File: rfc9055.html

package info (click to toggle)
doc-rfc 20230121-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 1,609,944 kB
file content (4898 lines) | stat: -rw-r--r-- 313,977 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9055: Deterministic Networking (DetNet) Security Considerations</title>
<meta content="Ethan Grossman" name="author">
<meta content="Tal Mizrahi" name="author">
<meta content="Andrew J. Hacker" name="author">
<meta content='
       A DetNet (deterministic network) provides specific performance
      guarantees to its data flows, such as extremely low data loss rates and
      bounded latency (including bounded latency variation, i.e.,
      "jitter"). As a result, securing a DetNet requires that in addition to
      the best practice security measures taken for any mission-critical
      network, additional security measures may be needed to secure the
      intended operation of these novel service properties. 
        This document addresses DetNet-specific security considerations from
      the perspectives of both the DetNet system-level designer and component
      designer. System considerations include a taxonomy of relevant threats
      and attacks, and associations of threats versus use cases and service
      properties. Component-level considerations include ingress filtering and
      packet arrival-time violation detection. 
       This document also addresses security considerations specific to the
      IP and MPLS data plane technologies, thereby complementing the Security
      Considerations sections of those documents. 
    ' name="description">
<meta content="xml2rfc 3.9.1" name="generator">
<meta content="DetNet" name="keyword">
<meta content="security" name="keyword">
<meta content="9055" name="rfc.number">
<!-- Generator version information:
  xml2rfc 3.9.1
    Python 3.6.10
    appdirs 1.4.4
    ConfigArgParse 1.2.3
    google-i18n-address 2.3.5
    html5lib 1.0.1
    intervaltree 3.0.2
    Jinja2 2.11.2
    kitchen 1.2.6
    lxml 4.4.2
    pycairo 1.19.0
    pycountry 19.8.18
    pyflakes 2.1.1
    PyYAML 5.3.1
    requests 2.22.0
    setuptools 40.6.2
    six 1.14.0
    WeasyPrint 51
-->
<link href="rfc9055.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*

  NOTE: Changes at the bottom of this file overrides some earlier settings.

  Once the style has stabilized and has been adopted as an official RFC style,
  this can be consolidated so that style settings occur only in one place, but
  for now the contents of this file consists first of the initial CSS work as
  provided to the RFC Formatter (xml2rfc) work, followed by itemized and
  commented changes found necssary during the development of the v3
  formatters.

*/

/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */

@viewport {
  zoom: 1.0;
  width: extend-to-zoom;
}
@-ms-viewport {
  width: extend-to-zoom;
  zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
  max-width: 90%;
  margin: 1.5em auto;
  color: #222;
  background-color: #fff;
  font-size: 14px;
  font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
  line-height: 1.6;
  scroll-behavior: smooth;
}
.ears {
  display: none;
}

/* headings */
#title, h1, h2, h3, h4, h5, h6 {
  margin: 1em 0 0.5em;
  font-weight: bold;
  line-height: 1.3;
}
#title {
  clear: both;
  border-bottom: 1px solid #ddd;
  margin: 0 0 0.5em 0;
  padding: 1em 0 0.5em;
}
.author {
  padding-bottom: 4px;
}
h1 {
  font-size: 26px;
  margin: 1em 0;
}
h2 {
  font-size: 22px;
  margin-top: -20px;  /* provide offset for in-page anchors */
  padding-top: 33px;
}
h3 {
  font-size: 18px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h4 {
  font-size: 16px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h5, h6 {
  font-size: 14px;
}
#n-copyright-notice {
  border-bottom: 1px solid #ddd;
  padding-bottom: 1em;
  margin-bottom: 1em;
}
/* general structure */
p {
  padding: 0;
  margin: 0 0 1em 0;
  text-align: left;
}
div, span {
  position: relative;
}
div {
  margin: 0;
}
.alignRight.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignRight.art-text pre {
  padding: 0;
}
.alignRight {
  margin: 1em 0;
}
.alignRight > *:first-child {
  border: none;
  margin: 0;
  float: right;
  clear: both;
}
.alignRight > *:nth-child(2) {
  clear: both;
  display: block;
  border: none;
}
svg {
  display: block;
}
.alignCenter.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
  padding: 0;
}
.alignCenter {
  margin: 1em 0;
}
.alignCenter > *:first-child {
  border: none;
  /* this isn't optimal, but it's an existence proof.  PrinceXML doesn't
     support flexbox yet.
  */
  display: table;
  margin: 0 auto;
}

/* lists */
ol, ul {
  padding: 0;
  margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
  margin-left: 1em;
}
li {
  margin: 0 0 0.25em 0;
}
.ulCompact li {
  margin: 0;
}
ul.empty, .ulEmpty {
  list-style-type: none;
}
ul.empty li, .ulEmpty li {
  margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
  margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
  line-height: 100%;
  margin: 0 0 0 2em;
}

/* definition lists */
dl {
}
dl > dt {
  float: left;
  margin-right: 1em;
}
/* 
dl.nohang > dt {
  float: none;
}
*/
dl > dd {
  margin-bottom: .8em;
  min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
  margin-bottom: 0em;
}
dl > dd > dl {
  margin-top: 0.5em;
  margin-bottom: 0em;
}

/* links */
a {
  text-decoration: none;
}
a[href] {
  color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
  background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
  color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
  background-color: transparent;
  cursor: default;
} */

/* Figures */
tt, code, pre, code {
  background-color: #f9f9f9;
  font-family: 'Roboto Mono', monospace;
}
pre {
  border: 1px solid #eee;
  margin: 0;
  padding: 1em;
}
img {
  max-width: 100%;
}
figure {
  margin: 0;
}
figure blockquote {
  margin: 0.8em 0.4em 0.4em;
}
figcaption {
  font-style: italic;
  margin: 0 0 1em 0;
}
@media screen {
  pre {
    overflow-x: auto;
    max-width: 100%;
    max-width: calc(100% - 22px);
  }
}

/* aside, blockquote */
aside, blockquote {
  margin-left: 0;
  padding: 1.2em 2em;
}
blockquote {
  background-color: #f9f9f9;
  color: #111; /* Arlen: WCAG 2019 */
  border: 1px solid #ddd;
  border-radius: 3px;
  margin: 1em 0;
}
cite {
  display: block;
  text-align: right;
  font-style: italic;
}

/* tables */
table {
  width: 100%;
  margin: 0 0 1em;
  border-collapse: collapse;
  border: 1px solid #eee;
}
th, td {
  text-align: left;
  vertical-align: top;
  padding: 0.5em 0.75em;
}
th {
  text-align: left;
  background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
  background-color: #f5f5f5;
}
table caption {
  font-style: italic;
  margin: 0;
  padding: 0;
  text-align: left;
}
table p {
  /* XXX to avoid bottom margin on table row signifiers. If paragraphs should
     be allowed within tables more generally, it would be far better to select on a class. */
  margin: 0;
}

/* pilcrow */
a.pilcrow {
  color: #666; /* Arlen: AHDJ 2019 */
  text-decoration: none;
  visibility: hidden;
  user-select: none;
  -ms-user-select: none;
  -o-user-select:none;
  -moz-user-select: none;
  -khtml-user-select: none;
  -webkit-user-select: none;
  -webkit-touch-callout: none;
}
@media screen {
  aside:hover > a.pilcrow,
  p:hover > a.pilcrow,
  blockquote:hover > a.pilcrow,
  div:hover > a.pilcrow,
  li:hover > a.pilcrow,
  pre:hover > a.pilcrow {
    visibility: visible;
  }
  a.pilcrow:hover {
    background-color: transparent;
  }
}

/* misc */
hr {
  border: 0;
  border-top: 1px solid #eee;
}
.bcp14 {
  font-variant: small-caps;
}

.role {
  font-variant: all-small-caps;
}

/* info block */
#identifiers {
  margin: 0;
  font-size: 0.9em;
}
#identifiers dt {
  width: 3em;
  clear: left;
}
#identifiers dd {
  float: left;
  margin-bottom: 0;
}
#identifiers .authors .author {
  display: inline-block;
  margin-right: 1.5em;
}
#identifiers .authors .org {
  font-style: italic;
}

/* The prepared/rendered info at the very bottom of the page */
.docInfo {
  color: #666; /* Arlen: WCAG 2019 */
  font-size: 0.9em;
  font-style: italic;
  margin-top: 2em;
}
.docInfo .prepared {
  float: left;
}
.docInfo .prepared {
  float: right;
}

/* table of contents */
#toc  {
  padding: 0.75em 0 2em 0;
  margin-bottom: 1em;
}
nav.toc ul {
  margin: 0 0.5em 0 0;
  padding: 0;
  list-style: none;
}
nav.toc li {
  line-height: 1.3em;
  margin: 0.75em 0;
  padding-left: 1.2em;
  text-indent: -1.2em;
}
/* references */
.references dt {
  text-align: right;
  font-weight: bold;
  min-width: 7em;
}
.references dd {
  margin-left: 8em;
  overflow: auto;
}

.refInstance {
  margin-bottom: 1.25em;
}

.references .ascii {
  margin-bottom: 0.25em;
}

/* index */
.index ul {
  margin: 0 0 0 1em;
  padding: 0;
  list-style: none;
}
.index ul ul {
  margin: 0;
}
.index li {
  margin: 0;
  text-indent: -2em;
  padding-left: 2em;
  padding-bottom: 5px;
}
.indexIndex {
  margin: 0.5em 0 1em;
}
.index a {
  font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
  .index ul {
    -moz-column-count: 2;
    -moz-column-gap: 20px;
  }
  .index ul ul {
    -moz-column-count: 1;
    -moz-column-gap: 0;
  }
}

/* authors */
address.vcard {
  font-style: normal;
  margin: 1em 0;
}

address.vcard .nameRole {
  font-weight: 700;
  margin-left: 0;
}
address.vcard .label {
  font-family: "Noto Sans",Arial,Helvetica,sans-serif;
  margin: 0.5em 0;
}
address.vcard .type {
  display: none;
}
.alternative-contact {
  margin: 1.5em 0 1em;
}
hr.addr {
  border-top: 1px dashed;
  margin: 0;
  color: #ddd;
  max-width: calc(100% - 16px);
}

/* temporary notes */
.rfcEditorRemove::before {
  position: absolute;
  top: 0.2em;
  right: 0.2em;
  padding: 0.2em;
  content: "The RFC Editor will remove this note";
  color: #9e2a00; /* Arlen: WCAG 2019 */
  background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
  position: relative;
  padding-top: 1.8em;
  background-color: #ffd; /* Arlen: WCAG 2019 */
  border-radius: 3px;
}
.cref {
  background-color: #ffd; /* Arlen: WCAG 2019 */
  padding: 2px 4px;
}
.crefSource {
  font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
  body {
    padding-top: 2em;
  }
  #title {
    padding: 1em 0;
  }
  h1 {
    font-size: 24px;
  }
  h2 {
    font-size: 20px;
    margin-top: -18px;  /* provide offset for in-page anchors */
    padding-top: 38px;
  }
  #identifiers dd {
    max-width: 60%;
  }
  #toc {
    position: fixed;
    z-index: 2;
    top: 0;
    right: 0;
    padding: 0;
    margin: 0;
    background-color: inherit;
    border-bottom: 1px solid #ccc;
  }
  #toc h2 {
    margin: -1px 0 0 0;
    padding: 4px 0 4px 6px;
    padding-right: 1em;
    min-width: 190px;
    font-size: 1.1em;
    text-align: right;
    background-color: #444;
    color: white;
    cursor: pointer;
  }
  #toc h2::before { /* css hamburger */
    float: right;
    position: relative;
    width: 1em;
    height: 1px;
    left: -164px;
    margin: 6px 0 0 0;
    background: white none repeat scroll 0 0;
    box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
    content: "";
  }
  #toc nav {
    display: none;
    padding: 0.5em 1em 1em;
    overflow: auto;
    height: calc(100vh - 48px);
    border-left: 1px solid #ddd;
  }
}

/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
  body {
    max-width: 724px;
    margin: 42px auto;
    padding-left: 1.5em;
    padding-right: 29em;
  }
  #toc {
    position: fixed;
    top: 42px;
    right: 42px;
    width: 25%;
    margin: 0;
    padding: 0 1em;
    z-index: 1;
  }
  #toc h2 {
    border-top: none;
    border-bottom: 1px solid #ddd;
    font-size: 1em;
    font-weight: normal;
    margin: 0;
    padding: 0.25em 1em 1em 0;
  }
  #toc nav {
    display: block;
    height: calc(90vh - 84px);
    bottom: 0;
    padding: 0.5em 0 0;
    overflow: auto;
  }
  img { /* future proofing */
    max-width: 100%;
    height: auto;
  }
}

/* pagination */
@media print {
  body {

    width: 100%;
  }
  p {
    orphans: 3;
    widows: 3;
  }
  #n-copyright-notice {
    border-bottom: none;
  }
  #toc, #n-introduction {
    page-break-before: always;
  }
  #toc {
    border-top: none;
    padding-top: 0;
  }
  figure, pre {
    page-break-inside: avoid;
  }
  figure {
    overflow: scroll;
  }
  h1, h2, h3, h4, h5, h6 {
    page-break-after: avoid;
  }
  h2+*, h3+*, h4+*, h5+*, h6+* {
    page-break-before: avoid;
  }
  pre {
    white-space: pre-wrap;
    word-wrap: break-word;
    font-size: 10pt;
  }
  table {
    border: 1px solid #ddd;
  }
  td {
    border-top: 1px solid #ddd;
  }
}

/* This is commented out here, as the string-set: doesn't
   pass W3C validation currently */
/*
.ears thead .left {
  string-set: ears-top-left content();
}

.ears thead .center {
  string-set: ears-top-center content();
}

.ears thead .right {
  string-set: ears-top-right content();
}

.ears tfoot .left {
  string-set: ears-bottom-left content();
}

.ears tfoot .center {
  string-set: ears-bottom-center content();
}

.ears tfoot .right {
  string-set: ears-bottom-right content();
}
*/

@page :first {
  padding-top: 0;
  @top-left {
    content: normal;
    border: none;
  }
  @top-center {
    content: normal;
    border: none;
  }
  @top-right {
    content: normal;
    border: none;
  }
}

@page {
  size: A4;
  margin-bottom: 45mm;
  padding-top: 20px;
  /* The follwing is commented out here, but set appropriately by in code, as
     the content depends on the document */
  /*
  @top-left {
    content: 'Internet-Draft';
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-left {
    content: string(ears-top-left);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-center {
    content: string(ears-top-center);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-right {
    content: string(ears-top-right);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @bottom-left {
    content: string(ears-bottom-left);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-center {
    content: string(ears-bottom-center);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-right {
      content: '[Page ' counter(page) ']';
      vertical-align: top;
      border-top: solid 1px #ccc;
  }
  */

}

/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
  z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
  clear: both;
}


/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
  vertical-align: top;
}

/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
  width: 8em;
}

/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
  margin-left: 1em;
}

/* Give floating toc a background color (needed when it's a div inside section */
#toc {
  background-color: white;
}

/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
  #toc h2 a,
  #toc h2 a:link,
  #toc h2 a:focus,
  #toc h2 a:hover,
  #toc a.toplink,
  #toc a.toplink:hover {
    color: white;
    background-color: #444;
    text-decoration: none;
  }
}

/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
  #toc {
    padding: 0 0 1em 1em;
  }
}

/* Style section numbers with more space between number and title */
.section-number {
  padding-right: 0.5em;
}

/* prevent monospace from becoming overly large */
tt, code, pre, code {
  font-size: 95%;
}

/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
  line-height: 1.12;
}


/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
  float: right;
  margin-right: 0.5em;
}

/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
  float: left;
  margin-right: 1em;
}
dl.dlNewline > dt {
  float: none;
}

/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
  text-align: left;
}
table td.text-center,
table th.text-center {
  text-align: center;
}
table td.text-right,
table th.text-right {
  text-align: right;
}

/* Make the alternative author contact informatio look less like just another
   author, and group it closer with the primary author contact information */
.alternative-contact {
  margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
  margin: 0 0 0 2em;
}

/* With it being possible to set tables with alignment
  left, center, and right, { width: 100%; } does not make sense */
table {
  width: auto;
}

/* Avoid reference text that sits in a block with very wide left margin,
   because of a long floating dt label.*/
.references dd {
  overflow: visible;
}

/* Control caption placement */
caption {
  caption-side: bottom;
}

/* Limit the width of the author address vcard, so names in right-to-left
   script don't end up on the other side of the page. */

address.vcard {
  max-width: 30em;
  margin-right: auto;
}

/* For address alignment dependent on LTR or RTL scripts */
address div.left {
  text-align: left;
}
address div.right {
  text-align: right;
}

/* Provide table alignment support.  We can't use the alignX classes above
   since they do unwanted things with caption and other styling. */
table.right {
 margin-left: auto;
 margin-right: 0;
}
table.center {
 margin-left: auto;
 margin-right: auto;
}
table.left {
 margin-left: 0;
 margin-right: auto;
}

/* Give the table caption label the same styling as the figcaption */
caption a[href] {
  color: #222;
}

@media print {
  .toplink {
    display: none;
  }

  /* avoid overwriting the top border line with the ToC header */
  #toc {
    padding-top: 1px;
  }

  /* Avoid page breaks inside dl and author address entries */
  .vcard {
    page-break-inside: avoid;
  }

