File: rfc9031.html

package info (click to toggle)
doc-rfc 20230121-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 1,609,944 kB
file content (3932 lines) | stat: -rw-r--r-- 228,066 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9031: Constrained Join Protocol (CoJP) for 6TiSCH</title>
<meta content="Mališa Vučinić" name="author">
<meta content="Jonathan Simon" name="author">
<meta content="Kris Pister" name="author">
<meta content="Michael Richardson" name="author">
<meta content='
       This document describes the minimal framework required for 
a new device, called a "pledge", to securely join a 6TiSCH (IPv6 over 
the Time-Slotted Channel Hopping mode of IEEE 802.15.4) network.
The framework requires that the pledge and the JRC (Join Registrar/Coordinator, a central entity), share a symmetric key.
How this key is provisioned is out of scope of this document.
Through a single CoAP (Constrained Application Protocol) request-response 
exchange secured by OSCORE (Object Security for Constrained RESTful Environments), 
the pledge requests admission into the network, and the JRC configures it with link-layer keying material and other parameters.
The JRC may at any time update the parameters through another request-response exchange secured by OSCORE.
This specification defines the Constrained Join Protocol and its CBOR 
(Concise Binary Object Representation) data structures, and it describes 
how to configure the rest of the 6TiSCH communication stack for this join process to occur in a secure manner.
Additional security mechanisms may be added on top of this minimal framework. 
    ' name="description">
<meta content="xml2rfc 3.8.0" name="generator">
<meta content="bootstrapping" name="keyword">
<meta content="onboarding" name="keyword">
<meta content="oscore" name="keyword">
<meta content="9031" name="rfc.number">
<!-- Generator version information:
  xml2rfc 3.8.0
    Python 3.6.10
    appdirs 1.4.4
    ConfigArgParse 1.2.3
    google-i18n-address 2.3.5
    html5lib 1.0.1
    intervaltree 3.0.2
    Jinja2 2.11.2
    kitchen 1.2.6
    lxml 4.4.2
    pycairo 1.19.0
    pycountry 19.8.18
    pyflakes 2.1.1
    PyYAML 5.3.1
    requests 2.22.0
    setuptools 40.6.2
    six 1.14.0
    WeasyPrint 51
-->
<link href="rfc9031.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*

  NOTE: Changes at the bottom of this file overrides some earlier settings.

  Once the style has stabilized and has been adopted as an official RFC style,
  this can be consolidated so that style settings occur only in one place, but
  for now the contents of this file consists first of the initial CSS work as
  provided to the RFC Formatter (xml2rfc) work, followed by itemized and
  commented changes found necssary during the development of the v3
  formatters.

*/

/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */

@viewport {
  zoom: 1.0;
  width: extend-to-zoom;
}
@-ms-viewport {
  width: extend-to-zoom;
  zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
  max-width: 90%;
  margin: 1.5em auto;
  color: #222;
  background-color: #fff;
  font-size: 14px;
  font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
  line-height: 1.6;
  scroll-behavior: smooth;
}
.ears {
  display: none;
}

/* headings */
#title, h1, h2, h3, h4, h5, h6 {
  margin: 1em 0 0.5em;
  font-weight: bold;
  line-height: 1.3;
}
#title {
  clear: both;
  border-bottom: 1px solid #ddd;
  margin: 0 0 0.5em 0;
  padding: 1em 0 0.5em;
}
.author {
  padding-bottom: 4px;
}
h1 {
  font-size: 26px;
  margin: 1em 0;
}
h2 {
  font-size: 22px;
  margin-top: -20px;  /* provide offset for in-page anchors */
  padding-top: 33px;
}
h3 {
  font-size: 18px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h4 {
  font-size: 16px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h5, h6 {
  font-size: 14px;
}
#n-copyright-notice {
  border-bottom: 1px solid #ddd;
  padding-bottom: 1em;
  margin-bottom: 1em;
}
/* general structure */
p {
  padding: 0;
  margin: 0 0 1em 0;
  text-align: left;
}
div, span {
  position: relative;
}
div {
  margin: 0;
}
.alignRight.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignRight.art-text pre {
  padding: 0;
}
.alignRight {
  margin: 1em 0;
}
.alignRight > *:first-child {
  border: none;
  margin: 0;
  float: right;
  clear: both;
}
.alignRight > *:nth-child(2) {
  clear: both;
  display: block;
  border: none;
}
svg {
  display: block;
}
.alignCenter.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
  padding: 0;
}
.alignCenter {
  margin: 1em 0;
}
.alignCenter > *:first-child {
  border: none;
  /* this isn't optimal, but it's an existence proof.  PrinceXML doesn't
     support flexbox yet.
  */
  display: table;
  margin: 0 auto;
}

/* lists */
ol, ul {
  padding: 0;
  margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
  margin-left: 1em;
}
li {
  margin: 0 0 0.25em 0;
}
.ulCompact li {
  margin: 0;
}
ul.empty, .ulEmpty {
  list-style-type: none;
}
ul.empty li, .ulEmpty li {
  margin-top: 0.5em;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
  line-height: 100%;
  margin: 0 0 0 2em;
}

/* definition lists */
dl {
}
dl > dt {
  float: left;
  margin-right: 1em;
}
/* 
dl.nohang > dt {
  float: none;
}
*/
dl > dd {
  margin-bottom: .8em;
  min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
  margin-bottom: 0em;
}
dl > dd > dl {
  margin-top: 0.5em;
  margin-bottom: 0em;
}

/* links */
a {
  text-decoration: none;
}
a[href] {
  color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
  background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
  color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
  background-color: transparent;
  cursor: default;
} */

/* Figures */
tt, code, pre, code {
  background-color: #f9f9f9;
  font-family: 'Roboto Mono', monospace;
}
pre {
  border: 1px solid #eee;
  margin: 0;
  padding: 1em;
}
img {
  max-width: 100%;
}
figure {
  margin: 0;
}
figure blockquote {
  margin: 0.8em 0.4em 0.4em;
}
figcaption {
  font-style: italic;
  margin: 0 0 1em 0;
}
@media screen {
  pre {
    overflow-x: auto;
    max-width: 100%;
    max-width: calc(100% - 22px);
  }
}

/* aside, blockquote */
aside, blockquote {
  margin-left: 0;
  padding: 1.2em 2em;
}
blockquote {
  background-color: #f9f9f9;
  color: #111; /* Arlen: WCAG 2019 */
  border: 1px solid #ddd;
  border-radius: 3px;
  margin: 1em 0;
}
cite {
  display: block;
  text-align: right;
  font-style: italic;
}

/* tables */
table {
  width: 100%;
  margin: 0 0 1em;
  border-collapse: collapse;
  border: 1px solid #eee;
}
th, td {
  text-align: left;
  vertical-align: top;
  padding: 0.5em 0.75em;
}
th {
  text-align: left;
  background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
  background-color: #f5f5f5;
}
table caption {
  font-style: italic;
  margin: 0;
  padding: 0;
  text-align: left;
}
table p {
  /* XXX to avoid bottom margin on table row signifiers. If paragraphs should
     be allowed within tables more generally, it would be far better to select on a class. */
  margin: 0;
}

/* pilcrow */
a.pilcrow {
  color: #666; /* Arlen: AHDJ 2019 */
  text-decoration: none;
  visibility: hidden;
  user-select: none;
  -ms-user-select: none;
  -o-user-select:none;
  -moz-user-select: none;
  -khtml-user-select: none;
  -webkit-user-select: none;
  -webkit-touch-callout: none;
}
@media screen {
  aside:hover > a.pilcrow,
  p:hover > a.pilcrow,
  blockquote:hover > a.pilcrow,
  div:hover > a.pilcrow,
  li:hover > a.pilcrow,
  pre:hover > a.pilcrow {
    visibility: visible;
  }
  a.pilcrow:hover {
    background-color: transparent;
  }
}

/* misc */
hr {
  border: 0;
  border-top: 1px solid #eee;
}
.bcp14 {
  font-variant: small-caps;
}

.role {
  font-variant: all-small-caps;
}

/* info block */
#identifiers {
  margin: 0;
  font-size: 0.9em;
}
#identifiers dt {
  width: 3em;
  clear: left;
}
#identifiers dd {
  float: left;
  margin-bottom: 0;
}
#identifiers .authors .author {
  display: inline-block;
  margin-right: 1.5em;
}
#identifiers .authors .org {
  font-style: italic;
}

/* The prepared/rendered info at the very bottom of the page */
.docInfo {
  color: #666; /* Arlen: WCAG 2019 */
  font-size: 0.9em;
  font-style: italic;
  margin-top: 2em;
}
.docInfo .prepared {
  float: left;
}
.docInfo .prepared {
  float: right;
}

/* table of contents */
#toc  {
  padding: 0.75em 0 2em 0;
  margin-bottom: 1em;
}
nav.toc ul {
  margin: 0 0.5em 0 0;
  padding: 0;
  list-style: none;
}
nav.toc li {
  line-height: 1.3em;
  margin: 0.75em 0;
  padding-left: 1.2em;
  text-indent: -1.2em;
}
/* references */
.references dt {
  text-align: right;
  font-weight: bold;
  min-width: 7em;
}
.references dd {
  margin-left: 8em;
  overflow: auto;
}

.refInstance {
  margin-bottom: 1.25em;
}

.references .ascii {
  margin-bottom: 0.25em;
}

/* index */
.index ul {
  margin: 0 0 0 1em;
  padding: 0;
  list-style: none;
}
.index ul ul {
  margin: 0;
}
.index li {
  margin: 0;
  text-indent: -2em;
  padding-left: 2em;
  padding-bottom: 5px;
}
.indexIndex {
  margin: 0.5em 0 1em;
}
.index a {
  font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
  .index ul {
    -moz-column-count: 2;
    -moz-column-gap: 20px;
  }
  .index ul ul {
    -moz-column-count: 1;
    -moz-column-gap: 0;
  }
}

/* authors */
address.vcard {
  font-style: normal;
  margin: 1em 0;
}

address.vcard .nameRole {
  font-weight: 700;
  margin-left: 0;
}
address.vcard .label {
  font-family: "Noto Sans",Arial,Helvetica,sans-serif;
  margin: 0.5em 0;
}
address.vcard .type {
  display: none;
}
.alternative-contact {
  margin: 1.5em 0 1em;
}
hr.addr {
  border-top: 1px dashed;
  margin: 0;
  color: #ddd;
  max-width: calc(100% - 16px);
}

/* temporary notes */
.rfcEditorRemove::before {
  position: absolute;
  top: 0.2em;
  right: 0.2em;
  padding: 0.2em;
  content: "The RFC Editor will remove this note";
  color: #9e2a00; /* Arlen: WCAG 2019 */
  background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
  position: relative;
  padding-top: 1.8em;
  background-color: #ffd; /* Arlen: WCAG 2019 */
  border-radius: 3px;
}
.cref {
  background-color: #ffd; /* Arlen: WCAG 2019 */
  padding: 2px 4px;
}
.crefSource {
  font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
  body {
    padding-top: 2em;
  }
  #title {
    padding: 1em 0;
  }
  h1 {
    font-size: 24px;
  }
  h2 {
    font-size: 20px;
    margin-top: -18px;  /* provide offset for in-page anchors */
    padding-top: 38px;
  }
  #identifiers dd {
    max-width: 60%;
  }
  #toc {
    position: fixed;
    z-index: 2;
    top: 0;
    right: 0;
    padding: 0;
    margin: 0;
    background-color: inherit;
    border-bottom: 1px solid #ccc;
  }
  #toc h2 {
    margin: -1px 0 0 0;
    padding: 4px 0 4px 6px;
    padding-right: 1em;
    min-width: 190px;
    font-size: 1.1em;
    text-align: right;
    background-color: #444;
    color: white;
    cursor: pointer;
  }
  #toc h2::before { /* css hamburger */
    float: right;
    position: relative;
    width: 1em;
    height: 1px;
    left: -164px;
    margin: 6px 0 0 0;
    background: white none repeat scroll 0 0;
    box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
    content: "";
  }
  #toc nav {
    display: none;
    padding: 0.5em 1em 1em;
    overflow: auto;
    height: calc(100vh - 48px);
    border-left: 1px solid #ddd;
  }
}

/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
  body {
    max-width: 724px;
    margin: 42px auto;
    padding-left: 1.5em;
    padding-right: 29em;
  }
  #toc {
    position: fixed;
    top: 42px;
    right: 42px;
    width: 25%;
    margin: 0;
    padding: 0 1em;
    z-index: 1;
  }
  #toc h2 {
    border-top: none;
    border-bottom: 1px solid #ddd;
    font-size: 1em;
    font-weight: normal;
    margin: 0;
    padding: 0.25em 1em 1em 0;
  }
  #toc nav {
    display: block;
    height: calc(90vh - 84px);
    bottom: 0;
    padding: 0.5em 0 0;
    overflow: auto;
  }
  img { /* future proofing */
    max-width: 100%;
    height: auto;
  }
}

/* pagination */
@media print {
  body {

    width: 100%;
  }
  p {
    orphans: 3;
    widows: 3;
  }
  #n-copyright-notice {
    border-bottom: none;
  }
  #toc, #n-introduction {
    page-break-before: always;
  }
  #toc {
    border-top: none;
    padding-top: 0;
  }
  figure, pre {
    page-break-inside: avoid;
  }
  figure {
    overflow: scroll;
  }
  h1, h2, h3, h4, h5, h6 {
    page-break-after: avoid;
  }
  h2+*, h3+*, h4+*, h5+*, h6+* {
    page-break-before: avoid;
  }
  pre {
    white-space: pre-wrap;
    word-wrap: break-word;
    font-size: 10pt;
  }
  table {
    border: 1px solid #ddd;
  }
  td {
    border-top: 1px solid #ddd;
  }
}

/* This is commented out here, as the string-set: doesn't
   pass W3C validation currently */
/*
.ears thead .left {
  string-set: ears-top-left content();
}

.ears thead .center {
  string-set: ears-top-center content();
}

.ears thead .right {
  string-set: ears-top-right content();
}

.ears tfoot .left {
  string-set: ears-bottom-left content();
}

.ears tfoot .center {
  string-set: ears-bottom-center content();
}

.ears tfoot .right {
  string-set: ears-bottom-right content();
}
*/

@page :first {
  padding-top: 0;
  @top-left {
    content: normal;
    border: none;
  }
  @top-center {
    content: normal;
    border: none;
  }
  @top-right {
    content: normal;
    border: none;
  }
}

@page {
  size: A4;
  margin-bottom: 45mm;
  padding-top: 20px;
  /* The follwing is commented out here, but set appropriately by in code, as
     the content depends on the document */
  /*
  @top-left {
    content: 'Internet-Draft';
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-left {
    content: string(ears-top-left);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-center {
    content: string(ears-top-center);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-right {
    content: string(ears-top-right);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @bottom-left {
    content: string(ears-bottom-left);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-center {
    content: string(ears-bottom-center);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-right {
      content: '[Page ' counter(page) ']';
      vertical-align: top;
      border-top: solid 1px #ccc;
  }
  */

}

/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
  z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
  clear: both;
}


/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
  vertical-align: top;
}

/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
  width: 8em;
}

/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
  margin-left: 1em;
}

/* Give floating toc a background color (needed when it's a div inside section */
#toc {
  background-color: white;
}

/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
  #toc h2 a,
  #toc h2 a:link,
  #toc h2 a:focus,
  #toc h2 a:hover,
  #toc a.toplink,
  #toc a.toplink:hover {
    color: white;
    background-color: #444;
    text-decoration: none;
  }
}

/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
  #toc {
    padding: 0 0 1em 1em;
  }
}

/* Style section numbers with more space between number and title */
.section-number {
  padding-right: 0.5em;
}

/* prevent monospace from becoming overly large */
tt, code, pre, code {
  font-size: 95%;
}

/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
  line-height: 1.12;
}


/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
  float: right;
  margin-right: 0.5em;
}

/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
  float: left;
  margin-right: 1em;
}
dl.dlNewline > dt {
  float: none;
}

/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
  text-align: left;
}
table td.text-center,
table th.text-center {
  text-align: center;
}
table td.text-right,
table th.text-right {
  text-align: right;
}

/* Make the alternative author contact informatio look less like just another
   author, and group it closer with the primary author contact information */
.alternative-contact {
  margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
  margin: 0 0 0 2em;
}

/* With it being possible to set tables with alignment
  left, center, and right, { width: 100%; } does not make sense */
table {
  width: auto;
}

/* Avoid reference text that sits in a block with very wide left margin,
   because of a long floating dt label.*/
.references dd {
  overflow: visible;
}

/* Control caption placement */
caption {
  caption-side: bottom;
}

/* Limit the width of the author address vcard, so names in right-to-left
   script don't end up on the other side of the page. */

address.vcard {
  max-width: 30em;
  margin-right: auto;
}

/* For address alignment dependent on LTR or RTL scripts */
address div.left {
  text-align: left;
}
address div.right {
  text-align: right;
}

/* Provide table alignment support.  We can't use the alignX classes above
   since they do unwanted things with caption and other styling. */
table.right {
 margin-left: auto;
 margin-right: 0;
}
table.center {
 margin-left: auto;
 margin-right: auto;
}
table.left {
 margin-left: 0;
 margin-right: auto;
}

/* Give the table caption label the same styling as the figcaption */
caption a[href] {
  color: #222;
}

@media print {
  .toplink {
    display: none;
  }

  /* avoid overwriting the top border line with the ToC header */
  #toc {
    padding-top: 1px;
  }

  /* Avoid page breaks inside dl and author address entries */
  .vcard {
    page-break-inside: avoid;
  }

