1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9055: Deterministic Networking (DetNet) Security Considerations</title>
<meta content="Ethan Grossman" name="author">
<meta content="Tal Mizrahi" name="author">
<meta content="Andrew J. Hacker" name="author">
<meta content='
A DetNet (deterministic network) provides specific performance
guarantees to its data flows, such as extremely low data loss rates and
bounded latency (including bounded latency variation, i.e.,
"jitter"). As a result, securing a DetNet requires that in addition to
the best practice security measures taken for any mission-critical
network, additional security measures may be needed to secure the
intended operation of these novel service properties.
This document addresses DetNet-specific security considerations from
the perspectives of both the DetNet system-level designer and component
designer. System considerations include a taxonomy of relevant threats
and attacks, and associations of threats versus use cases and service
properties. Component-level considerations include ingress filtering and
packet arrival-time violation detection.
This document also addresses security considerations specific to the
IP and MPLS data plane technologies, thereby complementing the Security
Considerations sections of those documents.
' name="description">
<meta content="xml2rfc 3.9.1" name="generator">
<meta content="DetNet" name="keyword">
<meta content="security" name="keyword">
<meta content="9055" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.9.1
Python 3.6.10
appdirs 1.4.4
ConfigArgParse 1.2.3
google-i18n-address 2.3.5
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.2
kitchen 1.2.6
lxml 4.4.2
pycairo 1.19.0
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.3.1
requests 2.22.0
setuptools 40.6.2
six 1.14.0
WeasyPrint 51
-->
<link href="rfc9055.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: avoid-page;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9055" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-detnet-security-16" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9055</td>
<td class="center">DetNet Security</td>
<td class="right">June 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Grossman, et al.</td>
<td class="center">Informational</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9055" class="eref">9055</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Informational</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-06" class="published">June 2021</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">E. Grossman, <span class="editor">Ed.</span>
</div>
<div class="org">DOLBY</div>
</div>
<div class="author">
<div class="author-name">T. Mizrahi</div>
<div class="org">HUAWEI</div>
</div>
<div class="author">
<div class="author-name">A. Hacker</div>
<div class="org">THOUGHT</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9055</h1>
<h1 id="title">Deterministic Networking (DetNet) Security Considerations</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">A DetNet (deterministic network) provides specific performance
guarantees to its data flows, such as extremely low data loss rates and
bounded latency (including bounded latency variation, i.e.,
"jitter"). As a result, securing a DetNet requires that in addition to
the best practice security measures taken for any mission-critical
network, additional security measures may be needed to secure the
intended operation of these novel service properties.<a href="#section-abstract-1" class="pilcrow">ΒΆ</a></p>
<p id="section-abstract-2"> This document addresses DetNet-specific security considerations from
the perspectives of both the DetNet system-level designer and component
designer. System considerations include a taxonomy of relevant threats
and attacks, and associations of threats versus use cases and service
properties. Component-level considerations include ingress filtering and
packet arrival-time violation detection.<a href="#section-abstract-2" class="pilcrow">ΒΆ</a></p>
<p id="section-abstract-3">This document also addresses security considerations specific to the
IP and MPLS data plane technologies, thereby complementing the Security
Considerations sections of those documents.<a href="#section-abstract-3" class="pilcrow">ΒΆ</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for informational purposes.<a href="#section-boilerplate.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9055">https://www.rfc-editor.org/info/rfc9055</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">β²</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="ulBare toc ulEmpty compact">
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>.Β Β <a href="#name-introduction" class="xref">Introduction</a></p>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1" class="keepWithNext"><a href="#section-2" class="xref">2</a>.Β Β <a href="#name-abbreviations-and-terminolo" class="xref">Abbreviations and Terminology</a></p>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>.Β Β <a href="#name-security-considerations-for" class="xref">Security Considerations for DetNet Component Design</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>.Β Β <a href="#name-resource-allocation" class="xref">Resource Allocation</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1.2.1">
<p id="section-toc.1-1.3.2.1.2.1.1" class="keepWithNext"><a href="#section-3.1.1" class="xref">3.1.1</a>.Β Β <a href="#name-inviolable-flows" class="xref">Inviolable Flows</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1.2.2">
<p id="section-toc.1-1.3.2.1.2.2.1"><a href="#section-3.1.2" class="xref">3.1.2</a>.Β Β <a href="#name-design-trade-off-considerat" class="xref">Design Trade-Off Considerations in the Use Cases Continuum</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1.2.3">
<p id="section-toc.1-1.3.2.1.2.3.1"><a href="#section-3.1.3" class="xref">3.1.3</a>.Β Β <a href="#name-documenting-the-security-pr" class="xref">Documenting the Security Properties of a Component</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1.2.4">
<p id="section-toc.1-1.3.2.1.2.4.1"><a href="#section-3.1.4" class="xref">3.1.4</a>.Β Β <a href="#name-fail-safe-component-behavio" class="xref">Fail-Safe Component Behavior</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1.2.5">
<p id="section-toc.1-1.3.2.1.2.5.1"><a href="#section-3.1.5" class="xref">3.1.5</a>.Β Β <a href="#name-flow-aggregation-example" class="xref">Flow Aggregation Example</a></p>
</li>
</ul>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>.Β Β <a href="#name-explicit-routes" class="xref">Explicit Routes</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.3">
<p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>.Β Β <a href="#name-redundant-path-support" class="xref">Redundant Path Support</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.4">
<p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="xref">3.4</a>.Β Β <a href="#name-timing-or-other-violation-r" class="xref">Timing (or Other) Violation Reporting</a></p>
</li>
</ul>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.Β Β <a href="#name-detnet-security-considerati" class="xref">DetNet Security Considerations Compared with Diffserv Security Considerations</a></p>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.Β Β <a href="#name-security-threats" class="xref">Security Threats</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>.Β Β <a href="#name-threat-taxonomy" class="xref">Threat Taxonomy</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>.Β Β <a href="#name-threat-analysis" class="xref">Threat Analysis</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.1">
<p id="section-toc.1-1.5.2.2.2.1.1"><a href="#section-5.2.1" class="xref">5.2.1</a>.Β Β <a href="#name-delay" class="xref">Delay</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.2">
<p id="section-toc.1-1.5.2.2.2.2.1"><a href="#section-5.2.2" class="xref">5.2.2</a>.Β Β <a href="#name-detnet-flow-modification-or" class="xref">DetNet Flow Modification or Spoofing</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.3">
<p id="section-toc.1-1.5.2.2.2.3.1"><a href="#section-5.2.3" class="xref">5.2.3</a>.Β Β <a href="#name-resource-segmentation-inter" class="xref">Resource Segmentation (Inter-segment Attack) Vulnerability</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.4">
<p id="section-toc.1-1.5.2.2.2.4.1"><a href="#section-5.2.4" class="xref">5.2.4</a>.Β Β <a href="#name-packet-replication-and-elim" class="xref">Packet Replication and Elimination</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.4.2.1">
<p id="section-toc.1-1.5.2.2.2.4.2.1.1"><a href="#section-5.2.4.1" class="xref">5.2.4.1</a>.Β Β <a href="#name-replication-increased-attac" class="xref">Replication: Increased Attack Surface</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.4.2.2">
<p id="section-toc.1-1.5.2.2.2.4.2.2.1"><a href="#section-5.2.4.2" class="xref">5.2.4.2</a>.Β Β <a href="#name-replication-related-header-" class="xref">Replication-Related Header Manipulation</a></p>
</li>
</ul>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.5">
<p id="section-toc.1-1.5.2.2.2.5.1"><a href="#section-5.2.5" class="xref">5.2.5</a>.Β Β <a href="#name-controller-plane" class="xref">Controller Plane</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.5.2.1">
<p id="section-toc.1-1.5.2.2.2.5.2.1.1"><a href="#section-5.2.5.1" class="xref">5.2.5.1</a>.Β Β <a href="#name-path-choice-manipulation" class="xref">Path Choice Manipulation</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.5.2.2">
<p id="section-toc.1-1.5.2.2.2.5.2.2.1"><a href="#section-5.2.5.2" class="xref">5.2.5.2</a>.Β Β <a href="#name-compromised-controller" class="xref">Compromised Controller</a></p>
</li>
</ul>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.6">
<p id="section-toc.1-1.5.2.2.2.6.1"><a href="#section-5.2.6" class="xref">5.2.6</a>.Β Β <a href="#name-reconnaissance" class="xref">Reconnaissance</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.7">
<p id="section-toc.1-1.5.2.2.2.7.1"><a href="#section-5.2.7" class="xref">5.2.7</a>.Β Β <a href="#name-time-synchronization-mechan" class="xref">Time-Synchronization Mechanisms</a></p>
</li>
</ul>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.3">
<p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>.Β Β <a href="#name-threat-summary" class="xref">Threat Summary</a></p>
</li>
</ul>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.Β Β <a href="#name-security-threat-impacts" class="xref">Security Threat Impacts</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>.Β Β <a href="#name-delay-attacks" class="xref">Delay Attacks</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.1.2.1">
<p id="section-toc.1-1.6.2.1.2.1.1"><a href="#section-6.1.1" class="xref">6.1.1</a>.Β Β <a href="#name-data-plane-delay-attacks" class="xref">Data Plane Delay Attacks</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.1.2.2">
<p id="section-toc.1-1.6.2.1.2.2.1"><a href="#section-6.1.2" class="xref">6.1.2</a>.Β Β <a href="#name-controller-plane-delay-atta" class="xref">Controller Plane Delay Attacks</a></p>
</li>
</ul>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>.Β Β <a href="#name-flow-modification-and-spoof" class="xref">Flow Modification and Spoofing</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.2.2.1">
<p id="section-toc.1-1.6.2.2.2.1.1"><a href="#section-6.2.1" class="xref">6.2.1</a>.Β Β <a href="#name-flow-modification" class="xref">Flow Modification</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.2.2.2">
<p id="section-toc.1-1.6.2.2.2.2.1"><a href="#section-6.2.2" class="xref">6.2.2</a>.Β Β <a href="#name-spoofing" class="xref">Spoofing</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.2.2.2.2.1">
<p id="section-toc.1-1.6.2.2.2.2.2.1.1"><a href="#section-6.2.2.1" class="xref">6.2.2.1</a>.Β Β <a href="#name-data-plane-spoofing" class="xref">Data Plane Spoofing</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.2.2.2.2.2">
<p id="section-toc.1-1.6.2.2.2.2.2.2.1"><a href="#section-6.2.2.2" class="xref">6.2.2.2</a>.Β Β <a href="#name-controller-plane-spoofing" class="xref">Controller Plane Spoofing</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.3">
<p id="section-toc.1-1.6.2.3.1"><a href="#section-6.3" class="xref">6.3</a>.Β Β <a href="#name-segmentation-attacks-inject" class="xref">Segmentation Attacks (Injection)</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.3.2.1">
<p id="section-toc.1-1.6.2.3.2.1.1"><a href="#section-6.3.1" class="xref">6.3.1</a>.Β Β <a href="#name-data-plane-segmentation" class="xref">Data Plane Segmentation</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.3.2.2">
<p id="section-toc.1-1.6.2.3.2.2.1"><a href="#section-6.3.2" class="xref">6.3.2</a>.Β Β <a href="#name-controller-plane-segmentati" class="xref">Controller Plane Segmentation</a></p>
</li>
</ul>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.4">
<p id="section-toc.1-1.6.2.4.1"><a href="#section-6.4" class="xref">6.4</a>.Β Β <a href="#name-replication-and-elimination" class="xref">Replication and Elimination</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.4.2.1">
<p id="section-toc.1-1.6.2.4.2.1.1"><a href="#section-6.4.1" class="xref">6.4.1</a>.Β Β <a href="#name-increased-attack-surface-2" class="xref">Increased Attack Surface</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.4.2.2">
<p id="section-toc.1-1.6.2.4.2.2.1"><a href="#section-6.4.2" class="xref">6.4.2</a>.Β Β <a href="#name-header-manipulation-at-elim" class="xref">Header Manipulation at Elimination Routers</a></p>
</li>
</ul>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.5">
<p id="section-toc.1-1.6.2.5.1"><a href="#section-6.5" class="xref">6.5</a>.Β Β <a href="#name-control-or-signaling-packet-m" class="xref">Control or Signaling Packet Modification</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.6">
<p id="section-toc.1-1.6.2.6.1"><a href="#section-6.6" class="xref">6.6</a>.Β Β <a href="#name-control-or-signaling-packet-i" class="xref">Control or Signaling Packet Injection</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.7">
<p id="section-toc.1-1.6.2.7.1"><a href="#section-6.7" class="xref">6.7</a>.Β Β <a href="#name-reconnaissance-2" class="xref">Reconnaissance</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.8">
<p id="section-toc.1-1.6.2.8.1"><a href="#section-6.8" class="xref">6.8</a>.Β Β <a href="#name-attacks-on-time-synchroniza" class="xref">Attacks on Time-Synchronization Mechanisms</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.9">
<p id="section-toc.1-1.6.2.9.1"><a href="#section-6.9" class="xref">6.9</a>.Β Β <a href="#name-attacks-on-path-choice" class="xref">Attacks on Path Choice</a></p>
</li>
</ul>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>.Β Β <a href="#name-security-threat-mitigation" class="xref">Security Threat Mitigation</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>.Β Β <a href="#name-path-redundancy" class="xref">Path Redundancy</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>.Β Β <a href="#name-integrity-protection" class="xref">Integrity Protection</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.3">
<p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="xref">7.3</a>.Β Β <a href="#name-detnet-node-authentication" class="xref">DetNet Node Authentication</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.4">
<p id="section-toc.1-1.7.2.4.1"><a href="#section-7.4" class="xref">7.4</a>.Β Β <a href="#name-synthetic-traffic-insertion" class="xref">Synthetic Traffic Insertion</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.5">
<p id="section-toc.1-1.7.2.5.1"><a href="#section-7.5" class="xref">7.5</a>.Β Β <a href="#name-encryption" class="xref">Encryption</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.5.2.1">
<p id="section-toc.1-1.7.2.5.2.1.1"><a href="#section-7.5.1" class="xref">7.5.1</a>.Β Β <a href="#name-encryption-considerations-f" class="xref">Encryption Considerations for DetNet</a></p>
</li>
</ul>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.6">
<p id="section-toc.1-1.7.2.6.1"><a href="#section-7.6" class="xref">7.6</a>.Β Β <a href="#name-control-and-signaling-messa" class="xref">Control and Signaling Message Protection</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.7">
<p id="section-toc.1-1.7.2.7.1"><a href="#section-7.7" class="xref">7.7</a>.Β Β <a href="#name-dynamic-performance-analyti" class="xref">Dynamic Performance Analytics</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.8">
<p id="section-toc.1-1.7.2.8.1"><a href="#section-7.8" class="xref">7.8</a>.Β Β <a href="#name-mitigation-summary" class="xref">Mitigation Summary</a></p>
</li>
</ul>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>.Β Β <a href="#name-association-of-attacks-to-u" class="xref">Association of Attacks to Use Cases</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1">
<p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="xref">8.1</a>.Β Β <a href="#name-association-of-attacks-to-us" class="xref">Association of Attacks to Use Case Common Themes</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.1">
<p id="section-toc.1-1.8.2.1.2.1.1"><a href="#section-8.1.1" class="xref">8.1.1</a>.Β Β <a href="#name-sub-network-layer" class="xref">Sub-network Layer</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.2">
<p id="section-toc.1-1.8.2.1.2.2.1"><a href="#section-8.1.2" class="xref">8.1.2</a>.Β Β <a href="#name-central-administration" class="xref">Central Administration</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.3">
<p id="section-toc.1-1.8.2.1.2.3.1"><a href="#section-8.1.3" class="xref">8.1.3</a>.Β Β <a href="#name-hot-swap" class="xref">Hot Swap</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.4">
<p id="section-toc.1-1.8.2.1.2.4.1"><a href="#section-8.1.4" class="xref">8.1.4</a>.Β Β <a href="#name-data-flow-information-model" class="xref">Data Flow Information Models</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.5">
<p id="section-toc.1-1.8.2.1.2.5.1"><a href="#section-8.1.5" class="xref">8.1.5</a>.Β Β <a href="#name-l2-and-l3-integration" class="xref">L2 and L3 Integration</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.6">
<p id="section-toc.1-1.8.2.1.2.6.1"><a href="#section-8.1.6" class="xref">8.1.6</a>.Β Β <a href="#name-end-to-end-delivery" class="xref">End-to-End Delivery</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.7">
<p id="section-toc.1-1.8.2.1.2.7.1"><a href="#section-8.1.7" class="xref">8.1.7</a>.Β Β <a href="#name-replacement-for-proprietary" class="xref">Replacement for Proprietary Fieldbuses and Ethernet-Based Networks</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.8">
<p id="section-toc.1-1.8.2.1.2.8.1"><a href="#section-8.1.8" class="xref">8.1.8</a>.Β Β <a href="#name-deterministic-vs-best-effor" class="xref">Deterministic vs. Best-Effort Traffic</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.9">
<p id="section-toc.1-1.8.2.1.2.9.1"><a href="#section-8.1.9" class="xref">8.1.9</a>.Β Β <a href="#name-deterministic-flows" class="xref">Deterministic Flows</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.10">
<p id="section-toc.1-1.8.2.1.2.10.1"><a href="#section-8.1.10" class="xref">8.1.10</a>.Β <a href="#name-unused-reserved-bandwidth" class="xref">Unused Reserved Bandwidth</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.11">
<p id="section-toc.1-1.8.2.1.2.11.1"><a href="#section-8.1.11" class="xref">8.1.11</a>.Β <a href="#name-interoperability" class="xref">Interoperability</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.12">
<p id="section-toc.1-1.8.2.1.2.12.1"><a href="#section-8.1.12" class="xref">8.1.12</a>.Β <a href="#name-cost-reductions" class="xref">Cost Reductions</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.13">
<p id="section-toc.1-1.8.2.1.2.13.1"><a href="#section-8.1.13" class="xref">8.1.13</a>.Β <a href="#name-insufficiently-secure-compo" class="xref">Insufficiently Secure Components</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.14">
<p id="section-toc.1-1.8.2.1.2.14.1"><a href="#section-8.1.14" class="xref">8.1.14</a>.Β <a href="#name-detnet-network-size" class="xref">DetNet Network Size</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.15">
<p id="section-toc.1-1.8.2.1.2.15.1"><a href="#section-8.1.15" class="xref">8.1.15</a>.Β <a href="#name-multiple-hops" class="xref">Multiple Hops</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.16">
<p id="section-toc.1-1.8.2.1.2.16.1"><a href="#section-8.1.16" class="xref">8.1.16</a>.Β <a href="#name-level-of-service" class="xref">Level of Service</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.17">
<p id="section-toc.1-1.8.2.1.2.17.1"><a href="#section-8.1.17" class="xref">8.1.17</a>.Β <a href="#name-bounded-latency" class="xref">Bounded Latency</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.18">
<p id="section-toc.1-1.8.2.1.2.18.1"><a href="#section-8.1.18" class="xref">8.1.18</a>.Β <a href="#name-low-latency" class="xref">Low Latency</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.19">
<p id="section-toc.1-1.8.2.1.2.19.1"><a href="#section-8.1.19" class="xref">8.1.19</a>.Β <a href="#name-bounded-jitter-latency-vari" class="xref">Bounded Jitter (Latency Variation)</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.20">
<p id="section-toc.1-1.8.2.1.2.20.1"><a href="#section-8.1.20" class="xref">8.1.20</a>.Β <a href="#name-symmetrical-path-delays" class="xref">Symmetrical Path Delays</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.21">
<p id="section-toc.1-1.8.2.1.2.21.1"><a href="#section-8.1.21" class="xref">8.1.21</a>.Β <a href="#name-reliability-and-availabilit" class="xref">Reliability and Availability</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.22">
<p id="section-toc.1-1.8.2.1.2.22.1"><a href="#section-8.1.22" class="xref">8.1.22</a>.Β <a href="#name-redundant-paths" class="xref">Redundant Paths</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.23">
<p id="section-toc.1-1.8.2.1.2.23.1"><a href="#section-8.1.23" class="xref">8.1.23</a>.Β <a href="#name-security-measures" class="xref">Security Measures</a></p>
</li>
</ul>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.2">
<p id="section-toc.1-1.8.2.2.1"><a href="#section-8.2" class="xref">8.2</a>.Β Β <a href="#name-summary-of-attack-types-per" class="xref">Summary of Attack Types per Use Case Common Theme</a></p>
</li>
</ul>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>.Β Β <a href="#name-security-considerations-for-" class="xref">Security Considerations for OAM Traffic</a></p>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>.Β <a href="#name-detnet-technology-specific-" class="xref">DetNet Technology-Specific Threats</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.10.2.1">
<p id="section-toc.1-1.10.2.1.1"><a href="#section-10.1" class="xref">10.1</a>.Β Β <a href="#name-ip" class="xref">IP</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.10.2.2">
<p id="section-toc.1-1.10.2.2.1"><a href="#section-10.2" class="xref">10.2</a>.Β Β <a href="#name-mpls" class="xref">MPLS</a></p>
</li>
</ul>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>.Β <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-12" class="xref">12</a>.Β <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#section-13" class="xref">13</a>.Β <a href="#name-privacy-considerations" class="xref">Privacy Considerations</a></p>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#section-14" class="xref">14</a>.Β <a href="#name-references" class="xref">References</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.14.2.1">
<p id="section-toc.1-1.14.2.1.1"><a href="#section-14.1" class="xref">14.1</a>.Β Β <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.14.2.2">
<p id="section-toc.1-1.14.2.2.1"><a href="#section-14.2" class="xref">14.2</a>.Β Β <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.15">
<p id="section-toc.1-1.15.1"><a href="#appendix-A" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a></p>
</li>
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.16">
<p id="section-toc.1-1.16.1"><a href="#appendix-B" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="Introduction">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">A deterministic IP network ("<a href="#RFC8655" class="xref">Deterministic Networking Architecture</a>" <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>) can carry data flows for real-time applications with
extremely low data loss rates and bounded latency. The bounds on latency defined by DetNet
(as described in <span>[<a href="#RFC9016" class="xref">RFC9016</a>]</span>) include both worst-case latency
(Maximum Latency, <span><a href="https://www.rfc-editor.org/rfc/rfc9016#section-5.9.2" class="relref">Section 5.9.2</a> of [<a href="#RFC9016" class="xref">RFC9016</a>]</span>) and worst-case jitter (Maximum
Latency Variation, <span><a href="https://www.rfc-editor.org/rfc/rfc9016#section-5.9.3" class="relref">Section 5.9.3</a> of [<a href="#RFC9016" class="xref">RFC9016</a>]</span>). Data flows with deterministic
properties are well established for Ethernet networks (see Time-Sensitive Networking (TSN),
<span>[<a href="#IEEE802.1BA" class="xref">IEEE802.1BA</a>]</span>); DetNet brings these capabilities to the IP
network.<a href="#section-1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-1-2">Deterministic IP networks have been successfully deployed in real-time Operational
Technology (OT) applications for some years; however, such networks are typically isolated
from external access, and thus the security threat from external attackers is low. An
example of such an isolated network is a network deployed within an aircraft, which is "air
gapped" from the outside world. DetNet specifies a set of technologies that enable creation
of deterministic flows on IP-based networks of a potentially wide area (on the scale of a
corporate network), potentially merging OT traffic with best-effort Information Technology
(IT) traffic, and placing OT network components into contact with IT network components,
thereby exposing the OT traffic and components to security threats that were not present in
an isolated OT network.<a href="#section-1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-1-3">These DetNet (OT-type) technologies may not have previously been deployed on a wide area
IP-based network that also carries IT traffic, and thus they can present security
considerations that may be new to IP-based wide area network designers; this document
provides insight into such system-level security considerations. In addition, designers of
DetNet components (such as routers) face new security-related challenges in providing DetNet
services, for example, maintaining reliable isolation between traffic flows in an
environment where IT traffic co-mingles with critical reserved-bandwidth OT traffic; this
document also examines security implications internal to DetNet components.<a href="#section-1-3" class="pilcrow">ΒΆ</a></p>
<p id="section-1-4">Security is of particularly high importance in DetNet because many of the use cases that
are enabled by DetNet <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span> include control of physical
devices (power grid devices, industrial controls, building controls, etc.) that can have
high operational costs for failure and present potentially attractive targets for cyber
attackers.<a href="#section-1-4" class="pilcrow">ΒΆ</a></p>
<p id="section-1-5">This situation is even more acute given that one of the goals of DetNet is to provide a
"converged network", i.e., one that includes both IT traffic and OT traffic, thus exposing
potentially sensitive OT devices to attack in ways that were not previously common (usually
because they were under a separate control system or otherwise isolated from the IT network,
for example <span>[<a href="#ARINC664P7" class="xref">ARINC664P7</a>]</span>). Security considerations for OT
networks are not a new area, and there are many OT networks today that are connected to wide
area networks or the Internet; this document focuses on the issues that are specific to the
DetNet technologies and use cases.<a href="#section-1-5" class="pilcrow">ΒΆ</a></p>
<p id="section-1-6">Given the above considerations, securing a DetNet starts with a scrupulously well-designed
and well-managed engineered network following industry best practices for security at both
the data plane and controller plane, as well as for any Operations, Administration, and
Maintenance (OAM) implementation; this is the assumed starting point for the considerations
discussed herein. Such assumptions also depend on the network components themselves
upholding the security-related properties that are to be assumed by DetNet system-level
designers; for example, the assumption that network traffic associated with a given flow can
never affect traffic associated with a different flow is only true if the underlying
components make it so. Such properties, which may represent new challenges to component
designers, are also considered herein.<a href="#section-1-6" class="pilcrow">ΒΆ</a></p>
<p id="section-1-7">Starting with a "well-managed network", as noted above, enables us to exclude some of the
more powerful adversary capabilities from the Internet Threat Model of <span>[<a href="#BCP72" class="xref">BCP72</a>]</span>, such as the ability to arbitrarily drop or delay any or all traffic.