}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
  font-variant: small-caps;
  font-weight: bold;
  font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
 h2 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 31px;
 }
 h3 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
 h4 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
/* Float artwork pilcrow to the right */
@media screen {
  .artwork a.pilcrow {
    display: block;
    line-height: 0.7;
    margin-top: 0.15em;
  }
}
/* Make pilcrows on dd visible */
@media screen {
  dd:hover > a.pilcrow {
    visibility: visible;
  }
}
/* Make the placement of figcaption match that of a table's caption
   by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
   margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
  margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
   possibly even requiring a new line */
@media print {
  a.pilcrow {
    display: none;
  }
}
/* Styling for the external metadata */
div#external-metadata {
  background-color: #eee;
  padding: 0.5em;
  margin-bottom: 0.5em;
  display: none;
}
div#internal-metadata {
  padding: 0.5em;                       /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
  clear: both;
  margin: 0 0 -1em;
  padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
  margin-bottom: 0.25em;
  min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
  border-left: 1px solid #ddd;
  margin: 1em 0 1em 2em;
  padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
  margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
  figcaption, table caption {
    page-break-before: avoid;
  }
}
/* Font size adjustments for print */
@media print {
  body  { font-size: 10pt;      line-height: normal; max-width: 96%; }
  h1    { font-size: 1.72em;    padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
  h2    { font-size: 1.44em;    padding-top: 1.5em; } /* 1*1.2*1.2 */
  h3    { font-size: 1.2em;     padding-top: 1.5em; } /* 1*1.2 */
  h4    { font-size: 1em;       padding-top: 1.5em; }
  h5, h6 { font-size: 1em;      margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
  .artwork,
  .sourcecode {
    margin-bottom: 1em;
  }
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
  min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
  border: 1px solid #ddd;
}
td {
  border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
  background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
  #toc nav { display: none; }
  #toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
  break-after: avoid-page;
  break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
  break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode  {
  break-before: avoid-page;
  break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
  break-before: auto;
  break-inside: auto;
}
dt {
  break-before: auto;
  break-after: avoid-page;
}
dd {
  break-before: avoid-page;
  break-after: auto;
  orphans: 3;
  widows: 3
}
span.break, dd.break {
  margin-bottom: 0;
  min-height: 0;
  break-before: auto;
  break-inside: auto;
  break-after: auto;
}
/* Undo break-before ToC */
@media print {
  #toc {
    break-before: auto;
  }
}
/* Text in compact lists should not get extra bottim margin space,
   since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
 margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
  margin-bottom: 1em;                    /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
   backgrounds.  Changed to something a bit more selective. */
tt, code {
  background-color: transparent;
}
p tt, p code, li tt, li code {
  background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
   margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
  line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
  margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
  clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
  content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
  margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
  margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9055" rel="alternate">
  <link href="urn:issn:2070-1721" rel="alternate">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-detnet-security-16" rel="prev">
  </head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9055</td>
<td class="center">DetNet Security</td>
<td class="right">June 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Grossman, et al.</td>
<td class="center">Informational</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9055" class="eref">9055</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Informational</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-06" class="published">June 2021</time>
    </dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
      <div class="author-name">E. Grossman, <span class="editor">Ed.</span>
</div>
<div class="org">DOLBY</div>
</div>
<div class="author">
      <div class="author-name">T. Mizrahi</div>
<div class="org">HUAWEI</div>
</div>
<div class="author">
      <div class="author-name">A. Hacker</div>
<div class="org">THOUGHT</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9055</h1>
<h1 id="title">Deterministic Networking (DetNet) Security Considerations</h1>
<section id="section-abstract">
      <h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">A DetNet (deterministic network) provides specific performance
      guarantees to its data flows, such as extremely low data loss rates and
      bounded latency (including bounded latency variation, i.e.,
      "jitter"). As a result, securing a DetNet requires that in addition to
      the best practice security measures taken for any mission-critical
      network, additional security measures may be needed to secure the
      intended operation of these novel service properties.<a href="#section-abstract-1" class="pilcrow">ΒΆ</a></p>
<p id="section-abstract-2"> This document addresses DetNet-specific security considerations from
      the perspectives of both the DetNet system-level designer and component
      designer. System considerations include a taxonomy of relevant threats
      and attacks, and associations of threats versus use cases and service
      properties. Component-level considerations include ingress filtering and
      packet arrival-time violation detection.<a href="#section-abstract-2" class="pilcrow">ΒΆ</a></p>
<p id="section-abstract-3">This document also addresses security considerations specific to the
      IP and MPLS data plane technologies, thereby complementing the Security
      Considerations sections of those documents.<a href="#section-abstract-3" class="pilcrow">ΒΆ</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
        <h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
        </h2>
<p id="section-boilerplate.1-1">
            This document is not an Internet Standards Track specification; it is
            published for informational purposes.<a href="#section-boilerplate.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by the
            Internet Engineering Steering Group (IESG).  Not all documents
            approved by the IESG are candidates for any level of Internet
            Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <span><a href="https://www.rfc-editor.org/info/rfc9055">https://www.rfc-editor.org/info/rfc9055</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
        <h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
        </h2>
<p id="section-boilerplate.2-1">
            Copyright (c) 2021 IETF Trust and the persons identified as the
            document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
        <a href="#" onclick="scroll(0,0)" class="toplink">β–²</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
        </h2>
<nav class="toc"><ul class="ulBare toc ulEmpty compact">
<li class="ulBare toc ulEmpty compact" id="section-toc.1-1.1">
            <p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>.Β Β <a href="#name-introduction" class="xref">Introduction</a></p>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.2">
            <p id="section-toc.1-1.2.1" class="keepWithNext"><a href="#section-2" class="xref">2</a>.Β Β <a href="#name-abbreviations-and-terminolo" class="xref">Abbreviations and Terminology</a></p>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.3">
            <p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>.Β Β <a href="#name-security-considerations-for" class="xref">Security Considerations for DetNet Component Design</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1">
                <p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>.Β Β <a href="#name-resource-allocation" class="xref">Resource Allocation</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1.2.1">
                    <p id="section-toc.1-1.3.2.1.2.1.1" class="keepWithNext"><a href="#section-3.1.1" class="xref">3.1.1</a>.Β Β <a href="#name-inviolable-flows" class="xref">Inviolable Flows</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1.2.2">
                    <p id="section-toc.1-1.3.2.1.2.2.1"><a href="#section-3.1.2" class="xref">3.1.2</a>.Β Β <a href="#name-design-trade-off-considerat" class="xref">Design Trade-Off Considerations in the Use Cases Continuum</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1.2.3">
                    <p id="section-toc.1-1.3.2.1.2.3.1"><a href="#section-3.1.3" class="xref">3.1.3</a>.Β Β <a href="#name-documenting-the-security-pr" class="xref">Documenting the Security Properties of a Component</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1.2.4">
                    <p id="section-toc.1-1.3.2.1.2.4.1"><a href="#section-3.1.4" class="xref">3.1.4</a>.Β Β <a href="#name-fail-safe-component-behavio" class="xref">Fail-Safe Component Behavior</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.1.2.5">
                    <p id="section-toc.1-1.3.2.1.2.5.1"><a href="#section-3.1.5" class="xref">3.1.5</a>.Β Β <a href="#name-flow-aggregation-example" class="xref">Flow Aggregation Example</a></p>
</li>
                </ul>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.2">
                <p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>.Β Β <a href="#name-explicit-routes" class="xref">Explicit Routes</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.3">
                <p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>.Β Β <a href="#name-redundant-path-support" class="xref">Redundant Path Support</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.3.2.4">
                <p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="xref">3.4</a>.Β Β <a href="#name-timing-or-other-violation-r" class="xref">Timing (or Other) Violation Reporting</a></p>
</li>
            </ul>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.4">
            <p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.Β Β <a href="#name-detnet-security-considerati" class="xref">DetNet Security Considerations Compared with Diffserv Security Considerations</a></p>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.5">
            <p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.Β Β <a href="#name-security-threats" class="xref">Security Threats</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.1">
                <p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>.Β Β <a href="#name-threat-taxonomy" class="xref">Threat Taxonomy</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2">
                <p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>.Β Β <a href="#name-threat-analysis" class="xref">Threat Analysis</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.1">
                    <p id="section-toc.1-1.5.2.2.2.1.1"><a href="#section-5.2.1" class="xref">5.2.1</a>.Β Β <a href="#name-delay" class="xref">Delay</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.2">
                    <p id="section-toc.1-1.5.2.2.2.2.1"><a href="#section-5.2.2" class="xref">5.2.2</a>.Β Β <a href="#name-detnet-flow-modification-or" class="xref">DetNet Flow Modification or Spoofing</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.3">
                    <p id="section-toc.1-1.5.2.2.2.3.1"><a href="#section-5.2.3" class="xref">5.2.3</a>.Β Β <a href="#name-resource-segmentation-inter" class="xref">Resource Segmentation (Inter-segment Attack) Vulnerability</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.4">
                    <p id="section-toc.1-1.5.2.2.2.4.1"><a href="#section-5.2.4" class="xref">5.2.4</a>.Β Β <a href="#name-packet-replication-and-elim" class="xref">Packet Replication and Elimination</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.4.2.1">
                        <p id="section-toc.1-1.5.2.2.2.4.2.1.1"><a href="#section-5.2.4.1" class="xref">5.2.4.1</a>.Β Β <a href="#name-replication-increased-attac" class="xref">Replication: Increased Attack Surface</a></p>
</li>
                      <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.4.2.2">
                        <p id="section-toc.1-1.5.2.2.2.4.2.2.1"><a href="#section-5.2.4.2" class="xref">5.2.4.2</a>.Β Β <a href="#name-replication-related-header-" class="xref">Replication-Related Header Manipulation</a></p>
</li>
                    </ul>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.5">
                    <p id="section-toc.1-1.5.2.2.2.5.1"><a href="#section-5.2.5" class="xref">5.2.5</a>.Β Β <a href="#name-controller-plane" class="xref">Controller Plane</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.5.2.1">
                        <p id="section-toc.1-1.5.2.2.2.5.2.1.1"><a href="#section-5.2.5.1" class="xref">5.2.5.1</a>.Β Β <a href="#name-path-choice-manipulation" class="xref">Path Choice Manipulation</a></p>
</li>
                      <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.5.2.2">
                        <p id="section-toc.1-1.5.2.2.2.5.2.2.1"><a href="#section-5.2.5.2" class="xref">5.2.5.2</a>.Β Β <a href="#name-compromised-controller" class="xref">Compromised Controller</a></p>
</li>
                    </ul>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.6">
                    <p id="section-toc.1-1.5.2.2.2.6.1"><a href="#section-5.2.6" class="xref">5.2.6</a>.Β Β <a href="#name-reconnaissance" class="xref">Reconnaissance</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.2.2.7">
                    <p id="section-toc.1-1.5.2.2.2.7.1"><a href="#section-5.2.7" class="xref">5.2.7</a>.Β Β <a href="#name-time-synchronization-mechan" class="xref">Time-Synchronization Mechanisms</a></p>
</li>
                </ul>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.5.2.3">
                <p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>.Β Β <a href="#name-threat-summary" class="xref">Threat Summary</a></p>
</li>
            </ul>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.6">
            <p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.Β Β <a href="#name-security-threat-impacts" class="xref">Security Threat Impacts</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.1">
                <p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>.Β Β <a href="#name-delay-attacks" class="xref">Delay Attacks</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.1.2.1">
                    <p id="section-toc.1-1.6.2.1.2.1.1"><a href="#section-6.1.1" class="xref">6.1.1</a>.Β Β <a href="#name-data-plane-delay-attacks" class="xref">Data Plane Delay Attacks</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.1.2.2">
                    <p id="section-toc.1-1.6.2.1.2.2.1"><a href="#section-6.1.2" class="xref">6.1.2</a>.Β Β <a href="#name-controller-plane-delay-atta" class="xref">Controller Plane Delay Attacks</a></p>
</li>
                </ul>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.2">
                <p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>.Β Β <a href="#name-flow-modification-and-spoof" class="xref">Flow Modification and Spoofing</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.2.2.1">
                    <p id="section-toc.1-1.6.2.2.2.1.1"><a href="#section-6.2.1" class="xref">6.2.1</a>.Β Β <a href="#name-flow-modification" class="xref">Flow Modification</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.2.2.2">
                    <p id="section-toc.1-1.6.2.2.2.2.1"><a href="#section-6.2.2" class="xref">6.2.2</a>.Β Β <a href="#name-spoofing" class="xref">Spoofing</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.2.2.2.2.1">
                        <p id="section-toc.1-1.6.2.2.2.2.2.1.1"><a href="#section-6.2.2.1" class="xref">6.2.2.1</a>.Β Β <a href="#name-data-plane-spoofing" class="xref">Data Plane Spoofing</a></p>
</li>
                      <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.2.2.2.2.2">
                        <p id="section-toc.1-1.6.2.2.2.2.2.2.1"><a href="#section-6.2.2.2" class="xref">6.2.2.2</a>.Β Β <a href="#name-controller-plane-spoofing" class="xref">Controller Plane Spoofing</a></p>
</li>
                    </ul>
</li>
                </ul>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.3">
                <p id="section-toc.1-1.6.2.3.1"><a href="#section-6.3" class="xref">6.3</a>.Β Β <a href="#name-segmentation-attacks-inject" class="xref">Segmentation Attacks (Injection)</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.3.2.1">
                    <p id="section-toc.1-1.6.2.3.2.1.1"><a href="#section-6.3.1" class="xref">6.3.1</a>.Β Β <a href="#name-data-plane-segmentation" class="xref">Data Plane Segmentation</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.3.2.2">
                    <p id="section-toc.1-1.6.2.3.2.2.1"><a href="#section-6.3.2" class="xref">6.3.2</a>.Β Β <a href="#name-controller-plane-segmentati" class="xref">Controller Plane Segmentation</a></p>
</li>
                </ul>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.4">
                <p id="section-toc.1-1.6.2.4.1"><a href="#section-6.4" class="xref">6.4</a>.Β Β <a href="#name-replication-and-elimination" class="xref">Replication and Elimination</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.4.2.1">
                    <p id="section-toc.1-1.6.2.4.2.1.1"><a href="#section-6.4.1" class="xref">6.4.1</a>.Β Β <a href="#name-increased-attack-surface-2" class="xref">Increased Attack Surface</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.4.2.2">
                    <p id="section-toc.1-1.6.2.4.2.2.1"><a href="#section-6.4.2" class="xref">6.4.2</a>.Β Β <a href="#name-header-manipulation-at-elim" class="xref">Header Manipulation at Elimination Routers</a></p>
</li>
                </ul>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.5">
                <p id="section-toc.1-1.6.2.5.1"><a href="#section-6.5" class="xref">6.5</a>.Β Β <a href="#name-control-or-signaling-packet-m" class="xref">Control or Signaling Packet Modification</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.6">
                <p id="section-toc.1-1.6.2.6.1"><a href="#section-6.6" class="xref">6.6</a>.Β Β <a href="#name-control-or-signaling-packet-i" class="xref">Control or Signaling Packet Injection</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.7">
                <p id="section-toc.1-1.6.2.7.1"><a href="#section-6.7" class="xref">6.7</a>.Β Β <a href="#name-reconnaissance-2" class="xref">Reconnaissance</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.8">
                <p id="section-toc.1-1.6.2.8.1"><a href="#section-6.8" class="xref">6.8</a>.Β Β <a href="#name-attacks-on-time-synchroniza" class="xref">Attacks on Time-Synchronization Mechanisms</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.6.2.9">
                <p id="section-toc.1-1.6.2.9.1"><a href="#section-6.9" class="xref">6.9</a>.Β Β <a href="#name-attacks-on-path-choice" class="xref">Attacks on Path Choice</a></p>
</li>
            </ul>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.7">
            <p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>.Β Β <a href="#name-security-threat-mitigation" class="xref">Security Threat Mitigation</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.1">
                <p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>.Β Β <a href="#name-path-redundancy" class="xref">Path Redundancy</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.2">
                <p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>.Β Β <a href="#name-integrity-protection" class="xref">Integrity Protection</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.3">
                <p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="xref">7.3</a>.Β Β <a href="#name-detnet-node-authentication" class="xref">DetNet Node Authentication</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.4">
                <p id="section-toc.1-1.7.2.4.1"><a href="#section-7.4" class="xref">7.4</a>.Β Β <a href="#name-synthetic-traffic-insertion" class="xref">Synthetic Traffic Insertion</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.5">
                <p id="section-toc.1-1.7.2.5.1"><a href="#section-7.5" class="xref">7.5</a>.Β Β <a href="#name-encryption" class="xref">Encryption</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.5.2.1">
                    <p id="section-toc.1-1.7.2.5.2.1.1"><a href="#section-7.5.1" class="xref">7.5.1</a>.Β Β <a href="#name-encryption-considerations-f" class="xref">Encryption Considerations for DetNet</a></p>
</li>
                </ul>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.6">
                <p id="section-toc.1-1.7.2.6.1"><a href="#section-7.6" class="xref">7.6</a>.Β Β <a href="#name-control-and-signaling-messa" class="xref">Control and Signaling Message Protection</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.7">
                <p id="section-toc.1-1.7.2.7.1"><a href="#section-7.7" class="xref">7.7</a>.Β Β <a href="#name-dynamic-performance-analyti" class="xref">Dynamic Performance Analytics</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.7.2.8">
                <p id="section-toc.1-1.7.2.8.1"><a href="#section-7.8" class="xref">7.8</a>.Β Β <a href="#name-mitigation-summary" class="xref">Mitigation Summary</a></p>
</li>
            </ul>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.8">
            <p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>.Β Β <a href="#name-association-of-attacks-to-u" class="xref">Association of Attacks to Use Cases</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1">
                <p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="xref">8.1</a>.Β Β <a href="#name-association-of-attacks-to-us" class="xref">Association of Attacks to Use Case Common Themes</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.1">
                    <p id="section-toc.1-1.8.2.1.2.1.1"><a href="#section-8.1.1" class="xref">8.1.1</a>.Β Β <a href="#name-sub-network-layer" class="xref">Sub-network Layer</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.2">
                    <p id="section-toc.1-1.8.2.1.2.2.1"><a href="#section-8.1.2" class="xref">8.1.2</a>.Β Β <a href="#name-central-administration" class="xref">Central Administration</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.3">
                    <p id="section-toc.1-1.8.2.1.2.3.1"><a href="#section-8.1.3" class="xref">8.1.3</a>.Β Β <a href="#name-hot-swap" class="xref">Hot Swap</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.4">
                    <p id="section-toc.1-1.8.2.1.2.4.1"><a href="#section-8.1.4" class="xref">8.1.4</a>.Β Β <a href="#name-data-flow-information-model" class="xref">Data Flow Information Models</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.5">
                    <p id="section-toc.1-1.8.2.1.2.5.1"><a href="#section-8.1.5" class="xref">8.1.5</a>.Β Β <a href="#name-l2-and-l3-integration" class="xref">L2 and L3 Integration</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.6">
                    <p id="section-toc.1-1.8.2.1.2.6.1"><a href="#section-8.1.6" class="xref">8.1.6</a>.Β Β <a href="#name-end-to-end-delivery" class="xref">End-to-End Delivery</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.7">
                    <p id="section-toc.1-1.8.2.1.2.7.1"><a href="#section-8.1.7" class="xref">8.1.7</a>.Β Β <a href="#name-replacement-for-proprietary" class="xref">Replacement for Proprietary Fieldbuses and Ethernet-Based Networks</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.8">
                    <p id="section-toc.1-1.8.2.1.2.8.1"><a href="#section-8.1.8" class="xref">8.1.8</a>.Β Β <a href="#name-deterministic-vs-best-effor" class="xref">Deterministic vs. Best-Effort Traffic</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.9">
                    <p id="section-toc.1-1.8.2.1.2.9.1"><a href="#section-8.1.9" class="xref">8.1.9</a>.Β Β <a href="#name-deterministic-flows" class="xref">Deterministic Flows</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.10">
                    <p id="section-toc.1-1.8.2.1.2.10.1"><a href="#section-8.1.10" class="xref">8.1.10</a>.Β <a href="#name-unused-reserved-bandwidth" class="xref">Unused Reserved Bandwidth</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.11">
                    <p id="section-toc.1-1.8.2.1.2.11.1"><a href="#section-8.1.11" class="xref">8.1.11</a>.Β <a href="#name-interoperability" class="xref">Interoperability</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.12">
                    <p id="section-toc.1-1.8.2.1.2.12.1"><a href="#section-8.1.12" class="xref">8.1.12</a>.Β <a href="#name-cost-reductions" class="xref">Cost Reductions</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.13">
                    <p id="section-toc.1-1.8.2.1.2.13.1"><a href="#section-8.1.13" class="xref">8.1.13</a>.Β <a href="#name-insufficiently-secure-compo" class="xref">Insufficiently Secure Components</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.14">
                    <p id="section-toc.1-1.8.2.1.2.14.1"><a href="#section-8.1.14" class="xref">8.1.14</a>.Β <a href="#name-detnet-network-size" class="xref">DetNet Network Size</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.15">
                    <p id="section-toc.1-1.8.2.1.2.15.1"><a href="#section-8.1.15" class="xref">8.1.15</a>.Β <a href="#name-multiple-hops" class="xref">Multiple Hops</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.16">
                    <p id="section-toc.1-1.8.2.1.2.16.1"><a href="#section-8.1.16" class="xref">8.1.16</a>.Β <a href="#name-level-of-service" class="xref">Level of Service</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.17">
                    <p id="section-toc.1-1.8.2.1.2.17.1"><a href="#section-8.1.17" class="xref">8.1.17</a>.Β <a href="#name-bounded-latency" class="xref">Bounded Latency</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.18">
                    <p id="section-toc.1-1.8.2.1.2.18.1"><a href="#section-8.1.18" class="xref">8.1.18</a>.Β <a href="#name-low-latency" class="xref">Low Latency</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.19">
                    <p id="section-toc.1-1.8.2.1.2.19.1"><a href="#section-8.1.19" class="xref">8.1.19</a>.Β <a href="#name-bounded-jitter-latency-vari" class="xref">Bounded Jitter (Latency Variation)</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.20">
                    <p id="section-toc.1-1.8.2.1.2.20.1"><a href="#section-8.1.20" class="xref">8.1.20</a>.Β <a href="#name-symmetrical-path-delays" class="xref">Symmetrical Path Delays</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.21">
                    <p id="section-toc.1-1.8.2.1.2.21.1"><a href="#section-8.1.21" class="xref">8.1.21</a>.Β <a href="#name-reliability-and-availabilit" class="xref">Reliability and Availability</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.22">
                    <p id="section-toc.1-1.8.2.1.2.22.1"><a href="#section-8.1.22" class="xref">8.1.22</a>.Β <a href="#name-redundant-paths" class="xref">Redundant Paths</a></p>
</li>
                  <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.1.2.23">
                    <p id="section-toc.1-1.8.2.1.2.23.1"><a href="#section-8.1.23" class="xref">8.1.23</a>.Β <a href="#name-security-measures" class="xref">Security Measures</a></p>
</li>
                </ul>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.8.2.2">
                <p id="section-toc.1-1.8.2.2.1"><a href="#section-8.2" class="xref">8.2</a>.Β Β <a href="#name-summary-of-attack-types-per" class="xref">Summary of Attack Types per Use Case Common Theme</a></p>
</li>
            </ul>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.9">
            <p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>.Β Β <a href="#name-security-considerations-for-" class="xref">Security Considerations for OAM Traffic</a></p>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.10">
            <p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>.Β <a href="#name-detnet-technology-specific-" class="xref">DetNet Technology-Specific Threats</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.10.2.1">
                <p id="section-toc.1-1.10.2.1.1"><a href="#section-10.1" class="xref">10.1</a>.Β Β <a href="#name-ip" class="xref">IP</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.10.2.2">
                <p id="section-toc.1-1.10.2.2.1"><a href="#section-10.2" class="xref">10.2</a>.Β Β <a href="#name-mpls" class="xref">MPLS</a></p>
</li>
            </ul>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.11">
            <p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>.Β <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.12">
            <p id="section-toc.1-1.12.1"><a href="#section-12" class="xref">12</a>.Β <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.13">
            <p id="section-toc.1-1.13.1"><a href="#section-13" class="xref">13</a>.Β <a href="#name-privacy-considerations" class="xref">Privacy Considerations</a></p>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.14">
            <p id="section-toc.1-1.14.1"><a href="#section-14" class="xref">14</a>.Β <a href="#name-references" class="xref">References</a></p>
<ul class="ulBare ulEmpty toc compact">
<li class="ulBare ulEmpty toc compact" id="section-toc.1-1.14.2.1">
                <p id="section-toc.1-1.14.2.1.1"><a href="#section-14.1" class="xref">14.1</a>.Β Β <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
              <li class="ulBare ulEmpty toc compact" id="section-toc.1-1.14.2.2">
                <p id="section-toc.1-1.14.2.2.1"><a href="#section-14.2" class="xref">14.2</a>.Β Β <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
            </ul>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.15">
            <p id="section-toc.1-1.15.1"><a href="#appendix-A" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a></p>
</li>
