i,j) in the CDU, identified by slotOffset/channelOffset,
belongs to a specific chunk.<a href="#section-2.1-3.20" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.21">channelOffset:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.22">
Identifies a row in the TSCH schedule. The number of
channelOffset values is bounded by the number of available
frequencies. The channelOffset translates into a frequency
with a function that depends on the absolute time when the
communication takes place, resulting in a channel-hopping
operation.<a href="#section-2.1-3.22" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.23">chunk:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.24">
A well-known list of cells, distributed in time and frequency, within a CDU matrix.
A chunk represents a portion of a CDU matrix.
The partition of the CDU matrix in chunks is globally known by all the nodes in the network to support the appropriation process, which is a negotiation between nodes within an interference domain.
A node that manages to appropriate a chunk gets to decide which transmissions will occur over the cells in the chunk within its interference domain, i.e., a parent node will decide when the cells within the appropriated chunk are used and by which node among its children.<a href="#section-2.1-3.24" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.25">CoJP (Constrained Join Protocol):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.26">
The Constrained Join Protocol (CoJP) enables a pledge to
securely join a 6TiSCH network and obtain network parameters
over a secure channel.
"<a href="#RFC9031" class="xref">Constrained Join Protocol (CoJP) for 6TiSCH</a>" <span>[<a href="#RFC9031" class="xref">RFC9031</a>]</span> defines
the minimal CoJP setup with pre-shared keys defined. In that
mode, CoJP can operate with a single round-trip exchange.<a href="#section-2.1-3.26" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.27">dedicated cell:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.28">
A cell that is reserved for a given node to transmit to a specific neighbor.<a href="#section-2.1-3.28" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.29">deterministic network:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.30">
The generic concept of a deterministic network is defined
in the <span><a href="#RFC8655" class="xref">"Deterministic Networking Architecture"</a> [<a href="#RFC8655" class="xref">RFC8655</a>]</span> document.
When applied to 6TiSCH, it refers to the reservation of Tracks,
which guarantees an end-to-end latency and optimizes the
Packet Delivery Ratio (PDR) for well-characterized flows.<a href="#section-2.1-3.30" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.31">distributed cell reservation:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.32">
A reservation of a cell done by one or more in-network entities.<a href="#section-2.1-3.32" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.33">distributed Track reservation:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.34">
A reservation of a Track done by one or more in-network entities.<a href="#section-2.1-3.34" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.35">EB (Enhanced Beacon):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.36">
A special frame defined in <span>[<a href="#IEEE802154" class="xref">IEEE802154</a>]</span>
used by a node, including the Join Proxy (JP), to announce the presence
of the network.
It contains enough information for a pledge to synchronize to the network.<a href="#section-2.1-3.36" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.37">hard cell:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.38">
A scheduled cell that the 6top sublayer may not relocate.<a href="#section-2.1-3.38" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.39">hopping sequence:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.40">
Ordered sequence of frequencies, identified by a Hopping_Sequence_ID, used for channel hopping when translating the channelOffset value into a frequency.<a href="#section-2.1-3.40" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.41">IE (Information Element):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.42">
Type-Length-Value containers placed at the end of the MAC header and used to pass data between layers or devices.
Some IE identifiers are managed by the IEEE <span>[<a href="#IEEE802154" class="xref">IEEE802154</a>]</span>.
Some IE identifiers are managed by the IETF <span>[<a href="#RFC8137" class="xref">RFC8137</a>]</span>. <span>[<a href="#RFC9032" class="xref">RFC9032</a>]</span>
uses one subtype to support the selection of the Join Proxy.<a href="#section-2.1-3.42" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.43">join process:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.44">
The overall process that includes the discovery of the network by pledge(s) and the execution of the join protocol.<a href="#section-2.1-3.44" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.45">join protocol:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.46">
The protocol that allows the pledge to join the network.
The join protocol encompasses authentication, authorization, and parameter distribution.
The join protocol is executed between the pledge and the JRC.<a href="#section-2.1-3.46" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.47">joined node:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.48">
The new device after having completed the join process, often just called a node.<a href="#section-2.1-3.48" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.49">JP (Join Proxy):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.50">
A node already part of the 6TiSCH network that serves as a relay to provide connectivity between the pledge and the JRC.
The JP announces the presence of the network by regularly sending EB frames.<a href="#section-2.1-3.50" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.51">JRC (Join Registrar/Coordinator):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.52">
Central entity responsible for the authentication, authorization, and configuration of the pledge.<a href="#section-2.1-3.52" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.53">link:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.54">
A communication facility or medium over which nodes can communicate
at the link layer, which is the layer immediately below IP. In 6TiSCH, the concept is implemented as a collection
of Layer 3 bundles. Note:
the IETF parlance for the term "link" is adopted, as opposed to the IEEE Std 802.15.4 terminology.<a href="#section-2.1-3.54" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.55">operational technology:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.56">
OT refers to technology used in automation, for instance in
industrial control networks. The convergence of IT and OT is
the main object of the Industrial Internet of Things (IIOT).<a href="#section-2.1-3.56" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.57">pledge:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.58">
A new device that attempts to join a 6TiSCH network.<a href="#section-2.1-3.58" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.59">(to) relocate a cell:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.60">
The action operated by the 6top sublayer of changing the slotOffset and/or channelOffset of a soft cell.<a href="#section-2.1-3.60" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.61">(to) schedule a cell:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.62">
The action of turning an unscheduled cell into a scheduled cell.<a href="#section-2.1-3.62" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.63">scheduled cell:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.64">
A cell that is assigned a neighbor MAC address
(broadcast address is also possible) and one or
more of the following flags: TX, RX, Shared, and Timekeeping.
A scheduled cell can be used by the IEEE Std 802.15.4 TSCH implementation to communicate.
A scheduled cell can either be a hard or a soft cell.<a href="#section-2.1-3.64" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.65">SF (6top Scheduling Function):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.66">
The cell management entity that adds or deletes cells dynamically based on application networking requirements.
The cell negotiation with a neighbor is done using 6P.<a href="#section-2.1-3.66" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.67">SFID (6top Scheduling Function Identifier):</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.68">
A 4-bit field identifying an SF.<a href="#section-2.1-3.68" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.69">shared cell:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.70">
A cell marked with both the TX and Shared flags.
This cell can be used by more than one transmitter node.
A back-off algorithm is used to resolve contention.<a href="#section-2.1-3.70" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.71">slotframe:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.72">
A collection of timeslots repeating in time, analogous to a superframe in that it defines periods of communication opportunities.
It is characterized by a slotframe_ID and a slotframe_size.
Multiple slotframes can coexist in a node's schedule,
i.e., a node can have multiple activities scheduled in
different slotframes based on the priority of its packets/traffic flows.
The timeslots in the slotframe are indexed by the slotOffset; the first timeslot is at slotOffset 0.<a href="#section-2.1-3.72" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.73">slotOffset:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.74">
A column in the TSCH schedule, i.e., the number of timeslots since the beginning of the current iteration of the slotframe.<a href="#section-2.1-3.74" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.75">soft cell:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.76">
A scheduled cell that the 6top sublayer can relocate.<a href="#section-2.1-3.76" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.77">time source neighbor:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.78">
A neighbor that a node uses as its time reference, and to which it needs to keep its clock synchronized.<a href="#section-2.1-3.78" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.79">timeslot:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.80">
A basic communication unit in TSCH that allows
a transmitter node to send a frame to a receiver neighbor and
that allows the receiver neighbor to optionally send back an acknowledgment.<a href="#section-2.1-3.80" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.81">Track:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.82">
A Track is a Directed Acyclic Graph (DAG) that is used as a
complex multihop path to the destination(s) of the path.
In the case of unicast traffic, the Track is a Destination-Oriented DAG (DODAG) where the Root of the DODAG is the
destination of the unicast traffic.
A Track enables replication, elimination, and reordering functions on the way (more on those functions in
<span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>).
A Track reservation locks physical resources such as cells and buffers in every node along the DODAG.
A Track is associated with an owner, which can be for instance the destination of the Track.<a href="#section-2.1-3.82" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.83">TrackID:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.84">
A TrackID is either globally unique or locally unique to the Track owner,
in which case the identification of the owner must be provided together with the TrackID
to provide a full reference to the Track. Typically, the Track owner is the ingress of the
Track, the IPv6 source address of packets along the Track can be used as
identification of the owner, and a local InstanceID <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>
in the namespace of that owner can be used as TrackID.
If the Track is reversible, then the owner is found in
the IPv6 destination address of a packet coming back along the Track.
In that case, a RPL Packet Information <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> in an IPv6 packet
can unambiguously identify the Track and can be expressed in a compressed form using
<span>[<a href="#RFC8138" class="xref">RFC8138</a>]</span>.<a href="#section-2.1-3.84" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.85">TSCH:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.86">
A medium access mode of the <span><a href="#IEEE802154" class="xref">IEEE Std 802.15.4</a> [<a href="#IEEE802154" class="xref">IEEE802154</a>]</span> standard that uses
time synchronization to achieve ultra-low-power operation and
channel hopping to enable high reliability.<a href="#section-2.1-3.86" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.87">TSCH Schedule:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.88">
A matrix of cells, with each cell indexed by a slotOffset and a channelOffset.
The TSCH schedule contains all the scheduled cells from all
slotframes and is sufficient to qualify the communication in the TSCH network.
The number of channelOffset values (the "height" of the matrix) is equal to the number of available frequencies.<a href="#section-2.1-3.88" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.1-3.89">Unscheduled Cell:</dt>
<dd style="margin-left: 1.5em" id="section-2.1-3.90">
A cell that is not used by the IEEE Std 802.15.4 TSCH implementation.<a href="#section-2.1-3.90" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="acronyms">
<section id="section-2.2">
<h3 id="name-abbreviations">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-abbreviations" class="section-name selfRef">Abbreviations</a>
</h3>
<p id="section-2.2-1"> This document uses the following abbreviations:<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-2.2-2">
<dt id="section-2.2-2.1">6BBR:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.2"> 6LoWPAN Backbone Router (router with a proxy ND function)<a href="#section-2.2-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.3">6LBR:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.4"> 6LoWPAN Border Router (authoritative on Duplicate Address Detection (DAD))<a href="#section-2.2-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.5">6LN:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.6"> 6LoWPAN Node<a href="#section-2.2-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.7">6LR:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.8"> 6LoWPAN Router (relay to the registration process)<a href="#section-2.2-2.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.9">6CIO:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.10"> Capability Indication Option<a href="#section-2.2-2.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.11">(E)ARO:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.12"> (Extended) Address Registration Option<a href="#section-2.2-2.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.13">(E)DAR:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.14"> (Extended) Duplicate Address Request<a href="#section-2.2-2.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.15">(E)DAC:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.16"> (Extended) Duplicate Address Confirmation<a href="#section-2.2-2.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.17">DAD:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.18"> Duplicate Address Detection<a href="#section-2.2-2.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.19">DODAG:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.20"> Destination-Oriented Directed Acyclic Graph<a href="#section-2.2-2.20" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.21">LLN:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.22"> Low-Power and Lossy Network (a typical IoT network)<a href="#section-2.2-2.22" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.23">NA:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.24"> Neighbor Advertisement<a href="#section-2.2-2.24" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.25">NCE:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.26"> Neighbor Cache Entry<a href="#section-2.2-2.26" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.27">ND:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.28"> Neighbor Discovery<a href="#section-2.2-2.28" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.29">NDP:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.30"> Neighbor Discovery Protocol<a href="#section-2.2-2.30" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.31">PCE:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.32"> Path Computation Element<a href="#section-2.2-2.32" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.33">NME:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.34"> Network Management Entity<a href="#section-2.2-2.34" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.35">ROVR:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.36"> Registration Ownership Verifier (pronounced rover)<a href="#section-2.2-2.36" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.37">RPL:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.38"> IPv6 Routing Protocol for LLNs (pronounced ripple)<a href="#section-2.2-2.38" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.39">RA:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.40"> Router Advertisement<a href="#section-2.2-2.40" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.41">RS:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.42"> Router Solicitation<a href="#section-2.2-2.42" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.43">TSCH:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.44"> Time-Slotted Channel Hopping<a href="#section-2.2-2.44" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.2-2.45">TID:</dt>
<dd style="margin-left: 1.5em" id="section-2.2-2.46"> Transaction ID (a sequence counter in the EARO)<a href="#section-2.2-2.46" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="lo">
<section id="section-2.3">
<h3 id="name-related-documents">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-related-documents" class="section-name selfRef">Related Documents</a>
</h3>
<p id="section-2.3-1">
The document conforms to the terms and models described in
<span>[<a href="#RFC3444" class="xref">RFC3444</a>]</span> and <span>[<a href="#RFC5889" class="xref">RFC5889</a>]</span>, uses the
vocabulary and the concepts defined in <span>[<a href="#RFC4291" class="xref">RFC4291</a>]</span> for the
IPv6 architecture, and refers to <span>[<a href="#RFC4080" class="xref">RFC4080</a>]</span> for reservation.<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<p id="section-2.3-2">
The document uses domain-specific terminology defined or referenced
in the following:<a href="#section-2.3-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.3-3.1">6LoWPAN ND:
<span><a href="#RFC6775" class="xref">"Neighbor Discovery Optimization for IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPANs)"</a> [<a href="#RFC6775" class="xref">RFC6775</a>]</span> and
<span><a href="#RFC8505" class="xref">"Registration Extensions for IPv6 over Low-Power
Wireless Personal Area Network (6LoWPAN) Neighbor Discovery"</a> [<a href="#RFC8505" class="xref">RFC8505</a>]</span>,<a href="#section-2.3-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.3-3.2">
<span><a href="#RFC7102" class="xref">"Terms Used in Routing for Low-Power and Lossy Networks"</a> [<a href="#RFC7102" class="xref">RFC7102</a>]</span>, and<a href="#section-2.3-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.3-3.3">RPL:
<span><a href="#RFC6552" class="xref">"Objective Function Zero for the
Routing Protocol for Low-Power and Lossy Networks (RPL)"</a> [<a href="#RFC6552" class="xref">RFC6552</a>]</span> and
<span><a href="#RFC6550" class="xref">"RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks"</a> [<a href="#RFC6550" class="xref">RFC6550</a>]</span>.<a href="#section-2.3-3.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.3-4">
Other terms in use in LLNs are found in <span><a href="#RFC7228" class="xref">"Terminology for Constrained-Node Networks"</a> [<a href="#RFC7228" class="xref">RFC7228</a>]</span>.<a href="#section-2.3-4" class="pilcrow">¶</a></p>
<p id="section-2.3-5">
Readers are expected to be familiar with all the terms and concepts
that are discussed in the following:<a href="#section-2.3-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.3-6.1">
<span><a href="#RFC4861" class="xref">"Neighbor Discovery for IP version 6 (IPv6)"</a> [<a href="#RFC4861" class="xref">RFC4861</a>]</span> and<a href="#section-2.3-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.3-6.2">
<span><a href="#RFC4862" class="xref">"IPv6 Stateless Address Autoconfiguration"</a> [<a href="#RFC4862" class="xref">RFC4862</a>]</span>.<a href="#section-2.3-6.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.3-7">In addition, readers would benefit from reading the following
prior to this specification for a clear understanding of the art
in ND-proxying and binding:<a href="#section-2.3-7" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.3-8.1">
<span><a href="#RFC6606" class="xref">"Problem Statement and Requirements for
IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing"</a> [<a href="#RFC6606" class="xref">RFC6606</a>]</span>,<a href="#section-2.3-8.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.3-8.2">
<span><a href="#RFC4903" class="xref">"Multi-Link Subnet Issues"</a> [<a href="#RFC4903" class="xref">RFC4903</a>]</span>, and<a href="#section-2.3-8.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.3-8.3">
<span><a href="#RFC4919" class="xref">"IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions,
Problem Statement, and Goals"</a> [<a href="#RFC4919" class="xref">RFC4919</a>]</span>.<a href="#section-2.3-8.3" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
</section>
<section id="section-3">
<h2 id="name-high-level-architecture">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-high-level-architecture" class="section-name selfRef">High-Level Architecture</a>
</h2>
<section id="section-3.1">
<h3 id="name-a-non-broadcast-multi-acces">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-a-non-broadcast-multi-acces" class="section-name selfRef">A Non-broadcast Multi-access Radio Mesh Network</a>
</h3>
<p id="section-3.1-1">
A 6TiSCH network is an IPv6 <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span> subnet that, in
its basic configuration illustrated in <a href="#fig1" class="xref">Figure 1</a>, is a
single Low-Power and Lossy Network (LLN) operating over a synchronized
TSCH-based mesh.<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<span id="name-basic-configuration-of-a-6t"></span><div id="fig1">
<figure id="figure-1">
<div class="artwork art-text alignLeft" id="section-3.1-2.1">
<pre>
---+-------- ............ ------------
| External Network |
| +-----+
+-----+ | NME |
| | LLN Border | PCE |
| | router (6LBR) +-----+
+-----+
o o o
o o o o o
o o 6LoWPAN + RPL o o
o o o o
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-basic-configuration-of-a-6t" class="selfRef">Basic Configuration of a 6TiSCH Network</a>
</figcaption></figure>
</div>
<p id="section-3.1-3">
Inside a 6TiSCH LLN, nodes rely on <span><a href="#RFC6282" class="xref">6LoWPAN
header compression (6LoWPAN HC)</a> [<a href="#RFC6282" class="xref">RFC6282</a>]</span> to encode IPv6 packets.
From the perspective of the network layer, a single LLN interface
(typically an IEEE Std 802.15.4-compliant radio) may be seen as a collection
of links with different capabilities for unicast or multicast services.<a href="#section-3.1-3" class="pilcrow">¶</a></p>
<p id="section-3.1-4">
6TiSCH nodes join a mesh network by attaching to nodes that are already
members of the mesh (see <a href="#rflo" class="xref">Section 4.2.1</a>). The security aspects
of the join process are further detailed in <a href="#sec" class="xref">Section 6</a>.
In a mesh network, 6TiSCH nodes are not necessarily reachable from one
another at Layer 2, and an LLN may span over multiple links.<a href="#section-3.1-4" class="pilcrow">¶</a></p>
<p id="section-3.1-5">
This forms a homogeneous non-broadcast multi-access (NBMA) subnet,
which is beyond the scope of IPv6 Neighbor Discovery (IPv6 ND)
<span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span> <span>[<a href="#RFC4862" class="xref">RFC4862</a>]</span>. 6LoWPAN Neighbor
Discovery (6LoWPAN ND) <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span> <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>
specifies extensions to IPv6 ND that enable ND operations in this type
of subnet that can be protected against address theft and impersonation
with <span>[<a href="#RFC8928" class="xref">RFC8928</a>]</span>.<a href="#section-3.1-5" class="pilcrow">¶</a></p>
<p id="section-3.1-6">
Once it has joined the 6TiSCH network, a node acquires IPv6 addresses
and registers them using 6LoWPAN ND. This guarantees that the addresses
are unique and protects the address ownership over the subnet, more in
<a href="#rreg" class="xref">Section 4.2.2</a>.<a href="#section-3.1-6" class="pilcrow">¶</a></p>
<p id="section-3.1-7">
Within the NBMA subnet, <span><a href="#RFC6550" class="xref">RPL</a> [<a href="#RFC6550" class="xref">RFC6550</a>]</span> enables
routing in the so-called "route-over" fashion, either in storing
(stateful) or non-storing (stateless, with routing headers) mode.
From there, some nodes can act as routers for 6LoWPAN ND and RPL
operations, as detailed in <a href="#RPLvs6lo" class="xref">Section 4.1</a>.<a href="#section-3.1-7" class="pilcrow">¶</a></p>
<p id="section-3.1-8">
With TSCH, devices are time synchronized at the MAC level. The use of
a particular RPL Instance for time synchronization is discussed in
<a href="#sync" class="xref">Section 4.3.4</a>. With this mechanism, the time synchronization
starts at the RPL Root and follows the RPL loopless routing topology.<a href="#section-3.1-8" class="pilcrow">¶</a></p>
<p id="section-3.1-9">
RPL forms Destination-Oriented
Directed Acyclic Graphs (DODAGs) within Instances of the protocol,
each Instance being associated with an Objective Function (OF) to
form a routing topology. A particular 6TiSCH node, the LLN Border Router
(6LBR), acts as RPL Root, 6LoWPAN HC terminator, and Border Router
for the LLN to the outside. The 6LBR is usually powered.
More on RPL Instances can be found in Section
<a href="https://www.rfc-editor.org/rfc/rfc6550#section-3.1" class="relref">3.1</a> of
<span><a href="#RFC6550" class="xref">RPL</a> [<a href="#RFC6550" class="xref">RFC6550</a>]</span>, in particular
"<a href="https://www.rfc-editor.org/rfc/rfc6550#section-3.1.2" class="relref">3.1.2</a> RPL Identifiers" and
"<a href="https://www.rfc-editor.org/rfc/rfc6550#section-3.1.3" class="relref">3.1.3</a> Instances, DODAGs, and DODAG Versions".
RPL adds artifacts in
the data packets that are compressed with a
<span><a href="#RFC8138" class="xref">6LoWPAN Routing Header (6LoRH)</a> [<a href="#RFC8138" class="xref">RFC8138</a>]</span>.
In a preexisting network, the compression can be globally turned on in a
DODAG once all nodes are migrated to support <span>[<a href="#RFC8138" class="xref">RFC8138</a>]</span>
using <span>[<a href="#RFC9035" class="xref">RFC9035</a>]</span>.<a href="#section-3.1-9" class="pilcrow">¶</a></p>
<p id="section-3.1-10">
Additional routing and scheduling protocols may be deployed to
establish on-demand, peer-to-peer routes with particular characteristics
inside the 6TiSCH network.
This may be achieved in a centralized fashion by a Path Computation
Element (PCE) <span>[<a href="#PCE" class="xref">PCE</a>]</span> that programs both the routes and
the schedules inside the 6TiSCH nodes or in a distributed fashion by
using a reactive routing protocol and a hop-by-hop scheduling protocol.<a href="#section-3.1-10" class="pilcrow">¶</a></p>
<p id="section-3.1-11">
This architecture expects that a 6LoWPAN node can connect as a
leaf to a RPL network, where the leaf support is the minimal
functionality to connect as a host to a RPL network without the need to
participate in the full routing protocol.
The architecture also expects that a 6LoWPAN node that is unaware
of RPL may also connect as described in <span>[<a href="#RFC9010" class="xref">RFC9010</a>]</span>.<a href="#section-3.1-11" class="pilcrow">¶</a></p>
</section>
<section id="section-3.2">
<h3 id="name-a-multi-link-subnet-model">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-a-multi-link-subnet-model" class="section-name selfRef">A Multi-Link Subnet Model</a>
</h3>
<p id="section-3.2-1">
An extended configuration of the subnet comprises multiple LLNs as
illustrated in <a href="#fig2" class="xref">Figure 2</a>.
In the extended configuration, a Routing Registrar <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>
may be connected to the node that acts as the RPL Root and/or 6LoWPAN 6LBR
and provides connectivity to the larger campus or factory plant network
over a high-speed backbone or a back-haul link. The Routing Registrar
may perform IPv6 ND proxy operations; redistribute the registration in
a routing protocol such as <span><a href="#RFC5340" class="xref">OSPF</a> [<a href="#RFC5340" class="xref">RFC5340</a>]</span> or
<span><a href="#RFC2545" class="xref">BGP</a> [<a href="#RFC2545" class="xref">RFC2545</a>]</span>; or inject a route in a mobility protocol
such as <span><a href="#RFC6275" class="xref">Mobile IPv6 (MIPv6)</a> [<a href="#RFC6275" class="xref">RFC6275</a>]</span>,
<span><a href="#RFC3963" class="xref">Network Mobility (NEMO)</a> [<a href="#RFC3963" class="xref">RFC3963</a>]</span>, or
<span><a href="#RFC6830" class="xref">Locator/ID Separation Protocol (LISP)</a> [<a href="#RFC6830" class="xref">RFC6830</a>]</span>.<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2-2">
Multiple LLNs can be interconnected and possibly synchronized over a
backbone, which can be wired or wireless. The backbone can operate with
IPv6 ND procedures <span>[<a href="#RFC4861" class="xref">RFC4861</a>]</span> <span>[<a href="#RFC4862" class="xref">RFC4862</a>]</span> or a
hybrid of IPv6 ND and 6LoWPAN ND
<span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span> <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> <span>[<a href="#RFC8928" class="xref">RFC8928</a>]</span>.<a href="#section-3.2-2" class="pilcrow">¶</a></p>
<span id="name-extended-configuration-of-a"></span><div id="fig2">
<figure id="figure-2">
<div class="artwork art-text alignLeft" id="section-3.2-3.1">
<pre>
|
+-----+ +-----+ +-----+
(default) | | (Optional) | | | | IPv6
Router | | 6LBR | | | | Node
+-----+ +-----+ +-----+
| Backbone side | |
--------+---+--------------------+-+---------------+------+---
| | |
+-----------+ +-----------+ +-----------+
| Routing | | Routing | | Routing |
| Registrar | | Registrar | | Registrar |
+-----------+ +-----------+ +-----------+
o Wireless side o o o o
o o o o o o o o o o o o o o
o 6TiSCH o 6TiSCH o o o o 6TiSCH o
o o LLN o o o o LLN o o LLN o
o o o o o o o o o o o o o o
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-extended-configuration-of-a" class="selfRef">Extended Configuration of a 6TiSCH Network</a>
</figcaption></figure>
</div>
<p id="section-3.2-4">
A Routing Registrar that performs proxy IPv6 ND operations over the
backbone on behalf of the 6TiSCH nodes is called a Backbone Router (6BBR)
<span>[<a href="#RFC8929" class="xref">RFC8929</a>]</span>. The 6BBRs are
placed along the wireless edge of a backbone and federate multiple
wireless links to form a single multi-link subnet. The 6BBRs synchronize
with one another over the backbone, so as to ensure that the multiple LLNs
that form the IPv6 subnet stay tightly synchronized.<a href="#section-3.2-4" class="pilcrow">¶</a></p>
<p id="section-3.2-5">
The use of multicast can also be reduced on the backbone with a registrar
that would contribute to Duplicate Address Detection as well as address
lookup using only unicast request/response exchanges.
<span>[<a href="#I-D.thubert-6man-unicast-lookup" class="xref">ND-UNICAST-LOOKUP</a>]</span> is a proposed method that
presents an example of how this could be achieved with an extension of
<span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>, using an optional 6LBR as a subnet-level registrar,
as illustrated in <a href="#fig2" class="xref">Figure 2</a>.<a href="#section-3.2-5" class="pilcrow">¶</a></p>
<p id="section-3.2-6">
As detailed in <a href="#RPLvs6lo" class="xref">Section 4.1</a>, the 6LBR that serves the LLN and
the Root of the RPL network need to share information about the devices
that are learned through either 6LoWPAN ND or RPL, but not both.