}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
  font-variant: small-caps;
  font-weight: bold;
  font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
 h2 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 31px;
 }
 h3 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
 h4 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
/* Float artwork pilcrow to the right */
@media screen {
  .artwork a.pilcrow {
    display: block;
    line-height: 0.7;
    margin-top: 0.15em;
  }
}
/* Make pilcrows on dd visible */
@media screen {
  dd:hover > a.pilcrow {
    visibility: visible;
  }
}
/* Make the placement of figcaption match that of a table's caption
   by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
   margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
  margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
   possibly even requiring a new line */
@media print {
  a.pilcrow {
    display: none;
  }
}
/* Styling for the external metadata */
div#external-metadata {
  background-color: #eee;
  padding: 0.5em;
  margin-bottom: 0.5em;
  display: none;
}
div#internal-metadata {
  padding: 0.5em;                       /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
  clear: both;
  margin: 0 0 -1em;
  padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
  margin-bottom: 0.25em;
  min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
  border-left: 1px solid #ddd;
  margin: 1em 0 1em 2em;
  padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
  margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
  figcaption, table caption {
    page-break-before: avoid;
  }
}
/* Font size adjustments for print */
@media print {
  body  { font-size: 10pt;      line-height: normal; max-width: 96%; }
  h1    { font-size: 1.72em;    padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
  h2    { font-size: 1.44em;    padding-top: 1.5em; } /* 1*1.2*1.2 */
  h3    { font-size: 1.2em;     padding-top: 1.5em; } /* 1*1.2 */
  h4    { font-size: 1em;       padding-top: 1.5em; }
  h5, h6 { font-size: 1em;      margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
  .artwork,
  .sourcecode {
    margin-bottom: 1em;
  }
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
  min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
  border: 1px solid #ddd;
}
td {
  border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
  background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
  #toc nav { display: none; }
  #toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
  break-after: avoid-page;
  break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
  break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode  {
  break-before: avoid-page;
  break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
  break-before: auto;
  break-inside: auto;
}
dt {
  break-before: auto;
  break-after: avoid-page;
}
dd {
  break-before: avoid-page;
  break-after: auto;
  orphans: 3;
  widows: 3
}
span.break, dd.break {
  margin-bottom: 0;
  min-height: 0;
  break-before: auto;
  break-inside: auto;
  break-after: auto;
}
/* Undo break-before ToC */
@media print {
  #toc {
    break-before: auto;
  }
}
/* Text in compact lists should not get extra bottim margin space,
   since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
 margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
  margin-bottom: 1em;                    /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
   backgrounds.  Changed to something a bit more selective. */
tt, code {
  background-color: transparent;
}
p tt, p code, li tt, li code {
  background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
   margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
  line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
  margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
  clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
  content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
  margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
  margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9031" rel="alternate">
  <link href="urn:issn:2070-1721" rel="alternate">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-6tisch-minimal-security-15" rel="prev">
  </head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9031</td>
<td class="center">CoJP for 6TiSCH</td>
<td class="right">May 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Vučinić, et al.</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9031" class="eref">9031</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-05" class="published">May 2021</time>
    </dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
      <div class="author-name">M. Vučinić, <span class="editor">Ed.</span>
</div>
<div class="org">Inria</div>
</div>
<div class="author">
      <div class="author-name">J. Simon</div>
<div class="org">Analog Devices</div>
</div>
<div class="author">
      <div class="author-name">K. Pister</div>
<div class="org">University of California Berkeley</div>
</div>
<div class="author">
      <div class="author-name">M. Richardson</div>
<div class="org">Sandelman Software Works</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9031</h1>
<h1 id="title">Constrained Join Protocol (CoJP) for 6TiSCH</h1>
<section id="section-abstract">
      <h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This document describes the minimal framework required for 
a new device, called a "pledge", to securely join a 6TiSCH (IPv6 over 
the Time-Slotted Channel Hopping mode of IEEE 802.15.4) network.
The framework requires that the pledge and the JRC (Join Registrar/Coordinator, a central entity), share a symmetric key.
How this key is provisioned is out of scope of this document.
Through a single CoAP (Constrained Application Protocol) request-response 
exchange secured by OSCORE (Object Security for Constrained RESTful Environments), 
the pledge requests admission into the network, and the JRC configures it with link-layer keying material and other parameters.
The JRC may at any time update the parameters through another request-response exchange secured by OSCORE.
This specification defines the Constrained Join Protocol and its CBOR 
(Concise Binary Object Representation) data structures, and it describes 
how to configure the rest of the 6TiSCH communication stack for this join process to occur in a secure manner.
Additional security mechanisms may be added on top of this minimal framework.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
        <h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
        </h2>
<p id="section-boilerplate.1-1">
            This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further
            information on Internet Standards is available in Section 2 of 
            RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <span><a href="https://www.rfc-editor.org/info/rfc9031">https://www.rfc-editor.org/info/rfc9031</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
        <h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
        </h2>
<p id="section-boilerplate.2-1">
            Copyright (c) 2021 IETF Trust and the persons identified as the
            document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
        <a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
        </h2>
<nav class="toc"><ul class="ulEmpty toc compact">
<li class="ulEmpty toc compact" id="section-toc.1-1.1">
            <p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>.  <a href="#name-introduction" class="xref">Introduction</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.2">
            <p id="section-toc.1-1.2.1" class="keepWithNext"><a href="#section-2" class="xref">2</a>.  <a href="#name-terminology" class="xref">Terminology</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.3">
            <p id="section-toc.1-1.3.1" class="keepWithNext"><a href="#section-3" class="xref">3</a>.  <a href="#name-provisioning-phase" class="xref">Provisioning Phase</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.4">
            <p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.  <a href="#name-join-process-overview" class="xref">Join Process Overview</a></p>
<ul class="ulEmpty toc compact">
<li class="ulEmpty toc compact" id="section-toc.1-1.4.2.1">
                <p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>.  <a href="#name-step-1-enhanced-beacon" class="xref">Step 1 - Enhanced Beacon</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.4.2.2">
                <p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>.  <a href="#name-step-2-neighbor-discovery" class="xref">Step 2 - Neighbor Discovery</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.4.2.3">
                <p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>.  <a href="#name-step-3-constrained-join-pro" class="xref">Step 3 - Constrained Join Protocol (CoJP) Execution</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.4.2.4">
                <p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>.  <a href="#name-the-special-case-of-the-6lb" class="xref">The Special Case of the 6LBR Pledge Joining</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.5">
            <p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.  <a href="#name-link-layer-configuration" class="xref">Link-Layer Configuration</a></p>
<ul class="ulEmpty toc compact">
<li class="ulEmpty toc compact" id="section-toc.1-1.5.2.1">
                <p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>.  <a href="#name-distribution-of-time" class="xref">Distribution of Time</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.6">
            <p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.  <a href="#name-network-layer-configuration" class="xref">Network-Layer Configuration</a></p>
<ul class="ulEmpty toc compact">
<li class="ulEmpty toc compact" id="section-toc.1-1.6.2.1">
                <p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>.  <a href="#name-identification-of-unauthent" class="xref">Identification of Unauthenticated Traffic</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.7">
            <p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>.  <a href="#name-application-layer-configura" class="xref">Application-Layer Configuration</a></p>
<ul class="ulEmpty toc compact">
<li class="ulEmpty toc compact" id="section-toc.1-1.7.2.1">
                <p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>.  <a href="#name-statelessness-of-the-jp" class="xref">Statelessness of the JP</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.7.2.2">
                <p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>.  <a href="#name-recommended-settings" class="xref">Recommended Settings</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.7.2.3">
                <p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="xref">7.3</a>.  <a href="#name-oscore" class="xref">OSCORE</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.8">
            <p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>.  <a href="#name-constrained-join-protocol-c" class="xref">Constrained Join Protocol (CoJP)</a></p>
<ul class="ulEmpty toc compact">
<li class="ulEmpty toc compact" id="section-toc.1-1.8.2.1">
                <p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="xref">8.1</a>.  <a href="#name-join-exchange" class="xref">Join Exchange</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.8.2.2">
                <p id="section-toc.1-1.8.2.2.1"><a href="#section-8.2" class="xref">8.2</a>.  <a href="#name-parameter-update-exchange" class="xref">Parameter Update Exchange</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.8.2.3">
                <p id="section-toc.1-1.8.2.3.1"><a href="#section-8.3" class="xref">8.3</a>.  <a href="#name-error-handling" class="xref">Error Handling</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.8.2.4">
                <p id="section-toc.1-1.8.2.4.1"><a href="#section-8.4" class="xref">8.4</a>.  <a href="#name-cojp-objects" class="xref">CoJP Objects</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.8.2.5">
                <p id="section-toc.1-1.8.2.5.1"><a href="#section-8.5" class="xref">8.5</a>.  <a href="#name-recommended-settings-2" class="xref">Recommended Settings</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.9">
            <p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>.  <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.10">
            <p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-privacy-considerations" class="xref">Privacy Considerations</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.11">
            <p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
<ul class="ulEmpty toc compact">
<li class="ulEmpty toc compact" id="section-toc.1-1.11.2.1">
                <p id="section-toc.1-1.11.2.1.1"><a href="#section-11.1" class="xref">11.1</a>.  <a href="#name-constrained-join-protocol-co" class="xref">Constrained Join Protocol (CoJP) Parameters</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.11.2.2">
                <p id="section-toc.1-1.11.2.2.1"><a href="#section-11.2" class="xref">11.2</a>.  <a href="#name-constrained-join-protocol-coj" class="xref">Constrained Join Protocol (CoJP) Key Usage</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.11.2.3">
                <p id="section-toc.1-1.11.2.3.1"><a href="#section-11.3" class="xref">11.3</a>.  <a href="#name-constrained-join-protocol-cojp" class="xref">Constrained Join Protocol (CoJP) Unsupported Configuration Codes</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.12">
            <p id="section-toc.1-1.12.1"><a href="#section-12" class="xref">12</a>. <a href="#name-references" class="xref">References</a></p>
<ul class="ulEmpty toc compact">
<li class="ulEmpty toc compact" id="section-toc.1-1.12.2.1">
                <p id="section-toc.1-1.12.2.1.1"><a href="#section-12.1" class="xref">12.1</a>.  <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
              <li class="ulEmpty toc compact" id="section-toc.1-1.12.2.2">
                <p id="section-toc.1-1.12.2.2.1"><a href="#section-12.2" class="xref">12.2</a>.  <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
            </ul>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.13">
            <p id="section-toc.1-1.13.1"><a href="#section-appendix.a" class="xref">Appendix A</a>.  <a href="#name-example" class="xref">Example</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.14">
            <p id="section-toc.1-1.14.1"><a href="#section-appendix.b" class="xref">Appendix B</a>.  <a href="#name-lightweight-implementation-" class="xref">Lightweight Implementation Option</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.15">
            <p id="section-toc.1-1.15.1"><a href="#section-appendix.c" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a></p>
</li>
          <li class="ulEmpty toc compact" id="section-toc.1-1.16">
            <p id="section-toc.1-1.16.1"><a href="#section-appendix.d" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
        </ul>
</nav>
</section>
</div>
<div id="introduction">
<section id="section-1">
      <h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
      </h2>
<p id="section-1-1">This document defines a "secure join" solution for a new device, 
called a "pledge", to securely join a 6TiSCH network.
The term "secure join" refers to network access authentication, authorization,
and parameter distribution as defined in <span>[<a href="#RFC9030" class="xref">RFC9030</a>]</span>.
The Constrained Join Protocol (CoJP) defined in this document handles parameter distribution needed for a pledge to become a joined node.
Mutual authentication during network access and implicit authorization are 
achieved through the use of a secure channel as configured according to this document.
This document also specifies a configuration of different layers of the 6TiSCH protocol stack that reduces the Denial of Service (DoS) attack surface during the join process.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">This document presumes a 6TiSCH network as described by
    <span>[<a href="#RFC7554" class="xref">RFC7554</a>]</span> and
    <span>[<a href="#RFC8180" class="xref">RFC8180</a>]</span>.
By design, nodes in a 6TiSCH network <span>[<a href="#RFC7554" class="xref">RFC7554</a>]</span> 
have their radio turned off most of the time in order to conserve energy.
As a consequence, the link used by a new device for joining the network has limited bandwidth <span>[<a href="#RFC8180" class="xref">RFC8180</a>]</span>.
The secure join solution defined in this document therefore keeps the number of over-the-air exchanges to a minimum.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">The microcontrollers at the heart of 6TiSCH nodes have small 
amounts of code memory.
It is therefore paramount to reuse existing protocols available as part of the 6TiSCH stack.
At the application layer, the 6TiSCH stack already relies on 
CoAP <span>[<a href="#RFC7252" class="xref">RFC7252</a>]</span> for web transfer and 
on OSCORE <span>[<a href="#RFC8613" class="xref">RFC8613</a>]</span> for its end-to-end security.
The secure join solution defined in this document therefore reuses those two protocols as its building blocks.<a href="#section-1-3" class="pilcrow">¶</a></p>
<p id="section-1-4">CoJP is a generic protocol that can be used as-is in all modes 
of IEEE Std 802.15.4 <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span>, including 
the Time-Slotted Channel Hopping (TSCH) mode on which 6TiSCH is based.
CoJP may also be used in other (low-power) networking technologies where 
efficiency in terms of communication overhead and code footprint is important.
In such a case, it may be necessary to define through companion documents 
the configuration parameters specific to the technology in question.
The overall process is described in <a href="#join-process-overview" class="xref">Section 4</a>, 
and the configuration of the stack is specific to 6TiSCH.<a href="#section-1-4" class="pilcrow">¶</a></p>
<p id="section-1-5">CoJP assumes the presence of a Join Registrar/Coordinator (JRC), a central entity.
The configuration defined in this document assumes that the pledge and the JRC share a unique symmetric cryptographic key, called PSK (pre-shared key).
The PSK is used to configure OSCORE to provide a secure channel to CoJP.
How the PSK is installed is out of scope of this document: this may happen during the provisioning phase or by a key exchange protocol that may precede the execution of CoJP.<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6">When the pledge seeks admission to a 6TiSCH network, it first 
synchronizes to it by initiating the passive scan defined in 
<span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span>.
The pledge then exchanges CoJP messages with the JRC; for this end-to-end 
communication to happen, the messages are forwarded by nodes, called Join Proxies,
that are already part of the 6TiSCH network.
The messages exchanged allow the JRC and the pledge to mutually 
authenticate based on the properties provided by OSCORE.
They also allow the JRC to configure the pledge with link-layer 
keying material, a short identifier, and other parameters.
After this secure join process successfully completes, the joined node 
can interact with its neighbors to request additional bandwidth using 
the 6TiSCH Operation Sublayer (6top) Protocol <span>[<a href="#RFC8480" class="xref">RFC8480</a>]</span> 
and can start sending application traffic.<a href="#section-1-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="terminology">
<section id="section-2">
      <h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
      </h2>
<p id="section-2-1">
    The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
    "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>",
    "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>",
    "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
    "<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be
    interpreted as described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when, they appear in all capitals, as
    shown here.<a href="#section-2-1" class="pilcrow">¶</a></p>
<p id="section-2-2">The reader is expected to be familiar with the terms and concepts defined in
    <span>[<a href="#RFC9030" class="xref">RFC9030</a>]</span>,
    <span>[<a href="#RFC7252" class="xref">RFC7252</a>]</span>,
    <span>[<a href="#RFC8613" class="xref">RFC8613</a>]</span>, and
    <span>[<a href="#RFC8152" class="xref">RFC8152</a>]</span>.<a href="#section-2-2" class="pilcrow">¶</a></p>
<p id="section-2-3">The specification also includes a set of informative specifications using the Concise Data Definition Language (CDDL) <span>[<a href="#RFC8610" class="xref">RFC8610</a>]</span>.<a href="#section-2-3" class="pilcrow">¶</a></p>
<p id="section-2-4">The following terms defined in <span>[<a href="#RFC9030" class="xref">RFC9030</a>]</span> 
are used extensively throughout this document:<a href="#section-2-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2-5.1">pledge<a href="#section-2-5.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-2-5.2">joined node<a href="#section-2-5.2" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-2-5.3">Join Proxy (JP)<a href="#section-2-5.3" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-2-5.4">Join Registrar/Coordinator (JRC)<a href="#section-2-5.4" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-2-5.5">Enhanced Beacon (EB)<a href="#section-2-5.5" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-2-5.6">join protocol<a href="#section-2-5.6" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-2-5.7">join process<a href="#section-2-5.7" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-2-6">The following terms defined in <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span> are also used throughout this document:<a href="#section-2-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2-7.1">6LoWPAN Border Router (6LBR)<a href="#section-2-7.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-2-7.2">6LoWPAN Node (6LN)<a href="#section-2-7.2" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-2-8">The term "6LBR" is used interchangeably with the term "DODAG root" 
defined in <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> on the assumption that 
the two entities are co-located, as recommended by 
<span>[<a href="#RFC9030" class="xref">RFC9030</a>]</span>.<a href="#section-2-8" class="pilcrow">¶</a></p>
<p id="section-2-9">The term "pledge", as used throughout the document, explicitly denotes non-6LBR devices attempting to join the network using their IEEE Std 802.15.4 network interface.
The device that attempts to join as the 6LBR of the network and does so over another network interface is explicitly denoted as the "6LBR pledge".
When the text applies equally to the pledge and the 6LBR pledge, 
the "(6LBR) pledge" form is used.<a href="#section-2-9" class="pilcrow">¶</a></p>
<p id="section-2-10">In addition, we use generic terms "pledge identifier" and "network identifier".
See <a href="#provisioning" class="xref">Section 3</a>.<a href="#section-2-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="provisioning">
<section id="section-3">
      <h2 id="name-provisioning-phase">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-provisioning-phase" class="section-name selfRef">Provisioning Phase</a>
      </h2>
<p id="section-3-1">The (6LBR) pledge is provisioned with certain parameters before attempting to join the network, and the same parameters are provisioned to the JRC.
There are many ways by which this provisioning can be done.
Physically, the parameters can be written into the (6LBR) pledge with a number of mechanisms, such as
    using a JTAG (Joint Test Action Group) interface,
    using a serial (craft) console interface,
    pushing buttons simultaneously on different devices,
    configuring over-the-air in a Faraday cage, etc.
The provisioning can be done by the vendor, the manufacturer, the integrator, etc.<a href="#section-3-1" class="pilcrow">¶</a></p>
<p id="section-3-2">Details of how this provisioning is done are out of scope of this document.
What is assumed is that there can be a secure, private conversation between the JRC and the (6LBR) pledge, and that the two devices can exchange the parameters.<a href="#section-3-2" class="pilcrow">¶</a></p>
<p id="section-3-3">Parameters that are provisioned to the (6LBR) pledge include:<a href="#section-3-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3-4">
        <dt id="section-3-4.1">pledge identifier:</dt>
        <dd style="margin-left: 1.5em" id="section-3-4.2">The pledge identifier identifies the (6LBR) pledge.
The pledge identifier <span class="bcp14">MUST</span> be unique in the set of all pledge identifiers managed by a JRC.
The pledge identifier uniqueness is an important security requirement, 
as discussed in <a href="#sec_considerations" class="xref">Section 9</a>.
The pledge identifier is typically the globally unique 64-bit Extended 
Unique Identifier (EUI-64) of the IEEE Std 802.15.4 device, in which 
case it is provisioned by the hardware manufacturer.  The pledge 
identifier is used to generate the IPv6 addresses of the (6LBR) 
pledge and to identify it during the execution of the join protocol.
Depending on the configuration, the pledge identifier may also be 
used after the join process to identify the joined node.
For privacy reasons (see <a href="#privacy_considerations" class="xref">Section 10</a>), 
it is possible to use a pledge identifier different from the EUI-64.
For example, a pledge identifier may be a random byte string, 
but care needs to be taken that such a string meets the uniqueness requirement.<a href="#section-3-4.2" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-3-4.3">Pre-Shared Key (PSK):</dt>
        <dd style="margin-left: 1.5em" id="section-3-4.4">A symmetric cryptographic key shared between the (6LBR) pledge and the JRC.
To look up the PSK for a given pledge, the JRC additionally needs to store 
the corresponding pledge identifier.
Each (6LBR) pledge <span class="bcp14">MUST</span> be provisioned with a unique PSK.
The PSK <span class="bcp14">MUST</span> be a cryptographically strong key, with at 
least 128 bits of entropy, indistinguishable by feasible computation 
from a random uniform string of the same length.
How the PSK is generated and/or provisioned is out of scope of this specification.
This could be done during a provisioning step, or companion documents 
can specify the use of a key-agreement protocol.
Common pitfalls when generating PSKs are discussed in 
<a href="#sec_considerations" class="xref">Section 9</a>.
In the case of recommissioning a device to a new owner, the PSK <span class="bcp14">MUST</span> be changed.
Note that the PSK is different from the link-layer keys K1 and K2 
specified in <span>[<a href="#RFC8180" class="xref">RFC8180</a>]</span>.
The PSK is a long-term secret used to protect the execution of the secure 
join protocol specified in this document; the link-layer keys are transported as part of the secure join protocol.<a href="#section-3-4.4" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-3-4.5">Optionally, a network identifier:</dt>
        <dd style="margin-left: 1.5em" id="section-3-4.6">The network identifier identifies the 6TiSCH network.
The network identifier <span class="bcp14">MUST</span> be carried within Enhanced Beacon (EB) frames.
Typically, the 16-bit Personal Area Network Identifier (PAN ID) 
defined in <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span> is used as the network identifier.
However, PAN ID is not considered a stable network identifier as it may change during network 