          <li class="ulBare toc ulEmpty compact" id="section-toc.1-1.16">
            <p id="section-toc.1-1.16.1"><a href="#appendix-B" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
        </ul>
</nav>
</section>
</div>
<div id="Introduction">
<section id="section-1">
      <h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
      </h2>
<p id="section-1-1">A deterministic IP network ("<a href="#RFC8655" class="xref">Deterministic Networking Architecture</a>" <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>) can carry data flows for real-time applications with
        extremely low data loss rates and bounded latency. The bounds on latency defined by DetNet
        (as described in <span>[<a href="#RFC9016" class="xref">RFC9016</a>]</span>) include both worst-case latency
        (Maximum Latency, <span><a href="https://www.rfc-editor.org/rfc/rfc9016#section-5.9.2" class="relref">Section 5.9.2</a> of [<a href="#RFC9016" class="xref">RFC9016</a>]</span>) and worst-case jitter (Maximum
        Latency Variation, <span><a href="https://www.rfc-editor.org/rfc/rfc9016#section-5.9.3" class="relref">Section 5.9.3</a> of [<a href="#RFC9016" class="xref">RFC9016</a>]</span>). Data flows with deterministic
        properties are well established for Ethernet networks (see Time-Sensitive Networking (TSN),
          <span>[<a href="#IEEE802.1BA" class="xref">IEEE802.1BA</a>]</span>); DetNet brings these capabilities to the IP
        network.<a href="#section-1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-1-2">Deterministic IP networks have been successfully deployed in real-time Operational
        Technology (OT) applications for some years; however, such networks are typically isolated
        from external access, and thus the security threat from external attackers is low. An
        example of such an isolated network is a network deployed within an aircraft, which is "air
        gapped" from the outside world. DetNet specifies a set of technologies that enable creation
        of deterministic flows on IP-based networks of a potentially wide area (on the scale of a
        corporate network), potentially merging OT traffic with best-effort Information Technology
        (IT) traffic, and placing OT network components into contact with IT network components,
        thereby exposing the OT traffic and components to security threats that were not present in
        an isolated OT network.<a href="#section-1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-1-3">These DetNet (OT-type) technologies may not have previously been deployed on a wide area
        IP-based network that also carries IT traffic, and thus they can present security
        considerations that may be new to IP-based wide area network designers; this document
        provides insight into such system-level security considerations. In addition, designers of
        DetNet components (such as routers) face new security-related challenges in providing DetNet
        services, for example, maintaining reliable isolation between traffic flows in an
        environment where IT traffic co-mingles with critical reserved-bandwidth OT traffic; this
        document also examines security implications internal to DetNet components.<a href="#section-1-3" class="pilcrow">ΒΆ</a></p>
<p id="section-1-4">Security is of particularly high importance in DetNet because many of the use cases that
        are enabled by DetNet <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span> include control of physical
        devices (power grid devices, industrial controls, building controls, etc.) that can have
        high operational costs for failure and present potentially attractive targets for cyber
        attackers.<a href="#section-1-4" class="pilcrow">ΒΆ</a></p>
<p id="section-1-5">This situation is even more acute given that one of the goals of DetNet is to provide a
        "converged network", i.e., one that includes both IT traffic and OT traffic, thus exposing
        potentially sensitive OT devices to attack in ways that were not previously common (usually
        because they were under a separate control system or otherwise isolated from the IT network,
        for example <span>[<a href="#ARINC664P7" class="xref">ARINC664P7</a>]</span>). Security considerations for OT
        networks are not a new area, and there are many OT networks today that are connected to wide
        area networks or the Internet; this document focuses on the issues that are specific to the
        DetNet technologies and use cases.<a href="#section-1-5" class="pilcrow">ΒΆ</a></p>
<p id="section-1-6">Given the above considerations, securing a DetNet starts with a scrupulously well-designed
        and well-managed engineered network following industry best practices for security at both
        the data plane and controller plane, as well as for any Operations, Administration, and
        Maintenance (OAM) implementation; this is the assumed starting point for the considerations
        discussed herein. Such assumptions also depend on the network components themselves
        upholding the security-related properties that are to be assumed by DetNet system-level
        designers; for example, the assumption that network traffic associated with a given flow can
        never affect traffic associated with a different flow is only true if the underlying
        components make it so. Such properties, which may represent new challenges to component
        designers, are also considered herein.<a href="#section-1-6" class="pilcrow">ΒΆ</a></p>
<p id="section-1-7">Starting with a "well-managed network", as noted above, enables us to exclude some of the
        more powerful adversary capabilities from the Internet Threat Model of <span>[<a href="#BCP72" class="xref">BCP72</a>]</span>, such as the ability to arbitrarily drop or delay any or all traffic.
        Given this reduced attacker capability, we can present security considerations based on
        attacker capabilities that are more directly relevant to a DetNet.<a href="#section-1-7" class="pilcrow">ΒΆ</a></p>
<p id="section-1-8">In this context, we view the "conventional" (i.e., non-time-sensitive) network design and
        management aspects of network security as being primarily concerned with preventing denial
        of service, i.e., they must ensure that DetNet traffic goes where it's supposed to and that
        an external attacker can't inject traffic that disrupts the delivery timing assurance of the
        DetNet. The time-specific aspects of DetNet security presented here take up where those
        "conventional" design and management aspects leave off.<a href="#section-1-8" class="pilcrow">ΒΆ</a></p>
<p id="section-1-9">However, note that "conventional" methods for mitigating (among all the others)
        denial-of-service attacks (such as throttling) can only be effectively used in a DetNet when
        their use does not compromise the required time-sensitive or behavioral properties required
        for the OT flows on the network. For example, a "retry" protocol is typically not going to
        be compatible with a low-latency (worst-case maximum latency) requirement; however, if in a
        specific use case and implementation such a retry protocol is able to meet the timing
        constraints, then it may well be used in that context. Similarly, if common security
        protocols such as TLS/DTLS or IPsec are to be used, it must be verified that their
        implementations are able to meet the timing and behavioral requirements of the
        time-sensitive network as implemented for the given use case. An example of "behavioral
        properties" might be that dropping of more than a specific number of packets in a row is not
        acceptable according to the service level agreement.<a href="#section-1-9" class="pilcrow">ΒΆ</a></p>
<p id="section-1-10">The exact security requirements for any given DetNet are necessarily specific to the use
        cases handled by that network. Thus, the reader is assumed to be familiar with the specific
        security requirements of their use cases, for example, those outlined in the DetNet Use
        Cases <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span> and the Security Considerations sections of
        the DetNet documents applicable to the network technologies in use, for example, <span>[<a href="#RFC8939" class="xref">RFC8939</a>]</span> for an IP data plane and <span>[<a href="#RFC8964" class="xref">RFC8964</a>]</span> for an MPLS data plane. Readers can find a general introduction to the
        DetNet Architecture in <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>, the DetNet Data Plane in
          <span>[<a href="#RFC8938" class="xref">RFC8938</a>]</span>, and the Flow Information Model in <span>[<a href="#RFC9016" class="xref">RFC9016</a>]</span>.<a href="#section-1-10" class="pilcrow">ΒΆ</a></p>
<p id="section-1-11">The DetNet technologies include ways to:<a href="#section-1-11" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-1-12.1"> Assign data plane resources for DetNet flows in some or all of the intermediate nodes
          (routers) along the path of the flow<a href="#section-1-12.1" class="pilcrow">ΒΆ</a>
</li>
        <li class="normal" id="section-1-12.2"> Provide explicit routes for DetNet flows that do not dynamically change with the
          network topology in ways that affect the quality of service received by the affected
          flow(s)<a href="#section-1-12.2" class="pilcrow">ΒΆ</a>
</li>
        <li class="normal" id="section-1-12.3"> Distribute data from DetNet flow packets over time and/or space to ensure delivery of
          the data in each packet in spite of the loss of a path<a href="#section-1-12.3" class="pilcrow">ΒΆ</a>
</li>
      </ul>
<p id="section-1-13">This document includes sections considering DetNet component design as well as system
        design. The latter includes a taxonomy and analysis of threats, threat impacts and
        mitigations, and an association of attacks with use cases (based on <span><a href="https://www.rfc-editor.org/rfc/rfc8578#section-11" class="relref">Section 11</a> of [<a href="#RFC8578" class="xref">RFC8578</a>]</span>).<a href="#section-1-13" class="pilcrow">ΒΆ</a></p>
<p id="section-1-14">This document is based on the premise that there will be a very broad range of DetNet
        applications and use cases, ranging in size and scope from individual industrial machines to
        networks that span an entire country <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span>. Thus, no
        single set of prescriptions (such as exactly which mitigation should be applied to which
        segment of a DetNet) can be applicable to all of them, and indeed any single one that we
        might prescribe would inevitably prove impractical for some use case, perhaps one that does
        not even exist at the time of this writing. Thus, we are not prescriptive here; we are
        stating the desired end result, with the understanding that most DetNet use cases will
        necessarily differ from each other, and there is no "one size fits all".<a href="#section-1-14" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<section id="section-2">
      <h2 id="name-abbreviations-and-terminolo">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-abbreviations-and-terminolo" class="section-name selfRef">Abbreviations and Terminology</a>
      </h2>
<span class="break"></span><dl class="dlParallel" id="section-2-1">
        <dt id="section-2-1.1">Information Technology (IT): </dt>
        <dd style="margin-left: 1.5em" id="section-2-1.2">The application of computers to store, study, retrieve, transmit, and manipulate data or
          information, often in the context of a business or other enterprise <span>[<a href="#IT-DEF" class="xref">IT-DEF</a>]</span>.<a href="#section-2-1.2" class="pilcrow">ΒΆ</a>
</dd>
        <dd class="break"></dd>
<dt id="section-2-1.3">Operational Technology (OT): </dt>
        <dd style="margin-left: 1.5em" id="section-2-1.4">The hardware and software dedicated to detecting or causing changes in physical
          processes through direct monitoring and/or control of physical devices such as valves,
          pumps, etc. <span>[<a href="#OT-DEF" class="xref">OT-DEF</a>]</span>.<a href="#section-2-1.4" class="pilcrow">ΒΆ</a>
</dd>
        <dd class="break"></dd>
<dt id="section-2-1.5">Component: </dt>
        <dd style="margin-left: 1.5em" id="section-2-1.6">A component of a DetNet system -- used here to refer to any hardware or software element
          of a DetNet that implements DetNet-specific functionality, for example, all or part of a
          router, switch, or end system.<a href="#section-2-1.6" class="pilcrow">ΒΆ</a>
</dd>
        <dd class="break"></dd>
<dt id="section-2-1.7">Device: </dt>
        <dd style="margin-left: 1.5em" id="section-2-1.8">Used here to refer to a physical entity controlled by the DetNet, for example, a motor.<a href="#section-2-1.8" class="pilcrow">ΒΆ</a>
</dd>
        <dd class="break"></dd>
<dt id="section-2-1.9">Resource Segmentation: </dt>
        <dd style="margin-left: 1.5em" id="section-2-1.10">Used as a more general form for Network Segmentation (the act or practice of splitting a
          computer network into sub-networks, each being a network segment <span>[<a href="#NS-DEF" class="xref">NS-DEF</a>]</span>).<a href="#section-2-1.10" class="pilcrow">ΒΆ</a>
</dd>
        <dd class="break"></dd>
<dt id="section-2-1.11">Controller Plane: </dt>
        <dd style="margin-left: 1.5em" id="section-2-1.12">In DetNet, the Controller Plane corresponds to the aggregation of the Control and
          Management Planes (see <span>[<a href="#RFC8655" class="xref">RFC8655</a>], <a href="https://www.rfc-editor.org/rfc/rfc8655#section-4.4.2" class="relref">Section 4.4.2</a></span>).<a href="#section-2-1.12" class="pilcrow">ΒΆ</a>
</dd>
      <dd class="break"></dd>
</dl>
</section>
<section id="section-3">
      <h2 id="name-security-considerations-for">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-security-considerations-for" class="section-name selfRef">Security Considerations for DetNet Component Design</a>
      </h2>
<p id="section-3-1">This section provides guidance for implementers of components to be used in a DetNet.<a href="#section-3-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3-2">As noted above, DetNet provides resource allocation, explicit routes, and redundant path
        support. Each of these has associated security implications, which are discussed in this
        section, in the context of component design. Detection, reporting and appropriate action in
        the case of packet arrival-time violations are also discussed.<a href="#section-3-2" class="pilcrow">ΒΆ</a></p>
<section id="section-3.1">
        <h3 id="name-resource-allocation">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-resource-allocation" class="section-name selfRef">Resource Allocation</a>
        </h3>
<section id="section-3.1.1">
          <h4 id="name-inviolable-flows">
<a href="#section-3.1.1" class="section-number selfRef">3.1.1. </a><a href="#name-inviolable-flows" class="section-name selfRef">Inviolable Flows</a>
          </h4>
<p id="section-3.1.1-1">A DetNet system security designer relies on the premise that any resources allocated to
            a resource-reserved (OT-type) flow are inviolable; in other words, there is no physical
            possibility within a DetNet component that resources allocated to a given DetNet flow
            can be compromised by any type of traffic in the network. This includes malicious
            traffic as well as inadvertent traffic such as might be produced by a malfunctioning
            component, or due to interactions between components that were not sufficiently tested
            for interoperability. From a security standpoint, this is a critical assumption, for
            example, when designing against DoS attacks. In other words, with correctly designed
            components and security mechanisms, one can prevent malicious activities from impacting
            other resources.<a href="#section-3.1.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3.1.1-2">However, achieving the goal of absolutely inviolable flows may not be technically or
            economically feasible for any given use case, given the broad range of possible use
            cases (e.g., <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span>) and their associated security considerations as
            outlined in this document. It can be viewed as a continuum of security requirements,
            from isolated ultra-low latency systems that may have little security vulnerability
            (such as an industrial machine) to broadly distributed systems with many possible attack
            vectors and OT security concerns (such as a utility network). Given this continuum, the
            design principle employed in this document is to specify the desired end results,
            without being overly prescriptive in how the results are achieved, reflecting the
            understanding that no individual implementation is likely to be appropriate for every
            DetNet use case.<a href="#section-3.1.1-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.1.2">
          <h4 id="name-design-trade-off-considerat">
<a href="#section-3.1.2" class="section-number selfRef">3.1.2. </a><a href="#name-design-trade-off-considerat" class="section-name selfRef">Design Trade-Off Considerations in the Use Cases Continuum</a>
          </h4>
<p id="section-3.1.2-1">For any given DetNet use case and its associated security requirements, it is important
            for the DetNet system designer to understand the interaction and design trade-offs that
            inevitably need to be reconciled between the desired end results and the DetNet
            protocols, as well as the DetNet system and component design.<a href="#section-3.1.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3.1.2-2">For any given component, as designed for any given use case (or scope of use cases), it
            is the responsibility of the component designer to ensure that the premise of inviolable
            flows is supported to the extent that they deem necessary to support their target use
            cases.<a href="#section-3.1.2-2" class="pilcrow">ΒΆ</a></p>
<p id="section-3.1.2-3">For example, the component may include traffic shaping and policing at the ingress to
            prevent corrupted, malicious, or excessive packets from entering the network, thereby
            decreasing the likelihood that any traffic will interfere with any DetNet OT flow. The
            component may include integrity protection for some or all of the header fields such as
            those used for flow ID, thereby decreasing the likelihood that a packet whose flow ID
            has been compromised might be directed into a different flow path. The component may
            verify every single packet header at every forwarding location, or only at certain
            points. In any of these cases, the component may use dynamic performance analytics
              (<a href="#DpaMitigation" class="xref">Section 7.7</a>) to cause action to be initiated to
            address the situation in an appropriate and timely manner, either at the data plane or
            controller plane, or both in concert. The component's software and hardware may include
            measures to ensure the integrity of the resource allocation/deallocation process. Other
            design aspects of the component may help ensure that the adverse effects of malicious
            traffic are more limited, for example, by protecting network control interfaces or
            minimizing cascade failures. The component may include features specific to a given use
            case, such as configuration of the response to a given sequential packet loss count.<a href="#section-3.1.2-3" class="pilcrow">ΒΆ</a></p>
<p id="section-3.1.2-4">Ultimately, due to cost and complexity factors, the security properties of a component
            designed for low-cost systems may be (by design) far inferior to a component with
            similar intended functionality, but designed for highly secure or otherwise critical
            applications, perhaps at substantially higher cost. Any given component is designed for
            some set of use cases and accordingly will have certain limitations on its security
            properties and vulnerabilities. It is thus the responsibility of the system designer to
            assure themselves that the components they use in their design are capable of satisfying
            their overall system security requirements.<a href="#section-3.1.2-4" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.1.3">
          <h4 id="name-documenting-the-security-pr">
<a href="#section-3.1.3" class="section-number selfRef">3.1.3. </a><a href="#name-documenting-the-security-pr" class="section-name selfRef">Documenting the Security Properties of a Component</a>
          </h4>
<p id="section-3.1.3-1">In order for the system designer to adequately understand the security-related behavior
            of a given component, the designer of any component intended for use with DetNet needs
            to clearly document the security properties of that component. For example, to address
            the case where a corrupted packet in which the flow identification information is
            compromised and thus may incidentally match the flow ID of another ("victim") DetNet
            flow, resulting in additional unauthorized traffic on the victim, the documentation
            might state that the component employs integrity protection on the flow identification
            fields.<a href="#section-3.1.3-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.1.4">
          <h4 id="name-fail-safe-component-behavio">
<a href="#section-3.1.4" class="section-number selfRef">3.1.4. </a><a href="#name-fail-safe-component-behavio" class="section-name selfRef">Fail-Safe Component Behavior</a>
          </h4>
<p id="section-3.1.4-1">Even when the security properties of a component are understood and well specified, if
            the component malfunctions, for example, due to physical circumstances unpredicted by
            the component designer, it may be difficult or impossible to fully prevent malfunction
            of the network. The degree to which a component is hardened against various types of
            failures is a distinguishing feature of the component and its design, and the overall
            system design can only be as strong as its weakest link.<a href="#section-3.1.4-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3.1.4-2">However, all networks are subject to this level of uncertainty; it is not unique to
            DetNet. Having said that, DetNet raises the bar by changing many added latency scenarios
            from tolerable annoyances to unacceptable service violations. That in turn underscores
            the importance of system integrity, as well as correct and stable configuration of the
            network and its nodes, as discussed in <a href="#Introduction" class="xref">Section 1</a>.<a href="#section-3.1.4-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.1.5">
          <h4 id="name-flow-aggregation-example">
<a href="#section-3.1.5" class="section-number selfRef">3.1.5. </a><a href="#name-flow-aggregation-example" class="section-name selfRef">Flow Aggregation Example</a>
          </h4>
<p id="section-3.1.5-1">As another example regarding resource allocation implementation, consider the
            implementation of Flow Aggregation for DetNet flows (as discussed in <span>[<a href="#RFC8938" class="xref">RFC8938</a>]</span>). In this example, say there are N flows that are
            to be aggregated; thus, the bandwidth resources of the aggregate flow must be sufficient
            to contain the sum of the bandwidth reservation for the N flows. However, if one of
            those flows were to consume more than its individually allocated bandwidth, this could
            cause starvation of the other flows. Thus, simply providing and enforcing the calculated
            aggregate bandwidth may not be a complete solution; the bandwidth for each individual
            flow must still be guaranteed, for example, via ingress policing of each flow (i.e.,
            before it is aggregated). Alternatively, if by some other means each flow to be
            aggregated can be trusted not to exceed its allocated bandwidth, the same goal can be
            achieved.<a href="#section-3.1.5-1" class="pilcrow">ΒΆ</a></p>
</section>
</section>
<section id="section-3.2">
        <h3 id="name-explicit-routes">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-explicit-routes" class="section-name selfRef">Explicit Routes</a>
        </h3>
<p id="section-3.2-1">The DetNet-specific purpose for constraining the ability of the DetNet to reroute OT
          traffic is to maintain the specified service parameters (such as upper and lower latency
          boundaries) for a given flow. For example, if the network were to reroute a flow (or some
          part of a flow) based exclusively on statistical path usage metrics, or due to malicious
          activity, it is possible that the new path would have a latency that is outside the
          required latency bounds that were designed into the original TE-designed path, thereby
          violating the quality of service for the affected flow (or part of that flow).<a href="#section-3.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3.2-2">However, it is acceptable for the network to reroute OT traffic in such a way as to
          maintain the specified latency bounds (and any other specified service properties) for any
          reason, for example, in response to a runtime component or path failure.<a href="#section-3.2-2" class="pilcrow">ΒΆ</a></p>
<p id="section-3.2-3">So from a DetNet security standpoint, the DetNet system designer can expect that any
          component designed for use in a DetNet will deliver the packets within the agreed-upon
          service parameters. For the component designer, this means that in order for a component
          to achieve that expectation, any component that is involved in controlling or implementing
          any change of the initially TE-configured flow routes must prevent rerouting of OT flows
          (whether malicious or accidental) that might adversely affect delivering the traffic
          within the specified service parameters.<a href="#section-3.2-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.3">
        <h3 id="name-redundant-path-support">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-redundant-path-support" class="section-name selfRef">Redundant Path Support</a>
        </h3>
<p id="section-3.3-1">The DetNet provision for redundant paths (i.e., PREOF, or "Packet Replication,
          Elimination, and Ordering Functions"), as defined in the DetNet Architecture <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>, provides the foundation for high reliability of a
          DetNet by virtually eliminating packet loss (i.e., to a degree that is implementation
          dependent) through hitless redundant packet delivery.<a href="#section-3.3-1" class="pilcrow">ΒΆ</a></p>
<aside id="section-3.3-2">
          <p id="section-3.3-2.1">Note: At the time of this writing, PREOF is not defined for the IP data plane.<a href="#section-3.3-2.1" class="pilcrow">ΒΆ</a></p>
</aside>
<p id="section-3.3-3">It is the responsibility of the system designer to determine the level of reliability
          required by their use case and to specify redundant paths sufficient to provide the
          desired level of reliability (in as much as that reliability can be provided through the
          use of redundant paths). It is the responsibility of the component designer to ensure that
          the relevant PREOF operations are executed reliably and securely to avoid potentially
          catastrophic situations for the operational technology relying on them.<a href="#section-3.3-3" class="pilcrow">ΒΆ</a></p>
<p id="section-3.3-4">However, note that not all PREOF operations are necessarily implemented in every network;
          for example, a packet reordering function may not be necessary if the packets are either
          not required to be in order or if the ordering is performed in some other part of the
          network.<a href="#section-3.3-4" class="pilcrow">ΒΆ</a></p>
<p id="section-3.3-5">Ideally, a redundant path for a flow could be specified from end to end; however, given
          that this is not always possible (as described in <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>), the system designer will need to consider the resulting end-to-end reliability and
          security resulting from any given arrangement of network segments along the path, each of
          which provides its individual PREOF implementation and thus its individual level of
          reliability and security.<a href="#section-3.3-5" class="pilcrow">ΒΆ</a></p>
<p id="section-3.3-6">At the data plane, the implementation of PREOF depends on the correct assignment and
          interpretation of packet sequence numbers, as well as the actions taken based on them,
          such as elimination (including elimination of packets with spurious sequence numbers).
          Thus, the integrity of these values must be maintained by the component as they are
          assigned by the DetNet Data Plane Service sub-layer and transported by the Forwarding
          sub-layer. This is no different than the integrity of the values in any header used by the
          DetNet (or any other) data plane and is not unique to redundant paths. The integrity
          protection of header values is technology dependent; for example, in Layer 2 networks, the
          integrity of the header fields can be protected by using MACsec <span>[<a href="#IEEE802.1AE-2018" class="xref">IEEE802.1AE-2018</a>]</span>. Similarly, from the sequence number
          injection perspective, it is no different from any other protocols that use sequence
          numbers; for particulars of integrity protection via IPsec Authentication Headers, useful
          insights are provided by <span><a href="https://www.rfc-editor.org/rfc/rfc4302#section-3" class="relref">Section 3</a> of [<a href="#RFC4302" class="xref">RFC4302</a>]</span>.<a href="#section-3.3-6" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-3.4">