The preferred way of achieving this is to co-locate or combine them.
The combined RPL Root and 6LBR may be co-located with the 6BBR, or
directly attached to the 6BBR. In the latter case, it leverages the
extended registration process defined in <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> to proxy
the 6LoWPAN ND registration to the 6BBR on behalf of the LLN nodes, so
that the 6BBR may in turn perform classical ND operations over the
backbone as a proxy.<a href="#section-3.2-6" class="pilcrow">¶</a></p>
<p id="section-3.2-7"> The <span><a href="#RFC8655" class="xref">"Deterministic Networking Architecture"</a> [<a href="#RFC8655" class="xref">RFC8655</a>]</span>
studies Layer 3 aspects of Deterministic Networks and
covers networks that span multiple Layer 2 domains.
If the backbone is deterministic (such as defined by the Time-Sensitive
Networking (TSN) Task Group at IEEE), then the Backbone Router ensures that the
end-to-end deterministic behavior is maintained between the LLN and the
backbone.<a href="#section-3.2-7" class="pilcrow">¶</a></p>
</section>
<section id="section-3.3">
<h3 id="name-tsch-a-deterministic-mac-la">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-tsch-a-deterministic-mac-la" class="section-name selfRef">TSCH: a Deterministic MAC Layer</a>
</h3>
<p id="section-3.3-1">
Though at a different time scale (several orders of magnitude),
both IEEE Std 802.1 TSN and IEEE Std 802.15.4 TSCH
standards provide deterministic capabilities to the point that a packet
pertaining to a certain flow may traverse a network from node to node following
a precise schedule, as a train that enters and then leaves intermediate stations
at precise times along its path.<a href="#section-3.3-1" class="pilcrow">¶</a></p>
<p id="section-3.3-2">
With TSCH, time is formatted into
timeslots, and individual communication cells are allocated to unicast or
broadcast communication at the MAC level. The time-slotted operation
reduces collisions, saves energy, and enables more closely engineering
the network for deterministic properties.
The channel-hopping aspect is a simple and efficient technique to combat
multipath fading and co-channel interference.<a href="#section-3.3-2" class="pilcrow">¶</a></p>
<p id="section-3.3-3">
6TiSCH builds on the IEEE Std 802.15.4 TSCH MAC and inherits its advanced
capabilities to enable them in multiple environments where they can
be leveraged to improve automated operations.
The 6TiSCH architecture also inherits the capability to perform a
centralized route computation to achieve deterministic properties,
though it relies on the IETF
<span><a href="#RFC8655" class="xref">DetNet architecture</a> [<a href="#RFC8655" class="xref">RFC8655</a>]</span>
and IETF components such as the PCE
<span>[<a href="#PCE" class="xref">PCE</a>]</span> for the protocol aspects.<a href="#section-3.3-3" class="pilcrow">¶</a></p>
<p id="section-3.3-4">On top of this inheritance, 6TiSCH adds capabilities for distributed
routing and scheduling operations based on RPL
and capabilities for negotiating schedule adjustments between peers.
These distributed routing and scheduling operations simplify the
deployment of TSCH networks and enable wireless solutions in a larger
variety of use cases from operational technology in general. Examples
of such use cases in industrial environments include plant setup and
decommissioning, as well as monitoring a multiplicity of minor
notifications such as corrosion measurements, events, and access of
local devices by mobile workers.<a href="#section-3.3-4" class="pilcrow">¶</a></p>
</section>
<section id="section-3.4">
<h3 id="name-scheduling-tsch">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-scheduling-tsch" class="section-name selfRef">Scheduling TSCH</a>
</h3>
<p id="section-3.4-1">A scheduling operation allocates cells in a TDM/FDM matrix
called a CDU either to individual transmissions or as multi-access shared resources.
The CDU matrix can be formatted in
chunks that can be allocated exclusively to particular nodes to enable
distributed scheduling without collision.
More in <a href="#slotframes" class="xref">Section 4.3.5</a>.<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<p id="section-3.4-2">
At the MAC layer, the schedule of a 6TiSCH node
is the collection of the timeslots at which it must wake up for
transmission, and the channels to which it should either send or listen
at those times. The schedule is expressed as one or more repeating slotframes.
Slotframes may collide and require a device to
wake up at a same time, in which case the slotframe with the highest
priority is actionable.<a href="#section-3.4-2" class="pilcrow">¶</a></p>
<p id="section-3.4-3">
The 6top sublayer (see <a href="#s6Pprot" class="xref">Section 4.3</a> for more) hides the
complexity of the schedule from the upper layers. The link abstraction
that IP traffic utilizes is composed of a pair of Layer 3 cell bundles,
one to receive and one to transmit. Some of the cells may be shared, in
which case the 6top sublayer must perform some arbitration.<a href="#section-3.4-3" class="pilcrow">¶</a></p>
<p id="section-3.4-4">
Scheduling enables multiple simultaneous communications in a same
interference domain using different channels; but a node equipped with
a single radio can only either transmit or receive on one channel at
any point of time.
Scheduled cells that fulfill the same role, e.g., receive IP packets from
a peer, are grouped in bundles.<a href="#section-3.4-4" class="pilcrow">¶</a></p>
<p id="section-3.4-5">The 6TiSCH architecture identifies four ways a schedule can be managed
and CDU cells can be allocated: Static Scheduling, Neighbor-to-Neighbor
Scheduling, Centralized (or Remote) Monitoring and Schedule Management,
and Hop-by-Hop Scheduling.<a href="#section-3.4-5" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.4-6">
<dt id="section-3.4-6.1">Static Scheduling:</dt>
<dd style="margin-left: 1.5em" id="section-3.4-6.2">This refers to the minimal
6TiSCH operation whereby a static schedule is configured for the whole
network for use in a Slotted ALOHA <span>[<a href="#S-ALOHA" class="xref">S-ALOHA</a>]</span> fashion.
The static schedule is
distributed through the native methods in the TSCH MAC layer
and does not preclude other scheduling operations coexisting on a same
6TiSCH network. A static schedule is
necessary for basic operations such as the join process and
for interoperability during the network formation, which is specified
as part of the <span><a href="#RFC8180" class="xref">Minimal 6TiSCH Configuration</a> [<a href="#RFC8180" class="xref">RFC8180</a>]</span>.<a href="#section-3.4-6.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.4-6.3">Neighbor-to-Neighbor Scheduling:</dt>
<dd style="margin-left: 1.5em" id="section-3.4-6.4">This refers to the
dynamic adaptation of the bandwidth of the links that are used for IPv6
traffic between adjacent peers. Scheduling Functions such as the
<span><a href="#RFC9033" class="xref">"6TiSCH Minimal Scheduling Function
(MSF)"</a> [<a href="#RFC9033" class="xref">RFC9033</a>]</span> influence the operation of the MAC layer to add, update,
and remove cells in its own and its peer's schedules using 6P
<span>[<a href="#RFC8480" class="xref">RFC8480</a>]</span>
for the negotiation of the MAC resources.<a href="#section-3.4-6.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.4-6.5">Centralized (or Remote) Monitoring and Schedule Management:</dt>
<dd style="margin-left: 1.5em" id="section-3.4-6.6">
This refers to the central computation of a schedule and the capability
to forward a frame based on the cell of arrival. In that case,
the related portion of the device schedule as well as other device
resources are managed by an abstract Network Management Entity (NME),
which may cooperate with the PCE to minimize the interaction
with, and the load on, the constrained device.
This model is the TSCH adaption of the
<span><a href="#RFC8655" class="xref">DetNet architecture</a> [<a href="#RFC8655" class="xref">RFC8655</a>]</span>,
and it enables Traffic Engineering with deterministic properties.<a href="#section-3.4-6.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.4-6.7">Hop-by-Hop Scheduling:</dt>
<dd style="margin-left: 1.5em" id="section-3.4-6.8">This refers to the possibility of
reserving cells along a path for a particular flow using a distributed
mechanism.<a href="#section-3.4-6.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.4-7">
It is not expected that all use cases will require all those mechanisms.
Static Scheduling with minimal configuration is the only one that
is expected in all implementations, since it provides a simple and
solid basis for convergecast routing and time distribution.<a href="#section-3.4-7" class="pilcrow">¶</a></p>
<p id="section-3.4-8">
A deeper dive into those mechanisms can be found in <a href="#schd" class="xref">Section 4.4</a>.<a href="#section-3.4-8" class="pilcrow">¶</a></p>
</section>
<div id="rtg3">
<section id="section-3.5">
<h3 id="name-distributed-vs-centralized-">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-distributed-vs-centralized-" class="section-name selfRef">Distributed vs. Centralized Routing</a>
</h3>
<p id="section-3.5-1">
6TiSCH enables a mixed model of centralized routes and distributed routes.
Centralized routes can, for example, be computed by an entity such as a PCE.
6TiSCH leverages <span><a href="#RFC6550" class="xref">RPL</a> [<a href="#RFC6550" class="xref">RFC6550</a>]</span>
for interoperable, distributed routing operations.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
<p id="section-3.5-2">
Both methods may inject routes into the routing tables of the 6TiSCH routers.
In either case, each route is associated with a 6TiSCH topology that can
be a RPL Instance topology or a Track. The 6TiSCH topology is
indexed by a RPLInstanceID, in a format that reuses the RPLInstanceID as
defined in RPL.<a href="#section-3.5-2" class="pilcrow">¶</a></p>
<p id="section-3.5-3">
<span><a href="#RFC6550" class="xref">RPL</a> [<a href="#RFC6550" class="xref">RFC6550</a>]</span> is applicable to Static Scheduling and
Neighbor-to-Neighbor Scheduling. The architecture also supports a
centralized routing model for Remote Monitoring and Schedule Management.
It is expected that a routing protocol that is more optimized for
point-to-point routing than <span><a href="#RFC6550" class="xref">RPL</a> [<a href="#RFC6550" class="xref">RFC6550</a>]</span>, such as
the <span><a href="#I-D.ietf-roll-aodv-rpl" class="xref">"Asymmetric AODV-P2P-RPL in Low-Power and Lossy Networks" (AODV-RPL)</a> [<a href="#I-D.ietf-roll-aodv-rpl" class="xref">AODV-RPL</a>]</span>,
which derives from the <span><a href="#I-D.ietf-manet-aodvv2" class="xref">"Ad Hoc On-demand Distance Vector (AODVv2) Routing"</a> [<a href="#I-D.ietf-manet-aodvv2" class="xref">AODVv2</a>]</span>, will be
selected for Hop-by-Hop Scheduling.<a href="#section-3.5-3" class="pilcrow">¶</a></p>
<p id="section-3.5-4">
Both RPL and PCE rely on shared sources such as policies to define global
and local RPLInstanceIDs that can be used by either method. It is possible
for centralized and distributed routing to share the same topology.
Generally they will operate in different slotframes, and centralized
routes will be used for scheduled traffic and will have precedence over
distributed routes in case of conflict between the slotframes.<a href="#section-3.5-4" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.6">
<h3 id="name-forwarding-over-tsch">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-forwarding-over-tsch" class="section-name selfRef">Forwarding over TSCH</a>
</h3>
<p id="section-3.6-1">
The 6TiSCH architecture supports three different forwarding models.
One is the classical IPv6 Forwarding, where the node selects a feasible
successor at Layer 3 on a per-packet basis and based on its routing
table. The second derives from Generalized MPLS (GMPLS) for so-called
Track Forwarding, whereby a frame received at a particular timeslot
can be switched into another timeslot at Layer 2 without regard to the
upper-layer protocol. The third model is the
6LoWPAN Fragment Forwarding, which allows the forwarding individual 6LoWPAN
fragments along a route that is set up by the first fragment.<a href="#section-3.6-1" class="pilcrow">¶</a></p>
<p id="section-3.6-2">In more detail:<a href="#section-3.6-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.6-3">
<dt id="section-3.6-3.1">IPv6 Forwarding:</dt>
<dd style="margin-left: 1.5em" id="section-3.6-3.2">This is the classical IP forwarding
model, with a Routing Information Base (RIB) that is installed by
RPL and used to select a feasible successor per packet.
The packet is placed on an outgoing link, which the 6top sublayer maps into
a (Layer 3) bundle of cells, and scheduled for transmission based on QoS
parameters. Besides RPL, this model also applies to any routing
protocol that may be operated in the 6TiSCH network and corresponds
to all the distributed scheduling models: Static, Neighbor-to-Neighbor,
and Hop-by-Hop Scheduling.<a href="#section-3.6-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.6-3.3">GMPLS Track Forwarding:</dt>
<dd style="margin-left: 1.5em" id="section-3.6-3.4">This model corresponds to the
Remote Monitoring and Schedule Management. In this model, a central
controller (hosting a PCE) computes and installs the schedules in the
devices per flow. The incoming (Layer 2) bundle of cells from the
previous node along the path determines the outgoing (Layer 2) bundle
towards the next hop for that flow as determined by the PCE. The
programmed sequence for bundles is called a Track and can assume DAG
shapes that are more complex than a simple direct sequence of nodes.<a href="#section-3.6-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.6-3.5">6LoWPAN Fragment Forwarding:</dt>
<dd style="margin-left: 1.5em" id="section-3.6-3.6">This is a hybrid model
that derives from IPv6 forwarding for the case where packets must
be fragmented at the 6LoWPAN sublayer. The first fragment is forwarded
like any IPv6 packet and leaves a state in the intermediate hops to
enable forwarding of the next fragments that do not have an IP header
without the need to recompose the packet at every hop.<a href="#section-3.6-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.6-4">A deeper dive into these operations can be found in
<a href="#fwd" class="xref">Section 4.6</a>.<a href="#section-3.6-4" class="pilcrow">¶</a></p>
<p id="section-3.6-5"> <a href="#RaF" class="xref">Table 1</a> summarizes how the forwarding models
apply to the various routing and scheduling possibilities:<a href="#section-3.6-5" class="pilcrow">¶</a></p>
<div id="RaF">
<table class="center" id="table-1">
<caption><a href="#table-1" class="selfRef">Table 1</a></caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Forwarding Model</th>
<th class="text-left" rowspan="1" colspan="1">Routing</th>
<th class="text-left" rowspan="1" colspan="1">Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="3" colspan="1">classical IPv6 / 6LoWPAN Fragment</td>
<td class="text-left" rowspan="2" colspan="1">RPL</td>
<td class="text-left" rowspan="1" colspan="1">Static (Minimal Configuration)</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Neighbor-to-Neighbor (SF+6P)</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Reactive</td>
<td class="text-left" rowspan="1" colspan="1">Hop-by-Hop (AODV-RPL)</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">GMPLS Track Forwarding</td>
<td class="text-left" rowspan="1" colspan="1">PCE</td>
<td class="text-left" rowspan="1" colspan="1">Remote Monitoring and Schedule Mgt</td>
</tr>
</tbody>
</table>
</div>
</section>
<div id="fsixstac">
<section id="section-3.7">
<h3 id="name-6tisch-stack">
<a href="#section-3.7" class="section-number selfRef">3.7. </a><a href="#name-6tisch-stack" class="section-name selfRef">6TiSCH Stack</a>
</h3>
<p id="section-3.7-1">
The IETF proposes multiple techniques for implementing functions related
to routing, transport, or security.<a href="#section-3.7-1" class="pilcrow">¶</a></p>
<p id="section-3.7-2">
The 6TiSCH architecture limits the possible
variations of the stack and recommends a number of base elements for LLN
applications to control the complexity of
possible deployments and device interactions and to limit the size of
the resulting object code. In particular, UDP <span>[<a href="#RFC0768" class="xref">RFC0768</a>]</span>,
IPv6 <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span>, and the <span><a href="#RFC7252" class="xref">Constrained
Application Protocol (CoAP)</a> [<a href="#RFC7252" class="xref">RFC7252</a>]</span> are used as the transport/binding of
choice for applications and management as opposed to TCP and HTTP.<a href="#section-3.7-2" class="pilcrow">¶</a></p>
<p id="section-3.7-3">
The resulting protocol stack is represented in <a href="#fig4" class="xref">Figure 3</a>:<a href="#section-3.7-3" class="pilcrow">¶</a></p>
<span id="name-6tisch-protocol-stack"></span><div id="fig4">
<figure id="figure-3">
<div class="artwork art-text alignLeft" id="section-3.7-4.1">
<pre>
+--------+--------+
| Applis | CoJP |
+--------+--------+--------------+-----+
| CoAP / OSCORE | 6LoWPAN ND | RPL |
+-----------------+--------------+-----+
| UDP | ICMPv6 |
+-----------------+--------------------+
| IPv6 |
+--------------------------------------+----------------------+
| 6LoWPAN HC / 6LoRH HC | Scheduling Functions |
+--------------------------------------+----------------------+
| 6top inc. 6top Protocol |
+-------------------------------------------------------------+
| IEEE Std 802.15.4 TSCH |
+-------------------------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-6tisch-protocol-stack" class="selfRef">6TiSCH Protocol Stack</a>
</figcaption></figure>
</div>
<p id="section-3.7-5">
RPL is the routing protocol of choice for LLNs. So far, there is no
identified need to define a 6TiSCH-specific Objective Function.
The <span><a href="#RFC8180" class="xref">Minimal 6TiSCH Configuration</a> [<a href="#RFC8180" class="xref">RFC8180</a>]</span> describes the operation of RPL over a static schedule used in
a Slotted ALOHA fashion <span>[<a href="#S-ALOHA" class="xref">S-ALOHA</a>]</span>, whereby all active slots
may be used for emission or reception of both unicast and multicast
frames.<a href="#section-3.7-5" class="pilcrow">¶</a></p>
<p id="section-3.7-6">
<span><a href="#RFC6282" class="xref">6LoWPAN header compression</a> [<a href="#RFC6282" class="xref">RFC6282</a>]</span> is used
to compress the IPv6 and UDP headers, whereas the
<span><a href="#RFC8138" class="xref">6LoWPAN Routing Header (6LoRH)</a> [<a href="#RFC8138" class="xref">RFC8138</a>]</span> is used
to compress the RPL artifacts in
the IPv6 data packets, including the RPL Packet Information (RPI),
the IP-in-IP encapsulation to/from the RPL Root, and the Source Routing
Header (SRH) in non-storing mode.
"<a href="#RFC9008" class="xref">Using RPI Option Type, Routing Header for Source Routes, and IPv6-in-IPv6 Encapsulation in the RPL Data Plane</a>" <span>[<a href="#RFC9008" class="xref">RFC9008</a>]</span>
provides the details on when headers or encapsulation are needed.<a href="#section-3.7-6" class="pilcrow">¶</a></p>
<p id="section-3.7-7">
The <span><a href="#RFC8613" class="xref">Object Security for Constrained RESTful Environments (OSCORE)</a> [<a href="#RFC8613" class="xref">RFC8613</a>]</span>
is leveraged by the Constrained Join Protocol (CoJP) and is expected to
be the primary protocol for the protection of the application payload
as well. The application payload may also be protected by
the <span><a href="#RFC6347" class="xref">Datagram Transport Layer Security (DTLS)</a> [<a href="#RFC6347" class="xref">RFC6347</a>]</span> sitting either under CoAP or over CoAP so it can traverse
proxies.<a href="#section-3.7-7" class="pilcrow">¶</a></p>
<p id="section-3.7-8">
The 6TiSCH Operation
Sublayer (6top) is a sublayer of a Logical Link Control (LLC)
that provides the abstraction of an IP link over a TSCH MAC and
schedules packets over TSCH cells, as further discussed in the next
sections, providing in particular dynamic cell allocation with the
6top Protocol (6P) <span>[<a href="#RFC8480" class="xref">RFC8480</a>]</span>.<a href="#section-3.7-8" class="pilcrow">¶</a></p>
<p id="section-3.7-9">
The reference stack presented in this document was implemented
and interoperability-tested by a combination of open source, IETF, and ETSI efforts.
One goal is to help other bodies to adopt the stack as a whole, making the
effort to move to an IPv6-based IoT stack easier.<a href="#section-3.7-9" class="pilcrow">¶</a></p>
<p id="section-3.7-10">
For a particular
environment, some of the choices that are available in this architecture may not
be relevant. For instance, RPL is not required for star topologies and
mesh-under Layer 2 routed networks, and the 6LoWPAN compression may not be
sufficient for ultra-constrained cases such as some Low-Power Wide Area
(LPWA) networks. In such cases, it is perfectly doable to adopt a subset
of the selection that is presented hereafter and then select alternate
components to complete the solution wherever needed.<a href="#section-3.7-10" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.8">
<h3 id="name-communication-paradigms-and">
<a href="#section-3.8" class="section-number selfRef">3.8. </a><a href="#name-communication-paradigms-and" class="section-name selfRef">Communication Paradigms and Interaction Models</a>
</h3>
<p id="section-3.8-1">
<a href="#sixTTerminology" class="xref">Section 2.1</a> provides the terms
of Communication Paradigms and Interaction Models in combination with
<span><a href="#RFC3444" class="xref">"On the Difference between Information Models
and Data Models"</a> [<a href="#RFC3444" class="xref">RFC3444</a>]</span>.
A Communication Paradigm is an abstract view of a protocol exchange
and has an Information Model for the information that is being exchanged.
In contrast, an Interaction Model is more refined and points to standard operation
such as a Representational State Transfer (REST) "GET" operation and matches
a Data Model for the data that is provided over the protocol exchange.<a href="#section-3.8-1" class="pilcrow">¶</a></p>
<p id="section-3.8-2">
<span><a href="https://tools.ietf.org/html/draft-ietf-roll-rpl-industrial-applicability-02#section-2.1.3" class="relref">Section 2.1.3</a> of [<a href="#I-D.ietf-roll-rpl-industrial-applicability" class="xref">RPL-APPLICABILITY</a>]</span>
and its following
sections discuss application-layer paradigms such as source-sink,
which is a multipeer-to-multipeer model primarily used for
alarms and alerts, publish-subscribe, which is typically
used for sensor data, as well as peer-to-peer and
peer-to-multipeer communications.<a href="#section-3.8-2" class="pilcrow">¶</a></p>
<p id="section-3.8-3">
Additional considerations on duocast -- one sender, two receivers for redundancy --
and its N-cast generalization are also provided.
Those paradigms are frequently used in industrial automation, which is
a major use case for IEEE Std 802.15.4 TSCH wireless networks with
<span>[<a href="#ISA100.11a" class="xref">ISA100.11a</a>]</span> and <span>[<a href="#WirelessHART" class="xref">WirelessHART</a>]</span>, which
provides a wireless access to <span>[<a href="#HART" class="xref">HART</a>]</span> applications and
devices.<a href="#section-3.8-3" class="pilcrow">¶</a></p>
<p id="section-3.8-4">
This document focuses on Communication Paradigms and Interaction
Models for packet forwarding and TSCH resources (cells) management.
Management mechanisms for the TSCH schedule at the link layer (one hop),
network layer (multihop along a Track), and application layer
(remote control) are discussed in <a href="#schd" class="xref">Section 4.4</a>.
Link-layer frame forwarding interactions are discussed in <a href="#fwd" class="xref">Section 4.6</a>, and
network-layer packet routing is addressed in <a href="#rtg" class="xref">Section 4.7</a>.<a href="#section-3.8-4" class="pilcrow">¶</a></p>
</section>
</section>
<div id="dd">
<section id="section-4">
<h2 id="name-architecture-components">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-architecture-components" class="section-name selfRef">Architecture Components</a>
</h2>
<div id="RPLvs6lo">
<section id="section-4.1">
<h3 id="name-6lowpan-and-rpl">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-6lowpan-and-rpl" class="section-name selfRef">6LoWPAN (and RPL)</a>
</h3>
<p id="section-4.1-1">A RPL DODAG is formed of a Root, a collection of routers, and leaves that
are hosts. Hosts are nodes that do not forward packets that they did not generate.
RPL-aware leaves will participate in RPL to advertise their own
addresses, whereas RPL-unaware leaves depend on a connected RPL router to do
so. RPL interacts with 6LoWPAN ND at multiple levels, in particular at the
Root and in the RPL-unaware leaves.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<div id="leaf">
<section id="section-4.1.1">
<h4 id="name-rpl-unaware-leaves-and-6low">
<a href="#section-4.1.1" class="section-number selfRef">4.1.1. </a><a href="#name-rpl-unaware-leaves-and-6low" class="section-name selfRef">RPL-Unaware Leaves and 6LoWPAN ND</a>
</h4>
<p id="section-4.1.1-1">RPL needs a set of information to advertise
a leaf node through a Destination Advertisement Object (DAO) message and establish reachability.<a href="#section-4.1.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1.1-2"><span><a href="#RFC9010" class="xref">"Routing for RPL Leaves"</a> [<a href="#RFC9010" class="xref">RFC9010</a>]</span>
details the basic interaction of 6LoWPAN ND and RPL and enables a plain 6LN
that supports <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> to obtain return
connectivity via the RPL network as a RPL-unaware leaf.
The leaf indicates that it requires reachability services for the
Registered Address from a Routing Registrar by setting an 'R' flag in the
Extended Address Registration Option <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>, and it
provides a TID that maps to the "Path Sequence" defined in <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-6.7.8" class="relref">Section 6.7.8</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>, and its operation is defined in <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-7.2" class="relref">Section 7.2</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>.<a href="#section-4.1.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1.1-3"><span>[<a href="#RFC9010" class="xref">RFC9010</a>]</span> also enables the leaf to signal
with the RPLInstanceID that it wants to participate by using the
Opaque field of the EARO. On the backbone, the RPLInstanceID is
expected to be mapped to an overlay that matches the RPL Instance, e.g.,
a Virtual LAN (VLAN) or a virtual routing and forwarding (VRF) instance.<a href="#section-4.1.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1.1-4">
Though, at the time of this writing, the above specification enables a model
where the separation is possible, this architecture recommends
co-locating the functions of 6LBR and RPL Root.<a href="#section-4.1.1-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="rpllbr">
<section id="section-4.1.2">
<h4 id="name-6lbr-and-rpl-root">
<a href="#section-4.1.2" class="section-number selfRef">4.1.2. </a><a href="#name-6lbr-and-rpl-root" class="section-name selfRef">6LBR and RPL Root</a>
</h4>
<p id="section-4.1.2-1">
With the 6LoWPAN ND <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span>, information on the 6LBR is
disseminated via an Authoritative Border Router Option (ABRO) in RA messages.
<span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> extends <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span> to enable a
registration for routing and proxy ND.
The capability to support <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>
is indicated in the 6LoWPAN Capability Indication Option (6CIO).