lifetime if a collision with another network is detected.
Companion documents can specify the use of a different network identifier for join purposes, 
but this is out of scope of this specification.
Provisioning the network identifier to a pledge is <span class="bcp14">RECOMMENDED</span>.
However, due to operational constraints, the network identifier may not be 
known at the time of provisioning.
If this parameter is not provisioned to the pledge, the pledge 
will attempt to join one advertised network at a time, which significantly prolongs the join process.
This parameter <span class="bcp14">MUST</span> be provisioned to the 6LBR pledge.<a href="#section-3-4.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
<dt id="section-3-4.7">Optionally, any non-default algorithms:</dt>
        <dd style="margin-left: 1.5em" id="section-3-4.8">The default algorithms are specified in <a href="#mti_algos" class="xref">Section 7.3.3</a>.
When algorithm identifiers are not provisioned, the use of these default algorithms is implied.<a href="#section-3-4.8" class="pilcrow">¶</a>
</dd>
      <dd class="break"></dd>
</dl>
<p id="section-3-5">Additionally, the 6LBR pledge that is not co-located 
with the JRC needs to be provisioned with the following:<a href="#section-3-5" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3-6">
        <dt id="section-3-6.1">Global IPv6 address of the JRC:</dt>
        <dd style="margin-left: 1.5em" id="section-3-6.2">This address is used by the 6LBR pledge to address the JRC during the join process.
The 6LBR pledge may also obtain the IPv6 address of the JRC through other available 
mechanisms, such as DHCPv6 <span>[<a href="#RFC8415" class="xref">RFC8415</a>]</span>, 
Generic Autonomic Signaling Protocol (GRASP) <span>[<a href="#RFC8990" class="xref">RFC8990</a>]</span>, 
or Multicast DNS (mDNS) <span>[<a href="#RFC6762" class="xref">RFC6762</a>]</span>; 
the use of these mechanisms is out of scope of this document.
Pledges do not need to be provisioned with this address as they 
discover it dynamically through CoJP.<a href="#section-3-6.2" class="pilcrow">¶</a>
</dd>
      <dd class="break"></dd>
</dl>
</section>
</div>
<div id="join-process-overview">
<section id="section-4">
      <h2 id="name-join-process-overview">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-join-process-overview" class="section-name selfRef">Join Process Overview</a>
      </h2>
<p id="section-4-1">This section describes the steps taken by a pledge in a 6TiSCH network.
When a pledge seeks admission to a 6TiSCH network, the following exchange occurs:<a href="#section-4-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4-2">
        <li id="section-4-2.1">The pledge listens for an Enhanced Beacon (EB) frame <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span>.
This frame provides network synchronization information, 
telling the device when it can send a frame to the node 
sending the beacons, which acts as a Join Proxy (JP) for the pledge, 
and when it can expect to receive a frame.
The EB provides the link-layer address of the JP, 
and it may also provide its link-local IPv6 address.<a href="#section-4-2.1" class="pilcrow">¶</a>
</li>
        <li id="section-4-2.2">The pledge configures its link-local IPv6 address and advertises it to the JP using Neighbor Discovery.
The advertisement step may be omitted if the link-local address has been derived from a known unique interface identifier, such as an EUI-64 address.<a href="#section-4-2.2" class="pilcrow">¶</a>
</li>
        <li id="section-4-2.3">The pledge sends a Join Request to the JP in order to securely identify itself to the network.
The Join Request is forwarded to the JRC.<a href="#section-4-2.3" class="pilcrow">¶</a>
</li>
        <li id="section-4-2.4">In the case of successful processing of the request, the pledge receives a Join Response from the JRC (via the JP).
The Join Response contains configuration parameters necessary for the pledge to join the network.<a href="#section-4-2.4" class="pilcrow">¶</a>
</li>
      </ol>
<p id="section-4-3">From the pledge's perspective, joining is a local phenomenon -- 
the pledge only interacts with the JP, and it needs not know how far it 
is from the 6LBR or how to route to the JRC.
Only after establishing one or more link-layer keys does it need to know about the particulars of a 6TiSCH network.<a href="#section-4-3" class="pilcrow">¶</a></p>
<p id="section-4-4">The join process is shown as a transaction diagram in <a href="#fig_overview_diagram" class="xref">Figure 1</a>:<a href="#section-4-4" class="pilcrow">¶</a></p>
<span id="name-overview-of-a-successful-jo"></span><div id="fig_overview_diagram">
<figure id="figure-1">
        <div class="artwork art-text alignCenter" id="section-4-5.1">
<pre>
+--------+                 +-------+                 +--------+
| pledge |                 |  JP   |                 |  JRC   |
|        |                 |       |                 |        |
+--------+                 +-------+                 +--------+
   |                          |                          |
   |&lt;---Enhanced Beacon (1)---|                          |
   |                          |                          |
   |&lt;-Neighbor Discovery (2)-&gt;|                          |
   |                          |                          |
   |-----Join Request (3a)----|----Join Request (3a)----&gt;| \
   |                          |                          | | CoJP
   |&lt;----Join Response (3b)---|----Join Response (3b)----| /
   |                          |                          |
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-overview-of-a-successful-jo" class="selfRef">Overview of a successful join process.</a>
        </figcaption></figure>
</div>
<p id="section-4-6">As for other nodes in the network, the 6LBR node may act as the JP.
The 6LBR may in addition be co-located with the JRC.<a href="#section-4-6" class="pilcrow">¶</a></p>
<p id="section-4-7">The details of each step are described in the following sections.<a href="#section-4-7" class="pilcrow">¶</a></p>
<div id="step-eb">
<section id="section-4.1">
        <h3 id="name-step-1-enhanced-beacon">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-step-1-enhanced-beacon" class="section-name selfRef">Step 1 - Enhanced Beacon</a>
        </h3>
<p id="section-4.1-1">The pledge synchronizes to the network by listening for, 
and receiving, an EB sent by a node already in the network.
This process is entirely defined by <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span> 
and described in <span>[<a href="#RFC7554" class="xref">RFC7554</a>]</span>.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">Once the pledge hears an EB, it synchronizes to the joining schedule using the cells contained in the EB.
The pledge can hear multiple EBs; the selection of which EB to use 
is out of the scope for this document and is discussed in <span>[<a href="#RFC7554" class="xref">RFC7554</a>]</span>.
Implementers should make use of information such as the following:
    which network identifier the EB contains,
    the value of the Join Metric field within EBs,
    whether the source link-layer address of the EB has been tried before,
    at which signal strength the different EBs were received, etc.
In addition, the pledge may be preconfigured to search for EBs with a specific network identifier.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">If the pledge is not provisioned with the network identifier, 
it attempts to join one network at a time, as described in <a href="#join_request" class="xref">Section 8.1.1</a>.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1-4">Once the pledge selects the EB, it synchronizes to it and transitions into a low-power mode.
It follows the schedule information contained in the EB, 
which indicates the slots that the pledge may use for the join process.
During the remainder of the join process, the node that has sent the EB to the pledge acts as the JP.<a href="#section-4.1-4" class="pilcrow">¶</a></p>
<p id="section-4.1-5">At this point, the pledge may either proceed to step 2 or 
continue to listen for additional EBs.<a href="#section-4.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="step-nd">
<section id="section-4.2">
        <h3 id="name-step-2-neighbor-discovery">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-step-2-neighbor-discovery" class="section-name selfRef">Step 2 - Neighbor Discovery</a>
        </h3>
<p id="section-4.2-1">The pledge forms its link-local IPv6 address based on 
the interface identifier per <span>[<a href="#RFC4944" class="xref">RFC4944</a>]</span>.
The pledge <span class="bcp14">MAY</span> perform the Neighbor Solicitation / Neighbor Advertisement 
exchange with the JP per <span><a href="https://www.rfc-editor.org/rfc/rfc8505#section-5.6" class="relref">Section 5.6</a> of [<a href="#RFC8505" class="xref">RFC8505</a>]</span>.
Per <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>, there is no need to perform duplicate address detection for the link-local address.
The pledge and the JP use their link-local IPv6 addresses for all subsequent communication during the join process.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2-2">Note that Neighbor Discovery exchanges at this point are not protected with link-layer security as the pledge is not in possession of the keys.
How the JP accepts these unprotected frames is discussed in <a href="#llreq" class="xref">Section 5</a>.<a href="#section-4.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="step-cojp">
<section id="section-4.3">
        <h3 id="name-step-3-constrained-join-pro">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-step-3-constrained-join-pro" class="section-name selfRef">Step 3 - Constrained Join Protocol (CoJP) Execution</a>
        </h3>
<p id="section-4.3-1">The pledge triggers the join exchange of the Constrained Join Protocol (CoJP).
The join exchange consists of two messages: the Join Request message 
(<span><a href="#step-join-request" class="xref">Step 3a</a> (<a href="#step-join-request" class="xref">Section 4.3.1</a>)</span>) 
and the Join Response message, conditioned on the successful security 
processing of the request (<span><a href="#step-join-response" class="xref">Step 3b</a> (<a href="#step-join-response" class="xref">Section 4.3.2</a>)</span>).<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2">All CoJP messages are exchanged over a secure end-to-end 
channel that provides confidentiality, data authenticity, and replay protection.
Frames carrying CoJP messages are not protected with link-layer security when exchanged between the pledge and the JP as the pledge is not in possession of the link-layer keys in use.
How the JP and pledge accept these unprotected frames is discussed in <a href="#llreq" class="xref">Section 5</a>.
When frames carrying CoJP messages are exchanged between nodes that have already joined the network, the link-layer security is applied according to the security configuration used in the network.<a href="#section-4.3-2" class="pilcrow">¶</a></p>
<div id="step-join-request">
<section id="section-4.3.1">
          <h4 id="name-step-3a-join-request">
<a href="#section-4.3.1" class="section-number selfRef">4.3.1. </a><a href="#name-step-3a-join-request" class="section-name selfRef">Step 3a - Join Request</a>
          </h4>
<p id="section-4.3.1-1">The Join Request is a message sent from the pledge to the JP, 
and which the JP forwards to the JRC.
The pledge indicates in the Join Request the role it requests to play in the network, as well as the identifier of the network it requests to join.
The JP forwards the Join Request to the JRC on the existing links.
How exactly this happens is out of scope of this document; some networks 
may wish to dedicate specific link-layer resources for this join traffic.<a href="#section-4.3.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="step-join-response">
<section id="section-4.3.2">
          <h4 id="name-step-3b-join-response">
<a href="#section-4.3.2" class="section-number selfRef">4.3.2. </a><a href="#name-step-3b-join-response" class="section-name selfRef">Step 3b - Join Response</a>
          </h4>
<p id="section-4.3.2-1">The Join Response is sent by the JRC to the pledge, and it is forwarded through the JP.
The packet containing the Join Response travels from the JRC to the JP using the operating routes in the network.
The JP delivers it to the pledge.
The JP operates as an application-layer proxy, see <a href="#join_proxy" class="xref">Section 7</a>.<a href="#section-4.3.2-1" class="pilcrow">¶</a></p>
<p id="section-4.3.2-2">The Join Response contains various parameters needed by 
the pledge to become a fully operational network node.
These parameters include the link-layer key(s) currently in use in the network, the short address assigned to the pledge, the IPv6 address of the JRC needed by the pledge to operate as the JP, among others.<a href="#section-4.3.2-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="the-special-case-of-the-6lbr-pledge-joining">
<section id="section-4.4">
        <h3 id="name-the-special-case-of-the-6lb">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-the-special-case-of-the-6lb" class="section-name selfRef">The Special Case of the 6LBR Pledge Joining</a>
        </h3>
<p id="section-4.4-1">The 6LBR pledge performs <a href="#step-cojp" class="xref">Section 4.3</a> 
of the join process just like any other pledge, albeit over a different network interface.
There is no JP intermediating the communication between the 6LBR pledge and the JRC, as described in <a href="#netreq" class="xref">Section 6</a>.
The other steps of the described join process do not apply to the 6LBR pledge.
How the 6LBR pledge obtains an IPv6 address and triggers the execution 
of CoJP is out of scope of this document.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="llreq">
<section id="section-5">
      <h2 id="name-link-layer-configuration">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-link-layer-configuration" class="section-name selfRef">Link-Layer Configuration</a>
      </h2>
<p id="section-5-1">In an operational 6TiSCH network, all frames use link-layer frame security <span>[<a href="#RFC8180" class="xref">RFC8180</a>]</span>.
The IEEE Std 802.15.4 security attributes include frame authenticity 
and optionally frame confidentiality (i.e., encryption).<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">Any node sending EB frames <span class="bcp14">MUST</span> be prepared to act as a JP for potential pledges.<a href="#section-5-2" class="pilcrow">¶</a></p>
<p id="section-5-3">The pledge does not initially perform an authenticity check of the EB frames
because it does not possess the link-layer key(s) in use.
The pledge is still able to parse the contents of the received EBs and 
synchronize to the network, as EBs are not encrypted <span>[<a href="#RFC8180" class="xref">RFC8180</a>]</span>.<a href="#section-5-3" class="pilcrow">¶</a></p>
<p id="section-5-4">When sending frames during the join process, the pledge sends unencrypted and unauthenticated frames at the link layer.
In order for the join process to be possible, the JP must accept these unsecured frames for the duration of the join process.
This behavior may be implemented by setting the "secExempt" attribute in the IEEE Std 802.15.4 security configuration tables.
It is expected that the lower layer provides an interface to indicate to 
the upper layer that unsecured frames are being received from a device.
The upper layer can use that information to determine that a join process 
is in place and that the unsecured frames should be processed.
How the JP makes such a determination and interacts with the lower layer is out of scope of this specification.
The JP can additionally use information such as the value of the 
join rate parameter (<a href="#configuration_object" class="xref">Section 8.4.2</a>) 
set by the JRC, physical button press, etc.<a href="#section-5-4" class="pilcrow">¶</a></p>
<p id="section-5-5">When the pledge initially synchronizes with the network, 
it has no means of verifying the authenticity of EB frames.
Because an attacker can craft a frame that looks like a legitimate EB frame, 
this opens up a DoS vector, as discussed in <a href="#sec_considerations" class="xref">Section 9</a>.<a href="#section-5-5" class="pilcrow">¶</a></p>
<div id="timedistribution">
<section id="section-5.1">
        <h3 id="name-distribution-of-time">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-distribution-of-time" class="section-name selfRef">Distribution of Time</a>
        </h3>
<p id="section-5.1-1">Nodes in a 6TiSCH network keep a global notion of time 
known as the Absolute Slot Number.
The Absolute Slot Number is used in the construction of the 
link-layer nonce, as defined in <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span>.
The pledge initially synchronizes with the EB frame sent by the JP 
and uses the value of the Absolute Slot Number found in the 
TSCH Synchronization Information Element.
At the time of the synchronization, the EB frame can neither be authenticated nor its freshness verified.
During the join process, the pledge sends frames that are unprotected at the link-layer and protected end-to-end instead.
The pledge does not obtain the time information as the output of the join process as this information is local to the network and may not be known at the JRC.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<p id="section-5.1-2">This enables an attack on the pledge where the attacker replays to the pledge legitimate EB frames obtained from the network and acts as a man-in-the-middle between the pledge and the JP.
The EB frames will make the pledge believe that the replayed Absolute Slot Number value is the current notion of time in the network.
By forwarding the join traffic to the legitimate JP, the attacker enables the pledge to join the network.
Under different conditions relating to the reuse of the pledge's short address by the JRC or its attempt to rejoin the network, this may cause the pledge to reuse the link-layer nonce in the first frame it sends protected after the join process is completed.<a href="#section-5.1-2" class="pilcrow">¶</a></p>
<p id="section-5.1-3">For this reason, all frames originated at the JP and 
destined to the pledge during the join process <span class="bcp14">MUST</span> 
be authenticated at the link layer using the key that is normally in use in the network.
Link-layer security processing at the pledge for these frames will fail as the pledge is not yet in possession of the key.
The pledge acknowledges these frames without link-layer security, and JP accepts the unsecured acknowledgment due to the secExempt attribute set for the pledge.
The frames should be passed to the upper layer for processing using the promiscuous mode of <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span> or another appropriate mechanism.
When the upper-layer processing on the pledge is completed, 
and the link-layer keys are configured, the upper layer <span class="bcp14">MUST</span> 
trigger the security processing of the corresponding frame.
Once the security processing of the frame carrying the Join Response 
message is successful, the current Absolute Slot Number kept locally 
at the pledge <span class="bcp14">SHALL</span> be declared as valid.<a href="#section-5.1-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="netreq">
<section id="section-6">
      <h2 id="name-network-layer-configuration">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-network-layer-configuration" class="section-name selfRef">Network-Layer Configuration</a>
      </h2>
<p id="section-6-1">The pledge and the JP <span class="bcp14">SHOULD</span> keep a separate neighbor cache for untrusted entries and use it to store each other's information during the join process.
Mixing neighbor entries belonging to pledges and nodes that are 
part of the network opens up the JP to a DoS attack, as the attacker 
may fill the JP's neighbor table and prevent the discovery of legitimate neighbors.<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2">Once the pledge obtains link-layer keys and becomes a joined node, 
it is able to securely communicate with its neighbors, 
obtain the network IPv6 prefix, and form its global IPv6 address.
The joined node then undergoes an independent process to bootstrap its neighbor cache entries, possibly with a node that formerly acted as a JP, following <span>[<a href="#RFC8505" class="xref">RFC8505</a>]</span>.
From the point of view of the JP, there is no relationship between the neighbor cache entry belonging to a pledge and the joined node that formerly acted as a pledge.<a href="#section-6-2" class="pilcrow">¶</a></p>
<p id="section-6-3">The pledge does not communicate with the JRC at the network layer.
This allows the pledge to join without knowing the IPv6 address of the JRC.
Instead, the pledge communicates with the JP at the network layer using link-local addressing, and with the JRC at the application layer, as specified in <a href="#join_proxy" class="xref">Section 7</a>.<a href="#section-6-3" class="pilcrow">¶</a></p>
<p id="section-6-4">The JP communicates with the JRC over global IPv6 addresses.
The JP discovers the network IPv6 prefix and configures its global IPv6 address upon successful completion of the join process and the obtention of link-layer keys.
The pledge learns the IPv6 address of the JRC from the Join Response, as specified in <a href="#join_response" class="xref">Section 8.1.2</a>; it uses it once joined in order to operate as a JP.<a href="#section-6-4" class="pilcrow">¶</a></p>
<p id="section-6-5">As a special case, the 6LBR pledge may have an additional 
network interface that it uses in order to obtain the configuration 
parameters from the JRC and to start advertising the 6TiSCH network.
This additional interface needs to be configured with a global IPv6 address, 
by a mechanism that is out of scope of this document.
The 6LBR pledge uses this interface to directly communicate with the JRC using global IPv6 addressing.<a href="#section-6-5" class="pilcrow">¶</a></p>
<p id="section-6-6">The JRC can be co-located on the 6LBR.
In this special case, the IPv6 address of the JRC can be omitted from the Join Response message for space optimization.
The 6LBR then <span class="bcp14">MUST</span> set the DODAGID field in the RPL 
DODAG Information Objects (DIOs) <span>[<a href="#RFC6550" class="xref">RFC6550</a>]</span> to its IPv6 address.
The pledge learns the address of the JRC once joined and upon the 
reception of the first RPL DIO message, and uses it to operate as a JP.<a href="#section-6-6" class="pilcrow">¶</a></p>
<div id="traffic_join_request">
<section id="section-6.1">
        <h3 id="name-identification-of-unauthent">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-identification-of-unauthent" class="section-name selfRef">Identification of Unauthenticated Traffic</a>
        </h3>
<p id="section-6.1-1">The traffic that is proxied by the JP comes from unauthenticated pledges, and there may be an arbitrary amount of it.
In particular, an attacker may send fraudulent traffic in an attempt to overwhelm the network.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">When operating as part of a 6TiSCH minimal network 
<span>[<a href="#RFC8180" class="xref">RFC8180</a>]</span> using distributed scheduling algorithms, 
the traffic from unauthenticated pledges may cause intermediate nodes to request additional bandwidth.
An attacker could use this property to cause the network to overcommit bandwidth (and energy) to the join process.<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1-3">The JP is aware of what traffic originates from unauthenticated pledges, and so can avoid allocating additional bandwidth itself.
The JP implements a data cap on outgoing join traffic by 
implementing the recommendation of 1 packet per 3 seconds in 
<span><a href="https://www.rfc-editor.org/rfc/rfc8085#section-3.1.3" class="relref">Section 3.1.3</a> of [<a href="#RFC8085" class="xref">RFC8085</a>]</span>.
This can be achieved with the congestion control mechanism 
specified in <span><a href="https://www.rfc-editor.org/rfc/rfc7252#section-4.7" class="relref">Section 4.7</a> of [<a href="#RFC7252" class="xref">RFC7252</a>]</span>.
This cap will not protect intermediate nodes as they cannot tell join traffic from regular traffic.
Despite the data cap implemented separately on each JP, 
the aggregate join traffic from many JPs may cause intermediate nodes to decide to allocate additional cells.
It is undesirable to do so in response to the traffic originated from unauthenticated pledges.
In order to permit the intermediate nodes to avoid this, the traffic needs to be tagged.
<span>[<a href="#RFC2597" class="xref">RFC2597</a>]</span> defines a set of 
per-hop behaviors that may be encoded into the Diffserv Code Points (DSCPs).
Based on the DSCP, intermediate nodes can decide whether to act on a given packet.<a href="#section-6.1-3" class="pilcrow">¶</a></p>
<div id="traffic-from-jp-to-jrc">
<section id="section-6.1.1">
          <h4 id="name-traffic-from-jp-to-jrc">
<a href="#section-6.1.1" class="section-number selfRef">6.1.1. </a><a href="#name-traffic-from-jp-to-jrc" class="section-name selfRef">Traffic from JP to JRC</a>
          </h4>
<p id="section-6.1.1-1">The JP <span class="bcp14">SHOULD</span> set the DSCP of packets that it 
produces as part of the forwarding process to AF43 code point 
(See <span><a href="https://www.rfc-editor.org/rfc/rfc2597#section-6" class="relref">Section 6</a> of [<a href="#RFC2597" class="xref">RFC2597</a>]</span>).
A JP that does not require a specific DSCP value on forwarded traffic 
should set it to zero so that it is compressed out.<a href="#section-6.1.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1.1-2">A Scheduling Function (SF) running on 6TiSCH nodes <span class="bcp14">SHOULD NOT</span> allocate additional cells as a result of traffic with code point AF43.
Companion SF documents <span class="bcp14">SHOULD</span> specify how this recommended behavior is achieved.<a href="#section-6.1.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="traffic-from-jrc-to-jp">
<section id="section-6.1.2">
          <h4 id="name-traffic-from-jrc-to-jp">
<a href="#section-6.1.2" class="section-number selfRef">6.1.2. </a><a href="#name-traffic-from-jrc-to-jp" class="section-name selfRef">Traffic from JRC to JP</a>
          </h4>
<p id="section-6.1.2-1">The JRC <span class="bcp14">SHOULD</span> set the DSCP of 
Join Response packets addressed to the JP to the AF42 code point.
AF42 has lower drop probability than AF43, giving this traffic priority in buffers over the traffic going towards the JRC.<a href="#section-6.1.2-1" class="pilcrow">¶</a></p>
<p id="section-6.1.2-2">The 6LBR links are often the most congested within a DODAG, 
and from that point down, there is progressively less (or equal) congestion.
If the 6LBR paces itself when sending Join Response traffic, 
then it ought to never exceed the bandwidth allocated to the best effort traffic cells.
If the 6LBR has the capacity (if it is not constrained), then it 
should provide some buffers in order to satisfy the Assured Forwarding behavior.<a href="#section-6.1.2-2" class="pilcrow">¶</a></p>
<p id="section-6.1.2-3">Companion SF documents <span class="bcp14">SHOULD</span> specify how traffic with code point AF42 is handled with respect to cell allocation.
If the recommended behavior described in this section is not followed, 
the network may become prone to the attack discussed in <a href="#traffic_join_request" class="xref">Section 6.1</a>.<a href="#section-6.1.2-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="join_proxy">
<section id="section-7">