        <h3 id="name-timing-or-other-violation-r">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-timing-or-other-violation-r" class="section-name selfRef">Timing (or Other) Violation Reporting</a>
        </h3>
<p id="section-3.4-1">A task of the DetNet system designer is to create a network such
        that for any incoming packet that arrives with any timing or bandwidth
        violation, an appropriate action can be taken in order to prevent
        damage to the system. The reporting step may be accomplished through
        dynamic performance analysis (see <a href="#DpaMitigation" class="xref">Section 7.7</a>) or by any other means as implemented in one or
        more components. The action to be taken for any given circumstance
        within any given application will depend on the use case. The action
        may involve intervention from the controller plane, or it may be taken
        "immediately" by an individual component, for example, if a very fast
        response is required.<a href="#section-3.4-1" class="pilcrow">ΒΆ</a></p>
<p id="section-3.4-2">The definitions and selections of the actions that can be taken are
        properties of the components. The component designer implements these
        options according to their expected use cases, which may vary widely
        from component to component. Clearly, selecting an inappropriate
        response to a given condition may cause more problems than it is
        intending to mitigate; for example, a naive approach might be to have
        the component shut down the link if a packet arrives outside of its
        prescribed time window. However, such a simplistic action may serve
        the attacker better than it serves the network. Similarly, simple
        logging of such issues may not be adequate since a delay in response
        could result in material damage, for example, to mechanical devices
        controlled by the network. Thus, a breadth of possible and effective
        security-related actions and their configuration is a positive
        attribute for a DetNet component.<a href="#section-3.4-2" class="pilcrow">ΒΆ</a></p>
<p id="section-3.4-3">Some possible violations that warrant detection include cases where
        a packet arrives:<a href="#section-3.4-3" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-3.4-4.1">Outside of its prescribed time window<a href="#section-3.4-4.1" class="pilcrow">ΒΆ</a>
</li>
          <li class="normal" id="section-3.4-4.2">Within its time window but with a compromised timestamp that
          makes it appear that it is not within its window<a href="#section-3.4-4.2" class="pilcrow">ΒΆ</a>
</li>
          <li class="normal" id="section-3.4-4.3">Exceeding the reserved flow bandwidth<a href="#section-3.4-4.3" class="pilcrow">ΒΆ</a>
</li>
        </ul>
<p id="section-3.4-5">Some possible direct actions that may be taken at the data plane include traffic policing
          and shaping functions (e.g., those described in <span>[<a href="#RFC2475" class="xref">RFC2475</a>]</span>), separating flows into per-flow rate-limited queues, and potentially applying active
          queue management <span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span>. However, if those (or any
          other) actions are to be taken, the system designer must ensure that the results of such
          actions do not compromise the continued safe operation of the system. For example, the
          network (i.e., the controller plane and data plane working together) must mitigate in a
          timely fashion any potential adverse effect on mechanical devices controlled by the
          network.<a href="#section-3.4-5" class="pilcrow">ΒΆ</a></p>
</section>
</section>
<section id="section-4">
      <h2 id="name-detnet-security-considerati">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-detnet-security-considerati" class="section-name selfRef">DetNet Security Considerations Compared with Diffserv Security Considerations</a>
      </h2>
<p id="section-4-1">DetNet is designed to be compatible with Diffserv <span>[<a href="#RFC2474" class="xref">RFC2474</a>]</span>
        as applied to IT traffic in the DetNet. DetNet also incorporates the use of the 6-bit value
        of the Differentiated Services Code Point (DSCP) field of the Type of Service (IPv4) and
        Traffic Class (IPv6) bytes for flow identification. However, the DetNet interpretation of
        the DSCP value for OT traffic is not equivalent to the per-hop behavior (PHB) selection
        behavior as defined by Diffserv.<a href="#section-4-1" class="pilcrow">ΒΆ</a></p>
<p id="section-4-2">Thus, security considerations for DetNet have some aspects in common with Diffserv, in fact
        overlapping 100% with respect to IP IT traffic. Security considerations for these aspects
        are part of the existing literature on IP network security, specifically the Security
        Considerations sections of <span>[<a href="#RFC2474" class="xref">RFC2474</a>]</span> and <span>[<a href="#RFC2475" class="xref">RFC2475</a>]</span>. However, DetNet also introduces timing and other
        considerations that are not present in Diffserv, so the Diffserv security considerations are
        a subset of the DetNet security considerations.<a href="#section-4-2" class="pilcrow">ΒΆ</a></p>
<p id="section-4-3">In the case of DetNet OT traffic, the DSCP value is interpreted differently than in
        Diffserv and contributes to determination of the service provided to the packet. In DetNet,
        there are similar consequences to Diffserv for lack of detection of, or incorrect handling
        of, packets with mismarked DSCP values, and many of the points made in the Diffserv Security
        discussions (<span><a href="https://www.rfc-editor.org/rfc/rfc2475#section-6.1" class="relref">Section 6.1</a> of [<a href="#RFC2475" class="xref">RFC2475</a>]</span>,
          <span><a href="https://www.rfc-editor.org/rfc/rfc2474#section-7" class="relref">Section 7</a> of [<a href="#RFC2474" class="xref">RFC2474</a>]</span>, and <span><a href="https://www.rfc-editor.org/rfc/rfc6274#section-3.3.2.1" class="relref">Section 3.3.2.1</a> of [<a href="#RFC6274" class="xref">RFC6274</a>]</span>) are also
        relevant to DetNet OT traffic though perhaps in modified form. For example, in DetNet, the
        effect of an undetected or incorrectly handled maliciously mismarked DSCP field in an OT
        packet is not identical to affecting the PHB of that packet, since DetNet does not use the
        PHB concept for OT traffic. Nonetheless, the service provided to the packet could be
        affected, so mitigation measures analogous to those prescribed by Diffserv would be
        appropriate for DetNet. For example, mismarked DSCP values should not cause failure of
        network nodes. The remarks in <span>[<a href="#RFC2474" class="xref">RFC2474</a>]</span> regarding IPsec and
        Tunneling Interactions are also relevant (though this is not to say that other sections are
        less relevant).<a href="#section-4-3" class="pilcrow">ΒΆ</a></p>
<p id="section-4-4">In this discussion, interpretation (and any possible intentional re-marking) of the DSCP
        values of packets destined for DetNet OT flows is expected to occur at the ingress to the
        DetNet domain; once inside the domain, maintaining the integrity of the DSCP values is
        subject to the same handling considerations as any other field in the packet.<a href="#section-4-4" class="pilcrow">ΒΆ</a></p>
</section>
<div id="ThreatSection">
<section id="section-5">
      <h2 id="name-security-threats">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-security-threats" class="section-name selfRef">Security Threats</a>
      </h2>
<p id="section-5-1">This section presents a taxonomy of threats and analyzes the possible threats in a
        DetNet-enabled network. The threats considered in this section are independent of any
        specific technologies used to implement the DetNet; <a href="#TechnologySpecificThreats" class="xref">Section 10</a> considers attacks that are associated with the DetNet technologies
        encompassed by <span>[<a href="#RFC8938" class="xref">RFC8938</a>]</span>.<a href="#section-5-1" class="pilcrow">ΒΆ</a></p>
<p id="section-5-2"> We distinguish controller plane threats from data plane threats. The attack surface may be
        the same, but the types of attacks, as well as the motivation behind them, are different.
        For example, a Delay attack is more relevant to the data plane than to the controller plane.
        There is also a difference in terms of security solutions; the way you secure the data plane
        is often different than the way you secure the controller plane.<a href="#section-5-2" class="pilcrow">ΒΆ</a></p>
<section id="section-5.1">
        <h3 id="name-threat-taxonomy">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-threat-taxonomy" class="section-name selfRef">Threat Taxonomy</a>
        </h3>
<p id="section-5.1-1">This document employs organizational elements of the threat models of <span>[<a href="#RFC7384" class="xref">RFC7384</a>]</span> and <span>[<a href="#RFC7835" class="xref">RFC7835</a>]</span>. This
          model classifies attackers based on two criteria:<a href="#section-5.1-1" class="pilcrow">ΒΆ</a></p>
<span class="break"></span><dl class="dlNewline" id="section-5.1-2">
          <dt id="section-5.1-2.1">Internal vs. external:</dt>
          <dd style="margin-left: 1.5em" id="section-5.1-2.2"> Internal attackers either have access to a trusted segment of the network or possess
            the encryption or authentication keys. External attackers, on the other hand, do not
            have the keys and have access only to the encrypted or authenticated traffic.<a href="#section-5.1-2.2" class="pilcrow">ΒΆ</a>
</dd>
          <dd class="break"></dd>
<dt id="section-5.1-2.3">On-path vs. off-path:</dt>
          <dd style="margin-left: 1.5em" id="section-5.1-2.4"> On-path attackers are located in a position that allows interception, modification,
            or dropping of in-flight protocol packets, whereas off-path attackers can only attack by
            generating protocol packets.<a href="#section-5.1-2.4" class="pilcrow">ΒΆ</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-5.1-3">Regarding the boundary between internal vs. external attackers as
        defined above, note that in this document we do not make concrete
        recommendations regarding which specific segments of the network are
        to be protected in any specific way, for example, via encryption or
        authentication. As a result, the boundary as defined above is not
        unequivocally specified here. Given that constraint, the reader can
        view an internal attacker as one who can operate within the perimeter
        defined by the DetNet Edge Nodes (as defined in the DetNet
        Architecture <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>), allowing that
        the specifics of what is encrypted or authenticated within this
        perimeter will vary depending on the implementation.<a href="#section-5.1-3" class="pilcrow">ΒΆ</a></p>
<p id="section-5.1-4">Care has also been taken to adhere to <span><a href="https://www.rfc-editor.org/rfc/rfc3552#section-5" class="relref">Section 5</a> of [<a href="#RFC3552" class="xref">RFC3552</a>]</span>, both with respect
        to which attacks are considered out of scope for this document, and
        also which are considered to be the most common threats (explored
        further in <a href="#ThreatAnalysis" class="xref">Section 5.2</a>). Most of
        the direct threats to DetNet are active attacks (i.e., attacks that
        modify DetNet traffic), but it is highly suggested that DetNet
        application developers take appropriate measures to protect the
        content of the DetNet flows from passive attacks (i.e., attacks that
        observe but do not modify DetNet traffic), for example, through the
        use of TLS or DTLS.<a href="#section-5.1-4" class="pilcrow">ΒΆ</a></p>
<p id="section-5.1-5">DetNet-Service, one of the service scenarios described in <span>[<a href="#I-D.varga-detnet-service-model" class="xref">DETNET-SERVICE-MODEL</a>]</span>, is the
        case where a service connects DetNet islands, i.e., two or more
        otherwise independent DetNets are connected via a link that is not
        intrinsically part of either network. This implies that there could be
        DetNet traffic flowing over a non-DetNet link, which may provide an
        attacker with an advantageous opportunity to tamper with DetNet
        traffic. The security properties of non-DetNet links are outside of
        the scope of DetNet Security, but it should be noted that use of
        non-DetNet services to interconnect DetNets merits security analysis
        to ensure the integrity of the networks involved.<a href="#section-5.1-5" class="pilcrow">ΒΆ</a></p>
</section>
<div id="ThreatAnalysis">
<section id="section-5.2">
        <h3 id="name-threat-analysis">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-threat-analysis" class="section-name selfRef">Threat Analysis</a>
        </h3>
<div id="DelayThreat">
<section id="section-5.2.1">
          <h4 id="name-delay">
<a href="#section-5.2.1" class="section-number selfRef">5.2.1. </a><a href="#name-delay" class="section-name selfRef">Delay</a>
          </h4>
<p id="section-5.2.1-1">An attacker can maliciously delay DetNet data flow traffic. By delaying the traffic,
            the attacker can compromise the service of applications that are sensitive to high
            delays or to high delay variation. The delay may be constant or modulated.<a href="#section-5.2.1-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="ModificationThreat">
<section id="section-5.2.2">
          <h4 id="name-detnet-flow-modification-or">
<a href="#section-5.2.2" class="section-number selfRef">5.2.2. </a><a href="#name-detnet-flow-modification-or" class="section-name selfRef">DetNet Flow Modification or Spoofing</a>
          </h4>
<p id="section-5.2.2-1">An attacker can modify some header fields of en route packets in a way that causes the
            DetNet flow identification mechanisms to misclassify the flow. Alternatively, the
            attacker can inject traffic that is tailored to appear as if it belongs to a legitimate
            DetNet flow. The potential consequence is that the DetNet flow resource allocation
            cannot guarantee the performance that is expected when the flow identification works
            correctly.<a href="#section-5.2.2-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="SegmentThreat">
<section id="section-5.2.3">
          <h4 id="name-resource-segmentation-inter">
<a href="#section-5.2.3" class="section-number selfRef">5.2.3. </a><a href="#name-resource-segmentation-inter" class="section-name selfRef">Resource Segmentation (Inter-segment Attack) Vulnerability</a>
          </h4>
<p id="section-5.2.3-1">DetNet components are expected to split their resources between DetNet flows in a way
            that prevents traffic from one DetNet flow from affecting the performance of other
            DetNet flows and also prevents non-DetNet traffic from affecting DetNet flows. However,
            perhaps due to implementation constraints, some resources may be partially shared, and
            an attacker may try to exploit this property. For example, an attacker can inject
            traffic in order to exhaust network resources such that DetNet packets that share
            resources with the injected traffic may be dropped or delayed. Such injected traffic may
            be part of DetNet flows or non-DetNet traffic.<a href="#section-5.2.3-1" class="pilcrow">ΒΆ</a></p>
<p id="section-5.2.3-2">Another example of a Resource Segmentation attack is the case in which an attacker is
            able to overload the exception path queue on the router, i.e., a "slow path" typically
            taken by control or OAM packets that are diverted from the data plane because they
            require processing by a CPU. DetNet OT flows are typically configured to take the "fast
            path" through the data plane to minimize latency. However, if there is only one queue
            from the forwarding Application-Specific Integrated Circuit (ASIC) to the exception
            path, and for some reason the system is configured such that any DetNet packets must be
            handled on this exception path, then saturating the exception path could result in the
            delaying or dropping of DetNet packets.<a href="#section-5.2.3-2" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="ReplicationThreat">
<section id="section-5.2.4">
          <h4 id="name-packet-replication-and-elim">
<a href="#section-5.2.4" class="section-number selfRef">5.2.4. </a><a href="#name-packet-replication-and-elim" class="section-name selfRef">Packet Replication and Elimination</a>
          </h4>
<section id="section-5.2.4.1">
            <h5 id="name-replication-increased-attac">
<a href="#section-5.2.4.1" class="section-number selfRef">5.2.4.1. </a><a href="#name-replication-increased-attac" class="section-name selfRef">Replication: Increased Attack Surface</a>
            </h5>
<p id="section-5.2.4.1-1">Redundancy is intended to increase the robustness and survivability of DetNet flows,
              and replication over multiple paths can potentially mitigate an attack that is limited
              to a single path. However, the fact that packets are replicated over multiple paths
              increases the attack surface of the network, i.e., there are more points in the
              network that may be subject to attacks.<a href="#section-5.2.4.1-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-5.2.4.2">
            <h5 id="name-replication-related-header-">
<a href="#section-5.2.4.2" class="section-number selfRef">5.2.4.2. </a><a href="#name-replication-related-header-" class="section-name selfRef">Replication-Related Header Manipulation</a>
            </h5>
<p id="section-5.2.4.2-1">An attacker can manipulate the replication-related header fields. This capability
              opens the door for various types of attacks. For example:<a href="#section-5.2.4.2-1" class="pilcrow">ΒΆ</a></p>
<span class="break"></span><dl class="dlNewline" id="section-5.2.4.2-2">
              <dt id="section-5.2.4.2-2.1">Forward both replicas: </dt>
              <dd style="margin-left: 1.5em" id="section-5.2.4.2-2.2">Malicious change of a packet SN (Sequence Number) can cause both replicas of the
                packet to be forwarded. Note that this attack has a similar outcome to a replay
                attack.<a href="#section-5.2.4.2-2.2" class="pilcrow">ΒΆ</a>
</dd>
              <dd class="break"></dd>
<dt id="section-5.2.4.2-2.3">Eliminate both replicas: </dt>
              <dd style="margin-left: 1.5em" id="section-5.2.4.2-2.4">SN manipulation can be used to cause both replicas to be eliminated. In this case,
                an attacker that has access to a single path can cause packets from other paths to
                be dropped, thus compromising some of the advantage of path redundancy.<a href="#section-5.2.4.2-2.4" class="pilcrow">ΒΆ</a>
</dd>
              <dd class="break"></dd>
<dt id="section-5.2.4.2-2.5">Flow hijacking: </dt>
              <dd style="margin-left: 1.5em" id="section-5.2.4.2-2.6">An attacker can hijack a DetNet flow with access to a single path by
                systematically replacing the SNs on the given path with higher SN values. For
                example, an attacker can replace every SN value S with a higher value S+C, where C
                is a constant integer. Thus, the attacker creates a false illusion that the attacked
                path has the lowest delay, causing all packets from other paths to be eliminated in
                favor of the attacked path. Once the flow from the compromised path is favored by
                the eliminating bridge, the flow has effectively been hijacked by the attacker. It
                is now possible for the attacker to either replace en route packets with malicious
                packets, or to simply inject errors into the packets, causing the packets to be
                dropped at their destination.<a href="#section-5.2.4.2-2.6" class="pilcrow">ΒΆ</a>
</dd>
              <dd class="break"></dd>
<dt id="section-5.2.4.2-2.7">Amplification: </dt>
              <dd style="margin-left: 1.5em" id="section-5.2.4.2-2.8">An attacker who injects packets into a flow that is to be replicated will have
                their attack amplified through the replication process. This is no different than
                any attacker who injects packets that are delivered through multicast, broadcast, or
                other point-to-multi-point mechanisms.<a href="#section-5.2.4.2-2.8" class="pilcrow">ΒΆ</a>
</dd>
            <dd class="break"></dd>
</dl>
</section>
</section>
</div>
<div id="ControllerThreat">
<section id="section-5.2.5">
          <h4 id="name-controller-plane">
<a href="#section-5.2.5" class="section-number selfRef">5.2.5. </a><a href="#name-controller-plane" class="section-name selfRef">Controller Plane</a>
          </h4>
<div id="PathThreat">
<section id="section-5.2.5.1">
            <h5 id="name-path-choice-manipulation">
<a href="#section-5.2.5.1" class="section-number selfRef">5.2.5.1. </a><a href="#name-path-choice-manipulation" class="section-name selfRef">Path Choice Manipulation</a>
            </h5>
<section id="section-5.2.5.1.1">
              <h6 id="name-control-or-signaling-packet">
<a href="#section-5.2.5.1.1" class="section-number selfRef">5.2.5.1.1. </a><a href="#name-control-or-signaling-packet" class="section-name selfRef">Control or Signaling Packet Modification</a>
              </h6>
<p id="section-5.2.5.1.1-1">An attacker can maliciously modify en route control packets in order to disrupt or
                manipulate the DetNet path/resource allocation.<a href="#section-5.2.5.1.1-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-5.2.5.1.2">
              <h6 id="name-control-or-signaling-packet-">
<a href="#section-5.2.5.1.2" class="section-number selfRef">5.2.5.1.2. </a><a href="#name-control-or-signaling-packet-" class="section-name selfRef">Control or Signaling Packet Injection</a>
              </h6>
<p id="section-5.2.5.1.2-1">An attacker can maliciously inject control packets in order to disrupt or
                manipulate the DetNet path/resource allocation.<a href="#section-5.2.5.1.2-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-5.2.5.1.3">
              <h6 id="name-increased-attack-surface">
<a href="#section-5.2.5.1.3" class="section-number selfRef">5.2.5.1.3. </a><a href="#name-increased-attack-surface" class="section-name selfRef">Increased Attack Surface</a>
              </h6>
<p id="section-5.2.5.1.3-1">One of the possible consequences of a Path Manipulation attack is an increased
                attack surface. Thus, when the attack described in the previous subsection is
                implemented, it may increase the potential of other attacks to be performed.<a href="#section-5.2.5.1.3-1" class="pilcrow">ΒΆ</a></p>
</section>
</section>
</div>
<section id="section-5.2.5.2">
            <h5 id="name-compromised-controller">
<a href="#section-5.2.5.2" class="section-number selfRef">5.2.5.2. </a><a href="#name-compromised-controller" class="section-name selfRef">Compromised Controller</a>
            </h5>
<p id="section-5.2.5.2-1">An attacker can subvert a legitimate controller (or subvert another component such
              that it represents itself as a legitimate controller) with the result that the network
              nodes incorrectly believe it is authorized to instruct them.<a href="#section-5.2.5.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-5.2.5.2-2">The presence of a compromised node or controller in a DetNet is not a threat that
              arises as a result of determinism or time sensitivity; the same techniques used to
              prevent or mitigate against compromised nodes in any network are equally applicable in
              the DetNet case. The act of compromising a controller may not even be within the
              capabilities of our defined attacker types -- in other words, it may not be achievable
              via packet traffic at all, whether internal or external, on path or off path. It might
              be accomplished, for example, by a human with physical access to the component, who
              could upload bogus firmware to it via a USB stick. All of this underscores the
              requirement for careful overall system security design in a DetNet, given that the
              effects of even one bad actor on the network can be potentially catastrophic.<a href="#section-5.2.5.2-2" class="pilcrow">ΒΆ</a></p>
<p id="section-5.2.5.2-3">Security concerns specific to any given controller plane technology used in DetNet
              will be addressed by the DetNet documents associated with that technology.<a href="#section-5.2.5.2-3" class="pilcrow">ΒΆ</a></p>
</section>
</section>
</div>
<div id="ReconnaissanceThreat">
<section id="section-5.2.6">
          <h4 id="name-reconnaissance">
<a href="#section-5.2.6" class="section-number selfRef">5.2.6. </a><a href="#name-reconnaissance" class="section-name selfRef">Reconnaissance</a>
          </h4>
<p id="section-5.2.6-1">A passive eavesdropper can identify DetNet flows and then gather information about en
            route DetNet flows, e.g., the number of DetNet flows, their bandwidths, their schedules,
            or other temporal or statistical properties. The gathered information can later be used
            to invoke other attacks on some or all of the flows.<a href="#section-5.2.6-1" class="pilcrow">ΒΆ</a></p>
<p id="section-5.2.6-2">DetNet flows are typically uniquely identified by their 6-tuple, i.e., fields within
            the L3 or L4 header. However, in some implementations, the flow ID may also be augmented
            by additional per-flow attributes known to the system, e.g., above L4. For the purpose
            of this document, we assume any such additional fields used for flow ID are encrypted
            and/or integrity protected from external attackers. Note however that existing OT
            protocols designed for use on dedicated secure networks may not intrinsically provide
            such protection, in which case IPsec or transport-layer security mechanisms may be
            needed.<a href="#section-5.2.6-2" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="SyncThreat">
<section id="section-5.2.7">
          <h4 id="name-time-synchronization-mechan">
<a href="#section-5.2.7" class="section-number selfRef">5.2.7. </a><a href="#name-time-synchronization-mechan" class="section-name selfRef">Time-Synchronization Mechanisms</a>
          </h4>
<p id="section-5.2.7-1">An attacker can use any of the attacks described in <span>[<a href="#RFC7384" class="xref">RFC7384</a>]</span> to attack the synchronization protocol, thus affecting the DetNet
            service.<a href="#section-5.2.7-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
</section>
</div>
<section id="section-5.3">
        <h3 id="name-threat-summary">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-threat-summary" class="section-name selfRef">Threat Summary</a>
        </h3>
<p id="section-5.3-1">A summary of the attacks that were discussed in this section is presented in <a href="#ThreatSummary" class="xref">Table 1</a>. For each attack, the table specifies the type
          of attackers that may invoke the attack. In the context of this summary, the distinction
          between internal and external attacks is under the assumption that a corresponding
          security mechanism is being used, and that the corresponding network equipment takes part
          in this mechanism.<a href="#section-5.3-1" class="pilcrow">ΒΆ</a></p>
<span id="name-threat-analysis-summary"></span><div id="ThreatSummary">
<table class="center" id="table-1">
          <caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-threat-analysis-summary" class="selfRef">Threat Analysis Summary</a>
          </caption>
<thead>
            <tr>
              <th class="text-center" rowspan="3" colspan="1">Attack</th>
              <th class="text-center" rowspan="1" colspan="4">Attacker Type</th>
            </tr>
            <tr>
              <th class="text-center" rowspan="1" colspan="2">Internal</th>
              <th class="text-center" rowspan="1" colspan="2"> External</th>
            </tr>
            <tr>
              <th class="text-center" rowspan="1" colspan="1">On-Path</th>
              <th class="text-center" rowspan="1" colspan="1">Off-Path</th>
              <th class="text-center" rowspan="1" colspan="1">On-Path</th>
              <th class="text-center" rowspan="1" colspan="1">Off-Path</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Delay Attack </td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">DetNet Flow Modification or Spoofing</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Inter-segment Attack</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Replication: Increased Attack Surface</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Replication-Related Header Manipulation</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Path Manipulation </td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Path Choice: Increased Attack Surface</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Modification</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Injection</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Reconnaissance</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Attacks on Time-Synchronization Mechanisms</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
              <td class="text-center" rowspan="1" colspan="1">+</td>
            </tr>
          </tbody>
        </table>
</div>
</section>
</section>
</div>
<div id="ThreatImpact">
<section id="section-6">
      <h2 id="name-security-threat-impacts">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-security-threat-impacts" class="section-name selfRef">Security Threat Impacts</a>
      </h2>
<p id="section-6-1">When designing security for a DetNet, as with any network, it may be prohibitively
        expensive or technically infeasible to thoroughly protect against every possible threat.
        Thus, the security designer must be informed (for example, by an application domain expert
        such as a product manager) regarding the relative significance of the various threats and
        their impact if a successful attack is carried out. In this section, we present an example