Given this reduced attacker capability, we can present security considerations based on
attacker capabilities that are more directly relevant to a DetNet.<a href="#section-1-7" class="pilcrow">ΒΆ</a></p>
<p id="section-1-8">In this context, we view the "conventional" (i.e., non-time-sensitive) network design and
management aspects of network security as being primarily concerned with preventing denial
of service, i.e., they must ensure that DetNet traffic goes where it's supposed to and that
an external attacker can't inject traffic that disrupts the delivery timing assurance of the
DetNet. The time-specific aspects of DetNet security presented here take up where those
"conventional" design and management aspects leave off.<a href="#section-1-8" class="pilcrow">ΒΆ</a></p>
<p id="section-1-9">However, note that "conventional" methods for mitigating (among all the others)
denial-of-service attacks (such as throttling) can only be effectively used in a DetNet when
their use does not compromise the required time-sensitive or behavioral properties required
for the OT flows on the network. For example, a "retry" protocol is typically not going to
be compatible with a low-latency (worst-case maximum latency) requirement; however, if in a
specific use case and implementation such a retry protocol is able to meet the timing
constraints, then it may well be used in that context. Similarly, if common security
protocols such as TLS/DTLS or IPsec are to be used, it must be verified that their
implementations are able to meet the timing and behavioral requirements of the
time-sensitive network as implemented for the given use case. An example of "behavioral
properties" might be that dropping of more than a specific number of packets in a row is not
acceptable according to the service level agreement.<a href="#section-1-9" class="pilcrow">ΒΆ</a></p>
<p id="section-1-10">The exact security requirements for any given DetNet are necessarily specific to the use
cases handled by that network. Thus, the reader is assumed to be familiar with the specific
security requirements of their use cases, for example, those outlined in the DetNet Use
Cases <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span> and the Security Considerations sections of
the DetNet documents applicable to the network technologies in use, for example, <span>[<a href="#RFC8939" class="xref">RFC8939</a>]</span> for an IP data plane and <span>[<a href="#RFC8964" class="xref">RFC8964</a>]</span> for an MPLS data plane. Readers can find a general introduction to the
DetNet Architecture in <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>, the DetNet Data Plane in
<span>[<a href="#RFC8938" class="xref">RFC8938</a>]</span>, and the Flow Information Model in <span>[<a href="#RFC9016" class="xref">RFC9016</a>]</span>.<a href="#section-1-10" class="pilcrow">ΒΆ</a></p>
<p id="section-1-11">The DetNet technologies include ways to:<a href="#section-1-11" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-1-12.1"> Assign data plane resources for DetNet flows in some or all of the intermediate nodes
(routers) along the path of the flow<a href="#section-1-12.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-1-12.2"> Provide explicit routes for DetNet flows that do not dynamically change with the
network topology in ways that affect the quality of service received by the affected
flow(s)<a href="#section-1-12.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-1-12.3"> Distribute data from DetNet flow packets over time and/or space to ensure delivery of
the data in each packet in spite of the loss of a path<a href="#section-1-12.3" class="pilcrow">ΒΆ</a>
</li>
</ul>
<p id="section-1-13">This document includes sections considering DetNet component design as well as system
design. The latter includes a taxonomy and analysis of threats, threat impacts and
mitigations, and an association of attacks with use cases (based on <span><a href="https://www.rfc-editor.org/rfc/rfc8578#section-11" class="relref">Section 11</a> of [<a href="#RFC8578" class="xref">RFC8578</a>]</span>).<a href="#section-1-13" class="pilcrow">ΒΆ</a></p>
<p id="section-1-14">This document is based on the premise that there will be a very broad range of DetNet
applications and use cases, ranging in size and scope from individual industrial machines to
networks that span an entire country <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span>. Thus, no
single set of prescriptions (such as exactly which mitigation should be applied to which
segment of a DetNet) can be applicable to all of them, and indeed any single one that we
might prescribe would inevitably prove impractical for some use case, perhaps one that does
not even exist at the time of this writing. Thus, we are not prescriptive here; we are
stating the desired end result, with the understanding that most DetNet use cases will
necessarily differ from each other, and there is no "one size fits all".<a href="#section-1-14" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<section id="section-2">
<h2 id="name-abbreviations-and-terminolo">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-abbreviations-and-terminolo" class="section-name selfRef">Abbreviations and Terminology</a>
</h2>
<span class="break"></span><dl class="dlParallel" id="section-2-1">
<dt id="section-2-1.1">Information Technology (IT): </dt>
<dd style="margin-left: 1.5em" id="section-2-1.2">The application of computers to store, study, retrieve, transmit, and manipulate data or
information, often in the context of a business or other enterprise <span>[<a href="#IT-DEF" class="xref">IT-DEF</a>]</span>.<a href="#section-2-1.2" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.3">Operational Technology (OT): </dt>
<dd style="margin-left: 1.5em" id="section-2-1.4">The hardware and software dedicated to detecting or causing changes in physical
processes through direct monitoring and/or control of physical devices such as valves,
pumps, etc. <span>[<a href="#OT-DEF" class="xref">OT-DEF</a>]</span>.<a href="#section-2-1.4" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.5">Component: </dt>
<dd style="margin-left: 1.5em" id="section-2-1.6">A component of a DetNet system -- used here to refer to any hardware or software element
of a DetNet that implements DetNet-specific functionality, for example, all or part of a
router, switch, or end system.<a href="#section-2-1.6" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.7">Device: </dt>
<dd style="margin-left: 1.5em" id="section-2-1.8">Used here to refer to a physical entity controlled by the DetNet, for example, a motor.<a href="#section-2-1.8" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.9">Resource Segmentation: </dt>
<dd style="margin-left: 1.5em" id="section-2-1.10">Used as a more general form for Network Segmentation (the act or practice of splitting a
computer network into sub-networks, each being a network segment <span>[<a href="#NS-DEF" class="xref">NS-DEF</a>]</span>).<a href="#section-2-1.10" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.11">Controller Plane: </dt>
<dd style="margin-left: 1.5em" id="section-2-1.12">In DetNet, the Controller Plane corresponds to the aggregation of the Control and
Management Planes (see <span>[<a href="#RFC8655" class="xref">RFC8655</a>], <a href="https://www.rfc-editor.org/rfc/rfc8655#section-4.4.2" class="relref">Section 4.4.2</a></span>).<a href="#section-2-1.12" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-3">
<h2 id="name-security-considerations-for">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-security-considerations-for" class="section-name selfRef">Security Considerations for DetNet Component Design</a>
</h2>
<p id="section-3-1">This section provides guidance for implementers of components to be used in a DetNet.<a href="#section-3-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3-2">As noted above, DetNet provides resource allocation, explicit routes, and redundant path
support. Each of these has associated security implications, which are discussed in this
section, in the context of component design. Detection, reporting and appropriate action in
the case of packet arrival-time violations are also discussed.<a href="#section-3-2" class="pilcrow">ΒΆ</a></p>
<section id="section-3.1">
<h3 id="name-resource-allocation">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-resource-allocation" class="section-name selfRef">Resource Allocation</a>
</h3>
<section id="section-3.1.1">
<h4 id="name-inviolable-flows">
<a href="#section-3.1.1" class="section-number selfRef">3.1.1. </a><a href="#name-inviolable-flows" class="section-name selfRef">Inviolable Flows</a>
</h4>
<p id="section-3.1.1-1">A DetNet system security designer relies on the premise that any resources allocated to
a resource-reserved (OT-type) flow are inviolable; in other words, there is no physical
possibility within a DetNet component that resources allocated to a given DetNet flow
can be compromised by any type of traffic in the network. This includes malicious
traffic as well as inadvertent traffic such as might be produced by a malfunctioning
component, or due to interactions between components that were not sufficiently tested
for interoperability. From a security standpoint, this is a critical assumption, for
example, when designing against DoS attacks. In other words, with correctly designed
components and security mechanisms, one can prevent malicious activities from impacting
other resources.<a href="#section-3.1.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3.1.1-2">However, achieving the goal of absolutely inviolable flows may not be technically or
economically feasible for any given use case, given the broad range of possible use
cases (e.g., <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span>) and their associated security considerations as
outlined in this document. It can be viewed as a continuum of security requirements,
from isolated ultra-low latency systems that may have little security vulnerability
(such as an industrial machine) to broadly distributed systems with many possible attack
vectors and OT security concerns (such as a utility network). Given this continuum, the
design principle employed in this document is to specify the desired end results,
without being overly prescriptive in how the results are achieved, reflecting the
understanding that no individual implementation is likely to be appropriate for every
DetNet use case.<a href="#section-3.1.1-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.1.2">
<h4 id="name-design-trade-off-considerat">
<a href="#section-3.1.2" class="section-number selfRef">3.1.2. </a><a href="#name-design-trade-off-considerat" class="section-name selfRef">Design Trade-Off Considerations in the Use Cases Continuum</a>
</h4>
<p id="section-3.1.2-1">For any given DetNet use case and its associated security requirements, it is important
for the DetNet system designer to understand the interaction and design trade-offs that
inevitably need to be reconciled between the desired end results and the DetNet
protocols, as well as the DetNet system and component design.<a href="#section-3.1.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3.1.2-2">For any given component, as designed for any given use case (or scope of use cases), it
is the responsibility of the component designer to ensure that the premise of inviolable
flows is supported to the extent that they deem necessary to support their target use
cases.<a href="#section-3.1.2-2" class="pilcrow">ΒΆ</a></p>
<p id="section-3.1.2-3">For example, the component may include traffic shaping and policing at the ingress to
prevent corrupted, malicious, or excessive packets from entering the network, thereby
decreasing the likelihood that any traffic will interfere with any DetNet OT flow. The
component may include integrity protection for some or all of the header fields such as
those used for flow ID, thereby decreasing the likelihood that a packet whose flow ID
has been compromised might be directed into a different flow path. The component may
verify every single packet header at every forwarding location, or only at certain
points. In any of these cases, the component may use dynamic performance analytics
(<a href="#DpaMitigation" class="xref">Section 7.7</a>) to cause action to be initiated to
address the situation in an appropriate and timely manner, either at the data plane or
controller plane, or both in concert. The component's software and hardware may include
measures to ensure the integrity of the resource allocation/deallocation process. Other
design aspects of the component may help ensure that the adverse effects of malicious
traffic are more limited, for example, by protecting network control interfaces or
minimizing cascade failures. The component may include features specific to a given use
case, such as configuration of the response to a given sequential packet loss count.<a href="#section-3.1.2-3" class="pilcrow">ΒΆ</a></p>
<p id="section-3.1.2-4">Ultimately, due to cost and complexity factors, the security properties of a component
designed for low-cost systems may be (by design) far inferior to a component with
similar intended functionality, but designed for highly secure or otherwise critical
applications, perhaps at substantially higher cost. Any given component is designed for
some set of use cases and accordingly will have certain limitations on its security
properties and vulnerabilities. It is thus the responsibility of the system designer to
assure themselves that the components they use in their design are capable of satisfying
their overall system security requirements.<a href="#section-3.1.2-4" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.1.3">
<h4 id="name-documenting-the-security-pr">
<a href="#section-3.1.3" class="section-number selfRef">3.1.3. </a><a href="#name-documenting-the-security-pr" class="section-name selfRef">Documenting the Security Properties of a Component</a>
</h4>
<p id="section-3.1.3-1">In order for the system designer to adequately understand the security-related behavior
of a given component, the designer of any component intended for use with DetNet needs
to clearly document the security properties of that component. For example, to address
the case where a corrupted packet in which the flow identification information is
compromised and thus may incidentally match the flow ID of another ("victim") DetNet
flow, resulting in additional unauthorized traffic on the victim, the documentation
might state that the component employs integrity protection on the flow identification
fields.<a href="#section-3.1.3-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.1.4">
<h4 id="name-fail-safe-component-behavio">
<a href="#section-3.1.4" class="section-number selfRef">3.1.4. </a><a href="#name-fail-safe-component-behavio" class="section-name selfRef">Fail-Safe Component Behavior</a>
</h4>
<p id="section-3.1.4-1">Even when the security properties of a component are understood and well specified, if
the component malfunctions, for example, due to physical circumstances unpredicted by
the component designer, it may be difficult or impossible to fully prevent malfunction
of the network. The degree to which a component is hardened against various types of
failures is a distinguishing feature of the component and its design, and the overall
system design can only be as strong as its weakest link.<a href="#section-3.1.4-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3.1.4-2">However, all networks are subject to this level of uncertainty; it is not unique to
DetNet. Having said that, DetNet raises the bar by changing many added latency scenarios
from tolerable annoyances to unacceptable service violations. That in turn underscores
the importance of system integrity, as well as correct and stable configuration of the
network and its nodes, as discussed in <a href="#Introduction" class="xref">Section 1</a>.<a href="#section-3.1.4-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.1.5">
<h4 id="name-flow-aggregation-example">
<a href="#section-3.1.5" class="section-number selfRef">3.1.5. </a><a href="#name-flow-aggregation-example" class="section-name selfRef">Flow Aggregation Example</a>
</h4>
<p id="section-3.1.5-1">As another example regarding resource allocation implementation, consider the
implementation of Flow Aggregation for DetNet flows (as discussed in <span>[<a href="#RFC8938" class="xref">RFC8938</a>]</span>). In this example, say there are N flows that are
to be aggregated; thus, the bandwidth resources of the aggregate flow must be sufficient
to contain the sum of the bandwidth reservation for the N flows. However, if one of
those flows were to consume more than its individually allocated bandwidth, this could
cause starvation of the other flows. Thus, simply providing and enforcing the calculated
aggregate bandwidth may not be a complete solution; the bandwidth for each individual
flow must still be guaranteed, for example, via ingress policing of each flow (i.e.,
before it is aggregated). Alternatively, if by some other means each flow to be
aggregated can be trusted not to exceed its allocated bandwidth, the same goal can be
achieved.<a href="#section-3.1.5-1" class="pilcrow">ΒΆ</a></p>
</section>
</section>
<section id="section-3.2">
<h3 id="name-explicit-routes">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-explicit-routes" class="section-name selfRef">Explicit Routes</a>
</h3>
<p id="section-3.2-1">The DetNet-specific purpose for constraining the ability of the DetNet to reroute OT
traffic is to maintain the specified service parameters (such as upper and lower latency
boundaries) for a given flow. For example, if the network were to reroute a flow (or some
part of a flow) based exclusively on statistical path usage metrics, or due to malicious
activity, it is possible that the new path would have a latency that is outside the
required latency bounds that were designed into the original TE-designed path, thereby
violating the quality of service for the affected flow (or part of that flow).<a href="#section-3.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3.2-2">However, it is acceptable for the network to reroute OT traffic in such a way as to
maintain the specified latency bounds (and any other specified service properties) for any
reason, for example, in response to a runtime component or path failure.<a href="#section-3.2-2" class="pilcrow">ΒΆ</a></p>
<p id="section-3.2-3">So from a DetNet security standpoint, the DetNet system designer can expect that any
component designed for use in a DetNet will deliver the packets within the agreed-upon
service parameters. For the component designer, this means that in order for a component
to achieve that expectation, any component that is involved in controlling or implementing
any change of the initially TE-configured flow routes must prevent rerouting of OT flows
(whether malicious or accidental) that might adversely affect delivering the traffic
within the specified service parameters.<a href="#section-3.2-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.3">
<h3 id="name-redundant-path-support">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-redundant-path-support" class="section-name selfRef">Redundant Path Support</a>
</h3>
<p id="section-3.3-1">The DetNet provision for redundant paths (i.e., PREOF, or "Packet Replication,
Elimination, and Ordering Functions"), as defined in the DetNet Architecture <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>, provides the foundation for high reliability of a
DetNet by virtually eliminating packet loss (i.e., to a degree that is implementation
dependent) through hitless redundant packet delivery.<a href="#section-3.3-1" class="pilcrow">ΒΆ</a></p>
<aside id="section-3.3-2">
<p id="section-3.3-2.1">Note: At the time of this writing, PREOF is not defined for the IP data plane.<a href="#section-3.3-2.1" class="pilcrow">ΒΆ</a></p>
</aside>
<p id="section-3.3-3">It is the responsibility of the system designer to determine the level of reliability
required by their use case and to specify redundant paths sufficient to provide the
desired level of reliability (in as much as that reliability can be provided through the
use of redundant paths). It is the responsibility of the component designer to ensure that
the relevant PREOF operations are executed reliably and securely to avoid potentially
catastrophic situations for the operational technology relying on them.<a href="#section-3.3-3" class="pilcrow">ΒΆ</a></p>
<p id="section-3.3-4">However, note that not all PREOF operations are necessarily implemented in every network;
for example, a packet reordering function may not be necessary if the packets are either
not required to be in order or if the ordering is performed in some other part of the
network.<a href="#section-3.3-4" class="pilcrow">ΒΆ</a></p>
<p id="section-3.3-5">Ideally, a redundant path for a flow could be specified from end to end; however, given
that this is not always possible (as described in <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>), the system designer will need to consider the resulting end-to-end reliability and
security resulting from any given arrangement of network segments along the path, each of
which provides its individual PREOF implementation and thus its individual level of
reliability and security.<a href="#section-3.3-5" class="pilcrow">ΒΆ</a></p>
<p id="section-3.3-6">At the data plane, the implementation of PREOF depends on the correct assignment and
interpretation of packet sequence numbers, as well as the actions taken based on them,
such as elimination (including elimination of packets with spurious sequence numbers).
Thus, the integrity of these values must be maintained by the component as they are
assigned by the DetNet Data Plane Service sub-layer and transported by the Forwarding
sub-layer. This is no different than the integrity of the values in any header used by the
DetNet (or any other) data plane and is not unique to redundant paths. The integrity
protection of header values is technology dependent; for example, in Layer 2 networks, the
integrity of the header fields can be protected by using MACsec <span>[<a href="#IEEE802.1AE-2018" class="xref">IEEE802.1AE-2018</a>]</span>. Similarly, from the sequence number
injection perspective, it is no different from any other protocols that use sequence
numbers; for particulars of integrity protection via IPsec Authentication Headers, useful
insights are provided by <span><a href="https://www.rfc-editor.org/rfc/rfc4302#section-3" class="relref">Section 3</a> of [<a href="#RFC4302" class="xref">RFC4302</a>]</span>.<a href="#section-3.3-6" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.4">
<h3 id="name-timing-or-other-violation-r">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-timing-or-other-violation-r" class="section-name selfRef">Timing (or Other) Violation Reporting</a>
</h3>
<p id="section-3.4-1">A task of the DetNet system designer is to create a network such
that for any incoming packet that arrives with any timing or bandwidth
violation, an appropriate action can be taken in order to prevent
damage to the system. The reporting step may be accomplished through
dynamic performance analysis (see <a href="#DpaMitigation" class="xref">Section 7.7</a>) or by any other means as implemented in one or
more components. The action to be taken for any given circumstance
within any given application will depend on the use case. The action
may involve intervention from the controller plane, or it may be taken
"immediately" by an individual component, for example, if a very fast
response is required.<a href="#section-3.4-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3.4-2">The definitions and selections of the actions that can be taken are
properties of the components. The component designer implements these
options according to their expected use cases, which may vary widely
from component to component. Clearly, selecting an inappropriate
response to a given condition may cause more problems than it is
intending to mitigate; for example, a naive approach might be to have
the component shut down the link if a packet arrives outside of its
prescribed time window. However, such a simplistic action may serve
the attacker better than it serves the network. Similarly, simple
logging of such issues may not be adequate since a delay in response
could result in material damage, for example, to mechanical devices
controlled by the network. Thus, a breadth of possible and effective
security-related actions and their configuration is a positive
attribute for a DetNet component.<a href="#section-3.4-2" class="pilcrow">ΒΆ</a></p>
<p id="section-3.4-3">Some possible violations that warrant detection include cases where
a packet arrives:<a href="#section-3.4-3" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-3.4-4.1">Outside of its prescribed time window<a href="#section-3.4-4.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-3.4-4.2">Within its time window but with a compromised timestamp that
makes it appear that it is not within its window<a href="#section-3.4-4.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-3.4-4.3">Exceeding the reserved flow bandwidth<a href="#section-3.4-4.3" class="pilcrow">ΒΆ</a>
</li>
</ul>
<p id="section-3.4-5">Some possible direct actions that may be taken at the data plane include traffic policing
and shaping functions (e.g., those described in <span>[<a href="#RFC2475" class="xref">RFC2475</a>]</span>), separating flows into per-flow rate-limited queues, and potentially applying active
queue management <span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span>. However, if those (or any
other) actions are to be taken, the system designer must ensure that the results of such
actions do not compromise the continued safe operation of the system. For example, the
network (i.e., the controller plane and data plane working together) must mitigate in a
timely fashion any potential adverse effect on mechanical devices controlled by the
network.<a href="#section-3.4-5" class="pilcrow">ΒΆ</a></p>
</section>
</section>
<section id="section-4">
<h2 id="name-detnet-security-considerati">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-detnet-security-considerati" class="section-name selfRef">DetNet Security Considerations Compared with Diffserv Security Considerations</a>
</h2>
<p id="section-4-1">DetNet is designed to be compatible with Diffserv <span>[<a href="#RFC2474" class="xref">RFC2474</a>]</span>
as applied to IT traffic in the DetNet. DetNet also incorporates the use of the 6-bit value
of the Differentiated Services Code Point (DSCP) field of the Type of Service (IPv4) and
Traffic Class (IPv6) bytes for flow identification. However, the DetNet interpretation of
the DSCP value for OT traffic is not equivalent to the per-hop behavior (PHB) selection
behavior as defined by Diffserv.<a href="#section-4-1" class="pilcrow">ΒΆ</a></p>
<p id="section-4-2">Thus, security considerations for DetNet have some aspects in common with Diffserv, in fact
overlapping 100% with respect to IP IT traffic. Security considerations for these aspects
are part of the existing literature on IP network security, specifically the Security
Considerations sections of <span>[<a href="#RFC2474" class="xref">RFC2474</a>]</span> and <span>[<a href="#RFC2475" class="xref">RFC2475</a>]</span>. However, DetNet also introduces timing and other
considerations that are not present in Diffserv, so the Diffserv security considerations are
a subset of the DetNet security considerations.<a href="#section-4-2" class="pilcrow">ΒΆ</a></p>
<p id="section-4-3">In the case of DetNet OT traffic, the DSCP value is interpreted differently than in
Diffserv and contributes to determination of the service provided to the packet. In DetNet,
there are similar consequences to Diffserv for lack of detection of, or incorrect handling
of, packets with mismarked DSCP values, and many of the points made in the Diffserv Security
discussions (<span><a href="https://www.rfc-editor.org/rfc/rfc2475#section-6.1" class="relref">Section 6.1</a> of [<a href="#RFC2475" class="xref">RFC2475</a>]</span>,
<span><a href="https://www.rfc-editor.org/rfc/rfc2474#section-7" class="relref">Section 7</a> of [<a href="#RFC2474" class="xref">RFC2474</a>]</span>, and <span><a href="https://www.rfc-editor.org/rfc/rfc6274#section-3.3.2.1" class="relref">Section 3.3.2.1</a> of [<a href="#RFC6274" class="xref">RFC6274</a>]</span>) are also
relevant to DetNet OT traffic though perhaps in modified form. For example, in DetNet, the
effect of an undetected or incorrectly handled maliciously mismarked DSCP field in an OT
packet is not identical to affecting the PHB of that packet, since DetNet does not use the
PHB concept for OT traffic. Nonetheless, the service provided to the packet could be
affected, so mitigation measures analogous to those prescribed by Diffserv would be
appropriate for DetNet. For example, mismarked DSCP values should not cause failure of
network nodes. The remarks in <span>[<a href="#RFC2474" class="xref">RFC2474</a>]</span> regarding IPsec and
Tunneling Interactions are also relevant (though this is not to say that other sections are
less relevant).<a href="#section-4-3" class="pilcrow">ΒΆ</a></p>
<p id="section-4-4">In this discussion, interpretation (and any possible intentional re-marking) of the DSCP
values of packets destined for DetNet OT flows is expected to occur at the ingress to the
DetNet domain; once inside the domain, maintaining the integrity of the DSCP values is
subject to the same handling considerations as any other field in the packet.<a href="#section-4-4" class="pilcrow">ΒΆ</a></p>
</section>
<div id="ThreatSection">
<section id="section-5">
<h2 id="name-security-threats">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-security-threats" class="section-name selfRef">Security Threats</a>
</h2>
<p id="section-5-1">This section presents a taxonomy of threats and analyzes the possible threats in a
DetNet-enabled network. The threats considered in this section are independent of any
specific technologies used to implement the DetNet; <a href="#TechnologySpecificThreats" class="xref">Section 10</a> considers attacks that are associated with the DetNet technologies
encompassed by <span>[<a href="#RFC8938" class="xref">RFC8938</a>]</span>.<a href="#section-5-1" class="pilcrow">ΒΆ</a></p>
<p id="section-5-2"> We distinguish controller plane threats from data plane threats. The attack surface may be
the same, but the types of attacks, as well as the motivation behind them, are different.