      <h2 id="name-application-layer-configura">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-application-layer-configura" class="section-name selfRef">Application-Layer Configuration</a>
      </h2>
<p id="section-7-1">The CoJP join exchange in <a href="#fig_overview_diagram" class="xref">Figure 1</a> is carried over CoAP <span>[<a href="#RFC7252" class="xref">RFC7252</a>]</span> and the secure channel provided by OSCORE <span>[<a href="#RFC8613" class="xref">RFC8613</a>]</span>.
The (6LBR) pledge acts as a CoAP client; the JRC acts as a CoAP server.
The JP implements CoAP forward proxy functionality <span>[<a href="#RFC7252" class="xref">RFC7252</a>]</span>.
Because the JP can also be a constrained device, it cannot implement a cache.<a href="#section-7-1" class="pilcrow">¶</a></p>
<p id="section-7-2">The pledge designates a JP as a proxy by including the 
Proxy-Scheme option in the CoAP requests that it sends to the JP.
The pledge also includes in the requests the Uri-Host option with 
its value set to the well-known JRC's alias, as specified in <a href="#join_request" class="xref">Section 8.1.1</a>.<a href="#section-7-2" class="pilcrow">¶</a></p>
<p id="section-7-3">The JP resolves the alias to the IPv6 address of the 
JRC that it learned when it acted as a pledge and joined the network.
This allows the JP to reach the JRC at the network layer and forward the requests on behalf of the pledge.<a href="#section-7-3" class="pilcrow">¶</a></p>
<div id="statelessness-of-the-jp">
<section id="section-7.1">
        <h3 id="name-statelessness-of-the-jp">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-statelessness-of-the-jp" class="section-name selfRef">Statelessness of the JP</a>
        </h3>
<p id="section-7.1-1">The CoAP proxy defined in <span>[<a href="#RFC7252" class="xref">RFC7252</a>]</span> 
keeps per-client state information in order to forward the response towards the originator of the request.
This state information includes at least
    the CoAP token,
    the IPv6 address of the client, and
    the UDP source port number.
Since the JP can be a constrained device that acts as a CoAP proxy, 
memory limitations make it prone to a DoS attack.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
<p id="section-7.1-2">This DoS vector on the JP can be mitigated by making the JP act as a stateless CoAP proxy, where "state" encompasses the information related to individual pledges.
The JP can wrap the state it needs to keep for a given pledge throughout the network stack in a "state object" and include it as a CoAP token in the forwarded request to the JRC.
The JP may use the CoAP token as defined in <span>[<a href="#RFC7252" class="xref">RFC7252</a>]</span>, 
if the size of the serialized state object permits, or use the extended 
CoAP token defined in <span>[<a href="#RFC8974" class="xref">RFC8974</a>]</span> 
to transport the state object.
The JRC and any other potential proxy on the JP-JRC path <span class="bcp14">MUST</span> 
support extended token lengths, as defined in <span>[<a href="#RFC8974" class="xref">RFC8974</a>]</span>.
Since the CoAP token is echoed back in the response, the JP is able to decode the state object and configure the state needed to forward the response to the pledge.
The information that the JP needs to encode in the state object to operate 
in a fully stateless manner with respect to a given pledge is implementation specific.<a href="#section-7.1-2" class="pilcrow">¶</a></p>
<p id="section-7.1-3">It is <span class="bcp14">RECOMMENDED</span> that the JP operates in a 
stateless manner and signals the per-pledge state within the CoAP token 
for every request that it forwards into the network on behalf of unauthenticated pledges.
When the JP is operating in a stateless manner, the security considerations from 
<span>[<a href="#RFC8974" class="xref">RFC8974</a>]</span> apply, and the type of the CoAP message that the JP forwards on behalf of the pledge <span class="bcp14">MUST</span> be non-confirmable (NON), regardless of the message type received from the pledge.
The use of a non-confirmable message by the JP alleviates the JP from keeping CoAP message exchange state.
The retransmission burden is then entirely shifted to the pledge.
A JP that operates in a stateless manner still needs to keep congestion control state with the JRC, see <a href="#sec_considerations" class="xref">Section 9</a>.
Recommended values of CoAP settings for use during the join process, both by the pledge and the JP, are given in <a href="#parameters" class="xref">Section 7.2</a>.<a href="#section-7.1-3" class="pilcrow">¶</a></p>
<p id="section-7.1-4">Note that in some networking stack implementations, a fully (per-pledge) stateless operation of the JP may be challenging from the implementation's point of view.
In those cases, the JP may operate as a stateful proxy that stores 
the per-pledge state until the response is received or timed out, but this comes at a price of a DoS vector.<a href="#section-7.1-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="parameters">
<section id="section-7.2">
        <h3 id="name-recommended-settings">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-recommended-settings" class="section-name selfRef">Recommended Settings</a>
        </h3>
<p id="section-7.2-1">This section gives <span class="bcp14">RECOMMENDED</span> values of CoAP settings during the join process.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
<span id="name-recommended-coap-settings"></span><table class="center" id="table-1">
          <caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-recommended-coap-settings" class="selfRef">Recommended CoAP settings.</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">Name</th>
              <th class="text-left" rowspan="1" colspan="1">Default Value</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">ACK_TIMEOUT</td>
              <td class="text-left" rowspan="1" colspan="1">10 seconds</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">ACK_RANDOM_FACTOR</td>
              <td class="text-left" rowspan="1" colspan="1">1.5</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">MAX_RETRANSMIT</td>
              <td class="text-left" rowspan="1" colspan="1">4</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">NSTART</td>
              <td class="text-left" rowspan="1" colspan="1">1</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">DEFAULT_LEISURE</td>
              <td class="text-left" rowspan="1" colspan="1">5 seconds</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">PROBING_RATE</td>
              <td class="text-left" rowspan="1" colspan="1">1 byte/second</td>
            </tr>
          </tbody>
        </table>
<p id="section-7.2-3">These values may be configured to values specific to the deployment.
The default values have been chosen to accommodate a wide range of deployments, taking into account dense networks.<a href="#section-7.2-3" class="pilcrow">¶</a></p>
<p id="section-7.2-4">The PROBING_RATE value at the JP is controlled by the join rate parameter, see <a href="#configuration_object" class="xref">Section 8.4.2</a>.
Following <span>[<a href="#RFC7252" class="xref">RFC7252</a>]</span>, the average data rate in sending to the JRC must not exceed PROBING_RATE.
For security reasons, the average data rate <span class="bcp14">SHOULD</span> 
be measured over a rather short window, e.g., ACK_TIMEOUT, 
see <a href="#sec_considerations" class="xref">Section 9</a>.<a href="#section-7.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="oscore_sec_context">
<section id="section-7.3">
        <h3 id="name-oscore">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-oscore" class="section-name selfRef">OSCORE</a>
        </h3>
<p id="section-7.3-1">Before the (6LBR) pledge and the JRC start exchanging CoAP messages protected with OSCORE, they need to derive the OSCORE security context from the provisioned parameters, as discussed in <a href="#provisioning" class="xref">Section 3</a>.<a href="#section-7.3-1" class="pilcrow">¶</a></p>
<p id="section-7.3-2">The OSCORE security context <span class="bcp14">MUST</span> be derived per 
<span><a href="https://www.rfc-editor.org/rfc/rfc8613#section-3" class="relref">Section 3</a> of [<a href="#RFC8613" class="xref">RFC8613</a>]</span>.<a href="#section-7.3-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.3-3.1">The Master Secret <span class="bcp14">MUST</span> be the PSK.<a href="#section-7.3-3.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-3.2">The Master Salt <span class="bcp14">MUST</span> be the empty byte string.<a href="#section-7.3-3.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-3.3">The ID Context <span class="bcp14">MUST</span> be set to the pledge identifier.<a href="#section-7.3-3.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-3.4">The ID of the pledge <span class="bcp14">MUST</span> be set to the empty byte string.
This identifier is used as the OSCORE Sender ID of the pledge in the security context derivation, since the pledge initially acts as a CoAP client.<a href="#section-7.3-3.4" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-3.5">The ID of the JRC <span class="bcp14">MUST</span> be set to the byte string 0x4a5243 ("JRC" in ASCII).
This identifier is used as the OSCORE Recipient ID of the pledge in the security context derivation, as the JRC initially acts as a CoAP server.<a href="#section-7.3-3.5" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-3.6">The Algorithm <span class="bcp14">MUST</span> be set to the value 
from <span>[<a href="#RFC8152" class="xref">RFC8152</a>]</span>, agreed to out-of-band 
by the same mechanism used to provision the PSK.
The default is AES-CCM-16-64-128.<a href="#section-7.3-3.6" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-3.7">The key derivation function <span class="bcp14">MUST</span> be agreed out-of-band by the same mechanism used to provision the PSK.
Default is HKDF SHA-256 <span>[<a href="#RFC5869" class="xref">RFC5869</a>]</span>.<a href="#section-7.3-3.7" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-7.3-4">Since the pledge's OSCORE Sender ID is the empty byte string, 
when constructing the OSCORE option, the pledge sets the 'kid' flag in the 
OSCORE flag bits but indicates a 0-length 'kid'.
The pledge transports its pledge identifier within the 'kid context' field of the OSCORE option.
The derivation in <span>[<a href="#RFC8613" class="xref">RFC8613</a>]</span> results in OSCORE keys and a Common Initialization Vector (IV) for each side of the conversation.
Nonces are constructed by XORing the Common IV with the current sequence number.
For details on nonce and OSCORE option construction, refer to <span>[<a href="#RFC8613" class="xref">RFC8613</a>]</span>.<a href="#section-7.3-4" class="pilcrow">¶</a></p>
<p id="section-7.3-5">Implementations <span class="bcp14">MUST</span> ensure that multiple CoAP requests, including to different JRCs, are properly incrementing the sequence numbers, so that the same sequence number is never reused in distinct requests protected under the same PSK.
The pledge typically sends requests to different JRCs if it is not provisioned with the network identifier and attempts to join one network at a time.
Failure to comply will break the security guarantees of the Authenticated Encryption with Associated Data (AEAD) algorithm because of nonce reuse.<a href="#section-7.3-5" class="pilcrow">¶</a></p>
<p id="section-7.3-6">This OSCORE security context is used for the
    initial joining of the (6LBR) pledge, where the (6LBR) pledge acts as a CoAP client,
    as well as for any later parameter updates, where the JRC acts as a CoAP client and the joined node as a CoAP server, as discussed in <a href="#update" class="xref">Section 8.2</a>.
Note that when the (6LBR) pledge and the JRC change roles between 
CoAP client and CoAP server, the same OSCORE security context as 
initially derived remains in use, and the derived parameters are unchanged, 
for example, Sender ID when sending and Recipient ID when receiving 
(see <span><a href="https://www.rfc-editor.org/rfc/rfc8613#section-3.1" class="relref">Section 3.1</a> of [<a href="#RFC8613" class="xref">RFC8613</a>]</span>).
A (6LBR) pledge is expected to have exactly one OSCORE security context with the JRC.<a href="#section-7.3-6" class="pilcrow">¶</a></p>
<div id="persistency">
<section id="section-7.3.1">
          <h4 id="name-replay-window-and-persisten">
<a href="#section-7.3.1" class="section-number selfRef">7.3.1. </a><a href="#name-replay-window-and-persisten" class="section-name selfRef">Replay Window and Persistency</a>
          </h4>
<p id="section-7.3.1-1">Both the (6LBR) pledge and the JRC <span class="bcp14">MUST</span> 
implement a replay-protection mechanism.
The use of the default OSCORE replay-protection mechanism specified in 
<span><a href="https://www.rfc-editor.org/rfc/rfc8613#section-3.2.2" class="relref">Section 3.2.2</a> of [<a href="#RFC8613" class="xref">RFC8613</a>]</span> is <span class="bcp14">RECOMMENDED</span>.<a href="#section-7.3.1-1" class="pilcrow">¶</a></p>
<p id="section-7.3.1-2">Implementations <span class="bcp14">MUST</span> ensure that mutable OSCORE context parameters (Sender Sequence Number, Replay Window) are stored in persistent memory.
A technique detailed in <span><a href="https://www.rfc-editor.org/rfc/rfc8613#appendix-B.1.1" class="relref">Appendix B.1.1</a> of [<a href="#RFC8613" class="xref">RFC8613</a>]</span> 
that prevents reuse of sequence numbers <span class="bcp14">MUST</span> be implemented.
Each update of the OSCORE Replay Window <span class="bcp14">MUST</span> be written to persistent memory.<a href="#section-7.3.1-2" class="pilcrow">¶</a></p>
<p id="section-7.3.1-3">This is an important security requirement in order to guarantee nonce uniqueness and resistance to replay attacks across reboots and rejoins.
Traffic between the (6LBR) pledge and the JRC is rare, making security outweigh the cost of writing to persistent memory.<a href="#section-7.3.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="oscore_error_handling">
<section id="section-7.3.2">
          <h4 id="name-oscore-error-handling">
<a href="#section-7.3.2" class="section-number selfRef">7.3.2. </a><a href="#name-oscore-error-handling" class="section-name selfRef">OSCORE Error Handling</a>
          </h4>
<p id="section-7.3.2-1">Errors raised by OSCORE during the join process <span class="bcp14">MUST</span> be silently dropped, with no error response being signaled.
The pledge <span class="bcp14">MUST</span> silently discard any response not protected with OSCORE, including error codes.<a href="#section-7.3.2-1" class="pilcrow">¶</a></p>
<p id="section-7.3.2-2">Such errors may happen for a number of reasons, including
    failed lookup of an appropriate security context (e.g., the pledge attempting to join a wrong network),
    failed decryption,
    positive Replay Window lookup,
    formatting errors (possibly due to malicious alterations in transit).
Silently dropping OSCORE messages prevents a DoS attack on the pledge where the attacker could send bogus error responses, forcing the pledge to attempt joining one network at a time, until all networks have been tried.<a href="#section-7.3.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="mti_algos">
<section id="section-7.3.3">
          <h4 id="name-mandatory-to-implement-algo">
<a href="#section-7.3.3" class="section-number selfRef">7.3.3. </a><a href="#name-mandatory-to-implement-algo" class="section-name selfRef">Mandatory-to-Implement Algorithms</a>
          </h4>
<p id="section-7.3.3-1">The mandatory-to-implement AEAD algorithm for use with OSCORE is AES-CCM-16-64-128 from <span>[<a href="#RFC8152" class="xref">RFC8152</a>]</span>.
This is the algorithm used for securing IEEE Std 802.15.4 frames, and hardware acceleration for it is present in virtually all compliant radio chips.
With this choice, CoAP messages are protected with an 8-byte CCM authentication tag, and the algorithm uses 13-byte long nonces.<a href="#section-7.3.3-1" class="pilcrow">¶</a></p>
<p id="section-7.3.3-2">The mandatory-to-implement hash algorithm is SHA-256 <span>[<a href="#RFC4231" class="xref">RFC4231</a>]</span>.
The mandatory-to-implement key derivation function is HKDF <span>[<a href="#RFC5869" class="xref">RFC5869</a>]</span>, instantiated with a SHA-256 hash.
See <a href="#lightweight" class="xref">Appendix B</a> for implementation guidance when code footprint is important.<a href="#section-7.3.3-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="join_protocol">
<section id="section-8">
      <h2 id="name-constrained-join-protocol-c">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-constrained-join-protocol-c" class="section-name selfRef">Constrained Join Protocol (CoJP)</a>
      </h2>
<p id="section-8-1">The Constrained Join Protocol (CoJP) is a lightweight protocol over CoAP <span>[<a href="#RFC7252" class="xref">RFC7252</a>]</span> and a secure channel provided by OSCORE <span>[<a href="#RFC8613" class="xref">RFC8613</a>]</span>.
CoJP allows a (6LBR) pledge to request admission into a network managed by the JRC.
It enables the JRC to configure the pledge with the necessary parameters.
The JRC may update the parameters at any time, by reaching out to the joined node that formerly acted as a (6LBR) pledge.
For example, network-wide rekeying can be implemented by updating the keying material on each node.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">CoJP relies on the security properties provided by OSCORE.
This includes end-to-end confidentiality, data authenticity, replay protection, and a secure binding of responses to requests.<a href="#section-8-2" class="pilcrow">¶</a></p>
<span id="name-abstract-layering-of-cojp"></span><div id="fig-stack">
<figure id="figure-2">
        <div class="artwork art-text alignCenter" id="section-8-3.1">
<pre>
+-----------------------------------+
|  Constrained Join Protocol (CoJP) |
+-----------------------------------+
+-----------------------------------+  \
|         Requests / Responses      |  |
|-----------------------------------|  |
|               OSCORE              |  | CoAP
|-----------------------------------|  |
|           Messaging Layer         |  |
+-----------------------------------+  /
+-----------------------------------+
|                UDP                |
+-----------------------------------+
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-abstract-layering-of-cojp" class="selfRef">Abstract layering of CoJP.</a>
        </figcaption></figure>
</div>
<p id="section-8-4">When a (6LBR) pledge requests admission to a given network, it undergoes the CoJP join exchange that consists of:<a href="#section-8-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-8-5.1">The Join Request message, sent by the (6LBR) pledge to the JRC, potentially proxied by the JP.
The Join Request message and its mapping to CoAP is specified in <a href="#join_request" class="xref">Section 8.1.1</a>.<a href="#section-8-5.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-8-5.2">The Join Response message, sent by the JRC to the (6LBR) pledge, if the JRC successfully processes the Join Request using OSCORE and it determines through a mechanism that is out of scope of this specification that the (6LBR) pledge is authorized to join the network.
The Join Response message is potentially proxied by the JP.
The Join Response message and its mapping to CoAP is specified in <a href="#join_response" class="xref">Section 8.1.2</a>.<a href="#section-8-5.2" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-8-6">When the JRC needs to update the parameters of a joined node 
that formerly acted as a (6LBR) pledge, it executes the CoJP parameter update exchange 
that consists of the following:<a href="#section-8-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-8-7.1">The Parameter Update message, sent by the JRC to the joined node that formerly acted as a (6LBR) pledge.
The Parameter Update message and its mapping to CoAP is specified in <a href="#parameter_update" class="xref">Section 8.2.1</a>.<a href="#section-8-7.1" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-8-8">The payload of CoJP messages is encoded with CBOR <span>[<a href="#RFC8949" class="xref">RFC8949</a>]</span>.
The CBOR data structures that may appear as the payload of different CoJP messages are specified in <a href="#cbor_objects" class="xref">Section 8.4</a>.<a href="#section-8-8" class="pilcrow">¶</a></p>
<div id="join">
<section id="section-8.1">
        <h3 id="name-join-exchange">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-join-exchange" class="section-name selfRef">Join Exchange</a>
        </h3>
<p id="section-8.1-1">This section specifies the messages exchanged when the (6LBR) pledge requests admission and configuration parameters from the JRC.<a href="#section-8.1-1" class="pilcrow">¶</a></p>
<div id="join_request">
<section id="section-8.1.1">
          <h4 id="name-join-request-message">
<a href="#section-8.1.1" class="section-number selfRef">8.1.1. </a><a href="#name-join-request-message" class="section-name selfRef">Join Request Message</a>
          </h4>
<p id="section-8.1.1-1">The Join Request message that the (6LBR) pledge sends <span class="bcp14">SHALL</span> be mapped to a CoAP request:<a href="#section-8.1.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-8.1.1-2.1">The request method is POST.<a href="#section-8.1.1-2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.1.1-2.2">The type is Confirmable (CON).<a href="#section-8.1.1-2.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.1.1-2.3">The Proxy-Scheme option is set to "coap".<a href="#section-8.1.1-2.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.1.1-2.4">The Uri-Host option is set to "6tisch.arpa".
This is an anycast type of identifier of the JRC that is resolved to its IPv6 address by the JP or the 6LBR pledge.<a href="#section-8.1.1-2.4" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.1.1-2.5">The Uri-Path option is set to "j".<a href="#section-8.1.1-2.5" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.1.1-2.6">The OSCORE option <span class="bcp14">SHALL</span> be set according to <span>[<a href="#RFC8613" class="xref">RFC8613</a>]</span>.
  The OSCORE security context used is the one derived in <a href="#oscore_sec_context" class="xref">Section 7.3</a>.
  The OSCORE 'kid context' allows the JRC to retrieve the security context for a given pledge.<a href="#section-8.1.1-2.6" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.1.1-2.7">The payload is a Join_Request CBOR object, as defined in <a href="#join_request_object" class="xref">Section 8.4.1</a>.<a href="#section-8.1.1-2.7" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-8.1.1-3">Since the Join Request is a confirmable message, the transmission at (6LBR) pledge will be controlled by CoAP's retransmission mechanism.
The JP, when operating in a stateless manner, forwards this Join Request as a non-confirmable (NON) CoAP message, as specified in <a href="#join_proxy" class="xref">Section 7</a>.
If the CoAP implementation at the (6LBR) pledge declares the 
message transmission a failure, the (6LBR) pledge <span class="bcp14">SHOULD</span> 
attempt to join a 6TiSCH network advertised with a different network identifier.
See <a href="#parameters" class="xref">Section 7.2</a> for recommended values of CoAP settings to use during the join exchange.<a href="#section-8.1.1-3" class="pilcrow">¶</a></p>
<p id="section-8.1.1-4">If all join attempts to advertised networks have failed, the (6LBR) pledge <span class="bcp14">SHOULD</span> signal the presence of an error condition, through some out-of-band mechanism.<a href="#section-8.1.1-4" class="pilcrow">¶</a></p>
<p id="section-8.1.1-5">BCP 190 <span>[<a href="#RFC8820" class="xref">RFC8820</a>]</span> 
provides guidelines on URI design and ownership.  It recommends that 
whenever a third party wants to mandate a URI to web authority that 
it <span class="bcp14">SHOULD</span> go under "/.well-known" (per <span>[<a href="#RFC8615" class="xref">RFC8615</a>]</span>).
In the case of CoJP, the Uri-Host option is always set to "6tisch.arpa", 
and based upon the recommendations in <span><a href="https://www.rfc-editor.org/rfc/rfc8820#section-1" class="relref">Section 1</a> of [<a href="#RFC8820" class="xref">RFC8820</a>]</span>, 
it is asserted that this document is the owner of the CoJP service.
As such, the concerns of <span>[<a href="#RFC8820" class="xref">RFC8820</a>]</span> do not apply, 
and thus the Uri-Path is only "j".<a href="#section-8.1.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="join_response">
<section id="section-8.1.2">
          <h4 id="name-join-response-message">
<a href="#section-8.1.2" class="section-number selfRef">8.1.2. </a><a href="#name-join-response-message" class="section-name selfRef">Join Response Message</a>
          </h4>
<p id="section-8.1.2-1">The Join Response message that the JRC sends <span class="bcp14">SHALL</span> be mapped to a CoAP response:<a href="#section-8.1.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-8.1.2-2.1">The Response Code is 2.04 (Changed).<a href="#section-8.1.2-2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.1.2-2.2">The payload is a Configuration CBOR object, as defined in <a href="#configuration_object" class="xref">Section 8.4.2</a>.<a href="#section-8.1.2-2.2" class="pilcrow">¶</a>
</li>
          </ul>
</section>
</div>
</section>
</div>
<div id="update">
<section id="section-8.2">
        <h3 id="name-parameter-update-exchange">
<a href="#section-8.2" class="section-number selfRef">8.2. </a><a href="#name-parameter-update-exchange" class="section-name selfRef">Parameter Update Exchange</a>
        </h3>
<p id="section-8.2-1">During the network lifetime, parameters returned as part of the Join Response may need to be updated.
One typical example is the update of link-layer keying material for the network, a process known as rekeying.
This section specifies a generic mechanism when this parameter update is initiated by the JRC.<a href="#section-8.2-1" class="pilcrow">¶</a></p>
<p id="section-8.2-2">At the time of the join, the (6LBR) pledge acts as a 
CoAP client and requests the network parameters through a representation 
of the "/j" resource exposed by the JRC.
In order for the update of these parameters to happen, the JRC needs to asynchronously contact the joined node.
The use of the CoAP Observe option for this purpose is not feasible due to the change in the IPv6 address when the pledge becomes the joined node and obtains a global address.<a href="#section-8.2-2" class="pilcrow">¶</a></p>
<p id="section-8.2-3">Instead, once the (6LBR) pledge receives and successfully validates the Join Response and so becomes a joined node, it becomes a CoAP server.
The joined node creates a CoAP service at the Uri-Host value of "6tisch.arpa", and the joined node exposes the "/j" resource that is used by the JRC to update the parameters.
Consequently, the JRC operates as a CoAP client when updating the parameters.
The request/response exchange between the JRC and the (6LBR) pledge happens over the already-established OSCORE secure channel.<a href="#section-8.2-3" class="pilcrow">¶</a></p>
<div id="parameter_update">
<section id="section-8.2.1">
          <h4 id="name-parameter-update-message">
<a href="#section-8.2.1" class="section-number selfRef">8.2.1. </a><a href="#name-parameter-update-message" class="section-name selfRef">Parameter Update Message</a>
          </h4>