        of a possible template for such a communication, culminating in a table (<a href="#ThreatIndustryMapping" class="xref">Table 2</a>) that lists a set of threats under
        consideration, and some values characterizing their relative impact in the context of a
        given industry. The specific threats, industries, and impact values in the table are
        provided only as an example of this kind of assessment and its communication; they are not
        intended to be taken literally.<a href="#section-6-1" class="pilcrow">ΒΆ</a></p>
<p id="section-6-2">This section considers assessment of the relative impacts of the attacks described in <a href="#ThreatSection" class="xref">Section 5</a>. In this section, the impacts as described
        assume that the associated mitigation is not present or has failed. Mitigations are
        discussed in <a href="#ThreatMitigation" class="xref">Section 7</a>.<a href="#section-6-2" class="pilcrow">ΒΆ</a></p>
<p id="section-6-3"> In computer security, the impact (or consequence) of an incident can be measured in loss
        of confidentiality, integrity, or availability of information. In the case of OT or time
        sensitive networks (though not to the exclusion of IT or non-time-sensitive networks), the
        impact of an exploit can also include failure or malfunction of mechanical and/or other
        physical systems.<a href="#section-6-3" class="pilcrow">ΒΆ</a></p>
<p id="section-6-4">DetNet raises these stakes significantly for OT applications, particularly those that may
        have been designed to run in an OT-only environment and thus may not have been designed for
        security in an IT environment with its associated components, services, and protocols.<a href="#section-6-4" class="pilcrow">ΒΆ</a></p>
<p id="section-6-5">The extent of impact of a successful vulnerability exploit varies considerably by use case
        and by industry; additional insight regarding the individual use cases is available from
          "<a href="#RFC8578" class="xref">Deterministic Networking Use Cases</a>" <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span>. Each
        of those use cases is represented in <a href="#ThreatIndustryMapping" class="xref">Table 2</a>, including Pro Audio, Electrical Utilities, Industrial M2M (split into two areas: M2M
        Data Gathering and M2M Control Loop), and others.<a href="#section-6-5" class="pilcrow">ΒΆ</a></p>
<p id="section-6-6">Aspects of Impact (left column) include Criticality of Failure, Effects of Failure,
        Recovery, and DetNet Functional Dependence. Criticality of failure summarizes the
        seriousness of the impact. The impact of a resulting failure can affect many different
        metrics that vary greatly in scope and severity. In order to reduce the number of variables,
        only the following were included: Financial, Health and Safety, Effect on a Single
        Organization, and Effect on Multiple Organizations. Recovery outlines how long it would take
        for an affected use case to get back to its pre-failure state (Recovery Time Objective, RTO)
        and how much of the original service would be lost in between the time of service failure
        and recovery to original state (Recovery Point Objective, RPO). DetNet dependence maps how
        much the following DetNet service objectives contribute to impact of failure: time
        dependency, data integrity, source node integrity, availability, and latency/jitter.<a href="#section-6-6" class="pilcrow">ΒΆ</a></p>
<p id="section-6-7">The scale of the Impact mappings is low, medium, and high. In some use cases, there may be
        a multitude of specific applications in which DetNet is used. For simplicity, this section
        attempts to average the varied impacts of different applications. This section does not
        address the overall risk of a certain impact that would require the likelihood of a failure
        happening.<a href="#section-6-7" class="pilcrow">ΒΆ</a></p>
<p id="section-6-8">In practice, any such ratings will vary from case to case; the ratings shown here are given
        as examples.<a href="#section-6-8" class="pilcrow">ΒΆ</a></p>
<span id="name-impact-of-attacks-by-use-ca"></span><div id="ThreatIndustryMapping">
<table class="center" id="table-2">
        <caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-impact-of-attacks-by-use-ca" class="selfRef">Impact of Attacks by Use Case Industry</a>
        </caption>
<thead>
          <tr>
            <th class="text-left" rowspan="1" colspan="1"></th>
            <th class="text-left" rowspan="1" colspan="1">PRO A</th>
            <th class="text-left" rowspan="1" colspan="1">Util</th>
            <th class="text-left" rowspan="1" colspan="1">Bldg</th>
            <th class="text-left" rowspan="1" colspan="1">Wireless</th>
            <th class="text-left" rowspan="1" colspan="1">Cell</th>
            <th class="text-left" rowspan="1" colspan="1">M2M Data</th>
            <th class="text-left" rowspan="1" colspan="1">M2M Ctrl</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Criticality</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Low</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
          </tr>
          <tr>
            <th class="text-left" rowspan="1" colspan="8">Effects</th>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Financial</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Low</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Health/Safety</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Affects 1 org</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Affects &gt;1 org</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Low</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
          </tr>
          <tr>
            <th class="text-left" rowspan="1" colspan="8">Recovery</th>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Recov Time Obj</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Recov Point Obj</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Low</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Low</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
          </tr>
          <tr>
            <th class="text-left" rowspan="1" colspan="8">DetNet Dependence</th>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Time Dependence</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Low</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Low</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Latency/Jitter</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Low</td>
            <td class="text-left" rowspan="1" colspan="1">Low</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Data Integrity</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Low</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Src Node Integ</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
          </tr>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">Availability</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Med</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Low</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
            <td class="text-left" rowspan="1" colspan="1">Hi</td>
          </tr>
        </tbody>
      </table>
</div>
<p id="section-6-10">The rest of this section will cover impact of the different groups in more detail.<a href="#section-6-10" class="pilcrow">ΒΆ</a></p>
<div id="DelayImpact">
<section id="section-6.1">
        <h3 id="name-delay-attacks">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-delay-attacks" class="section-name selfRef">Delay Attacks</a>
        </h3>
<section id="section-6.1.1">
          <h4 id="name-data-plane-delay-attacks">
<a href="#section-6.1.1" class="section-number selfRef">6.1.1. </a><a href="#name-data-plane-delay-attacks" class="section-name selfRef">Data Plane Delay Attacks</a>
          </h4>
<p id="section-6.1.1-1">Note that "Delay attack" also includes the possibility of a "negative delay" or early
            arrival of a packet, or possibly adversely changing the timestamp value.<a href="#section-6.1.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-6.1.1-2"> Delayed messages in a DetNet link can result in the same behavior as dropped messages
            in ordinary networks, since the services attached to the DetNet flow are likely to have
            strict delivery time requirements.<a href="#section-6.1.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-6.1.1-3">For a single-path scenario, disruption within the single flow is a real possibility. In
            a multipath scenario, large delays or instabilities in one DetNet flow can also lead to
            increased buffer and processor resource consumption at the eliminating router.<a href="#section-6.1.1-3" class="pilcrow">ΒΆ</a></p>
<p id="section-6.1.1-4">A data plane Delay attack on a system controlling substantial moving devices, for
            example, in industrial automation, can cause physical damage. For example, if the
            network promises a bounded latency of 2 ms for a flow, yet the machine receives it with
            5 ms latency, the control loop of the machine may become unstable.<a href="#section-6.1.1-4" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.1.2">
          <h4 id="name-controller-plane-delay-atta">
<a href="#section-6.1.2" class="section-number selfRef">6.1.2. </a><a href="#name-controller-plane-delay-atta" class="section-name selfRef">Controller Plane Delay Attacks</a>
          </h4>
<p id="section-6.1.2-1">In and of itself, this is not directly a threat to the DetNet service, but the effects
            of delaying control messages can have quite adverse effects later.<a href="#section-6.1.2-1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-6.1.2-2.1">Delayed teardown can lead to resource leakage, which in turn can result in failure
              to allocate new DetNet flows, finally giving rise to a denial-of-service attack.<a href="#section-6.1.2-2.1" class="pilcrow">ΒΆ</a>
</li>
            <li class="normal" id="section-6.1.2-2.2">Failure to deliver, or severely delaying, controller plane messages adding an
              endpoint to a multicast group will prevent the new endpoint from receiving expected
              frames thus disrupting expected behavior.<a href="#section-6.1.2-2.2" class="pilcrow">ΒΆ</a>
</li>
            <li class="normal" id="section-6.1.2-2.3">Delaying messages that remove an endpoint from a group can lead to loss of privacy,
              as the endpoint will continue to receive messages even after it is supposedly
              removed.<a href="#section-6.1.2-2.3" class="pilcrow">ΒΆ</a>
</li>
          </ul>
</section>
</section>
</div>
<div id="SpoofingImpact">
<section id="section-6.2">
        <h3 id="name-flow-modification-and-spoof">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-flow-modification-and-spoof" class="section-name selfRef">Flow Modification and Spoofing</a>
        </h3>
<section id="section-6.2.1">
          <h4 id="name-flow-modification">
<a href="#section-6.2.1" class="section-number selfRef">6.2.1. </a><a href="#name-flow-modification" class="section-name selfRef">Flow Modification</a>
          </h4>
<p id="section-6.2.1-1">If the contents of a packet header or body can be modified by the attacker, this can
            cause the packet to be routed incorrectly or dropped, or the payload to be corrupted or
            subtly modified. Thus, the potential impact of a Modification attack includes disrupting
            the application as well as the network equipment.<a href="#section-6.2.1-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.2.2">
          <h4 id="name-spoofing">
<a href="#section-6.2.2" class="section-number selfRef">6.2.2. </a><a href="#name-spoofing" class="section-name selfRef">Spoofing</a>
          </h4>
<section id="section-6.2.2.1">
            <h5 id="name-data-plane-spoofing">
<a href="#section-6.2.2.1" class="section-number selfRef">6.2.2.1. </a><a href="#name-data-plane-spoofing" class="section-name selfRef">Data Plane Spoofing</a>
            </h5>
<p id="section-6.2.2.1-1">Spoofing data plane messages can result in increased resource consumption on the
              routers throughout the network as it will increase buffer usage and processor
              utilization. This can lead to resource exhaustion and/or increased delay.<a href="#section-6.2.2.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-6.2.2.1-2">If the attacker manages to create valid headers, the false messages can be forwarded
              through the network, using part of the allocated bandwidth. This in turn can cause
              legitimate messages to be dropped when the resource budget has been exhausted.<a href="#section-6.2.2.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-6.2.2.1-3">Finally, the endpoint will have to deal with invalid messages being delivered to the
              endpoint instead of (or in addition to) a valid message.<a href="#section-6.2.2.1-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.2.2.2">
            <h5 id="name-controller-plane-spoofing">
<a href="#section-6.2.2.2" class="section-number selfRef">6.2.2.2. </a><a href="#name-controller-plane-spoofing" class="section-name selfRef">Controller Plane Spoofing</a>
            </h5>
<p id="section-6.2.2.2-1">A successful Controller Plane Spoofing attack will potentially have adverse effects.
              It can do virtually anything from:<a href="#section-6.2.2.2-1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-6.2.2.2-2.1">modifying existing DetNet flows by changing the available bandwidth<a href="#section-6.2.2.2-2.1" class="pilcrow">ΒΆ</a>
</li>
              <li class="normal" id="section-6.2.2.2-2.2">adding or removing endpoints from a DetNet flow<a href="#section-6.2.2.2-2.2" class="pilcrow">ΒΆ</a>
</li>
              <li class="normal" id="section-6.2.2.2-2.3">dropping DetNet flows completely<a href="#section-6.2.2.2-2.3" class="pilcrow">ΒΆ</a>
</li>
              <li class="normal" id="section-6.2.2.2-2.4">falsely creating new DetNet flows (exhausting the systems resources or enabling
                DetNet flows that are outside the control of the network engineer)<a href="#section-6.2.2.2-2.4" class="pilcrow">ΒΆ</a>
</li>
            </ul>
</section>
</section>
</section>
</div>
<div id="SegmentationImpact">
<section id="section-6.3">
        <h3 id="name-segmentation-attacks-inject">
<a href="#section-6.3" class="section-number selfRef">6.3. </a><a href="#name-segmentation-attacks-inject" class="section-name selfRef">Segmentation Attacks (Injection)</a>
        </h3>
<section id="section-6.3.1">
          <h4 id="name-data-plane-segmentation">
<a href="#section-6.3.1" class="section-number selfRef">6.3.1. </a><a href="#name-data-plane-segmentation" class="section-name selfRef">Data Plane Segmentation</a>
          </h4>
<p id="section-6.3.1-1">Injection of false messages in a DetNet flow could lead to exhaustion of the available
            bandwidth for that flow if the routers attribute these false messages to the resource
            budget of that flow.<a href="#section-6.3.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-6.3.1-2">In a multipath scenario, injected messages will cause increased processor utilization
            in elimination routers. If enough paths are subject to malicious injection, the
            legitimate messages can be dropped. Likewise, it can cause an increase in buffer usage.
            In total, it will consume more resources in the routers than normal, giving rise to a
            resource-exhaustion attack on the routers.<a href="#section-6.3.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-6.3.1-3">If a DetNet flow is interrupted, the end application will be affected by what is now a
            non-deterministic flow. Note that there are many possible sources of flow interruptions,
            for example, but not limited to, such physical-layer conditions as a broken wire or a
            radio link that is compromised by interference.<a href="#section-6.3.1-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.3.2">
          <h4 id="name-controller-plane-segmentati">
<a href="#section-6.3.2" class="section-number selfRef">6.3.2. </a><a href="#name-controller-plane-segmentati" class="section-name selfRef">Controller Plane Segmentation</a>
          </h4>
<p id="section-6.3.2-1"> In a successful Controller Plane Segmentation attack, control messages are acted on by
            nodes in the network, unbeknownst to the central controller or the network engineer.
            This has the potential to:<a href="#section-6.3.2-1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-6.3.2-2.1">create new DetNet flows (exhausting resources)<a href="#section-6.3.2-2.1" class="pilcrow">ΒΆ</a>
</li>
            <li class="normal" id="section-6.3.2-2.2">drop existing DetNet flows (denial of service)<a href="#section-6.3.2-2.2" class="pilcrow">ΒΆ</a>
</li>
            <li class="normal" id="section-6.3.2-2.3">add end stations to a multicast group (loss of privacy)<a href="#section-6.3.2-2.3" class="pilcrow">ΒΆ</a>
</li>
            <li class="normal" id="section-6.3.2-2.4">remove end stations from a multicast group (reduction of service)<a href="#section-6.3.2-2.4" class="pilcrow">ΒΆ</a>
</li>
            <li class="normal" id="section-6.3.2-2.5">modify the DetNet flow attributes (affecting available bandwidth)<a href="#section-6.3.2-2.5" class="pilcrow">ΒΆ</a>
</li>
          </ul>
<p id="section-6.3.2-3">If an attacker can inject control messages without the central controller knowing, then
            one or more components in the network may get into a state that is not expected by the
            controller. At that point, if the controller initiates a command, the effect of that
            command may not be as expected, since the target of the command may have started from a
            different initial state.<a href="#section-6.3.2-3" class="pilcrow">ΒΆ</a></p>
</section>
</section>
</div>
<div id="ReplicationImpact">
<section id="section-6.4">
        <h3 id="name-replication-and-elimination">
<a href="#section-6.4" class="section-number selfRef">6.4. </a><a href="#name-replication-and-elimination" class="section-name selfRef">Replication and Elimination</a>
        </h3>
<p id="section-6.4-1">The Replication and Elimination functions are relevant only to data plane messages as controller
          plane messages are not subject to multipath routing.<a href="#section-6.4-1" class="pilcrow">ΒΆ</a></p>
<section id="section-6.4.1">
          <h4 id="name-increased-attack-surface-2">
<a href="#section-6.4.1" class="section-number selfRef">6.4.1. </a><a href="#name-increased-attack-surface-2" class="section-name selfRef">Increased Attack Surface</a>
          </h4>
<p id="section-6.4.1-1">The impact of an increased attack surface is that it increases the probability that the
            network can be exposed to an attacker. This can facilitate a wide range of specific
            attacks, and their respective impacts are discussed in other subsections of this
            section.<a href="#section-6.4.1-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.4.2">
          <h4 id="name-header-manipulation-at-elim">
<a href="#section-6.4.2" class="section-number selfRef">6.4.2. </a><a href="#name-header-manipulation-at-elim" class="section-name selfRef">Header Manipulation at Elimination Routers</a>
          </h4>
<p id="section-6.4.2-1">This attack can potentially cause DoS to the application that uses the attacked DetNet
            flows or to the network equipment that forwards them. Furthermore, it can allow an
            attacker to manipulate the network paths and the behavior of the network layer.<a href="#section-6.4.2-1" class="pilcrow">ΒΆ</a></p>
</section>
</section>
</div>
<section id="section-6.5">
        <h3 id="name-control-or-signaling-packet-m">
<a href="#section-6.5" class="section-number selfRef">6.5. </a><a href="#name-control-or-signaling-packet-m" class="section-name selfRef">Control or Signaling Packet Modification</a>
        </h3>
<p id="section-6.5-1">If control packets are subject to manipulation undetected, the network can be severely
          compromised.<a href="#section-6.5-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-6.6">
        <h3 id="name-control-or-signaling-packet-i">
<a href="#section-6.6" class="section-number selfRef">6.6. </a><a href="#name-control-or-signaling-packet-i" class="section-name selfRef">Control or Signaling Packet Injection</a>
        </h3>
<p id="section-6.6-1">If an attacker can inject control packets undetected, the network can be severely
          compromised.<a href="#section-6.6-1" class="pilcrow">ΒΆ</a></p>
</section>
<div id="Reconnaissance">
<section id="section-6.7">
        <h3 id="name-reconnaissance-2">
<a href="#section-6.7" class="section-number selfRef">6.7. </a><a href="#name-reconnaissance-2" class="section-name selfRef">Reconnaissance</a>
        </h3>
<p id="section-6.7-1"> Of all the attacks, this is one of the most difficult to detect and counter.<a href="#section-6.7-1" class="pilcrow">ΒΆ</a></p>
<p id="section-6.7-2"> An attacker can, at their leisure, observe over time various aspects of the messaging
          and signaling, learning the intent and purpose of the traffic flows. Then at some later
          date, possibly at an important time in the operational context, they might launch an
          attack based on that knowledge.<a href="#section-6.7-2" class="pilcrow">ΒΆ</a></p>
<p id="section-6.7-3"> The flow ID in the header of the data plane messages gives an attacker a very reliable
          identifier for DetNet traffic, and this traffic has a high probability of going to
          lucrative targets.<a href="#section-6.7-3" class="pilcrow">ΒΆ</a></p>
<p id="section-6.7-4">Applications that are ported from a private OT network to the higher visibility DetNet
          environment may need to be adapted to limit distinctive flow properties that could make
          them susceptible to reconnaissance.<a href="#section-6.7-4" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<section id="section-6.8">
        <h3 id="name-attacks-on-time-synchroniza">
<a href="#section-6.8" class="section-number selfRef">6.8. </a><a href="#name-attacks-on-time-synchroniza" class="section-name selfRef">Attacks on Time-Synchronization Mechanisms</a>
        </h3>
<p id="section-6.8-1">DetNet relies on an underlying time-synchronization mechanism; therefore, a compromised
          synchronization mechanism may cause DetNet nodes to malfunction. Specifically, DetNet
          flows may fail to meet their latency requirements and deterministic behavior, thus causing
          DoS to DetNet applications.<a href="#section-6.8-1" class="pilcrow">ΒΆ</a></p>
</section>
<div id="PathChoiceImpact">
<section id="section-6.9">
        <h3 id="name-attacks-on-path-choice">
<a href="#section-6.9" class="section-number selfRef">6.9. </a><a href="#name-attacks-on-path-choice" class="section-name selfRef">Attacks on Path Choice</a>
        </h3>
<p id="section-6.9-1">This is covered in part in <a href="#SegmentationImpact" class="xref">Section 6.3</a> (<a href="#SegmentationImpact" class="xref">Segmentation Attacks (Injection)</a>) and, as with Replication and Elimination
          (see <a href="#ReplicationImpact" class="xref">Section 6.4</a>), this is relevant for data plane
          messages.<a href="#section-6.9-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
</section>
</div>
<div id="ThreatMitigation">
<section id="section-7">
      <h2 id="name-security-threat-mitigation">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-security-threat-mitigation" class="section-name selfRef">Security Threat Mitigation</a>
      </h2>
<p id="section-7-1">This section describes a set of measures that can be taken to mitigate the attacks
        described in <a href="#ThreatSection" class="xref">Section 5</a>. These mitigations should be
        viewed as a set of tools, any of which can be used individually or in concert. The DetNet
        component and/or system and/or application designer can apply these tools as necessary based
        on a system-specific threat analysis.<a href="#section-7-1" class="pilcrow">ΒΆ</a></p>
<p id="section-7-2">Some of the technology-specific security considerations and mitigation approaches are
        further discussed in DetNet data plane solution documents, such as <span>[<a href="#RFC8938" class="xref">RFC8938</a>]</span>, <span>[<a href="#RFC8939" class="xref">RFC8939</a>]</span>, <span>[<a href="#RFC8964" class="xref">RFC8964</a>]</span>, <span>[<a href="#RFC9025" class="xref">RFC9025</a>]</span>, and <span>[<a href="#RFC9056" class="xref">RFC9056</a>]</span>.<a href="#section-7-2" class="pilcrow">ΒΆ</a></p>
<section id="section-7.1">
        <h3 id="name-path-redundancy">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-path-redundancy" class="section-name selfRef">Path Redundancy</a>
        </h3>
<span class="break"></span><dl class="dlParallel" id="section-7.1-1">
          <dt id="section-7.1-1.1">Description: </dt>
          <dd style="margin-left: 1.5em" id="section-7.1-1.2">
            <p id="section-7.1-1.2.1">Path redundancy is a DetNet flow that can be forwarded simultaneously over multiple
              paths. Packet Replication and Elimination <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>
              provide resiliency to dropped or delayed packets. This redundancy improves the
              robustness to failures and to on-path attacks.<a href="#section-7.1-1.2.1" class="pilcrow">ΒΆ</a></p>
<aside id="section-7.1-1.2.2">
              <p id="section-7.1-1.2.2.1"> Note: At the time of this writing, PREOF is not defined for the IP data plane.<a href="#section-7.1-1.2.2.1" class="pilcrow">ΒΆ</a></p>
</aside>
</dd>
          <dd class="break"></dd>
<dt id="section-7.1-1.3">Related attacks: </dt>
          <dd style="margin-left: 1.5em" id="section-7.1-1.4">
            <p id="section-7.1-1.4.1">Path redundancy can be used to mitigate various on-path attacks, including attacks
              described in Sections <a href="#DelayThreat" class="xref">5.2.1</a>, <a href="#ModificationThreat" class="xref">5.2.2</a>, <a href="#SegmentThreat" class="xref">5.2.3</a>, and <a href="#SyncThreat" class="xref">5.2.7</a>. However, it is
              also possible that multiple paths may make it more difficult to locate the source of
              an on-path attacker.<a href="#section-7.1-1.4.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.1-1.4.2">A Delay Modulation attack could result in extensively exercising otherwise
unused code paths to expose hidden flaws. Subtle race conditions and memory
allocation bugs in error-handling paths are classic examples of this.<a href="#section-7.1-1.4.2" class="pilcrow">ΒΆ</a></p>
</dd>
        <dd class="break"></dd>
</dl>
</section>
<div id="IntegritySection">
<section id="section-7.2">
        <h3 id="name-integrity-protection">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-integrity-protection" class="section-name selfRef">Integrity Protection</a>
        </h3>
<span class="break"></span><dl class="dlParallel" id="section-7.2-1">
          <dt id="section-7.2-1.1">Description: </dt>
          <dd style="margin-left: 1.5em" id="section-7.2-1.2">
            <p id="section-7.2-1.2.1">Integrity protection in the scope of DetNet is the ability to detect if a packet
              header has been modified (maliciously or otherwise) and if so, take some appropriate
              action (as discussed in <a href="#DpaMitigation" class="xref">Section 7.7</a>). The decision
              on where in the network to apply integrity protection is part of the DetNet system
              design, and the implementation of the protection method itself is a part of a DetNet
              component design.<a href="#section-7.2-1.2.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.2-1.2.2">The most common technique for detecting header modification is
            the use of a Message Authentication Code (MAC) (see <a href="#TechnologySpecificThreats" class="xref">Section 10</a> for
            examples). The MAC can be distributed either in line (included in
            the same packet) or via a side channel. Of these, the in-line
            method is generally preferred due to the low latency that may be
            required on DetNet flows and the relative complexity and
            computational overhead of a sideband approach.<a href="#section-7.2-1.2.2" class="pilcrow">ΒΆ</a></p>
<p id="section-7.2-1.2.3"> There are different levels of security available for integrity
            protection, ranging from the basic ability to detect if a header
            has been corrupted in transit (no malicious attack) to stopping a
            skilled and determined attacker capable of both subtly modifying
            fields in the headers as well as updating an unkeyed
            checksum. Common for all are the 2 steps that need to be performed
            in both ends. The first is computing the checksum or MAC. The
            corresponding verification step must perform the same steps before
            comparing the provided with the computed value. Only then can the
            receiver be reasonably sure that the header is authentic.<a href="#section-7.2-1.2.3" class="pilcrow">ΒΆ</a></p>
<p id="section-7.2-1.2.4"> The most basic protection mechanism consists of computing a
            simple checksum of the header fields and providing it to the next
            entity in the packets path for verification. Using a MAC combined
            with a secret key provides the best protection against
            Modification and Replication attacks (see Sections <a href="#ModificationThreat" class="xref">5.2.2</a> and <a href="#ReplicationThreat" class="xref">5.2.4</a>). This MAC usage
            needs to be part of a security association that is established and
            managed by a security association protocol (such as IKEv2 for
            IPsec security associations). Integrity protection in the
            controller plane is discussed in <a href="#ControllerProtectSection" class="xref">Section 7.6</a>. The secret
            key, regardless of the MAC used, must be protected from falling
            into the hands of unauthorized users. Once key management becomes
            a topic, it is important to understand that this is a delicate
            process and should not be undertaken lightly. BCP 107 <span>[<a href="#BCP107" class="xref">BCP107</a>]</span> provides best practices in this
            regard.<a href="#section-7.2-1.2.4" class="pilcrow">ΒΆ</a></p>
<p id="section-7.2-1.2.5"> DetNet system and/or component designers need to be aware of