The discovery and liveliness of the RPL Root are obtained through RPL
<span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> itself.<a href="#section-4.1.2-1" class="pilcrow">¶</a></p>
<p id="section-4.1.2-2">
When 6LoWPAN ND is coupled with RPL, the 6LBR and RPL Root functionalities
are co-located in order that the address of the 6LBR is indicated by RPL
DODAG Information Object (DIO) messages and to associate the ROVR from
the Extended Duplicate Address Request/Confirmation (EDAR/EDAC)
exchange <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> with the state that is maintained by RPL.<a href="#section-4.1.2-2" class="pilcrow">¶</a></p>
<p id="section-4.1.2-3">
<span><a href="https://www.rfc-editor.org/rfc/rfc9010#section-7" class="relref">Section 7</a> of [<a href="#RFC9010" class="xref">RFC9010</a>]</span> specifies how
the DAO messages are used to reconfirm the registration, thus eliminating a
duplication of functionality between DAO and EDAR/EDAC messages, as
illustrated in <a href="#figReg2" class="xref">Figure 6</a>.
<span>[<a href="#RFC9010" class="xref">RFC9010</a>]</span> also provides the protocol
elements that are needed when the 6LBR and RPL Root functionalities are not
co-located.<a href="#section-4.1.2-3" class="pilcrow">¶</a></p>
<p id="section-4.1.2-4">
Even though the Root of the RPL network is integrated with the 6LBR,
it is logically separated from the Backbone Router (6BBR) that
is used to connect the 6TiSCH LLN to the backbone. This way,
the Root has all information from 6LoWPAN ND and RPL about the LLN
devices attached to it.<a href="#section-4.1.2-4" class="pilcrow">¶</a></p>
<p id="section-4.1.2-5">
This architecture also expects that the Root of the RPL network
(proxy-)registers the 6TiSCH nodes on their behalf to the 6BBR,
for whatever operation the 6BBR performs on the backbone, such
as ND proxy or redistribution in a routing protocol.
This relies on an extension of the 6LoWPAN ND registration described in
<span>[<a href="#RFC8929" class="xref">RFC8929</a>]</span>.<a href="#section-4.1.2-5" class="pilcrow">¶</a></p>
<p id="section-4.1.2-6">
This model supports the movement of a 6TiSCH device across the multi-link
subnet and allows the proxy registration of 6TiSCH nodes deep into the
6TiSCH LLN by the 6LBR / RPL Root.
This is why in <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> the Registered Address is signaled
in the Target Address field of the Neighbor Solicitation (NS) message as opposed to the IPv6 Source
Address, which, in the case of a proxy registration, is that of the 6LBR /
RPL Root itself.<a href="#section-4.1.2-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="join">
<section id="section-4.2">
<h3 id="name-network-access-and-addressi">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-network-access-and-addressi" class="section-name selfRef">Network Access and Addressing</a>
</h3>
<div id="rflo">
<section id="section-4.2.1">
<h4 id="name-join-process">
<a href="#section-4.2.1" class="section-number selfRef">4.2.1. </a><a href="#name-join-process" class="section-name selfRef">Join Process</a>
</h4>
<p id="section-4.2.1-1">
A new device, called the pledge, undergoes the join protocol to become a node
in a 6TiSCH network. This usually occurs only once when the device is
first powered on. The pledge communicates with the Join Registrar/Coordinator
(JRC) of the network through a Join Proxy (JP), a radio neighbor of the pledge.<a href="#section-4.2.1-1" class="pilcrow">¶</a></p>
<p id="section-4.2.1-2">
The JP is discovered though MAC-layer beacons. When multiple JPs from possibly
multiple networks are visible, using trial and error until an acceptable position
in the right network is obtained becomes inefficient.
<span>[<a href="#RFC9032" class="xref">RFC9032</a>]</span> adds a new subtype in the Information Element that
was delegated to the IETF <span>[<a href="#RFC8137" class="xref">RFC8137</a>]</span> and provides visibility
into the network that can be joined and the willingness of the JP and the Root to be used by the pledge.<a href="#section-4.2.1-2" class="pilcrow">¶</a></p>
<p id="section-4.2.1-3">
The join protocol provides the following functionality:<a href="#section-4.2.1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2.1-4.1"> Mutual authentication<a href="#section-4.2.1-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2.1-4.2"> Authorization<a href="#section-4.2.1-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2.1-4.3"> Parameter distribution to the pledge over a secure channel<a href="#section-4.2.1-4.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.2.1-5">
The Minimal Security Framework for 6TiSCH <span>[<a href="#RFC9031" class="xref">RFC9031</a>]</span>
defines the minimal mechanisms required for this join process to occur in a secure
manner. The specification defines the Constrained Join Protocol (CoJP), which is used
to distribute the parameters to the pledge over a secure session established through
OSCORE <span>[<a href="#RFC8613" class="xref">RFC8613</a>]</span> and which describes the secure configuration of the network
stack. In the minimal setting with pre-shared keys (PSKs), CoJP allows the pledge to
join after a single round-trip exchange with the JRC. The provisioning of the PSK to
the pledge and the JRC needs to be done out of band, through a 'one-touch'
bootstrapping process, which effectively enrolls the pledge into the domain managed by
the JRC.<a href="#section-4.2.1-5" class="pilcrow">¶</a></p>
<p id="section-4.2.1-6">
In certain use cases, the 'one-touch' bootstrapping is not feasible due to the
operational constraints, and the enrollment of the pledge into the domain needs to occur
in-band. This is handled through a 'zero-touch' extension of the Minimal Security Framework
for 6TiSCH. The zero-touch extension <span>[<a href="#I-D.ietf-6tisch-dtsecurity-zerotouch-join" class="xref">ZEROTOUCH-JOIN</a>]</span> leverages
the "<a href="#RFC8995" class="xref">Bootstrapping Remote Secure Key Infrastructure (BRSKI)</a>" <span>[<a href="#RFC8995" class="xref">RFC8995</a>]</span>
work to establish a shared secret between a pledge and the JRC without necessarily having
them belong to a common (security) domain at join time. This happens through inter-domain
communication occurring between the JRC of the network and the domain of the pledge,
represented by a fourth entity, Manufacturer Authorized Signing Authority (MASA). Once
the zero-touch exchange completes, the CoJP exchange defined in <span>[<a href="#RFC9031" class="xref">RFC9031</a>]</span>
is carried over the secure session established between the pledge and the JRC.<a href="#section-4.2.1-6" class="pilcrow">¶</a></p>
<p id="section-4.2.1-7">
<a href="#figJoin" class="xref">Figure 4</a> depicts the join process and where a Link-Local
Address (LLA) is used, versus a Global Unicast Address (GUA).<a href="#section-4.2.1-7" class="pilcrow">¶</a></p>
<span id="name-join-process-in-a-multi-lin"></span><div id="figJoin">
<figure id="figure-4">
<div class="artwork art-text alignLeft" id="section-4.2.1-8.1">
<pre>
6LoWPAN Node 6LR 6LBR Join Registrar MASA
(pledge) (Join Proxy) (Root) /Coordinator (JRC)
| | | | |
| 6LoWPAN ND |6LoWPAN ND+RPL | IPv6 network |IPv6 network |
| LLN link |Route-Over mesh|(the Internet)|(the Internet)|
| | | | |
| Layer 2 | | | |
|Enhanced Beacon| | | |
|<--------------| | | |
| | | | |
| NS (EARO) | | | |
| (for the LLA) | | | |
|-------------->| | | |
| NA (EARO) | | | |
|<--------------| | | |
| | | | |
| (Zero-touch | | | |
| handshake) | (Zero-touch handshake) | (Zero-touch |
| using LLA | using GUA | handshake) |
|<------------->|<---------------------------->|<------------>|
| | | | |
| CoJP Join Req | | | | \
| using LLA | | | | |
|-------------->| | | | |
| | CoJP Join Request | | |
| | using GUA | | |
| |----------------------------->| | | C
| | | | | | o
| | CoJP Join Response | | | J
| | using GUA | | | P
| |<-----------------------------| | |
|CoJP Join Resp | | | | |
| using LLA | | | | |
|<--------------| | | | /
| | | | |
</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-join-process-in-a-multi-lin" class="selfRef">Join Process in a Multi-Link Subnet. Parentheses () denote optional exchanges.</a>
</figcaption></figure>
</div>
</section>
</div>
<div id="rreg">
<section id="section-4.2.2">
<h4 id="name-registration">
<a href="#section-4.2.2" class="section-number selfRef">4.2.2. </a><a href="#name-registration" class="section-name selfRef">Registration</a>
</h4>
<p id="section-4.2.2-1">
Once the pledge successfully completes the CoJP exchange and becomes
a network node, it obtains the network prefix from neighboring routers
and registers its IPv6 addresses.
As detailed in <a href="#RPLvs6lo" class="xref">Section 4.1</a>, the combined 6LoWPAN ND 6LBR
and Root of the RPL network learn information such as an identifier (device EUI-64 <span>[<a href="#RFC6775" class="xref">RFC6775</a>]</span> or a ROVR <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>
(from 6LoWPAN ND)) and the updated Sequence Number (from RPL), and
perform 6LoWPAN ND proxy registration to the 6BBR on behalf of the LLN
nodes.<a href="#section-4.2.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2.2-2">
<a href="#figReg" class="xref">Figure 5</a> illustrates the initial IPv6 signaling that
enables a 6LN to form a global address and register it to a 6LBR
using 6LoWPAN ND <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>. It is then carried
over RPL to the RPL Root and then to the 6BBR. This flow happens
just once when the address is created and first registered.<a href="#section-4.2.2-2" class="pilcrow">¶</a></p>
<span id="name-initial-registration-flow-o"></span><div id="figReg">
<figure id="figure-5">
<div class="artwork art-text alignLeft" id="section-4.2.2-3.1">
<pre>
6LoWPAN Node 6LR 6LBR 6BBR
(RPL leaf) (router) (Root)
| | | |
| 6LoWPAN ND |6LoWPAN ND+RPL | 6LoWPAN ND | IPv6 ND
| LLN link |Route-Over mesh|Ethernet/serial| Backbone
| | | |
| RS (mcast) | | |
|-------------->| | |
|-----------> | | |
|------------------> | |
| RA (unicast) | | |
|<--------------| | |
| | | |
| NS(EARO) | | |
|-------------->| | |
| 6LoWPAN ND | Extended DAR | |
| |-------------->| |
| | | NS(EARO) |
| | |-------------->|
| | | | NS-DAD
| | | |------>
| | | | (EARO)
| | | |
| | | NA(EARO) |<timeout>
| | |<--------------|
| | Extended DAC | |
| |<--------------| |
| NA(EARO) | | |
|<--------------| | |
| | | |
</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-initial-registration-flow-o" class="selfRef">Initial Registration Flow over Multi-Link Subnet</a>
</figcaption></figure>
</div>
<p id="section-4.2.2-4">
<a href="#figReg2" class="xref">Figure 6</a> illustrates the repeating IPv6 signaling that
enables a 6LN to keep a global address alive and registered with its 6LBR
using 6LoWPAN ND to the 6LR, RPL to the RPL Root, and then 6LoWPAN ND
again
to the 6BBR, which avoids repeating the Extended DAR/DAC flow across
the network when RPL can suffice as a keep-alive mechanism.<a href="#section-4.2.2-4" class="pilcrow">¶</a></p>
<span id="name-next-registration-flow-over"></span><div id="figReg2">
<figure id="figure-6">
<div class="artwork art-text alignLeft" id="section-4.2.2-5.1">
<pre>
6LoWPAN Node 6LR 6LBR 6BBR
(RPL leaf) (router) (Root)
| | | |
| 6LoWPAN ND |6LoWPAN ND+RPL | 6LoWPAN ND | IPv6 ND
| LLN link |Route-Over mesh| ant IPv6 link | Backbone
| | |
| | | |
| NS(EARO) | | |
|-------------->| | |
| NA(EARO) | | |
|<--------------| | |
| | DAO | |
| |-------------->| |
| | DAO-ACK | |
| |<--------------| |
| | | NS(EARO) |
| | |-------------->|
| | | NA(EARO) |
| | |<--------------|
| | | |
| | | |
</pre>
</div>
<figcaption><a href="#figure-6" class="selfRef">Figure 6</a>:
<a href="#name-next-registration-flow-over" class="selfRef">Next Registration Flow over Multi-Link Subnet</a>
</figcaption></figure>
</div>
<p id="section-4.2.2-6">As the network builds up, a node should start as a
leaf to join the RPL network and may later turn into both a RPL-capable
router and a 6LR, so as to accept leaf nodes recursively joining the network.<a href="#section-4.2.2-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="s6Pprot">
<section id="section-4.3">
<h3 id="name-tsch-and-6top">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-tsch-and-6top" class="section-name selfRef">TSCH and 6top</a>
</h3>
<section id="section-4.3.1">
<h4 id="name-6top">
<a href="#section-4.3.1" class="section-number selfRef">4.3.1. </a><a href="#name-6top" class="section-name selfRef">6top</a>
</h4>
<p id="section-4.3.1-1">
6TiSCH expects a high degree of scalability together with a
distributed routing functionality based on RPL. To achieve this
goal, the spectrum must be allocated in a way that allows for
spatial reuse between zones that will not interfere with one
another.
In a large and spatially distributed network, a 6TiSCH node is
often in a good position to determine usage of the spectrum in its
vicinity.<a href="#section-4.3.1-1" class="pilcrow">¶</a></p>
<p id="section-4.3.1-2">
With 6TiSCH, the abstraction of an IPv6 link is implemented as a
pair of bundles of cells, one in each direction. IP links are only
enabled between RPL parents and children. The 6TiSCH
operation is optimal when the size of a bundle minimizes both
the energy wasted in idle listening and the packet drops due to
congestion loss, while packets are forwarded within
an acceptable latency.<a href="#section-4.3.1-2" class="pilcrow">¶</a></p>
<p id="section-4.3.1-3">
Use cases for distributed routing are often associated with a
statistical distribution of best-effort traffic with variable needs
for bandwidth on each individual link. The 6TiSCH operation can
remain optimal if RPL parents can adjust, dynamically and with enough
reactivity to match the variations of best-effort traffic,
the amount of bandwidth that is used to communicate between themselves
and their children, in both directions.
In turn, the agility to fulfill the needs for additional cells
improves when the number of interactions with other devices and
the protocol latencies are minimized.<a href="#section-4.3.1-3" class="pilcrow">¶</a></p>
<p id="section-4.3.1-4">
6top is a logical link control sitting between the IP layer and the
TSCH MAC layer, which provides the link abstraction that is required
for IP operations. The 6top Protocol, 6P, which is specified in
<span>[<a href="#RFC8480" class="xref">RFC8480</a>]</span>, is one of the services provided by 6top.
In particular, the 6top services are available over a management
API that enables an external management entity to schedule cells
and slotframes, and allows the addition of complementary
functionality, for instance, a Scheduling Function
that manages a dynamic schedule based on
observed resource usage as discussed in <a href="#dynsched" class="xref">Section 4.4.2</a>.
For this purpose, the 6TiSCH architecture differentiates "soft"
cells and "hard" cells.<a href="#section-4.3.1-4" class="pilcrow">¶</a></p>
<section id="section-4.3.1.1">
<h5 id="name-hard-cells">
<a href="#section-4.3.1.1" class="section-number selfRef">4.3.1.1. </a><a href="#name-hard-cells" class="section-name selfRef">Hard Cells</a>
</h5>
<p id="section-4.3.1.1-1">
"Hard" cells are cells that
are owned and managed by a separate scheduling entity (e.g., a PCE)
that specifies the slotOffset/channelOffset of the cells to be
added/moved/deleted, in which case 6top can only act as instructed
and may not move hard cells in the TSCH schedule on its own.<a href="#section-4.3.1.1-1" class="pilcrow">¶</a></p>
</section>
<section id="section-4.3.1.2">
<h5 id="name-soft-cells">
<a href="#section-4.3.1.2" class="section-number selfRef">4.3.1.2. </a><a href="#name-soft-cells" class="section-name selfRef">Soft Cells</a>
</h5>
<p id="section-4.3.1.2-1">
In contrast, "soft" cells are cells that 6top can manage locally.
6top contains a monitoring process that monitors the performance of
cells and that can add and remove soft cells in the TSCH schedule to adapt
to the traffic needs, or move one when it performs poorly.
To reserve a soft cell, the higher layer does not indicate the exact
slotOffset/channelOffset of the cell to add, but rather the resulting
bandwidth and QoS requirements. When the monitoring process triggers
a cell reallocation, the two neighbor devices communicating over this
cell negotiate its new position in the TSCH schedule.<a href="#section-4.3.1.2-1" class="pilcrow">¶</a></p>
</section>
</section>
<div id="missf">
<section id="section-4.3.2">
<h4 id="name-scheduling-functions-and-th">
<a href="#section-4.3.2" class="section-number selfRef">4.3.2. </a><a href="#name-scheduling-functions-and-th" class="section-name selfRef">Scheduling Functions and the 6top Protocol</a>
</h4>
<p id="section-4.3.2-1">In the case of soft cells, the cell management entity that controls the
dynamic attribution of cells to adapt to the dynamics of variable rate flows
is called a Scheduling Function (SF).<a href="#section-4.3.2-1" class="pilcrow">¶</a></p>
<p id="section-4.3.2-2">
There may be multiple SFs that react more or less aggressively to the
dynamics of the network.<a href="#section-4.3.2-2" class="pilcrow">¶</a></p>
<p id="section-4.3.2-3">
An SF may be seen as divided between an upper bandwidth-adaptation logic
that is unaware of the particular technology used to obtain and
release bandwidth and an underlying service that maps those needs in the
actual technology. In the case
of TSCH using the 6top Protocol as illustrated in <a href="#fig6P" class="xref">Figure 7</a>,
this means mapping the bandwidth onto cells.<a href="#section-4.3.2-3" class="pilcrow">¶</a></p>
<span id="name-sf-6p-stack-in-6top"></span><div id="fig6P">
<figure id="figure-7">
<div class="artwork art-text alignLeft" id="section-4.3.2-4.1">
<pre>
+------------------------+ +------------------------+
| Scheduling Function | | Scheduling Function |
| Bandwidth adaptation | | Bandwidth adaptation |
+------------------------+ +------------------------+
| Scheduling Function | | Scheduling Function |
| TSCH mapping to cells | | TSCH mapping to cells |
+------------------------+ +------------------------+
| 6top cells negotiation | <- 6P -> | 6top cells negotiation |
+------------------------+ +------------------------+
Device A Device B
</pre>
</div>
<figcaption><a href="#figure-7" class="selfRef">Figure 7</a>:
<a href="#name-sf-6p-stack-in-6top" class="selfRef">SF/6P Stack in 6top</a>
</figcaption></figure>
</div>
<p id="section-4.3.2-5">
The SF relies on 6top services that implement the
<span><a href="#RFC8480" class="xref">6top Protocol (6P)</a> [<a href="#RFC8480" class="xref">RFC8480</a>]</span>
to negotiate the precise cells that will be allocated or freed based on the
schedule of the peer. For instance, it may be that a peer wants to use a
particular timeslot that is free in its schedule, but that timeslot is
already in use by the other peer to communicate with a third party on a
different cell. 6P enables the peers to find an agreement in a
transactional manner that ensures the final consistency of the nodes' state.<a href="#section-4.3.2-5" class="pilcrow">¶</a></p>
<p id="section-4.3.2-6">
<span><a href="#RFC9033" class="xref">MSF</a> [<a href="#RFC9033" class="xref">RFC9033</a>]</span> is one of the possible
Scheduling Functions. MSF uses the rendezvous slot from
<span>[<a href="#RFC8180" class="xref">RFC8180</a>]</span> for network discovery, neighbor discovery, and any
other broadcast.<a href="#section-4.3.2-6" class="pilcrow">¶</a></p>
<p id="section-4.3.2-7">
For basic unicast communication with any neighbor, each node uses a receive
cell at a well-known slotOffset/channelOffset, which is derived from a hash of their
own MAC address.
Nodes can reach any neighbor by installing a transmit (shared) cell with
slotOffset/channelOffset derived from the neighbor's MAC address.<a href="#section-4.3.2-7" class="pilcrow">¶</a></p>
<p id="section-4.3.2-8">
For child-parent links, MSF continuously monitors the load between parents
and children. It then uses 6P to install or remove unicast cells whenever the
current schedule appears to be under-provisioned or over-provisioned.<a href="#section-4.3.2-8" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.3.3">
<h4 id="name-6top-and-rpl-objective-func">
<a href="#section-4.3.3" class="section-number selfRef">4.3.3. </a><a href="#name-6top-and-rpl-objective-func" class="section-name selfRef">6top and RPL Objective Function Operations</a>
</h4>
<p id="section-4.3.3-1">
An implementation of a <span><a href="#RFC6550" class="xref">RPL</a> [<a href="#RFC6550" class="xref">RFC6550</a>]</span> Objective Function
(OF), such as the <span><a href="#RFC6552" class="xref">RPL Objective Function Zero (OF0)</a> [<a href="#RFC6552" class="xref">RFC6552</a>]</span> that is used in the <span><a href="#RFC8180" class="xref">Minimal
6TiSCH Configuration</a> [<a href="#RFC8180" class="xref">RFC8180</a>]</span> to support RPL over a static schedule, may
leverage for its internal computation the information maintained by 6top.<a href="#section-4.3.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3.3-2">An OF may require metrics about reachability, such as the Expected
Transmission Count (ETX) metric <span>[<a href="#RFC6551" class="xref">RFC6551</a>]</span>.
6top creates and maintains an abstract neighbor table,
and this state may be leveraged to feed an OF and/or store OF information
as well. A neighbor table entry may contain a set of statistics with
respect to that specific neighbor.<a href="#section-4.3.3-2" class="pilcrow">¶</a></p>
<p id="section-4.3.3-3">
The neighbor information may include the time when the last
packet has been received from that neighbor, a set of cell quality
metrics, e.g., received signal strength indication (RSSI) or link
quality indicator (LQI), the number of packets sent to the
neighbor, or the number of packets received from it. This
information can be made available through 6top management APIs
and used, for instance, to compute a Rank Increment that will
determine the selection of the preferred parent.<a href="#section-4.3.3-3" class="pilcrow">¶</a></p>
<p id="section-4.3.3-4">
6top provides statistics about the underlying layer so the OF can be tuned
to the nature of the TSCH MAC layer. 6top also enables the RPL OF to
influence the MAC behavior, for instance, by configuring the periodicity of
IEEE Std 802.15.4 Extended Beacons (EBs). By augmenting the EB periodicity, it is
possible to change the network dynamics so as to improve the support of
devices that may change their point of attachment in the 6TiSCH network.<a href="#section-4.3.3-4" class="pilcrow">¶</a></p>
<p id="section-4.3.3-5">
Some RPL control messages, such as the DODAG Information Object (DIO), are
ICMPv6 messages that are broadcast to all neighbor nodes.
With 6TiSCH, the broadcast channel requirement is addressed by 6top
by configuring TSCH to provide a broadcast channel,
as opposed to, for instance, piggybacking the DIO messages in
Layer 2 Enhanced Beacons (EBs), which would produce undue timer
coupling among layers and packet size issues, and could conflict with
the policy of production networks where EBs are mostly eliminated
to conserve energy.<a href="#section-4.3.3-5" class="pilcrow">¶</a></p>
</section>
<div id="sync">
<section id="section-4.3.4">
<h4 id="name-network-synchronization">
<a href="#section-4.3.4" class="section-number selfRef">4.3.4. </a><a href="#name-network-synchronization" class="section-name selfRef">Network Synchronization</a>
</h4>
<p id="section-4.3.4-1">
Nodes in a TSCH network must be time synchronized.
A node keeps synchronized to its time source neighbor
through a combination of frame-based and acknowledgment-based synchronization.
To maximize battery life and network throughput, it is advisable that RPL ICMP discovery
and maintenance traffic (governed by the Trickle timer) be somehow coordinated with the
transmission of time synchronization packets (especially with Enhanced Beacons).<a href="#section-4.3.4-1" class="pilcrow">¶</a></p>
<p id="section-4.3.4-2">
This could be achieved through an interaction of the 6top sublayer and the RPL Objective Function,
or could be controlled by a management entity.<a href="#section-4.3.4-2" class="pilcrow">¶</a></p>
<p id="section-4.3.4-3">
Time distribution requires a loop-free structure. Nodes caught in a synchronization loop will rapidly
desynchronize from the network and become isolated. 6TiSCH uses a RPL DAG with a dedicated global Instance for the purpose of time synchronization.
That Instance is referred to as the Time Synchronization Global Instance (TSGI).
The TSGI can be operated in either of the three modes that are detailed
in Section <a href="https://www.rfc-editor.org/rfc/rfc6550#section-3.1.3" class="relref">3.1.3</a>
of <span><a href="#RFC6550" class="xref">RPL</a> [<a href="#RFC6550" class="xref">RFC6550</a>]</span>, "Instances, DODAGs, and DODAG Versions".
Multiple uncoordinated DODAGs with independent Roots may be used if all the Roots
share a common time source such as the Global Positioning System (GPS).<a href="#section-4.3.4-3" class="pilcrow">¶</a></p>
<p id="section-4.3.4-4">
In the absence
of a common time source, the TSGI should form a single DODAG with a virtual Root.
A backbone network is then used to synchronize and coordinate RPL operations between
the Backbone Routers that act as sinks for the LLN.
Optionally, RPL's periodic operations may be used to
transport the network synchronization. This may
mean that 6top would need to trigger (override) the Trickle timer if
no other traffic has occurred for such a time that nodes may get out
of synchronization.<a href="#section-4.3.4-4" class="pilcrow">¶</a></p>
<p id="section-4.3.4-5">
A node that has not joined the TSGI advertises a MAC-level Join Priority
of 0xFF to notify its neighbors that is not capable of serving as time parent.
A node that has joined the TSGI advertises a MAC-level Join Priority set to
its DAGRank() in that Instance, where DAGRank() is the operation specified in
Section <a href="https://www.rfc-editor.org/rfc/rfc6550#section-3.5.1" class="relref">3.5.1</a>
of <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span>, "Rank Comparison".<a href="#section-4.3.4-5" class="pilcrow">¶</a></p>
<p id="section-4.3.4-6">
The provisioning of a RPL Root is out of scope for both RPL and this
architecture, whereas RPL enables the propagation of configuration information
down the DODAG. This applies to the TSGI as well; a
Root is configured, or obtains by unspecified means, the knowledge
of the RPLInstanceID for the TSGI. The Root advertises its DagRank
in the TSGI, which must be less than 0xFF, as its Join Priority in
its IEEE Std 802.15.4 EBs.<a href="#section-4.3.4-6" class="pilcrow">¶</a></p>
<p id="section-4.3.4-7">
A node that reads a Join Priority of less than 0xFF should join the
neighbor with the lesser Join Priority and use it as time parent. If
the node is configured to serve as time parent, then the node should
join the TSGI, obtain a Rank in that Instance, and start advertising
its own DagRank in the TSGI as its Join Priority in its EBs.<a href="#section-4.3.4-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="slotframes">
<section id="section-4.3.5">
<h4 id="name-slotframes-and-cdu-matrix">
<a href="#section-4.3.5" class="section-number selfRef">4.3.5. </a><a href="#name-slotframes-and-cdu-matrix" class="section-name selfRef">Slotframes and CDU Matrix</a>
</h4>
<p id="section-4.3.5-1">
6TiSCH enables IPv6 best-effort (stochastic) transmissions over a MAC
layer that is also capable of scheduled (deterministic) transmissions.