<p id="section-8.2.1-1">The Parameter Update message that the JRC sends to the joined node <span class="bcp14">SHALL</span> be mapped to a CoAP request:<a href="#section-8.2.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-8.2.1-2.1">The request method is POST.<a href="#section-8.2.1-2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.2.1-2.2">The type is Confirmable (CON).<a href="#section-8.2.1-2.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.2.1-2.3">The Uri-Host option is set to "6tisch.arpa".<a href="#section-8.2.1-2.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.2.1-2.4">The Uri-Path option is set to "j".<a href="#section-8.2.1-2.4" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.2.1-2.5">The OSCORE option <span class="bcp14">SHALL</span> be set according to <span>[<a href="#RFC8613" class="xref">RFC8613</a>]</span>.
  The OSCORE security context used is the one derived in <a href="#oscore_sec_context" class="xref">Section 7.3</a>.
  When a joined node receives a request with the Sender ID set to 0x4a5243 (ID of the JRC), it is able to correctly retrieve the security context with the JRC.<a href="#section-8.2.1-2.5" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.2.1-2.6">The payload is a Configuration CBOR object, as defined in <a href="#configuration_object" class="xref">Section 8.4.2</a>.<a href="#section-8.2.1-2.6" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-8.2.1-3">The JRC has implicit knowledge of the global IPv6 address 
of the joined node, as it knows the pledge identifier that the joined 
node used when it acted as a pledge and the IPv6 network prefix.
The JRC uses this implicitly derived IPv6 address of the joined node to directly address CoAP messages to it.<a href="#section-8.2.1-3" class="pilcrow">¶</a></p>
<p id="section-8.2.1-4">If the JRC does not receive a response to a 
Parameter Update message, it attempts multiple retransmissions as 
configured by the underlying CoAP retransmission mechanism triggered for confirmable messages.
Finally, if the CoAP implementation declares the transmission a failure, 
the JRC may consider this as a hint that the joined node is no longer in the network.
How the JRC decides when to stop attempting to contact a previously 
joined node is out of scope of this specification, but the security 
considerations on the reuse of assigned resources apply, as discussed 
in <a href="#sec_considerations" class="xref">Section 9</a>.<a href="#section-8.2.1-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="error-handling">
<section id="section-8.3">
        <h3 id="name-error-handling">
<a href="#section-8.3" class="section-number selfRef">8.3. </a><a href="#name-error-handling" class="section-name selfRef">Error Handling</a>
        </h3>
<div id="cojp_error_handling">
<section id="section-8.3.1">
          <h4 id="name-cojp-cbor-object-processing">
<a href="#section-8.3.1" class="section-number selfRef">8.3.1. </a><a href="#name-cojp-cbor-object-processing" class="section-name selfRef">CoJP CBOR Object Processing</a>
          </h4>
<p id="section-8.3.1-1">CoJP CBOR objects are transported within both CoAP requests and responses.
This section describes handling the cases in which certain CoJP CBOR object 
parameters are not supported by the implementation or their processing fails.
See <a href="#oscore_error_handling" class="xref">Section 7.3.2</a> for the handling of errors that may be raised by the underlying OSCORE implementation.<a href="#section-8.3.1-1" class="pilcrow">¶</a></p>
<p id="section-8.3.1-2">When such a parameter is detected in a CoAP request (Join Request message, Parameter Update message), a Diagnostic Response message <span class="bcp14">MUST</span> be returned.
A Diagnostic Response message maps to a CoAP response and is specified in <a href="#error_response_message" class="xref">Section 8.3.2</a>.<a href="#section-8.3.1-2" class="pilcrow">¶</a></p>
<p id="section-8.3.1-3">When a parameter that cannot be acted upon is encountered while processing a CoJP object in a CoAP response (Join Response message), a (6LBR) pledge <span class="bcp14">SHOULD</span> reattempt to join.
In this case, the (6LBR) pledge <span class="bcp14">SHOULD</span> include the Unsupported Configuration CBOR object within the Join Request object in the following Join Request message.
The Unsupported Configuration CBOR object is self-contained and enables the (6LBR) pledge to signal any parameters that the implementation of the networking stack may not support.
A (6LBR) pledge <span class="bcp14">MUST NOT</span> attempt more than COJP_MAX_JOIN_ATTEMPTS number of attempts to join if the processing of the Join Response message fails each time.
If the COJP_MAX_JOIN_ATTEMPTS number of attempts is reached without 
success, the (6LBR) pledge <span class="bcp14">SHOULD</span> signal the presence 
of an error condition through some out-of-band mechanism.<a href="#section-8.3.1-3" class="pilcrow">¶</a></p>
<p id="section-8.3.1-4">Note that COJP_MAX_JOIN_ATTEMPTS relates to the 
application-layer handling of the CoAP response and is different from 
CoAP's MAX_RETRANSMIT setting, which drives the retransmission mechanism 
of the underlying CoAP message.<a href="#section-8.3.1-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="error_response_message">
<section id="section-8.3.2">
          <h4 id="name-diagnostic-response-message">
<a href="#section-8.3.2" class="section-number selfRef">8.3.2. </a><a href="#name-diagnostic-response-message" class="section-name selfRef">Diagnostic Response Message</a>
          </h4>
<p id="section-8.3.2-1">The Diagnostic Response message is returned for any CoJP request when the processing of the payload failed.
The Diagnostic Response message is protected by OSCORE as any other CoJP  message.<a href="#section-8.3.2-1" class="pilcrow">¶</a></p>
<p id="section-8.3.2-2">The Diagnostic Response message <span class="bcp14">SHALL</span> be mapped to a CoAP response:<a href="#section-8.3.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-8.3.2-3.1">The Response Code is 4.00 (Bad Request).<a href="#section-8.3.2-3.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-8.3.2-3.2">The payload is an Unsupported Configuration CBOR object, 
as defined in <a href="#unsupported_configuration_object" class="xref">Section 8.4.5</a>, 
containing more information about the parameter that triggered the sending of this message.<a href="#section-8.3.2-3.2" class="pilcrow">¶</a>
</li>
          </ul>
</section>
</div>
<div id="failure_handling">
<section id="section-8.3.3">
          <h4 id="name-failure-handling">
<a href="#section-8.3.3" class="section-number selfRef">8.3.3. </a><a href="#name-failure-handling" class="section-name selfRef">Failure Handling</a>
          </h4>
<p id="section-8.3.3-1">The parameter update exchange may be triggered at any time 
during the network lifetime, which may span several years.
During this period, a joined node or the JRC may experience unexpected 
events such as reboots or complete failures.<a href="#section-8.3.3-1" class="pilcrow">¶</a></p>
<p id="section-8.3.3-2">This document mandates that the mutable parameters in the 
security context are written to persistent memory (see 
<a href="#persistency" class="xref">Section 7.3.1</a>) by both the JRC and pledges 
(joined nodes).
As the pledge (joined node) is typically a constrained device that handles 
the write operations to persistent memory in a predictable manner, the 
retrieval of mutable security-context parameters is feasible across reboots 
such that there is no risk of AEAD nonce reuse due to reinitialized 
Sender Sequence Numbers or of a replay attack due to the reinitialized Replay Window.
The JRC may be hosted on a generic machine where the write operation to 
persistent memory may lead to unpredictable delays due to caching.
If a reboot event occurs at the JRC before the cached data is written 
to persistent memory, the loss of mutable security-context parameters 
is likely, which consequently poses the risk of AEAD nonce reuse.<a href="#section-8.3.3-2" class="pilcrow">¶</a></p>
<p id="section-8.3.3-3">In the event of a complete device failure, where the mutable 
security-context parameters cannot be retrieved, it is expected that a 
failed joined node will be replaced with a new physical device, using 
a new pledge identifier and a PSK.
When such a failure event occurs at the JRC, it is possible that the 
static information on provisioned pledges, like PSKs and pledge identifiers, 
can be retrieved through available backups.
However, it is likely that the information about joined nodes, their 
assigned short identifiers and mutable security-context parameters, 
is lost.
  If this is the case, the network administrator <span class="bcp14">MUST</span> force  
  all the networks managed by the failed JRC to rejoin through out-of-band
  means during the process of JRC reinitialization, e.g., 
  reinitialize the 6LBR nodes and freshly generate dynamic 
  cryptographic keys and other parameters that influence the 
  security properties of the network.<a href="#section-8.3.3-3" class="pilcrow">¶</a></p>
<p id="section-8.3.3-4">In order to recover from such a failure event, the reinitialized JRC can trigger the renegotiation of the OSCORE security context through the procedure described in  
<span><a href="https://www.rfc-editor.org/rfc/rfc8613#appendix-B.2" class="relref">Appendix B.2</a> of [<a href="#RFC8613" class="xref">RFC8613</a>]</span>.
Aware of the failure event, the reinitialized JRC responds to the first 
Join Request of each pledge it is managing with a 4.01 (Unauthorized) 
error and a random nonce.
The pledge verifies the error response and then initiates the CoJP join exchange using a new OSCORE security context derived from an ID Context consisting of the concatenation of two nonces, one that it received from the JRC and the other that the pledge generates locally.
After verifying the Join Request with the new ID Context and the 
derived OSCORE security context, the JRC should consequently map 
the new ID Context to the previously used pledge identifier.
How the JRC handles this mapping is out of scope of this document.<a href="#section-8.3.3-4" class="pilcrow">¶</a></p>
<p id="section-8.3.3-5">The use of the procedure specified in 
<span><a href="https://www.rfc-editor.org/rfc/rfc8613#appendix-B.2" class="relref">Appendix B.2</a> of [<a href="#RFC8613" class="xref">RFC8613</a>]</span> 
is <span class="bcp14">RECOMMENDED</span> in order to handle the failure events or 
any other event that may lead to the loss of mutable security-context parameters.
The length of nonces exchanged using this procedure <span class="bcp14">MUST</span> be at least 8 bytes.<a href="#section-8.3.3-5" class="pilcrow">¶</a></p>
<p id="section-8.3.3-6">The procedure requires both the pledge and the JRC 
to have good sources of randomness.
While this is typically not an issue at the JRC side, the constrained 
device hosting the pledge may pose limitations in this regard.
If the procedure outlined in 
<span><a href="https://www.rfc-editor.org/rfc/rfc8613#appendix-B.2" class="relref">Appendix B.2</a> of [<a href="#RFC8613" class="xref">RFC8613</a>]</span> 
is not supported by the pledge, the network administrator <span class="bcp14">MUST</span> 
reprovision the concerned devices with freshly generated parameters 
through out-of-band means.<a href="#section-8.3.3-6" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="cbor_objects">
<section id="section-8.4">
        <h3 id="name-cojp-objects">
<a href="#section-8.4" class="section-number selfRef">8.4. </a><a href="#name-cojp-objects" class="section-name selfRef">CoJP Objects</a>
        </h3>
<p id="section-8.4-1">This section specifies the structure of CoJP CBOR objects 
that may be carried as the payload of CoJP messages.
Some of these objects may be received both as part of the 
CoJP join exchange when the device operates as a (CoJP) pledge or 
as part of the parameter update exchange when the device operates 
as a joined (6LBR) node.<a href="#section-8.4-1" class="pilcrow">¶</a></p>
<div id="join_request_object">
<section id="section-8.4.1">
          <h4 id="name-join-request-object">
<a href="#section-8.4.1" class="section-number selfRef">8.4.1. </a><a href="#name-join-request-object" class="section-name selfRef">Join Request Object</a>
          </h4>
<p id="section-8.4.1-1">The Join_Request structure is built on a CBOR map object.<a href="#section-8.4.1-1" class="pilcrow">¶</a></p>
<p id="section-8.4.1-2">The set of parameters that can appear in a Join_Request object is summarized below.
The labels can be found in the "Constrained Join Protocol (CoJP) Parameters" registry, 
<a href="#iana_cojp_registry" class="xref">Section 11.1</a>.<a href="#section-8.4.1-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-8.4.1-3">
            <dt id="section-8.4.1-3.1">role:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.1-3.2">The identifier of the role that the pledge requests 
to play in the network once it joins, encoded as an unsigned integer.
Possible values are specified in <a href="#table_role_values" class="xref">Table 3</a>.
This parameter <span class="bcp14">MAY</span> be included.
If the parameter is omitted, the default value of 0, 
i.e., the role "6TiSCH Node", <span class="bcp14">MUST</span> be assumed.<a href="#section-8.4.1-3.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.1-3.3">network identifier:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.1-3.4">The identifier of the network, as discussed in 
<a href="#provisioning" class="xref">Section 3</a>, encoded as a CBOR byte string.
When present in the Join_Request, it hints to the JRC which network 
the pledge is requesting to join, enabling the JRC to manage multiple networks.
The pledge obtains the value of the network identifier from the received EB frames.
This parameter <span class="bcp14">MUST</span> be included in a Join_Request object 
regardless of the role parameter value.<a href="#section-8.4.1-3.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.1-3.5">unsupported configuration:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.1-3.6">The identifier of the parameters that are not supported by 
the implementation, encoded as an Unsupported_Configuration object described in 
<a href="#unsupported_configuration_object" class="xref">Section 8.4.5</a>.
This parameter <span class="bcp14">MAY</span> be included.
If a (6LBR) pledge previously attempted to join and received a valid 
Join Response message over OSCORE but failed to act on its payload 
(Configuration object), it <span class="bcp14">SHOULD</span> include this parameter 
to facilitate the recovery and debugging.<a href="#section-8.4.1-3.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-8.4.1-4"><a href="#table_join_req_params" class="xref">Table 2</a> 
summarizes the parameters that may appear in a Join_Request object.<a href="#section-8.4.1-4" class="pilcrow">¶</a></p>
<span id="name-summary-of-join_request-par"></span><div id="table_join_req_params">
<table class="center" id="table-2">
            <caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-summary-of-join_request-par" class="selfRef">Summary of Join_Request parameters.</a>
            </caption>
<thead>
              <tr>
                <th class="text-left" rowspan="1" colspan="1">Name</th>
                <th class="text-left" rowspan="1" colspan="1">Label</th>
                <th class="text-left" rowspan="1" colspan="1">CBOR Type</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">role</td>
                <td class="text-left" rowspan="1" colspan="1">1</td>
                <td class="text-left" rowspan="1" colspan="1">unsigned integer</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">network identifier</td>
                <td class="text-left" rowspan="1" colspan="1">5</td>
                <td class="text-left" rowspan="1" colspan="1">byte string</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">unsupported configuration</td>
                <td class="text-left" rowspan="1" colspan="1">8</td>
                <td class="text-left" rowspan="1" colspan="1">array</td>
              </tr>
            </tbody>
          </table>
</div>
<p id="section-8.4.1-6">The CDDL fragment that represents the text above for the Join_Request follows:<a href="#section-8.4.1-6" class="pilcrow">¶</a></p>
<div id="section-8.4.1-7">
<pre class="sourcecode">
Join_Request = {
    ? 1 : uint,                       ; role
      5 : bstr,                       ; network identifier
    ? 8 : Unsupported_Configuration   ; unsupported configuration
}
</pre><a href="#section-8.4.1-7" class="pilcrow">¶</a>
</div>
<span id="name-role-values"></span><div id="table_role_values">
<table class="center" id="table-3">
            <caption>
<a href="#table-3" class="selfRef">Table 3</a>:
<a href="#name-role-values" class="selfRef">Role values.</a>
            </caption>
<thead>
              <tr>
                <th class="text-left" rowspan="1" colspan="1">Name</th>
                <th class="text-left" rowspan="1" colspan="1">Value</th>
                <th class="text-left" rowspan="1" colspan="1">Description</th>
                <th class="text-left" rowspan="1" colspan="1">Reference</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH Node</td>
                <td class="text-left" rowspan="1" colspan="1">0</td>
                <td class="text-left" rowspan="1" colspan="1">The pledge requests to play the role of a regular 6TiSCH node, i.e., non-6LBR node.</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6LBR</td>
                <td class="text-left" rowspan="1" colspan="1">1</td>
                <td class="text-left" rowspan="1" colspan="1">The pledge requests to play the role of 6LoWPAN Border Router (6LBR).</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
            </tbody>
          </table>
</div>
</section>
</div>
<div id="configuration_object">
<section id="section-8.4.2">
          <h4 id="name-configuration-object">
<a href="#section-8.4.2" class="section-number selfRef">8.4.2. </a><a href="#name-configuration-object" class="section-name selfRef">Configuration Object</a>
          </h4>
<p id="section-8.4.2-1">The Configuration structure is built on a CBOR map object.
The set of parameters that can appear in a Configuration object is summarized below.
The labels can be found in "Constrained Join Protocol (CoJP) Parameters" registry, <a href="#iana_cojp_registry" class="xref">Section 11.1</a>.<a href="#section-8.4.2-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-8.4.2-2">
            <dt id="section-8.4.2-2.1">link-layer key set:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.2-2.2">An array encompassing a set of cryptographic keys 
and their identifiers that are currently in use in the network 
or that are scheduled to be used in the future.
The encoding of individual keys is described in <a href="#ll_keys" class="xref">Section 8.4.3</a>.
The link-layer key set parameter <span class="bcp14">MAY</span> be included in a Configuration object.
When present, the link-layer key set parameter <span class="bcp14">MUST</span> contain at least one key.
This parameter is also used to implement rekeying in the network.
The installation and use of keys differs for the 6LBR and 
other (regular) nodes, and this is explained in Sections <a href="#keychanging6lbr" class="xref">8.4.3.1</a> 
and <a href="#keychanging6lr" class="xref">8.4.3.2</a>.<a href="#section-8.4.2-2.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.2-2.3">short identifier: </dt>
            <dd style="margin-left: 1.5em" id="section-8.4.2-2.4">A compact identifier assigned to the pledge.
The short identifier structure is described in <a href="#short_identifier" class="xref">Section 8.4.4</a>.
The short identifier parameter <span class="bcp14">MAY</span> be included in a Configuration object.<a href="#section-8.4.2-2.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.2-2.5">JRC address:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.2-2.6">The IPv6 address of the JRC, encoded as a byte string, with the length of 16 bytes.
If the length of the byte string is different from 16, the parameter <span class="bcp14">MUST</span> be discarded.
If the JRC is not co-located with the 6LBR and has a different IPv6 address than the 6LBR, 
this parameter <span class="bcp14">MUST</span> be included.
In the special case where the JRC is co-located with the 6LBR and 
has the same IPv6 address as the 6LBR, this parameter <span class="bcp14">MAY</span> be included.
If the JRC address parameter is not present in the Configuration object, 
this indicates that the JRC has the same IPv6 address as the 6LBR.
The joined node can then discover the IPv6 address of the JRC through network control traffic.
See <a href="#netreq" class="xref">Section 6</a>.<a href="#section-8.4.2-2.6" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.2-2.7">blacklist:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.2-2.8">An array encompassing a list of pledge identifiers 
that are blacklisted by the JRC, with each pledge identifier encoded as a byte string.
The blacklist parameter <span class="bcp14">MAY</span> be included in a Configuration object.
When present, the array <span class="bcp14">MUST</span> contain zero or more byte strings encoding pledge identifiers.
The joined node <span class="bcp14">MUST</span> silently drop any link-layer frames 
originating from the pledge identifiers enclosed in the blacklist parameter.
When this parameter is received, its value <span class="bcp14">MUST</span> overwrite any previously set values.
This parameter allows the JRC to configure the node acting as a JP to filter out 
traffic from misconfigured or malicious pledges before their traffic is forwarded into the network.
If the JRC decides to remove a given pledge identifier from a blacklist, 
it omits the pledge identifier in the blacklist parameter value it sends next.
Since the blacklist parameter carries the pledge identifiers, privacy considerations apply.
See <a href="#privacy_considerations" class="xref">Section 10</a>.<a href="#section-8.4.2-2.8" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.2-2.9">join rate:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.2-2.10">The average data rate (in units of bytes/second) of join traffic 
forwarded into the network that should not be exceeded when a joined node operates 
as a JP, encoded as an unsigned integer.
The join rate parameter <span class="bcp14">MAY</span> be included in a Configuration object.
This parameter allows the JRC to configure different nodes in the network to 
operate as JP and to act in case of an attack by throttling the rate at which JP 
forwards unauthenticated traffic into the network.
When this parameter is present in a Configuration object, the value <span class="bcp14">MUST</span> 
be used to set the PROBING_RATE of CoAP at the joined node for communication with the JRC.
If this parameter is set to zero, a joined node <span class="bcp14">MUST</span> silently drop 
any join traffic coming from unauthenticated pledges.
If this parameter is omitted, the value of positive infinity <span class="bcp14">SHOULD</span> be assumed.
A node operating as a JP <span class="bcp14">MAY</span> use another mechanism that is out of scope 
of this specification to configure the PROBING_RATE of CoAP in the absence of a 
join rate parameter from the Configuration object.<a href="#section-8.4.2-2.10" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-8.4.2-3"><a href="#table_configuration_params" class="xref">Table 4</a> 
summarizes the parameters that may appear in a Configuration object.<a href="#section-8.4.2-3" class="pilcrow">¶</a></p>
<span id="name-summary-of-configuration-pa"></span><div id="table_configuration_params">
<table class="center" id="table-4">
            <caption>
<a href="#table-4" class="selfRef">Table 4</a>:
<a href="#name-summary-of-configuration-pa" class="selfRef">Summary of Configuration parameters.</a>
            </caption>
<thead>
              <tr>
                <th class="text-left" rowspan="1" colspan="1">Name</th>
                <th class="text-left" rowspan="1" colspan="1">Label</th>
                <th class="text-left" rowspan="1" colspan="1">CBOR Type</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">link-layer key set</td>
                <td class="text-left" rowspan="1" colspan="1">2</td>
                <td class="text-left" rowspan="1" colspan="1">array</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">short identifier</td>
                <td class="text-left" rowspan="1" colspan="1">3</td>
                <td class="text-left" rowspan="1" colspan="1">array</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">JRC address</td>
                <td class="text-left" rowspan="1" colspan="1">4</td>
                <td class="text-left" rowspan="1" colspan="1">byte string</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">blacklist</td>
                <td class="text-left" rowspan="1" colspan="1">6</td>
                <td class="text-left" rowspan="1" colspan="1">array</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">join rate</td>
                <td class="text-left" rowspan="1" colspan="1">7</td>
                <td class="text-left" rowspan="1" colspan="1">unsigned integer</td>
              </tr>
            </tbody>
          </table>
</div>
<p id="section-8.4.2-5">The CDDL fragment that represents the text above for the Configuration follows.
The structures Link_Layer_Key and Short_Identifier are specified in 
Sections <a href="#ll_keys" class="xref">8.4.3</a> and <a href="#short_identifier" class="xref">8.4.4</a>,
respectively.<a href="#section-8.4.2-5" class="pilcrow">¶</a></p>
<div id="section-8.4.2-6">
<pre class="sourcecode">
Configuration = {
    ? 2 : [ +Link_Layer_Key ],   ; link-layer key set
    ? 3 : Short_Identifier,      ; short identifier
    ? 4 : bstr,                  ; JRC address
    ? 6 : [ *bstr ],             ; blacklist
    ? 7 : uint                   ; join rate
}
</pre><a href="#section-8.4.2-6" class="pilcrow">¶</a>
</div>
<span id="name-cojp-parameters-map-labels"></span><div id="table_cojp_parameters_labels">
<table class="center" id="table-5">
            <caption>
<a href="#table-5" class="selfRef">Table 5</a>:
<a href="#name-cojp-parameters-map-labels" class="selfRef">CoJP parameters map labels.</a>
            </caption>
<thead>
              <tr>
                <th class="text-left" rowspan="1" colspan="1">Name</th>
                <th class="text-left" rowspan="1" colspan="1">Label</th>
                <th class="text-left" rowspan="1" colspan="1">CBOR type</th>
                <th class="text-left" rowspan="1" colspan="1">Description</th>
                <th class="text-left" rowspan="1" colspan="1">Reference</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">role</td>
                <td class="text-left" rowspan="1" colspan="1">1</td>
                <td class="text-left" rowspan="1" colspan="1">unsigned integer</td>
                <td class="text-left" rowspan="1" colspan="1">Identifies the role parameter</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">link-layer key set</td>
                <td class="text-left" rowspan="1" colspan="1">2</td>
                <td class="text-left" rowspan="1" colspan="1">array</td>
                <td class="text-left" rowspan="1" colspan="1">Identifies the array carrying one or more link-layer cryptographic keys</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">short identifier</td>
                <td class="text-left" rowspan="1" colspan="1">3</td>
                <td class="text-left" rowspan="1" colspan="1">array</td>
                <td class="text-left" rowspan="1" colspan="1">Identifies the assigned short identifier</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">JRC address</td>
                <td class="text-left" rowspan="1" colspan="1">4</td>
                <td class="text-left" rowspan="1" colspan="1">byte string</td>
                <td class="text-left" rowspan="1" colspan="1">Identifies the IPv6 address of the JRC</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">network identifier</td>