            these distinctions and enforce appropriate integrity-protection
            mechanisms as needed based on a threat analysis. Note that adding
            integrity-protection mechanisms may introduce latency; thus, many
            of the same considerations in <a href="#EncryptionConsiderations" class="xref">Section 7.5.1</a> also apply
            here.<a href="#section-7.2-1.2.5" class="pilcrow">ΒΆ</a></p>
</dd>
          <dd class="break"></dd>
<dt id="section-7.2-1.3">Packet Sequence Number Integrity Considerations: </dt>
          <dd style="margin-left: 1.5em" id="section-7.2-1.4">
            <p id="section-7.2-1.4.1">The use of PREOF in a DetNet implementation implies the use of
            a sequence number for each packet. There is a trust relationship
            between the component that adds the sequence number and the
            component that removes the sequence number. The sequence number
            may be end-to-end source to destination, or it may be
            added/deleted by network edge components. The adder and remover(s)
            have the trust relationship because they are the ones that ensure
            that the sequence numbers are not modifiable. Thus, sequence
            numbers can be protected by using authenticated encryption or by a
            MAC without using encryption. Between the adder and remover there
            may or may not be replication and elimination functions. The
            elimination functions must be able to see the sequence
            numbers. Therefore, if encryption is done between adders and
            removers, it must not obscure the sequence number. If the sequence
            removers and the eliminators are in the same physical component,
            it may be possible to obscure the sequence number; however, that
            is a layer violation and is not recommended practice.<a href="#section-7.2-1.4.1" class="pilcrow">ΒΆ</a></p>
<aside id="section-7.2-1.4.2">
              <p id="section-7.2-1.4.2.1"> Note: At the time of this writing, PREOF is not defined for the IP data plane.<a href="#section-7.2-1.4.2.1" class="pilcrow">ΒΆ</a></p>
</aside>
</dd>
          <dd class="break"></dd>
<dt id="section-7.2-1.5">Related attacks: </dt>
          <dd style="margin-left: 1.5em" id="section-7.2-1.6">
            <p id="section-7.2-1.6.1">Integrity protection mitigates attacks related to modification and tampering,
              including the attacks described in Sections <a href="#ModificationThreat" class="xref">5.2.2</a> and <a href="#ReplicationThreat" class="xref">5.2.4</a>.<a href="#section-7.2-1.6.1" class="pilcrow">ΒΆ</a></p>
</dd>
        <dd class="break"></dd>
</dl>
</section>
</div>
<section id="section-7.3">
        <h3 id="name-detnet-node-authentication">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-detnet-node-authentication" class="section-name selfRef">DetNet Node Authentication</a>
        </h3>
<span class="break"></span><dl class="dlParallel" id="section-7.3-1">
          <dt id="section-7.3-1.1">Description:</dt>
          <dd style="margin-left: 1.5em" id="section-7.3-1.2">Authentication verifies the identity of DetNet nodes (including DetNet Controller
            Plane nodes), and this enables mitigation of Spoofing attacks. While integrity
            protection (<a href="#IntegritySection" class="xref">Section 7.2</a>) prevents intermediate
            nodes from modifying information, authentication can provide traffic origin
            verification, i.e., to verify that each packet in a DetNet flow is from a known source.
            Although node authentication and integrity protection are two different goals of a
            security protocol, in most cases, a common protocol (such as IPsec <span>[<a href="#RFC4301" class="xref">RFC4301</a>]</span> or MACsec <span>[<a href="#IEEE802.1AE-2018" class="xref">IEEE802.1AE-2018</a>]</span>) is used for achieving both purposes.<a href="#section-7.3-1.2" class="pilcrow">ΒΆ</a>
</dd>
          <dd class="break"></dd>
<dt id="section-7.3-1.3">Related attacks: </dt>
          <dd style="margin-left: 1.5em" id="section-7.3-1.4">DetNet node authentication is used to mitigate attacks related to spoofing, including
            the attacks of Sections <a href="#ModificationThreat" class="xref">5.2.2</a> and <a href="#ReplicationThreat" class="xref">5.2.4</a>.<a href="#section-7.3-1.4" class="pilcrow">ΒΆ</a>
</dd>
        <dd class="break"></dd>
</dl>
</section>
<section id="section-7.4">
        <h3 id="name-synthetic-traffic-insertion">
<a href="#section-7.4" class="section-number selfRef">7.4. </a><a href="#name-synthetic-traffic-insertion" class="section-name selfRef">Synthetic Traffic Insertion</a>
        </h3>
<span class="break"></span><dl class="dlParallel" id="section-7.4-1">
          <dt id="section-7.4-1.1">Description: </dt>
          <dd style="margin-left: 1.5em" id="section-7.4-1.2">With some queuing methods such as <span>[<a href="#IEEE802.1Qch-2017" class="xref">IEEE802.1Qch-2017</a>]</span>, it is possible to
          introduce synthetic traffic in order to regularize the timing of
          packet transmission. (Synthetic traffic typically consists of randomly
          generated packets injected in the network to mask observable
          transmission patterns in the flows, which may allow an attacker to
          gain insight into the content of the flows). This can subsequently
          reduce the value of passive monitoring from internal threats (see
          <a href="#ThreatSection" class="xref">Section 5</a>) as it will be much
          more difficult to associate discrete events with particular network
          packets.<a href="#section-7.4-1.2" class="pilcrow">ΒΆ</a>
</dd>
          <dd class="break"></dd>
<dt id="section-7.4-1.3">Related attacks: </dt>
          <dd style="margin-left: 1.5em" id="section-7.4-1.4">Removing distinctive temporal properties of individual packets
          or flows can be used to mitigate against reconnaissance attacks
          (<a href="#ReconnaissanceThreat" class="xref">Section 5.2.6</a>). For
          example, synthetic traffic can be used to maintain
          constant traffic rate even when no user data is transmitted, thus
          making it difficult to collect information about the times at which
          users are active and the times at which DetNet flows are added or
          removed.<a href="#section-7.4-1.4" class="pilcrow">ΒΆ</a>
</dd>
          <dd class="break"></dd>
<dt id="section-7.4-1.5">Traffic Insertion Challenges: </dt>
          <dd style="margin-left: 1.5em" id="section-7.4-1.6">
            <p id="section-7.4-1.6.1">Once an attacker is able to monitor the frames traversing a
            network to such a degree that they can differentiate between
            best-effort traffic and traffic belonging to a specific DetNet
            flow, it becomes difficult to not reveal to the attacker whether a
            given frame is valid traffic or an inserted frame. Thus, having
            the DetNet components generate and remove the synthetic traffic may or
            may not be a viable option unless certain challenges are solved;
            for example, but not limited to:<a href="#section-7.4-1.6.1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-7.4-1.6.2.1">Inserted traffic must be indistinguishable from valid stream traffic from the
                viewpoint of the attacker.<a href="#section-7.4-1.6.2.1" class="pilcrow">ΒΆ</a>
</li>
              <li class="normal" id="section-7.4-1.6.2.2">DetNet components must be able to safely identify and remove
              all inserted traffic (and only inserted traffic).<a href="#section-7.4-1.6.2.2" class="pilcrow">ΒΆ</a>
</li>
              <li class="normal" id="section-7.4-1.6.2.3">
                <p id="section-7.4-1.6.2.3.1">The controller plane must manage where to insert and remove
                synthetic traffic, but this information must not be revealed to an
                attacker.<a href="#section-7.4-1.6.2.3.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.4-1.6.2.3.2">An alternative design is to have the insertion and removal
                of synthetic traffic be performed at the application layer rather
                than by the DetNet itself. For example, the use of RTP padding
                to reduce information leakage from variable-bit-rate audio
                transmission via the Secure Real-time Transport Protocol
                (SRTP) is discussed in <span>[<a href="#RFC6562" class="xref">RFC6562</a>]</span>.<a href="#section-7.4-1.6.2.3.2" class="pilcrow">ΒΆ</a></p>
</li>
            </ul>
</dd>
        <dd class="break"></dd>
</dl>
</section>
<section id="section-7.5">
        <h3 id="name-encryption">
<a href="#section-7.5" class="section-number selfRef">7.5. </a><a href="#name-encryption" class="section-name selfRef">Encryption</a>
        </h3>
<span class="break"></span><dl class="dlParallel" id="section-7.5-1">
          <dt id="section-7.5-1.1">Description: </dt>
          <dd style="margin-left: 1.5em" id="section-7.5-1.2">
            <p id="section-7.5-1.2.1">Reconnaissance attacks (<a href="#ReconnaissanceThreat" class="xref">Section 5.2.6</a>) can
              be mitigated to some extent through the use of encryption, thereby preventing the
              attacker from accessing the packet header or contents. Specific encryption protocols
              will depend on the lower layers that DetNet is forwarded over. For example, IP flows
              may be forwarded over IPsec <span>[<a href="#RFC4301" class="xref">RFC4301</a>]</span>, and Ethernet
              flows may be secured using MACsec <span>[<a href="#IEEE802.1AE-2018" class="xref">IEEE802.1AE-2018</a>]</span>.<a href="#section-7.5-1.2.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5-1.2.2">However, despite the use of encryption, a reconnaissance attack can provide the
              attacker with insight into the network, even without visibility into the packet. For
              example, an attacker can observe which nodes are communicating with which other nodes,
              including when, how often, and with how much data. In addition, the timing of packets
              may be correlated in time with external events such as action of an external device.
              Such information may be used by the attacker, for example, in mapping out specific
              targets for a different type of attack at a different time.<a href="#section-7.5-1.2.2" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5-1.2.3">DetNet nodes do not have any need to inspect the payload of any DetNet packets,
              making them data agnostic. This means that end-to-end encryption at the application
              layer is an acceptable way to protect user data.<a href="#section-7.5-1.2.3" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5-1.2.4">Note that reconnaissance is a threat that is not specific to DetNet flows; therefore,
              reconnaissance mitigation will typically be analyzed and provided by a network
              operator regardless of whether DetNet flows are deployed. Thus, encryption
              requirements will typically not be defined in DetNet technology-specific
              specifications, but considerations of using DetNet in encrypted environments will be
              discussed in these specifications. For example, <span><a href="https://www.rfc-editor.org/rfc/rfc8939#section-5.1.2.3" class="relref">Section 5.1.2.3</a> of [<a href="#RFC8939" class="xref">RFC8939</a>]</span> discusses flow
              identification of DetNet flows running over IPsec.<a href="#section-7.5-1.2.4" class="pilcrow">ΒΆ</a></p>
</dd>
          <dd class="break"></dd>
<dt id="section-7.5-1.3">Related attacks: </dt>
          <dd style="margin-left: 1.5em" id="section-7.5-1.4">As noted above, encryption can be used to mitigate reconnaissance attacks (<a href="#ReconnaissanceThreat" class="xref">Section 5.2.6</a>). However, for a DetNet to provide
            differentiated quality of service on a flow-by-flow basis, the network must be able to
            identify the flows individually. This implies that in a reconnaissance attack, the
            attacker may also be able to track individual flows to learn more about the system.<a href="#section-7.5-1.4" class="pilcrow">ΒΆ</a>
</dd>
        <dd class="break"></dd>
</dl>
<div id="EncryptionConsiderations">
<section id="section-7.5.1">
          <h4 id="name-encryption-considerations-f">
<a href="#section-7.5.1" class="section-number selfRef">7.5.1. </a><a href="#name-encryption-considerations-f" class="section-name selfRef">Encryption Considerations for DetNet</a>
          </h4>
<p id="section-7.5.1-1">Any compute time that is required for encryption and decryption processing ("crypto")
            must be included in the flow latency calculations. Thus, cryptographic algorithms used in a
            DetNet must have bounded worst-case execution times, and these values must be used in
            the latency calculations. Fortunately, encryption and decryption operations typically
            are designed to have constant execution times in order to avoid side channel leakage.<a href="#section-7.5.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-2">Some cryptographic algorithms are symmetric in encode/decode time (such as AES), and others
            are asymmetric (such as public key algorithms). There are advantages and disadvantages
            to the use of either type in a given DetNet context. The discussion in this document
            relates to the timing implications of crypto for DetNet; it is assumed that integrity
            considerations are covered elsewhere in the literature.<a href="#section-7.5.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-3">Asymmetrical crypto is typically not used in networks on a packet-by-packet basis due
            to its computational cost. For example, if only endpoint checks or checks at a small
            number of intermediate points are required, asymmetric crypto can be used to
            authenticate distribution or exchange of a secret symmetric crypto key; a successful
            check based on that key will provide traffic origin verification as long as the key is
            kept secret by the participants. TLS (v1.3 <span>[<a href="#RFC8446" class="xref">RFC8446</a>]</span>, in
            particular, Section <span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-4.1" class="relref">4.1</a> (<a href="https://www.rfc-editor.org/rfc/rfc8446#section-4.1" class="relref">"Key
              Exchange Messages"</a>)</span>) and IKEv2 <span>[<a href="#RFC6071" class="xref">RFC6071</a>]</span> are
            examples of this for endpoint checks.<a href="#section-7.5.1-3" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-4">However, if secret symmetric keys are used for this purpose, the key must be given to
            all relays, which increases the probability of a secret key being leaked. Also, if any
            relay is compromised or faulty, then it may inject traffic into the flow. Group key
            management protocols can be used to automate management of such symmetric keys; for an
            example in the context of IPsec, see <span>[<a href="#I-D.ietf-ipsecme-g-ikev2" class="xref">IPSECME-G-IKEV2</a>]</span>.<a href="#section-7.5.1-4" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-5">Alternatively, asymmetric crypto can provide traffic origin verification at every
            intermediate node. For example, a DetNet flow can be associated with an (asymmetric)
            keypair, such that the private key is available to the source of the flow and the public
            key is distributed with the flow information, allowing verification at every node for
            every packet. However, this is more computationally expensive.<a href="#section-7.5.1-5" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-6">In either case, origin verification also requires replay detection as part of the
            security protocol to prevent an attacker from recording and resending traffic, e.g., as
            a denial-of-service attack on flow forwarding resources.<a href="#section-7.5.1-6" class="pilcrow">ΒΆ</a></p>
<p id="section-7.5.1-7">In the general case, cryptographic hygiene requires the generation of new keys during
            the lifetime of an encrypted flow (e.g., see <span><a href="https://www.rfc-editor.org/rfc/rfc4253#section-9" class="relref">Section 9</a> of [<a href="#RFC4253" class="xref">RFC4253</a>]</span>), and any such key generation (or key exchange)
            requires additional computing time, which must be accounted for in the latency
            calculations for that flow. For modern ECDH (Elliptical Curve Diffie-Hellman)
            key-exchange operations (such as x25519 <span>[<a href="#RFC7748" class="xref">RFC7748</a>]</span>),
            these operations can be performed in constant (predictable) time; however, this is not
            universally true (for example, for legacy RSA key exchange <span>[<a href="#RFC4432" class="xref">RFC4432</a>]</span>). Thus, implementers should be aware of the time properties of
            these algorithms and avoid algorithms that make constant-time implementation difficult
            or impossible.<a href="#section-7.5.1-7" class="pilcrow">ΒΆ</a></p>
</section>
</div>
</section>
<div id="ControllerProtectSection">
<section id="section-7.6">
        <h3 id="name-control-and-signaling-messa">
<a href="#section-7.6" class="section-number selfRef">7.6. </a><a href="#name-control-and-signaling-messa" class="section-name selfRef">Control and Signaling Message Protection</a>
        </h3>
<span class="break"></span><dl class="dlParallel" id="section-7.6-1">
          <dt id="section-7.6-1.1">Description: </dt>
          <dd style="margin-left: 1.5em" id="section-7.6-1.2">Control and signaling messages can be protected through the use of any or all of
            encryption, authentication, and integrity-protection mechanisms. Compared with data
            flows, the timing constraints for controller and signaling messages may be less strict,
            and the number of such packets may be fewer. If that is the case in a given application,
            then it may enable the use of asymmetric cryptography for the signing of both payload
            and headers for such messages, as well as encrypting the payload. Given that a DetNet is
            managed by a central controller, the use of a shared public key approach for these
            processes is well proven. This is further discussed in <a href="#EncryptionConsiderations" class="xref">Section 7.5.1</a>.<a href="#section-7.6-1.2" class="pilcrow">ΒΆ</a>
</dd>
          <dd class="break"></dd>
<dt id="section-7.6-1.3">Related attacks: </dt>
          <dd style="margin-left: 1.5em" id="section-7.6-1.4">These mechanisms can be used to mitigate various attacks on the controller plane, as
            described in Sections <a href="#ControllerThreat" class="xref">5.2.5</a>, <a href="#SyncThreat" class="xref">5.2.7</a>, and <a href="#PathThreat" class="xref">5.2.5.1</a>.<a href="#section-7.6-1.4" class="pilcrow">ΒΆ</a>
</dd>
        <dd class="break"></dd>
</dl>
</section>
</div>
<div id="DpaMitigation">
<section id="section-7.7">
        <h3 id="name-dynamic-performance-analyti">
<a href="#section-7.7" class="section-number selfRef">7.7. </a><a href="#name-dynamic-performance-analyti" class="section-name selfRef">Dynamic Performance Analytics</a>
        </h3>
<span class="break"></span><dl class="dlParallel" id="section-7.7-1">
          <dt id="section-7.7-1.1">Description: </dt>
          <dd style="margin-left: 1.5em" id="section-7.7-1.2">
            <p id="section-7.7-1.2.1">Incorporating Dynamic Performance Analytics (DPA) implies that the DetNet design
              includes a performance monitoring system to validate that timing guarantees are being
              met and to detect timing violations or other anomalies that may be the symptom of a
              security attack or system malfunction. If this monitoring system detects unexpected
              behavior, it must then cause action to be initiated to address the situation in an
              appropriate and timely manner, either at the data plane or controller plane or both in
              concert.<a href="#section-7.7-1.2.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.2.2">The overall DPA system can thus be decomposed into the "detection" and "notification"
              functions. Although the time-specific DPA performance indicators and their
              implementation will likely be specific to a given DetNet, and as such are nascent
              technology at the time of this writing, DPA is commonly used in existing networks so
              we can make some observations on how such a system might be implemented for a DetNet
              given that it would need to be adapted to address the time-specific performance
              indicators.<a href="#section-7.7-1.2.2" class="pilcrow">ΒΆ</a></p>
</dd>
          <dd class="break"></dd>
<dt id="section-7.7-1.3">Detection Mechanisms: </dt>
          <dd style="margin-left: 1.5em" id="section-7.7-1.4">
            <p id="section-7.7-1.4.1">Measurement of timing performance can be done via "passive" or "active" monitoring,
              as discussed below.<a href="#section-7.7-1.4.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.4.2">Examples of passive monitoring strategies include:<a href="#section-7.7-1.4.2" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-7.7-1.4.3.1">Monitoring of queue and buffer levels, e.g., via active queue management (e.g.,
                  <span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span>).<a href="#section-7.7-1.4.3.1" class="pilcrow">ΒΆ</a>
</li>
              <li class="normal" id="section-7.7-1.4.3.2">Monitoring of per-flow counters.<a href="#section-7.7-1.4.3.2" class="pilcrow">ΒΆ</a>
</li>
              <li class="normal" id="section-7.7-1.4.3.3">Measurement of link statistics such as traffic volume, bandwidth, and QoS.<a href="#section-7.7-1.4.3.3" class="pilcrow">ΒΆ</a>
</li>
              <li class="normal" id="section-7.7-1.4.3.4">Detection of dropped packets.<a href="#section-7.7-1.4.3.4" class="pilcrow">ΒΆ</a>
</li>
              <li class="normal" id="section-7.7-1.4.3.5">Use of commercially available Network Monitoring tools.<a href="#section-7.7-1.4.3.5" class="pilcrow">ΒΆ</a>
</li>
            </ul>
<p id="section-7.7-1.4.4">Examples of active monitoring include:<a href="#section-7.7-1.4.4" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-7.7-1.4.5.1">In-band timing measurements (such as packet arrival times), e.g., by timestamping
                and packet inspection.<a href="#section-7.7-1.4.5.1" class="pilcrow">ΒΆ</a>
</li>
              <li class="normal" id="section-7.7-1.4.5.2">
                <p id="section-7.7-1.4.5.2.1">Use of OAM. For DetNet-specific OAM considerations, see
                <span>[<a href="#I-D.ietf-detnet-ip-oam" class="xref">DETNET-IP-OAM</a>]</span> and
                <span>[<a href="#I-D.ietf-detnet-mpls-oam" class="xref">DETNET-MPLS-OAM</a>]</span>. Note: At the time of this writing,
                specifics of DPA have not been developed for the DetNet OAM
                but could be a subject for future investigation.<a href="#section-7.7-1.4.5.2.1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-7.7-1.4.5.2.2.1">For OAM for Ethernet specifically, see also
     Connectivity Fault Management (CFM <span>[<a href="#IEEE802.1Q" class="xref">IEEE802.1Q</a>]</span>), which defines
     protocols and practices for OAM for paths through 802.1
     bridges and LANs.<a href="#section-7.7-1.4.5.2.2.1" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</li>
              <li class="normal" id="section-7.7-1.4.5.3">Out-of-band detection. Following the data path or parts of a data path, for
                example, Bidirectional Forwarding Detection (BFD, e.g., <span>[<a href="#RFC5880" class="xref">RFC5880</a>]</span>).<a href="#section-7.7-1.4.5.3" class="pilcrow">ΒΆ</a>
</li>
            </ul>
<p id="section-7.7-1.4.6">Note that for some measurements (e.g., packet delay), it may be necessary to make and
              reconcile measurements from more than one physical location (e.g., a source and
              destination), possibly in both directions, in order to arrive at a given performance
              indicator value.<a href="#section-7.7-1.4.6" class="pilcrow">ΒΆ</a></p>
</dd>
          <dd class="break"></dd>
<dt id="section-7.7-1.5">Notification Mechanisms: </dt>
          <dd style="margin-left: 1.5em" id="section-7.7-1.6">
            <p id="section-7.7-1.6.1">Making DPA measurement results available at the right place(s) and time(s) to effect
              timely response can be challenging. Two notification mechanisms that are in general
              use are NETCONF/YANG Notifications and the proprietary local telemetry interfaces
              provided with components from some vendors. The Constrained Application Protocol
              (CoAP) Observe Option <span>[<a href="#RFC7641" class="xref">RFC7641</a>]</span> could also be relevant
              to such scenarios.<a href="#section-7.7-1.6.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.6.2">At the time of this writing, YANG Notifications are not addressed by the DetNet YANG
              documents; however, this may be a topic for future work. It is possible that some of
              the passive mechanisms could be covered by notifications from non-DetNet-specific YANG
              modules; for example, if there is OAM or other performance monitoring that can monitor
              delay bounds, then that could have its own associated YANG data model, which could be
              relevant to DetNet, for example, some "threshold" values for timing measurement
              notifications.<a href="#section-7.7-1.6.2" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.6.3">At the time of this writing, there is an IETF Working Group for network/performance
              monitoring (IP Performance Metrics (IPPM)). See also previous work by the completed
              Remote Network Monitoring Working Group (RMONMIB). See also "<a href="#RFC6632" class="xref">An Overview of the IETF Network Management Standards</a>", <span>[<a href="#RFC6632" class="xref">RFC6632</a>]</span>.<a href="#section-7.7-1.6.3" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.6.4">Vendor-specific local telemetry may be available on some commercially available
              systems, whereby the system can be programmed (via a proprietary dedicated port and
              API) to monitor and report on specific conditions, based on both passive and active
              measurements.<a href="#section-7.7-1.6.4" class="pilcrow">ΒΆ</a></p>
</dd>
          <dd class="break"></dd>
<dt id="section-7.7-1.7">Related attacks: </dt>
          <dd style="margin-left: 1.5em" id="section-7.7-1.8">
            <p id="section-7.7-1.8.1">Performance analytics can be used to detect various attacks, including the ones
              described in <a href="#DelayThreat" class="xref">Section 5.2.1</a> (Delay attack), <a href="#SegmentThreat" class="xref">Section 5.2.3</a> (Resource Segmentation attack), and <a href="#SyncThreat" class="xref">Section 5.2.7</a> (Time-Synchronization attack). Once detection
              and notification have occurred, the appropriate action can be taken to mitigate the
              threat.<a href="#section-7.7-1.8.1" class="pilcrow">ΒΆ</a></p>
<p id="section-7.7-1.8.2">For example, in the case of data plane Delay attacks, one possible mitigation is to
              timestamp the data at the source and timestamp it again at the destination, and if the
              resulting latency does not meet the service agreement, take appropriate action. Note
              that DetNet specifies packet sequence numbering; however, it does not specify use of
              packet timestamps, although they may be used by the underlying transport (for example,
              TSN <span>[<a href="#IEEE802.1BA" class="xref">IEEE802.1BA</a>]</span>) to provide the service.<a href="#section-7.7-1.8.2" class="pilcrow">ΒΆ</a></p>
</dd>
        <dd class="break"></dd>
</dl>
</section>
</div>
<section id="section-7.8">
        <h3 id="name-mitigation-summary">
<a href="#section-7.8" class="section-number selfRef">7.8. </a><a href="#name-mitigation-summary" class="section-name selfRef">Mitigation Summary</a>
        </h3>
<p id="section-7.8-1">The following table maps the attacks of <a href="#ThreatSection" class="xref">Section 5</a>
            (<a href="#ThreatSection" class="xref">Security Threats</a>) to the impacts of <a href="#ThreatImpact" class="xref">Section 6</a> (<a href="#ThreatImpact" class="xref">Security Threat Impacts</a>)
          and to the mitigations of the current section. Each row specifies an attack, the impact of
          this attack if it is successfully implemented, and possible mitigation methods.<a href="#section-7.8-1" class="pilcrow">ΒΆ</a></p>
<span id="name-mapping-attacks-to-impact-a"></span><div id="ThreatMapping">
<table class="center" id="table-3">
          <caption>
<a href="#table-3" class="selfRef">Table 3</a>:
<a href="#name-mapping-attacks-to-impact-a" class="selfRef">Mapping Attacks to Impact and Mitigations</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">Attack</th>
              <th class="text-left" rowspan="1" colspan="1">Impact</th>