A window of time is defined
around the scheduled transmission where the medium must, as much as
practically feasible, be free of contending energy to ensure that the
medium is free of contending packets when the time comes for a scheduled
transmission.
One simple way to obtain such a window is to format time and
frequencies in cells of transmission of equal duration. This is the
method that is adopted in IEEE Std 802.15.4 TSCH as well as the Long
Term Evolution (LTE) of cellular networks.<a href="#section-4.3.5-1" class="pilcrow">¶</a></p>
<p id="section-4.3.5-2">
The 6TiSCH architecture defines a global concept that is called a
Channel Distribution and Usage (CDU) matrix to describe that formatting
of time and frequencies.<a href="#section-4.3.5-2" class="pilcrow">¶</a></p>
<p id="section-4.3.5-3">
A CDU matrix is defined centrally
as part of the network definition. It is a matrix of cells with a
height equal to the number of available channels (indexed by
channelOffsets) and a width (in timeslots) that is the period of the
network scheduling operation (indexed by slotOffsets) for that CDU
matrix. There are different models for scheduling the usage of the
cells, which place the responsibility of avoiding collisions either on
a central controller or on the devices themselves, at an extra cost in
terms of energy to scan for free cells (more in <a href="#schd" class="xref">Section 4.4</a>).<a href="#section-4.3.5-3" class="pilcrow">¶</a></p>
<p id="section-4.3.5-4">
The size of a cell is a timeslot duration, and
values of 10 to 15 milliseconds are typical in 802.15.4 TSCH to
accommodate for the transmission of a frame and an ack, including the
security validation on the receive side, which may take up to a few
milliseconds on some device architecture.<a href="#section-4.3.5-4" class="pilcrow">¶</a></p>
<p id="section-4.3.5-5">
A CDU matrix iterates over a well-known channel rotation
called the hopping sequence.
In a given network, there might be multiple CDU matrices that operate
with different widths, so they have different durations and represent
different periodic operations.
It is recommended that all CDU matrices in a 6TiSCH domain operate with
the same cell duration and are aligned so as to reduce the
chances of interferences from the Slotted ALOHA operations.
The knowledge of the CDU matrices is shared
between all the nodes and used in particular to define slotframes.<a href="#section-4.3.5-5" class="pilcrow">¶</a></p>
<p id="section-4.3.5-6">
A slotframe is a MAC-level abstraction that is common to all nodes and
contains a series of timeslots of equal length and precedence.
It is characterized by a slotframe_ID and a slotframe_size.
A slotframe aligns to a CDU matrix for its parameters, such as number
and duration of timeslots.<a href="#section-4.3.5-6" class="pilcrow">¶</a></p>
<p id="section-4.3.5-7">
Multiple slotframes can coexist in a node schedule, i.e., a node can
have multiple activities scheduled in different slotframes.
A slotframe is associated with a priority that may be related to
the precedence of different 6TiSCH topologies. The slotframes may be
aligned to different CDU matrices and thus have different widths.
There is typically one slotframe for scheduled traffic that has the
highest precedence and one or more slotframe(s) for RPL traffic.
The timeslots in the slotframe are indexed by the slotOffset;
the first cell is at slotOffset 0.<a href="#section-4.3.5-7" class="pilcrow">¶</a></p>
<p id="section-4.3.5-8">
When a packet is received from a higher layer for transmission,
6top inserts that packet in the outgoing queue
that matches the packet best (Differentiated Services
<span>[<a href="#RFC2474" class="xref">RFC2474</a>]</span> can therefore be used).
At each scheduled transmit slot, 6top looks for the frame
in all the outgoing queues that best matches the cells.
If a frame is found, it is given to the TSCH MAC for transmission.<a href="#section-4.3.5-8" class="pilcrow">¶</a></p>
</section>
</div>
<div id="DistRsvTS">
<section id="section-4.3.6">
<h4 id="name-distributing-the-reservatio">
<a href="#section-4.3.6" class="section-number selfRef">4.3.6. </a><a href="#name-distributing-the-reservatio" class="section-name selfRef">Distributing the Reservation of Cells</a>
</h4>
<p id="section-4.3.6-1">
The 6TiSCH architecture introduces the concept of chunks
(<a href="#sixTTerminology" class="xref">Section 2.1</a>) to distribute the allocation of
the spectrum for a whole group of cells at a time.
The CDU matrix is formatted into a set of chunks, possibly as
illustrated in <a href="#fig10" class="xref">Figure 8</a>, each of the chunks
identified uniquely by a chunk-ID. The knowledge of this
formatting is shared between all the nodes in a 6TiSCH network.
It could be conveyed during the join process, codified into a profile document,
or obtained using some other mechanism. This is as opposed
to Static Scheduling, which refers to the preprogrammed mechanism
specified in <span>[<a href="#RFC8180" class="xref">RFC8180</a>]</span> and which existed before the
distribution of the chunk formatting.<a href="#section-4.3.6-1" class="pilcrow">¶</a></p>
<span id="name-cdu-matrix-partitioning-in-"></span><div id="fig10">
<figure id="figure-8">
<div class="artwork art-text alignCenter" id="section-4.3.6-2.1">
<pre>
+-----+-----+-----+-----+-----+-----+-----+ +-----+
chan.Off. 0 |chnkA|chnkP|chnk7|chnkO|chnk2|chnkK|chnk1| ... |chnkZ|
+-----+-----+-----+-----+-----+-----+-----+ +-----+
chan.Off. 1 |chnkB|chnkQ|chnkA|chnkP|chnk3|chnkL|chnk2| ... |chnk1|
+-----+-----+-----+-----+-----+-----+-----+ +-----+
...
+-----+-----+-----+-----+-----+-----+-----+ +-----+
chan.Off. 15 |chnkO|chnk6|chnkN|chnk1|chnkJ|chnkZ|chnkI| ... |chnkG|
+-----+-----+-----+-----+-----+-----+-----+ +-----+
0 1 2 3 4 5 6 M
</pre>
</div>
<figcaption><a href="#figure-8" class="selfRef">Figure 8</a>:
<a href="#name-cdu-matrix-partitioning-in-" class="selfRef">CDU Matrix Partitioning in Chunks</a>
</figcaption></figure>
</div>
<p id="section-4.3.6-3">
The 6TiSCH architecture envisions a protocol that enables chunk
ownership appropriation whereby a RPL parent
discovers a chunk that is not used in its interference domain,
claims the chunk, and then defends it in case another RPL
parent would attempt to appropriate it while it is in use.
The chunk is the basic unit of ownership that is used in that process.<a href="#section-4.3.6-3" class="pilcrow">¶</a></p>
<p id="section-4.3.6-4">
As a result of the process of chunk ownership appropriation, the RPL
parent has exclusive authority to decide which cell in the
appropriated chunk can be used by which node in its interference
domain. In other words, it is implicitly delegated the right to
manage the portion of the CDU matrix that is represented by the
chunk.<a href="#section-4.3.6-4" class="pilcrow">¶</a></p>
<p id="section-4.3.6-5">
Initially, those cells are added to the heap of free cells, then
dynamically placed into existing bundles, into new bundles, or
allocated opportunistically for one transmission.<a href="#section-4.3.6-5" class="pilcrow">¶</a></p>
<p id="section-4.3.6-6">
Note that a PCE is expected to have precedence in the
allocation, so that a RPL parent would only be able to obtain
portions that are not in use by the PCE.<a href="#section-4.3.6-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="schd">
<section id="section-4.4">
<h3 id="name-schedule-management-mechani">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-schedule-management-mechani" class="section-name selfRef">Schedule Management Mechanisms</a>
</h3>
<p id="section-4.4-1">
6TiSCH uses four paradigms to manage the TSCH schedule of the LLN nodes: Static Scheduling,
Neighbor-to-Neighbor Scheduling, Remote Monitoring and Scheduling Management, and Hop-by-Hop Scheduling.
Multiple mechanisms are defined that implement the associated Interaction Models,
and they can be combined and used in the same LLN.
Which mechanism(s) to use depends on application requirements.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<div id="mini">
<section id="section-4.4.1">
<h4 id="name-static-scheduling">
<a href="#section-4.4.1" class="section-number selfRef">4.4.1. </a><a href="#name-static-scheduling" class="section-name selfRef">Static Scheduling</a>
</h4>
<p id="section-4.4.1-1">
In the simplest instantiation of a 6TiSCH network, a common fixed
schedule may be shared by all nodes in the network. Cells are shared,
and nodes contend for slot access in a Slotted ALOHA manner.<a href="#section-4.4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.4.1-2">
A static TSCH schedule can be used to bootstrap a network, as an
initial phase during implementation or as a fall-back mechanism in
case of network malfunction.
This schedule is preestablished, for instance, decided by a network
administrator based on operational needs. It can be preconfigured
into the nodes, or, more commonly, learned by a node when joining
the network using standard IEEE Std 802.15.4 Information Elements (IE).
Regardless, the schedule remains unchanged
after the node has joined a network.
RPL is used on the resulting network. This "minimal" scheduling
mechanism that implements this paradigm is detailed in
<span>[<a href="#RFC8180" class="xref">RFC8180</a>]</span>.<a href="#section-4.4.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dynsched">
<section id="section-4.4.2">
<h4 id="name-neighbor-to-neighbor-schedu">
<a href="#section-4.4.2" class="section-number selfRef">4.4.2. </a><a href="#name-neighbor-to-neighbor-schedu" class="section-name selfRef">Neighbor-to-Neighbor Scheduling</a>
</h4>
<p id="section-4.4.2-1">
In the simplest instantiation of a 6TiSCH network described in
<a href="#mini" class="xref">Section 4.4.1</a>, nodes may expect a packet at any cell in
the schedule and will waste energy idle listening. In a more
complex instantiation of a 6TiSCH network, a matching portion of the
schedule is established between peers to reflect the observed amount
of transmissions between those nodes. The aggregation of the cells
between a node and a peer forms a bundle that the 6top sublayer uses to
implement the abstraction of a link for IP. The bandwidth on that
link is proportional to the number of cells in the bundle.<a href="#section-4.4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.4.2-2">
If the size of a bundle is configured to fit an average amount of
bandwidth, peak traffic is dropped. If the size is
configured to allow for peak emissions, energy is wasted
idle listening.<a href="#section-4.4.2-2" class="pilcrow">¶</a></p>
<p id="section-4.4.2-3">
As discussed in more detail in <a href="#s6Pprot" class="xref">Section 4.3</a>, the
<span><a href="#RFC8480" class="xref">6top Protocol</a> [<a href="#RFC8480" class="xref">RFC8480</a>]</span>
specifies the exchanges between neighbor nodes to reserve soft cells
to transmit to one another, possibly under the control of a
Scheduling Function (SF). Because this reservation is done without
global knowledge of the schedule of the other nodes in the LLN, scheduling
collisions are possible.<a href="#section-4.4.2-3" class="pilcrow">¶</a></p>
<p id="section-4.4.2-4">
And as discussed in <a href="#missf" class="xref">Section 4.3.2</a>,
an optional SF is used to
monitor bandwidth usage and to perform requests for dynamic allocation
by the 6top sublayer.
The SF component is not part of the 6top sublayer. It may be
co-located on the same device or may be partially or fully offloaded
to an external system. The <span><a href="#RFC9033" class="xref">"6TiSCH Minimal Scheduling Function (MSF)"</a> [<a href="#RFC9033" class="xref">RFC9033</a>]</span> provides a simple
SF that can be used by default by devices that
support dynamic scheduling of soft cells.<a href="#section-4.4.2-4" class="pilcrow">¶</a></p>
<p id="section-4.4.2-5">
Monitoring and relocation is done in the 6top sublayer. For the upper
layer, the connection between two neighbor nodes appears as a number
of cells.
Depending on traffic requirements, the upper layer can request 6top
to add or delete a number of cells scheduled to a particular
neighbor, without being responsible for choosing the exact
slotOffset/channelOffset of those cells.<a href="#section-4.4.2-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="topint">
<section id="section-4.4.3">
<h4 id="name-remote-monitoring-and-sched">
<a href="#section-4.4.3" class="section-number selfRef">4.4.3. </a><a href="#name-remote-monitoring-and-sched" class="section-name selfRef">Remote Monitoring and Schedule Management</a>
</h4>
<p id="section-4.4.3-1">
Remote Monitoring and Schedule Management refers to a DetNet/SDN model
whereby an NME and a scheduling entity, associated with a PCE, reside
in a central controller and interact with the 6top sublayer to control
IPv6 links and Tracks (<a href="#ontrk" class="xref">Section 4.5</a>) in a 6TiSCH network.
The composite centralized controller can assign physical resources
(e.g., buffers and hard cells) to a particular Track to optimize the
reliability within a bounded latency for a well-specified flow.<a href="#section-4.4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.4.3-2">
The work in the 6TiSCH Working Group focused on nondeterministic traffic and
did not provide the generic data model necessary for the
controller to monitor and manage resources of the 6top sublayer.
This is deferred to future work, see <a href="#unchartered-tracks" class="xref">Appendix A.1.2</a>.<a href="#section-4.4.3-2" class="pilcrow">¶</a></p>
<p id="section-4.4.3-3">
With respect to centralized routing and scheduling, it is envisioned
that the related component of the 6TiSCH architecture would be an
extension of the <span><a href="#RFC8655" class="xref">DetNet architecture</a> [<a href="#RFC8655" class="xref">RFC8655</a>]</span>,
which studies Layer 3 aspects of Deterministic Networks and covers
networks that span multiple Layer 2 domains.<a href="#section-4.4.3-3" class="pilcrow">¶</a></p>
<p id="section-4.4.3-4">
The DetNet architecture is a form of Software-Defined Networking (SDN)
architecture and is composed of three planes: a (User) Application
Plane, a Controller Plane (where the PCE operates), and a Network Plane,
which can represent a 6TiSCH LLN.<a href="#section-4.4.3-4" class="pilcrow">¶</a></p>
<p id="section-4.4.3-5">
<span><a href="#RFC7426" class="xref">"Software-Defined Networking (SDN):
Layers and Architecture Terminology"</a> [<a href="#RFC7426" class="xref">RFC7426</a>]</span> proposes a generic
representation of the SDN architecture that is reproduced in
<a href="#RFC7426archi" class="xref">Figure 9</a>.<a href="#section-4.4.3-5" class="pilcrow">¶</a></p>
<span id="name-sdn-layers-and-architecture"></span><div id="RFC7426archi">
<figure id="figure-9">
<div class="artwork art-text alignLeft" id="section-4.4.3-6.1">
<pre>
o--------------------------------o
| |
| +-------------+ +----------+ |
| | Application | | Service | |
| +-------------+ +----------+ |
| Application Plane |
o---------------Y----------------o
|
*-----------------------------Y---------------------------------*
| Network Services Abstraction Layer (NSAL) |
*------Y------------------------------------------------Y-------*
| |
| Service Interface |
| |
o------Y------------------o o---------------------Y------o
| | Control Plane | | Management Plane | |
| +----Y----+ +-----+ | | +-----+ +----Y----+ |
| | Service | | App | | | | App | | Service | |
| +----Y----+ +--Y--+ | | +--Y--+ +----Y----+ |
| | | | | | | |
| *----Y-----------Y----* | | *---Y---------------Y----* |
| | Control Abstraction | | | | Management Abstraction | |
| | Layer (CAL) | | | | Layer (MAL) | |
| *----------Y----------* | | *----------Y-------------* |
| | | | | |
o------------|------------o o------------|---------------o
| |
| CP | MP
| Southbound | Southbound
| Interface | Interface
| |
*------------Y---------------------------------Y----------------*
| Device and resource Abstraction Layer (DAL) |
*------------Y---------------------------------Y----------------*
| | | |
| o-------Y----------o +-----+ o--------Y----------o |
| | Forwarding Plane | | App | | Operational Plane | |
| o------------------o +-----+ o-------------------o |
| Network Device |
+---------------------------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-9" class="selfRef">Figure 9</a>:
<a href="#name-sdn-layers-and-architecture" class="selfRef">SDN Layers and Architecture Terminology per RFC 7426</a>
</figcaption></figure>
</div>
<p id="section-4.4.3-7">The PCE establishes end-to-end Tracks of hard cells, which are described
in more detail in <a href="#trkfwd" class="xref">Section 4.6.1</a>.<a href="#section-4.4.3-7" class="pilcrow">¶</a></p>
<p id="section-4.4.3-8">
The DetNet work is expected to enable end-to-end deterministic paths
across heterogeneous networks. This can be, for instance, a 6TiSCH LLN
and an Ethernet backbone.<a href="#section-4.4.3-8" class="pilcrow">¶</a></p>
<p id="section-4.4.3-9">This model fits the 6TiSCH extended configuration, whereby a
6BBR federates
multiple 6TiSCH LLNs in a single subnet over a backbone that can be,
for instance, Ethernet or Wi-Fi. In that model,
6TiSCH 6BBRs synchronize with one another over the backbone, so as
to ensure that the multiple LLNs that form the IPv6 subnet stay
tightly synchronized.<a href="#section-4.4.3-9" class="pilcrow">¶</a></p>
<p id="section-4.4.3-10">
If the backbone is deterministic, then the
Backbone Router ensures that the end-to-end deterministic
behavior is maintained between the LLN and the backbone.
It is the responsibility of the PCE to compute a
deterministic path end to end across the TSCH network and an IEEE Std 802.1
TSN Ethernet backbone, and it is the responsibility of DetNet to enable end-to-end deterministic
forwarding.<a href="#section-4.4.3-10" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.4.4">
<h4 id="name-hop-by-hop-scheduling">
<a href="#section-4.4.4" class="section-number selfRef">4.4.4. </a><a href="#name-hop-by-hop-scheduling" class="section-name selfRef">Hop-by-Hop Scheduling</a>
</h4>
<p id="section-4.4.4-1">
A node can reserve a <span><a href="#ontrk" class="xref">Track</a> (<a href="#ontrk" class="xref">Section 4.5</a>)</span> to one or more
destination(s) that are multiple hops away by installing soft cells at each
intermediate node.
This forms a Track of soft cells. A Track SF above the 6top
sublayer of each node on the Track is needed to monitor these soft cells and
trigger relocation when needed.<a href="#section-4.4.4-1" class="pilcrow">¶</a></p>
<p id="section-4.4.4-2">
This hop-by-hop reservation mechanism is expected to be similar in essence
to <span>[<a href="#RFC3209" class="xref">RFC3209</a>]</span> and/or <span>[<a href="#RFC4080" class="xref">RFC4080</a>]</span> and <span>[<a href="#RFC5974" class="xref">RFC5974</a>]</span>.
The protocol for a node to trigger hop-by-hop scheduling is not yet defined.<a href="#section-4.4.4-2" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="ontrk">
<section id="section-4.5">
<h3 id="name-on-tracks">
<a href="#section-4.5" class="section-number selfRef">4.5. </a><a href="#name-on-tracks" class="section-name selfRef">On Tracks</a>
</h3>
<p id="section-4.5-1">
The architecture introduces the concept of a Track, which is a directed path
from a source 6TiSCH node to one or more destination 6TiSCH node(s)
across a 6TiSCH LLN.<a href="#section-4.5-1" class="pilcrow">¶</a></p>
<p id="section-4.5-2">
A Track is the 6TiSCH instantiation of the concept of a deterministic path
as described in <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>.
Constrained resources such as memory buffers are reserved for that Track in
intermediate 6TiSCH nodes to avoid loss related to limited capacity.
A 6TiSCH node along a Track not only knows which bundles of cells it should
use to receive packets from a previous hop but also knows which bundle(s)
it should use to send packets to its next hop along the Track.<a href="#section-4.5-2" class="pilcrow">¶</a></p>
<section id="section-4.5.1">
<h4 id="name-general-behavior-of-tracks">
<a href="#section-4.5.1" class="section-number selfRef">4.5.1. </a><a href="#name-general-behavior-of-tracks" class="section-name selfRef">General Behavior of Tracks</a>
</h4>
<p id="section-4.5.1-1">
A Track is associated with Layer 2 bundles of cells with related schedules
and logical relationships that ensure that a packet that is injected in
a Track will progress in due time all the way to destination.<a href="#section-4.5.1-1" class="pilcrow">¶</a></p>
<p id="section-4.5.1-2">
Multiple cells may be scheduled in a Track for the transmission of a single
packet, in which case the normal operation of IEEE Std 802.15.4 Automatic
Repeat-reQuest (ARQ) can take place; the acknowledgment may be omitted in
some cases, for instance, if there is no scheduled cell for a possible retry.<a href="#section-4.5.1-2" class="pilcrow">¶</a></p>
<p id="section-4.5.1-3">
There are several benefits for using a Track to forward a packet from a
source node to the destination node:<a href="#section-4.5.1-3" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.5.1-4">
<li id="section-4.5.1-4.1">
Track Forwarding, as further described in <a href="#trkfwd" class="xref">Section 4.6.1</a>, is a
Layer 2 forwarding scheme, which introduces less process delay and
overhead than a Layer 3 forwarding scheme. Therefore, LLN devices can save
more energy and resources, which is critical for resource-constrained devices.<a href="#section-4.5.1-4.1" class="pilcrow">¶</a>
</li>
<li id="section-4.5.1-4.2">
Since channel resources, i.e., bundles of cells, have been reserved for
communications between 6TiSCH nodes of each hop on the Track, the
throughput and the maximum latency of the traffic along a Track are
guaranteed, and the jitter is minimized.<a href="#section-4.5.1-4.2" class="pilcrow">¶</a>
</li>
<li id="section-4.5.1-4.3">
By knowing the scheduled timeslots of incoming bundle(s) and outgoing
bundle(s), 6TiSCH nodes on a Track could save more energy by staying in
sleep state during inactive slots.<a href="#section-4.5.1-4.3" class="pilcrow">¶</a>
</li>
<li id="section-4.5.1-4.4">
Tracks are protected from interfering with one another if a cell is
scheduled to belong to at most one Track, and congestion loss is avoided if at most one
packet can be presented to the MAC to use that cell.
Tracks enhance the reliability of transmissions and thus further improve
the energy consumption in LLN devices by reducing the chances of
retransmission.<a href="#section-4.5.1-4.4" class="pilcrow">¶</a>
</li>
</ol>
</section>
<section id="section-4.5.2">
<h4 id="name-serial-track">
<a href="#section-4.5.2" class="section-number selfRef">4.5.2. </a><a href="#name-serial-track" class="section-name selfRef">Serial Track</a>
</h4>
<p id="section-4.5.2-1">
A Serial (or simple) Track is the 6TiSCH version of a circuit: a bundle of
cells that are programmed to receive (RX-cells) is uniquely paired with a
bundle of cells that are set to transmit (TX-cells), representing a Layer 2
forwarding state that can be used regardless of the network-layer protocol.
A Serial Track is thus formed end-to-end as a succession of
paired bundles: a receive bundle from the previous hop and a transmit bundle
to the next hop along the Track.<a href="#section-4.5.2-1" class="pilcrow">¶</a></p>
<p id="section-4.5.2-2">
For a given iteration of the device schedule, the effective channel of the
cell is obtained by looping through a well-known hopping sequence
beginning at Epoch time and starting at the cell's channelOffset, which results
in a rotation of the frequency that is used for transmission.
The bundles may be computed so as to accommodate both variable rates and
retransmissions, so they might not be fully used in the iteration of the
schedule.<a href="#section-4.5.2-2" class="pilcrow">¶</a></p>
</section>
<section id="section-4.5.3">
<h4 id="name-complex-track-with-replicat">
<a href="#section-4.5.3" class="section-number selfRef">4.5.3. </a><a href="#name-complex-track-with-replicat" class="section-name selfRef">Complex Track with Replication and Elimination</a>
</h4>
<p id="section-4.5.3-1">
The art of Deterministic Networks already includes packet replication and
elimination techniques. Example
standards include the Parallel Redundancy Protocol (PRP) and the
High-availability Seamless Redundancy (HSR) <span>[<a href="#IEC62439" class="xref">IEC62439</a>]</span>.
Similarly, and as opposed to a Serial Track that is a sequence of nodes
and links, a Complex Track is shaped as a directed acyclic graph towards one
or more destination(s) to support multipath forwarding and route around
failures.<a href="#section-4.5.3-1" class="pilcrow">¶</a></p>
<p id="section-4.5.3-2">
A Complex Track may branch off over noncongruent branches for the purpose
of multicasting and/or redundancy, in which case, it reconverges later down
the path.
This enables the Packet Replication, Elimination, and Ordering Functions (PREOF)
defined by DetNet. Packet ARQ, Replication, Elimination, and Overhearing (PAREO)
adds radio-specific capabilities of Layer 2 ARQ and promiscuous listening to
redundant transmissions to compensate for the lossiness of the medium and meet
industrial expectations of a RAW network.