For example, a Delay attack is more relevant to the data plane than to the controller plane.
There is also a difference in terms of security solutions; the way you secure the data plane
is often different than the way you secure the controller plane.<a href="#section-5-2" class="pilcrow">ΒΆ</a></p>
<section id="section-5.1">
<h3 id="name-threat-taxonomy">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-threat-taxonomy" class="section-name selfRef">Threat Taxonomy</a>
</h3>
<p id="section-5.1-1">This document employs organizational elements of the threat models of <span>[<a href="#RFC7384" class="xref">RFC7384</a>]</span> and <span>[<a href="#RFC7835" class="xref">RFC7835</a>]</span>. This
model classifies attackers based on two criteria:<a href="#section-5.1-1" class="pilcrow">ΒΆ</a></p>
<span class="break"></span><dl class="dlNewline" id="section-5.1-2">
<dt id="section-5.1-2.1">Internal vs. external:</dt>
<dd style="margin-left: 1.5em" id="section-5.1-2.2"> Internal attackers either have access to a trusted segment of the network or possess
the encryption or authentication keys. External attackers, on the other hand, do not
have the keys and have access only to the encrypted or authenticated traffic.<a href="#section-5.1-2.2" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.1-2.3">On-path vs. off-path:</dt>
<dd style="margin-left: 1.5em" id="section-5.1-2.4"> On-path attackers are located in a position that allows interception, modification,
or dropping of in-flight protocol packets, whereas off-path attackers can only attack by
generating protocol packets.<a href="#section-5.1-2.4" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-5.1-3">Regarding the boundary between internal vs. external attackers as
defined above, note that in this document we do not make concrete
recommendations regarding which specific segments of the network are
to be protected in any specific way, for example, via encryption or
authentication. As a result, the boundary as defined above is not
unequivocally specified here. Given that constraint, the reader can
view an internal attacker as one who can operate within the perimeter
defined by the DetNet Edge Nodes (as defined in the DetNet
Architecture <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>), allowing that
the specifics of what is encrypted or authenticated within this
perimeter will vary depending on the implementation.<a href="#section-5.1-3" class="pilcrow">ΒΆ</a></p>
<p id="section-5.1-4">Care has also been taken to adhere to <span><a href="https://www.rfc-editor.org/rfc/rfc3552#section-5" class="relref">Section 5</a> of [<a href="#RFC3552" class="xref">RFC3552</a>]</span>, both with respect
to which attacks are considered out of scope for this document, and
also which are considered to be the most common threats (explored
further in <a href="#ThreatAnalysis" class="xref">Section 5.2</a>). Most of
the direct threats to DetNet are active attacks (i.e., attacks that
modify DetNet traffic), but it is highly suggested that DetNet
application developers take appropriate measures to protect the
content of the DetNet flows from passive attacks (i.e., attacks that
observe but do not modify DetNet traffic), for example, through the
use of TLS or DTLS.<a href="#section-5.1-4" class="pilcrow">ΒΆ</a></p>
<p id="section-5.1-5">DetNet-Service, one of the service scenarios described in <span>[<a href="#I-D.varga-detnet-service-model" class="xref">DETNET-SERVICE-MODEL</a>]</span>, is the
case where a service connects DetNet islands, i.e., two or more
otherwise independent DetNets are connected via a link that is not
intrinsically part of either network. This implies that there could be
DetNet traffic flowing over a non-DetNet link, which may provide an
attacker with an advantageous opportunity to tamper with DetNet
traffic. The security properties of non-DetNet links are outside of
the scope of DetNet Security, but it should be noted that use of
non-DetNet services to interconnect DetNets merits security analysis
to ensure the integrity of the networks involved.<a href="#section-5.1-5" class="pilcrow">ΒΆ</a></p>
</section>
<div id="ThreatAnalysis">
<section id="section-5.2">
<h3 id="name-threat-analysis">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-threat-analysis" class="section-name selfRef">Threat Analysis</a>
</h3>
<div id="DelayThreat">
<section id="section-5.2.1">
<h4 id="name-delay">
<a href="#section-5.2.1" class="section-number selfRef">5.2.1. </a><a href="#name-delay" class="section-name selfRef">Delay</a>
</h4>
<p id="section-5.2.1-1">An attacker can maliciously delay DetNet data flow traffic. By delaying the traffic,
the attacker can compromise the service of applications that are sensitive to high
delays or to high delay variation. The delay may be constant or modulated.<a href="#section-5.2.1-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="ModificationThreat">
<section id="section-5.2.2">
<h4 id="name-detnet-flow-modification-or">
<a href="#section-5.2.2" class="section-number selfRef">5.2.2. </a><a href="#name-detnet-flow-modification-or" class="section-name selfRef">DetNet Flow Modification or Spoofing</a>
</h4>
<p id="section-5.2.2-1">An attacker can modify some header fields of en route packets in a way that causes the
DetNet flow identification mechanisms to misclassify the flow. Alternatively, the
attacker can inject traffic that is tailored to appear as if it belongs to a legitimate
DetNet flow. The potential consequence is that the DetNet flow resource allocation
cannot guarantee the performance that is expected when the flow identification works
correctly.<a href="#section-5.2.2-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="SegmentThreat">
<section id="section-5.2.3">
<h4 id="name-resource-segmentation-inter">
<a href="#section-5.2.3" class="section-number selfRef">5.2.3. </a><a href="#name-resource-segmentation-inter" class="section-name selfRef">Resource Segmentation (Inter-segment Attack) Vulnerability</a>
</h4>
<p id="section-5.2.3-1">DetNet components are expected to split their resources between DetNet flows in a way
that prevents traffic from one DetNet flow from affecting the performance of other
DetNet flows and also prevents non-DetNet traffic from affecting DetNet flows. However,
perhaps due to implementation constraints, some resources may be partially shared, and
an attacker may try to exploit this property. For example, an attacker can inject
traffic in order to exhaust network resources such that DetNet packets that share
resources with the injected traffic may be dropped or delayed. Such injected traffic may
be part of DetNet flows or non-DetNet traffic.<a href="#section-5.2.3-1" class="pilcrow">ΒΆ</a></p>
<p id="section-5.2.3-2">Another example of a Resource Segmentation attack is the case in which an attacker is
able to overload the exception path queue on the router, i.e., a "slow path" typically
taken by control or OAM packets that are diverted from the data plane because they
require processing by a CPU. DetNet OT flows are typically configured to take the "fast
path" through the data plane to minimize latency. However, if there is only one queue
from the forwarding Application-Specific Integrated Circuit (ASIC) to the exception
path, and for some reason the system is configured such that any DetNet packets must be
handled on this exception path, then saturating the exception path could result in the
delaying or dropping of DetNet packets.<a href="#section-5.2.3-2" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="ReplicationThreat">
<section id="section-5.2.4">
<h4 id="name-packet-replication-and-elim">
<a href="#section-5.2.4" class="section-number selfRef">5.2.4. </a><a href="#name-packet-replication-and-elim" class="section-name selfRef">Packet Replication and Elimination</a>
</h4>
<section id="section-5.2.4.1">
<h5 id="name-replication-increased-attac">
<a href="#section-5.2.4.1" class="section-number selfRef">5.2.4.1. </a><a href="#name-replication-increased-attac" class="section-name selfRef">Replication: Increased Attack Surface</a>
</h5>
<p id="section-5.2.4.1-1">Redundancy is intended to increase the robustness and survivability of DetNet flows,
and replication over multiple paths can potentially mitigate an attack that is limited
to a single path. However, the fact that packets are replicated over multiple paths
increases the attack surface of the network, i.e., there are more points in the
network that may be subject to attacks.<a href="#section-5.2.4.1-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-5.2.4.2">
<h5 id="name-replication-related-header-">
<a href="#section-5.2.4.2" class="section-number selfRef">5.2.4.2. </a><a href="#name-replication-related-header-" class="section-name selfRef">Replication-Related Header Manipulation</a>
</h5>
<p id="section-5.2.4.2-1">An attacker can manipulate the replication-related header fields. This capability
opens the door for various types of attacks. For example:<a href="#section-5.2.4.2-1" class="pilcrow">ΒΆ</a></p>
<span class="break"></span><dl class="dlNewline" id="section-5.2.4.2-2">
<dt id="section-5.2.4.2-2.1">Forward both replicas: </dt>
<dd style="margin-left: 1.5em" id="section-5.2.4.2-2.2">Malicious change of a packet SN (Sequence Number) can cause both replicas of the
packet to be forwarded. Note that this attack has a similar outcome to a replay
attack.<a href="#section-5.2.4.2-2.2" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.2.4.2-2.3">Eliminate both replicas: </dt>
<dd style="margin-left: 1.5em" id="section-5.2.4.2-2.4">SN manipulation can be used to cause both replicas to be eliminated. In this case,
an attacker that has access to a single path can cause packets from other paths to
be dropped, thus compromising some of the advantage of path redundancy.<a href="#section-5.2.4.2-2.4" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.2.4.2-2.5">Flow hijacking: </dt>
<dd style="margin-left: 1.5em" id="section-5.2.4.2-2.6">An attacker can hijack a DetNet flow with access to a single path by
systematically replacing the SNs on the given path with higher SN values. For
example, an attacker can replace every SN value S with a higher value S+C, where C
is a constant integer. Thus, the attacker creates a false illusion that the attacked
path has the lowest delay, causing all packets from other paths to be eliminated in
favor of the attacked path. Once the flow from the compromised path is favored by
the eliminating bridge, the flow has effectively been hijacked by the attacker. It
is now possible for the attacker to either replace en route packets with malicious
packets, or to simply inject errors into the packets, causing the packets to be
dropped at their destination.<a href="#section-5.2.4.2-2.6" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.2.4.2-2.7">Amplification: </dt>
<dd style="margin-left: 1.5em" id="section-5.2.4.2-2.8">An attacker who injects packets into a flow that is to be replicated will have
their attack amplified through the replication process. This is no different than
any attacker who injects packets that are delivered through multicast, broadcast, or
other point-to-multi-point mechanisms.<a href="#section-5.2.4.2-2.8" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</section>
</div>
<div id="ControllerThreat">
<section id="section-5.2.5">
<h4 id="name-controller-plane">
<a href="#section-5.2.5" class="section-number selfRef">5.2.5. </a><a href="#name-controller-plane" class="section-name selfRef">Controller Plane</a>
</h4>
<div id="PathThreat">
<section id="section-5.2.5.1">
<h5 id="name-path-choice-manipulation">
<a href="#section-5.2.5.1" class="section-number selfRef">5.2.5.1. </a><a href="#name-path-choice-manipulation" class="section-name selfRef">Path Choice Manipulation</a>
</h5>
<section id="section-5.2.5.1.1">
<h6 id="name-control-or-signaling-packet">
<a href="#section-5.2.5.1.1" class="section-number selfRef">5.2.5.1.1. </a><a href="#name-control-or-signaling-packet" class="section-name selfRef">Control or Signaling Packet Modification</a>
</h6>
<p id="section-5.2.5.1.1-1">An attacker can maliciously modify en route control packets in order to disrupt or
manipulate the DetNet path/resource allocation.<a href="#section-5.2.5.1.1-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-5.2.5.1.2">
<h6 id="name-control-or-signaling-packet-">
<a href="#section-5.2.5.1.2" class="section-number selfRef">5.2.5.1.2. </a><a href="#name-control-or-signaling-packet-" class="section-name selfRef">Control or Signaling Packet Injection</a>
</h6>
<p id="section-5.2.5.1.2-1">An attacker can maliciously inject control packets in order to disrupt or
manipulate the DetNet path/resource allocation.<a href="#section-5.2.5.1.2-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-5.2.5.1.3">
<h6 id="name-increased-attack-surface">
<a href="#section-5.2.5.1.3" class="section-number selfRef">5.2.5.1.3. </a><a href="#name-increased-attack-surface" class="section-name selfRef">Increased Attack Surface</a>
</h6>
<p id="section-5.2.5.1.3-1">One of the possible consequences of a Path Manipulation attack is an increased
attack surface. Thus, when the attack described in the previous subsection is
implemented, it may increase the potential of other attacks to be performed.<a href="#section-5.2.5.1.3-1" class="pilcrow">ΒΆ</a></p>
</section>
</section>
</div>
<section id="section-5.2.5.2">
<h5 id="name-compromised-controller">
<a href="#section-5.2.5.2" class="section-number selfRef">5.2.5.2. </a><a href="#name-compromised-controller" class="section-name selfRef">Compromised Controller</a>
</h5>
<p id="section-5.2.5.2-1">An attacker can subvert a legitimate controller (or subvert another component such
that it represents itself as a legitimate controller) with the result that the network
nodes incorrectly believe it is authorized to instruct them.<a href="#section-5.2.5.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-5.2.5.2-2">The presence of a compromised node or controller in a DetNet is not a threat that
arises as a result of determinism or time sensitivity; the same techniques used to
prevent or mitigate against compromised nodes in any network are equally applicable in
the DetNet case. The act of compromising a controller may not even be within the
capabilities of our defined attacker types -- in other words, it may not be achievable
via packet traffic at all, whether internal or external, on path or off path. It might
be accomplished, for example, by a human with physical access to the component, who
could upload bogus firmware to it via a USB stick. All of this underscores the
requirement for careful overall system security design in a DetNet, given that the
effects of even one bad actor on the network can be potentially catastrophic.<a href="#section-5.2.5.2-2" class="pilcrow">ΒΆ</a></p>
<p id="section-5.2.5.2-3">Security concerns specific to any given controller plane technology used in DetNet
will be addressed by the DetNet documents associated with that technology.<a href="#section-5.2.5.2-3" class="pilcrow">ΒΆ</a></p>
</section>
</section>
</div>
<div id="ReconnaissanceThreat">
<section id="section-5.2.6">
<h4 id="name-reconnaissance">
<a href="#section-5.2.6" class="section-number selfRef">5.2.6. </a><a href="#name-reconnaissance" class="section-name selfRef">Reconnaissance</a>
</h4>
<p id="section-5.2.6-1">A passive eavesdropper can identify DetNet flows and then gather information about en
route DetNet flows, e.g., the number of DetNet flows, their bandwidths, their schedules,
or other temporal or statistical properties. The gathered information can later be used
to invoke other attacks on some or all of the flows.<a href="#section-5.2.6-1" class="pilcrow">ΒΆ</a></p>
<p id="section-5.2.6-2">DetNet flows are typically uniquely identified by their 6-tuple, i.e., fields within
the L3 or L4 header. However, in some implementations, the flow ID may also be augmented
by additional per-flow attributes known to the system, e.g., above L4. For the purpose
of this document, we assume any such additional fields used for flow ID are encrypted
and/or integrity protected from external attackers. Note however that existing OT
protocols designed for use on dedicated secure networks may not intrinsically provide
such protection, in which case IPsec or transport-layer security mechanisms may be
needed.<a href="#section-5.2.6-2" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="SyncThreat">
<section id="section-5.2.7">
<h4 id="name-time-synchronization-mechan">
<a href="#section-5.2.7" class="section-number selfRef">5.2.7. </a><a href="#name-time-synchronization-mechan" class="section-name selfRef">Time-Synchronization Mechanisms</a>
</h4>
<p id="section-5.2.7-1">An attacker can use any of the attacks described in <span>[<a href="#RFC7384" class="xref">RFC7384</a>]</span> to attack the synchronization protocol, thus affecting the DetNet
service.<a href="#section-5.2.7-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
</section>
</div>
<section id="section-5.3">
<h3 id="name-threat-summary">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-threat-summary" class="section-name selfRef">Threat Summary</a>
</h3>
<p id="section-5.3-1">A summary of the attacks that were discussed in this section is presented in <a href="#ThreatSummary" class="xref">Table 1</a>. For each attack, the table specifies the type
of attackers that may invoke the attack. In the context of this summary, the distinction
between internal and external attacks is under the assumption that a corresponding
security mechanism is being used, and that the corresponding network equipment takes part
in this mechanism.<a href="#section-5.3-1" class="pilcrow">ΒΆ</a></p>
<span id="name-threat-analysis-summary"></span><div id="ThreatSummary">
<table class="center" id="table-1">
<caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-threat-analysis-summary" class="selfRef">Threat Analysis Summary</a>
</caption>
<thead>
<tr>
<th class="text-center" rowspan="3" colspan="1">Attack</th>
<th class="text-center" rowspan="1" colspan="4">Attacker Type</th>
</tr>
<tr>
<th class="text-center" rowspan="1" colspan="2">Internal</th>
<th class="text-center" rowspan="1" colspan="2"> External</th>
</tr>
<tr>
<th class="text-center" rowspan="1" colspan="1">On-Path</th>
<th class="text-center" rowspan="1" colspan="1">Off-Path</th>
<th class="text-center" rowspan="1" colspan="1">On-Path</th>
<th class="text-center" rowspan="1" colspan="1">Off-Path</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">Delay Attack </td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">DetNet Flow Modification or Spoofing</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Inter-segment Attack</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Replication: Increased Attack Surface</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Replication-Related Header Manipulation</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Path Manipulation </td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Path Choice: Increased Attack Surface</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Modification</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Injection</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Reconnaissance</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Attacks on Time-Synchronization Mechanisms</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
</tr>
</tbody>
</table>
</div>
</section>
</section>
</div>
<div id="ThreatImpact">
<section id="section-6">
<h2 id="name-security-threat-impacts">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-security-threat-impacts" class="section-name selfRef">Security Threat Impacts</a>
</h2>
<p id="section-6-1">When designing security for a DetNet, as with any network, it may be prohibitively
expensive or technically infeasible to thoroughly protect against every possible threat.