                <td class="text-left" rowspan="1" colspan="1">5</td>
                <td class="text-left" rowspan="1" colspan="1">byte string</td>
                <td class="text-left" rowspan="1" colspan="1">Identifies the network identifier parameter</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">blacklist</td>
                <td class="text-left" rowspan="1" colspan="1">6</td>
                <td class="text-left" rowspan="1" colspan="1">array</td>
                <td class="text-left" rowspan="1" colspan="1">Identifies the blacklist parameter</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">join rate</td>
                <td class="text-left" rowspan="1" colspan="1">7</td>
                <td class="text-left" rowspan="1" colspan="1">unsigned integer</td>
                <td class="text-left" rowspan="1" colspan="1">Identifier the join rate parameter</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">unsupported configuration</td>
                <td class="text-left" rowspan="1" colspan="1">8</td>
                <td class="text-left" rowspan="1" colspan="1">array</td>
                <td class="text-left" rowspan="1" colspan="1">Identifies the unsupported configuration parameter</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
            </tbody>
          </table>
</div>
</section>
</div>
<div id="ll_keys">
<section id="section-8.4.3">
          <h4 id="name-link-layer-key">
<a href="#section-8.4.3" class="section-number selfRef">8.4.3. </a><a href="#name-link-layer-key" class="section-name selfRef">Link-Layer Key</a>
          </h4>
<p id="section-8.4.3-1">The Link_Layer_Key structure encompasses the parameters needed to configure the link-layer security module:
    the key identifier;
    the value of the cryptographic key;
    the link-layer algorithm identifier and the security level and the frame types 
         with which it should be used for both outgoing and incoming security operations;
    and any additional information that may be needed to configure the key.<a href="#section-8.4.3-1" class="pilcrow">¶</a></p>
<p id="section-8.4.3-2">For encoding compactness, the Link_Layer_Key object is not enclosed in a top-level CBOR object.
Rather, it is transported as a sequence of CBOR elements <span>[<a href="#RFC8742" class="xref">RFC8742</a>]</span>, some being optional.<a href="#section-8.4.3-2" class="pilcrow">¶</a></p>
<p id="section-8.4.3-3">The set of parameters that can appear in a Link_Layer_Key object is summarized below, in order:<a href="#section-8.4.3-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-8.4.3-4">
            <dt id="section-8.4.3-4.1">key_id:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.3-4.2">The identifier of the key, encoded as a CBOR unsigned integer.
This parameter <span class="bcp14">MUST</span> be included.
If the decoded CBOR unsigned integer value is larger than the maximum link-layer 
key identifier, the key is considered invalid.
If the key is considered invalid, the key <span class="bcp14">MUST</span> be discarded,
and the implementation <span class="bcp14">MUST</span> signal the error as specified in 
<a href="#cojp_error_handling" class="xref">Section 8.3.1</a>.<a href="#section-8.4.3-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.3-4.3">key_usage:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.3-4.4">The identifier of the link-layer algorithm, security level, and 
link-layer frame types that can be used with the key, encoded as an integer.
This parameter <span class="bcp14">MAY</span> be included.
Possible values and the corresponding link-layer settings are specified in the
IANA "Constrained Join Protocol (CoJP) Key Usage" registry (<a href="#iana_cojp_key_usage_registry" class="xref">Section 11.2</a>).
If the parameter is omitted, the default value of 0 (6TiSCH-K1K2-ENC-MIC32) 
from <a href="#table_key_usage_values" class="xref">Table 6</a> <span class="bcp14">MUST</span> be assumed.
This default value has been chosen because it results in byte savings 
in the most constrained settings; its selection  does not imply a recommendation for its general usage.<a href="#section-8.4.3-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.3-4.5">key_value:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.3-4.6">The value of the cryptographic key, encoded as a byte string.
This parameter <span class="bcp14">MUST</span> be included.
If the length of the byte string is different than the corresponding key length 
for a given algorithm specified by the key_usage parameter, the key 
<span class="bcp14">MUST</span> be discarded, and the implementation <span class="bcp14">MUST</span> 
signal the error as specified in <a href="#cojp_error_handling" class="xref">Section 8.3.1</a>.<a href="#section-8.4.3-4.6" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.3-4.7">key_addinfo:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.3-4.8">Additional information needed to configure the link-layer key, 
encoded as a byte string.
This parameter <span class="bcp14">MAY</span> be included.
The processing of this parameter is dependent on the link-layer technology 
in use and a particular keying mode.<a href="#section-8.4.3-4.8" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-8.4.3-5">To be able to decode the keys that are present in the 
link-layer key set and to identify individual parameters of a single 
Link_Layer_Key object, the CBOR decoder needs to differentiate between elements based on the CBOR type.
For example, a uint that follows a byte string signals to the decoder that a new Link_Layer_Key object is being processed.<a href="#section-8.4.3-5" class="pilcrow">¶</a></p>
<p id="section-8.4.3-6">The CDDL fragment for the Link_Layer_Key that 
represents the text above follows:<a href="#section-8.4.3-6" class="pilcrow">¶</a></p>
<div id="section-8.4.3-7">
<pre class="sourcecode">
Link_Layer_Key = (
      key_id             : uint,
    ? key_usage          : int,
      key_value          : bstr,
    ? key_addinfo        : bstr,
)
</pre><a href="#section-8.4.3-7" class="pilcrow">¶</a>
</div>
<span id="name-key-usage-values"></span><div id="table_key_usage_values">
<table class="center" id="table-6">
            <caption>
<a href="#table-6" class="selfRef">Table 6</a>:
<a href="#name-key-usage-values" class="selfRef">Key Usage values.</a>
            </caption>
<thead>
              <tr>
                <th class="text-left" rowspan="1" colspan="1">Name</th>
                <th class="text-left" rowspan="1" colspan="1">Value</th>
                <th class="text-left" rowspan="1" colspan="1">Algorithm</th>
                <th class="text-left" rowspan="1" colspan="1">Description</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K1K2-ENC-MIC32</td>
                <td class="text-left" rowspan="1" colspan="1">0</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-32 for EBs, ENC-MIC-32 for DATA and ACKNOWLEDGMENT.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K1K2-ENC-MIC64</td>
                <td class="text-left" rowspan="1" colspan="1">1</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-64 for EBs, ENC-MIC-64 for DATA and ACKNOWLEDGMENT.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K1K2-ENC-MIC128</td>
                <td class="text-left" rowspan="1" colspan="1">2</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-128 for EBs, ENC-MIC-128 for DATA and ACKNOWLEDGMENT.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K1K2-MIC32</td>
                <td class="text-left" rowspan="1" colspan="1">3</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-32 for EBs, DATA and ACKNOWLEDGMENT.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K1K2-MIC64</td>
                <td class="text-left" rowspan="1" colspan="1">4</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-64 for EBs, DATA and ACKNOWLEDGMENT.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K1K2-MIC128</td>
                <td class="text-left" rowspan="1" colspan="1">5</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-128 for EBs, DATA and ACKNOWLEDGMENT.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K1-MIC32</td>
                <td class="text-left" rowspan="1" colspan="1">6</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-32 for EBs.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K1-MIC64</td>
                <td class="text-left" rowspan="1" colspan="1">7</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-64 for EBs.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K1-MIC128</td>
                <td class="text-left" rowspan="1" colspan="1">8</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-128 for EBs.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K2-MIC32</td>
                <td class="text-left" rowspan="1" colspan="1">9</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-32 for DATA and ACKNOWLEDGMENT.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K2-MIC64</td>
                <td class="text-left" rowspan="1" colspan="1">10</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-64 for DATA and ACKNOWLEDGMENT.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K2-MIC128</td>
                <td class="text-left" rowspan="1" colspan="1">11</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use MIC-128 for DATA and ACKNOWLEDGMENT.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K2-ENC-MIC32</td>
                <td class="text-left" rowspan="1" colspan="1">12</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use ENC-MIC-32 for DATA and ACKNOWLEDGMENT.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K2-ENC-MIC64</td>
                <td class="text-left" rowspan="1" colspan="1">13</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use ENC-MIC-64 for DATA and ACKNOWLEDGMENT.</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">6TiSCH-K2-ENC-MIC128</td>
                <td class="text-left" rowspan="1" colspan="1">14</td>
                <td class="text-left" rowspan="1" colspan="1">IEEE802154-AES-CCM-128</td>
                <td class="text-left" rowspan="1" colspan="1">Use ENC-MIC-128 for DATA and ACKNOWLEDGMENT.</td>
              </tr>
            </tbody>
          </table>
</div>
<div id="keychanging6lbr">
<section id="section-8.4.3.1">
            <h5 id="name-rekeying-of-6lbrs">
<a href="#section-8.4.3.1" class="section-number selfRef">8.4.3.1. </a><a href="#name-rekeying-of-6lbrs" class="section-name selfRef">Rekeying of 6LBRs</a>
            </h5>
<p id="section-8.4.3.1-1">When the 6LBR receives the Configuration object containing 
a link-layer key set, it <span class="bcp14">MUST</span> immediately install and start 
using the new keys for all outgoing traffic and 
remove any old keys it has installed from the previous key set 
after a delay of COJP_REKEYING_GUARD_TIME has passed. 
This mechanism is used by the JRC to force the 6LBR to start sending 
traffic with the new key.
The decision is made by the JRC when it has determined that the new key 
has been made available to all (or some overwhelming majority) of nodes.
Any node that the JRC has not yet reached at that point is either 
nonfunctional or in extended sleep such that it will not be reached.
To get the key update, such a node will need to go through the join process anew.<a href="#section-8.4.3.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="keychanging6lr">
<section id="section-8.4.3.2">
            <h5 id="name-rekeying-of-6lns">
<a href="#section-8.4.3.2" class="section-number selfRef">8.4.3.2. </a><a href="#name-rekeying-of-6lns" class="section-name selfRef">Rekeying of 6LNs</a>
            </h5>
<p id="section-8.4.3.2-1">When a regular 6LN receives the Configuration object 
with a link-layer key set, it <span class="bcp14">MUST</span> install the new keys.
The 6LN will use both the old and the new keys to decrypt and authenticate any incoming traffic that arrives based upon the key identifier in the packet.
It <span class="bcp14">MUST</span> continue to use the old keys for all outgoing 
traffic until it has detected that the network has switched to the new key set.<a href="#section-8.4.3.2-1" class="pilcrow">¶</a></p>
<p id="section-8.4.3.2-2">The detection of the network switch is based 
upon the receipt of traffic secured with the new keys.
Upon the reception and the successful security processing of a link-layer 
frame secured with a key from the new key set, a 6LN <span class="bcp14">MUST</span> 
then switch to sending all outgoing traffic using the keys from the 
new set.
The 6LN <span class="bcp14">MUST</span> remove any keys it had installed 
from the previous key set after waiting COJP_REKEYING_GUARD_TIME since  
it started using the new key set.<a href="#section-8.4.3.2-2" class="pilcrow">¶</a></p>
<p id="section-8.4.3.2-3">Sending traffic with the new keys signals to other 
downstream nodes to switch to their new key, causing
a ripple of key updates around each 6LBR.<a href="#section-8.4.3.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="use-in-ieee-std-802154">
<section id="section-8.4.3.3">
            <h5 id="name-use-in-ieee-std-802154">
<a href="#section-8.4.3.3" class="section-number selfRef">8.4.3.3. </a><a href="#name-use-in-ieee-std-802154" class="section-name selfRef">Use in IEEE Std 802.15.4</a>
            </h5>
<p id="section-8.4.3.3-1">When Link_Layer_Key is used in the context of <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span>, the following considerations apply.<a href="#section-8.4.3.3-1" class="pilcrow">¶</a></p>
<p id="section-8.4.3.3-2">Signaling of different keying modes of <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span> is done based on the parameter values present in a Link_Layer_Key object.
For instance, the value of the key_id parameter in combination with key_addinfo denotes which of the four Key ID modes of <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span> is used and how.<a href="#section-8.4.3.3-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-8.4.3.3-3">
              <dt id="section-8.4.3.3-3.1">Key ID Mode 0x00 (Implicit, pairwise):</dt>
              <dd style="margin-left: 1.5em" id="section-8.4.3.3-3.2">The key_id parameter <span class="bcp14">MUST</span> be set to 0.
The key_addinfo parameter <span class="bcp14">MUST</span> be present.
The key_addinfo parameter <span class="bcp14">MUST</span> be set to the link-layer 
address(es) of a single peer with whom the key should be used.
Depending on the configuration of the network, key_addinfo may carry 
the peer's long link-layer address (i.e., pledge identifier), 
short link-layer address, or their concatenation with the long address being encoded first.
Which address type(s) is carried is determined from the length of the byte string.<a href="#section-8.4.3.3-3.2" class="pilcrow">¶</a>
</dd>
              <dd class="break"></dd>
<dt id="section-8.4.3.3-3.3">Key ID Mode 0x01 (Key Index):</dt>
              <dd style="margin-left: 1.5em" id="section-8.4.3.3-3.4">The key_id parameter <span class="bcp14">MUST</span> be set to a value different from 0.
The key_addinfo parameter <span class="bcp14">MUST NOT</span> be present.<a href="#section-8.4.3.3-3.4" class="pilcrow">¶</a>
</dd>
              <dd class="break"></dd>
<dt id="section-8.4.3.3-3.5">Key ID Mode 0x02 (4-byte Explicit Key Source):</dt>
              <dd style="margin-left: 1.5em" id="section-8.4.3.3-3.6">The key_id parameter <span class="bcp14">MUST</span> be set to a value different from 0.
The key_addinfo parameter <span class="bcp14">MUST</span> be present.
The key_addinfo parameter <span class="bcp14">MUST</span> be set to a byte string, exactly 4 bytes long.
The key_addinfo parameter carries the Key Source parameter used to configure 
<span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span>.<a href="#section-8.4.3.3-3.6" class="pilcrow">¶</a>
</dd>
              <dd class="break"></dd>
<dt id="section-8.4.3.3-3.7">Key ID Mode 0x03 (8-byte Explicit Key Source):</dt>
              <dd style="margin-left: 1.5em" id="section-8.4.3.3-3.8">The key_id parameter <span class="bcp14">MUST</span> be set to a value different from 0.
The key_addinfo parameter <span class="bcp14">MUST</span> be present.
The key_addinfo parameter <span class="bcp14">MUST</span> be set to a byte string, exactly 8 bytes long.
The key_addinfo parameter carries the Key Source parameter used to configure 
<span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span>.<a href="#section-8.4.3.3-3.8" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
</dl>
<p id="section-8.4.3.3-4">In all cases, the key_usage parameter determines how a 
particular key should be used with respect to incoming and outgoing security policies.<a href="#section-8.4.3.3-4" class="pilcrow">¶</a></p>
<p id="section-8.4.3.3-5">For Key ID Modes 0x01 through 0x03, the key_id parameter 
sets the "secKeyIndex" parameter of <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span> 
that is signaled in all outgoing frames secured with a given key.
The maximum value that key_id can have is 254.
The value of 255 is reserved in <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span> and is therefore considered invalid.<a href="#section-8.4.3.3-5" class="pilcrow">¶</a></p>
<p id="section-8.4.3.3-6">Key ID Mode 0x00 (Implicit, pairwise) enables the JRC to act as a trusted third party and assign pairwise keys between nodes in the network.
How the JRC learns about the network topology is out of scope of 
this specification, but it could be done through 6LBR-JRC signaling, for example.
Pairwise keys could also be derived through a key agreement protocol 
executed between the peers directly, where the authentication is based on 
the symmetric cryptographic material provided to both peers by the JRC.
Such a protocol is out of scope of this specification.<a href="#section-8.4.3.3-6" class="pilcrow">¶</a></p>
<p id="section-8.4.3.3-7">Implementations <span class="bcp14">MUST</span> use different 
link-layer keys when using different authentication tag (MIC) lengths, 
as using the same key with different authentication tag lengths might be unsafe.
For example, this prohibits the usage of the same key for both MIC-32 and MIC-64 levels.
See Annex B.4.3 of <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span> for more information.<a href="#section-8.4.3.3-7" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="short_identifier">
<section id="section-8.4.4">
          <h4 id="name-short-identifier">
<a href="#section-8.4.4" class="section-number selfRef">8.4.4. </a><a href="#name-short-identifier" class="section-name selfRef">Short Identifier</a>
          </h4>
<p id="section-8.4.4-1">The Short_Identifier object represents an identifier assigned to the pledge.
It is encoded as a CBOR array object and contains, in order:<a href="#section-8.4.4-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-8.4.4-2">
            <dt id="section-8.4.4-2.1">identifier:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.4-2.2">The short identifier assigned to the pledge, encoded as a byte string.
This parameter <span class="bcp14">MUST</span> be included.
The identifier <span class="bcp14">MUST</span> be unique in the set of all identifiers assigned 
in a network that is managed by a JRC.
If the identifier is invalid, the decoder <span class="bcp14">MUST</span> silently 
ignore the Short_Identifier object.<a href="#section-8.4.4-2.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.4-2.3">lease_time:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.4-2.4">The validity of the identifier in hours after the reception 
of the CBOR object, encoded as a CBOR unsigned integer.
This parameter <span class="bcp14">MAY</span> be included.
The node <span class="bcp14">MUST</span> stop using the assigned short identifier after 
the expiry of the lease_time interval.
It is up to the JRC to renew the lease before the expiry of the previous interval.
The JRC updates the lease by executing the parameter update exchange with the node 
and including the Short_Identifier in the Configuration object, as described in 
<a href="#update" class="xref">Section 8.2</a>.
If the lease expires, then the node <span class="bcp14">SHOULD</span> initiate a new join exchange, 
as described in <a href="#join" class="xref">Section 8.1</a>.
If this parameter is omitted, then the value of positive infinity <span class="bcp14">MUST</span> 
be assumed, meaning that the identifier is valid for as long as the node participates 
in the network.<a href="#section-8.4.4-2.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-8.4.4-3">The CDDL fragment for the Short_Identifier that 
represents the text above follows:<a href="#section-8.4.4-3" class="pilcrow">¶</a></p>
<div id="section-8.4.4-4">
<pre class="sourcecode">
Short_Identifier = [
      identifier        : bstr,
    ? lease_time        : uint
]
</pre><a href="#section-8.4.4-4" class="pilcrow">¶</a>
</div>
<div id="use-in-ieee-std-802154-1">
<section id="section-8.4.4.1">
            <h5 id="name-use-in-ieee-std-802154-2">
<a href="#section-8.4.4.1" class="section-number selfRef">8.4.4.1. </a><a href="#name-use-in-ieee-std-802154-2" class="section-name selfRef">Use in IEEE Std 802.15.4</a>
            </h5>
<p id="section-8.4.4.1-1">When the Short_Identifier is used in the context of <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span>, the following considerations apply.<a href="#section-8.4.4.1-1" class="pilcrow">¶</a></p>
<p id="section-8.4.4.1-2">The identifier <span class="bcp14">MUST</span> be used to set the 
short address of the IEEE Std 802.15.4 module.
When operating in TSCH mode, the identifier <span class="bcp14">MUST</span> be unique in the set of all identifiers assigned in multiple networks that share link-layer key(s).
If the length of the byte string corresponding to the identifier 
parameter is different from 2, the identifier is considered invalid.
The values 0xfffe and 0xffff are reserved by <span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span>, 
and their use is considered invalid.<a href="#section-8.4.4.1-2" class="pilcrow">¶</a></p>
<p id="section-8.4.4.1-3">The security properties offered by the 
<span>[<a href="#IEEE802.15.4" class="xref">IEEE802.15.4</a>]</span> link-layer in TSCH mode are 
conditioned on the uniqueness requirement of the short identifier (i.e., short address).
The short address is one of the inputs in the construction of the nonce, which is used to protect link-layer frames.
If a misconfiguration occurs, and the same short address is assigned twice under the same link-layer key, the loss of security properties is imminent.
For this reason, practices where the pledge generates the short identifier locally are not safe and are likely to result in the loss of link-layer security properties.<a href="#section-8.4.4.1-3" class="pilcrow">¶</a></p>
<p id="section-8.4.4.1-4">The JRC <span class="bcp14">MUST</span> ensure that at any 
given time there are never two of the same short identifiers being 
used under the same link-layer key.
If the lease_time parameter of a given Short_Identifier object is 
set to positive infinity, care needs to be taken that the corresponding 
identifier is not assigned to another node until the JRC is certain 
that it is no longer in use, potentially through out-of-band signaling.
If the lease_time parameter expires for any reason, the JRC should take 
into consideration potential ongoing transmissions by the joined node, 
which may be hanging in the queues, before assigning the same identifier 
to another node.<a href="#section-8.4.4.1-4" class="pilcrow">¶</a></p>
<p id="section-8.4.4.1-5">Care needs to be taken on how the pledge (joined node) configures the expiration of the lease.
Since units of the lease_time parameter are in hours after the reception of the CBOR object, the pledge needs to convert the received time to the corresponding Absolute Slot Number in the network.
The joined node (pledge) <span class="bcp14">MUST</span> only use the 
Absolute Slot Number as the appropriate reference of time to determine whether the assigned short identifier is still valid.<a href="#section-8.4.4.1-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="unsupported_configuration_object">
<section id="section-8.4.5">
          <h4 id="name-unsupported-configuration-o">
<a href="#section-8.4.5" class="section-number selfRef">8.4.5. </a><a href="#name-unsupported-configuration-o" class="section-name selfRef">Unsupported Configuration Object</a>
          </h4>
<p id="section-8.4.5-1">The Unsupported_Configuration object is encoded as a CBOR array, containing at least one Unsupported_Parameter object.
Each Unsupported_Parameter object is a sequence of CBOR elements without an enclosing top-level CBOR object for compactness.
The set of parameters that appear in an Unsupported_Parameter object is summarized below, in order:<a href="#section-8.4.5-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-8.4.5-2">
            <dt id="section-8.4.5-2.1">code:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.5-2.2">Indicates the capability of acting on the 
parameter signaled by parameter_label, encoded as an integer.
This parameter <span class="bcp14">MUST</span> be included.
Possible values of this parameter are specified in the 
IANA "Constrained Join Protocol (CoJP) Unsupported Configuration Codes" registry 
(<a href="#iana_cojp_unsupported_code_registry" class="xref">Section 11.3</a>).<a href="#section-8.4.5-2.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.5-2.3">parameter_label:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.5-2.4">Indicates the parameter.  This parameter 
<span class="bcp14">MUST</span> be included.  Possible values of this 
parameter are specified in the label column of the 
IANA "Constrained Join Protocol (CoJP) Parameters" registry" (<a href="#iana_cojp_registry" class="xref">Section 11.1</a>).<a href="#section-8.4.5-2.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-8.4.5-2.5">parameter_addinfo:</dt>
            <dd style="margin-left: 1.5em" id="section-8.4.5-2.6">Additional information about the parameter 
that cannot be acted upon.
This parameter <span class="bcp14">MUST</span> be included.
If the code is set to "Unsupported", parameter_addinfo gives 
additional information to the JRC.
If the parameter indicated by parameter_label cannot be acted upon 
regardless of its value, parameter_addinfo <span class="bcp14">MUST</span> 
be set to null, signaling to the JRC that it <span class="bcp14">SHOULD NOT</span> 
attempt to configure the parameter again.
If the pledge can act on the parameter, but cannot configure the 
setting indicated by the parameter value, the pledge can hint this 
to the JRC.
In this case, parameter_addinfo <span class="bcp14">MUST</span> be set to the 
value of the parameter that cannot be acted upon following the 
normative parameter structure specified in this document.
For example, it is possible to include the link-layer key set 
object, signaling that either a subset or the entire key set that 
 was received cannot be acted upon. 
In that case, the value of parameter_addinfo follows the 
link-layer key set structure defined in 
<a href="#configuration_object" class="xref">Section 8.4.2</a>.
If the code is set to "Malformed", parameter_addinfo <span class="bcp14">MUST</span> 
be set to null, signaling to the JRC that it <span class="bcp14">SHOULD NOT</span> 
attempt to configure the parameter again.<a href="#section-8.4.5-2.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-8.4.5-3">The CDDL fragment 
for the Unsupported_Configuration and Unsupported_Parameter objects 
that represents the text above 
follows:<a href="#section-8.4.5-3" class="pilcrow">¶</a></p>
<div id="section-8.4.5-4">
<pre class="sourcecode">
Unsupported_Configuration = [
       + parameter           : Unsupported_Parameter
]