Combining PAREO and PREOF, a Track may extend beyond the 6TiSCH network into
a larger DetNet network.<a href="#section-4.5.3-2" class="pilcrow">¶</a></p>
<p id="section-4.5.3-3">
In the art of TSCH, a path does not necessarily support PRE, but it is almost
systematically multipath. This means that a Track is scheduled so as to
ensure that each hop has at least two forwarding solutions, and the
forwarding decision is to try the preferred one and use the other in
case of Layer 2 transmission failure as detected by ARQ. Similarly,
at each 6TiSCH hop along the Track, the PCE may schedule more than one
timeslot for a packet, so as to support Layer 2 retries (ARQ). It is also
possible that the field device only uses the second branch if sending over
the first branch fails.<a href="#section-4.5.3-3" class="pilcrow">¶</a></p>
</section>
<section id="section-4.5.4">
<h4 id="name-detnet-end-to-end-path">
<a href="#section-4.5.4" class="section-number selfRef">4.5.4. </a><a href="#name-detnet-end-to-end-path" class="section-name selfRef">DetNet End-to-End Path</a>
</h4>
<p id="section-4.5.4-1">
Ultimately, DetNet should
enable extending a Track beyond the 6TiSCH LLN as illustrated in
<a href="#elifig" class="xref">Figure 10</a>. In that example, a Track is laid out from a
field device in a 6TiSCH network to an IoT gateway that is located on an
802.1 Time-Sensitive Networking (TSN) backbone.
A 6TiSCH-aware DetNet service layer handles the Packet Replication,
Elimination, and Ordering Functions over the DODAG that forms a Track.<a href="#section-4.5.4-1" class="pilcrow">¶</a></p>
<p id="section-4.5.4-2">
The Replication function in the 6TiSCH Node sends a copy of each packet over
two different branches, and the PCE schedules each hop of both branches so
that the two copies arrive in due time at the gateway. In case of a loss on
one branch, hopefully the other copy of the packet still makes it in due
time. If two copies make it to the IoT gateway, the Elimination function
in the gateway ignores the extra packet and presents only one copy to upper
layers.<a href="#section-4.5.4-2" class="pilcrow">¶</a></p>
<span id="name-example-end-to-end-detnet-t"></span><div id="elifig">
<figure id="figure-10">
<div class="artwork art-text alignLeft" id="section-4.5.4-3.1">
<pre>
+-=-=-+
| IoT |
| G/W |
+-=-=-+
^ <=== Elimination
Track branch | |
+-=-=-=-+ +-=-=-=-=+ Subnet backbone
| |
+-=|-=+ +-=|-=+
| | | Backbone | | | Backbone
o | | | Router | | | Router
+-=/-=+ +-=|-=+
o / o o-=-o-=-=/ o
o o-=-o-=/ o o o o o
o \ / o o LLN o
o v <=== Replication
o
</pre>
</div>
<figcaption><a href="#figure-10" class="selfRef">Figure 10</a>:
<a href="#name-example-end-to-end-detnet-t" class="selfRef">Example End-to-End DetNet Track</a>
</figcaption></figure>
</div>
</section>
<section id="section-4.5.5">
<h4 id="name-cell-reuse">
<a href="#section-4.5.5" class="section-number selfRef">4.5.5. </a><a href="#name-cell-reuse" class="section-name selfRef">Cell Reuse</a>
</h4>
<p id="section-4.5.5-1">
The 6TiSCH architecture provides the means to avoid waste of cells as
well as overflows in the transmit bundle of a Track, as follows:<a href="#section-4.5.5-1" class="pilcrow">¶</a></p>
<p id="section-4.5.5-2">
A TX-cell that is not needed for the current iteration may
be reused opportunistically on a per-hop basis for routed packets.
When all of the frames that were received for a given Track are
effectively transmitted, any available TX-cell for that Track can be
reused for upper-layer traffic for which the next-hop router matches the
next hop along the Track.
In that case, the cell that is being used is effectively a TX-cell from
the Track, but the short address for the destination is that of the
next-hop router.<a href="#section-4.5.5-2" class="pilcrow">¶</a></p>
<p id="section-4.5.5-3">
It results in a frame that is received in an RX-cell of a Track with a
destination MAC address set to this node, as opposed to the broadcast MAC
address that must be extracted from the Track and delivered to the upper layer.
Note that a frame with an unrecognized destination MAC address is dropped
at the lower MAC layer and thus is not received at the 6top sublayer.<a href="#section-4.5.5-3" class="pilcrow">¶</a></p>
<p id="section-4.5.5-4">
On the other hand, it might happen that there are not enough TX-cells
in the transmit bundle to accommodate the Track traffic, for instance, if
more retransmissions are needed than provisioned.
In that case, and if the frame transports an IPv6 packet, then it can be
placed for transmission in the bundle that is used for Layer 3 traffic
towards the next hop along the Track.
The MAC address should be set to the next-hop MAC address to avoid
confusion.<a href="#section-4.5.5-4" class="pilcrow">¶</a></p>
<p id="section-4.5.5-5">
It results in a frame that is received over a Layer 3 bundle that may be in
fact associated with a Track. In a classical IP link such as an Ethernet,
off-Track traffic is typically in excess over reservation to be routed
along the non-reserved path based on its QoS setting.
But with 6TiSCH, since the use of the Layer 3 bundle may be due to
transmission failures, it makes sense for the receiver to recognize a
frame that should be re-Tracked and to place it back on the appropriate
bundle if possible.
A frame is re-Tracked by scheduling it for transmission over the
transmit bundle associated with the Track, with the destination MAC
address set to broadcast.<a href="#section-4.5.5-5" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="fwd">
<section id="section-4.6">
<h3 id="name-forwarding-models">
<a href="#section-4.6" class="section-number selfRef">4.6. </a><a href="#name-forwarding-models" class="section-name selfRef">Forwarding Models</a>
</h3>
<p id="section-4.6-1">
By forwarding, this document means the per-packet operation that
allows delivery of a packet to a next hop or an upper layer in this node.
Forwarding is based on preexisting state that was installed as a
result of a routing computation, see <a href="#rtg" class="xref">Section 4.7</a>.
6TiSCH supports three different forwarding models: (GMPLS) Track
Forwarding, (classical) IPv6 Forwarding, and (6LoWPAN) Fragment Forwarding.<a href="#section-4.6-1" class="pilcrow">¶</a></p>
<div id="trkfwd">
<section id="section-4.6.1">
<h4 id="name-track-forwarding">
<a href="#section-4.6.1" class="section-number selfRef">4.6.1. </a><a href="#name-track-forwarding" class="section-name selfRef">Track Forwarding</a>
</h4>
<p id="section-4.6.1-1">
Forwarding along a Track can be seen as a Generalized Multiprotocol
Label Switching (GMPLS) operation in that the information used to
switch a frame is not an explicit label but is rather related to other
properties of the way the packet was received, a particular cell in
the case of 6TiSCH.
As a result, as long as the TSCH MAC (and Layer 2 security) accepts
a frame, that frame can be switched regardless of the protocol,
whether this is an IPv6 packet, a 6LoWPAN fragment, or a frame from
an alternate protocol such as WirelessHART or ISA100.11a.<a href="#section-4.6.1-1" class="pilcrow">¶</a></p>
<p id="section-4.6.1-2">
A data frame that is forwarded along a Track normally has a
destination MAC address that is set to broadcast or a multicast
address depending on MAC support.
This way, the MAC layer in the intermediate nodes accepts the
incoming frame and 6top switches it without incurring a change in
the MAC header.
In the case of IEEE Std 802.15.4, this means effectively to
broadcast, so that along the Track the short address for the
destination of the frame is set to 0xFFFF.<a href="#section-4.6.1-2" class="pilcrow">¶</a></p>
<p id="section-4.6.1-3">
There are two modes for a Track: an IPv6 native mode and a
protocol-independent tunnel mode.<a href="#section-4.6.1-3" class="pilcrow">¶</a></p>
<section id="section-4.6.1.1">
<h5 id="name-native-mode">
<a href="#section-4.6.1.1" class="section-number selfRef">4.6.1.1. </a><a href="#name-native-mode" class="section-name selfRef">Native Mode</a>
</h5>
<p id="section-4.6.1.1-1">
In native mode, the Protocol Data Unit (PDU) is associated
with flow-dependent metadata that refers uniquely to the Track,
so the 6top sublayer can place the frame in the appropriate cell
without ambiguity. In the case of IPv6 traffic, this flow
may be identified using a 6-tuple as discussed in
<span>[<a href="#RFC8939" class="xref">RFC8939</a>]</span>. In particular,
implementations of this document should support identification of
DetNet flows based on the IPv6 Flow Label field.<a href="#section-4.6.1.1-1" class="pilcrow">¶</a></p>
<p id="section-4.6.1.1-2">
The flow follows a Track that is identified using a RPL
Instance (see <span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-3.1.3" class="relref">Section 3.1.3</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>),
signaled in a RPL Packet Information (more in
<span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-11.2.2.1" class="relref">Section 11.2.2.1</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>)
and the source address of a packet going down the DODAG formed by a local instance. One or more
flows may be placed in a same Track and the Track identification
(TrackID plus owner) may be placed in an IP-in-IP encapsulation. The forwarding
operation is based on the Track and does not depend on the flow
therein.<a href="#section-4.6.1.1-2" class="pilcrow">¶</a></p>
<p id="section-4.6.1.1-3">
The Track identification is validated at egress before restoring the
destination MAC address (DMAC) and punting to the upper layer.<a href="#section-4.6.1.1-3" class="pilcrow">¶</a></p>
<p id="section-4.6.1.1-4"><a href="#fig6t" class="xref">Figure 11</a> illustrates the Track Forwarding operation
that happens at the 6top sublayer, below IP.<a href="#section-4.6.1.1-4" class="pilcrow">¶</a></p>
<span id="name-track-forwarding-native-mod"></span><div id="fig6t">
<figure id="figure-11">
<div class="artwork art-text alignLeft" id="section-4.6.1.1-5.1">
<pre>
| Packet flowing across the network ^
+--------------+ | |
| IPv6 | | |
+--------------+ | |
| 6LoWPAN HC | | |
+--------------+ ingress egress
| 6top | sets +----+ +----+ restores
+--------------+ DMAC to | | | | DMAC to
| TSCH MAC | brdcst | | | | dest
+--------------+ | | | | | |
| LLN PHY | +-------+ +--...-----+ +-------+
+--------------+
Ingress Relay Relay Egress
Stack Layer Node Node Node Node
</pre>
</div>
<figcaption><a href="#figure-11" class="selfRef">Figure 11</a>:
<a href="#name-track-forwarding-native-mod" class="selfRef">Track Forwarding, Native Mode</a>
</figcaption></figure>
</div>
</section>
<section id="section-4.6.1.2">
<h5 id="name-tunnel-mode">
<a href="#section-4.6.1.2" class="section-number selfRef">4.6.1.2. </a><a href="#name-tunnel-mode" class="section-name selfRef">Tunnel Mode</a>
</h5>
<p id="section-4.6.1.2-1">
In tunnel mode, the frames originate from an arbitrary protocol over a compatible MAC
that may or may not be synchronized with the 6TiSCH network. An example of
this would be a router with a dual radio that is capable of receiving and sending WirelessHART
or ISA100.11a frames with the second radio by presenting itself as an access
point or a Backbone Router, respectively.
In that mode, some entity (e.g., PCE) can coordinate with a
WirelessHART Network Manager or an ISA100.11a System Manager to
specify the flows that are transported.<a href="#section-4.6.1.2-1" class="pilcrow">¶</a></p>
<span id="name-track-forwarding-tunnel-mod"></span><div id="fig6">
<figure id="figure-12">
<div class="artwork art-text alignLeft" id="section-4.6.1.2-2.1">
<pre>
+--------------+
| IPv6 |
+--------------+
| 6LoWPAN HC |
+--------------+ set restore
| 6top | +DMAC+ +DMAC+
+--------------+ to|brdcst to|nexthop
| TSCH MAC | | | | |
+--------------+ | | | |
| LLN PHY | +-------+ +--...-----+ +-------+
+--------------+ | ingress egress |
| |
+--------------+ | |
| LLN PHY | | |
+--------------+ | Packet flowing across the network |
| TSCH MAC | | |
+--------------+ | DMAC = | DMAC =
|ISA100/WiHART | | nexthop v nexthop
+--------------+
Source Ingress Egress Destination
Stack Layer Node Node Node Node
</pre>
</div>
<figcaption><a href="#figure-12" class="selfRef">Figure 12</a>:
<a href="#name-track-forwarding-tunnel-mod" class="selfRef">Track Forwarding, Tunnel Mode</a>
</figcaption></figure>
</div>
<p id="section-4.6.1.2-3">
In that case, the TrackID that identifies the Track at
the ingress 6TiSCH router is derived from the RX-cell.
The DMAC
is set to this node, but the TrackID indicates that the
frame must be tunneled over a particular Track, so the frame is
not passed to the upper layer. Instead, the DMAC is forced to
broadcast, and the frame is passed to the 6top sublayer for
switching.<a href="#section-4.6.1.2-3" class="pilcrow">¶</a></p>
<p id="section-4.6.1.2-4">
At the egress 6TiSCH router, the reverse operation occurs. Based
on tunneling information of the Track, which may for instance
indicate that the tunneled datagram is an IP packet,
the datagram is passed to the appropriate link-layer with the
destination MAC restored.<a href="#section-4.6.1.2-4" class="pilcrow">¶</a></p>
</section>
<section id="section-4.6.1.3">
<h5 id="name-tunneling-information">
<a href="#section-4.6.1.3" class="section-number selfRef">4.6.1.3. </a><a href="#name-tunneling-information" class="section-name selfRef">Tunneling Information</a>
</h5>
<p id="section-4.6.1.3-1">
Tunneling information coming with the Track configuration
provides the destination MAC address
of the egress endpoint as well as the tunnel mode and specific
data depending on the mode,
for instance, a service access point for frame delivery at egress.<a href="#section-4.6.1.3-1" class="pilcrow">¶</a></p>
<p id="section-4.6.1.3-2">
If the tunnel egress point does not have a MAC address that
matches the configuration, the Track installation fails.<a href="#section-4.6.1.3-2" class="pilcrow">¶</a></p>
<p id="section-4.6.1.3-3">
If the Layer 3 destination address belongs to
the tunnel termination, then it is possible that the IPv6 address
of the destination is compressed at the 6LoWPAN sublayer based on
the MAC address. Restoring the wrong MAC address at the egress
would then also result in the wrong IP address in the packet
after decompression.
For that reason, a packet can be injected in a Track only if
the destination MAC address is effectively that of the tunnel
egress point.
It is thus mandatory for the ingress router to validate that the
MAC address used at the 6LoWPAN
sublayer for compression matches that of the tunnel egress point
before it overwrites it to broadcast.
The 6top sublayer at the tunnel egress point reverts that
operation to the MAC address obtained from the tunnel
information.<a href="#section-4.6.1.3-3" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<section id="section-4.6.2">
<h4 id="name-ipv6-forwarding">
<a href="#section-4.6.2" class="section-number selfRef">4.6.2. </a><a href="#name-ipv6-forwarding" class="section-name selfRef">IPv6 Forwarding</a>
</h4>
<p id="section-4.6.2-1">
As the packets are routed at Layer 3, traditional QoS and Active
Queue Management (AQM) operations are expected to prioritize flows.<a href="#section-4.6.2-1" class="pilcrow">¶</a></p>
<span id="name-ip-forwarding"></span><div id="fig9">
<figure id="figure-13">
<div class="artwork art-text alignLeft" id="section-4.6.2-2.1">
<pre>
| Packet flowing across the network ^
+--------------+ | |
| IPv6 | | +-QoS+ +-QoS+ |
+--------------+ | | | | | |
| 6LoWPAN HC | | | | | | |
+--------------+ | | | | | |
| 6top | | | | | | |
+--------------+ | | | | | |
| TSCH MAC | | | | | | |
+--------------+ | | | | | |
| LLN PHY | +-------+ +--...-----+ +-------+
+--------------+
Source Ingress Egress Destination
Stack Layer Node Router Router Node
</pre>
</div>
<figcaption><a href="#figure-13" class="selfRef">Figure 13</a>:
<a href="#name-ip-forwarding" class="selfRef">IP Forwarding</a>
</figcaption></figure>
</div>
</section>
<section id="section-4.6.3">
<h4 id="name-fragment-forwarding">
<a href="#section-4.6.3" class="section-number selfRef">4.6.3. </a><a href="#name-fragment-forwarding" class="section-name selfRef">Fragment Forwarding</a>
</h4>
<p id="section-4.6.3-1">
Considering that, per <span><a href="https://www.rfc-editor.org/rfc/rfc4944#section-4" class="relref">Section 4</a> of [<a href="#RFC4944" class="xref">RFC4944</a>]</span>, 6LoWPAN
packets can be as large as 1280 bytes (the IPv6 minimum MTU)
and that the non-storing mode of RPL implies source routing, which requires space for routing
headers, and that an IEEE Std 802.15.4 frame with security may carry in the order of 80 bytes of
effective payload, an IPv6 packet might be fragmented into more than 16 fragments at the
6LoWPAN sublayer.<a href="#section-4.6.3-1" class="pilcrow">¶</a></p>
<p id="section-4.6.3-2">
This level of fragmentation is much higher than that traditionally experienced over the Internet
with IPv4 fragments, where fragmentation is already known as harmful.<a href="#section-4.6.3-2" class="pilcrow">¶</a></p>
<p id="section-4.6.3-3">
In the case of a multihop route within a 6TiSCH network, hop-by-hop recomposition occurs at each
hop to reform the packet and route it. This creates additional latency and forces intermediate
nodes to store a portion of a packet for an undetermined time, thus impacting critical resources such
as memory and battery.<a href="#section-4.6.3-3" class="pilcrow">¶</a></p>
<p id="section-4.6.3-4">
<span>[<a href="#RFC8930" class="xref">RFC8930</a>]</span> describes a framework for forwarding fragments end-to-end
across a 6TiSCH route-over mesh. Within that framework,
<span>[<a href="#I-D.ietf-lwig-6lowpan-virtual-reassembly" class="xref">VIRTUAL-REASSEMBLY</a>]</span> details a virtual reassembly
buffer mechanism whereby the datagram tag in the 6LoWPAN fragment is used as a label
for switching at the 6LoWPAN sublayer.<a href="#section-4.6.3-4" class="pilcrow">¶</a></p>
<p id="section-4.6.3-5">
Building on this technique, <span>[<a href="#RFC8931" class="xref">RFC8931</a>]</span> introduces a new format for
6LoWPAN fragments that enables the selective recovery of individual fragments
and allows for a degree of flow control based on an Explicit Congestion Notification (ECN).<a href="#section-4.6.3-5" class="pilcrow">¶</a></p>
<span id="name-forwarding-first-fragment"></span><div id="fig7">
<figure id="figure-14">
<div class="artwork art-text alignLeft" id="section-4.6.3-6.1">
<pre>
| Packet flowing across the network ^
+--------------+ | |
| IPv6 | | +----+ +----+ |
+--------------+ | | | | | |
| 6LoWPAN HC | | learn learn |
+--------------+ | | | | | |
| 6top | | | | | | |
+--------------+ | | | | | |
| TSCH MAC | | | | | | |
+--------------+ | | | | | |
| LLN PHY | +-------+ +--...-----+ +-------+
+--------------+
Source Ingress Egress Destination
Stack Layer Node Router Router Node
</pre>
</div>
<figcaption><a href="#figure-14" class="selfRef">Figure 14</a>:
<a href="#name-forwarding-first-fragment" class="selfRef">Forwarding First Fragment</a>
</figcaption></figure>
</div>
<p id="section-4.6.3-7">
In that model, the first fragment is routed based on the IPv6 header that is present in that fragment.
The 6LoWPAN sublayer learns the next-hop selection, generates a new datagram tag for transmission to
the next hop, and stores that information indexed by the incoming MAC address and datagram tag. The next
fragments are then switched based on that stored state.<a href="#section-4.6.3-7" class="pilcrow">¶</a></p>
<span id="name-forwarding-next-fragment"></span><div id="fig8">
<figure id="figure-15">
<div class="artwork art-text alignLeft" id="section-4.6.3-8.1">
<pre>
| Packet flowing across the network ^
+--------------+ | |
| IPv6 | | |
+--------------+ | |
| 6LoWPAN HC | | replay replay |
+--------------+ | | | | | |
| 6top | | | | | | |
+--------------+ | | | | | |
| TSCH MAC | | | | | | |
+--------------+ | | | | | |
| LLN PHY | +-------+ +--...-----+ +-------+
+--------------+
Source Ingress Egress Destination
Stack Layer Node Router Router Node
</pre>
</div>
<figcaption><a href="#figure-15" class="selfRef">Figure 15</a>:
<a href="#name-forwarding-next-fragment" class="selfRef">Forwarding Next Fragment</a>
</figcaption></figure>
</div>
<p id="section-4.6.3-9">
A bitmap and an ECN echo in the end-to-end acknowledgment enable the source to resend the missing
fragments selectively. The first fragment may be resent to carve a new path in case of a path failure.
The ECN echo set indicates that the number of outstanding fragments should be reduced.<a href="#section-4.6.3-9" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="rtg">
<section id="section-4.7">
<h3 id="name-advanced-6tisch-routing">
<a href="#section-4.7" class="section-number selfRef">4.7. </a><a href="#name-advanced-6tisch-routing" class="section-name selfRef">Advanced 6TiSCH Routing</a>
</h3>
<div id="pmh">
<section id="section-4.7.1">
<h4 id="name-packet-marking-and-handling">
<a href="#section-4.7.1" class="section-number selfRef">4.7.1. </a><a href="#name-packet-marking-and-handling" class="section-name selfRef">Packet Marking and Handling</a>
</h4>
<p id="section-4.7.1-1">
All packets inside a 6TiSCH domain must carry the RPLInstanceID that
identifies the 6TiSCH topology (e.g., a Track) that is to be used for
routing and forwarding that packet. The location of that information
must be the same for all packets forwarded inside the domain.<a href="#section-4.7.1-1" class="pilcrow">¶</a></p>
<p id="section-4.7.1-2">
For packets that are routed by a PCE along a Track, the tuple formed
by 1) (typically) the IPv6 source or (possibly) destination address
in the IPv6 header and 2) a local RPLInstanceID in the RPI that
serves as TrackID, identify uniquely the Track and
associated transmit bundle.<a href="#section-4.7.1-2" class="pilcrow">¶</a></p>
<p id="section-4.7.1-3">
For packets that are routed by RPL, that information is the RPLInstanceID
that is carried in the RPL Packet Information (RPI), as discussed in
<span><a href="https://www.rfc-editor.org/rfc/rfc6550#section-11.2" class="relref">Section 11.2</a> of [<a href="#RFC6550" class="xref">RFC6550</a>]</span>, "Loop Avoidance and Detection".
The RPI is transported by a RPL Option in the IPv6 Hop-By-Hop Options header
<span>[<a href="#RFC6553" class="xref">RFC6553</a>]</span>.<a href="#section-4.7.1-3" class="pilcrow">¶</a></p>
<p id="section-4.7.1-4">
A compression mechanism for the RPL packet artifacts that integrates the
compression of IP-in-IP encapsulation and the Routing Header type 3
<span>[<a href="#RFC6554" class="xref">RFC6554</a>]</span>
with that of the RPI in a 6LoWPAN dispatch/header type is specified in
<span>[<a href="#RFC8025" class="xref">RFC8025</a>]</span> and <span>[<a href="#RFC8138" class="xref">RFC8138</a>]</span>.<a href="#section-4.7.1-4" class="pilcrow">¶</a></p>
<p id="section-4.7.1-5">
Either way, the method and format used for encoding the RPLInstanceID
is generalized to all 6TiSCH topological Instances, which include
both RPL Instances and Tracks.<a href="#section-4.7.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="pmhrre">
<section id="section-4.7.2">
<h4 id="name-replication-retries-and-eli">
<a href="#section-4.7.2" class="section-number selfRef">4.7.2. </a><a href="#name-replication-retries-and-eli" class="section-name selfRef">Replication, Retries, and Elimination</a>
</h4>
<p id="section-4.7.2-1">
6TiSCH supports the PREOF operations of elimination and reordering of packets
along a complex Track, but has no requirement about tagging a sequence number
in the packet for that purpose.
With 6TiSCH, the schedule can tell when multiple receive timeslots correspond
to copies of a same packet, in which case the receiver may avoid listening to
the extra copies once it has received one instance of the packet.<a href="#section-4.7.2-1" class="pilcrow">¶</a></p>
<p id="section-4.7.2-2">
The semantics of the configuration enable correlated timeslots to be
grouped for transmit (and receive, respectively) with 'OR' relations,
and then an 'AND' relation can be configurable between groups.
The semantics are such that if the transmit (and receive, respectively) operation
succeeded in one timeslot in an 'OR' group, then all the other timeslots in
the group are ignored.
Now, if there are at least two groups, the 'AND' relation between the groups
indicates that one operation must succeed in each of the groups.<a href="#section-4.7.2-2" class="pilcrow">¶</a></p>
<p id="section-4.7.2-3">
On the transmit side, timeslots provisioned for retries along a same branch
of a Track are placed in the same 'OR' group. The 'OR' relation indicates that if
a transmission is acknowledged, then retransmissions of that packet should
not be attempted for the remaining timeslots in that group. There are as many
'OR' groups as there are branches of the Track departing from this node.
Different 'OR' groups are programmed for the purpose of replication, each
group corresponding to one branch of the Track. The 'AND' relation between the
groups indicates that transmission over any of branches must be attempted
regardless of whether a transmission succeeded in another branch. It is also
possible to place cells to different next-hop routers in the same 'OR' group.
This allows routing along multipath Tracks, trying one next hop and then
another only if sending to the first fails.<a href="#section-4.7.2-3" class="pilcrow">¶</a></p>
<p id="section-4.7.2-4">
On the receive side, all timeslots are programmed in the same 'OR' group.
Retries of the same copy as well as converging branches for elimination
are converged, meaning that the first successful reception is enough and that
all the other timeslots can be ignored. An 'AND' group denotes different
packets that must all be received and transmitted over the associated
transmit groups within their respected 'AND' or 'OR' rules.<a href="#section-4.7.2-4" class="pilcrow">¶</a></p>
<p id="section-4.7.2-5">
As an example, say that we have a simple network as represented in
<a href="#figANDORref" class="xref">Figure 16</a>, and we want to enable PREOF between an ingress
node I and an egress node E.<a href="#section-4.7.2-5" class="pilcrow">¶</a></p>
<span id="name-scheduling-preof-on-a-simpl"></span><div id="figANDORref">
<figure id="figure-16">
<div class="artwork art-text alignCenter" id="section-4.7.2-6.1">
<pre>
+-+ +-+
-- |A| ------ |C| --
/ +-+ +-+ \
/ \
+-+ +-+
|I| |E|
+-+ +-+
\ /
\ +-+ +-+ /
-- |B| ------- |D| --
+-+ +-+
</pre>
</div>
<figcaption><a href="#figure-16" class="selfRef">Figure 16</a>:
<a href="#name-scheduling-preof-on-a-simpl" class="selfRef">Scheduling PREOF on a Simple Network</a>
</figcaption></figure>
</div>
<p id="section-4.7.2-7">
The assumption for this particular problem is
that a 6TiSCH node has a single radio, so it cannot perform two receive and/or
transmit operations at the same time, even on two different channels.<a href="#section-4.7.2-7" class="pilcrow">¶</a></p>
<p id="section-4.7.2-8">
Say we have six possible channels, and at least ten timeslots per slotframe.