Thus, the security designer must be informed (for example, by an application domain expert
such as a product manager) regarding the relative significance of the various threats and
their impact if a successful attack is carried out. In this section, we present an example
of a possible template for such a communication, culminating in a table (<a href="#ThreatIndustryMapping" class="xref">Table 2</a>) that lists a set of threats under
consideration, and some values characterizing their relative impact in the context of a
given industry. The specific threats, industries, and impact values in the table are
provided only as an example of this kind of assessment and its communication; they are not
intended to be taken literally.<a href="#section-6-1" class="pilcrow">ΒΆ</a></p>
<p id="section-6-2">This section considers assessment of the relative impacts of the attacks described in <a href="#ThreatSection" class="xref">Section 5</a>. In this section, the impacts as described
assume that the associated mitigation is not present or has failed. Mitigations are
discussed in <a href="#ThreatMitigation" class="xref">Section 7</a>.<a href="#section-6-2" class="pilcrow">ΒΆ</a></p>
<p id="section-6-3"> In computer security, the impact (or consequence) of an incident can be measured in loss
of confidentiality, integrity, or availability of information. In the case of OT or time
sensitive networks (though not to the exclusion of IT or non-time-sensitive networks), the
impact of an exploit can also include failure or malfunction of mechanical and/or other
physical systems.<a href="#section-6-3" class="pilcrow">ΒΆ</a></p>
<p id="section-6-4">DetNet raises these stakes significantly for OT applications, particularly those that may
have been designed to run in an OT-only environment and thus may not have been designed for
security in an IT environment with its associated components, services, and protocols.<a href="#section-6-4" class="pilcrow">ΒΆ</a></p>
<p id="section-6-5">The extent of impact of a successful vulnerability exploit varies considerably by use case
and by industry; additional insight regarding the individual use cases is available from
"<a href="#RFC8578" class="xref">Deterministic Networking Use Cases</a>" <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span>. Each
of those use cases is represented in <a href="#ThreatIndustryMapping" class="xref">Table 2</a>, including Pro Audio, Electrical Utilities, Industrial M2M (split into two areas: M2M
Data Gathering and M2M Control Loop), and others.<a href="#section-6-5" class="pilcrow">ΒΆ</a></p>
<p id="section-6-6">Aspects of Impact (left column) include Criticality of Failure, Effects of Failure,
Recovery, and DetNet Functional Dependence. Criticality of failure summarizes the
seriousness of the impact. The impact of a resulting failure can affect many different
metrics that vary greatly in scope and severity. In order to reduce the number of variables,
only the following were included: Financial, Health and Safety, Effect on a Single
Organization, and Effect on Multiple Organizations. Recovery outlines how long it would take
for an affected use case to get back to its pre-failure state (Recovery Time Objective, RTO)
and how much of the original service would be lost in between the time of service failure
and recovery to original state (Recovery Point Objective, RPO). DetNet dependence maps how
much the following DetNet service objectives contribute to impact of failure: time
dependency, data integrity, source node integrity, availability, and latency/jitter.<a href="#section-6-6" class="pilcrow">ΒΆ</a></p>
<p id="section-6-7">The scale of the Impact mappings is low, medium, and high. In some use cases, there may be
a multitude of specific applications in which DetNet is used. For simplicity, this section
attempts to average the varied impacts of different applications. This section does not
address the overall risk of a certain impact that would require the likelihood of a failure
happening.<a href="#section-6-7" class="pilcrow">ΒΆ</a></p>
<p id="section-6-8">In practice, any such ratings will vary from case to case; the ratings shown here are given
as examples.<a href="#section-6-8" class="pilcrow">ΒΆ</a></p>
<span id="name-impact-of-attacks-by-use-ca"></span><div id="ThreatIndustryMapping">
<table class="center" id="table-2">
<caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-impact-of-attacks-by-use-ca" class="selfRef">Impact of Attacks by Use Case Industry</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1"></th>
<th class="text-left" rowspan="1" colspan="1">PRO A</th>
<th class="text-left" rowspan="1" colspan="1">Util</th>
<th class="text-left" rowspan="1" colspan="1">Bldg</th>
<th class="text-left" rowspan="1" colspan="1">Wireless</th>
<th class="text-left" rowspan="1" colspan="1">Cell</th>
<th class="text-left" rowspan="1" colspan="1">M2M Data</th>
<th class="text-left" rowspan="1" colspan="1">M2M Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">Criticality</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Low</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="8">Effects</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Financial</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Low</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Health/Safety</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Affects 1 org</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Affects >1 org</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Low</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="8">Recovery</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Recov Time Obj</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Recov Point Obj</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Low</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Low</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
</tr>
<tr>
<th class="text-left" rowspan="1" colspan="8">DetNet Dependence</th>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Time Dependence</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Low</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Low</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Latency/Jitter</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Low</td>
<td class="text-left" rowspan="1" colspan="1">Low</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Data Integrity</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Low</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Src Node Integ</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Availability</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Med</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Low</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
<td class="text-left" rowspan="1" colspan="1">Hi</td>
</tr>
</tbody>
</table>
</div>
<p id="section-6-10">The rest of this section will cover impact of the different groups in more detail.<a href="#section-6-10" class="pilcrow">ΒΆ</a></p>
<div id="DelayImpact">
<section id="section-6.1">
<h3 id="name-delay-attacks">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-delay-attacks" class="section-name selfRef">Delay Attacks</a>
</h3>
<section id="section-6.1.1">
<h4 id="name-data-plane-delay-attacks">
<a href="#section-6.1.1" class="section-number selfRef">6.1.1. </a><a href="#name-data-plane-delay-attacks" class="section-name selfRef">Data Plane Delay Attacks</a>
</h4>
<p id="section-6.1.1-1">Note that "Delay attack" also includes the possibility of a "negative delay" or early
arrival of a packet, or possibly adversely changing the timestamp value.<a href="#section-6.1.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-6.1.1-2"> Delayed messages in a DetNet link can result in the same behavior as dropped messages
in ordinary networks, since the services attached to the DetNet flow are likely to have
strict delivery time requirements.<a href="#section-6.1.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-6.1.1-3">For a single-path scenario, disruption within the single flow is a real possibility. In
a multipath scenario, large delays or instabilities in one DetNet flow can also lead to
increased buffer and processor resource consumption at the eliminating router.<a href="#section-6.1.1-3" class="pilcrow">ΒΆ</a></p>
<p id="section-6.1.1-4">A data plane Delay attack on a system controlling substantial moving devices, for
example, in industrial automation, can cause physical damage. For example, if the
network promises a bounded latency of 2 ms for a flow, yet the machine receives it with
5 ms latency, the control loop of the machine may become unstable.<a href="#section-6.1.1-4" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.1.2">
<h4 id="name-controller-plane-delay-atta">
<a href="#section-6.1.2" class="section-number selfRef">6.1.2. </a><a href="#name-controller-plane-delay-atta" class="section-name selfRef">Controller Plane Delay Attacks</a>
</h4>
<p id="section-6.1.2-1">In and of itself, this is not directly a threat to the DetNet service, but the effects
of delaying control messages can have quite adverse effects later.<a href="#section-6.1.2-1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-6.1.2-2.1">Delayed teardown can lead to resource leakage, which in turn can result in failure
to allocate new DetNet flows, finally giving rise to a denial-of-service attack.<a href="#section-6.1.2-2.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-6.1.2-2.2">Failure to deliver, or severely delaying, controller plane messages adding an
endpoint to a multicast group will prevent the new endpoint from receiving expected
frames thus disrupting expected behavior.<a href="#section-6.1.2-2.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-6.1.2-2.3">Delaying messages that remove an endpoint from a group can lead to loss of privacy,
as the endpoint will continue to receive messages even after it is supposedly
removed.<a href="#section-6.1.2-2.3" class="pilcrow">ΒΆ</a>
</li>
</ul>
</section>
</section>
</div>
<div id="SpoofingImpact">
<section id="section-6.2">
<h3 id="name-flow-modification-and-spoof">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-flow-modification-and-spoof" class="section-name selfRef">Flow Modification and Spoofing</a>
</h3>
<section id="section-6.2.1">
<h4 id="name-flow-modification">
<a href="#section-6.2.1" class="section-number selfRef">6.2.1. </a><a href="#name-flow-modification" class="section-name selfRef">Flow Modification</a>
</h4>
<p id="section-6.2.1-1">If the contents of a packet header or body can be modified by the attacker, this can
cause the packet to be routed incorrectly or dropped, or the payload to be corrupted or
subtly modified. Thus, the potential impact of a Modification attack includes disrupting
the application as well as the network equipment.<a href="#section-6.2.1-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.2.2">
<h4 id="name-spoofing">
<a href="#section-6.2.2" class="section-number selfRef">6.2.2. </a><a href="#name-spoofing" class="section-name selfRef">Spoofing</a>
</h4>
<section id="section-6.2.2.1">
<h5 id="name-data-plane-spoofing">
<a href="#section-6.2.2.1" class="section-number selfRef">6.2.2.1. </a><a href="#name-data-plane-spoofing" class="section-name selfRef">Data Plane Spoofing</a>
</h5>
<p id="section-6.2.2.1-1">Spoofing data plane messages can result in increased resource consumption on the
routers throughout the network as it will increase buffer usage and processor
utilization. This can lead to resource exhaustion and/or increased delay.<a href="#section-6.2.2.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-6.2.2.1-2">If the attacker manages to create valid headers, the false messages can be forwarded
through the network, using part of the allocated bandwidth. This in turn can cause
legitimate messages to be dropped when the resource budget has been exhausted.<a href="#section-6.2.2.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-6.2.2.1-3">Finally, the endpoint will have to deal with invalid messages being delivered to the
endpoint instead of (or in addition to) a valid message.<a href="#section-6.2.2.1-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.2.2.2">
<h5 id="name-controller-plane-spoofing">
<a href="#section-6.2.2.2" class="section-number selfRef">6.2.2.2. </a><a href="#name-controller-plane-spoofing" class="section-name selfRef">Controller Plane Spoofing</a>
</h5>
<p id="section-6.2.2.2-1">A successful Controller Plane Spoofing attack will potentially have adverse effects.
It can do virtually anything from:<a href="#section-6.2.2.2-1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-6.2.2.2-2.1">modifying existing DetNet flows by changing the available bandwidth<a href="#section-6.2.2.2-2.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-6.2.2.2-2.2">adding or removing endpoints from a DetNet flow<a href="#section-6.2.2.2-2.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-6.2.2.2-2.3">dropping DetNet flows completely<a href="#section-6.2.2.2-2.3" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-6.2.2.2-2.4">falsely creating new DetNet flows (exhausting the systems resources or enabling
DetNet flows that are outside the control of the network engineer)<a href="#section-6.2.2.2-2.4" class="pilcrow">ΒΆ</a>
</li>
</ul>
</section>
</section>
</section>
</div>
<div id="SegmentationImpact">
<section id="section-6.3">
<h3 id="name-segmentation-attacks-inject">
<a href="#section-6.3" class="section-number selfRef">6.3. </a><a href="#name-segmentation-attacks-inject" class="section-name selfRef">Segmentation Attacks (Injection)</a>
</h3>
<section id="section-6.3.1">
<h4 id="name-data-plane-segmentation">
<a href="#section-6.3.1" class="section-number selfRef">6.3.1. </a><a href="#name-data-plane-segmentation" class="section-name selfRef">Data Plane Segmentation</a>
</h4>
<p id="section-6.3.1-1">Injection of false messages in a DetNet flow could lead to exhaustion of the available
bandwidth for that flow if the routers attribute these false messages to the resource
budget of that flow.<a href="#section-6.3.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-6.3.1-2">In a multipath scenario, injected messages will cause increased processor utilization
in elimination routers. If enough paths are subject to malicious injection, the
legitimate messages can be dropped. Likewise, it can cause an increase in buffer usage.
In total, it will consume more resources in the routers than normal, giving rise to a
resource-exhaustion attack on the routers.<a href="#section-6.3.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-6.3.1-3">If a DetNet flow is interrupted, the end application will be affected by what is now a
non-deterministic flow. Note that there are many possible sources of flow interruptions,
for example, but not limited to, such physical-layer conditions as a broken wire or a
radio link that is compromised by interference.<a href="#section-6.3.1-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.3.2">
<h4 id="name-controller-plane-segmentati">
<a href="#section-6.3.2" class="section-number selfRef">6.3.2. </a><a href="#name-controller-plane-segmentati" class="section-name selfRef">Controller Plane Segmentation</a>
</h4>
<p id="section-6.3.2-1"> In a successful Controller Plane Segmentation attack, control messages are acted on by
nodes in the network, unbeknownst to the central controller or the network engineer.
This has the potential to:<a href="#section-6.3.2-1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-6.3.2-2.1">create new DetNet flows (exhausting resources)<a href="#section-6.3.2-2.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-6.3.2-2.2">drop existing DetNet flows (denial of service)<a href="#section-6.3.2-2.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-6.3.2-2.3">add end stations to a multicast group (loss of privacy)<a href="#section-6.3.2-2.3" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-6.3.2-2.4">remove end stations from a multicast group (reduction of service)<a href="#section-6.3.2-2.4" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-6.3.2-2.5">modify the DetNet flow attributes (affecting available bandwidth)<a href="#section-6.3.2-2.5" class="pilcrow">ΒΆ</a>
</li>
</ul>
<p id="section-6.3.2-3">If an attacker can inject control messages without the central controller knowing, then
one or more components in the network may get into a state that is not expected by the
controller. At that point, if the controller initiates a command, the effect of that
command may not be as expected, since the target of the command may have started from a
different initial state.<a href="#section-6.3.2-3" class="pilcrow">ΒΆ</a></p>
</section>
</section>
</div>
<div id="ReplicationImpact">
<section id="section-6.4">
<h3 id="name-replication-and-elimination">
<a href="#section-6.4" class="section-number selfRef">6.4. </a><a href="#name-replication-and-elimination" class="section-name selfRef">Replication and Elimination</a>
</h3>
<p id="section-6.4-1">The Replication and Elimination functions are relevant only to data plane messages as controller
plane messages are not subject to multipath routing.<a href="#section-6.4-1" class="pilcrow">ΒΆ</a></p>
<section id="section-6.4.1">
<h4 id="name-increased-attack-surface-2">
<a href="#section-6.4.1" class="section-number selfRef">6.4.1. </a><a href="#name-increased-attack-surface-2" class="section-name selfRef">Increased Attack Surface</a>
</h4>
<p id="section-6.4.1-1">The impact of an increased attack surface is that it increases the probability that the
network can be exposed to an attacker. This can facilitate a wide range of specific
attacks, and their respective impacts are discussed in other subsections of this
section.<a href="#section-6.4.1-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.4.2">
<h4 id="name-header-manipulation-at-elim">
<a href="#section-6.4.2" class="section-number selfRef">6.4.2. </a><a href="#name-header-manipulation-at-elim" class="section-name selfRef">Header Manipulation at Elimination Routers</a>
</h4>
<p id="section-6.4.2-1">This attack can potentially cause DoS to the application that uses the attacked DetNet
flows or to the network equipment that forwards them. Furthermore, it can allow an
attacker to manipulate the network paths and the behavior of the network layer.<a href="#section-6.4.2-1" class="pilcrow">ΒΆ</a></p>
</section>
</section>
</div>
<section id="section-6.5">
<h3 id="name-control-or-signaling-packet-m">
<a href="#section-6.5" class="section-number selfRef">6.5. </a><a href="#name-control-or-signaling-packet-m" class="section-name selfRef">Control or Signaling Packet Modification</a>
</h3>
<p id="section-6.5-1">If control packets are subject to manipulation undetected, the network can be severely
compromised.<a href="#section-6.5-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.6">
<h3 id="name-control-or-signaling-packet-i">
<a href="#section-6.6" class="section-number selfRef">6.6. </a><a href="#name-control-or-signaling-packet-i" class="section-name selfRef">Control or Signaling Packet Injection</a>
</h3>
<p id="section-6.6-1">If an attacker can inject control packets undetected, the network can be severely
compromised.<a href="#section-6.6-1" class="pilcrow">ΒΆ</a></p>
</section>
<div id="Reconnaissance">
<section id="section-6.7">
<h3 id="name-reconnaissance-2">
<a href="#section-6.7" class="section-number selfRef">6.7. </a><a href="#name-reconnaissance-2" class="section-name selfRef">Reconnaissance</a>
</h3>
<p id="section-6.7-1"> Of all the attacks, this is one of the most difficult to detect and counter.<a href="#section-6.7-1" class="pilcrow">ΒΆ</a></p>
<p id="section-6.7-2"> An attacker can, at their leisure, observe over time various aspects of the messaging
and signaling, learning the intent and purpose of the traffic flows. Then at some later
date, possibly at an important time in the operational context, they might launch an
attack based on that knowledge.<a href="#section-6.7-2" class="pilcrow">ΒΆ</a></p>
<p id="section-6.7-3"> The flow ID in the header of the data plane messages gives an attacker a very reliable
identifier for DetNet traffic, and this traffic has a high probability of going to
lucrative targets.<a href="#section-6.7-3" class="pilcrow">ΒΆ</a></p>
<p id="section-6.7-4">Applications that are ported from a private OT network to the higher visibility DetNet
environment may need to be adapted to limit distinctive flow properties that could make
them susceptible to reconnaissance.<a href="#section-6.7-4" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<section id="section-6.8">
<h3 id="name-attacks-on-time-synchroniza">
<a href="#section-6.8" class="section-number selfRef">6.8. </a><a href="#name-attacks-on-time-synchroniza" class="section-name selfRef">Attacks on Time-Synchronization Mechanisms</a>
</h3>
<p id="section-6.8-1">DetNet relies on an underlying time-synchronization mechanism; therefore, a compromised
synchronization mechanism may cause DetNet nodes to malfunction. Specifically, DetNet
flows may fail to meet their latency requirements and deterministic behavior, thus causing
DoS to DetNet applications.<a href="#section-6.8-1" class="pilcrow">ΒΆ</a></p>
</section>
<div id="PathChoiceImpact">
<section id="section-6.9">
<h3 id="name-attacks-on-path-choice">
<a href="#section-6.9" class="section-number selfRef">6.9. </a><a href="#name-attacks-on-path-choice" class="section-name selfRef">Attacks on Path Choice</a>
</h3>
<p id="section-6.9-1">This is covered in part in <a href="#SegmentationImpact" class="xref">Section 6.3</a> (<a href="#SegmentationImpact" class="xref">Segmentation Attacks (Injection)</a>) and, as with Replication and Elimination
(see <a href="#ReplicationImpact" class="xref">Section 6.4</a>), this is relevant for data plane
messages.<a href="#section-6.9-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
</section>
</div>
<div id="ThreatMitigation">
<section id="section-7">
<h2 id="name-security-threat-mitigation">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-security-threat-mitigation" class="section-name selfRef">Security Threat Mitigation</a>
</h2>
<p id="section-7-1">This section describes a set of measures that can be taken to mitigate the attacks
described in <a href="#ThreatSection" class="xref">Section 5</a>. These mitigations should be
viewed as a set of tools, any of which can be used individually or in concert. The DetNet
component and/or system and/or application designer can apply these tools as necessary based
on a system-specific threat analysis.<a href="#section-7-1" class="pilcrow">ΒΆ</a></p>
<p id="section-7-2">Some of the technology-specific security considerations and mitigation approaches are
further discussed in DetNet data plane solution documents, such as <span>[<a href="#RFC8938" class="xref">RFC8938</a>]</span>, <span>[<a href="#RFC8939" class="xref">RFC8939</a>]</span>, <span>[<a href="#RFC8964" class="xref">RFC8964</a>]</span>, <span>[<a href="#RFC9025" class="xref">RFC9025</a>]</span>, and <span>[<a href="#RFC9056" class="xref">RFC9056</a>]</span>.<a href="#section-7-2" class="pilcrow">ΒΆ</a></p>
<section id="section-7.1">
<h3 id="name-path-redundancy">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-path-redundancy" class="section-name selfRef">Path Redundancy</a>
</h3>
<span class="break"></span><dl class="dlParallel" id="section-7.1-1">
<dt id="section-7.1-1.1">Description: </dt>
<dd style="margin-left: 1.5em" id="section-7.1-1.2">
<p id="section-7.1-1.2.1">Path redundancy is a DetNet flow that can be forwarded simultaneously over multiple
paths. Packet Replication and Elimination <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>
provide resiliency to dropped or delayed packets. This redundancy improves the
robustness to failures and to on-path attacks.<a href="#section-7.1-1.2.1" class="pilcrow">ΒΆ</a></p>
<aside id="section-7.1-1.2.2">
<p id="section-7.1-1.2.2.1"> Note: At the time of this writing, PREOF is not defined for the IP data plane.<a href="#section-7.1-1.2.2.1" class="pilcrow">ΒΆ</a></p>
</aside>
</dd>
<dd class="break"></dd>
<dt id="section-7.1-1.3">Related attacks: </dt>
<dd style="margin-left: 1.5em" id="section-7.1-1.4">
<p id="section-7.1-1.4.1">Path redundancy can be used to mitigate various on-path attacks, including attacks
described in Sections <a href="#DelayThreat" class="xref">5.2.1</a>, <a href="#ModificationThreat" class="xref">5.2.2</a>, <a href="#SegmentThreat" class="xref">5.2.3</a>, and <a href="#SyncThreat" class="xref">5.2.7</a>. However, it is
also possible that multiple paths may make it more difficult to locate the source of
an on-path attacker.<a href="#section-7.1-1.4.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.1-1.4.2">A Delay Modulation attack could result in extensively exercising otherwise
unused code paths to expose hidden flaws. Subtle race conditions and memory
allocation bugs in error-handling paths are classic examples of this.<a href="#section-7.1-1.4.2" class="pilcrow">ΒΆ</a></p>
</dd>
<dd class="break"></dd>
</dl>
</section>
<div id="IntegritySection">
<section id="section-7.2">
<h3 id="name-integrity-protection">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-integrity-protection" class="section-name selfRef">Integrity Protection</a>
</h3>
<span class="break"></span><dl class="dlParallel" id="section-7.2-1">
<dt id="section-7.2-1.1">Description: </dt>
<dd style="margin-left: 1.5em" id="section-7.2-1.2">
<p id="section-7.2-1.2.1">Integrity protection in the scope of DetNet is the ability to detect if a packet
header has been modified (maliciously or otherwise) and if so, take some appropriate
action (as discussed in <a href="#DpaMitigation" class="xref">Section 7.7</a>). The decision
on where in the network to apply integrity protection is part of the DetNet system
design, and the implementation of the protection method itself is a part of a DetNet
component design.<a href="#section-7.2-1.2.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.2-1.2.2">The most common technique for detecting header modification is
the use of a Message Authentication Code (MAC) (see <a href="#TechnologySpecificThreats" class="xref">Section 10</a> for
examples). The MAC can be distributed either in line (included in
the same packet) or via a side channel. Of these, the in-line
method is generally preferred due to the low latency that may be
required on DetNet flows and the relative complexity and
computational overhead of a sideband approach.<a href="#section-7.2-1.2.2" class="pilcrow">ΒΆ</a></p>
<p id="section-7.2-1.2.3"> There are different levels of security available for integrity
protection, ranging from the basic ability to detect if a header
has been corrupted in transit (no malicious attack) to stopping a
skilled and determined attacker capable of both subtly modifying
fields in the headers as well as updating an unkeyed
checksum. Common for all are the 2 steps that need to be performed
in both ends. The first is computing the checksum or MAC. The
corresponding verification step must perform the same steps before
comparing the provided with the computed value. Only then can the
receiver be reasonably sure that the header is authentic.<a href="#section-7.2-1.2.3" class="pilcrow">ΒΆ</a></p>
<p id="section-7.2-1.2.4"> The most basic protection mechanism consists of computing a
simple checksum of the header fields and providing it to the next
entity in the packets path for verification. Using a MAC combined
with a secret key provides the best protection against
Modification and Replication attacks (see Sections <a href="#ModificationThreat" class="xref">5.2.2</a> and <a href="#ReplicationThreat" class="xref">5.2.4</a>). This MAC usage
needs to be part of a security association that is established and
managed by a security association protocol (such as IKEv2 for
IPsec security associations). Integrity protection in the
controller plane is discussed in <a href="#ControllerProtectSection" class="xref">Section 7.6</a>. The secret
key, regardless of the MAC used, must be protected from falling
into the hands of unauthorized users. Once key management becomes
a topic, it is important to understand that this is a delicate
process and should not be undertaken lightly. BCP 107 <span>[<a href="#BCP107" class="xref">BCP107</a>]</span> provides best practices in this
regard.<a href="#section-7.2-1.2.4" class="pilcrow">ΒΆ</a></p>
<p id="section-7.2-1.2.5"> DetNet system and/or component designers need to be aware of
these distinctions and enforce appropriate integrity-protection
mechanisms as needed based on a threat analysis. Note that adding
integrity-protection mechanisms may introduce latency; thus, many
of the same considerations in <a href="#EncryptionConsiderations" class="xref">Section 7.5.1</a> also apply
here.<a href="#section-7.2-1.2.5" class="pilcrow">ΒΆ</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-7.2-1.3">Packet Sequence Number Integrity Considerations: </dt>
<dd style="margin-left: 1.5em" id="section-7.2-1.4">
<p id="section-7.2-1.4.1">The use of PREOF in a DetNet implementation implies the use of
a sequence number for each packet. There is a trust relationship
between the component that adds the sequence number and the
component that removes the sequence number. The sequence number
may be end-to-end source to destination, or it may be
added/deleted by network edge components. The adder and remover(s)
have the trust relationship because they are the ones that ensure
that the sequence numbers are not modifiable. Thus, sequence
numbers can be protected by using authenticated encryption or by a
MAC without using encryption. Between the adder and remover there
may or may not be replication and elimination functions. The
elimination functions must be able to see the sequence
numbers. Therefore, if encryption is done between adders and
removers, it must not obscure the sequence number. If the sequence
removers and the eliminators are in the same physical component,
it may be possible to obscure the sequence number; however, that
is a layer violation and is not recommended practice.<a href="#section-7.2-1.4.1" class="pilcrow">ΒΆ</a></p>
<aside id="section-7.2-1.4.2">
<p id="section-7.2-1.4.2.1"> Note: At the time of this writing, PREOF is not defined for the IP data plane.<a href="#section-7.2-1.4.2.1" class="pilcrow">ΒΆ</a></p>
</aside>
</dd>
<dd class="break"></dd>
<dt id="section-7.2-1.5">Related attacks: </dt>
<dd style="margin-left: 1.5em" id="section-7.2-1.6">
<p id="section-7.2-1.6.1">Integrity protection mitigates attacks related to modification and tampering,
including the attacks described in Sections <a href="#ModificationThreat" class="xref">5.2.2</a> and <a href="#ReplicationThreat" class="xref">5.2.4</a>.<a href="#section-7.2-1.6.1" class="pilcrow">ΒΆ</a></p>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<section id="section-7.3">
<h3 id="name-detnet-node-authentication">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-detnet-node-authentication" class="section-name selfRef">DetNet Node Authentication</a>
</h3>
<span class="break"></span><dl class="dlParallel" id="section-7.3-1">
<dt id="section-7.3-1.1">Description:</dt>
<dd style="margin-left: 1.5em" id="section-7.3-1.2">Authentication verifies the identity of DetNet nodes (including DetNet Controller
Plane nodes), and this enables mitigation of Spoofing attacks. While integrity
protection (<a href="#IntegritySection" class="xref">Section 7.2</a>) prevents intermediate
nodes from modifying information, authentication can provide traffic origin
verification, i.e., to verify that each packet in a DetNet flow is from a known source.