Unsupported_Parameter = (
         code                : int,
         parameter_label     : int,
         parameter_addinfo   : nil / any
)
</pre><a href="#section-8.4.5-4" class="pilcrow">¶</a>
</div>
<span id="name-unsupported-configuration-c"></span><div id="table_unsupported_code_values">
<table class="center" id="table-7">
            <caption>
<a href="#table-7" class="selfRef">Table 7</a>:
<a href="#name-unsupported-configuration-c" class="selfRef">Unsupported Configuration code values.</a>
            </caption>
<thead>
              <tr>
                <th class="text-left" rowspan="1" colspan="1">Name</th>
                <th class="text-left" rowspan="1" colspan="1">Value</th>
                <th class="text-left" rowspan="1" colspan="1">Description</th>
                <th class="text-left" rowspan="1" colspan="1">Reference</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">Unsupported</td>
                <td class="text-left" rowspan="1" colspan="1">0</td>
                <td class="text-left" rowspan="1" colspan="1">The indicated setting is not supported by the networking stack implementation.</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
              <tr>
                <td class="text-left" rowspan="1" colspan="1">Malformed</td>
                <td class="text-left" rowspan="1" colspan="1">1</td>
                <td class="text-left" rowspan="1" colspan="1">The indicated parameter value is malformed.</td>
                <td class="text-left" rowspan="1" colspan="1">RFC 9031</td>
              </tr>
            </tbody>
          </table>
</div>
</section>
</div>
</section>
</div>
<div id="recommended-settings">
<section id="section-8.5">
        <h3 id="name-recommended-settings-2">
<a href="#section-8.5" class="section-number selfRef">8.5. </a><a href="#name-recommended-settings-2" class="section-name selfRef">Recommended Settings</a>
        </h3>
<p id="section-8.5-1">This section gives <span class="bcp14">RECOMMENDED</span> values of CoJP settings.<a href="#section-8.5-1" class="pilcrow">¶</a></p>
<span id="name-recommended-cojp-settings"></span><table class="center" id="table-8">
          <caption>
<a href="#table-8" class="selfRef">Table 8</a>:
<a href="#name-recommended-cojp-settings" class="selfRef">Recommended CoJP settings.</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">Name</th>
              <th class="text-left" rowspan="1" colspan="1">Default Value</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">COJP_MAX_JOIN_ATTEMPTS</td>
              <td class="text-left" rowspan="1" colspan="1">4</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">COJP_REKEYING_GUARD_TIME</td>
              <td class="text-left" rowspan="1" colspan="1">12 seconds</td>
            </tr>
          </tbody>
        </table>
<p id="section-8.5-3">The COJP_REKEYING_GUARD_TIME value <span class="bcp14">SHOULD</span> take into account possible retransmissions at the link layer due to imperfect wireless links.<a href="#section-8.5-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec_considerations">
<section id="section-9">
      <h2 id="name-security-considerations">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
      </h2>
<p id="section-9-1">Since this document uses the pledge identifier to set 
the ID Context parameter of OSCORE, an important security requirement is 
that the pledge identifier is unique in the set of all pledge identifiers managed by a JRC.
The uniqueness of the pledge identifier ensures unique (key, nonce) pairs 
for the AEAD algorithm used by OSCORE.
It also allows the JRC to retrieve the correct security context 
upon the reception of a Join Request message.
The management of pledge identifiers is simplified if the globally 
unique EUI-64 is used, but this comes with privacy risks, as discussed 
in <a href="#privacy_considerations" class="xref">Section 10</a>.<a href="#section-9-1" class="pilcrow">¶</a></p>
<p id="section-9-2">This document further mandates that the (6LBR) pledge and the JRC are provisioned with unique PSKs.
While the process of provisioning PSKs to all pledges can result in a substantial operational overhead, it is vital to do so for the security properties of the network.
The PSK is used to set the OSCORE Master Secret during security context derivation.
This derivation process results in OSCORE keys that are important for mutual authentication of the (6LBR) pledge and the JRC.
The resulting security context shared between the pledge (joined node) 
and the JRC is used for the purpose of joining and is long-lived in 
that it can be used throughout the lifetime of a joined node 
for parameter update exchanges.
Should an attacker come to know the PSK, then a man-in-the-middle attack is possible.<a href="#section-9-2" class="pilcrow">¶</a></p>
<p id="section-9-3">Note that while OSCORE provides replay protection, it does not 
provide an indication of freshness in the presence of an attacker 
that can drop and/or reorder traffic.
Since the Join Request contains no randomness, and the 
sequence number is predictable, the JRC could in principle anticipate 
a Join Request from a particular pledge and pre-calculate the response.
In such a scenario, the JRC does not have to be alive at the time 
the request is received.
This could be relevant in the case when the JRC was temporarily compromised 
and control was subsequently regained by the legitimate owner.<a href="#section-9-3" class="pilcrow">¶</a></p>
<p id="section-9-4">It is of utmost importance to avoid unsafe practices when generating and provisioning PSKs.
The use of a single PSK shared among a group of devices is a common pitfall that results in poor security.
In this case, the compromise of a single device is likely to lead to a compromise of the entire batch, with the attacker having the ability to impersonate a legitimate device and join the network, 
generate bogus data, and disturb the network operation.
Additionally, some vendors use methods such as scrambling or hashing  
device serial numbers or their EUI-64 identifiers to generate "unique" PSKs.
Without any secret information involved, the effort that the attacker needs to invest into breaking these unsafe derivation methods is quite low, resulting in the possible impersonation of any device from the batch, without even needing to compromise a single device.
The use of cryptographically secure random number generators to generate the PSK is <span class="bcp14">RECOMMENDED</span>, see <span>[<a href="#NIST800-90A" class="xref">NIST800-90A</a>]</span> for different mechanisms using deterministic methods.<a href="#section-9-4" class="pilcrow">¶</a></p>
<p id="section-9-5">The JP forwards the unauthenticated join traffic into the network.
A data cap on the JP prevents it from forwarding more traffic than the network can handle and enables throttling in case of an attack.
Note that this traffic can only be directed at the JRC so that the JRC needs to be prepared to handle such unsanitized inputs.
The data cap can be configured by the JRC by including a join rate parameter 
in the Join Response, and it is implemented through the CoAP's PROBING_RATE setting.
The use of a data cap at a JP forces attackers to use more than one JP if they wish to overwhelm the network.
Marking the join traffic packets with a nonzero DSCP allows the 
network to carry the traffic if it has capacity, but it encourages 
the network to drop the extra traffic rather than add bandwidth due to that traffic.<a href="#section-9-5" class="pilcrow">¶</a></p>
<p id="section-9-6">The shared nature of the "minimal" cell used for the join traffic makes the network prone to a DoS attack by congesting the JP with bogus traffic.
Such an attacker is limited by its maximum transmit power.
The redundancy in the number of deployed JPs alleviates the issue 
and also gives the pledge the possibility to use the best available link for joining.
How a network node decides to become a JP is out of scope of this specification.<a href="#section-9-6" class="pilcrow">¶</a></p>
<p id="section-9-7">At the beginning of the join process, the pledge has no 
means of verifying the content in the EB and has to accept it at "face value".
If the pledge tries to join an attacker's network, 
the Join Response message will either fail the security check or time out.
The pledge may implement a temporary blacklist in order to filter out 
undesired EBs and try to join using the next seemingly valid EB.
This blacklist alleviates the issue but is effectively limited by 
the node's available memory.
Note that this temporary blacklist is different from the one 
communicated as part of the CoJP Configuration object as it helps 
the pledge fight a DoS attack.
The bogus beacons prolong the join time of the pledge and so does the 
time spent in "minimal" duty cycle mode <span>[<a href="#RFC8180" class="xref">RFC8180</a>]</span>.
The blacklist communicated as part of the CoJP Configuration object 
helps the JP fight a DoS attack by a malicious pledge.<a href="#section-9-7" class="pilcrow">¶</a></p>
<p id="section-9-8">During the network lifetime, the JRC may at any time initiate a parameter update exchange with a joined node.
The Parameter Update message uses the same OSCORE security context 
as is used for the join exchange, except that the server and client 
roles are interchanged.
As a consequence, each Parameter Update message carries the well-known OSCORE Sender ID of the JRC.
A passive attacker may use the OSCORE Sender ID to identify the 
Parameter Update traffic if the link-layer protection does not provide confidentiality.
A countermeasure against such a traffic-analysis attack is to 
use encryption at the link layer.
Note that the join traffic does not undergo link-layer protection 
at the first hop, as the pledge is not yet in possession of cryptographic keys.
Similarly, EB traffic in the network is not encrypted.
This makes it easy for a passive attacker to identify these types of traffic.<a href="#section-9-8" class="pilcrow">¶</a></p>
</section>
</div>
<div id="privacy_considerations">
<section id="section-10">
      <h2 id="name-privacy-considerations">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-privacy-considerations" class="section-name selfRef">Privacy Considerations</a>
      </h2>
<p id="section-10-1">The join solution specified in this document relies on the uniqueness of the pledge identifier in the set of all pledge identifiers managed by a JRC.
This identifier is transferred in the clear as an OSCORE 'kid context'.
The use of the globally unique EUI-64 as pledge identifier simplifies the management but comes with certain privacy risks.
The implications are thoroughly discussed in <span>[<a href="#RFC7721" class="xref">RFC7721</a>]</span> 
and comprise correlation of activities over time, location tracking, address scanning, 
and device-specific vulnerability exploitation.
Since the join process occurs rarely compared to the network lifetime, long-term threats that arise from using EUI-64 as the pledge identifier are minimal.
However, after the join process completes, the use of EUI-64 
in the form of a Layer 2 or Layer 3 address extends the 
aforementioned privacy threats to the long term.<a href="#section-10-1" class="pilcrow">¶</a></p>
<p id="section-10-2">As an optional mitigation technique, the Join Response message 
may contain a short address that is assigned by the JRC to the (6LBR) pledge.
The assigned short address <span class="bcp14">SHOULD</span> be uncorrelated with the long-term pledge identifier.
The short address is encrypted in the response.
Once the join process completes, the new node may use the short addresses for all further Layer 2 (and Layer 3) operations.
This reduces the privacy threats as the short Layer 2 address (visible even when the network is encrypted) does not disclose the manufacturer, as is the case of EUI-64.
However, an eavesdropper with access to the radio medium during the join process may be able to correlate the assigned short address with the extended address based on timing information with a non-negligible probability.
This probability decreases with an increasing number of pledges joining concurrently.<a href="#section-10-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="iana-considerations">
<section id="section-11">
      <h2 id="name-iana-considerations">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
      </h2>
<p id="section-11-1">This document allocates a well-known name under 
the .arpa name space according to the rules given in <span>[<a href="#RFC3172" class="xref">RFC3172</a>]</span> and <span>[<a href="#RFC6761" class="xref">RFC6761</a>]</span>.
The name "6tisch.arpa" is requested.
No subdomains are expected, and addition of any such subdomains
requires the publication of an IETF Standards Track RFC.
No A, AAAA, or PTR record is requested.<a href="#section-11-1" class="pilcrow">¶</a></p>
<div id="iana_cojp_registry">
<section id="section-11.1">
        <h3 id="name-constrained-join-protocol-co">
<a href="#section-11.1" class="section-number selfRef">11.1. </a><a href="#name-constrained-join-protocol-co" class="section-name selfRef">Constrained Join Protocol (CoJP) Parameters</a>
        </h3>
<p id="section-11.1-1">This section defines a subregistry within the 
"IPv6 Over the TSCH Mode of IEEE 802.15.4 (6TiSCH)" registry with the 
name "Constrained Join Protocol (CoJP) Parameters".<a href="#section-11.1-1" class="pilcrow">¶</a></p>
<p id="section-11.1-2">The columns of the registry are:<a href="#section-11.1-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-11.1-3">
          <dt id="section-11.1-3.1">Name:</dt>
          <dd style="margin-left: 1.5em" id="section-11.1-3.2">This is a descriptive name that enables an easier reference to the item.
It is not used in the encoding. The name <span class="bcp14">MUST</span> be unique.<a href="#section-11.1-3.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-11.1-3.3">Label:</dt>
          <dd style="margin-left: 1.5em" id="section-11.1-3.4">The value to be used to identify this parameter.
The label is an integer. The label <span class="bcp14">MUST</span> be unique.<a href="#section-11.1-3.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-11.1-3.5">CBOR Type:</dt>
          <dd style="margin-left: 1.5em" id="section-11.1-3.6">This field contains the CBOR type for the field.<a href="#section-11.1-3.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-11.1-3.7">Description:</dt>
          <dd style="margin-left: 1.5em" id="section-11.1-3.8">This field contains a brief description for the field. The description <span class="bcp14">MUST</span> be unique.<a href="#section-11.1-3.8" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-11.1-3.9">Reference:</dt>
          <dd style="margin-left: 1.5em" id="section-11.1-3.10">This field contains a pointer to the public specification for the field, if one exists.<a href="#section-11.1-3.10" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-11.1-4">This registry is populated with the values 
in <a href="#table_cojp_parameters_labels" class="xref">Table 5</a>.<a href="#section-11.1-4" class="pilcrow">¶</a></p>
<p id="section-11.1-5">The amending formula for this subregistry is: 
Different ranges of values use different registration policies <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.
Integer values from -256 to 255 are designated as Standards Action.
Integer values from -65536 to -257 and from 256 to 65535 are designated as Specification Required.
Integer values greater than 65535 are designated as Expert Review.
Integer values less than -65536 are marked as Private Use.<a href="#section-11.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="iana_cojp_key_usage_registry">
<section id="section-11.2">
        <h3 id="name-constrained-join-protocol-coj">
<a href="#section-11.2" class="section-number selfRef">11.2. </a><a href="#name-constrained-join-protocol-coj" class="section-name selfRef">Constrained Join Protocol (CoJP) Key Usage</a>
        </h3>
<p id="section-11.2-1">This section defines a subregistry within the 
"IPv6 Over the TSCH Mode of IEEE 802.15.4 (6TiSCH)" registry with the 
name "Constrained Join Protocol (CoJP) Key Usage".<a href="#section-11.2-1" class="pilcrow">¶</a></p>
<p id="section-11.2-2">The columns of this registry are:<a href="#section-11.2-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-11.2-3">
          <dt id="section-11.2-3.1">Name:</dt>
          <dd style="margin-left: 1.5em" id="section-11.2-3.2">This is a descriptive name that enables easier reference to the item.
It is not used in the encoding. The name <span class="bcp14">MUST</span> be unique.<a href="#section-11.2-3.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-11.2-3.3">Value:</dt>
          <dd style="margin-left: 1.5em" id="section-11.2-3.4">This is the value used to identify the key usage setting.
These values <span class="bcp14">MUST</span> be unique.  The value is an integer.<a href="#section-11.2-3.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-11.2-3.5">Algorithm:</dt>
          <dd style="margin-left: 1.5em" id="section-11.2-3.6">This is a descriptive name of the link-layer algorithm in use and uniquely determines the key length.
The name is not used in the encoding. The algorithm <span class="bcp14">MUST</span> be unique.<a href="#section-11.2-3.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-11.2-3.7">Description:</dt>
          <dd style="margin-left: 1.5em" id="section-11.2-3.8">This field contains a description of the key usage setting.
The field should describe in enough detail how the key is to be used with different frame types, specific for the link-layer technology in question. The description <span class="bcp14">MUST</span> be unique.<a href="#section-11.2-3.8" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-11.2-3.9">Reference:</dt>
          <dd style="margin-left: 1.5em" id="section-11.2-3.10">This contains a pointer to the public specification for the field, if one exists.<a href="#section-11.2-3.10" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-11.2-4">This registry is populated with the values in <a href="#table_key_usage_values" class="xref">Table 6</a>.<a href="#section-11.2-4" class="pilcrow">¶</a></p>
<p id="section-11.2-5">The amending formula for this subregistry is: 
Different ranges of values use different registration policies <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.
Integer values from -256 to 255 are designated as Standards Action.
Integer values from -65536 to -257 and from 256 to 65535 are designated as Specification Required.
Integer values greater than 65535 are designated as Expert Review.
Integer values less than -65536 are marked as Private Use.<a href="#section-11.2-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="iana_cojp_unsupported_code_registry">
<section id="section-11.3">
        <h3 id="name-constrained-join-protocol-cojp">
<a href="#section-11.3" class="section-number selfRef">11.3. </a><a href="#name-constrained-join-protocol-cojp" class="section-name selfRef">Constrained Join Protocol (CoJP) Unsupported Configuration Codes</a>
        </h3>
<p id="section-11.3-1">This section defines a subregistry within the 
"IPv6 Over the TSCH Mode of IEEE 802.15.4 (6TiSCH)" registry with the 
name "Constrained Join Protocol (CoJP) Unsupported Configuration Codes".<a href="#section-11.3-1" class="pilcrow">¶</a></p>
<p id="section-11.3-2">The columns of this registry are:<a href="#section-11.3-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-11.3-3">
          <dt id="section-11.3-3.1">Name:</dt>
          <dd style="margin-left: 1.5em" id="section-11.3-3.2">This is a descriptive name that enables easier reference to the item.
It is not used in the encoding.
The name <span class="bcp14">MUST</span> be unique.<a href="#section-11.3-3.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-11.3-3.3">Value:</dt>
          <dd style="margin-left: 1.5em" id="section-11.3-3.4">This is the value used to identify the diagnostic code.
These values <span class="bcp14">MUST</span> be unique.
The value is an integer.<a href="#section-11.3-3.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-11.3-3.5">Description:</dt>
          <dd style="margin-left: 1.5em" id="section-11.3-3.6">This is a descriptive human-readable name.
The description <span class="bcp14">MUST</span> be unique.
It is not used in the encoding.<a href="#section-11.3-3.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-11.3-3.7">Reference:</dt>
          <dd style="margin-left: 1.5em" id="section-11.3-3.8">This contains a pointer to the public specification for the field, if one exists.<a href="#section-11.3-3.8" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-11.3-4">This registry is to be populated with the values in <a href="#table_unsupported_code_values" class="xref">Table 7</a>.<a href="#section-11.3-4" class="pilcrow">¶</a></p>
<p id="section-11.3-5">The amending formula for this subregistry is: 
Different ranges of values use different registration policies <span>[<a href="#RFC8126" class="xref">RFC8126</a>]</span>.
Integer values from -256 to 255 are designated as Standards Action.
Integer values from -65536 to -257 and from 256 to 65535 are designated as Specification Required.
Integer values greater than 65535 are designated as Expert Review.
Integer values less than -65536 are marked as Private Use.<a href="#section-11.3-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<section id="section-12">
      <h2 id="name-references">
<a href="#section-12" class="section-number selfRef">12. </a><a href="#name-references" class="section-name selfRef">References</a>
      </h2>
<section id="section-12.1">
        <h3 id="name-normative-references">
<a href="#section-12.1" class="section-number selfRef">12.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
        </h3>
<dl class="references">
<dt id="IEEE802.15.4">[IEEE802.15.4]</dt>
        <dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Low-Rate Wireless Networks"</span>, <span class="seriesInfo">IEEE Standard 802.15.4-2015</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2016.7460875</span>, <time datetime="2016-04" class="refDate">April 2016</time>, <span>&lt;<a href="https://ieeexplore.ieee.org/document/7460875">https://ieeexplore.ieee.org/document/7460875</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2119">[RFC2119]</dt>
        <dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2597">[RFC2597]</dt>
        <dd>
<span class="refAuthor">Heinanen, J.</span>, <span class="refAuthor">Baker, F.</span>, <span class="refAuthor">Weiss, W.</span>, and <span class="refAuthor">J. Wroclawski</span>, <span class="refTitle">"Assured Forwarding PHB Group"</span>, <span class="seriesInfo">RFC 2597</span>, <span class="seriesInfo">DOI 10.17487/RFC2597</span>, <time datetime="1999-06" class="refDate">June 1999</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2597">https://www.rfc-editor.org/info/rfc2597</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3172">[RFC3172]</dt>
        <dd>
<span class="refAuthor">Huston, G., Ed.</span>, <span class="refTitle">"Management Guidelines &amp; Operational Requirements for the Address and Routing Parameter Area Domain ("arpa")"</span>, <span class="seriesInfo">BCP 52</span>, <span class="seriesInfo">RFC 3172</span>, <span class="seriesInfo">DOI 10.17487/RFC3172</span>, <time datetime="2001-09" class="refDate">September 2001</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3172">https://www.rfc-editor.org/info/rfc3172</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5869">[RFC5869]</dt>
        <dd>
<span class="refAuthor">Krawczyk, H.</span> and <span class="refAuthor">P. Eronen</span>, <span class="refTitle">"HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"</span>, <span class="seriesInfo">RFC 5869</span>, <span class="seriesInfo">DOI 10.17487/RFC5869</span>, <time datetime="2010-05" class="refDate">May 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5869">https://www.rfc-editor.org/info/rfc5869</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6761">[RFC6761]</dt>
        <dd>
<span class="refAuthor">Cheshire, S.</span> and <span class="refAuthor">M. Krochmal</span>, <span class="refTitle">"Special-Use Domain Names"</span>, <span class="seriesInfo">RFC 6761</span>, <span class="seriesInfo">DOI 10.17487/RFC6761</span>, <time datetime="2013-02" class="refDate">February 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6761">https://www.rfc-editor.org/info/rfc6761</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7252">[RFC7252]</dt>
        <dd>
<span class="refAuthor">Shelby, Z.</span>, <span class="refAuthor">Hartke, K.</span>, and <span class="refAuthor">C. Bormann</span>, <span class="refTitle">"The Constrained Application Protocol (CoAP)"</span>, <span class="seriesInfo">RFC 7252</span>, <span class="seriesInfo">DOI 10.17487/RFC7252</span>, <time datetime="2014-06" class="refDate">June 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7252">https://www.rfc-editor.org/info/rfc7252</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7554">[RFC7554]</dt>
        <dd>