<a href="#figsc" class="xref">Figure 17</a> shows a possible schedule whereby each transmission
is retried two or three times, and redundant copies are forwarded in parallel via
A and C on the one hand, and B and D on the other, providing time diversity,
spatial diversity though different physical paths, and frequency diversity.<a href="#section-4.7.2-8" class="pilcrow">¶</a></p>
<span id="name-example-global-schedule"></span><div id="figsc">
<figure id="figure-17">
<div class="artwork art-text alignCenter" id="section-4.7.2-9.1">
<pre>
slotOffset 0 1 2 3 4 5 6 7 9
+----+----+----+----+----+----+----+----+----+
channelOffset 0 | | | | | | |B->D| | | ...
+----+----+----+----+----+----+----+----+----+
channelOffset 1 | |I->A| |A->C|B->D| | | | | ...
+----+----+----+----+----+----+----+----+----+
channelOffset 2 |I->A| | |I->B| |C->E| |D->E| | ...
+----+----+----+----+----+----+----+----+----+
channelOffset 3 | | | | |A->C| | | | | ...
+----+----+----+----+----+----+----+----+----+
channelOffset 4 | | |I->B| | |B->D| | |D->E| ...
+----+----+----+----+----+----+----+----+----+
channelOffset 5 | | |A->C| | | |C->E| | | ...
+----+----+----+----+----+----+----+----+----+
</pre>
</div>
<figcaption><a href="#figure-17" class="selfRef">Figure 17</a>:
<a href="#name-example-global-schedule" class="selfRef">Example Global Schedule</a>
</figcaption></figure>
</div>
<p id="section-4.7.2-10">
This translates into a different slotframe that provides the
waking and sleeping times for every node, and the channelOffset to be used when awake.
<a href="#figsfA" class="xref">Figure 18</a> shows the corresponding slotframe for node A.<a href="#section-4.7.2-10" class="pilcrow">¶</a></p>
<span id="name-example-slotframe-for-node-"></span><div id="figsfA">
<figure id="figure-18">
<div class="artwork art-text alignCenter" id="section-4.7.2-11.1">
<pre>
slotOffset 0 1 2 3 4 5 6 7 9
+----+----+----+----+----+----+----+----+----+
operation |rcv |rcv |xmit|xmit|xmit|none|none|none|none| ...
+----+----+----+----+----+----+----+----+----+
channelOffset | 2 | 1 | 5 | 1 | 3 |N/A |N/A |N/A |N/A | ...
+----+----+----+----+----+----+----+----+----+
</pre>
</div>
<figcaption><a href="#figure-18" class="selfRef">Figure 18</a>:
<a href="#name-example-slotframe-for-node-" class="selfRef">Example Slotframe for Node A</a>
</figcaption></figure>
</div>
<p id="section-4.7.2-12">
The logical relationship between the timeslots is given
by <a href="#figslog" class="xref">Table 2</a>:<a href="#section-4.7.2-12" class="pilcrow">¶</a></p>
<div id="figslog">
<table class="center" id="table-2">
<caption><a href="#table-2" class="selfRef">Table 2</a></caption>
<thead>
<tr>
<th class="text-center" rowspan="1" colspan="1">Node</th>
<th class="text-center" rowspan="1" colspan="1">rcv slotOffset</th>
<th class="text-center" rowspan="1" colspan="1">xmit slotOffset</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-center" rowspan="1" colspan="1">I</td>
<td class="text-center" rowspan="1" colspan="1">N/A</td>
<td class="text-center" rowspan="1" colspan="1">(0 OR 1) AND (2 OR 3)</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">A</td>
<td class="text-center" rowspan="1" colspan="1">(0 OR 1)</td>
<td class="text-center" rowspan="1" colspan="1">(2 OR 3 OR 4)</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">B</td>
<td class="text-center" rowspan="1" colspan="1">(2 OR 3)</td>
<td class="text-center" rowspan="1" colspan="1">(4 OR 5 OR 6)</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">C</td>
<td class="text-center" rowspan="1" colspan="1">(2 OR 3 OR 4)</td>
<td class="text-center" rowspan="1" colspan="1">(5 OR 6)</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">D</td>
<td class="text-center" rowspan="1" colspan="1">(4 OR 5 OR 6)</td>
<td class="text-center" rowspan="1" colspan="1">(7 OR 8)</td>
</tr>
<tr>
<td class="text-center" rowspan="1" colspan="1">E</td>
<td class="text-center" rowspan="1" colspan="1">(5 OR 6 OR 7 OR 8)</td>
<td class="text-center" rowspan="1" colspan="1">N/A</td>
</tr>
</tbody>
</table>
</div>
</section>
</div>
</section>
</div>
</section>
</div>
<section id="section-5">
<h2 id="name-iana-considerations">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-5-1">
This document has no IANA actions.<a href="#section-5-1" class="pilcrow">¶</a></p>
</section>
<div id="sec">
<section id="section-6">
<h2 id="name-security-considerations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-6-1">
The <span><a href="#RFC9031" class="xref">"Minimal Security
Framework for 6TiSCH"</a> [<a href="#RFC9031" class="xref">RFC9031</a>]</span> was optimized for Low-Power and TSCH operations.
The reader is encouraged to review the Security Considerations section of
that document (Section <a href="https://www.rfc-editor.org/rfc/rfc9031#section-9" class="relref">9</a>),
which discusses 6TiSCH security issues in more details.<a href="#section-6-1" class="pilcrow">¶</a></p>
<div id="det">
<section id="section-6.1">
<h3 id="name-availability-of-remote-serv">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-availability-of-remote-serv" class="section-name selfRef">Availability of Remote Services</a>
</h3>
<p id="section-6.1-1">
The operation of 6TiSCH Tracks inherits its high-level operation from DetNet
and is subject to the observations in
<span><a href="https://www.rfc-editor.org/rfc/rfc8655#section-5" class="relref">Section 5</a> of [<a href="#RFC8655" class="xref">RFC8655</a>]</span>. The installation and the
maintenance of the 6TiSCH Tracks depend on the availability of a controller
with a PCE to compute and push them in the network. When that connectivity
is lost, existing Tracks may continue to operate until the end of their
lifetime, but cannot be removed or updated, and new Tracks cannot be
installed.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">
In an LLN, the communication with a remote PCE may be slow and unreactive to
rapid changes in the condition of the wireless communication. An attacker
may introduce extra delay by selectively jamming some packets or some flows.
The expectation is that the 6TiSCH Tracks enable enough redundancy to
maintain the critical traffic in operation while new routes are calculated
and programmed into the network.<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1-3">
As with DetNet in general, the communication with the PCE must be secured
and should be protected against DoS attacks, including delay injection and
blackholing attacks, and secured as discussed in the security considerations
defined for Abstraction and Control of Traffic Engineered Networks (ACTN) in
<span><a href="https://www.rfc-editor.org/rfc/rfc8453#section-9" class="relref">Section 9</a> of [<a href="#RFC8453" class="xref">RFC8453</a>]</span>, which applies equally to DetNet and
6TiSCH. In a similar manner, the communication with the JRC must
be secured and should be protected against DoS attacks when possible.<a href="#section-6.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="phy">
<section id="section-6.2">
<h3 id="name-selective-jamming">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-selective-jamming" class="section-name selfRef">Selective Jamming</a>
</h3>
<p id="section-6.2-1">
The hopping sequence of a TSCH network is well known, meaning that if a
rogue manages to identify a cell of a particular flow, then it may
selectively jam that cell without impacting any other traffic.
This attack can be performed at the PHY layer without any knowledge of the
Layer 2 keys, and it is very hard to detect and diagnose because only one flow
is impacted.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<p id="section-6.2-2">
<span>[<a href="#I-D.tiloca-6tisch-robust-scheduling" class="xref">ROBUST-SCHEDULING</a>]</span> proposes
a method to obfuscate the hopping sequence and make it harder to perpetrate
that particular attack.<a href="#section-6.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="iee">
<section id="section-6.3">
<h3 id="name-mac-layer-security">
<a href="#section-6.3" class="section-number selfRef">6.3. </a><a href="#name-mac-layer-security" class="section-name selfRef">MAC-Layer Security</a>
</h3>
<p id="section-6.3-1">
This architecture operates on IEEE Std 802.15.4 and expects the link-layer
security to be enabled at all times between connected devices, except for
the very first step of the device join process, where a joining device may
need some initial, unsecured exchanges so as to obtain its initial key
material. In a typical deployment, all joined nodes use the same keys, and
rekeying needs to be global.<a href="#section-6.3-1" class="pilcrow">¶</a></p>
<p id="section-6.3-2">
The 6TISCH architecture relies on the join process to deny authorization of
invalid nodes and to preserve the integrity of the network keys. A rogue that
managed to access the network can perform a large variety of attacks from
DoS to injecting forged packets and routing information.
"Zero-trust" properties would be highly desirable but are mostly not
available at the time of this writing. <span>[<a href="#RFC8928" class="xref">RFC8928</a>]</span>
is a notable exception that protects the ownership of IPv6 addresses and
prevents a rogue node with L2 access from stealing and injecting traffic
on behalf of a legitimate node.<a href="#section-6.3-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ts">
<section id="section-6.4">
<h3 id="name-time-synchronization">
<a href="#section-6.4" class="section-number selfRef">6.4. </a><a href="#name-time-synchronization" class="section-name selfRef">Time Synchronization</a>
</h3>
<p id="section-6.4-1">
Time synchronization in TSCH induces another event horizon whereby a node
will only communicate with another node if they are synchronized within a
guard time. The pledge discovers the synchronization of the network based
on the time of reception of the beacon. If an attacker synchronizes a pledge
outside of the guard time of the legitimate nodes, then the pledge will never
see a legitimate beacon and may not discover the attack.<a href="#section-6.4-1" class="pilcrow">¶</a></p>
<p id="section-6.4-2">As discussed in <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>, measures
must be taken to protect the time synchronization, and for 6TiSCH this
includes ensuring that the Absolute Slot Number (ASN), which is the node's
sense of time, is not compromised. Once installed and as long as the node is
synchronized to the network, ASN is implicit in the transmissions.<a href="#section-6.4-2" class="pilcrow">¶</a></p>
<p id="section-6.4-3">
<span><a href="#IEEE802154" class="xref">IEEE Std 802.15.4</a> [<a href="#IEEE802154" class="xref">IEEE802154</a>]</span> specifies that in a TSCH
network, the nonce that is used for the computation of the Message Integrity
Code (MIC) to secure link-layer frames is composed of the address
of the source of the frame and of the ASN. The standard assumes that the ASN
is distributed securely by other means. The ASN is not passed explicitly in
the data frames and does not constitute a complete anti-replay protection.
As a result, upper-layer protocols must provide a way to detect
duplicates and cope with them.<a href="#section-6.4-3" class="pilcrow">¶</a></p>
<p id="section-6.4-4">
If the receiver and the sender have a different sense of ASN, the MIC will
not validate and the frame will be dropped. In that sense, TSCH induces an
event horizon whereby only nodes that have a common sense of ASN can talk to
one another in an authenticated manner. With 6TiSCH, the pledge discovers a
tentative ASN in beacons from nodes that have already joined the network.
But even if the beacon can be authenticated, the ASN cannot be trusted as it
could be a replay by an attacker, announcing an ASN that
represents a time in the past. If the pledge uses an ASN that is learned
from a replayed beacon for an encrypted transmission, a nonce-reuse attack
becomes possible, and the network keys may be compromised.<a href="#section-6.4-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="asv">
<section id="section-6.5">
<h3 id="name-validating-asn">
<a href="#section-6.5" class="section-number selfRef">6.5. </a><a href="#name-validating-asn" class="section-name selfRef">Validating ASN</a>
</h3>
<p id="section-6.5-1">
After obtaining the tentative ASN, a pledge that wishes to join the
6TiSCH network must use a join protocol to obtain its security keys.
The join protocol used in 6TiSCH is the Constrained Join Protocol (CoJP).
In the minimal setting defined in
<span>[<a href="#RFC9031" class="xref">RFC9031</a>]</span>, the authentication
requires a pre-shared key, based on which a secure session is derived.
The CoJP exchange may also be preceded by a zero-touch handshake
<span>[<a href="#I-D.ietf-6tisch-dtsecurity-zerotouch-join" class="xref">ZEROTOUCH-JOIN</a>]</span> in order
to enable pledge joining based on certificates and/or inter-domain
communication.<a href="#section-6.5-1" class="pilcrow">¶</a></p>
<p id="section-6.5-2">
As detailed in <a href="#rflo" class="xref">Section 4.2.1</a>,
a Join Proxy (JP) helps the pledge with the join procedure by relaying the
link-scope Join Request over the IP network to a Join Registrar/Coordinator
(JRC) that can authenticate the pledge and validate that it is attached to
the appropriate network. As a result of the CoJP exchange, the pledge is in
possession of link-layer material including keys and a short address, and
if the ASN is known to be correct, all traffic can now be secured using CCM*
<span>[<a href="#CCMstar" class="xref">CCMstar</a>]</span> at the link layer.<a href="#section-6.5-2" class="pilcrow">¶</a></p>
<p id="section-6.5-3">
The authentication steps must be such that they cannot be replayed by an
attacker, and they must not depend on the tentative ASN being valid.
During the authentication, the keying material that the pledge obtains from
the JRC does not provide protection against spoofed ASN. Once the pledge has
obtained the keys to use in the network, it may still need to verify the ASN.
If the nonce used in the Layer 2 security derives from the extended (MAC-64)
address, then replaying the ASN alone cannot enable a nonce-reuse attack
unless the same node has lost its state with a previous ASN. But
if the nonce derives from the short address (e.g., assigned by the JRC), then
the JRC must ensure that it never assigns short addresses that were already
given to this or other nodes with the same keys. In other words, the network
must be rekeyed before the JRC runs out of short addresses.<a href="#section-6.5-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="keying">
<section id="section-6.6">
<h3 id="name-network-keying-and-rekeying">
<a href="#section-6.6" class="section-number selfRef">6.6. </a><a href="#name-network-keying-and-rekeying" class="section-name selfRef">Network Keying and Rekeying</a>
</h3>
<p id="section-6.6-1">
<a href="#rflo" class="xref">Section 4.2.1</a> provides an overview of the CoJP process described in
<span>[<a href="#RFC9031" class="xref">RFC9031</a>]</span> by which an LLN
can be assembled in the field, having been provisioned in a lab.
<span>[<a href="#I-D.ietf-6tisch-dtsecurity-zerotouch-join" class="xref">ZEROTOUCH-JOIN</a>]</span> is future
work that precedes and then leverages CoJP using the
<span>[<a href="#I-D.ietf-anima-constrained-voucher" class="xref">CONSTRAINED-VOUCHER</a>]</span> constrained profile
of <span>[<a href="#RFC8995" class="xref">RFC8995</a>]</span>.
This later work requires a yet-to-be standardized Lightweight Authenticated
Key Exchange protocol.<a href="#section-6.6-1" class="pilcrow">¶</a></p>
<p id="section-6.6-2">
CoJP results in distribution of a network-wide key that
is to be used with <span>[<a href="#IEEE802154" class="xref">IEEE802154</a>]</span> security. The details of use are
described in <span>[<a href="#RFC9031" class="xref">RFC9031</a>]</span>, Sections <a href="https://www.rfc-editor.org/rfc/rfc9031#section-9.2" class="relref">9.2</a>
and <a href="https://www.rfc-editor.org/rfc/rfc9031#section-9.3.2" class="relref">9.3.2</a>.<a href="#section-6.6-2" class="pilcrow">¶</a></p>
<p id="section-6.6-3">
The BRSKI mechanism may lead to the use of CoJP, in which case
it also results in distribution of a network-wide key. Alternatively
the BRSKI mechanism may be followed by use of <span>[<a href="#I-D.ietf-ace-coap-est" class="xref">EST-COAPS</a>]</span>
to enroll certificates for each device. In that case, the certificates
may be used with an <span>[<a href="#IEEE802154" class="xref">IEEE802154</a>]</span> key agreement protocol. The
description of this mechanism, while conceptually straightforward, still
has significant standardization hurdles to pass.<a href="#section-6.6-3" class="pilcrow">¶</a></p>
<p id="section-6.6-4">
<span><a href="https://www.rfc-editor.org/rfc/rfc9031#section-8.2" class="relref">Section 8.2</a> of [<a href="#RFC9031" class="xref">RFC9031</a>]</span> describes
a mechanism to change (rekey) the network.
There are a number of reasons to initiate a network rekey: to remove
unwanted (corrupt/malicious) nodes, to recover unused 2-byte short
addresses, or due to limits in encryption algorithms.
For all of the mechanisms that distribute a network-wide key, rekeying
is also needed on a periodic basis. In more detail:<a href="#section-6.6-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6.6-5.1">
The mechanism described in
<span><a href="https://www.rfc-editor.org/rfc/rfc9031#section-8.2" class="relref">Section 8.2</a> of [<a href="#RFC9031" class="xref">RFC9031</a>]</span> requires
advance communication between the JRC and every one of the nodes before
the key change. Given that many nodes may be sleepy, this operation
may take a significant amount of time and may consume a significant
portion of the available bandwidth. As such, network-wide rekeys
to exclude nodes that have become malicious will not be
particularly quick. If a rekey is already in progress, but the
unwanted node has not yet been updated, then it is possible to just
continue the operation. If the unwanted node has already received the
update, then the rekey operation will need to be restarted.<a href="#section-6.6-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.6-5.2">
The cryptographic mechanisms used by IEEE Std 802.15.4 include the 2-byte
short address in the calculation of the context.
A nonce-reuse attack may become feasible if a short address is reassigned
to another node while the same network-wide keys are in operation.
A network that gains and loses nodes on a regular
basis is likely to reach the 65536 limit of the 2-byte (16-bit) short
addresses, even if the network has only a few thousand nodes. Network
planners should consider the need to rekey the network on a periodic
basis in order to recover 2-byte addresses. The rekey can update the
short addresses for active nodes if desired, but there is actually no
need to do this as long as the key has been changed.<a href="#section-6.6-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.6-5.3">
With TSCH as it stands at the time of this writing, the ASN will wrap
after 2^40 timeslot durations, meaning around 350 years with the default values.
Wrapping ASN is not expected to happen within the lifetime of
most LLNs. Yet, should the ASN wrap, the network must be rekeyed to avoid
a nonce-reuse attack.<a href="#section-6.6-5.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.6-5.4">
Many cipher algorithms have some suggested limits on how many bytes
should be encrypted with that algorithm before a new key is used.
These numbers are typically in the many to hundreds of gigabytes of
data. On very fast backbone networks, this becomes an important
concern. On LLNs with typical data rates in the kilobits/second,
this concern is significantly less. With IEEE Std 802.15.4 as it stands
at the time of this writing, the ASN will wrap before the limits of the
current L2 crypto (AES-CCM-128) are reached, so the problem should never
occur.<a href="#section-6.6-5.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.6-5.5">
In any fashion, if the LLN is expected to operate continuously for decades,
then the operators are advised to plan for the need to rekey.<a href="#section-6.6-5.5" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6.6-6">
Except for urgent rekeys caused by malicious nodes, the rekey operation
described in <span>[<a href="#RFC9031" class="xref">RFC9031</a>]</span>
can be done as a background task and can be done incrementally. It
is a make-before-break mechanism. The switch over to the new key is
not signaled by time, but rather by observation that the new key is in
use. As such, the update can take as long as needed, or occur in as
short a time as practical.<a href="#section-6.6-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<section id="section-7">
<h2 id="name-references">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-7.1">
<h3 id="name-normative-references">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC0768">[RFC0768]</dt>
<dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"User Datagram Protocol"</span>, <span class="seriesInfo">STD 6</span>, <span class="seriesInfo">RFC 768</span>, <span class="seriesInfo">DOI 10.17487/RFC0768</span>, <time datetime="1980-08" class="refDate">August 1980</time>, <span><<a href="https://www.rfc-editor.org/info/rfc768">https://www.rfc-editor.org/info/rfc768</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4861">[RFC4861]</dt>
<dd>
<span class="refAuthor">Narten, T.</span>, <span class="refAuthor">Nordmark, E.</span>, <span class="refAuthor">Simpson, W.</span>, and <span class="refAuthor">H. Soliman</span>, <span class="refTitle">"Neighbor Discovery for IP version 6 (IPv6)"</span>, <span class="seriesInfo">RFC 4861</span>, <span class="seriesInfo">DOI 10.17487/RFC4861</span>, <time datetime="2007-09" class="refDate">September 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4861">https://www.rfc-editor.org/info/rfc4861</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4862">[RFC4862]</dt>
<dd>
<span class="refAuthor">Thomson, S.</span>, <span class="refAuthor">Narten, T.</span>, and <span class="refAuthor">T. Jinmei</span>, <span class="refTitle">"IPv6 Stateless Address Autoconfiguration"</span>, <span class="seriesInfo">RFC 4862</span>, <span class="seriesInfo">DOI 10.17487/RFC4862</span>, <time datetime="2007-09" class="refDate">September 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4862">https://www.rfc-editor.org/info/rfc4862</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4944">[RFC4944]</dt>
<dd>
<span class="refAuthor">Montenegro, G.</span>, <span class="refAuthor">Kushalnagar, N.</span>, <span class="refAuthor">Hui, J.</span>, and <span class="refAuthor">D. Culler</span>, <span class="refTitle">"Transmission of IPv6 Packets over IEEE 802.15.4 Networks"</span>, <span class="seriesInfo">RFC 4944</span>, <span class="seriesInfo">DOI 10.17487/RFC4944</span>, <time datetime="2007-09" class="refDate">September 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4944">https://www.rfc-editor.org/info/rfc4944</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5889">[RFC5889]</dt>
<dd>
<span class="refAuthor">Baccelli, E., Ed.</span> and <span class="refAuthor">M. Townsley, Ed.</span>, <span class="refTitle">"IP Addressing Model in Ad Hoc Networks"</span>, <span class="seriesInfo">RFC 5889</span>, <span class="seriesInfo">DOI 10.17487/RFC5889</span>, <time datetime="2010-09" class="refDate">September 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5889">https://www.rfc-editor.org/info/rfc5889</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6282">[RFC6282]</dt>
<dd>
<span class="refAuthor">Hui, J., Ed.</span> and <span class="refAuthor">P. Thubert</span>, <span class="refTitle">"Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks"</span>, <span class="seriesInfo">RFC 6282</span>, <span class="seriesInfo">DOI 10.17487/RFC6282</span>, <time datetime="2011-09" class="refDate">September 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6282">https://www.rfc-editor.org/info/rfc6282</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6550">[RFC6550]</dt>
<dd>
<span class="refAuthor">Winter, T., Ed.</span>, <span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Brandt, A.</span>, <span class="refAuthor">Hui, J.</span>, <span class="refAuthor">Kelsey, R.</span>, <span class="refAuthor">Levis, P.</span>, <span class="refAuthor">Pister, K.</span>, <span class="refAuthor">Struik, R.</span>, <span class="refAuthor">Vasseur, JP.</span>, and <span class="refAuthor">R. Alexander</span>, <span class="refTitle">"RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks"</span>, <span class="seriesInfo">RFC 6550</span>, <span class="seriesInfo">DOI 10.17487/RFC6550</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6550">https://www.rfc-editor.org/info/rfc6550</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6551">[RFC6551]</dt>
<dd>
<span class="refAuthor">Vasseur, JP., Ed.</span>, <span class="refAuthor">Kim, M., Ed.</span>, <span class="refAuthor">Pister, K.</span>, <span class="refAuthor">Dejean, N.</span>, and <span class="refAuthor">D. Barthel</span>, <span class="refTitle">"Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks"</span>, <span class="seriesInfo">RFC 6551</span>, <span class="seriesInfo">DOI 10.17487/RFC6551</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6551">https://www.rfc-editor.org/info/rfc6551</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6552">[RFC6552]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refTitle">"Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL)"</span>, <span class="seriesInfo">RFC 6552</span>, <span class="seriesInfo">DOI 10.17487/RFC6552</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6552">https://www.rfc-editor.org/info/rfc6552</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6553">[RFC6553]</dt>
<dd>
<span class="refAuthor">Hui, J.</span> and <span class="refAuthor">JP. Vasseur</span>, <span class="refTitle">"The Routing Protocol for Low-Power and Lossy Networks (RPL) Option for Carrying RPL Information in Data-Plane Datagrams"</span>, <span class="seriesInfo">RFC 6553</span>, <span class="seriesInfo">DOI 10.17487/RFC6553</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6553">https://www.rfc-editor.org/info/rfc6553</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6554">[RFC6554]</dt>
<dd>
<span class="refAuthor">Hui, J.</span>, <span class="refAuthor">Vasseur, JP.</span>, <span class="refAuthor">Culler, D.</span>, and <span class="refAuthor">V. Manral</span>, <span class="refTitle">"An IPv6 Routing Header for Source Routes with the Routing Protocol for Low-Power and Lossy Networks (RPL)"</span>, <span class="seriesInfo">RFC 6554</span>, <span class="seriesInfo">DOI 10.17487/RFC6554</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6554">https://www.rfc-editor.org/info/rfc6554</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6775">[RFC6775]</dt>
<dd>
<span class="refAuthor">Shelby, Z., Ed.</span>, <span class="refAuthor">Chakrabarti, S.</span>, <span class="refAuthor">Nordmark, E.</span>, and <span class="refAuthor">C. Bormann</span>, <span class="refTitle">"Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)"</span>, <span class="seriesInfo">RFC 6775</span>, <span class="seriesInfo">DOI 10.17487/RFC6775</span>, <time datetime="2012-11" class="refDate">November 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6775">https://www.rfc-editor.org/info/rfc6775</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7102">[RFC7102]</dt>
<dd>
<span class="refAuthor">Vasseur, JP.</span>, <span class="refTitle">"Terms Used in Routing for Low-Power and Lossy Networks"</span>, <span class="seriesInfo">RFC 7102</span>, <span class="seriesInfo">DOI 10.17487/RFC7102</span>, <time datetime="2014-01" class="refDate">January 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7102">https://www.rfc-editor.org/info/rfc7102</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7228">[RFC7228]</dt>
<dd>