Although node authentication and integrity protection are two different goals of a
security protocol, in most cases, a common protocol (such as IPsec <span>[<a href="#RFC4301" class="xref">RFC4301</a>]</span> or MACsec <span>[<a href="#IEEE802.1AE-2018" class="xref">IEEE802.1AE-2018</a>]</span>) is used for achieving both purposes.<a href="#section-7.3-1.2" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.3-1.3">Related attacks: </dt>
<dd style="margin-left: 1.5em" id="section-7.3-1.4">DetNet node authentication is used to mitigate attacks related to spoofing, including
the attacks of Sections <a href="#ModificationThreat" class="xref">5.2.2</a> and <a href="#ReplicationThreat" class="xref">5.2.4</a>.<a href="#section-7.3-1.4" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-7.4">
<h3 id="name-synthetic-traffic-insertion">
<a href="#section-7.4" class="section-number selfRef">7.4. </a><a href="#name-synthetic-traffic-insertion" class="section-name selfRef">Synthetic Traffic Insertion</a>
</h3>
<span class="break"></span><dl class="dlParallel" id="section-7.4-1">
<dt id="section-7.4-1.1">Description: </dt>
<dd style="margin-left: 1.5em" id="section-7.4-1.2">With some queuing methods such as <span>[<a href="#IEEE802.1Qch-2017" class="xref">IEEE802.1Qch-2017</a>]</span>, it is possible to
introduce synthetic traffic in order to regularize the timing of
packet transmission. (Synthetic traffic typically consists of randomly
generated packets injected in the network to mask observable
transmission patterns in the flows, which may allow an attacker to
gain insight into the content of the flows). This can subsequently
reduce the value of passive monitoring from internal threats (see
<a href="#ThreatSection" class="xref">Section 5</a>) as it will be much
more difficult to associate discrete events with particular network
packets.<a href="#section-7.4-1.2" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.4-1.3">Related attacks: </dt>
<dd style="margin-left: 1.5em" id="section-7.4-1.4">Removing distinctive temporal properties of individual packets
or flows can be used to mitigate against reconnaissance attacks
(<a href="#ReconnaissanceThreat" class="xref">Section 5.2.6</a>). For
example, synthetic traffic can be used to maintain
constant traffic rate even when no user data is transmitted, thus
making it difficult to collect information about the times at which
users are active and the times at which DetNet flows are added or
removed.<a href="#section-7.4-1.4" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.4-1.5">Traffic Insertion Challenges: </dt>
<dd style="margin-left: 1.5em" id="section-7.4-1.6">
<p id="section-7.4-1.6.1">Once an attacker is able to monitor the frames traversing a
network to such a degree that they can differentiate between
best-effort traffic and traffic belonging to a specific DetNet
flow, it becomes difficult to not reveal to the attacker whether a
given frame is valid traffic or an inserted frame. Thus, having
the DetNet components generate and remove the synthetic traffic may or
may not be a viable option unless certain challenges are solved;
for example, but not limited to:<a href="#section-7.4-1.6.1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-7.4-1.6.2.1">Inserted traffic must be indistinguishable from valid stream traffic from the
viewpoint of the attacker.<a href="#section-7.4-1.6.2.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-7.4-1.6.2.2">DetNet components must be able to safely identify and remove
all inserted traffic (and only inserted traffic).<a href="#section-7.4-1.6.2.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-7.4-1.6.2.3">
<p id="section-7.4-1.6.2.3.1">The controller plane must manage where to insert and remove
synthetic traffic, but this information must not be revealed to an
attacker.<a href="#section-7.4-1.6.2.3.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.4-1.6.2.3.2">An alternative design is to have the insertion and removal
of synthetic traffic be performed at the application layer rather
than by the DetNet itself. For example, the use of RTP padding
to reduce information leakage from variable-bit-rate audio
transmission via the Secure Real-time Transport Protocol
(SRTP) is discussed in <span>[<a href="#RFC6562" class="xref">RFC6562</a>]</span>.<a href="#section-7.4-1.6.2.3.2" class="pilcrow">ΒΆ</a></p>
</li>
</ul>
</dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-7.5">
<h3 id="name-encryption">
<a href="#section-7.5" class="section-number selfRef">7.5. </a><a href="#name-encryption" class="section-name selfRef">Encryption</a>
</h3>
<span class="break"></span><dl class="dlParallel" id="section-7.5-1">
<dt id="section-7.5-1.1">Description: </dt>
<dd style="margin-left: 1.5em" id="section-7.5-1.2">
<p id="section-7.5-1.2.1">Reconnaissance attacks (<a href="#ReconnaissanceThreat" class="xref">Section 5.2.6</a>) can
be mitigated to some extent through the use of encryption, thereby preventing the
attacker from accessing the packet header or contents. Specific encryption protocols
will depend on the lower layers that DetNet is forwarded over. For example, IP flows
may be forwarded over IPsec <span>[<a href="#RFC4301" class="xref">RFC4301</a>]</span>, and Ethernet
flows may be secured using MACsec <span>[<a href="#IEEE802.1AE-2018" class="xref">IEEE802.1AE-2018</a>]</span>.<a href="#section-7.5-1.2.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5-1.2.2">However, despite the use of encryption, a reconnaissance attack can provide the
attacker with insight into the network, even without visibility into the packet. For
example, an attacker can observe which nodes are communicating with which other nodes,
including when, how often, and with how much data. In addition, the timing of packets
may be correlated in time with external events such as action of an external device.
Such information may be used by the attacker, for example, in mapping out specific
targets for a different type of attack at a different time.<a href="#section-7.5-1.2.2" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5-1.2.3">DetNet nodes do not have any need to inspect the payload of any DetNet packets,
making them data agnostic. This means that end-to-end encryption at the application
layer is an acceptable way to protect user data.<a href="#section-7.5-1.2.3" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5-1.2.4">Note that reconnaissance is a threat that is not specific to DetNet flows; therefore,
reconnaissance mitigation will typically be analyzed and provided by a network
operator regardless of whether DetNet flows are deployed. Thus, encryption
requirements will typically not be defined in DetNet technology-specific
specifications, but considerations of using DetNet in encrypted environments will be
discussed in these specifications. For example, <span><a href="https://www.rfc-editor.org/rfc/rfc8939#section-5.1.2.3" class="relref">Section 5.1.2.3</a> of [<a href="#RFC8939" class="xref">RFC8939</a>]</span> discusses flow
identification of DetNet flows running over IPsec.<a href="#section-7.5-1.2.4" class="pilcrow">ΒΆ</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-7.5-1.3">Related attacks: </dt>
<dd style="margin-left: 1.5em" id="section-7.5-1.4">As noted above, encryption can be used to mitigate reconnaissance attacks (<a href="#ReconnaissanceThreat" class="xref">Section 5.2.6</a>). However, for a DetNet to provide
differentiated quality of service on a flow-by-flow basis, the network must be able to
identify the flows individually. This implies that in a reconnaissance attack, the
attacker may also be able to track individual flows to learn more about the system.<a href="#section-7.5-1.4" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
</dl>
<div id="EncryptionConsiderations">
<section id="section-7.5.1">
<h4 id="name-encryption-considerations-f">
<a href="#section-7.5.1" class="section-number selfRef">7.5.1. </a><a href="#name-encryption-considerations-f" class="section-name selfRef">Encryption Considerations for DetNet</a>
</h4>
<p id="section-7.5.1-1">Any compute time that is required for encryption and decryption processing ("crypto")
must be included in the flow latency calculations. Thus, cryptographic algorithms used in a
DetNet must have bounded worst-case execution times, and these values must be used in
the latency calculations. Fortunately, encryption and decryption operations typically
are designed to have constant execution times in order to avoid side channel leakage.<a href="#section-7.5.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-2">Some cryptographic algorithms are symmetric in encode/decode time (such as AES), and others
are asymmetric (such as public key algorithms). There are advantages and disadvantages
to the use of either type in a given DetNet context. The discussion in this document
relates to the timing implications of crypto for DetNet; it is assumed that integrity
considerations are covered elsewhere in the literature.<a href="#section-7.5.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-3">Asymmetrical crypto is typically not used in networks on a packet-by-packet basis due
to its computational cost. For example, if only endpoint checks or checks at a small
number of intermediate points are required, asymmetric crypto can be used to
authenticate distribution or exchange of a secret symmetric crypto key; a successful
check based on that key will provide traffic origin verification as long as the key is
kept secret by the participants. TLS (v1.3 <span>[<a href="#RFC8446" class="xref">RFC8446</a>]</span>, in
particular, Section <span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-4.1" class="relref">4.1</a> (<a href="https://www.rfc-editor.org/rfc/rfc8446#section-4.1" class="relref">"Key
Exchange Messages"</a>)</span>) and IKEv2 <span>[<a href="#RFC6071" class="xref">RFC6071</a>]</span> are
examples of this for endpoint checks.<a href="#section-7.5.1-3" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-4">However, if secret symmetric keys are used for this purpose, the key must be given to
all relays, which increases the probability of a secret key being leaked. Also, if any
relay is compromised or faulty, then it may inject traffic into the flow. Group key
management protocols can be used to automate management of such symmetric keys; for an
example in the context of IPsec, see <span>[<a href="#I-D.ietf-ipsecme-g-ikev2" class="xref">IPSECME-G-IKEV2</a>]</span>.<a href="#section-7.5.1-4" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-5">Alternatively, asymmetric crypto can provide traffic origin verification at every
intermediate node. For example, a DetNet flow can be associated with an (asymmetric)
keypair, such that the private key is available to the source of the flow and the public
key is distributed with the flow information, allowing verification at every node for
every packet. However, this is more computationally expensive.<a href="#section-7.5.1-5" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-6">In either case, origin verification also requires replay detection as part of the
security protocol to prevent an attacker from recording and resending traffic, e.g., as
a denial-of-service attack on flow forwarding resources.<a href="#section-7.5.1-6" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-7">In the general case, cryptographic hygiene requires the generation of new keys during
the lifetime of an encrypted flow (e.g., see <span><a href="https://www.rfc-editor.org/rfc/rfc4253#section-9" class="relref">Section 9</a> of [<a href="#RFC4253" class="xref">RFC4253</a>]</span>), and any such key generation (or key exchange)
requires additional computing time, which must be accounted for in the latency
calculations for that flow. For modern ECDH (Elliptical Curve Diffie-Hellman)
key-exchange operations (such as x25519 <span>[<a href="#RFC7748" class="xref">RFC7748</a>]</span>),
these operations can be performed in constant (predictable) time; however, this is not
universally true (for example, for legacy RSA key exchange <span>[<a href="#RFC4432" class="xref">RFC4432</a>]</span>). Thus, implementers should be aware of the time properties of
these algorithms and avoid algorithms that make constant-time implementation difficult
or impossible.<a href="#section-7.5.1-7" class="pilcrow">ΒΆ</a></p>
</section>
</div>
</section>
<div id="ControllerProtectSection">
<section id="section-7.6">
<h3 id="name-control-and-signaling-messa">
<a href="#section-7.6" class="section-number selfRef">7.6. </a><a href="#name-control-and-signaling-messa" class="section-name selfRef">Control and Signaling Message Protection</a>
</h3>
<span class="break"></span><dl class="dlParallel" id="section-7.6-1">
<dt id="section-7.6-1.1">Description: </dt>
<dd style="margin-left: 1.5em" id="section-7.6-1.2">Control and signaling messages can be protected through the use of any or all of
encryption, authentication, and integrity-protection mechanisms. Compared with data
flows, the timing constraints for controller and signaling messages may be less strict,
and the number of such packets may be fewer. If that is the case in a given application,
then it may enable the use of asymmetric cryptography for the signing of both payload
and headers for such messages, as well as encrypting the payload. Given that a DetNet is
managed by a central controller, the use of a shared public key approach for these
processes is well proven. This is further discussed in <a href="#EncryptionConsiderations" class="xref">Section 7.5.1</a>.<a href="#section-7.6-1.2" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
<dt id="section-7.6-1.3">Related attacks: </dt>
<dd style="margin-left: 1.5em" id="section-7.6-1.4">These mechanisms can be used to mitigate various attacks on the controller plane, as
described in Sections <a href="#ControllerThreat" class="xref">5.2.5</a>, <a href="#SyncThreat" class="xref">5.2.7</a>, and <a href="#PathThreat" class="xref">5.2.5.1</a>.<a href="#section-7.6-1.4" class="pilcrow">ΒΆ</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="DpaMitigation">
<section id="section-7.7">
<h3 id="name-dynamic-performance-analyti">
<a href="#section-7.7" class="section-number selfRef">7.7. </a><a href="#name-dynamic-performance-analyti" class="section-name selfRef">Dynamic Performance Analytics</a>
</h3>
<span class="break"></span><dl class="dlParallel" id="section-7.7-1">
<dt id="section-7.7-1.1">Description: </dt>
<dd style="margin-left: 1.5em" id="section-7.7-1.2">
<p id="section-7.7-1.2.1">Incorporating Dynamic Performance Analytics (DPA) implies that the DetNet design
includes a performance monitoring system to validate that timing guarantees are being
met and to detect timing violations or other anomalies that may be the symptom of a
security attack or system malfunction. If this monitoring system detects unexpected
behavior, it must then cause action to be initiated to address the situation in an
appropriate and timely manner, either at the data plane or controller plane or both in
concert.<a href="#section-7.7-1.2.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.2.2">The overall DPA system can thus be decomposed into the "detection" and "notification"
functions. Although the time-specific DPA performance indicators and their
implementation will likely be specific to a given DetNet, and as such are nascent
technology at the time of this writing, DPA is commonly used in existing networks so
we can make some observations on how such a system might be implemented for a DetNet
given that it would need to be adapted to address the time-specific performance
indicators.<a href="#section-7.7-1.2.2" class="pilcrow">ΒΆ</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-7.7-1.3">Detection Mechanisms: </dt>
<dd style="margin-left: 1.5em" id="section-7.7-1.4">
<p id="section-7.7-1.4.1">Measurement of timing performance can be done via "passive" or "active" monitoring,
as discussed below.<a href="#section-7.7-1.4.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.4.2">Examples of passive monitoring strategies include:<a href="#section-7.7-1.4.2" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-7.7-1.4.3.1">Monitoring of queue and buffer levels, e.g., via active queue management (e.g.,
<span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span>).<a href="#section-7.7-1.4.3.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-7.7-1.4.3.2">Monitoring of per-flow counters.<a href="#section-7.7-1.4.3.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-7.7-1.4.3.3">Measurement of link statistics such as traffic volume, bandwidth, and QoS.<a href="#section-7.7-1.4.3.3" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-7.7-1.4.3.4">Detection of dropped packets.<a href="#section-7.7-1.4.3.4" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-7.7-1.4.3.5">Use of commercially available Network Monitoring tools.<a href="#section-7.7-1.4.3.5" class="pilcrow">ΒΆ</a>
</li>
</ul>
<p id="section-7.7-1.4.4">Examples of active monitoring include:<a href="#section-7.7-1.4.4" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-7.7-1.4.5.1">In-band timing measurements (such as packet arrival times), e.g., by timestamping
and packet inspection.<a href="#section-7.7-1.4.5.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-7.7-1.4.5.2">
<p id="section-7.7-1.4.5.2.1">Use of OAM. For DetNet-specific OAM considerations, see
<span>[<a href="#I-D.ietf-detnet-ip-oam" class="xref">DETNET-IP-OAM</a>]</span> and
<span>[<a href="#I-D.ietf-detnet-mpls-oam" class="xref">DETNET-MPLS-OAM</a>]</span>. Note: At the time of this writing,
specifics of DPA have not been developed for the DetNet OAM
but could be a subject for future investigation.<a href="#section-7.7-1.4.5.2.1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-7.7-1.4.5.2.2.1">For OAM for Ethernet specifically, see also
Connectivity Fault Management (CFM <span>[<a href="#IEEE802.1Q" class="xref">IEEE802.1Q</a>]</span>), which defines
protocols and practices for OAM for paths through 802.1
bridges and LANs.<a href="#section-7.7-1.4.5.2.2.1" class="pilcrow">ΒΆ</a>
</li>
</ul>
</li>
<li class="normal" id="section-7.7-1.4.5.3">Out-of-band detection. Following the data path or parts of a data path, for
example, Bidirectional Forwarding Detection (BFD, e.g., <span>[<a href="#RFC5880" class="xref">RFC5880</a>]</span>).<a href="#section-7.7-1.4.5.3" class="pilcrow">ΒΆ</a>
</li>
</ul>
<p id="section-7.7-1.4.6">Note that for some measurements (e.g., packet delay), it may be necessary to make and
reconcile measurements from more than one physical location (e.g., a source and
destination), possibly in both directions, in order to arrive at a given performance
indicator value.<a href="#section-7.7-1.4.6" class="pilcrow">ΒΆ</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-7.7-1.5">Notification Mechanisms: </dt>
<dd style="margin-left: 1.5em" id="section-7.7-1.6">
<p id="section-7.7-1.6.1">Making DPA measurement results available at the right place(s) and time(s) to effect
timely response can be challenging. Two notification mechanisms that are in general
use are NETCONF/YANG Notifications and the proprietary local telemetry interfaces
provided with components from some vendors. The Constrained Application Protocol
(CoAP) Observe Option <span>[<a href="#RFC7641" class="xref">RFC7641</a>]</span> could also be relevant
to such scenarios.<a href="#section-7.7-1.6.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.6.2">At the time of this writing, YANG Notifications are not addressed by the DetNet YANG
documents; however, this may be a topic for future work. It is possible that some of
the passive mechanisms could be covered by notifications from non-DetNet-specific YANG
modules; for example, if there is OAM or other performance monitoring that can monitor
delay bounds, then that could have its own associated YANG data model, which could be
relevant to DetNet, for example, some "threshold" values for timing measurement
notifications.<a href="#section-7.7-1.6.2" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.6.3">At the time of this writing, there is an IETF Working Group for network/performance
monitoring (IP Performance Metrics (IPPM)). See also previous work by the completed
Remote Network Monitoring Working Group (RMONMIB). See also "<a href="#RFC6632" class="xref">An Overview of the IETF Network Management Standards</a>", <span>[<a href="#RFC6632" class="xref">RFC6632</a>]</span>.<a href="#section-7.7-1.6.3" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.6.4">Vendor-specific local telemetry may be available on some commercially available
systems, whereby the system can be programmed (via a proprietary dedicated port and
API) to monitor and report on specific conditions, based on both passive and active
measurements.<a href="#section-7.7-1.6.4" class="pilcrow">ΒΆ</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-7.7-1.7">Related attacks: </dt>
<dd style="margin-left: 1.5em" id="section-7.7-1.8">
<p id="section-7.7-1.8.1">Performance analytics can be used to detect various attacks, including the ones
described in <a href="#DelayThreat" class="xref">Section 5.2.1</a> (Delay attack), <a href="#SegmentThreat" class="xref">Section 5.2.3</a> (Resource Segmentation attack), and <a href="#SyncThreat" class="xref">Section 5.2.7</a> (Time-Synchronization attack). Once detection
and notification have occurred, the appropriate action can be taken to mitigate the
threat.<a href="#section-7.7-1.8.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.8.2">For example, in the case of data plane Delay attacks, one possible mitigation is to
timestamp the data at the source and timestamp it again at the destination, and if the
resulting latency does not meet the service agreement, take appropriate action. Note
that DetNet specifies packet sequence numbering; however, it does not specify use of
packet timestamps, although they may be used by the underlying transport (for example,
TSN <span>[<a href="#IEEE802.1BA" class="xref">IEEE802.1BA</a>]</span>) to provide the service.<a href="#section-7.7-1.8.2" class="pilcrow">ΒΆ</a></p>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<section id="section-7.8">
<h3 id="name-mitigation-summary">
<a href="#section-7.8" class="section-number selfRef">7.8. </a><a href="#name-mitigation-summary" class="section-name selfRef">Mitigation Summary</a>
</h3>
<p id="section-7.8-1">The following table maps the attacks of <a href="#ThreatSection" class="xref">Section 5</a>
(<a href="#ThreatSection" class="xref">Security Threats</a>) to the impacts of <a href="#ThreatImpact" class="xref">Section 6</a> (<a href="#ThreatImpact" class="xref">Security Threat Impacts</a>)
and to the mitigations of the current section. Each row specifies an attack, the impact of
this attack if it is successfully implemented, and possible mitigation methods.<a href="#section-7.8-1" class="pilcrow">ΒΆ</a></p>
<span id="name-mapping-attacks-to-impact-a"></span><div id="ThreatMapping">
<table class="center" id="table-3">
<caption>
<a href="#table-3" class="selfRef">Table 3</a>:
<a href="#name-mapping-attacks-to-impact-a" class="selfRef">Mapping Attacks to Impact and Mitigations</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Attack</th>
<th class="text-left" rowspan="1" colspan="1">Impact</th>
<th class="text-left" rowspan="1" colspan="1">Mitigations</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">Delay Attack</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.1.2.1.1"> Non-deterministic delay<a href="#section-7.8-2.2.1.2.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.1.2.1.2">Data disruption<a href="#section-7.8-2.2.1.2.1.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.1.2.1.3"> Increased resource consumption<a href="#section-7.8-2.2.1.2.1.3" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.1.3.1.1">Path redundancy<a href="#section-7.8-2.2.1.3.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.1.3.1.2">Performance analytics<a href="#section-7.8-2.2.1.3.1.2" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Reconnaissance</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.2.2.1.1">Enabler for other attacks<a href="#section-7.8-2.2.2.2.1.1" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.2.3.1.1">Encryption<a href="#section-7.8-2.2.2.3.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.2.3.1.2">Synthetic traffic insertion<a href="#section-7.8-2.2.2.3.1.2" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">DetNet Flow Modification or Spoofing</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.3.2.1.1">Increased resource consumption<a href="#section-7.8-2.2.3.2.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.3.2.1.2">Data disruption<a href="#section-7.8-2.2.3.2.1.2" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.3.3.1.1">Path redundancy<a href="#section-7.8-2.2.3.3.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.3.3.1.2">Integrity protection<a href="#section-7.8-2.2.3.3.1.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.3.3.1.3">DetNet Node authentication<a href="#section-7.8-2.2.3.3.1.3" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Inter-segment Attack</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.4.2.1.1">Increased resource consumption<a href="#section-7.8-2.2.4.2.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.4.2.1.2">Data disruption<a href="#section-7.8-2.2.4.2.1.2" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.4.3.1.1">Path redundancy<a href="#section-7.8-2.2.4.3.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.4.3.1.2">Performance analytics<a href="#section-7.8-2.2.4.3.1.2" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Replication: Increased Attack Resource</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.5.2.1.1">All impacts of other attacks<a href="#section-7.8-2.2.5.2.1.1" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.5.3.1.1">Integrity protection<a href="#section-7.8-2.2.5.3.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.5.3.1.2">DetNet Node authentication<a href="#section-7.8-2.2.5.3.1.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.5.3.1.3">Encryption<a href="#section-7.8-2.2.5.3.1.3" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Replication-Related Header Manipulation</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.6.2.1.1"> Non-deterministic delay<a href="#section-7.8-2.2.6.2.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.6.2.1.2">Data disruption<a href="#section-7.8-2.2.6.2.1.2" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.6.3.1.1">Integrity protection<a href="#section-7.8-2.2.6.3.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.6.3.1.2">DetNet Node authentication<a href="#section-7.8-2.2.6.3.1.2" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Path Manipulation</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.7.2.1.1">Enabler for other attacks<a href="#section-7.8-2.2.7.2.1.1" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.7.3.1.1">Control and signaling message protection<a href="#section-7.8-2.2.7.3.1.1" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Path Choice: Increased Attack Surface</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.8.2.1.1">All impacts of other attacks<a href="#section-7.8-2.2.8.2.1.1" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.8.3.1.1"> Control and signaling message protection<a href="#section-7.8-2.2.8.3.1.1" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Modification</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.9.2.1.1">Increased resource consumption<a href="#section-7.8-2.2.9.2.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.9.2.1.2">Non-deterministic delay<a href="#section-7.8-2.2.9.2.1.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.9.2.1.3">Data disruption<a href="#section-7.8-2.2.9.2.1.3" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.9.3.1.1">Control and signaling message protection<a href="#section-7.8-2.2.9.3.1.1" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Injection</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.10.2.1.1">Increased resource consumption<a href="#section-7.8-2.2.10.2.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.10.2.1.2"> Non-deterministic delay<a href="#section-7.8-2.2.10.2.1.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.10.2.1.3">Data disruption<a href="#section-7.8-2.2.10.2.1.3" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.10.3.1.1">Control and signaling message protection<a href="#section-7.8-2.2.10.3.1.1" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Attacks on Time-Synchronization Mechanisms</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.11.2.1.1">Non-deterministic delay<a href="#section-7.8-2.2.11.2.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.11.2.1.2">Increased resource consumption<a href="#section-7.8-2.2.11.2.1.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.11.2.1.3">Data disruption<a href="#section-7.8-2.2.11.2.1.3" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