<span class="refAuthor">Watteyne, T., Ed.</span>, <span class="refAuthor">Palattella, M.</span>, and <span class="refAuthor">L. Grieco</span>, <span class="refTitle">"Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement"</span>, <span class="seriesInfo">RFC 7554</span>, <span class="seriesInfo">DOI 10.17487/RFC7554</span>, <time datetime="2015-05" class="refDate">May 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7554">https://www.rfc-editor.org/info/rfc7554</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8085">[RFC8085]</dt>
        <dd>
<span class="refAuthor">Eggert, L.</span>, <span class="refAuthor">Fairhurst, G.</span>, and <span class="refAuthor">G. Shepherd</span>, <span class="refTitle">"UDP Usage Guidelines"</span>, <span class="seriesInfo">BCP 145</span>, <span class="seriesInfo">RFC 8085</span>, <span class="seriesInfo">DOI 10.17487/RFC8085</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8085">https://www.rfc-editor.org/info/rfc8085</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8126">[RFC8126]</dt>
        <dd>
<span class="refAuthor">Cotton, M.</span>, <span class="refAuthor">Leiba, B.</span>, and <span class="refAuthor">T. Narten</span>, <span class="refTitle">"Guidelines for Writing an IANA Considerations Section in RFCs"</span>, <span class="seriesInfo">BCP 26</span>, <span class="seriesInfo">RFC 8126</span>, <span class="seriesInfo">DOI 10.17487/RFC8126</span>, <time datetime="2017-06" class="refDate">June 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8152">[RFC8152]</dt>
        <dd>
<span class="refAuthor">Schaad, J.</span>, <span class="refTitle">"CBOR Object Signing and Encryption (COSE)"</span>, <span class="seriesInfo">RFC 8152</span>, <span class="seriesInfo">DOI 10.17487/RFC8152</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8152">https://www.rfc-editor.org/info/rfc8152</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
        <dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8180">[RFC8180]</dt>
        <dd>
<span class="refAuthor">Vilajosana, X., Ed.</span>, <span class="refAuthor">Pister, K.</span>, and <span class="refAuthor">T. Watteyne</span>, <span class="refTitle">"Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration"</span>, <span class="seriesInfo">BCP 210</span>, <span class="seriesInfo">RFC 8180</span>, <span class="seriesInfo">DOI 10.17487/RFC8180</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8180">https://www.rfc-editor.org/info/rfc8180</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8505">[RFC8505]</dt>
        <dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Nordmark, E.</span>, <span class="refAuthor">Chakrabarti, S.</span>, and <span class="refAuthor">C. Perkins</span>, <span class="refTitle">"Registration Extensions for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery"</span>, <span class="seriesInfo">RFC 8505</span>, <span class="seriesInfo">DOI 10.17487/RFC8505</span>, <time datetime="2018-11" class="refDate">November 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8505">https://www.rfc-editor.org/info/rfc8505</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8613">[RFC8613]</dt>
        <dd>
<span class="refAuthor">Selander, G.</span>, <span class="refAuthor">Mattsson, J.</span>, <span class="refAuthor">Palombini, F.</span>, and <span class="refAuthor">L. Seitz</span>, <span class="refTitle">"Object Security for Constrained RESTful Environments (OSCORE)"</span>, <span class="seriesInfo">RFC 8613</span>, <span class="seriesInfo">DOI 10.17487/RFC8613</span>, <time datetime="2019-07" class="refDate">July 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8613">https://www.rfc-editor.org/info/rfc8613</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8820">[RFC8820]</dt>
        <dd>
<span class="refAuthor">Nottingham, M.</span>, <span class="refTitle">"URI Design and Ownership"</span>, <span class="seriesInfo">BCP 190</span>, <span class="seriesInfo">RFC 8820</span>, <span class="seriesInfo">DOI 10.17487/RFC8820</span>, <time datetime="2020-06" class="refDate">June 2020</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8820">https://www.rfc-editor.org/info/rfc8820</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8949">[RFC8949]</dt>
        <dd>
<span class="refAuthor">Bormann, C.</span> and <span class="refAuthor">P. Hoffman</span>, <span class="refTitle">"Concise Binary Object Representation (CBOR)"</span>, <span class="seriesInfo">STD 94</span>, <span class="seriesInfo">RFC 8949</span>, <span class="seriesInfo">DOI 10.17487/RFC8949</span>, <time datetime="2020-12" class="refDate">December 2020</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8949">https://www.rfc-editor.org/info/rfc8949</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8974">[RFC8974]</dt>
        <dd>
<span class="refAuthor">Hartke, K.</span> and <span class="refAuthor">M. Richardson</span>, <span class="refTitle">"Extended Tokens and Stateless Clients in the Constrained Application Protocol (CoAP)"</span>, <span class="seriesInfo">RFC 8974</span>, <span class="seriesInfo">DOI 10.17487/RFC8974</span>, <time datetime="2021-01" class="refDate">January 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8974">https://www.rfc-editor.org/info/rfc8974</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9030">[RFC9030]</dt>
      <dd>
<span class="refAuthor">Thubert, P., Ed.</span>, <span class="refTitle">"An Architecture for IPv6 over the Time-Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH)"</span>, <span class="seriesInfo">RFC 9030</span>, <span class="seriesInfo">DOI 10.17487/RFC9030</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9030">https://www.rfc-editor.org/info/rfc9030</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-12.2">
        <h3 id="name-informative-references">
<a href="#section-12.2" class="section-number selfRef">12.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
        </h3>
<dl class="references">
<dt id="NIST800-90A">[NIST800-90A]</dt>
        <dd>
<span class="refAuthor">National Institute of Standards and Technology</span>, <span class="refTitle">"Recommendation for Random Number Generation Using Deterministic Random Bit Generators"</span>, <span class="refContent">Special Publication 800-90A, Revision 1</span>, <span class="seriesInfo">DOI 10.6028/NIST.SP.800-90Ar1</span>, <time datetime="2015-06" class="refDate">June 2015</time>, <span>&lt;<a href="https://doi.org/10.6028/NIST.SP.800-90Ar1">https://doi.org/10.6028/NIST.SP.800-90Ar1</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4231">[RFC4231]</dt>
        <dd>
<span class="refAuthor">Nystrom, M.</span>, <span class="refTitle">"Identifiers and Test Vectors for HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512"</span>, <span class="seriesInfo">RFC 4231</span>, <span class="seriesInfo">DOI 10.17487/RFC4231</span>, <time datetime="2005-12" class="refDate">December 2005</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4231">https://www.rfc-editor.org/info/rfc4231</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4944">[RFC4944]</dt>
        <dd>
<span class="refAuthor">Montenegro, G.</span>, <span class="refAuthor">Kushalnagar, N.</span>, <span class="refAuthor">Hui, J.</span>, and <span class="refAuthor">D. Culler</span>, <span class="refTitle">"Transmission of IPv6 Packets over IEEE 802.15.4 Networks"</span>, <span class="seriesInfo">RFC 4944</span>, <span class="seriesInfo">DOI 10.17487/RFC4944</span>, <time datetime="2007-09" class="refDate">September 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4944">https://www.rfc-editor.org/info/rfc4944</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6550">[RFC6550]</dt>
        <dd>
<span class="refAuthor">Winter, T., Ed.</span>, <span class="refAuthor">Thubert, P., Ed.</span>, <span class="refAuthor">Brandt, A.</span>, <span class="refAuthor">Hui, J.</span>, <span class="refAuthor">Kelsey, R.</span>, <span class="refAuthor">Levis, P.</span>, <span class="refAuthor">Pister, K.</span>, <span class="refAuthor">Struik, R.</span>, <span class="refAuthor">Vasseur, JP.</span>, and <span class="refAuthor">R. Alexander</span>, <span class="refTitle">"RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks"</span>, <span class="seriesInfo">RFC 6550</span>, <span class="seriesInfo">DOI 10.17487/RFC6550</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6550">https://www.rfc-editor.org/info/rfc6550</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6762">[RFC6762]</dt>
        <dd>
<span class="refAuthor">Cheshire, S.</span> and <span class="refAuthor">M. Krochmal</span>, <span class="refTitle">"Multicast DNS"</span>, <span class="seriesInfo">RFC 6762</span>, <span class="seriesInfo">DOI 10.17487/RFC6762</span>, <time datetime="2013-02" class="refDate">February 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6762">https://www.rfc-editor.org/info/rfc6762</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7721">[RFC7721]</dt>
        <dd>
<span class="refAuthor">Cooper, A.</span>, <span class="refAuthor">Gont, F.</span>, and <span class="refAuthor">D. Thaler</span>, <span class="refTitle">"Security and Privacy Considerations for IPv6 Address Generation Mechanisms"</span>, <span class="seriesInfo">RFC 7721</span>, <span class="seriesInfo">DOI 10.17487/RFC7721</span>, <time datetime="2016-03" class="refDate">March 2016</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7721">https://www.rfc-editor.org/info/rfc7721</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8415">[RFC8415]</dt>
        <dd>
<span class="refAuthor">Mrugalski, T.</span>, <span class="refAuthor">Siodelski, M.</span>, <span class="refAuthor">Volz, B.</span>, <span class="refAuthor">Yourtchenko, A.</span>, <span class="refAuthor">Richardson, M.</span>, <span class="refAuthor">Jiang, S.</span>, <span class="refAuthor">Lemon, T.</span>, and <span class="refAuthor">T. Winters</span>, <span class="refTitle">"Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"</span>, <span class="seriesInfo">RFC 8415</span>, <span class="seriesInfo">DOI 10.17487/RFC8415</span>, <time datetime="2018-11" class="refDate">November 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8415">https://www.rfc-editor.org/info/rfc8415</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8480">[RFC8480]</dt>
        <dd>
<span class="refAuthor">Wang, Q., Ed.</span>, <span class="refAuthor">Vilajosana, X.</span>, and <span class="refAuthor">T. Watteyne</span>, <span class="refTitle">"6TiSCH Operation Sublayer (6top) Protocol (6P)"</span>, <span class="seriesInfo">RFC 8480</span>, <span class="seriesInfo">DOI 10.17487/RFC8480</span>, <time datetime="2018-11" class="refDate">November 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8480">https://www.rfc-editor.org/info/rfc8480</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8610">[RFC8610]</dt>
        <dd>
<span class="refAuthor">Birkholz, H.</span>, <span class="refAuthor">Vigano, C.</span>, and <span class="refAuthor">C. Bormann</span>, <span class="refTitle">"Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures"</span>, <span class="seriesInfo">RFC 8610</span>, <span class="seriesInfo">DOI 10.17487/RFC8610</span>, <time datetime="2019-06" class="refDate">June 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8610">https://www.rfc-editor.org/info/rfc8610</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8615">[RFC8615]</dt>
        <dd>
<span class="refAuthor">Nottingham, M.</span>, <span class="refTitle">"Well-Known Uniform Resource Identifiers (URIs)"</span>, <span class="seriesInfo">RFC 8615</span>, <span class="seriesInfo">DOI 10.17487/RFC8615</span>, <time datetime="2019-05" class="refDate">May 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8615">https://www.rfc-editor.org/info/rfc8615</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8742">[RFC8742]</dt>
        <dd>
<span class="refAuthor">Bormann, C.</span>, <span class="refTitle">"Concise Binary Object Representation (CBOR) Sequences"</span>, <span class="seriesInfo">RFC 8742</span>, <span class="seriesInfo">DOI 10.17487/RFC8742</span>, <time datetime="2020-02" class="refDate">February 2020</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8742">https://www.rfc-editor.org/info/rfc8742</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8990">[RFC8990]</dt>
      <dd>
<span class="refAuthor">Bormann, C.</span>, <span class="refAuthor">Carpenter, B., Ed.</span>, and <span class="refAuthor">B. Liu, Ed.</span>, <span class="refTitle">"GeneRic Autonomic Signaling Protocol (GRASP)"</span>, <span class="seriesInfo">RFC 8990</span>, <span class="seriesInfo">DOI 10.17487/RFC8990</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8990">https://www.rfc-editor.org/info/rfc8990</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="example">
<section id="section-appendix.a">
      <h2 id="name-example">
<a href="#section-appendix.a" class="section-number selfRef">Appendix A. </a><a href="#name-example" class="section-name selfRef">Example</a>
      </h2>
<p id="section-appendix.a-1"><a href="#fig_example" class="xref">Figure 3</a> illustrates a successful join protocol exchange.
The pledge instantiates the OSCORE context and derives the OSCORE keys and nonces from the PSK.
It uses the instantiated context to protect the Join Request addressed with
    a Proxy-Scheme option,
    the well-known host name of the JRC in the Uri-Host option, and
    it uses its EUI-64 as pledge identifier and OSCORE 'kid context'.
Triggered by the presence of a Proxy-Scheme option, the JP forwards the request to the JRC and sets the CoAP token to the internally needed state.
The JP learned the IPv6 address of the JRC when it acted as a pledge and joined the network.
Once the JRC receives the request, it looks up the correct context based on the 'kid context' parameter.
The OSCORE data authenticity verification ensures that the request has not been modified in transit.
In addition, replay protection is ensured through persistent handling of mutable context parameters.<a href="#section-appendix.a-1" class="pilcrow">¶</a></p>
<p id="section-appendix.a-2">Once the JP receives the Join Response, it authenticates the state within the CoAP token before deciding where to forward.
The JP sets its internal state to that found in the token and 
forwards the Join Response to the correct pledge.
Note that the JP does not possess the key to decrypt the CoJP object (configuration) present in the payload.
At the pledge, the Join Response is matched to the Join Request 
and verified for replay protection using OSCORE processing rules.
In this example, the Join Response does not contain the IPv6 address 
of the JRC, hence the pledge understands that the JRC is co-located with the 6LBR.<a href="#section-appendix.a-2" class="pilcrow">¶</a></p>
<span id="name-example-of-a-successful-joi"></span><div id="fig_example">
<figure id="figure-3">
        <div class="artwork art-text alignCenter" id="section-appendix.a-3.1">
<pre>
  &lt;-----E2E OSCORE------&gt;
Client      Proxy     Server
Pledge       JP        JRC
  |          |          |
  |  Join    |          |            Code: 0.02 (POST)
  | Request  |          |           Token: -
  +---------&gt;|          |    Proxy-Scheme: coap
  |          |          |        Uri-Host: 6tisch.arpa
  |          |          |          OSCORE: kid: -,
  |          |          |                  kid_context: EUI-64,
  |          |          |                  Partial IV: 1
  |          |          |         Payload: { Code: 0.02 (POST),
  |          |          |                    Uri-Path: "j",
  |          |          |                    join_request, &lt;Tag&gt; }
  |          |          |
  |          |  Join    |            Code: 0.02 (POST)
  |          | Request  |           Token: opaque state
  |          +---------&gt;|          OSCORE: kid: -,
  |          |          |                  kid_context: EUI-64,
  |          |          |                  Partial IV: 1
  |          |          |         Payload: { Code: 0.02 (POST),
  |          |          |                    Uri-Path: "j",
  |          |          |                    join_request, &lt;Tag&gt; }
  |          |          |
  |          |          |
  |          |  Join    |            Code: 2.04 (Changed)
  |          | Response |           Token: opaque state
  |          |&lt;---------+          OSCORE: -
  |          |          |         Payload: { Code: 2.04 (Changed),
  |          |          |                    configuration, &lt;Tag&gt; }
  |          |          |
  |          |          |
  |  Join    |          |            Code: 2.04 (Changed)
  | Response |          |           Token: -
  |&lt;---------+          |          OSCORE: -
  |          |          |         Payload: { Code: 2.04 (Changed),
  |          |          |                    configuration, &lt;Tag&gt; }
  |          |          |
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-example-of-a-successful-joi" class="selfRef">Example of a successful join protocol exchange. { ... } denotes authenticated encryption, &lt;Tag&gt; denotes the authentication tag.</a>
        </figcaption></figure>
</div>
<p id="section-appendix.a-4">Where the join_request object is:<a href="#section-appendix.a-4" class="pilcrow">¶</a></p>
<div id="section-appendix.a-5">
<pre class="sourcecode">
join_request:
{
   5 : h'cafe' / PAN ID of the network pledge is attempting to join /
}
</pre><a href="#section-appendix.a-5" class="pilcrow">¶</a>
</div>
<p id="section-appendix.a-6">Since the role parameter is not present, the default role of "6TiSCH Node" is implied.<a href="#section-appendix.a-6" class="pilcrow">¶</a></p>
<p id="section-appendix.a-7">The join_request object is converted to h'a10542cafe' with a size of 5 bytes.<a href="#section-appendix.a-7" class="pilcrow">¶</a></p>
<p id="section-appendix.a-8">And the configuration object is the following:<a href="#section-appendix.a-8" class="pilcrow">¶</a></p>
<div id="section-appendix.a-9">
<pre class="sourcecode">
configuration:
{
   2 : [           / link-layer key set /
         1,        / key_id /
         h'e6bf4287c2d7618d6a9687445ffd33e6' / key_value /
       ],
   3 : [           / short identifier /
         h'af93'   / assigned short address /
       ]
}
</pre><a href="#section-appendix.a-9" class="pilcrow">¶</a>
</div>
<p id="section-appendix.a-10">Since the key_usage parameter is not present in the link-layer key set object, the default value of "6TiSCH-K1K2-ENC-MIC32" is implied.
Since the key_addinfo parameter is not present and key_id is 
different from 0, Key ID Mode 0x01 (Key Index) is implied.
Similarly, since the lease_time parameter is not present in the short identifier object, the default value of positive infinity is implied.<a href="#section-appendix.a-10" class="pilcrow">¶</a></p>
<p id="section-appendix.a-11">The configuration object is converted to the following:<a href="#section-appendix.a-11" class="pilcrow">¶</a></p>
<p id="section-appendix.a-12">h'a202820150e6bf4287c2d7618d6a9687445ffd33e6038142af93' with a size of 26 bytes.<a href="#section-appendix.a-12" class="pilcrow">¶</a></p>
</section>
</div>
<div id="lightweight">
<section id="section-appendix.b">
      <h2 id="name-lightweight-implementation-">
<a href="#section-appendix.b" class="section-number selfRef">Appendix B. </a><a href="#name-lightweight-implementation-" class="section-name selfRef">Lightweight Implementation Option</a>
      </h2>
<p id="section-appendix.b-1">In environments where optimizing the implementation footprint is important, it is possible to implement this specification without having the implementations of HKDF <span>[<a href="#RFC5869" class="xref">RFC5869</a>]</span> and SHA <span>[<a href="#RFC4231" class="xref">RFC4231</a>]</span> on constrained devices.
HKDF and SHA are used during the OSCORE security context derivation phase.
This derivation can also be done by the JRC or a provisioning device on behalf 
of the (6LBR) pledge during the provisioning phase.
In that case, the derived OSCORE security context parameters are 
written directly into the (6LBR) pledge, without requiring the PSK to 
be provisioned to the (6LBR) pledge.<a href="#section-appendix.b-1" class="pilcrow">¶</a></p>
<p id="section-appendix.b-2">The use of HKDF to derive OSCORE security context parameters 
ensures that the resulting OSCORE keys have good security properties 
and are unique as long as the input varies for different pledges.
This specification ensures the uniqueness by mandating
    unique pledge identifiers
    and a unique PSK for each (6LBR) pledge.
From the AEAD nonce reuse viewpoint, having a unique pledge identifier is a sufficient condition.
However, as discussed in <a href="#sec_considerations" class="xref">Section 9</a>, the use of a single PSK shared among many devices is a common security pitfall.
The compromise of this shared PSK on a single device would lead to the compromise of the entire batch.
When using the implementation/deployment scheme outlined above, 
the PSK does not need to be written to individual pledges.
As a consequence, even if a shared PSK is used, the scheme offers a 
level of security comparable to the scenario in which each pledge 
is provisioned with a unique PSK.
In this case, there is still a latent risk of the shared PSK being 
compromised on the provisioning device, which would compromise all devices in the batch.<a href="#section-appendix.b-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="acknowledgments">
<section id="section-appendix.c">
      <h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
      </h2>
<p id="section-appendix.c-1">The work on this document has been partially supported by the 
European Union's H2020 Programme for research, technological development and 
demonstration under grant agreements: No. 644852, project ARMOUR; 
No. 687884, project F-Interop and open-call project SPOTS; 
No. 732638, project Fed4FIRE+ and open-call project SODA.<a href="#section-appendix.c-1" class="pilcrow">¶</a></p>
<p id="section-appendix.c-2">The following individuals provided input to this document (in alphabetic order):
<span class="contact-name">Christian Amsüss</span>,
<span class="contact-name">Tengfei Chang</span>,
<span class="contact-name">Roman Danyliw</span>,
<span class="contact-name">Linda Dunbar</span>,
<span class="contact-name">Vijay Gurbani</span>,
<span class="contact-name">Klaus Hartke</span>,
<span class="contact-name">Barry Leiba</span>,
<span class="contact-name">Benjamin Kaduk</span>,
<span class="contact-name">Tero Kivinen</span>,
<span class="contact-name">Mirja Kühlewind</span>,
<span class="contact-name">John Mattsson</span>,
<span class="contact-name">Hilarie Orman</span>,
<span class="contact-name">Alvaro Retana</span>,
<span class="contact-name">Adam Roach</span>,
<span class="contact-name">Jim Schaad</span>,
<span class="contact-name">Göran Selander</span>,
<span class="contact-name">Yasuyuki Tanaka</span>,
<span class="contact-name">Pascal Thubert</span>,
<span class="contact-name">William Vignat</span>,
<span class="contact-name">Xavier Vilajosana</span>,
<span class="contact-name">Éric Vyncke</span>, and
<span class="contact-name">Thomas Watteyne</span>.<a href="#section-appendix.c-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="section-appendix.d">
      <h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Mališa Vučinić (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Inria</span></div>
<div dir="auto" class="left"><span class="street-address">2 Rue Simone Iff</span></div>
<div dir="auto" class="left">
<span class="postal-code">75012</span> <span class="locality">Paris</span>
</div>
<div dir="auto" class="left"><span class="country-name">France</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:malisa.vucinic@inria.fr" class="email">malisa.vucinic@inria.fr</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Jonathan Simon</span></div>
<div dir="auto" class="left"><span class="org">Analog Devices</span></div>
<div dir="auto" class="left"><span class="street-address">32990 Alvarado-Niles Road, Suite 910</span></div>
<div dir="auto" class="left">
<span class="locality">Union City</span>, <span class="region">CA</span> <span class="postal-code">94587</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jonathan.simon@analog.com" class="email">jonathan.simon@analog.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Kris Pister</span></div>
<div dir="auto" class="left"><span class="org">University of California Berkeley</span></div>
<div dir="auto" class="left"><span class="street-address">512 Cory Hall</span></div>
<div dir="auto" class="left">
<span class="locality">Berkeley</span>, <span class="region">CA</span> <span class="postal-code">94720</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:pister@eecs.berkeley.edu" class="email">pister@eecs.berkeley.edu</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Michael Richardson</span></div>
<div dir="auto" class="left"><span class="org">Sandelman Software Works</span></div>
<div dir="auto" class="left"><span class="street-address">470 Dawson Avenue</span></div>
<div dir="auto" class="left">
<span class="locality">Ottawa</span> <span class="region">ON</span> <span class="postal-code">K1Z5V7</span>
</div>
<div dir="auto" class="left"><span class="country-name">Canada</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:mcr+ietf@sandelman.ca" class="email">mcr+ietf@sandelman.ca</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
  toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
  toc.classList.remove("active");
});
</script>
</body>
</html>