<span class="refAuthor">Bormann, C.</span>, <span class="refAuthor">Ersue, M.</span>, and <span class="refAuthor">A. Keranen</span>, <span class="refTitle">"Terminology for Constrained-Node Networks"</span>, <span class="seriesInfo">RFC 7228</span>, <span class="seriesInfo">DOI 10.17487/RFC7228</span>, <time datetime="2014-05" class="refDate">May 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7228">https://www.rfc-editor.org/info/rfc7228</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7252">[RFC7252]</dt>
<dd>
<span class="refAuthor">Shelby, Z.</span>, <span class="refAuthor">Hartke, K.</span>, and <span class="refAuthor">C. Bormann</span>, <span class="refTitle">"The Constrained Application Protocol (CoAP)"</span>, <span class="seriesInfo">RFC 7252</span>, <span class="seriesInfo">DOI 10.17487/RFC7252</span>, <time datetime="2014-06" class="refDate">June 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7252">https://www.rfc-editor.org/info/rfc7252</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7554">[RFC7554]</dt>
<dd>
<span class="refAuthor">Watteyne, T., Ed.</span>, <span class="refAuthor">Palattella, M.</span>, and <span class="refAuthor">L. Grieco</span>, <span class="refTitle">"Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement"</span>, <span class="seriesInfo">RFC 7554</span>, <span class="seriesInfo">DOI 10.17487/RFC7554</span>, <time datetime="2015-05" class="refDate">May 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7554">https://www.rfc-editor.org/info/rfc7554</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8025">[RFC8025]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span> and <span class="refAuthor">R. Cragie</span>, <span class="refTitle">"IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Paging Dispatch"</span>, <span class="seriesInfo">RFC 8025</span>, <span class="seriesInfo">DOI 10.17487/RFC8025</span>, <time datetime="2016-11" class="refDate">November 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8025">https://www.rfc-editor.org/info/rfc8025</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8137">[RFC8137]</dt>
<dd>
<span class="refAuthor">Kivinen, T.</span> and <span class="refAuthor">P. Kinney</span>, <span class="refTitle">"IEEE 802.15.4 Information Element for the IETF"</span>, <span class="seriesInfo">RFC 8137</span>, <span class="seriesInfo">DOI 10.17487/RFC8137</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8137">https://www.rfc-editor.org/info/rfc8137</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8138">[RFC8138]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Bormann, C.</span>, <span class="refAuthor">Toutain, L.</span>, and <span class="refAuthor">R. Cragie</span>, <span class="refTitle">"IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing Header"</span>, <span class="seriesInfo">RFC 8138</span>, <span class="seriesInfo">DOI 10.17487/RFC8138</span>, <time datetime="2017-04" class="refDate">April 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8138">https://www.rfc-editor.org/info/rfc8138</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8180">[RFC8180]</dt>
<dd>
<span class="refAuthor">Vilajosana, X., Ed.</span>, <span class="refAuthor">Pister, K.</span>, and <span class="refAuthor">T. Watteyne</span>, <span class="refTitle">"Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration"</span>, <span class="seriesInfo">BCP 210</span>, <span class="seriesInfo">RFC 8180</span>, <span class="seriesInfo">DOI 10.17487/RFC8180</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8180">https://www.rfc-editor.org/info/rfc8180</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8200">[RFC8200]</dt>
<dd>
<span class="refAuthor">Deering, S.</span> and <span class="refAuthor">R. Hinden</span>, <span class="refTitle">"Internet Protocol, Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">STD 86</span>, <span class="seriesInfo">RFC 8200</span>, <span class="seriesInfo">DOI 10.17487/RFC8200</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8200">https://www.rfc-editor.org/info/rfc8200</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8453">[RFC8453]</dt>
<dd>
<span class="refAuthor">Ceccarelli, D., Ed.</span> and <span class="refAuthor">Y. Lee, Ed.</span>, <span class="refTitle">"Framework for Abstraction and Control of TE Networks (ACTN)"</span>, <span class="seriesInfo">RFC 8453</span>, <span class="seriesInfo">DOI 10.17487/RFC8453</span>, <time datetime="2018-08" class="refDate">August 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8453">https://www.rfc-editor.org/info/rfc8453</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8480">[RFC8480]</dt>
<dd>
<span class="refAuthor">Wang, Q., Ed.</span>, <span class="refAuthor">Vilajosana, X.</span>, and <span class="refAuthor">T. Watteyne</span>, <span class="refTitle">"6TiSCH Operation Sublayer (6top) Protocol (6P)"</span>, <span class="seriesInfo">RFC 8480</span>, <span class="seriesInfo">DOI 10.17487/RFC8480</span>, <time datetime="2018-11" class="refDate">November 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8480">https://www.rfc-editor.org/info/rfc8480</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8505">[RFC8505]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Nordmark, E.</span>, <span class="refAuthor">Chakrabarti, S.</span>, and <span class="refAuthor">C. Perkins</span>, <span class="refTitle">"Registration Extensions for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery"</span>, <span class="seriesInfo">RFC 8505</span>, <span class="seriesInfo">DOI 10.17487/RFC8505</span>, <time datetime="2018-11" class="refDate">November 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8505">https://www.rfc-editor.org/info/rfc8505</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8655">[RFC8655]</dt>
<dd>
<span class="refAuthor">Finn, N.</span>, <span class="refAuthor">Thubert, P.</span>, <span class="refAuthor">Varga, B.</span>, and <span class="refAuthor">J. Farkas</span>, <span class="refTitle">"Deterministic Networking Architecture"</span>, <span class="seriesInfo">RFC 8655</span>, <span class="seriesInfo">DOI 10.17487/RFC8655</span>, <time datetime="2019-10" class="refDate">October 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8655">https://www.rfc-editor.org/info/rfc8655</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8928">[RFC8928]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Sarikaya, B.</span>, <span class="refAuthor">Sethi, M.</span>, and <span class="refAuthor">R. Struik</span>, <span class="refTitle">"Address-Protected Neighbor Discovery for Low-Power and Lossy Networks"</span>, <span class="seriesInfo">RFC 8928</span>, <span class="seriesInfo">DOI 10.17487/RFC8928</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8928">https://www.rfc-editor.org/info/rfc8928</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8929">[RFC8929]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Perkins, C.E.</span>, and <span class="refAuthor">E. Levy-Abegnoli</span>, <span class="refTitle">"IPv6 Backbone Router"</span>, <span class="seriesInfo">RFC 8929</span>, <span class="seriesInfo">DOI 10.17487/RFC8929</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8929">https://www.rfc-editor.org/info/rfc8929</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8930">[RFC8930]</dt>
<dd>
<span class="refAuthor">Watteyne, T., Ed.</span>, <span class="refAuthor">Thubert, P., Ed.</span>, and <span class="refAuthor">C. Bormann</span>, <span class="refTitle">"On Forwarding 6LoWPAN Fragments over a Multi-Hop IPv6 Network"</span>, <span class="seriesInfo">RFC 8930</span>, <span class="seriesInfo">DOI 10.17487/RFC8930</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8930">https://www.rfc-editor.org/info/rfc8930</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8931">[RFC8931]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refTitle">"IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Selective Fragment Recovery"</span>, <span class="seriesInfo">RFC 8931</span>, <span class="seriesInfo">DOI 10.17487/RFC8931</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8931">https://www.rfc-editor.org/info/rfc8931</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9008">[RFC9008]</dt>
<dd>
<span class="refAuthor">Robles, M.I.</span>, <span class="refAuthor">Richardson, M.</span>, and <span class="refAuthor">P. Thubert</span>, <span class="refTitle">"Using RPI Option Type, Routing Header for Source Routes, and IPv6-in-IPv6 Encapsulation in the RPL Data Plane"</span>, <span class="seriesInfo">RFC 9008</span>, <span class="seriesInfo">DOI 10.17487/RFC9008</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9008">https://www.rfc-editor.org/info/rfc9008</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9010">[RFC9010]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span> and <span class="refAuthor">M. Richardson</span>, <span class="refTitle">"Routing for RPL (Routing Protocol for Low-Power and Lossy Networks) Leaves"</span>, <span class="seriesInfo">RFC 9010</span>, <span class="seriesInfo">DOI 10.17487/RFC9010</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9010">https://www.rfc-editor.org/info/rfc9010</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9031">[RFC9031]</dt>
<dd>
<span class="refAuthor">Vučinić, M., Ed.</span>, <span class="refAuthor">Simon, J.</span>, <span class="refAuthor">Pister, K.</span>, and <span class="refAuthor">M. Richardson</span>, <span class="refTitle">"Constrained Join Protocol (CoJP) for 6TiSCH"</span>, <span class="seriesInfo">RFC 9031</span>, <span class="seriesInfo">DOI 10.17487/RFC9031</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9031">https://www.rfc-editor.org/info/rfc9031</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9032">[RFC9032]</dt>
<dd>
<span class="refAuthor">Dujovne, D., Ed.</span> and <span class="refAuthor">M. Richardson</span>, <span class="refTitle">"Encapsulation of 6TiSCH Join and Enrollment Information Elements"</span>, <span class="seriesInfo">RFC 9032</span>, <span class="seriesInfo">DOI 10.17487/RFC9032</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9032">https://www.rfc-editor.org/info/rfc9032</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9033">[RFC9033]</dt>
<dd>
<span class="refAuthor">Chang, T., Ed.</span>, <span class="refAuthor">Vučinić, M.</span>, <span class="refAuthor">Vilajosana, X.</span>, <span class="refAuthor">Duquennoy, S.</span>, and <span class="refAuthor">D. Dujovne</span>, <span class="refTitle">"6TiSCH Minimal Scheduling Function (MSF)"</span>, <span class="seriesInfo">RFC 9033</span>, <span class="seriesInfo">DOI 10.17487/RFC9033</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9033">https://www.rfc-editor.org/info/rfc9033</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-7.2">
<h3 id="name-informative-references">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="AMI">[AMI]</dt>
<dd>
<span class="refAuthor">U.S. Department of Energy</span>, <span class="refTitle">"Advanced Metering Infrastructure and Customer Systems"</span>, <time datetime="2006" class="refDate">2006</time>, <span><<a href="https://www.energy.gov/sites/prod/files/2016/12/f34/AMI%20Summary%20Report_09-26-16.pdf">https://www.energy.gov/sites/prod/files/2016/12/f34/AMI%20Summary%20Report_09-26-16.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="ANIMA">[ANIMA]</dt>
<dd>
<span class="refAuthor">IETF</span>, <span class="refTitle">"Autonomic Networking Integrated Model and Approach (anima)"</span>, <span><<a href="https://datatracker.ietf.org/doc/charter-ietf-anima/">https://datatracker.ietf.org/doc/charter-ietf-anima/</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-roll-aodv-rpl">[AODV-RPL]</dt>
<dd>
<span class="refAuthor">Anamalamudi, S.</span>, <span class="refAuthor">Zhang, M.</span>, <span class="refAuthor">Perkins, C. E.</span>, <span class="refAuthor">Anand, S.</span>, and <span class="refAuthor">B. Liu</span>, <span class="refTitle">"Supporting Asymmetric Links in Low Power Networks: AODV-RPL"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-roll-aodv-rpl-10</span>, <time datetime="2021-04-04" class="refDate">4 April 2021</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-roll-aodv-rpl-10">https://tools.ietf.org/html/draft-ietf-roll-aodv-rpl-10</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-manet-aodvv2">[AODVv2]</dt>
<dd>
<span class="refAuthor">Perkins, C. E.</span>, <span class="refAuthor">Ratliff, S.</span>, <span class="refAuthor">Dowdell, J.</span>, <span class="refAuthor">Steenbrink, L.</span>, and <span class="refAuthor">V. Mercieca</span>, <span class="refTitle">"Ad Hoc On-demand Distance Vector Version 2 (AODVv2) Routing"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-manet-aodvv2-16</span>, <time datetime="2016-05-04" class="refDate">4 May 2016</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-manet-aodvv2-16">https://tools.ietf.org/html/draft-ietf-manet-aodvv2-16</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.thubert-6lo-bier-dispatch">[BITSTRINGS-6LORH]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Brodard, Z.</span>, <span class="refAuthor">Jiang, H.</span>, and <span class="refAuthor">G. Texier</span>, <span class="refTitle">"A 6loRH for BitStrings"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-thubert-6lo-bier-dispatch-06</span>, <time datetime="2019-01-28" class="refDate">28 January 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-thubert-6lo-bier-dispatch-06">https://tools.ietf.org/html/draft-thubert-6lo-bier-dispatch-06</a>></span>. </dd>
<dd class="break"></dd>
<dt id="CCAMP">[CCAMP]</dt>
<dd>
<span class="refAuthor">IETF</span>, <span class="refTitle">"Common Control and Measurement Plane (ccamp)"</span>, <span><<a href="https://datatracker.ietf.org/doc/charter-ietf-ccamp/">https://datatracker.ietf.org/doc/charter-ietf-ccamp/</a>></span>. </dd>
<dd class="break"></dd>
<dt id="CCMstar">[CCMstar]</dt>
<dd>
<span class="refAuthor">Struik, R.</span>, <span class="refTitle">"Formal Specification of the CCM* Mode of Operation"</span>, <time datetime="2004-09" class="refDate">September 2004</time>, <span><<a href="http://www.ieee802.org/15/pub/2004/15-04-0537-00-004b-formal-specification-ccm-star-mode-operation.doc">http://www.ieee802.org/15/pub/2004/15-04-0537-00-004b-formal-specification-ccm-star-mode-operation.doc</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-anima-constrained-voucher">[CONSTRAINED-VOUCHER]</dt>
<dd>
<span class="refAuthor">Richardson, M.</span>, <span class="refAuthor">van der Stok, P.</span>, and <span class="refAuthor">P. Kampanakis</span>, <span class="refTitle">"Constrained Voucher Artifacts for Bootstrapping Protocols"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-anima-constrained-voucher-10</span>, <time datetime="2021-02-21" class="refDate">21 February 2021</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-anima-constrained-voucher-10">https://tools.ietf.org/html/draft-ietf-anima-constrained-voucher-10</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-roll-dao-projection">[DAO-PROJECTION]</dt>
<dd>
<span class="refAuthor">Thubert, P.</span>, <span class="refAuthor">Jadhav, R. A.</span>, and <span class="refAuthor">M. Gillmore</span>, <span class="refTitle">"Root initiated routing state in RPL"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-roll-dao-projection-16</span>, <time datetime="2021-01-15" class="refDate">15 January 2021</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-roll-dao-projection-16">https://tools.ietf.org/html/draft-ietf-roll-dao-projection-16</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.selander-ace-cose-ecdhe">[EDHOC]</dt>
<dd>
<span class="refAuthor">Selander, G.</span>, <span class="refAuthor">Mattsson, J.</span>, and <span class="refAuthor">F. Palombini</span>, <span class="refTitle">"Ephemeral Diffie-Hellman Over COSE (EDHOC)"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-selander-ace-cose-ecdhe-14</span>, <time datetime="2019-09-11" class="refDate">11 September 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-selander-ace-cose-ecdhe-14">https://tools.ietf.org/html/draft-selander-ace-cose-ecdhe-14</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-ace-coap-est">[EST-COAPS]</dt>
<dd>
<span class="refAuthor">van der Stok, P.</span>, <span class="refAuthor">Kampanakis, P.</span>, <span class="refAuthor">Richardson, M.</span>, and <span class="refAuthor">S. Raza</span>, <span class="refTitle">"EST over secure CoAP (EST-coaps)"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-ace-coap-est-18</span>, <time datetime="2020-01-06" class="refDate">6 January 2020</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-ace-coap-est-18">https://tools.ietf.org/html/draft-ietf-ace-coap-est-18</a>></span>. </dd>
<dd class="break"></dd>
<dt id="HART">[HART]</dt>
<dd>
<span class="refAuthor">FieldComm Group</span>, <span class="refTitle">"HART"</span>, <span><<a href="https://fieldcommgroup.org/technologies/hart">https://fieldcommgroup.org/technologies/hart</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEC62439">[IEC62439]</dt>
<dd>
<span class="refAuthor">IEC</span>, <span class="refTitle">"Industrial communication networks - High availability automation networks - Part 3: Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR)"</span>, <span class="seriesInfo">IEC 62439-3:2016</span>, <time datetime="2016" class="refDate">2016</time>, <span><<a href="https://webstore.iec.ch/publication/24438">https://webstore.iec.ch/publication/24438</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802154">[IEEE802154]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Low-Rate Wireless Networks"</span>, <span class="seriesInfo">IEEE Standard 802.15.4-2015</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2016.7460875</span>, <time datetime="2016-04" class="refDate">April 2016</time>, <span><<a href="https://ieeexplore.ieee.org/document/7460875">https://ieeexplore.ieee.org/document/7460875</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802154e">[IEEE802154e]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and metropolitan area networks -- Part. 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer"</span>, <span class="seriesInfo">IEEE Standard 802.15.4e-2012</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2012.6185525</span>, <time datetime="2012-04" class="refDate">April 2012</time>, <span><<a href="https://ieeexplore.ieee.org/document/6185525">https://ieeexplore.ieee.org/document/6185525</a>></span>. </dd>
<dd class="break"></dd>
<dt id="ISA100">[ISA100]</dt>
<dd>
<span class="refAuthor">ISA/ANSI</span>, <span class="refTitle">"ISA100, Wireless Systems for Automation"</span>, <span><<a href="https://www.isa.org/isa100/">https://www.isa.org/isa100/</a>></span>. </dd>
<dd class="break"></dd>
<dt id="ISA100.11a">[ISA100.11a]</dt>
<dd>
<span class="refAuthor">ISA/ANSI</span>, <span class="refTitle">"Wireless Systems for Industrial Automation: Process Control and Related Applications - ISA100.11a-2011"</span>, <span class="seriesInfo">IEC 62734:2014</span>, <time datetime="2011" class="refDate">2011</time>, <span><<a href="https://webstore.iec.ch/publication/65581">https://webstore.iec.ch/publication/65581</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.thubert-6man-unicast-lookup">[ND-UNICAST-LOOKUP]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span> and <span class="refAuthor">E. Levy-Abegnoli</span>, <span class="refTitle">"IPv6 Neighbor Discovery Unicast Lookup"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-thubert-6man-unicast-lookup-00</span>, <time datetime="2019-07-29" class="refDate">29 July 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-thubert-6man-unicast-lookup-00">https://tools.ietf.org/html/draft-thubert-6man-unicast-lookup-00</a>></span>. </dd>
<dd class="break"></dd>
<dt id="PCE">[PCE]</dt>
<dd>
<span class="refAuthor">IETF</span>, <span class="refTitle">"Path Computation Element (pce)"</span>, <span><<a href="https://datatracker.ietf.org/doc/charter-ietf-pce/">https://datatracker.ietf.org/doc/charter-ietf-pce/</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.pthubert-raw-architecture">[RAW-ARCHITECTURE]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span> and <span class="refAuthor">G. Z. Papadopoulos</span>, <span class="refTitle">"Reliable and Available Wireless Problem Statement"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-pthubert-raw-architecture-05</span>, <time datetime="2020-11-15" class="refDate">15 November 2020</time>, <span><<a href="https://tools.ietf.org/html/draft-pthubert-raw-architecture-05">https://tools.ietf.org/html/draft-pthubert-raw-architecture-05</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-raw-use-cases">[RAW-USE-CASES]</dt>
<dd>
<span class="refAuthor">Papadopoulos, G. Z.</span>, <span class="refAuthor">Thubert, P.</span>, <span class="refAuthor">Theoleyre, F.</span>, and <span class="refAuthor">C. J. Bernardos</span>, <span class="refTitle">"RAW use cases"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-raw-use-cases-01</span>, <time datetime="2021-02-21" class="refDate">21 February 2021</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-raw-use-cases-01">https://tools.ietf.org/html/draft-ietf-raw-use-cases-01</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2474">[RFC2474]</dt>
<dd>
<span class="refAuthor">Nichols, K.</span>, <span class="refAuthor">Blake, S.</span>, <span class="refAuthor">Baker, F.</span>, and <span class="refAuthor">D. Black</span>, <span class="refTitle">"Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"</span>, <span class="seriesInfo">RFC 2474</span>, <span class="seriesInfo">DOI 10.17487/RFC2474</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2474">https://www.rfc-editor.org/info/rfc2474</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2545">[RFC2545]</dt>
<dd>
<span class="refAuthor">Marques, P.</span> and <span class="refAuthor">F. Dupont</span>, <span class="refTitle">"Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing"</span>, <span class="seriesInfo">RFC 2545</span>, <span class="seriesInfo">DOI 10.17487/RFC2545</span>, <time datetime="1999-03" class="refDate">March 1999</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2545">https://www.rfc-editor.org/info/rfc2545</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3209">[RFC3209]</dt>
<dd>
<span class="refAuthor">Awduche, D.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Gan, D.</span>, <span class="refAuthor">Li, T.</span>, <span class="refAuthor">Srinivasan, V.</span>, and <span class="refAuthor">G. Swallow</span>, <span class="refTitle">"RSVP-TE: Extensions to RSVP for LSP Tunnels"</span>, <span class="seriesInfo">RFC 3209</span>, <span class="seriesInfo">DOI 10.17487/RFC3209</span>, <time datetime="2001-12" class="refDate">December 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3209">https://www.rfc-editor.org/info/rfc3209</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3444">[RFC3444]</dt>
<dd>
<span class="refAuthor">Pras, A.</span> and <span class="refAuthor">J. Schoenwaelder</span>, <span class="refTitle">"On the Difference between Information Models and Data Models"</span>, <span class="seriesInfo">RFC 3444</span>, <span class="seriesInfo">DOI 10.17487/RFC3444</span>, <time datetime="2003-01" class="refDate">January 2003</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3444">https://www.rfc-editor.org/info/rfc3444</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3963">[RFC3963]</dt>
<dd>
<span class="refAuthor">Devarapalli, V.</span>, <span class="refAuthor">Wakikawa, R.</span>, <span class="refAuthor">Petrescu, A.</span>, and <span class="refAuthor">P. Thubert</span>, <span class="refTitle">"Network Mobility (NEMO) Basic Support Protocol"</span>, <span class="seriesInfo">RFC 3963</span>, <span class="seriesInfo">DOI 10.17487/RFC3963</span>, <time datetime="2005-01" class="refDate">January 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3963">https://www.rfc-editor.org/info/rfc3963</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4080">[RFC4080]</dt>
<dd>
<span class="refAuthor">Hancock, R.</span>, <span class="refAuthor">Karagiannis, G.</span>, <span class="refAuthor">Loughney, J.</span>, and <span class="refAuthor">S. Van den Bosch</span>, <span class="refTitle">"Next Steps in Signaling (NSIS): Framework"</span>, <span class="seriesInfo">RFC 4080</span>, <span class="seriesInfo">DOI 10.17487/RFC4080</span>, <time datetime="2005-06" class="refDate">June 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4080">https://www.rfc-editor.org/info/rfc4080</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4291">[RFC4291]</dt>
<dd>
<span class="refAuthor">Hinden, R.</span> and <span class="refAuthor">S. Deering</span>, <span class="refTitle">"IP Version 6 Addressing Architecture"</span>, <span class="seriesInfo">RFC 4291</span>, <span class="seriesInfo">DOI 10.17487/RFC4291</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4291">https://www.rfc-editor.org/info/rfc4291</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4903">[RFC4903]</dt>
<dd>
<span class="refAuthor">Thaler, D.</span>, <span class="refTitle">"Multi-Link Subnet Issues"</span>, <span class="seriesInfo">RFC 4903</span>, <span class="seriesInfo">DOI 10.17487/RFC4903</span>, <time datetime="2007-06" class="refDate">June 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4903">https://www.rfc-editor.org/info/rfc4903</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4919">[RFC4919]</dt>
<dd>
<span class="refAuthor">Kushalnagar, N.</span>, <span class="refAuthor">Montenegro, G.</span>, and <span class="refAuthor">C. Schumacher</span>, <span class="refTitle">"IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals"</span>, <span class="seriesInfo">RFC 4919</span>, <span class="seriesInfo">DOI 10.17487/RFC4919</span>, <time datetime="2007-08" class="refDate">August 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4919">https://www.rfc-editor.org/info/rfc4919</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5340">[RFC5340]</dt>
<dd>
<span class="refAuthor">Coltun, R.</span>, <span class="refAuthor">Ferguson, D.</span>, <span class="refAuthor">Moy, J.</span>, and <span class="refAuthor">A. Lindem</span>, <span class="refTitle">"OSPF for IPv6"</span>, <span class="seriesInfo">RFC 5340</span>, <span class="seriesInfo">DOI 10.17487/RFC5340</span>, <time datetime="2008-07" class="refDate">July 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5340">https://www.rfc-editor.org/info/rfc5340</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5974">[RFC5974]</dt>
<dd>
<span class="refAuthor">Manner, J.</span>, <span class="refAuthor">Karagiannis, G.</span>, and <span class="refAuthor">A. McDonald</span>, <span class="refTitle">"NSIS Signaling Layer Protocol (NSLP) for Quality-of-Service Signaling"</span>, <span class="seriesInfo">RFC 5974</span>, <span class="seriesInfo">DOI 10.17487/RFC5974</span>, <time datetime="2010-10" class="refDate">October 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5974">https://www.rfc-editor.org/info/rfc5974</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6275">[RFC6275]</dt>
<dd>
<span class="refAuthor">Perkins, C., Ed.</span>, <span class="refAuthor">Johnson, D.</span>, and <span class="refAuthor">J. Arkko</span>, <span class="refTitle">"Mobility Support in IPv6"</span>, <span class="seriesInfo">RFC 6275</span>, <span class="seriesInfo">DOI 10.17487/RFC6275</span>, <time datetime="2011-07" class="refDate">July 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6275">https://www.rfc-editor.org/info/rfc6275</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6347">[RFC6347]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span> and <span class="refAuthor">N. Modadugu</span>, <span class="refTitle">"Datagram Transport Layer Security Version 1.2"</span>, <span class="seriesInfo">RFC 6347</span>, <span class="seriesInfo">DOI 10.17487/RFC6347</span>, <time datetime="2012-01" class="refDate">January 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6347">https://www.rfc-editor.org/info/rfc6347</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6606">[RFC6606]</dt>
<dd>