<td class="text-left" rowspan="1" colspan="1">
<ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.11.3.1.1">Path redundancy<a href="#section-7.8-2.2.11.3.1.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.11.3.1.2">Control and signaling message protection<a href="#section-7.8-2.2.11.3.1.2" class="pilcrow">ΒΆ</a>
</li>
<li class="normal text-left" id="section-7.8-2.2.11.3.1.3">Performance analytics<a href="#section-7.8-2.2.11.3.1.3" class="pilcrow">ΒΆ</a>
</li>
</ul>
</td>
</tr>
</tbody>
</table>
</div>
</section>
</section>
</div>
<section id="section-8">
<h2 id="name-association-of-attacks-to-u">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-association-of-attacks-to-u" class="section-name selfRef">Association of Attacks to Use Cases</a>
</h2>
<p id="section-8-1">Different attacks can have different impact and/or mitigation depending on the use case, so
we would like to make this association in our analysis. However, since there is a
potentially unbounded list of use cases, we categorize the attacks with respect to the
common themes of the use cases as identified in <span><a href="https://www.rfc-editor.org/rfc/rfc8578#section-11" class="relref">Section 11</a> of [<a href="#RFC8578" class="xref">RFC8578</a>]</span>.<a href="#section-8-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8-2">See also <a href="#ThreatIndustryMapping" class="xref">Table 2</a> for a mapping of the
impact of attacks per use case by industry.<a href="#section-8-2" class="pilcrow">ΒΆ</a></p>
<section id="section-8.1">
<h3 id="name-association-of-attacks-to-us">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-association-of-attacks-to-us" class="section-name selfRef">Association of Attacks to Use Case Common Themes</a>
</h3>
<p id="section-8.1-1">In this section, we review each theme and discuss the attacks that are applicable to that
theme, as well as anything specific about the impact and mitigations for that attack with
respect to that theme. <a href="#ThemeAttackMapping" class="xref">Table 5</a>, Mapping
between Themes and Attacks, then provides a summary of the attacks that are applicable to
each theme.<a href="#section-8.1-1" class="pilcrow">ΒΆ</a></p>
<section id="section-8.1.1">
<h4 id="name-sub-network-layer">
<a href="#section-8.1.1" class="section-number selfRef">8.1.1. </a><a href="#name-sub-network-layer" class="section-name selfRef">Sub-network Layer</a>
</h4>
<p id="section-8.1.1-1">DetNet is expected to run over various transmission mediums, with Ethernet being the
first identified. Attacks such as Delay or Reconnaissance might be implemented
differently on a different transmission medium; however, the impact on the DetNet as a
whole would be essentially the same. We thus conclude that all attacks and impacts that
would be applicable to DetNet over Ethernet (i.e., all those named in this document)
would also be applicable to DetNet over other transmission mediums.<a href="#section-8.1.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.1-2">With respect to mitigations, some methods are specific to the Ethernet medium, for
example, time-aware scheduling using 802.1Qbv <span>[<a href="#IEEE802.1Qbv-2015" class="xref">IEEE802.1Qbv-2015</a>]</span> can protect against excessive use of bandwidth at the ingress --
for other mediums, other mitigations would have to be implemented to provide analogous
protection.<a href="#section-8.1.1-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.2">
<h4 id="name-central-administration">
<a href="#section-8.1.2" class="section-number selfRef">8.1.2. </a><a href="#name-central-administration" class="section-name selfRef">Central Administration</a>
</h4>
<p id="section-8.1.2-1">A DetNet network can be controlled by a centralized network configuration and control
system. Such a system may be in a single central location, or it may be distributed
across multiple control entities that function together as a unified control system for
the network.<a href="#section-8.1.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.2-2">All attacks named in this document that are relevant to controller plane packets (and
the controller itself) are relevant to this theme, including Path Manipulation, Path
Choice, Control Packet Modification or Injection, Reconnaissance, and Attacks on
Time-Synchronization Mechanisms.<a href="#section-8.1.2-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.3">
<h4 id="name-hot-swap">
<a href="#section-8.1.3" class="section-number selfRef">8.1.3. </a><a href="#name-hot-swap" class="section-name selfRef">Hot Swap</a>
</h4>
<p id="section-8.1.3-1">A DetNet network is not expected to be "plug and play"; it is expected that there is
some centralized network configuration and control system. However, the ability to "hot
swap" components (e.g., due to malfunction) is similar enough to "plug and play" that
this kind of behavior may be expected in DetNet networks, depending on the
implementation.<a href="#section-8.1.3-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.3-2">An attack surface related to hot swap is that the DetNet network must at least consider
input at runtime from components that were not part of the initial configuration of the
network. Even a "perfect" (or "hitless") replacement of a component at runtime would not
necessarily be ideal, since presumably one would want to distinguish it from the
original for OAM purposes (e.g., to report hot swap of a failed component).<a href="#section-8.1.3-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.3-3">This implies that an attack such as Flow Modification, Spoofing, or Inter-segment
(which could introduce packets from a "new" component, i.e., one heretofore unknown on
the network) could be used to exploit the need to consider such packets (as opposed to
rejecting them out of hand as one would do if one did not have to consider introduction
of a new component).<a href="#section-8.1.3-3" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.3-4">To mitigate this situation, deployments should provide a method for dynamic and secure
registration of new components, and (possibly manual) deregistration and re-keying of
retired components. This would avoid the situation in which the network must accommodate
potentially insecure packet flows from unknown components.<a href="#section-8.1.3-4" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.3-5">Similarly, if the network was designed to support runtime replacement of a clock
component, then presence (or apparent presence) and thus consideration of packets from a
new such component could affect the network, or the time synchronization of the network,
for example, by initiating a new Best Master Clock selection process. These types of
attacks should therefore be considered when designing hot-swap-type functionality (see
<span>[<a href="#RFC7384" class="xref">RFC7384</a>]</span>).<a href="#section-8.1.3-5" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.4">
<h4 id="name-data-flow-information-model">
<a href="#section-8.1.4" class="section-number selfRef">8.1.4. </a><a href="#name-data-flow-information-model" class="section-name selfRef">Data Flow Information Models</a>
</h4>
<p id="section-8.1.4-1"> DetNet specifies new YANG data models <span>[<a href="#I-D.ietf-detnet-yang" class="xref">DETNET-YANG</a>]</span> that may present new attack surfaces. Per IETF guidelines, security
considerations for any YANG data model are expected to be part of the YANG data model
specification, as described in <span>[<a href="#IETF-YANG-SEC" class="xref">IETF-YANG-SEC</a>]</span>.<a href="#section-8.1.4-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.5">
<h4 id="name-l2-and-l3-integration">
<a href="#section-8.1.5" class="section-number selfRef">8.1.5. </a><a href="#name-l2-and-l3-integration" class="section-name selfRef">L2 and L3 Integration</a>
</h4>
<p id="section-8.1.5-1">A DetNet network integrates Layer 2 (bridged) networks (e.g., AVB/TSN LAN) and Layer 3
(routed) networks (e.g., IP) via the use of well-known protocols such as IP, MPLS
Pseudowire, and Ethernet. Various DetNet documents address many specific aspects of
Layer 2 and Layer 3 integration within a DetNet, and these are not individually
referenced here; security considerations for those aspects are covered within those
documents or within the related subsections of the present document.<a href="#section-8.1.5-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.5-2">Please note that although there are no entries in the L2 and L3 Integration line of the
Mapping between Themes and Attacks table (<a href="#ThemeAttackMapping" class="xref">Table 5</a>), this does not imply that there could be no relevant attacks
related to L2-L3 integration.<a href="#section-8.1.5-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.6">
<h4 id="name-end-to-end-delivery">
<a href="#section-8.1.6" class="section-number selfRef">8.1.6. </a><a href="#name-end-to-end-delivery" class="section-name selfRef">End-to-End Delivery</a>
</h4>
<p id="section-8.1.6-1">Packets that are part of a resource-reserved DetNet flow are not to be dropped by the
DetNet due to congestion. Packets may however be dropped for intended reasons, for
example, security measures. For example, consider the case in which a packet becomes
corrupted (whether incidentally or maliciously) such that the resulting flow ID
incidentally matches the flow ID of another DetNet flow, potentially resulting in
additional unauthorized traffic on the latter. In such a case, it may be a security
requirement that the system report and/or take some defined action, perhaps when a
packet drop count threshold has been reached (see also <a href="#DpaMitigation" class="xref">Section 7.7</a>).<a href="#section-8.1.6-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.6-2">A data plane attack may force packets to be dropped, for example, as a result of a
Delay attack, Replication/Elimination attack, or Flow Modification attack.<a href="#section-8.1.6-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.6-3">The same result might be obtained by a Controller plane attack, e.g., Path Manipulation
or Signaling Packet Modification.<a href="#section-8.1.6-3" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.6-4">An attack may also cause packets that should not be delivered to be delivered, such as
by forcing packets from one (e.g., replicated) path to be preferred over another path
when they should not be (Replication attack), or by Flow Modification, or Path Choice or
Packet Injection. A Time-Synchronization attack could cause a system that was expecting
certain packets at certain times to accept unintended packets based on compromised
system time or time windowing in the scheduler.<a href="#section-8.1.6-4" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.7">
<h4 id="name-replacement-for-proprietary">
<a href="#section-8.1.7" class="section-number selfRef">8.1.7. </a><a href="#name-replacement-for-proprietary" class="section-name selfRef">Replacement for Proprietary Fieldbuses and Ethernet-Based Networks</a>
</h4>
<p id="section-8.1.7-1">There are many proprietary "fieldbuses" used in Industrial and other industries, as
well as proprietary non-interoperable deterministic Ethernet-based networks. DetNet is
intended to provide an open-standards-based alternative to such buses/networks. In cases
where a DetNet intersects with such fieldbuses/networks or their protocols, such as by
protocol emulation or access via a gateway, new attack surfaces can be opened.<a href="#section-8.1.7-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.7-2">For example, an Inter-segment or Controller plane attack such as Path Manipulation,
Path Choice, or Control Packet Modification/Injection could be used to exploit commands
specific to such a protocol or that are interpreted differently by the different
protocols or gateway.<a href="#section-8.1.7-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.8">
<h4 id="name-deterministic-vs-best-effor">
<a href="#section-8.1.8" class="section-number selfRef">8.1.8. </a><a href="#name-deterministic-vs-best-effor" class="section-name selfRef">Deterministic vs. Best-Effort Traffic</a>
</h4>
<p id="section-8.1.8-1">Most of the themes described in this document address OT (reserved) DetNet flows --
this item is intended to address issues related to IT traffic on a DetNet.<a href="#section-8.1.8-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.8-2">DetNet is intended to support coexistence of time-sensitive operational (OT,
deterministic) traffic and informational (IT, "best effort") traffic on the same
("unified") network.<a href="#section-8.1.8-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.8-3">With DetNet, this coexistence will become more common, and mitigations will need to be
established. The fact that the IT traffic on a DetNet is limited to a
corporate-controlled network makes this a less difficult problem compared to being
exposed to the open Internet; however, this aspect of DetNet security should not be
underestimated.<a href="#section-8.1.8-3" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.8-4">An Inter-segment attack can flood the network with IT-type traffic with the intent of
disrupting the handling of IT traffic and/or the goal of interfering with OT traffic.
Presumably, if the DetNet flow reservation and isolation of the DetNet is well designed
(better-designed than the attack), then interference with OT traffic should not result
from an attack that floods the network with IT traffic.<a href="#section-8.1.8-4" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.8-5">The handling of IT traffic (i.e., traffic that by definition is not guaranteed any
given deterministic service properties) by the DetNet will by definition not be given
the DetNet-specific protections provided to DetNet (resource-reserved) flows. The
implication is that the IT traffic on the DetNet network will necessarily have its own
specific set of product (component or system) requirements for protection against
attacks such as DoS; presumably they will be less stringent than those for OT flows, but
nonetheless, component and system designers must employ whatever mitigations will meet
the specified security requirements for IT traffic for the given component or DetNet.<a href="#section-8.1.8-5" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.8-6">The network design as a whole also needs to consider possible application-level
dependencies of OT-type applications on services provided by the IT part of the network;
for example, does the OT application depend on IT network services such as DNS or OAM?
If such dependencies exist, how are malicious packet flows handled? Such considerations
are typically outside the scope of DetNet proper, but nonetheless need to be addressed
in the overall DetNet network design for a given use case.<a href="#section-8.1.8-6" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.9">
<h4 id="name-deterministic-flows">
<a href="#section-8.1.9" class="section-number selfRef">8.1.9. </a><a href="#name-deterministic-flows" class="section-name selfRef">Deterministic Flows</a>
</h4>
<p id="section-8.1.9-1">Reserved bandwidth data flows (deterministic flows) must provide the allocated
bandwidth and must be isolated from each other.<a href="#section-8.1.9-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.9-2">A Spoofing or Inter-segment attack that adds packet traffic to a bandwidth-reserved
DetNet flow could cause that flow to occupy more bandwidth than it was allocated,
resulting in interference with other DetNet flows.<a href="#section-8.1.9-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.9-3">A Flow Modification, Spoofing, Header Manipulation, or Control Packet Modification
attack could cause packets from one flow to be directed to another flow, thus breaching
isolation between the flows.<a href="#section-8.1.9-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.10">
<h4 id="name-unused-reserved-bandwidth">
<a href="#section-8.1.10" class="section-number selfRef">8.1.10. </a><a href="#name-unused-reserved-bandwidth" class="section-name selfRef">Unused Reserved Bandwidth</a>
</h4>
<p id="section-8.1.10-1">If bandwidth reservations are made for a DetNet flow but the associated bandwidth is
not used at any point in time, that bandwidth is made available on the network for
best-effort traffic. However, note that security considerations for best-effort traffic
on a DetNet network is out of scope of the present document, provided that any such
attacks on best-effort traffic do not affect performance for DetNet OT traffic.<a href="#section-8.1.10-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.11">
<h4 id="name-interoperability">
<a href="#section-8.1.11" class="section-number selfRef">8.1.11. </a><a href="#name-interoperability" class="section-name selfRef">Interoperability</a>
</h4>
<p id="section-8.1.11-1">The DetNet specifications as a whole are intended to enable an ecosystem in which
multiple vendors can create interoperable products, thus promoting component diversity
and potentially higher numbers of each component manufactured. Toward that end, the
security measures and protocols discussed in this document are intended to encourage
interoperability.<a href="#section-8.1.11-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.11-2">Given that the DetNet specifications are unambiguously written and that the
implementations are accurate, the property of interoperability should not in and of
itself cause security concerns; however, flaws in interoperability between components
could result in security weaknesses. The network operator, as well as system and
component designers, can all contribute to reducing such weaknesses through
interoperability testing.<a href="#section-8.1.11-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.12">
<h4 id="name-cost-reductions">
<a href="#section-8.1.12" class="section-number selfRef">8.1.12. </a><a href="#name-cost-reductions" class="section-name selfRef">Cost Reductions</a>
</h4>
<p id="section-8.1.12-1">The DetNet network specifications are intended to enable an ecosystem in which multiple
vendors can create interoperable products, thus promoting higher numbers of each
component manufactured, promoting cost reduction and cost competition among vendors.<a href="#section-8.1.12-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.12-2">This envisioned breadth of DetNet-enabled products is in general a positive factor;
however, implementation flaws in any individual component can present an attack surface.
In addition, implementation differences between components from different vendors can
result in attack surfaces (resulting from their interaction) that may not exist in any
individual component.<a href="#section-8.1.12-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.12-3">Network operators can mitigate such concerns through sufficient product and
interoperability testing.<a href="#section-8.1.12-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.13">
<h4 id="name-insufficiently-secure-compo">
<a href="#section-8.1.13" class="section-number selfRef">8.1.13. </a><a href="#name-insufficiently-secure-compo" class="section-name selfRef">Insufficiently Secure Components</a>
</h4>
<p id="section-8.1.13-1">The DetNet network specifications are intended to enable an ecosystem in which multiple
vendors can create interoperable products, thus promoting component diversity and
potentially higher numbers of each component manufactured. However, this raises the
possibility that a vendor might repurpose for DetNet applications a hardware or software
component that was originally designed for operation in an isolated OT network and thus
may not have been designed to be sufficiently secure, or secure at all, against the
sorts of attacks described in this document. Deployment of such a component on a DetNet
network that is intended to be highly secure may present an attack surface; thus, the
DetNet network operator may need to take specific actions to protect such components,
for example, by implementing a secure interface (such as a firewall) to isolate the
component from the threats that may be present in the greater network.<a href="#section-8.1.13-1" class="pilcrow">ΒΆ</a></p>
</section>
<div id="NetworkSize">
<section id="section-8.1.14">
<h4 id="name-detnet-network-size">
<a href="#section-8.1.14" class="section-number selfRef">8.1.14. </a><a href="#name-detnet-network-size" class="section-name selfRef">DetNet Network Size</a>
</h4>
<p id="section-8.1.14-1">DetNet networks range in size from very small, e.g., inside a single industrial
machine, to very large, e.g., a Utility Grid network spanning a whole country.<a href="#section-8.1.14-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.14-2">The size of the network might be related to how the attack is introduced into the
network. For example, if the entire network is local, there is a threat that power can
be cut to the entire network. If the network is large, perhaps only a part of the
network is attacked.<a href="#section-8.1.14-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.14-3">A Delay attack might be as relevant to a small network as to a large network, although
the amount of delay might be different.<a href="#section-8.1.14-3" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.14-4">Attacks sourced from IT traffic might be more likely in large networks since more
people might have access to the network, presenting a larger attack surface. Similarly,
Path Manipulation, Path Choice, and Time-Synchronization attacks seem more likely
relevant to large networks.<a href="#section-8.1.14-4" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<section id="section-8.1.15">
<h4 id="name-multiple-hops">
<a href="#section-8.1.15" class="section-number selfRef">8.1.15. </a><a href="#name-multiple-hops" class="section-name selfRef">Multiple Hops</a>
</h4>
<p id="section-8.1.15-1">Large DetNet networks (e.g., a Utility Grid network) may involve many "hops" over
various kinds of links, for example, radio repeaters, microwave links, fiber optic
links, etc.<a href="#section-8.1.15-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.15-2">An attacker who has knowledge of the operation of a component or device's internal
software (such as "device drivers") may be able to take advantage of this knowledge to
design an attack that could exploit flaws (or even the specifics of normal operation) in
the communication between the various links.<a href="#section-8.1.15-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.15-3">It is also possible that a large-scale DetNet topology containing various kinds of
links may not be in as common use as other more homogeneous topologies. This situation
may present more opportunity for attackers to exploit software and/or protocol flaws in
or between these components because these components or configurations may not have been
sufficiently tested for interoperability (in the way they would be as a result of broad
usage). This may be of particular concern to early adopters of new DetNet components or
technologies.<a href="#section-8.1.15-3" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.15-4">Of the attacks we have defined, the ones identified in <a href="#NetworkSize" class="xref">Section 8.1.14</a> as germane to large networks are the most relevant.<a href="#section-8.1.15-4" class="pilcrow">ΒΆ</a></p>
</section>
<div id="LevelOfServiceTheme">
<section id="section-8.1.16">
<h4 id="name-level-of-service">
<a href="#section-8.1.16" class="section-number selfRef">8.1.16. </a><a href="#name-level-of-service" class="section-name selfRef">Level of Service</a>
</h4>
<p id="section-8.1.16-1">A DetNet is expected to provide means to configure the network that include querying
network path latency, requesting bounded latency for a given DetNet flow, requesting
worst-case maximum and/or minimum latency for a given path or DetNet flow, and so on. It
is an expected case that the network cannot provide a given requested service level. In
such cases, the network control system should reply that the requested service level is
not available (as opposed to accepting the parameter but then not delivering the desired
behavior).<a href="#section-8.1.16-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.16-2">Controller plane attacks such as Signaling Packet Modification and Injection could be
used to modify or create control traffic that could interfere with the process of a user
requesting a level of service and/or the reply from the network.<a href="#section-8.1.16-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.16-3">Reconnaissance could be used to characterize flows and perhaps target specific flows
for attack via the controller plane as noted in <a href="#Reconnaissance" class="xref">Section 6.7</a>.<a href="#section-8.1.16-3" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="BoundedLatencyTheme">
<section id="section-8.1.17">
<h4 id="name-bounded-latency">
<a href="#section-8.1.17" class="section-number selfRef">8.1.17. </a><a href="#name-bounded-latency" class="section-name selfRef">Bounded Latency</a>
</h4>
<p id="section-8.1.17-1">DetNet provides the expectation of guaranteed bounded latency.<a href="#section-8.1.17-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.17-2">Delay attacks can cause packets to miss their agreed-upon latency boundaries.<a href="#section-8.1.17-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.17-3">Time-Synchronization attacks can corrupt the time reference of the system, resulting in
missed latency deadlines (with respect to the "correct" time reference).<a href="#section-8.1.17-3" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<section id="section-8.1.18">
<h4 id="name-low-latency">
<a href="#section-8.1.18" class="section-number selfRef">8.1.18. </a><a href="#name-low-latency" class="section-name selfRef">Low Latency</a>
</h4>
<p id="section-8.1.18-1">Applications may require "extremely low latency"; however, depending on the
application, these may mean very different latency values. For example, "low latency"
across a Utility Grid network is on a different time scale than "low latency" in a motor
control loop in a small machine. The intent is that the mechanisms for specifying
desired latency include wide ranges, and that architecturally there is nothing to
prevent arbitrarily low latencies from being implemented in a given network.<a href="#section-8.1.18-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.18-2">Attacks on the controller plane (as described in the Level of Service theme; see <a href="#LevelOfServiceTheme" class="xref">Section 8.1.16</a>) and Delay and Time attacks (as described in the
Bounded Latency theme; see <a href="#BoundedLatencyTheme" class="xref">Section 8.1.17</a>) both
apply here.<a href="#section-8.1.18-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.19">
<h4 id="name-bounded-jitter-latency-vari">
<a href="#section-8.1.19" class="section-number selfRef">8.1.19. </a><a href="#name-bounded-jitter-latency-vari" class="section-name selfRef">Bounded Jitter (Latency Variation)</a>
</h4>
<p id="section-8.1.19-1">DetNet is expected to provide bounded jitter (packet-to-packet latency variation).<a href="#section-8.1.19-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.19-2">Delay attacks can cause packets to vary in their arrival times, resulting in