              <th class="text-left" rowspan="1" colspan="1">Mitigations</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Delay Attack</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.1.2.1.1"> Non-deterministic delay<a href="#section-7.8-2.2.1.2.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.1.2.1.2">Data disruption<a href="#section-7.8-2.2.1.2.1.2" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.1.2.1.3"> Increased resource consumption<a href="#section-7.8-2.2.1.2.1.3" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.1.3.1.1">Path redundancy<a href="#section-7.8-2.2.1.3.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.1.3.1.2">Performance analytics<a href="#section-7.8-2.2.1.3.1.2" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Reconnaissance</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.2.2.1.1">Enabler for other attacks<a href="#section-7.8-2.2.2.2.1.1" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.2.3.1.1">Encryption<a href="#section-7.8-2.2.2.3.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.2.3.1.2">Synthetic traffic insertion<a href="#section-7.8-2.2.2.3.1.2" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">DetNet Flow Modification or Spoofing</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.3.2.1.1">Increased resource consumption<a href="#section-7.8-2.2.3.2.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.3.2.1.2">Data disruption<a href="#section-7.8-2.2.3.2.1.2" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.3.3.1.1">Path redundancy<a href="#section-7.8-2.2.3.3.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.3.3.1.2">Integrity protection<a href="#section-7.8-2.2.3.3.1.2" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.3.3.1.3">DetNet Node authentication<a href="#section-7.8-2.2.3.3.1.3" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Inter-segment Attack</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.4.2.1.1">Increased resource consumption<a href="#section-7.8-2.2.4.2.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.4.2.1.2">Data disruption<a href="#section-7.8-2.2.4.2.1.2" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.4.3.1.1">Path redundancy<a href="#section-7.8-2.2.4.3.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.4.3.1.2">Performance analytics<a href="#section-7.8-2.2.4.3.1.2" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Replication: Increased Attack Resource</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.5.2.1.1">All impacts of other attacks<a href="#section-7.8-2.2.5.2.1.1" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.5.3.1.1">Integrity protection<a href="#section-7.8-2.2.5.3.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.5.3.1.2">DetNet Node authentication<a href="#section-7.8-2.2.5.3.1.2" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.5.3.1.3">Encryption<a href="#section-7.8-2.2.5.3.1.3" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Replication-Related Header Manipulation</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.6.2.1.1"> Non-deterministic delay<a href="#section-7.8-2.2.6.2.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.6.2.1.2">Data disruption<a href="#section-7.8-2.2.6.2.1.2" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.6.3.1.1">Integrity protection<a href="#section-7.8-2.2.6.3.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.6.3.1.2">DetNet Node authentication<a href="#section-7.8-2.2.6.3.1.2" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Path Manipulation</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.7.2.1.1">Enabler for other attacks<a href="#section-7.8-2.2.7.2.1.1" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.7.3.1.1">Control and signaling message protection<a href="#section-7.8-2.2.7.3.1.1" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Path Choice: Increased Attack Surface</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.8.2.1.1">All impacts of other attacks<a href="#section-7.8-2.2.8.2.1.1" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.8.3.1.1"> Control and signaling message protection<a href="#section-7.8-2.2.8.3.1.1" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Modification</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.9.2.1.1">Increased resource consumption<a href="#section-7.8-2.2.9.2.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.9.2.1.2">Non-deterministic delay<a href="#section-7.8-2.2.9.2.1.2" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.9.2.1.3">Data disruption<a href="#section-7.8-2.2.9.2.1.3" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.9.3.1.1">Control and signaling message protection<a href="#section-7.8-2.2.9.3.1.1" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Injection</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.10.2.1.1">Increased resource consumption<a href="#section-7.8-2.2.10.2.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.10.2.1.2"> Non-deterministic delay<a href="#section-7.8-2.2.10.2.1.2" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.10.2.1.3">Data disruption<a href="#section-7.8-2.2.10.2.1.3" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.10.3.1.1">Control and signaling message protection<a href="#section-7.8-2.2.10.3.1.1" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Attacks on Time-Synchronization Mechanisms</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.11.2.1.1">Non-deterministic delay<a href="#section-7.8-2.2.11.2.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.11.2.1.2">Increased resource consumption<a href="#section-7.8-2.2.11.2.1.2" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.11.2.1.3">Data disruption<a href="#section-7.8-2.2.11.2.1.3" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
              <td class="text-left" rowspan="1" colspan="1">
                <ul class="normal text-left">
<li class="normal text-left" id="section-7.8-2.2.11.3.1.1">Path redundancy<a href="#section-7.8-2.2.11.3.1.1" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.11.3.1.2">Control and signaling message protection<a href="#section-7.8-2.2.11.3.1.2" class="pilcrow">ΒΆ</a>
</li>
                  <li class="normal text-left" id="section-7.8-2.2.11.3.1.3">Performance analytics<a href="#section-7.8-2.2.11.3.1.3" class="pilcrow">ΒΆ</a>
</li>
                </ul>
</td>
            </tr>
          </tbody>
        </table>
</div>
</section>
</section>
</div>
<section id="section-8">
      <h2 id="name-association-of-attacks-to-u">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-association-of-attacks-to-u" class="section-name selfRef">Association of Attacks to Use Cases</a>
      </h2>
<p id="section-8-1">Different attacks can have different impact and/or mitigation depending on the use case, so
        we would like to make this association in our analysis. However, since there is a
        potentially unbounded list of use cases, we categorize the attacks with respect to the
        common themes of the use cases as identified in <span><a href="https://www.rfc-editor.org/rfc/rfc8578#section-11" class="relref">Section 11</a> of [<a href="#RFC8578" class="xref">RFC8578</a>]</span>.<a href="#section-8-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8-2">See also <a href="#ThreatIndustryMapping" class="xref">Table 2</a> for a mapping of the
        impact of attacks per use case by industry.<a href="#section-8-2" class="pilcrow">ΒΆ</a></p>
<section id="section-8.1">
        <h3 id="name-association-of-attacks-to-us">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-association-of-attacks-to-us" class="section-name selfRef">Association of Attacks to Use Case Common Themes</a>
        </h3>
<p id="section-8.1-1">In this section, we review each theme and discuss the attacks that are applicable to that
          theme, as well as anything specific about the impact and mitigations for that attack with
          respect to that theme. <a href="#ThemeAttackMapping" class="xref">Table 5</a>, Mapping
          between Themes and Attacks, then provides a summary of the attacks that are applicable to
          each theme.<a href="#section-8.1-1" class="pilcrow">ΒΆ</a></p>
<section id="section-8.1.1">
          <h4 id="name-sub-network-layer">
<a href="#section-8.1.1" class="section-number selfRef">8.1.1. </a><a href="#name-sub-network-layer" class="section-name selfRef">Sub-network Layer</a>
          </h4>
<p id="section-8.1.1-1">DetNet is expected to run over various transmission mediums, with Ethernet being the
            first identified. Attacks such as Delay or Reconnaissance might be implemented
            differently on a different transmission medium; however, the impact on the DetNet as a
            whole would be essentially the same. We thus conclude that all attacks and impacts that
            would be applicable to DetNet over Ethernet (i.e., all those named in this document)
            would also be applicable to DetNet over other transmission mediums.<a href="#section-8.1.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.1-2">With respect to mitigations, some methods are specific to the Ethernet medium, for
            example, time-aware scheduling using 802.1Qbv <span>[<a href="#IEEE802.1Qbv-2015" class="xref">IEEE802.1Qbv-2015</a>]</span> can protect against excessive use of bandwidth at the ingress --
            for other mediums, other mitigations would have to be implemented to provide analogous
            protection.<a href="#section-8.1.1-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.2">
          <h4 id="name-central-administration">
<a href="#section-8.1.2" class="section-number selfRef">8.1.2. </a><a href="#name-central-administration" class="section-name selfRef">Central Administration</a>
          </h4>
<p id="section-8.1.2-1">A DetNet network can be controlled by a centralized network configuration and control
            system. Such a system may be in a single central location, or it may be distributed
            across multiple control entities that function together as a unified control system for
            the network.<a href="#section-8.1.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.2-2">All attacks named in this document that are relevant to controller plane packets (and
            the controller itself) are relevant to this theme, including Path Manipulation, Path
            Choice, Control Packet Modification or Injection, Reconnaissance, and Attacks on
            Time-Synchronization Mechanisms.<a href="#section-8.1.2-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.3">
          <h4 id="name-hot-swap">
<a href="#section-8.1.3" class="section-number selfRef">8.1.3. </a><a href="#name-hot-swap" class="section-name selfRef">Hot Swap</a>
          </h4>
<p id="section-8.1.3-1">A DetNet network is not expected to be "plug and play"; it is expected that there is
            some centralized network configuration and control system. However, the ability to "hot
            swap" components (e.g., due to malfunction) is similar enough to "plug and play" that
            this kind of behavior may be expected in DetNet networks, depending on the
            implementation.<a href="#section-8.1.3-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.3-2">An attack surface related to hot swap is that the DetNet network must at least consider
            input at runtime from components that were not part of the initial configuration of the
            network. Even a "perfect" (or "hitless") replacement of a component at runtime would not
            necessarily be ideal, since presumably one would want to distinguish it from the
            original for OAM purposes (e.g., to report hot swap of a failed component).<a href="#section-8.1.3-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.3-3">This implies that an attack such as Flow Modification, Spoofing, or Inter-segment
            (which could introduce packets from a "new" component, i.e., one heretofore unknown on
            the network) could be used to exploit the need to consider such packets (as opposed to
            rejecting them out of hand as one would do if one did not have to consider introduction
            of a new component).<a href="#section-8.1.3-3" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.3-4">To mitigate this situation, deployments should provide a method for dynamic and secure
            registration of new components, and (possibly manual) deregistration and re-keying of
            retired components. This would avoid the situation in which the network must accommodate
            potentially insecure packet flows from unknown components.<a href="#section-8.1.3-4" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.3-5">Similarly, if the network was designed to support runtime replacement of a clock
            component, then presence (or apparent presence) and thus consideration of packets from a
            new such component could affect the network, or the time synchronization of the network,
            for example, by initiating a new Best Master Clock selection process. These types of
            attacks should therefore be considered when designing hot-swap-type functionality (see
              <span>[<a href="#RFC7384" class="xref">RFC7384</a>]</span>).<a href="#section-8.1.3-5" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.4">
          <h4 id="name-data-flow-information-model">
<a href="#section-8.1.4" class="section-number selfRef">8.1.4. </a><a href="#name-data-flow-information-model" class="section-name selfRef">Data Flow Information Models</a>
          </h4>
<p id="section-8.1.4-1"> DetNet specifies new YANG data models <span>[<a href="#I-D.ietf-detnet-yang" class="xref">DETNET-YANG</a>]</span> that may present new attack surfaces. Per IETF guidelines, security
            considerations for any YANG data model are expected to be part of the YANG data model
            specification, as described in <span>[<a href="#IETF-YANG-SEC" class="xref">IETF-YANG-SEC</a>]</span>.<a href="#section-8.1.4-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.5">
          <h4 id="name-l2-and-l3-integration">
<a href="#section-8.1.5" class="section-number selfRef">8.1.5. </a><a href="#name-l2-and-l3-integration" class="section-name selfRef">L2 and L3 Integration</a>
          </h4>
<p id="section-8.1.5-1">A DetNet network integrates Layer 2 (bridged) networks (e.g., AVB/TSN LAN) and Layer 3
            (routed) networks (e.g., IP) via the use of well-known protocols such as IP, MPLS
            Pseudowire, and Ethernet. Various DetNet documents address many specific aspects of
            Layer 2 and Layer 3 integration within a DetNet, and these are not individually
            referenced here; security considerations for those aspects are covered within those
            documents or within the related subsections of the present document.<a href="#section-8.1.5-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.5-2">Please note that although there are no entries in the L2 and L3 Integration line of the
            Mapping between Themes and Attacks table (<a href="#ThemeAttackMapping" class="xref">Table 5</a>), this does not imply that there could be no relevant attacks
            related to L2-L3 integration.<a href="#section-8.1.5-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.6">
          <h4 id="name-end-to-end-delivery">
<a href="#section-8.1.6" class="section-number selfRef">8.1.6. </a><a href="#name-end-to-end-delivery" class="section-name selfRef">End-to-End Delivery</a>
          </h4>
<p id="section-8.1.6-1">Packets that are part of a resource-reserved DetNet flow are not to be dropped by the
            DetNet due to congestion. Packets may however be dropped for intended reasons, for
            example, security measures. For example, consider the case in which a packet becomes
            corrupted (whether incidentally or maliciously) such that the resulting flow ID
            incidentally matches the flow ID of another DetNet flow, potentially resulting in
            additional unauthorized traffic on the latter. In such a case, it may be a security
            requirement that the system report and/or take some defined action, perhaps when a
            packet drop count threshold has been reached (see also <a href="#DpaMitigation" class="xref">Section 7.7</a>).<a href="#section-8.1.6-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.6-2">A data plane attack may force packets to be dropped, for example, as a result of a
            Delay attack, Replication/Elimination attack, or Flow Modification attack.<a href="#section-8.1.6-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.6-3">The same result might be obtained by a Controller plane attack, e.g., Path Manipulation
            or Signaling Packet Modification.<a href="#section-8.1.6-3" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.6-4">An attack may also cause packets that should not be delivered to be delivered, such as
            by forcing packets from one (e.g., replicated) path to be preferred over another path
            when they should not be (Replication attack), or by Flow Modification, or Path Choice or
            Packet Injection. A Time-Synchronization attack could cause a system that was expecting
            certain packets at certain times to accept unintended packets based on compromised
            system time or time windowing in the scheduler.<a href="#section-8.1.6-4" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.7">
          <h4 id="name-replacement-for-proprietary">
<a href="#section-8.1.7" class="section-number selfRef">8.1.7. </a><a href="#name-replacement-for-proprietary" class="section-name selfRef">Replacement for Proprietary Fieldbuses and Ethernet-Based Networks</a>
          </h4>
<p id="section-8.1.7-1">There are many proprietary "fieldbuses" used in Industrial and other industries, as
            well as proprietary non-interoperable deterministic Ethernet-based networks. DetNet is
            intended to provide an open-standards-based alternative to such buses/networks. In cases
            where a DetNet intersects with such fieldbuses/networks or their protocols, such as by
            protocol emulation or access via a gateway, new attack surfaces can be opened.<a href="#section-8.1.7-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.7-2">For example, an Inter-segment or Controller plane attack such as Path Manipulation,
            Path Choice, or Control Packet Modification/Injection could be used to exploit commands
            specific to such a protocol or that are interpreted differently by the different
            protocols or gateway.<a href="#section-8.1.7-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.8">
          <h4 id="name-deterministic-vs-best-effor">
<a href="#section-8.1.8" class="section-number selfRef">8.1.8. </a><a href="#name-deterministic-vs-best-effor" class="section-name selfRef">Deterministic vs. Best-Effort Traffic</a>
          </h4>
<p id="section-8.1.8-1">Most of the themes described in this document address OT (reserved) DetNet flows --
            this item is intended to address issues related to IT traffic on a DetNet.<a href="#section-8.1.8-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.8-2">DetNet is intended to support coexistence of time-sensitive operational (OT,
            deterministic) traffic and informational (IT, "best effort") traffic on the same
            ("unified") network.<a href="#section-8.1.8-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.8-3">With DetNet, this coexistence will become more common, and mitigations will need to be
            established. The fact that the IT traffic on a DetNet is limited to a
            corporate-controlled network makes this a less difficult problem compared to being
            exposed to the open Internet; however, this aspect of DetNet security should not be
            underestimated.<a href="#section-8.1.8-3" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.8-4">An Inter-segment attack can flood the network with IT-type traffic with the intent of
            disrupting the handling of IT traffic and/or the goal of interfering with OT traffic.
            Presumably, if the DetNet flow reservation and isolation of the DetNet is well designed
            (better-designed than the attack), then interference with OT traffic should not result
            from an attack that floods the network with IT traffic.<a href="#section-8.1.8-4" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.8-5">The handling of IT traffic (i.e., traffic that by definition is not guaranteed any
            given deterministic service properties) by the DetNet will by definition not be given
            the DetNet-specific protections provided to DetNet (resource-reserved) flows. The
            implication is that the IT traffic on the DetNet network will necessarily have its own
            specific set of product (component or system) requirements for protection against
            attacks such as DoS; presumably they will be less stringent than those for OT flows, but
            nonetheless, component and system designers must employ whatever mitigations will meet
            the specified security requirements for IT traffic for the given component or DetNet.<a href="#section-8.1.8-5" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.8-6">The network design as a whole also needs to consider possible application-level
            dependencies of OT-type applications on services provided by the IT part of the network;
            for example, does the OT application depend on IT network services such as DNS or OAM?
            If such dependencies exist, how are malicious packet flows handled? Such considerations
            are typically outside the scope of DetNet proper, but nonetheless need to be addressed
            in the overall DetNet network design for a given use case.<a href="#section-8.1.8-6" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.9">
          <h4 id="name-deterministic-flows">
<a href="#section-8.1.9" class="section-number selfRef">8.1.9. </a><a href="#name-deterministic-flows" class="section-name selfRef">Deterministic Flows</a>
          </h4>
<p id="section-8.1.9-1">Reserved bandwidth data flows (deterministic flows) must provide the allocated
            bandwidth and must be isolated from each other.<a href="#section-8.1.9-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.9-2">A Spoofing or Inter-segment attack that adds packet traffic to a bandwidth-reserved
            DetNet flow could cause that flow to occupy more bandwidth than it was allocated,
            resulting in interference with other DetNet flows.<a href="#section-8.1.9-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.9-3">A Flow Modification, Spoofing, Header Manipulation, or Control Packet Modification
            attack could cause packets from one flow to be directed to another flow, thus breaching
            isolation between the flows.<a href="#section-8.1.9-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.10">
          <h4 id="name-unused-reserved-bandwidth">
<a href="#section-8.1.10" class="section-number selfRef">8.1.10. </a><a href="#name-unused-reserved-bandwidth" class="section-name selfRef">Unused Reserved Bandwidth</a>
          </h4>
<p id="section-8.1.10-1">If bandwidth reservations are made for a DetNet flow but the associated bandwidth is
            not used at any point in time, that bandwidth is made available on the network for
            best-effort traffic. However, note that security considerations for best-effort traffic
            on a DetNet network is out of scope of the present document, provided that any such
            attacks on best-effort traffic do not affect performance for DetNet OT traffic.<a href="#section-8.1.10-1" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.11">
          <h4 id="name-interoperability">
<a href="#section-8.1.11" class="section-number selfRef">8.1.11. </a><a href="#name-interoperability" class="section-name selfRef">Interoperability</a>
          </h4>
<p id="section-8.1.11-1">The DetNet specifications as a whole are intended to enable an ecosystem in which
            multiple vendors can create interoperable products, thus promoting component diversity
            and potentially higher numbers of each component manufactured. Toward that end, the
            security measures and protocols discussed in this document are intended to encourage
            interoperability.<a href="#section-8.1.11-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.11-2">Given that the DetNet specifications are unambiguously written and that the
            implementations are accurate, the property of interoperability should not in and of
            itself cause security concerns; however, flaws in interoperability between components
            could result in security weaknesses. The network operator, as well as system and
            component designers, can all contribute to reducing such weaknesses through
            interoperability testing.<a href="#section-8.1.11-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.12">
          <h4 id="name-cost-reductions">
<a href="#section-8.1.12" class="section-number selfRef">8.1.12. </a><a href="#name-cost-reductions" class="section-name selfRef">Cost Reductions</a>
          </h4>
<p id="section-8.1.12-1">The DetNet network specifications are intended to enable an ecosystem in which multiple
            vendors can create interoperable products, thus promoting higher numbers of each
            component manufactured, promoting cost reduction and cost competition among vendors.<a href="#section-8.1.12-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.12-2">This envisioned breadth of DetNet-enabled products is in general a positive factor;
            however, implementation flaws in any individual component can present an attack surface.
            In addition, implementation differences between components from different vendors can
            result in attack surfaces (resulting from their interaction) that may not exist in any
            individual component.<a href="#section-8.1.12-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.12-3">Network operators can mitigate such concerns through sufficient product and
            interoperability testing.<a href="#section-8.1.12-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.13">
          <h4 id="name-insufficiently-secure-compo">
<a href="#section-8.1.13" class="section-number selfRef">8.1.13. </a><a href="#name-insufficiently-secure-compo" class="section-name selfRef">Insufficiently Secure Components</a>
          </h4>
<p id="section-8.1.13-1">The DetNet network specifications are intended to enable an ecosystem in which multiple
            vendors can create interoperable products, thus promoting component diversity and
            potentially higher numbers of each component manufactured. However, this raises the
            possibility that a vendor might repurpose for DetNet applications a hardware or software
            component that was originally designed for operation in an isolated OT network and thus
            may not have been designed to be sufficiently secure, or secure at all, against the
            sorts of attacks described in this document. Deployment of such a component on a DetNet
            network that is intended to be highly secure may present an attack surface; thus, the
            DetNet network operator may need to take specific actions to protect such components,
            for example, by implementing a secure interface (such as a firewall) to isolate the
            component from the threats that may be present in the greater network.<a href="#section-8.1.13-1" class="pilcrow">ΒΆ</a></p>
</section>
<div id="NetworkSize">
<section id="section-8.1.14">
          <h4 id="name-detnet-network-size">
<a href="#section-8.1.14" class="section-number selfRef">8.1.14. </a><a href="#name-detnet-network-size" class="section-name selfRef">DetNet Network Size</a>
          </h4>
<p id="section-8.1.14-1">DetNet networks range in size from very small, e.g., inside a single industrial
            machine, to very large, e.g., a Utility Grid network spanning a whole country.<a href="#section-8.1.14-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.14-2">The size of the network might be related to how the attack is introduced into the
            network. For example, if the entire network is local, there is a threat that power can
            be cut to the entire network. If the network is large, perhaps only a part of the
            network is attacked.<a href="#section-8.1.14-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.14-3">A Delay attack might be as relevant to a small network as to a large network, although
            the amount of delay might be different.<a href="#section-8.1.14-3" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.14-4">Attacks sourced from IT traffic might be more likely in large networks since more
            people might have access to the network, presenting a larger attack surface. Similarly,
            Path Manipulation, Path Choice, and Time-Synchronization attacks seem more likely
            relevant to large networks.<a href="#section-8.1.14-4" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<section id="section-8.1.15">
          <h4 id="name-multiple-hops">
<a href="#section-8.1.15" class="section-number selfRef">8.1.15. </a><a href="#name-multiple-hops" class="section-name selfRef">Multiple Hops</a>
          </h4>
<p id="section-8.1.15-1">Large DetNet networks (e.g., a Utility Grid network) may involve many "hops" over
            various kinds of links, for example, radio repeaters, microwave links, fiber optic
            links, etc.<a href="#section-8.1.15-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.15-2">An attacker who has knowledge of the operation of a component or device's internal
            software (such as "device drivers") may be able to take advantage of this knowledge to
            design an attack that could exploit flaws (or even the specifics of normal operation) in
            the communication between the various links.<a href="#section-8.1.15-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.15-3">It is also possible that a large-scale DetNet topology containing various kinds of
            links may not be in as common use as other more homogeneous topologies. This situation
            may present more opportunity for attackers to exploit software and/or protocol flaws in
            or between these components because these components or configurations may not have been
            sufficiently tested for interoperability (in the way they would be as a result of broad
            usage). This may be of particular concern to early adopters of new DetNet components or
            technologies.<a href="#section-8.1.15-3" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.15-4">Of the attacks we have defined, the ones identified in <a href="#NetworkSize" class="xref">Section 8.1.14</a> as germane to large networks are the most relevant.<a href="#section-8.1.15-4" class="pilcrow">ΒΆ</a></p>
</section>
<div id="LevelOfServiceTheme">
<section id="section-8.1.16">
          <h4 id="name-level-of-service">
<a href="#section-8.1.16" class="section-number selfRef">8.1.16. </a><a href="#name-level-of-service" class="section-name selfRef">Level of Service</a>
          </h4>
<p id="section-8.1.16-1">A DetNet is expected to provide means to configure the network that include querying
            network path latency, requesting bounded latency for a given DetNet flow, requesting
            worst-case maximum and/or minimum latency for a given path or DetNet flow, and so on. It
            is an expected case that the network cannot provide a given requested service level. In