<span class="refAuthor">Kim, E.</span>, <span class="refAuthor">Kaspar, D.</span>, <span class="refAuthor">Gomez, C.</span>, and <span class="refAuthor">C. Bormann</span>, <span class="refTitle">"Problem Statement and Requirements for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing"</span>, <span class="seriesInfo">RFC 6606</span>, <span class="seriesInfo">DOI 10.17487/RFC6606</span>, <time datetime="2012-05" class="refDate">May 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6606">https://www.rfc-editor.org/info/rfc6606</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6830">[RFC6830]</dt>
<dd>
<span class="refAuthor">Farinacci, D.</span>, <span class="refAuthor">Fuller, V.</span>, <span class="refAuthor">Meyer, D.</span>, and <span class="refAuthor">D. Lewis</span>, <span class="refTitle">"The Locator/ID Separation Protocol (LISP)"</span>, <span class="seriesInfo">RFC 6830</span>, <span class="seriesInfo">DOI 10.17487/RFC6830</span>, <time datetime="2013-01" class="refDate">January 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6830">https://www.rfc-editor.org/info/rfc6830</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7426">[RFC7426]</dt>
<dd>
<span class="refAuthor">Haleplidis, E., Ed.</span>, <span class="refAuthor">Pentikousis, K., Ed.</span>, <span class="refAuthor">Denazis, S.</span>, <span class="refAuthor">Hadi Salim, J.</span>, <span class="refAuthor">Meyer, D.</span>, and <span class="refAuthor">O. Koufopavlou</span>, <span class="refTitle">"Software-Defined Networking (SDN): Layers and Architecture Terminology"</span>, <span class="seriesInfo">RFC 7426</span>, <span class="seriesInfo">DOI 10.17487/RFC7426</span>, <time datetime="2015-01" class="refDate">January 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7426">https://www.rfc-editor.org/info/rfc7426</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8578">[RFC8578]</dt>
<dd>
<span class="refAuthor">Grossman, E., Ed.</span>, <span class="refTitle">"Deterministic Networking Use Cases"</span>, <span class="seriesInfo">RFC 8578</span>, <span class="seriesInfo">DOI 10.17487/RFC8578</span>, <time datetime="2019-05" class="refDate">May 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8578">https://www.rfc-editor.org/info/rfc8578</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8613">[RFC8613]</dt>
<dd>
<span class="refAuthor">Selander, G.</span>, <span class="refAuthor">Mattsson, J.</span>, <span class="refAuthor">Palombini, F.</span>, and <span class="refAuthor">L. Seitz</span>, <span class="refTitle">"Object Security for Constrained RESTful Environments (OSCORE)"</span>, <span class="seriesInfo">RFC 8613</span>, <span class="seriesInfo">DOI 10.17487/RFC8613</span>, <time datetime="2019-07" class="refDate">July 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8613">https://www.rfc-editor.org/info/rfc8613</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8939">[RFC8939]</dt>
<dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Fedyk, D.</span>, and <span class="refAuthor">S. Bryant</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane: IP"</span>, <span class="seriesInfo">RFC 8939</span>, <span class="seriesInfo">DOI 10.17487/RFC8939</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8939">https://www.rfc-editor.org/info/rfc8939</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8995">[RFC8995]</dt>
<dd>
<span class="refAuthor">Pritikin, M.</span>, <span class="refAuthor">Richardson, M.</span>, <span class="refAuthor">Eckert, T.</span>, <span class="refAuthor">Behringer, M.</span>, and <span class="refAuthor">K. Watsen</span>, <span class="refTitle">"Bootstrapping Remote Secure Key Infrastructure (BRSKI)"</span>, <span class="seriesInfo">RFC 8995</span>, <span class="seriesInfo">DOI 10.17487/RFC8995</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8995">https://www.rfc-editor.org/info/rfc8995</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9035">[RFC9035]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span> and <span class="refAuthor">L. Zhao</span>, <span class="refTitle">"A Routing Protocol for Low-Power and Lossy Networks (RPL) Destination-Oriented Directed Acyclic Graph (DODAG) Configuration Option for the 6LoWPAN Routing Header"</span>, <span class="seriesInfo">RFC 9035</span>, <span class="seriesInfo">DOI 10.17487/RFC9035</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9035">https://www.rfc-editor.org/info/rfc9035</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.tiloca-6tisch-robust-scheduling">[ROBUST-SCHEDULING]</dt>
<dd>
<span class="refAuthor">Tiloca, M.</span>, <span class="refAuthor">Duquennoy, S.</span>, and <span class="refAuthor">G. Dini</span>, <span class="refTitle">"Robust Scheduling against Selective Jamming in 6TiSCH Networks"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-tiloca-6tisch-robust-scheduling-02</span>, <time datetime="2019-06-10" class="refDate">10 June 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-tiloca-6tisch-robust-scheduling-02">https://tools.ietf.org/html/draft-tiloca-6tisch-robust-scheduling-02</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-roll-rpl-industrial-applicability">[RPL-APPLICABILITY]</dt>
<dd>
<span class="refAuthor">Phinney, T., Ed.</span>, <span class="refAuthor">Thubert, P.</span>, and <span class="refAuthor">R. Assimiti</span>, <span class="refTitle">"RPL applicability in industrial networks"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-roll-rpl-industrial-applicability-02</span>, <time datetime="2013-10-21" class="refDate">21 October 2013</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-roll-rpl-industrial-applicability-02">https://tools.ietf.org/html/draft-ietf-roll-rpl-industrial-applicability-02</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.thubert-roll-bier">[RPL-BIER]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refTitle">"RPL-BIER"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-thubert-roll-bier-02</span>, <time datetime="2018-07-24" class="refDate">24 July 2018</time>, <span><<a href="https://tools.ietf.org/html/draft-thubert-roll-bier-02">https://tools.ietf.org/html/draft-thubert-roll-bier-02</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-roll-capabilities">[RPL-MOP]</dt>
<dd>
<span class="refAuthor">Jadhav, R., Ed.</span>, <span class="refAuthor">Thubert, P.</span>, <span class="refAuthor">Richardson, M.</span>, and <span class="refAuthor">R. Sahoo</span>, <span class="refTitle">"RPL Capabilities"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-roll-capabilities-08</span>, <time datetime="2021-03-17" class="refDate">17 March 2021</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-roll-capabilities-08">https://tools.ietf.org/html/draft-ietf-roll-capabilities-08</a>></span>. </dd>
<dd class="break"></dd>
<dt id="S-ALOHA">[S-ALOHA]</dt>
<dd>
<span class="refAuthor">Roberts, L. G.</span>, <span class="refTitle">"ALOHA packet system with and without slots and capture"</span>, <span class="refContent">ACM SIGCOMM Computer Communication Review</span>, <span class="seriesInfo">DOI 10.1145/1024916.1024920</span>, <time datetime="1975-04" class="refDate">April 1975</time>, <span><<a href="https://dl.acm.org/citation.cfm?id=1024920">https://dl.acm.org/citation.cfm?id=1024920</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.thubert-bier-replication-elimination">[TE-PREF]</dt>
<dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Eckert, T.</span>, <span class="refAuthor">Brodard, Z.</span>, and <span class="refAuthor">H. Jiang</span>, <span class="refTitle">"BIER-TE extensions for Packet Replication and Elimination Function (PREF) and OAM"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-thubert-bier-replication-elimination-03</span>, <time datetime="2018-03-03" class="refDate">3 March 2018</time>, <span><<a href="https://tools.ietf.org/html/draft-thubert-bier-replication-elimination-03">https://tools.ietf.org/html/draft-thubert-bier-replication-elimination-03</a>></span>. </dd>
<dd class="break"></dd>
<dt id="TEAS">[TEAS]</dt>
<dd>
<span class="refAuthor">IETF</span>, <span class="refTitle">"Traffic Engineering Architecture and Signaling (teas)"</span>, <span><<a href="https://datatracker.ietf.org/doc/charter-ietf-teas/">https://datatracker.ietf.org/doc/charter-ietf-teas/</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-lwig-6lowpan-virtual-reassembly">[VIRTUAL-REASSEMBLY]</dt>
<dd>
<span class="refAuthor">Bormann, C.</span> and <span class="refAuthor">T. Watteyne</span>, <span class="refTitle">"Virtual reassembly buffers in 6LoWPAN"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-lwig-6lowpan-virtual-reassembly-02</span>, <time datetime="2020-03-09" class="refDate">9 March 2020</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-lwig-6lowpan-virtual-reassembly-02">https://tools.ietf.org/html/draft-ietf-lwig-6lowpan-virtual-reassembly-02</a>></span>. </dd>
<dd class="break"></dd>
<dt id="WirelessHART">[WirelessHART]</dt>
<dd>
<span class="refAuthor">International Electrotechnical Commission</span>, <span class="refTitle">"Industrial networks - Wireless communication network and communication profiles - WirelessHART(TM)"</span>, <span class="seriesInfo">IEC 62591:2016</span>, <time datetime="2016-03" class="refDate">March 2016</time>, <span><<a href="https://webstore.iec.ch/publication/24433">https://webstore.iec.ch/publication/24433</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-6tisch-dtsecurity-zerotouch-join">[ZEROTOUCH-JOIN]</dt>
<dd>
<span class="refAuthor">Richardson, M.</span>, <span class="refTitle">"6tisch Zero-Touch Secure Join protocol"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-6tisch-dtsecurity-zerotouch-join-04</span>, <time datetime="2019-07-08" class="refDate">8 July 2019</time>, <span><<a href="https://tools.ietf.org/html/draft-ietf-6tisch-dtsecurity-zerotouch-join-04">https://tools.ietf.org/html/draft-ietf-6tisch-dtsecurity-zerotouch-join-04</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="section-appendix.a">
<h2 id="name-related-work-in-progress">
<a href="#section-appendix.a" class="section-number selfRef">Appendix A. </a><a href="#name-related-work-in-progress" class="section-name selfRef">Related Work in Progress</a>
</h2>
<p id="section-appendix.a-1">This document has been incremented as the work progressed following the
evolution of the WG charter and the availability of dependent work.
The intent was to publish when the WG concluded on the covered items.
At the time of publishing, the following specifications are still in progress
and may affect the evolution of the stack in a 6TiSCH-aware node.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
<div id="unchartered">
<section id="section-a.1">
<h2 id="name-unchartered-ietf-work-items">
<a href="#section-a.1" class="section-number selfRef">A.1. </a><a href="#name-unchartered-ietf-work-items" class="section-name selfRef">Unchartered IETF Work Items</a>
</h2>
<div id="unchartered-sec">
<section id="section-a.1.1">
<h3 id="name-6tisch-zero-touch-security">
<a href="#section-a.1.1" class="section-number selfRef">A.1.1. </a><a href="#name-6tisch-zero-touch-security" class="section-name selfRef">6TiSCH Zero-Touch Security</a>
</h3>
<p id="section-a.1.1-1">
The security model and in particular the zero-touch join process
<span>[<a href="#I-D.ietf-6tisch-dtsecurity-zerotouch-join" class="xref">ZEROTOUCH-JOIN</a>]</span> depend on
the ANIMA (Autonomic Networking Integrated Model and Approach) <span>[<a href="#ANIMA" class="xref">ANIMA</a>]</span>
"<a href="#RFC8995" class="xref">Bootstrapping Remote Secure Key Infrastructure (BRSKI)</a>" <span>[<a href="#RFC8995" class="xref">RFC8995</a>]</span>
to enable zero-touch security provisioning; for highly
constrained nodes, a minimal model based on pre-shared keys (PSK)
is also available. As currently written, it also depends on
a number of documents in progress in the CORE (Constrained RESTful Environments) WG and on
<span><a href="#I-D.selander-ace-cose-ecdhe" class="xref">"Ephemeral Diffie-Hellman Over
COSE (EDHOC)"</a> [<a href="#I-D.selander-ace-cose-ecdhe" class="xref">EDHOC</a>]</span>, which is being considered for adoption by the LAKE
(Lightweight Authenticated Key Exchange) WG.<a href="#section-a.1.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="unchartered-tracks">
<section id="section-a.1.2">
<h3 id="name-6tisch-track-setup">
<a href="#section-a.1.2" class="section-number selfRef">A.1.2. </a><a href="#name-6tisch-track-setup" class="section-name selfRef">6TiSCH Track Setup</a>
</h3>
<p id="section-a.1.2-1">
ROLL (Routing Over Low power and Lossy networks) is now standardizing a reactive routing protocol based on RPL
<span>[<a href="#I-D.ietf-roll-aodv-rpl" class="xref">AODV-RPL</a>]</span>.
The need of a reactive routing protocol to establish on-demand,
constraint-optimized routes and a reservation protocol to establish
Layer 3 Tracks is being discussed in 6TiSCH but not yet chartered.<a href="#section-a.1.2-1" class="pilcrow">¶</a></p>
<p id="section-a.1.2-2">
At the time of this writing, there is new work planned in the IETF to provide
limited deterministic networking capabilities for wireless networks with a
focus on forwarding behaviors to react quickly and locally to the changes
as described in <span>[<a href="#I-D.pthubert-raw-architecture" class="xref">RAW-ARCHITECTURE</a>]</span>.<a href="#section-a.1.2-2" class="pilcrow">¶</a></p>
<p id="section-a.1.2-3">
ROLL is also standardizing an extension to RPL to set up centrally computed
routes <span>[<a href="#I-D.ietf-roll-dao-projection" class="xref">DAO-PROJECTION</a>]</span>.<a href="#section-a.1.2-3" class="pilcrow">¶</a></p>
<p id="section-a.1.2-4">
The 6TiSCH architecture should thus inherit from the
<span><a href="#RFC8655" class="xref">DetNet architecture</a> [<a href="#RFC8655" class="xref">RFC8655</a>]</span> and
thus depends on it. The PCE should be a
core component of that architecture.
An extension to RPL or to TEAS (Traffic Engineering Architecture and Signaling) <span>[<a href="#TEAS" class="xref">TEAS</a>]</span> will be required to
expose the 6TiSCH node capabilities and the network peers to the PCE,
possibly in combination with <span>[<a href="#I-D.ietf-roll-capabilities" class="xref">RPL-MOP</a>]</span>.
A protocol such as a lightweight Path Computation Element Communication Protocol (PCEP) or an adaptation of
Common Control and Measurement Plane (CCAMP)
<span>[<a href="#CCAMP" class="xref">CCAMP</a>]</span> GMPLS formats and procedures could be used in
combination to <span>[<a href="#I-D.ietf-roll-dao-projection" class="xref">DAO-PROJECTION</a>]</span> to install
the Tracks, as computed by the PCE, to the 6TiSCH nodes.<a href="#section-a.1.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="unchartered-bier">
<section id="section-a.1.3">
<h3 id="name-using-bier-in-a-6tisch-netw">
<a href="#section-a.1.3" class="section-number selfRef">A.1.3. </a><a href="#name-using-bier-in-a-6tisch-netw" class="section-name selfRef">Using BIER in a 6TiSCH Network</a>
</h3>
<p id="section-a.1.3-1"> ROLL is actively working on Bit Index
Explicit Replication (BIER) as a method to compress both the
data-plane packets and the routing tables in storing mode
<span>[<a href="#I-D.thubert-roll-bier" class="xref">RPL-BIER</a>]</span>.<a href="#section-a.1.3-1" class="pilcrow">¶</a></p>
<p id="section-a.1.3-2">
BIER could also be used in the context of the DetNet service layer.
<span><a href="#I-D.thubert-bier-replication-elimination" class="xref">"BIER-TE extensions for Packet Replication and Elimination Function
(PREF) and OAM"</a> [<a href="#I-D.thubert-bier-replication-elimination" class="xref">TE-PREF</a>]</span> leverages BIER
Traffic Engineering (TE) to control the
DetNet Replication and Elimination activities in the data plane, and to provide traceability
on links where replication and loss happen, in a manner that is abstract to
the forwarding information.<a href="#section-a.1.3-2" class="pilcrow">¶</a></p>
<p id="section-a.1.3-3">
<span><a href="#I-D.thubert-6lo-bier-dispatch" class="xref">"A 6loRH for BitStrings"</a> [<a href="#I-D.thubert-6lo-bier-dispatch" class="xref">BITSTRINGS-6LORH</a>]</span>
proposes a 6LoWPAN compression for the BIER BitString based on
<span><a href="#RFC8138" class="xref">6LoWPAN Routing Header</a> [<a href="#RFC8138" class="xref">RFC8138</a>]</span>.<a href="#section-a.1.3-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="external">
<section id="section-a.2">
<h2 id="name-external-non-ietf-work-item">
<a href="#section-a.2" class="section-number selfRef">A.2. </a><a href="#name-external-non-ietf-work-item" class="section-name selfRef">External (Non-IETF) Work Items</a>
</h2>
<p id="section-a.2-1">
The current charter positions 6TiSCH on IEEE Std 802.15.4 only.
Though most of the design should be portable to other link types,
6TiSCH has a strong dependency on IEEE Std 802.15.4 and its evolution.
The impact of changes to TSCH on this architecture should be minimal to
nonexistent, but deeper work such as 6top and security may be impacted.
A 6TiSCH Interest Group at the IEEE maintains the synchronization
and helps foster work at the IEEE should 6TiSCH demand it.<a href="#section-a.2-1" class="pilcrow">¶</a></p>
<p id="section-a.2-2">
Work is being proposed at IEEE (802.15.12 PAR) for an LLC that would
logically include the 6top sublayer. The interaction with the 6top sublayer
and the Scheduling Functions described in this document are yet to be
defined.<a href="#section-a.2-2" class="pilcrow">¶</a></p>
<p id="section-a.2-3">
ISA100 <span>[<a href="#ISA100" class="xref">ISA100</a>]</span> Common Network Management (CNM) is another
external work of interest for 6TiSCH. The group, referred to as ISA100.20,
defines a Common Network Management framework that should enable the
management of resources that are controlled by heterogeneous protocols
such as ISA100.11a <span>[<a href="#ISA100.11a" class="xref">ISA100.11a</a>]</span>, WirelessHART
<span>[<a href="#WirelessHART" class="xref">WirelessHART</a>]</span>, and 6TiSCH. Interestingly, the
establishment of 6TiSCH deterministic paths, called Tracks,
are also in scope, and ISA100.20 is working on requirements for DetNet.<a href="#section-a.2-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<section id="section-appendix.b">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<section id="section-b.1">
<h2 id="name-special-thanks">
<a href="#name-special-thanks" class="section-name selfRef">Special Thanks</a>
</h2>
<p id="section-b.1-1">
Special thanks to <span class="contact-name">Jonathan Simon</span>,
<span class="contact-name">Giuseppe Piro</span>, <span class="contact-name">Subir Das</span>, and
<span class="contact-name">Yoshihiro Ohba</span> for their deep contributions to the initial security
work, to <span class="contact-name">Yasuyuki Tanaka</span> for his work on implementation and simulation
that tremendously helped build a robust system, to <span class="contact-name">Diego Dujovne</span> for
starting and leading the SF0 effort, and to <span class="contact-name">Tengfei Chang</span> for evolving it
in the MSF.<a href="#section-b.1-1" class="pilcrow">¶</a></p>
<p id="section-b.1-2">
Special thanks also to <span class="contact-name">Pat Kinney</span>,
<span class="contact-name">Charlie Perkins</span>, and <span class="contact-name">Bob Heile</span> for their
support in maintaining the connection active and the design in line with
work happening at IEEE 802.15.<a href="#section-b.1-2" class="pilcrow">¶</a></p>
<p id="section-b.1-3">
Special thanks to <span class="contact-name">Ted Lemon</span>, who was the INT Area Director while this
document was initiated, for his great support and help throughout,
and to <span class="contact-name">Suresh Krishnan</span>, who took over with that kind efficiency of his till
publication.<a href="#section-b.1-3" class="pilcrow">¶</a></p>
<p id="section-b.1-4">
Also special thanks to <span class="contact-name">Ralph Droms</span>, who performed the first INT Area
Directorate review, which was very deep and thorough and radically changed
the orientations of this document, and then to <span class="contact-name">Eliot Lear</span>
and <span class="contact-name">Carlos Pignataro</span>, who helped finalize this
document in preparation for the IESG reviews,
and to <span class="contact-name">Gorry Fairhurst</span>,
<span class="contact-name">David Mandelberg</span>, <span class="contact-name">Qin Wu</span>,
<span class="contact-name">Francis Dupont</span>, <span class="contact-name">Éric Vyncke</span>,
<span class="contact-name">Mirja Kühlewind</span>, <span class="contact-name">Roman Danyliw</span>,
<span class="contact-name">Benjamin Kaduk</span>, and <span class="contact-name">Andrew Malis</span>,
who contributed to the final shaping of this document
through the IESG review procedure.<a href="#section-b.1-4" class="pilcrow">¶</a></p>
</section>
<section id="section-b.2">
<h2 id="name-and-do-not-forget">
<a href="#name-and-do-not-forget" class="section-name selfRef">And Do Not Forget</a>
</h2>
<p id="section-b.2-1">This document is the result of multiple interactions, in
particular during the 6TiSCH (bi)Weekly Interim call, relayed through
the 6TiSCH mailing list at the IETF, over the course of more than 5 years.<a href="#section-b.2-1" class="pilcrow">¶</a></p>
<p id="section-b.2-2">
The authors wish to thank in arbitrary order:
<span class="contact-name">Alaeddine Weslati</span>, <span class="contact-name">Chonggang Wang</span>,
<span class="contact-name">Georgios Exarchakos</span>, <span class="contact-name">Zhuo Chen</span>,
<span class="contact-name">Georgios Papadopoulos</span>, <span class="contact-name">Eric Levy-Abegnoli</span>,
<span class="contact-name">Alfredo Grieco</span>, <span class="contact-name">Bert Greevenbosch</span>,
<span class="contact-name">Cedric Adjih</span>, <span class="contact-name">Deji Chen</span>,
<span class="contact-name">Martin Turon</span>, <span class="contact-name">Dominique Barthel</span>,
<span class="contact-name">Elvis Vogli</span>, <span class="contact-name">Geraldine Texier</span>,
<span class="contact-name">Guillaume Gaillard</span>, <span class="contact-name">Herman Storey</span>,
<span class="contact-name">Kazushi Muraoka</span>, <span class="contact-name">Ken Bannister</span>,
<span class="contact-name">Kuor Hsin Chang</span>, <span class="contact-name">Laurent Toutain</span>,
<span class="contact-name">Maik Seewald</span>, <span class="contact-name">Michael Behringer</span>,
<span class="contact-name">Nancy Cam Winget</span>, <span class="contact-name">Nicola Accettura</span>,
<span class="contact-name">Nicolas Montavont</span>, <span class="contact-name">Oleg Hahm</span>,
<span class="contact-name">Patrick Wetterwald</span>, <span class="contact-name">Paul Duffy</span>,
<span class="contact-name">Peter van der Stok</span>, <span class="contact-name">Rahul Sen</span>,
<span class="contact-name">Pieter de Mil</span>, <span class="contact-name">Pouria Zand</span>,
<span class="contact-name">Rouhollah Nabati</span>, <span class="contact-name">Rafa Marin-Lopez</span>,
<span class="contact-name">Raghuram Sudhaakar</span>, <span class="contact-name">Sedat Gormus</span>,
<span class="contact-name">Shitanshu Shah</span>, <span class="contact-name">Steve Simlo</span>,
<span class="contact-name">Tina Tsou</span>, <span class="contact-name">Tom Phinney</span>,
<span class="contact-name">Xavier Lagrange</span>, <span class="contact-name">Ines Robles</span>, and
<span class="contact-name">Samita Chakrabarti</span> for their participation and various contributions.<a href="#section-b.2-2" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-appendix.c">
<h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
</h2>
<p id="section-appendix.c-1">The co-authors of this document are listed below:<a href="#section-appendix.c-1" class="pilcrow">¶</a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-appendix.c-2.1">
<p id="section-appendix.c-2.1.1"><span class="contact-name">Thomas Watteyne</span>
for his contributions to the whole design, in particular on TSCH and security,
and to the open source community that he created with openWSN;<a href="#section-appendix.c-2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="normal ulEmpty" id="section-appendix.c-2.2">
<p id="section-appendix.c-2.2.1"><span class="contact-name">Xavier Vilajosana</span>,
who led the design of the minimal support with RPL and contributed
deeply to the 6top design and the GMPLS operation of Track switching;<a href="#section-appendix.c-2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="normal ulEmpty" id="section-appendix.c-2.3">
<p id="section-appendix.c-2.3.1"><span class="contact-name">Kris Pister</span>
for creating TSCH and his continuing guidance through the elaboration
of this design;<a href="#section-appendix.c-2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="normal ulEmpty" id="section-appendix.c-2.4">
<p id="section-appendix.c-2.4.1"><span class="contact-name">Mališa Vučinić</span>
for the work on the one-touch join process and his contribution to the
Security Design Team;<a href="#section-appendix.c-2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="normal ulEmpty" id="section-appendix.c-2.5">
<p id="section-appendix.c-2.5.1"><span class="contact-name">Michael Richardson</span>
for his leadership role in the Security Design Team and his
contribution throughout this document;<a href="#section-appendix.c-2.5.1" class="pilcrow">¶</a></p>
</li>
<li class="normal ulEmpty" id="section-appendix.c-2.6">
<p id="section-appendix.c-2.6.1"><span class="contact-name">Tero Kivinen</span>
for his contribution to the security work in general and the security
section in particular;<a href="#section-appendix.c-2.6.1" class="pilcrow">¶</a></p>
</li>
<li class="normal ulEmpty" id="section-appendix.c-2.7">
<p id="section-appendix.c-2.7.1"><span class="contact-name">Maria Rita Palattella</span>
for managing the Terminology document that was merged into this document through the work of 6TiSCH;<a href="#section-appendix.c-2.7.1" class="pilcrow">¶</a></p>
</li>
<li class="normal ulEmpty" id="section-appendix.c-2.8">
<p id="section-appendix.c-2.8.1"><span class="contact-name">Simon Duquennoy</span>
for his contribution to the open source community with the 6TiSCH
implementation of contiki, and for his contribution to MSF and
autonomous unicast cells;<a href="#section-appendix.c-2.8.1" class="pilcrow">¶</a></p>
</li>
<li class="normal ulEmpty" id="section-appendix.c-2.9">
<p id="section-appendix.c-2.9.1"><span class="contact-name">Qin Wang</span>,
who led the design of the 6top sublayer and contributed related text
that was moved and/or adapted into this document;<a href="#section-appendix.c-2.9.1" class="pilcrow">¶</a></p>
</li>
<li class="normal ulEmpty" id="section-appendix.c-2.10">
<p id="section-appendix.c-2.10.1"><span class="contact-name">Rene Struik</span>
for the security section and his contribution to the Security Design
Team;<a href="#section-appendix.c-2.10.1" class="pilcrow">¶</a></p>
</li>
<li class="normal ulEmpty" id="section-appendix.c-2.11">
<p id="section-appendix.c-2.11.1"><span class="contact-name">Robert Assimiti</span>
for his breakthrough work on RPL over TSCH and initial text and
guidance.<a href="#section-appendix.c-2.11.1" class="pilcrow">¶</a></p>
</li>
</ul>
</section>
<div id="authors-addresses">
<section id="section-appendix.d">
<h2 id="name-authors-address">
<a href="#name-authors-address" class="section-name selfRef">Author's Address</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Pascal Thubert (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems, Inc</span></div>
<div dir="auto" class="left"><span class="extended-address">Building D</span></div>
<div dir="auto" class="left"><span class="street-address">45 Allee des Ormes - BP1200</span></div>
<div dir="auto" class="left">
<span class="postal-code">06254</span> <span class="locality">Mougins - Sophia Antipolis</span>
</div>
<div dir="auto" class="left"><span class="country-name">France</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+33%20497%2023%2026%2034" class="tel">+33 497 23 26 34</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:pthubert@cisco.com" class="email">pthubert@cisco.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|