packet-to-packet latency variation, thereby violating the jitter specification.<a href="#section-8.1.19-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.20">
<h4 id="name-symmetrical-path-delays">
<a href="#section-8.1.20" class="section-number selfRef">8.1.20. </a><a href="#name-symmetrical-path-delays" class="section-name selfRef">Symmetrical Path Delays</a>
</h4>
<p id="section-8.1.20-1">Some applications would like to specify that the transit delay time values be equal for
both the transmit and return paths.<a href="#section-8.1.20-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.20-2">Delay attacks can cause path delays to materially differ between paths.<a href="#section-8.1.20-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.20-3">Time-Synchronization attacks can corrupt the time reference of the system, resulting in
path delays that may be perceived to be different (with respect to the "correct" time
reference) even if they are not materially different.<a href="#section-8.1.20-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.21">
<h4 id="name-reliability-and-availabilit">
<a href="#section-8.1.21" class="section-number selfRef">8.1.21. </a><a href="#name-reliability-and-availabilit" class="section-name selfRef">Reliability and Availability</a>
</h4>
<p id="section-8.1.21-1">DetNet-based systems are expected to be implemented with essentially arbitrarily high
availability (for example, 99.9999% up time, or even 12 nines). The intent is that the
DetNet designs should not make any assumptions about the level of reliability and
availability that may be required of a given system and should define parameters for
communicating these kinds of metrics within the network.<a href="#section-8.1.21-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.21-2">Any attack on the system, of any type, can affect its overall reliability and
availability; thus, in the mapping table (<a href="#ThemeAttackMapping" class="xref">Table 5</a>), we have marked every attack. Since every DetNet depends to a
greater or lesser degree on reliability and availability, this essentially means that
all networks have to mitigate all attacks, which to a greater or lesser degree defeats
the purpose of associating attacks with use cases. It also underscores the difficulty of
designing "extremely high reliability" networks.<a href="#section-8.1.21-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.21-3">In practice, network designers can adopt a risk-based approach in which only those
attacks are mitigated whose potential cost is higher than the cost of mitigation.<a href="#section-8.1.21-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.22">
<h4 id="name-redundant-paths">
<a href="#section-8.1.22" class="section-number selfRef">8.1.22. </a><a href="#name-redundant-paths" class="section-name selfRef">Redundant Paths</a>
</h4>
<p id="section-8.1.22-1">This document expects that each DetNet system will be implemented to some essentially
arbitrary level of reliability and/or availability, depending on the use case. A
strategy used by DetNet for providing extraordinarily high levels of reliability when
justified is to provide redundant paths between which traffic can be seamlessly
switched, all the while maintaining the required performance of that system.<a href="#section-8.1.22-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.22-2">Replication-related attacks are by definition applicable here. Controller plane attacks
can also interfere with the configuration of redundant paths.<a href="#section-8.1.22-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.23">
<h4 id="name-security-measures">
<a href="#section-8.1.23" class="section-number selfRef">8.1.23. </a><a href="#name-security-measures" class="section-name selfRef">Security Measures</a>
</h4>
<p id="section-8.1.23-1">If any of the security mechanisms that protect the DetNet are attacked or subverted,
this can result in malfunction of the network. Thus, the security systems themselves
need to be robust against attacks.<a href="#section-8.1.23-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.23-2">The general topic of protection of security mechanisms is not unique to DetNet; it is
identical to the case of securing any security mechanism for any network. This document
addresses these concerns only to the extent that they are unique to DetNet.<a href="#section-8.1.23-2" class="pilcrow">ΒΆ</a></p>
</section>
</section>
<section id="section-8.2">
<h3 id="name-summary-of-attack-types-per">
<a href="#section-8.2" class="section-number selfRef">8.2. </a><a href="#name-summary-of-attack-types-per" class="section-name selfRef">Summary of Attack Types per Use Case Common Theme</a>
</h3>
<p id="section-8.2-1">The List of Attacks table (<a href="#ThreatList" class="xref">Table 4</a>) lists the
attacks described in <a href="#ThreatSection" class="xref">Section 5</a>, <a href="#ThreatSection" class="xref">Security Threats</a>, assigning a number to each type of attack. That
number is then used as a short form identifier for the attack in <a href="#ThemeAttackMapping" class="xref">Table 5</a>, Mapping between Themes and Attacks.<a href="#section-8.2-1" class="pilcrow">ΒΆ</a></p>
<span id="name-list-of-attacks"></span><div id="ThreatList">
<table class="center" id="table-4">
<caption>
<a href="#table-4" class="selfRef">Table 4</a>:
<a href="#name-list-of-attacks" class="selfRef">List of Attacks</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1"></th>
<th class="text-left" rowspan="1" colspan="1">Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">1</td>
<td class="text-left" rowspan="1" colspan="1">Delay Attack</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">2</td>
<td class="text-left" rowspan="1" colspan="1">DetNet Flow Modification or Spoofing</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">3</td>
<td class="text-left" rowspan="1" colspan="1">Inter-segment Attack </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">4</td>
<td class="text-left" rowspan="1" colspan="1">Replication: Increased Attack Surface</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">5</td>
<td class="text-left" rowspan="1" colspan="1">Replication-Related Header Manipulation</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">6</td>
<td class="text-left" rowspan="1" colspan="1">Path Manipulation</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">7</td>
<td class="text-left" rowspan="1" colspan="1">Path Choice: Increased Attack Surface</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">8</td>
<td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Modification</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">9</td>
<td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Injection</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">10</td>
<td class="text-left" rowspan="1" colspan="1">Reconnaissance</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">11</td>
<td class="text-left" rowspan="1" colspan="1">Attacks on Time-Synchronization Mechanisms</td>
</tr>
</tbody>
</table>
</div>
<p id="section-8.2-3">The Mapping between Themes and Attacks table (<a href="#ThemeAttackMapping" class="xref">Table 5</a>) maps the use case themes of <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span> (as also enumerated in this document) to the attacks of <a href="#ThreatList" class="xref">Table 4</a>. Each row specifies a theme, and the attacks relevant to this theme
are marked with a "+". The row items that have no threats associated with them are
included in the table for completeness of the list of Use Case Common Themes and do not
have DetNet-specific threats associated with them.<a href="#section-8.2-3" class="pilcrow">ΒΆ</a></p>
<span id="name-mapping-between-themes-and-"></span><div id="ThemeAttackMapping">
<table class="center" id="table-5">
<caption>
<a href="#table-5" class="selfRef">Table 5</a>:
<a href="#name-mapping-between-themes-and-" class="selfRef">Mapping between Themes and Attacks</a>
</caption>
<thead>
<tr>
<th class="text-center" rowspan="2" colspan="1">Theme</th>
<th class="text-center" rowspan="1" colspan="11">Attack</th>
</tr>
<tr>
<th class="text-center" rowspan="1" colspan="1">1</th>
<th class="text-center" rowspan="1" colspan="1">2</th>
<th class="text-center" rowspan="1" colspan="1">3</th>
<th class="text-center" rowspan="1" colspan="1">4</th>
<th class="text-center" rowspan="1" colspan="1">5</th>
<th class="text-center" rowspan="1" colspan="1">6</th>
<th class="text-center" rowspan="1" colspan="1">7</th>
<th class="text-center" rowspan="1" colspan="1">8</th>
<th class="text-center" rowspan="1" colspan="1">9</th>
<th class="text-center" rowspan="1" colspan="1">10</th>
<th class="text-center" rowspan="1" colspan="1">11</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">Network Layer - AVB/TSN Eth.</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Central Administration</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Hot Swap</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Data Flow Information Models</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">L2 and L3 Integration</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">End-to-End Delivery</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Proprietary Deterministic Ethernet Networks</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Replacement for Proprietary Fieldbuses</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Deterministic vs. Best-Effort Traffic</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Deterministic Flows</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Unused Reserved Bandwidth</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Interoperability</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Cost Reductions</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Insufficiently Secure Components</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">DetNet Network Size</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Multiple Hops</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Level of Service</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Bounded Latency</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Low Latency</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Bounded Jitter</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Symmetric Path Delays</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Reliability and Availability</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Redundant Paths</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1">+</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Security Measures</td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
<td class="text-left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</div>
</section>
</section>
<section id="section-9">
<h2 id="name-security-considerations-for-">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-security-considerations-for-" class="section-name selfRef">Security Considerations for OAM Traffic</a>
</h2>
<p id="section-9-1">This section considers DetNet-specific security considerations for packet traffic that is
generated and transmitted over a DetNet as part of OAM (Operations, Administration, and
Maintenance). For the purposes of this discussion, OAM traffic falls into one of two basic
types:<a href="#section-9-1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-9-2.1">OAM traffic generated by the network itself. The additional bandwidth required for such
packets is added by the network administration, presumably transparent to the customer.
Security considerations for such traffic are not DetNet specific (apart from such traffic
being subject to the same DetNet-specific security considerations as any other DetNet data
flow) and are thus not covered in this document.<a href="#section-9-2.1" class="pilcrow">ΒΆ</a>
</li>
<li class="normal" id="section-9-2.2">OAM traffic generated by the customer. From a DetNet security point of view, DetNet
security considerations for such traffic are exactly the same as for any other customer
data flows.<a href="#section-9-2.2" class="pilcrow">ΒΆ</a>
</li>
</ul>
<p id="section-9-3">From the perspective of an attack, OAM traffic is indistinguishable from DetNet traffic,
and the network needs to be secure against injection, removal, or modification of traffic of
any kind, including OAM traffic. A DetNet is sensitive to any form of packet injection,
removal, or manipulation, and in this respect DetNet OAM traffic is no different. Techniques
for securing a DetNet against these threats have been discussed elsewhere in this
document.<a href="#section-9-3" class="pilcrow">ΒΆ</a></p>
</section>
<div id="TechnologySpecificThreats">
<section id="section-10">
<h2 id="name-detnet-technology-specific-">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-detnet-technology-specific-" class="section-name selfRef">DetNet Technology-Specific Threats</a>
</h2>
<p id="section-10-1">
<a href="#ThreatSection" class="xref">Section 5</a>, <a href="#ThreatSection" class="xref">Security Threats</a>, describes threats that are
independent of a DetNet implementation. This section considers threats
specifically related to the IP- and MPLS-specific aspects of DetNet
implementations.<a href="#section-10-1" class="pilcrow">ΒΆ</a></p>
<p id="section-10-2">The primary security considerations for the data plane specifically
are to maintain the integrity of the data and the delivery of the
associated DetNet service traversing the DetNet network.<a href="#section-10-2" class="pilcrow">ΒΆ</a></p>
<p id="section-10-3">The primary relevant differences between IP and MPLS implementations
are in flow identification and OAM methodologies.<a href="#section-10-3" class="pilcrow">ΒΆ</a></p>
<p id="section-10-4">As noted in <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>, DetNet
operates at the IP layer <span>[<a href="#RFC8939" class="xref">RFC8939</a>]</span> and
delivers service over sub-layer technologies such as MPLS <span>[<a href="#RFC8964" class="xref">RFC8964</a>]</span> and IEEE 802.1 Time-Sensitive
Networking (TSN) <span>[<a href="#RFC9023" class="xref">RFC9023</a>]</span>. Application
flows can be protected through whatever means are provided by the layer
and sub-layer technologies. For example, technology-specific encryption
may be used for IP flows (IPsec <span>[<a href="#RFC4301" class="xref">RFC4301</a>]</span>). For IP-over-Ethernet (Layer 2) flows using an
underlying sub-net, MACsec <span>[<a href="#IEEE802.1AE-2018" class="xref">IEEE802.1AE-2018</a>]</span> may be appropriate. For some use cases, packet
integrity protection without encryption may be sufficient.<a href="#section-10-4" class="pilcrow">ΒΆ</a></p>
<p id="section-10-5">However, if the DetNet nodes cannot decrypt IPsec traffic, then
DetNet flow identification for encrypted IP traffic flows must be
performed in a different way than it would be for unencrypted IP DetNet
flows. The DetNet IP data plane identifies unencrypted flows via a
6-tuple that consists of two IP addresses, the transport protocol ID,
two transport protocol port numbers, and the DSCP in the IP header. When
IPsec is used, the transport header is encrypted and the next protocol
ID is an IPsec protocol, usually Encapsulating Security Payload (ESP),
and not a transport protocol, leaving only three components of the
6-tuple, which are the two IP addresses and the DSCP. If the IPsec
sessions are established by a controller, then this controller could
also transmit (in the clear) the Security Parameter Index (SPI) and thus
the SPI could be used (in addition to the pair of IP addresses) for flow
identification. Identification of DetNet flows over IPsec is further
discussed in <span><a href="https://www.rfc-editor.org/rfc/rfc8939#section-5.1.2.3" class="relref">Section 5.1.2.3</a> of [<a href="#RFC8939" class="xref">RFC8939</a>]</span>.<a href="#section-10-5" class="pilcrow">ΒΆ</a></p>
<p id="section-10-6">Sections below discuss threats specific to IP and MPLS in more detail.<a href="#section-10-6" class="pilcrow">ΒΆ</a></p>
<section id="section-10.1">
<h3 id="name-ip">
<a href="#section-10.1" class="section-number selfRef">10.1. </a><a href="#name-ip" class="section-name selfRef">IP</a>
</h3>
<p id="section-10.1-1">IP has a long history of security considerations and architectural protection mechanisms.
From a data plane perspective, DetNet does not add or modify any IP header information, so
the carriage of DetNet traffic over an IP data plane does not introduce any new security
issues that were not there before, apart from those already described in the
data-plane-independent threats section (<a href="#ThreatSection" class="xref">Section 5</a>).<a href="#section-10.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-10.1-2">Thus, the security considerations for a DetNet based on an IP data plane are purely
inherited from the rich IP security literature and code/application base, and the
data-plane-independent section of this document.<a href="#section-10.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-10.1-3">Maintaining security for IP segments of a DetNet may be more challenging than for the
MPLS segments of the network given that the IP segments of the network may reach the edges
of the network, which are more likely to involve interaction with potentially malevolent
outside actors. Conversely, MPLS is inherently more secure than IP since it is internal to
routers and it is well known how to protect it from outside influence.<a href="#section-10.1-3" class="pilcrow">ΒΆ</a></p>
<p id="section-10.1-4">Another way to look at DetNet IP security is to consider it in the light of VPN security.
As an industry, we have a lot of experience with VPNs running through networks with other
VPNs -- it is well known how to secure the network for that. However, for a DetNet, we
have the additional subtlety that any possible interaction of one packet with another can
have a potentially deleterious effect on the time properties of the flows. So the network
must provide sufficient isolation between flows, for example, by protecting the forwarding
bandwidth and related resources so that they are available to DetNet traffic, by whatever
means are appropriate for the data plane of that network, for example, through the use of
queuing mechanisms.<a href="#section-10.1-4" class="pilcrow">ΒΆ</a></p>
<p id="section-10.1-5">In a VPN, bandwidth is generally guaranteed over a period of time whereas in DetNet, it
is not aggregated over time. This implies that any VPN-type protection mechanism must also
maintain the DetNet timing constraints.<a href="#section-10.1-5" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-10.2">
<h3 id="name-mpls">
<a href="#section-10.2" class="section-number selfRef">10.2. </a><a href="#name-mpls" class="section-name selfRef">MPLS</a>
</h3>
<p id="section-10.2-1">An MPLS network carrying DetNet traffic is expected to be a "well-managed" network. Given
that this is the case, it is difficult for an attacker to pass a raw MPLS-encoded packet
into a network because operators have considerable experience at excluding such packets at
the network boundaries as well as excluding MPLS packets being inserted through the use of
a tunnel.<a href="#section-10.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-2">MPLS security is discussed extensively in <span>[<a href="#RFC5920" class="xref">RFC5920</a>]</span>
("<a href="#RFC5920" class="xref">Security Framework for MPLS and GMPLS Networks</a>") to which the reader is referred.<a href="#section-10.2-2" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-3">
<span>[<a href="#RFC6941" class="xref">RFC6941</a>]</span> builds on <span>[<a href="#RFC5920" class="xref">RFC5920</a>]</span> by providing additional security considerations that are applicable
to the MPLS-TP extensions appropriate to the MPLS Transport Profile <span>[<a href="#RFC5921" class="xref">RFC5921</a>]</span> and thus to the operation of DetNet over some types of MPLS network.<a href="#section-10.2-3" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-4">
<span>[<a href="#RFC5921" class="xref">RFC5921</a>]</span> introduces to MPLS new Operations,
Administration, and Maintenance (OAM) capabilities; a transport-oriented path protection
mechanism; and strong emphasis on static provisioning supported by network management
systems.<a href="#section-10.2-4" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-5">The operation of DetNet over an MPLS network builds on MPLS and pseudowire encapsulation.
Thus, for guidance on securing the DetNet elements of DetNet over MPLS, the reader is also
referred to the security considerations of <span>[<a href="#RFC4385" class="xref">RFC4385</a>]</span>,
<span>[<a href="#RFC5586" class="xref">RFC5586</a>]</span>, <span>[<a href="#RFC3985" class="xref">RFC3985</a>]</span>,
<span>[<a href="#RFC6073" class="xref">RFC6073</a>]</span>, and <span>[<a href="#RFC6478" class="xref">RFC6478</a>]</span>.<a href="#section-10.2-5" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-6">Having attended to the conventional aspects of network security, it is necessary to
attend to the dynamic aspects. The closest experience that the IETF has with securing
protocols that are sensitive to manipulation of delay are the two-way time transfer (TWTT)
protocols, which are NTP <span>[<a href="#RFC5905" class="xref">RFC5905</a>]</span> and the Precision Time
Protocol <span>[<a href="#IEEE1588" class="xref">IEEE1588</a>]</span>. The security requirements for these
are described in <span>[<a href="#RFC7384" class="xref">RFC7384</a>]</span>.<a href="#section-10.2-6" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-7">One particular problem that has been observed in operational tests of TWTT protocols is
the ability for two closely but not completely synchronized flows to beat and cause a
sudden phase hit to one of the flows. This can be mitigated by the careful use of a
scheduling system in the underlying packet transport.<a href="#section-10.2-7" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-8">Some investigations into protection of MPLS systems against dynamic attacks exist, such
as <span>[<a href="#I-D.ietf-mpls-opportunistic-encrypt" class="xref">MPLS-OPP-ENCRYPT</a>]</span>; perhaps
deployment of DetNets will encourage additional such investigations.<a href="#section-10.2-8" class="pilcrow">ΒΆ</a></p>
</section>
</section>
</div>
<div id="IANA">
<section id="section-11">
<h2 id="name-iana-considerations">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-11-1">This document has no IANA actions.<a href="#section-11-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="Security">
<section id="section-12">
<h2 id="name-security-considerations">
<a href="#section-12" class="section-number selfRef">12. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-12-1">The security considerations of DetNet networks are presented throughout this document.<a href="#section-12-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="Privacy">
<section id="section-13">
<h2 id="name-privacy-considerations">
<a href="#section-13" class="section-number selfRef">13. </a><a href="#name-privacy-considerations" class="section-name selfRef">Privacy Considerations</a>
</h2>
<p id="section-13-1">Privacy in the context of DetNet is maintained by the base technologies specific to the
DetNet and user traffic. For example, TSN can use MACsec, IP can use IPsec, and applications
can use IP transport protocol-provided methods, e.g., TLS and DTLS. MPLS typically uses
L2/L3 VPNs combined with the previously mentioned privacy methods.<a href="#section-13-1" class="pilcrow">ΒΆ</a></p>
<p id="section-13-2">However, note that reconnaissance threats such as traffic analysis and monitoring of
electrical side channels can still cause there to be privacy considerations even when
traffic is encrypted.<a href="#section-13-2" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<section id="section-14">
<h2 id="name-references">
<a href="#section-14" class="section-number selfRef">14. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-14.1">
<h3 id="name-normative-references">
<a href="#section-14.1" class="section-number selfRef">14.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC8655">[RFC8655]</dt>
<dd>
<span class="refAuthor">Finn, N.</span>, <span class="refAuthor">Thubert, P.</span>, <span class="refAuthor">Varga, B.</span>, and <span class="refAuthor">J. Farkas</span>, <span class="refTitle">"Deterministic Networking Architecture"</span>, <span class="seriesInfo">RFC 8655</span>, <span class="seriesInfo">DOI 10.17487/RFC8655</span>, <time datetime="2019-10" class="refDate">October 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8655">https://www.rfc-editor.org/info/rfc8655</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8938">[RFC8938]</dt>
<dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Malis, A.</span>, and <span class="refAuthor">S. Bryant</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane Framework"</span>, <span class="seriesInfo">RFC 8938</span>, <span class="seriesInfo">DOI 10.17487/RFC8938</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8938">https://www.rfc-editor.org/info/rfc8938</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8939">[RFC8939]</dt>
<dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Fedyk, D.</span>, and <span class="refAuthor">S. Bryant</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane: IP"</span>, <span class="seriesInfo">RFC 8939</span>, <span class="seriesInfo">DOI 10.17487/RFC8939</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8939">https://www.rfc-editor.org/info/rfc8939</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8964">[RFC8964]</dt>
<dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Malis, A.</span>, <span class="refAuthor">Bryant, S.</span>, and <span class="refAuthor">J. Korhonen</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane: MPLS"</span>, <span class="seriesInfo">RFC 8964</span>, <span class="seriesInfo">DOI 10.17487/RFC8964</span>, <time datetime="2021-01" class="refDate">January 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8964">https://www.rfc-editor.org/info/rfc8964</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-14.2">
<h3 id="name-informative-references">
<a href="#section-14.2" class="section-number selfRef">14.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="ARINC664P7">[ARINC664P7]</dt>
<dd>
<span class="refAuthor">ARINC</span>, <span class="refTitle">"Aircraft Data Network Part 7 Avionics Full-Duplex Switched Ethernet Network"</span>, <span class="seriesInfo">ARINC 664 P7</span>, <time datetime="2009-09" class="refDate">September 2009</time>. </dd>
<dd class="break"></dd>
<dt id="BCP107">[BCP107]</dt>
<dd>
<div class="refInstance" id="RFC4107">
<span class="refAuthor">Bellovin, S.</span> and <span class="refAuthor">R. Housley</span>, <span class="refTitle">"Guidelines for Cryptographic Key Management"</span>, <span class="seriesInfo">BCP 107</span>, <span class="seriesInfo">RFC 4107</span>, <time datetime="2005-06" class="refDate">June 2005</time>. </div>
<span><<a href="https://www.rfc-editor.org/info/bcp107">https://www.rfc-editor.org/info/bcp107</a>></span>
</dd>
<dd class="break"></dd>
<dt id="BCP72">[BCP72]</dt>
<dd>
<div class="refInstance" id="RFC3552">
<span class="refAuthor">Rescorla, E.</span> and <span class="refAuthor">B. Korver</span>, <span class="refTitle">"Guidelines for Writing RFC Text on Security Considerations"</span>, <span class="seriesInfo">BCP 72</span>, <span class="seriesInfo">RFC 3552</span>, <time datetime="2003-07" class="refDate">July 2003</time>. </div>
<span><<a href="https://www.rfc-editor.org/info/bcp72">https://www.rfc-editor.org/info/bcp72</a>></span>
</dd>
<dd class="break"></dd>
<dt id="I-D.ietf-detnet-ip-oam">[DETNET-IP-OAM]</dt>
<dd>
<span class="refAuthor">Mirsky, G.</span>, <span class="refAuthor">Chen, M.</span>, and <span class="refAuthor">D. Black</span>, <span class="refTitle">"Operations, Administration and Maintenance (OAM) for Deterministic Networks (DetNet) with IP Data Plane"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-detnet-ip-oam-02</span>, <time datetime="2021-03-30" class="refDate">30 March 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-detnet-ip-oam-02">https://datatracker.ietf.org/doc/html/draft-ietf-detnet-ip-oam-02</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-detnet-mpls-oam">[DETNET-MPLS-OAM]</dt>
<dd>
<span class="refAuthor">Mirsky, G.</span> and <span class="refAuthor">M. Chen</span>, <span class="refTitle">"Operations, Administration and Maintenance (OAM) for Deterministic Networks (DetNet) with MPLS Data Plane"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-detnet-mpls-oam-03</span>, <time datetime="2021-03-30" class="refDate">30 March 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-detnet-mpls-oam-03">https://datatracker.ietf.org/doc/html/draft-ietf-detnet-mpls-oam-03</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.varga-detnet-service-model">[DETNET-SERVICE-MODEL]</dt>
<dd>
<span class="refAuthor">Varga, B., Ed.</span> and <span class="refAuthor">J. Farkas</span>, <span class="refTitle">"DetNet Service Model"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-varga-detnet-service-model-02</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-varga-detnet-service-model-02">https://datatracker.ietf.org/doc/html/draft-varga-detnet-service-model-02</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-detnet-yang">[DETNET-YANG]</dt>
<dd>
<span class="refAuthor">Geng, X.</span>, <span class="refAuthor">Chen, M.</span>, <span class="refAuthor">Ryoo, Y.</span>, <span class="refAuthor">Fedyk, D.</span>, <span class="refAuthor">Rahman, R.</span>, and <span class="refAuthor">Z. Li</span>, <span class="refTitle">"Deterministic Networking (DetNet) YANG Model"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-detnet-yang-12</span>, <time datetime="2021-05-19" class="refDate">19 May 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-detnet-yang-12">https://datatracker.ietf.org/doc/html/draft-ietf-detnet-yang-12</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE1588">[IEEE1588]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE 1588 Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems"</span>, <span class="seriesInfo">IEEE Std. 1588-2008</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2008.4579760</span>, <time datetime="2008-07" class="refDate">July 2008</time>, <span><<a href="https://doi.org/10.1109/IEEESTD.2008.4579760">https://doi.org/10.1109/IEEESTD.2008.4579760</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.1AE-2018">[IEEE802.1AE-2018]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and metropolitan area networks-Media Access Control (MAC) Security"</span>, <span class="seriesInfo">IEEE Std. 802.1AE-2018</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2018.8585421</span>, <time datetime="2018-12" class="refDate">December 2018</time>, <span><<a href="https://ieeexplore.ieee.org/document/8585421">https://ieeexplore.ieee.org/document/8585421</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.1BA">[IEEE802.1BA]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and metropolitan area networks--Audio Video Bridging (AVB) Systems"</span>, <span class="seriesInfo">IEEE Std. 802.1BA-2011</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2011.6032690</span>, <time datetime="2011-09" class="refDate">September 2011</time>, <span><<a href="https://ieeexplore.ieee.org/document/6032690">https://ieeexplore.ieee.org/document/6032690</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.1Q">[IEEE802.1Q]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and metropolitan area networks--Bridges and Bridged Networks"</span>, <span class="seriesInfo">IEEE Std. 802.1Q-2014</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2014.6991462</span>, <time datetime="2014-12" class="refDate">December 2014</time>, <span><<a href="https://ieeexplore.ieee.org/document/6991462">https://ieeexplore.ieee.org/document/6991462</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.1Qbv-2015">[IEEE802.1Qbv-2015]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and metropolitan area networks -- Bridges and Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic"</span>, <span class="seriesInfo">IEEE Std. 802.1Qbv-2015</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2016.8613095</span>, <time datetime="2016-03" class="refDate">March 2016</time>, <span><<a href="https://ieeexplore.ieee.org/document/8613095">https://ieeexplore.ieee.org/document/8613095</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.1Qch-2017">[IEEE802.1Qch-2017]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and metropolitan area networks--Bridges and Bridged Networks--Amendment 29: Cyclic Queuing and Forwarding"</span>, <span class="seriesInfo">IEEE Std. 802.1Qch-2017</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2017.7961303</span>, <time datetime="2017-06" class="refDate">June 2017</time>, <span><<a href="https://ieeexplore.ieee.org/document/7961303">https://ieeexplore.ieee.org/document/7961303</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IETF-YANG-SEC">[IETF-YANG-SEC]</dt>
<dd>
<span class="refAuthor">IETF</span>, <span class="refTitle">"YANG module security considerations"</span>, <time datetime="2018-10" class="refDate">October 2018</time>, <span><<a href="https://trac.ietf.org/trac/ops/wiki/yang-security-guidelines">https://trac.ietf.org/trac/ops/wiki/yang-security-guidelines</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-ipsecme-g-ikev2">[IPSECME-G-IKEV2]</dt>
<dd>
<span class="refAuthor">Smyslov, V.</span> and <span class="refAuthor">B. Weis</span>, <span class="refTitle">"Group Key Management using IKEv2"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-ipsecme-g-ikev2-02</span>, <time datetime="2021-01-11" class="refDate">11 January 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-g-ikev2-02">https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-g-ikev2-02</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IT-DEF">[IT-DEF]</dt>
<dd>
<span class="refAuthor">Wikipedia</span>, <span class="refTitle">"Information technology"</span>, <time datetime="2020-03" class="refDate">March 2020</time>, <span><<a href="https://en.wikiquote.org/w/index.php?title=Information_technology&oldid=2749907">https://en.wikiquote.org/w/index.php?title=Information_technology&oldid=2749907</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-mpls-opportunistic-encrypt">[MPLS-OPP-ENCRYPT]</dt>
<dd>
<span class="refAuthor">Farrel, A.</span> and <span class="refAuthor">S. Farrell</span>, <span class="refTitle">"Opportunistic Security in MPLS Networks"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-mpls-opportunistic-encrypt-03</span>, <time datetime="2017-03-28" class="refDate">28 March 2017</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-mpls-opportunistic-encrypt-03">https://datatracker.ietf.org/doc/html/draft-ietf-mpls-opportunistic-encrypt-03</a>></span>. </dd>
<dd class="break"></dd>
<dt id="NS-DEF">[NS-DEF]</dt>
<dd>
<span class="refAuthor">Wikipedia</span>, <span class="refTitle">"Network segmentation"</span>, <time datetime="2020-12" class="refDate">December 2020</time>, <span><<a href="https://en.wikipedia.org/w/index.php?title=Network_segmentation&oldid=993163264">https://en.wikipedia.org/w/index.php?title=Network_segmentation&oldid=993163264</a>></span>. </dd>
<dd class="break"></dd>
<dt id="OT-DEF">[OT-DEF]</dt>
<dd>
<span class="refAuthor">Wikipedia</span>, <span class="refTitle">"Operational technology"</span>, <time datetime="2021-03" class="refDate">March 2021</time>, <span><<a href="https://en.wikipedia.org/w/index.php?title=Operational_technology&oldid=1011704361">https://en.wikipedia.org/w/index.php?title=Operational_technology&oldid=1011704361</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2474">[RFC2474]</dt>
<dd>
<span class="refAuthor">Nichols, K.</span>, <span class="refAuthor">Blake, S.</span>, <span class="refAuthor">Baker, F.</span>, and <span class="refAuthor">D. Black</span>, <span class="refTitle">"Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"</span>, <span class="seriesInfo">RFC 2474</span>, <span class="seriesInfo">DOI 10.17487/RFC2474</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2474">https://www.rfc-editor.org/info/rfc2474</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2475">[RFC2475]</dt>
<dd>
<span class="refAuthor">Blake, S.</span>, <span class="refAuthor">Black, D.</span>, <span class="refAuthor">Carlson, M.</span>, <span class="refAuthor">Davies, E.</span>, <span class="refAuthor">Wang, Z.</span>, and <span class="refAuthor">W. Weiss</span>, <span class="refTitle">"An Architecture for Differentiated Services"</span>, <span class="seriesInfo">RFC 2475</span>, <span class="seriesInfo">DOI 10.17487/RFC2475</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2475">https://www.rfc-editor.org/info/rfc2475</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3985">[RFC3985]</dt>
<dd>
<span class="refAuthor">Bryant, S., Ed.</span> and <span class="refAuthor">P. Pate, Ed.</span>, <span class="refTitle">"Pseudo Wire Emulation Edge-to-Edge (PWE3) Architecture"</span>, <span class="seriesInfo">RFC 3985</span>, <span class="seriesInfo">DOI 10.17487/RFC3985</span>, <time datetime="2005-03" class="refDate">March 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3985">https://www.rfc-editor.org/info/rfc3985</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4253">[RFC4253]</dt>
<dd>
<span class="refAuthor">Ylonen, T.</span> and <span class="refAuthor">C. Lonvick, Ed.</span>, <span class="refTitle">"The Secure Shell (SSH) Transport Layer Protocol"</span>, <span class="seriesInfo">RFC 4253</span>, <span class="seriesInfo">DOI 10.17487/RFC4253</span>, <time datetime="2006-01" class="refDate">January 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4253">https://www.rfc-editor.org/info/rfc4253</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4301">[RFC4301]</dt>
<dd>
<span class="refAuthor">Kent, S.</span> and <span class="refAuthor">K. Seo</span>, <span class="refTitle">"Security Architecture for the Internet Protocol"</span>, <span class="seriesInfo">RFC 4301</span>, <span class="seriesInfo">DOI 10.17487/RFC4301</span>, <time datetime="2005-12" class="refDate">December 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4301">https://www.rfc-editor.org/info/rfc4301</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4302">[RFC4302]</dt>
<dd>
<span class="refAuthor">Kent, S.</span>, <span class="refTitle">"IP Authentication Header"</span>, <span class="seriesInfo">RFC 4302</span>, <span class="seriesInfo">DOI 10.17487/RFC4302</span>, <time datetime="2005-12" class="refDate">December 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4302">https://www.rfc-editor.org/info/rfc4302</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4385">[RFC4385]</dt>
<dd>
<span class="refAuthor">Bryant, S.</span>, <span class="refAuthor">Swallow, G.</span>, <span class="refAuthor">Martini, L.</span>, and <span class="refAuthor">D. McPherson</span>, <span class="refTitle">"Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN"</span>, <span class="seriesInfo">RFC 4385</span>, <span class="seriesInfo">DOI 10.17487/RFC4385</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4385">https://www.rfc-editor.org/info/rfc4385</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4432">[RFC4432]</dt>
<dd>
<span class="refAuthor">Harris, B.</span>, <span class="refTitle">"RSA Key Exchange for the Secure Shell (SSH) Transport Layer Protocol"</span>, <span class="seriesInfo">RFC 4432</span>, <span class="seriesInfo">DOI 10.17487/RFC4432</span>, <time datetime="2006-03" class="refDate">March 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4432">https://www.rfc-editor.org/info/rfc4432</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5586">[RFC5586]</dt>
<dd>
<span class="refAuthor">Bocci, M., Ed.</span>, <span class="refAuthor">Vigoureux, M., Ed.</span>, and <span class="refAuthor">S. Bryant, Ed.</span>, <span class="refTitle">"MPLS Generic Associated Channel"</span>, <span class="seriesInfo">RFC 5586</span>, <span class="seriesInfo">DOI 10.17487/RFC5586</span>, <time datetime="2009-06" class="refDate">June 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5586">https://www.rfc-editor.org/info/rfc5586</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5880">[RFC5880]</dt>
<dd>
<span class="refAuthor">Katz, D.</span> and <span class="refAuthor">D. Ward</span>, <span class="refTitle">"Bidirectional Forwarding Detection (BFD)"</span>, <span class="seriesInfo">RFC 5880</span>, <span class="seriesInfo">DOI 10.17487/RFC5880</span>, <time datetime="2010-06" class="refDate">June 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5880">https://www.rfc-editor.org/info/rfc5880</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5905">[RFC5905]</dt>
<dd>
<span class="refAuthor">Mills, D.</span>, <span class="refAuthor">Martin, J., Ed.</span>, <span class="refAuthor">Burbank, J.</span>, and <span class="refAuthor">W. Kasch</span>, <span class="refTitle">"Network Time Protocol Version 4: Protocol and Algorithms Specification"</span>, <span class="seriesInfo">RFC 5905</span>, <span class="seriesInfo">DOI 10.17487/RFC5905</span>, <time datetime="2010-06" class="refDate">June 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5905">https://www.rfc-editor.org/info/rfc5905</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5920">[RFC5920]</dt>
<dd>
<span class="refAuthor">Fang, L., Ed.</span>, <span class="refTitle">"Security Framework for MPLS and GMPLS Networks"</span>, <span class="seriesInfo">RFC 5920</span>, <span class="seriesInfo">DOI 10.17487/RFC5920</span>, <time datetime="2010-07" class="refDate">July 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5920">https://www.rfc-editor.org/info/rfc5920</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5921">[RFC5921]</dt>
<dd>
<span class="refAuthor">Bocci, M., Ed.</span>, <span class="refAuthor">Bryant, S., Ed.</span>, <span class="refAuthor">Frost, D., Ed.</span>, <span class="refAuthor">Levrau, L.</span>, and <span class="refAuthor">L. Berger</span>, <span class="refTitle">"A Framework for MPLS in Transport Networks"</span>, <span class="seriesInfo">RFC 5921</span>, <span class="seriesInfo">DOI 10.17487/RFC5921</span>, <time datetime="2010-07" class="refDate">July 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5921">https://www.rfc-editor.org/info/rfc5921</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6071">[RFC6071]</dt>
<dd>
<span class="refAuthor">Frankel, S.</span> and <span class="refAuthor">S. Krishnan</span>, <span class="refTitle">"IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap"</span>, <span class="seriesInfo">RFC 6071</span>, <span class="seriesInfo">DOI 10.17487/RFC6071</span>, <time datetime="2011-02" class="refDate">February 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6071">https://www.rfc-editor.org/info/rfc6071</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6073">[RFC6073]</dt>
<dd>
<span class="refAuthor">Martini, L.</span>, <span class="refAuthor">Metz, C.</span>, <span class="refAuthor">Nadeau, T.</span>, <span class="refAuthor">Bocci, M.</span>, and <span class="refAuthor">M. Aissaoui</span>, <span class="refTitle">"Segmented Pseudowire"</span>, <span class="seriesInfo">RFC 6073</span>, <span class="seriesInfo">DOI 10.17487/RFC6073</span>, <time datetime="2011-01" class="refDate">January 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6073">https://www.rfc-editor.org/info/rfc6073</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6274">[RFC6274]</dt>
<dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"Security Assessment of the Internet Protocol Version 4"</span>, <span class="seriesInfo">RFC 6274</span>, <span class="seriesInfo">DOI 10.17487/RFC6274</span>, <time datetime="2011-07" class="refDate">July 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6274">https://www.rfc-editor.org/info/rfc6274</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6478">[RFC6478]</dt>
<dd>
<span class="refAuthor">Martini, L.</span>, <span class="refAuthor">Swallow, G.</span>, <span class="refAuthor">Heron, G.</span>, and <span class="refAuthor">M. Bocci</span>, <span class="refTitle">"Pseudowire Status for Static Pseudowires"</span>, <span class="seriesInfo">RFC 6478</span>, <span class="seriesInfo">DOI 10.17487/RFC6478</span>, <time datetime="2012-05" class="refDate">May 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6478">https://www.rfc-editor.org/info/rfc6478</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6562">[RFC6562]</dt>
<dd>
<span class="refAuthor">Perkins, C.</span> and <span class="refAuthor">JM. Valin</span>, <span class="refTitle">"Guidelines for the Use of Variable Bit Rate Audio with Secure RTP"</span>, <span class="seriesInfo">RFC 6562</span>, <span class="seriesInfo">DOI 10.17487/RFC6562</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6562">https://www.rfc-editor.org/info/rfc6562</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6632">[RFC6632]</dt>
<dd>
<span class="refAuthor">Ersue, M., Ed.</span> and <span class="refAuthor">B. Claise</span>, <span class="refTitle">"An Overview of the IETF Network Management Standards"</span>, <span class="seriesInfo">RFC 6632</span>, <span class="seriesInfo">DOI 10.17487/RFC6632</span>, <time datetime="2012-06" class="refDate">June 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6632">https://www.rfc-editor.org/info/rfc6632</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6941">[RFC6941]</dt>
<dd>
<span class="refAuthor">Fang, L., Ed.</span>, <span class="refAuthor">Niven-Jenkins, B., Ed.</span>, <span class="refAuthor">Mansfield, S., Ed.</span>, and <span class="refAuthor">R. Graveman, Ed.</span>, <span class="refTitle">"MPLS Transport Profile (MPLS-TP) Security Framework"</span>, <span class="seriesInfo">RFC 6941</span>, <span class="seriesInfo">DOI 10.17487/RFC6941</span>, <time datetime="2013-04" class="refDate">April 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6941">https://www.rfc-editor.org/info/rfc6941</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7384">[RFC7384]</dt>
<dd>
<span class="refAuthor">Mizrahi, T.</span>, <span class="refTitle">"Security Requirements of Time Protocols in Packet Switched Networks"</span>, <span class="seriesInfo">RFC 7384</span>, <span class="seriesInfo">DOI 10.17487/RFC7384</span>, <time datetime="2014-10" class="refDate">October 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7384">https://www.rfc-editor.org/info/rfc7384</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7567">[RFC7567]</dt>
<dd>
<span class="refAuthor">Baker, F., Ed.</span> and <span class="refAuthor">G. Fairhurst, Ed.</span>, <span class="refTitle">"IETF Recommendations Regarding Active Queue Management"</span>, <span class="seriesInfo">BCP 197</span>, <span class="seriesInfo">RFC 7567</span>, <span class="seriesInfo">DOI 10.17487/RFC7567</span>, <time datetime="2015-07" class="refDate">July 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7567">https://www.rfc-editor.org/info/rfc7567</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7641">[RFC7641]</dt>
<dd>
<span class="refAuthor">Hartke, K.</span>, <span class="refTitle">"Observing Resources in the Constrained Application Protocol (CoAP)"</span>, <span class="seriesInfo">RFC 7641</span>, <span class="seriesInfo">DOI 10.17487/RFC7641</span>, <time datetime="2015-09" class="refDate">September 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7641">https://www.rfc-editor.org/info/rfc7641</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7748">[RFC7748]</dt>
<dd>
<span class="refAuthor">Langley, A.</span>, <span class="refAuthor">Hamburg, M.</span>, and <span class="refAuthor">S. Turner</span>, <span class="refTitle">"Elliptic Curves for Security"</span>, <span class="seriesInfo">RFC 7748</span>, <span class="seriesInfo">DOI 10.17487/RFC7748</span>, <time datetime="2016-01" class="refDate">January 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7748">https://www.rfc-editor.org/info/rfc7748</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7835">[RFC7835]</dt>
<dd>
<span class="refAuthor">Saucez, D.</span>, <span class="refAuthor">Iannone, L.</span>, and <span class="refAuthor">O. Bonaventure</span>, <span class="refTitle">"Locator/ID Separation Protocol (LISP) Threat Analysis"</span>, <span class="seriesInfo">RFC 7835</span>, <span class="seriesInfo">DOI 10.17487/RFC7835</span>, <time datetime="2016-04" class="refDate">April 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7835">https://www.rfc-editor.org/info/rfc7835</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8446">[RFC8446]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refTitle">"The Transport Layer Security (TLS) Protocol Version 1.3"</span>, <span class="seriesInfo">RFC 8446</span>, <span class="seriesInfo">DOI 10.17487/RFC8446</span>, <time datetime="2018-08" class="refDate">August 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8446">https://www.rfc-editor.org/info/rfc8446</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8578">[RFC8578]</dt>
<dd>
<span class="refAuthor">Grossman, E., Ed.</span>, <span class="refTitle">"Deterministic Networking Use Cases"</span>, <span class="seriesInfo">RFC 8578</span>, <span class="seriesInfo">DOI 10.17487/RFC8578</span>, <time datetime="2019-05" class="refDate">May 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8578">https://www.rfc-editor.org/info/rfc8578</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9016">[RFC9016]</dt>
<dd>
<span class="refAuthor">Varga, B.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Cummings, R.</span>, <span class="refAuthor">Jiang, Y.</span>, and <span class="refAuthor">D. Fedyk</span>, <span class="refTitle">"Flow and Service Information Model for Deterministic Networking (DetNet)"</span>, <span class="seriesInfo">RFC 9016</span>, <span class="seriesInfo">DOI 10.17487/RFC9016</span>, <time datetime="2021-03" class="refDate">March 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9016">https://www.rfc-editor.org/info/rfc9016</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9023">[RFC9023]</dt>
<dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Malis, A.</span>, and <span class="refAuthor">S. Bryant</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane: IP over IEEE 802.1 Time-Sensitive Networking (TSN)"</span>, <span class="seriesInfo">RFC 9023</span>, <span class="seriesInfo">DOI 10.17487/RFC9023</span>, <time datetime="2021-06" class="refDate">June 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9023">https://www.rfc-editor.org/info/rfc9023</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9025">[RFC9025]</dt>
<dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Malis, A.</span>, and <span class="refAuthor">S. Bryant</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane: MPLS over UDP/IP"</span>, <span class="seriesInfo">RFC 9025</span>, <span class="seriesInfo">DOI 10.17487/RFC9025</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9025">https://www.rfc-editor.org/info/rfc9025</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9056">[RFC9056]</dt>
<dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Fedyk, D.</span>, <span class="refAuthor">Bryant, S.</span>, and <span class="refAuthor">J. Korhonen</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane: IP over MPLS"</span>, <span class="seriesInfo">RFC 9056</span>, <span class="seriesInfo">DOI 10.17487/RFC9056</span>, <time datetime="2021-06" class="refDate">June 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9056">https://www.rfc-editor.org/info/rfc9056</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="appendix-A">
<h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
</h2>
<p id="appendix-A-1">The Editor would like to recognize the contributions of the following
individuals to this document.<a href="#appendix-A-1" class="pilcrow">ΒΆ</a></p>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Stewart Bryant</span></div>
<div dir="auto" class="left"><span class="org">Futurewei Technologies</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:sb@stewartbryant.com" class="email">sb@stewartbryant.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">David Black</span></div>
<div dir="auto" class="left"><span class="org">Dell EMC</span></div>
<div dir="auto" class="left"><span class="street-address">176 South Street</span></div>
<div dir="auto" class="left">
<span class="locality">Hopkinton</span>, <span class="region">Massachusetts</span> <span class="postal-code">01748</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Henrik Austad</span></div>
<div dir="auto" class="left"><span class="org">SINTEF Digital</span></div>
<div dir="auto" class="left"><span class="street-address">Klaebuveien 153</span></div>
<div dir="auto" class="left">
<span class="postal-code">7037</span> <span class="locality">Trondheim</span>
</div>
<div dir="auto" class="left"><span class="country-name">Norway</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:henrik@austad.us" class="email">henrik@austad.us</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">John Dowdell</span></div>
<div dir="auto" class="left"><span class="org">Airbus Defence and Space</span></div>
<div dir="auto" class="left"><span class="locality">Celtic Springs</span></div>
<div dir="auto" class="left"><span class="postal-code">Newport, NP10 8FZ</span></div>
<div dir="auto" class="left"><span class="country-name">United Kingdom</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:john.dowdell.ietf@gmail.com" class="email">john.dowdell.ietf@gmail.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Norman Finn</span></div>
<div dir="auto" class="left"><span class="street-address">3101 Rio Way</span></div>
<div dir="auto" class="left">
<span class="locality">Spring Valley</span>, <span class="region">California</span> <span class="postal-code">91977</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:nfinn@nfinnconsulting.com" class="email">nfinn@nfinnconsulting.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Subir Das</span></div>
<div dir="auto" class="left"><span class="org">Applied Communication Sciences</span></div>
<div dir="auto" class="left"><span class="street-address">150 Mount Airy Road</span></div>
<div dir="auto" class="left">
<span class="locality">Basking Ridge</span>, <span class="region">New Jersey</span> <span class="postal-code">07920</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:sdas@appcomsci.com" class="email">sdas@appcomsci.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Carsten Bormann</span></div>
<div dir="auto" class="left"><span class="org">Universitat Bremen TZI</span></div>
<div dir="auto" class="left">
<span class="postal-code">Postfach 330440</span> <span class="locality">D-28359 Bremen</span>
</div>
<div dir="auto" class="left"><span class="country-name">Germany</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:cabo@tzi.org" class="email">cabo@tzi.org</a>
</div>
</address>
</section>
<div id="authors-addresses">
<section id="appendix-B">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Ethan Grossman (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Dolby Laboratories, Inc.</span></div>
<div dir="auto" class="left"><span class="street-address">1275 Market Street</span></div>
<div dir="auto" class="left">
<span class="locality">San Francisco</span>, <span class="region">CA</span> <span class="postal-code">94103</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ethan@ieee.org" class="email">ethan@ieee.org</a>
</div>
<div class="url">
<span>URI:</span>
<a href="https://www.dolby.com" class="url">https://www.dolby.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Tal Mizrahi</span></div>
<div dir="auto" class="left"><span class="org">Huawei</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:tal.mizrahi.phd@gmail.com" class="email">tal.mizrahi.phd@gmail.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Andrew J. Hacker</span></div>
<div dir="auto" class="left"><span class="org">Thought LLC</span></div>
<div dir="auto" class="left">
<span class="locality">Harrisburg</span>, <span class="region">PA</span> </div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:andrew@thought.live" class="email">andrew@thought.live</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|