            such cases, the network control system should reply that the requested service level is
            not available (as opposed to accepting the parameter but then not delivering the desired
            behavior).<a href="#section-8.1.16-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.16-2">Controller plane attacks such as Signaling Packet Modification and Injection could be
            used to modify or create control traffic that could interfere with the process of a user
            requesting a level of service and/or the reply from the network.<a href="#section-8.1.16-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.16-3">Reconnaissance could be used to characterize flows and perhaps target specific flows
            for attack via the controller plane as noted in <a href="#Reconnaissance" class="xref">Section 6.7</a>.<a href="#section-8.1.16-3" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="BoundedLatencyTheme">
<section id="section-8.1.17">
          <h4 id="name-bounded-latency">
<a href="#section-8.1.17" class="section-number selfRef">8.1.17. </a><a href="#name-bounded-latency" class="section-name selfRef">Bounded Latency</a>
          </h4>
<p id="section-8.1.17-1">DetNet provides the expectation of guaranteed bounded latency.<a href="#section-8.1.17-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.17-2">Delay attacks can cause packets to miss their agreed-upon latency boundaries.<a href="#section-8.1.17-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.17-3">Time-Synchronization attacks can corrupt the time reference of the system, resulting in
            missed latency deadlines (with respect to the "correct" time reference).<a href="#section-8.1.17-3" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<section id="section-8.1.18">
          <h4 id="name-low-latency">
<a href="#section-8.1.18" class="section-number selfRef">8.1.18. </a><a href="#name-low-latency" class="section-name selfRef">Low Latency</a>
          </h4>
<p id="section-8.1.18-1">Applications may require "extremely low latency"; however, depending on the
            application, these may mean very different latency values. For example, "low latency"
            across a Utility Grid network is on a different time scale than "low latency" in a motor
            control loop in a small machine. The intent is that the mechanisms for specifying
            desired latency include wide ranges, and that architecturally there is nothing to
            prevent arbitrarily low latencies from being implemented in a given network.<a href="#section-8.1.18-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.18-2">Attacks on the controller plane (as described in the Level of Service theme; see <a href="#LevelOfServiceTheme" class="xref">Section 8.1.16</a>) and Delay and Time attacks (as described in the
            Bounded Latency theme; see <a href="#BoundedLatencyTheme" class="xref">Section 8.1.17</a>) both
            apply here.<a href="#section-8.1.18-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.19">
          <h4 id="name-bounded-jitter-latency-vari">
<a href="#section-8.1.19" class="section-number selfRef">8.1.19. </a><a href="#name-bounded-jitter-latency-vari" class="section-name selfRef">Bounded Jitter (Latency Variation)</a>
          </h4>
<p id="section-8.1.19-1">DetNet is expected to provide bounded jitter (packet-to-packet latency variation).<a href="#section-8.1.19-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.19-2">Delay attacks can cause packets to vary in their arrival times, resulting in
            packet-to-packet latency variation, thereby violating the jitter specification.<a href="#section-8.1.19-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.20">
          <h4 id="name-symmetrical-path-delays">
<a href="#section-8.1.20" class="section-number selfRef">8.1.20. </a><a href="#name-symmetrical-path-delays" class="section-name selfRef">Symmetrical Path Delays</a>
          </h4>
<p id="section-8.1.20-1">Some applications would like to specify that the transit delay time values be equal for
            both the transmit and return paths.<a href="#section-8.1.20-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.20-2">Delay attacks can cause path delays to materially differ between paths.<a href="#section-8.1.20-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.20-3">Time-Synchronization attacks can corrupt the time reference of the system, resulting in
            path delays that may be perceived to be different (with respect to the "correct" time
            reference) even if they are not materially different.<a href="#section-8.1.20-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.21">
          <h4 id="name-reliability-and-availabilit">
<a href="#section-8.1.21" class="section-number selfRef">8.1.21. </a><a href="#name-reliability-and-availabilit" class="section-name selfRef">Reliability and Availability</a>
          </h4>
<p id="section-8.1.21-1">DetNet-based systems are expected to be implemented with essentially arbitrarily high
            availability (for example, 99.9999% up time, or even 12 nines). The intent is that the
            DetNet designs should not make any assumptions about the level of reliability and
            availability that may be required of a given system and should define parameters for
            communicating these kinds of metrics within the network.<a href="#section-8.1.21-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.21-2">Any attack on the system, of any type, can affect its overall reliability and
            availability; thus, in the mapping table (<a href="#ThemeAttackMapping" class="xref">Table 5</a>), we have marked every attack. Since every DetNet depends to a
            greater or lesser degree on reliability and availability, this essentially means that
            all networks have to mitigate all attacks, which to a greater or lesser degree defeats
            the purpose of associating attacks with use cases. It also underscores the difficulty of
            designing "extremely high reliability" networks.<a href="#section-8.1.21-2" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.21-3">In practice, network designers can adopt a risk-based approach in which only those
            attacks are mitigated whose potential cost is higher than the cost of mitigation.<a href="#section-8.1.21-3" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.22">
          <h4 id="name-redundant-paths">
<a href="#section-8.1.22" class="section-number selfRef">8.1.22. </a><a href="#name-redundant-paths" class="section-name selfRef">Redundant Paths</a>
          </h4>
<p id="section-8.1.22-1">This document expects that each DetNet system will be implemented to some essentially
            arbitrary level of reliability and/or availability, depending on the use case. A
            strategy used by DetNet for providing extraordinarily high levels of reliability when
            justified is to provide redundant paths between which traffic can be seamlessly
            switched, all the while maintaining the required performance of that system.<a href="#section-8.1.22-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.22-2">Replication-related attacks are by definition applicable here. Controller plane attacks
            can also interfere with the configuration of redundant paths.<a href="#section-8.1.22-2" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-8.1.23">
          <h4 id="name-security-measures">
<a href="#section-8.1.23" class="section-number selfRef">8.1.23. </a><a href="#name-security-measures" class="section-name selfRef">Security Measures</a>
          </h4>
<p id="section-8.1.23-1">If any of the security mechanisms that protect the DetNet are attacked or subverted,
            this can result in malfunction of the network. Thus, the security systems themselves
            need to be robust against attacks.<a href="#section-8.1.23-1" class="pilcrow">ΒΆ</a></p>
<p id="section-8.1.23-2">The general topic of protection of security mechanisms is not unique to DetNet; it is
            identical to the case of securing any security mechanism for any network. This document
            addresses these concerns only to the extent that they are unique to DetNet.<a href="#section-8.1.23-2" class="pilcrow">ΒΆ</a></p>
</section>
</section>
<section id="section-8.2">
        <h3 id="name-summary-of-attack-types-per">
<a href="#section-8.2" class="section-number selfRef">8.2. </a><a href="#name-summary-of-attack-types-per" class="section-name selfRef">Summary of Attack Types per Use Case Common Theme</a>
        </h3>
<p id="section-8.2-1">The List of Attacks table (<a href="#ThreatList" class="xref">Table 4</a>) lists the
          attacks described in <a href="#ThreatSection" class="xref">Section 5</a>, <a href="#ThreatSection" class="xref">Security Threats</a>, assigning a number to each type of attack. That
          number is then used as a short form identifier for the attack in <a href="#ThemeAttackMapping" class="xref">Table 5</a>, Mapping between Themes and Attacks.<a href="#section-8.2-1" class="pilcrow">ΒΆ</a></p>
<span id="name-list-of-attacks"></span><div id="ThreatList">
<table class="center" id="table-4">
          <caption>
<a href="#table-4" class="selfRef">Table 4</a>:
<a href="#name-list-of-attacks" class="selfRef">List of Attacks</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1"></th>
              <th class="text-left" rowspan="1" colspan="1">Attack</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">1</td>
              <td class="text-left" rowspan="1" colspan="1">Delay Attack</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">2</td>
              <td class="text-left" rowspan="1" colspan="1">DetNet Flow Modification or Spoofing</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">3</td>
              <td class="text-left" rowspan="1" colspan="1">Inter-segment Attack </td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">4</td>
              <td class="text-left" rowspan="1" colspan="1">Replication: Increased Attack Surface</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">5</td>
              <td class="text-left" rowspan="1" colspan="1">Replication-Related Header Manipulation</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">6</td>
              <td class="text-left" rowspan="1" colspan="1">Path Manipulation</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">7</td>
              <td class="text-left" rowspan="1" colspan="1">Path Choice: Increased Attack Surface</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">8</td>
              <td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Modification</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">9</td>
              <td class="text-left" rowspan="1" colspan="1">Control or Signaling Packet Injection</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">10</td>
              <td class="text-left" rowspan="1" colspan="1">Reconnaissance</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">11</td>
              <td class="text-left" rowspan="1" colspan="1">Attacks on Time-Synchronization Mechanisms</td>
            </tr>
          </tbody>
        </table>
</div>
<p id="section-8.2-3">The Mapping between Themes and Attacks table (<a href="#ThemeAttackMapping" class="xref">Table 5</a>) maps the use case themes of <span>[<a href="#RFC8578" class="xref">RFC8578</a>]</span> (as also enumerated in this document) to the attacks of <a href="#ThreatList" class="xref">Table 4</a>. Each row specifies a theme, and the attacks relevant to this theme
          are marked with a "+". The row items that have no threats associated with them are
          included in the table for completeness of the list of Use Case Common Themes and do not
          have DetNet-specific threats associated with them.<a href="#section-8.2-3" class="pilcrow">ΒΆ</a></p>
<span id="name-mapping-between-themes-and-"></span><div id="ThemeAttackMapping">
<table class="center" id="table-5">
          <caption>
<a href="#table-5" class="selfRef">Table 5</a>:
<a href="#name-mapping-between-themes-and-" class="selfRef">Mapping between Themes and Attacks</a>
          </caption>
<thead>
            <tr>
              <th class="text-center" rowspan="2" colspan="1">Theme</th>
              <th class="text-center" rowspan="1" colspan="11">Attack</th>
            </tr>
            <tr>
              <th class="text-center" rowspan="1" colspan="1">1</th>
              <th class="text-center" rowspan="1" colspan="1">2</th>
              <th class="text-center" rowspan="1" colspan="1">3</th>
              <th class="text-center" rowspan="1" colspan="1">4</th>
              <th class="text-center" rowspan="1" colspan="1">5</th>
              <th class="text-center" rowspan="1" colspan="1">6</th>
              <th class="text-center" rowspan="1" colspan="1">7</th>
              <th class="text-center" rowspan="1" colspan="1">8</th>
              <th class="text-center" rowspan="1" colspan="1">9</th>
              <th class="text-center" rowspan="1" colspan="1">10</th>
              <th class="text-center" rowspan="1" colspan="1">11</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Network Layer - AVB/TSN Eth.</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Central Administration</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Hot Swap</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Data Flow Information Models</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">L2 and L3 Integration</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">End-to-End Delivery</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Proprietary Deterministic Ethernet Networks</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Replacement for Proprietary Fieldbuses</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Deterministic vs. Best-Effort Traffic</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Deterministic Flows</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Unused Reserved Bandwidth</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Interoperability</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Cost Reductions</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Insufficiently Secure Components</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">DetNet Network Size</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Multiple Hops</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Level of Service</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Bounded Latency</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Low Latency</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Bounded Jitter</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Symmetric Path Delays</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Reliability and Availability</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Redundant Paths</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1">+</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Security Measures</td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
              <td class="text-left" rowspan="1" colspan="1"></td>
            </tr>
          </tbody>
        </table>
</div>
</section>
</section>
<section id="section-9">
      <h2 id="name-security-considerations-for-">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-security-considerations-for-" class="section-name selfRef">Security Considerations for OAM Traffic</a>
      </h2>
<p id="section-9-1">This section considers DetNet-specific security considerations for packet traffic that is
        generated and transmitted over a DetNet as part of OAM (Operations, Administration, and
        Maintenance). For the purposes of this discussion, OAM traffic falls into one of two basic
        types:<a href="#section-9-1" class="pilcrow">ΒΆ</a></p>
<ul class="normal">
<li class="normal" id="section-9-2.1">OAM traffic generated by the network itself. The additional bandwidth required for such
          packets is added by the network administration, presumably transparent to the customer.
          Security considerations for such traffic are not DetNet specific (apart from such traffic
          being subject to the same DetNet-specific security considerations as any other DetNet data
          flow) and are thus not covered in this document.<a href="#section-9-2.1" class="pilcrow">ΒΆ</a>
</li>
        <li class="normal" id="section-9-2.2">OAM traffic generated by the customer. From a DetNet security point of view, DetNet
          security considerations for such traffic are exactly the same as for any other customer
          data flows.<a href="#section-9-2.2" class="pilcrow">ΒΆ</a>
</li>
      </ul>
<p id="section-9-3">From the perspective of an attack, OAM traffic is indistinguishable from DetNet traffic,
        and the network needs to be secure against injection, removal, or modification of traffic of
        any kind, including OAM traffic. A DetNet is sensitive to any form of packet injection,
        removal, or manipulation, and in this respect DetNet OAM traffic is no different. Techniques
        for securing a DetNet against these threats have been discussed elsewhere in this
        document.<a href="#section-9-3" class="pilcrow">ΒΆ</a></p>
</section>
<div id="TechnologySpecificThreats">
<section id="section-10">
      <h2 id="name-detnet-technology-specific-">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-detnet-technology-specific-" class="section-name selfRef">DetNet Technology-Specific Threats</a>
      </h2>
<p id="section-10-1">
        <a href="#ThreatSection" class="xref">Section 5</a>, <a href="#ThreatSection" class="xref">Security Threats</a>, describes threats that are
        independent of a DetNet implementation. This section considers threats
        specifically related to the IP- and MPLS-specific aspects of DetNet
        implementations.<a href="#section-10-1" class="pilcrow">ΒΆ</a></p>
<p id="section-10-2">The primary security considerations for the data plane specifically
      are to maintain the integrity of the data and the delivery of the
      associated DetNet service traversing the DetNet network.<a href="#section-10-2" class="pilcrow">ΒΆ</a></p>
<p id="section-10-3">The primary relevant differences between IP and MPLS implementations
      are in flow identification and OAM methodologies.<a href="#section-10-3" class="pilcrow">ΒΆ</a></p>
<p id="section-10-4">As noted in <span>[<a href="#RFC8655" class="xref">RFC8655</a>]</span>, DetNet
      operates at the IP layer <span>[<a href="#RFC8939" class="xref">RFC8939</a>]</span> and
      delivers service over sub-layer technologies such as MPLS <span>[<a href="#RFC8964" class="xref">RFC8964</a>]</span> and IEEE 802.1 Time-Sensitive
      Networking (TSN) <span>[<a href="#RFC9023" class="xref">RFC9023</a>]</span>. Application
      flows can be protected through whatever means are provided by the layer
      and sub-layer technologies. For example, technology-specific encryption
      may be used for IP flows (IPsec <span>[<a href="#RFC4301" class="xref">RFC4301</a>]</span>). For IP-over-Ethernet (Layer 2) flows using an
      underlying sub-net, MACsec <span>[<a href="#IEEE802.1AE-2018" class="xref">IEEE802.1AE-2018</a>]</span> may be appropriate. For some use cases, packet
      integrity protection without encryption may be sufficient.<a href="#section-10-4" class="pilcrow">ΒΆ</a></p>
<p id="section-10-5">However, if the DetNet nodes cannot decrypt IPsec traffic, then
      DetNet flow identification for encrypted IP traffic flows must be
      performed in a different way than it would be for unencrypted IP DetNet
      flows. The DetNet IP data plane identifies unencrypted flows via a
      6-tuple that consists of two IP addresses, the transport protocol ID,
      two transport protocol port numbers, and the DSCP in the IP header. When
      IPsec is used, the transport header is encrypted and the next protocol
      ID is an IPsec protocol, usually Encapsulating Security Payload (ESP),
      and not a transport protocol, leaving only three components of the
      6-tuple, which are the two IP addresses and the DSCP. If the IPsec
      sessions are established by a controller, then this controller could
      also transmit (in the clear) the Security Parameter Index (SPI) and thus
      the SPI could be used (in addition to the pair of IP addresses) for flow
      identification. Identification of DetNet flows over IPsec is further
      discussed in <span><a href="https://www.rfc-editor.org/rfc/rfc8939#section-5.1.2.3" class="relref">Section 5.1.2.3</a> of [<a href="#RFC8939" class="xref">RFC8939</a>]</span>.<a href="#section-10-5" class="pilcrow">ΒΆ</a></p>
<p id="section-10-6">Sections below discuss threats specific to IP and MPLS in more detail.<a href="#section-10-6" class="pilcrow">ΒΆ</a></p>
<section id="section-10.1">
        <h3 id="name-ip">
<a href="#section-10.1" class="section-number selfRef">10.1. </a><a href="#name-ip" class="section-name selfRef">IP</a>
        </h3>
<p id="section-10.1-1">IP has a long history of security considerations and architectural protection mechanisms.
          From a data plane perspective, DetNet does not add or modify any IP header information, so
          the carriage of DetNet traffic over an IP data plane does not introduce any new security
          issues that were not there before, apart from those already described in the
          data-plane-independent threats section (<a href="#ThreatSection" class="xref">Section 5</a>).<a href="#section-10.1-1" class="pilcrow">ΒΆ</a></p>
<p id="section-10.1-2">Thus, the security considerations for a DetNet based on an IP data plane are purely
          inherited from the rich IP security literature and code/application base, and the
          data-plane-independent section of this document.<a href="#section-10.1-2" class="pilcrow">ΒΆ</a></p>
<p id="section-10.1-3">Maintaining security for IP segments of a DetNet may be more challenging than for the
          MPLS segments of the network given that the IP segments of the network may reach the edges
          of the network, which are more likely to involve interaction with potentially malevolent
          outside actors. Conversely, MPLS is inherently more secure than IP since it is internal to
          routers and it is well known how to protect it from outside influence.<a href="#section-10.1-3" class="pilcrow">ΒΆ</a></p>
<p id="section-10.1-4">Another way to look at DetNet IP security is to consider it in the light of VPN security.
          As an industry, we have a lot of experience with VPNs running through networks with other
          VPNs -- it is well known how to secure the network for that. However, for a DetNet, we
          have the additional subtlety that any possible interaction of one packet with another can
          have a potentially deleterious effect on the time properties of the flows. So the network
          must provide sufficient isolation between flows, for example, by protecting the forwarding
          bandwidth and related resources so that they are available to DetNet traffic, by whatever
          means are appropriate for the data plane of that network, for example, through the use of
          queuing mechanisms.<a href="#section-10.1-4" class="pilcrow">ΒΆ</a></p>
<p id="section-10.1-5">In a VPN, bandwidth is generally guaranteed over a period of time whereas in DetNet, it
          is not aggregated over time. This implies that any VPN-type protection mechanism must also
          maintain the DetNet timing constraints.<a href="#section-10.1-5" class="pilcrow">ΒΆ</a></p>
</section>
<section id="section-10.2">
        <h3 id="name-mpls">
<a href="#section-10.2" class="section-number selfRef">10.2. </a><a href="#name-mpls" class="section-name selfRef">MPLS</a>
        </h3>
<p id="section-10.2-1">An MPLS network carrying DetNet traffic is expected to be a "well-managed" network. Given
          that this is the case, it is difficult for an attacker to pass a raw MPLS-encoded packet
          into a network because operators have considerable experience at excluding such packets at
          the network boundaries as well as excluding MPLS packets being inserted through the use of
          a tunnel.<a href="#section-10.2-1" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-2">MPLS security is discussed extensively in <span>[<a href="#RFC5920" class="xref">RFC5920</a>]</span>
            ("<a href="#RFC5920" class="xref">Security Framework for MPLS and GMPLS Networks</a>") to which the reader is referred.<a href="#section-10.2-2" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-3">
          <span>[<a href="#RFC6941" class="xref">RFC6941</a>]</span> builds on <span>[<a href="#RFC5920" class="xref">RFC5920</a>]</span> by providing additional security considerations that are applicable
          to the MPLS-TP extensions appropriate to the MPLS Transport Profile <span>[<a href="#RFC5921" class="xref">RFC5921</a>]</span> and thus to the operation of DetNet over some types of MPLS network.<a href="#section-10.2-3" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-4">
          <span>[<a href="#RFC5921" class="xref">RFC5921</a>]</span> introduces to MPLS new Operations,
          Administration, and Maintenance (OAM) capabilities; a transport-oriented path protection
          mechanism; and strong emphasis on static provisioning supported by network management
          systems.<a href="#section-10.2-4" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-5">The operation of DetNet over an MPLS network builds on MPLS and pseudowire encapsulation.
          Thus, for guidance on securing the DetNet elements of DetNet over MPLS, the reader is also
          referred to the security considerations of <span>[<a href="#RFC4385" class="xref">RFC4385</a>]</span>,
            <span>[<a href="#RFC5586" class="xref">RFC5586</a>]</span>, <span>[<a href="#RFC3985" class="xref">RFC3985</a>]</span>,
            <span>[<a href="#RFC6073" class="xref">RFC6073</a>]</span>, and <span>[<a href="#RFC6478" class="xref">RFC6478</a>]</span>.<a href="#section-10.2-5" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-6">Having attended to the conventional aspects of network security, it is necessary to
          attend to the dynamic aspects. The closest experience that the IETF has with securing
          protocols that are sensitive to manipulation of delay are the two-way time transfer (TWTT)
          protocols, which are NTP <span>[<a href="#RFC5905" class="xref">RFC5905</a>]</span> and the Precision Time
          Protocol <span>[<a href="#IEEE1588" class="xref">IEEE1588</a>]</span>. The security requirements for these
          are described in <span>[<a href="#RFC7384" class="xref">RFC7384</a>]</span>.<a href="#section-10.2-6" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-7">One particular problem that has been observed in operational tests of TWTT protocols is
          the ability for two closely but not completely synchronized flows to beat and cause a
          sudden phase hit to one of the flows. This can be mitigated by the careful use of a
          scheduling system in the underlying packet transport.<a href="#section-10.2-7" class="pilcrow">ΒΆ</a></p>
<p id="section-10.2-8">Some investigations into protection of MPLS systems against dynamic attacks exist, such
          as <span>[<a href="#I-D.ietf-mpls-opportunistic-encrypt" class="xref">MPLS-OPP-ENCRYPT</a>]</span>; perhaps
          deployment of DetNets will encourage additional such investigations.<a href="#section-10.2-8" class="pilcrow">ΒΆ</a></p>
</section>
</section>
</div>
<div id="IANA">
<section id="section-11">
      <h2 id="name-iana-considerations">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
      </h2>
<p id="section-11-1">This document has no IANA actions.<a href="#section-11-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="Security">
<section id="section-12">
      <h2 id="name-security-considerations">
<a href="#section-12" class="section-number selfRef">12. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
      </h2>
<p id="section-12-1">The security considerations of DetNet networks are presented throughout this document.<a href="#section-12-1" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<div id="Privacy">
<section id="section-13">
      <h2 id="name-privacy-considerations">
<a href="#section-13" class="section-number selfRef">13. </a><a href="#name-privacy-considerations" class="section-name selfRef">Privacy Considerations</a>
      </h2>
<p id="section-13-1">Privacy in the context of DetNet is maintained by the base technologies specific to the
        DetNet and user traffic. For example, TSN can use MACsec, IP can use IPsec, and applications
        can use IP transport protocol-provided methods, e.g., TLS and DTLS. MPLS typically uses
        L2/L3 VPNs combined with the previously mentioned privacy methods.<a href="#section-13-1" class="pilcrow">ΒΆ</a></p>
<p id="section-13-2">However, note that reconnaissance threats such as traffic analysis and monitoring of
        electrical side channels can still cause there to be privacy considerations even when
        traffic is encrypted.<a href="#section-13-2" class="pilcrow">ΒΆ</a></p>
</section>
</div>
<section id="section-14">
      <h2 id="name-references">
<a href="#section-14" class="section-number selfRef">14. </a><a href="#name-references" class="section-name selfRef">References</a>
      </h2>
<section id="section-14.1">
        <h3 id="name-normative-references">
<a href="#section-14.1" class="section-number selfRef">14.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
        </h3>
<dl class="references">
<dt id="RFC8655">[RFC8655]</dt>
        <dd>
<span class="refAuthor">Finn, N.</span>, <span class="refAuthor">Thubert, P.</span>, <span class="refAuthor">Varga, B.</span>, and <span class="refAuthor">J. Farkas</span>, <span class="refTitle">"Deterministic Networking Architecture"</span>, <span class="seriesInfo">RFC 8655</span>, <span class="seriesInfo">DOI 10.17487/RFC8655</span>, <time datetime="2019-10" class="refDate">October 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8655">https://www.rfc-editor.org/info/rfc8655</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8938">[RFC8938]</dt>
        <dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Malis, A.</span>, and <span class="refAuthor">S. Bryant</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane Framework"</span>, <span class="seriesInfo">RFC 8938</span>, <span class="seriesInfo">DOI 10.17487/RFC8938</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8938">https://www.rfc-editor.org/info/rfc8938</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8939">[RFC8939]</dt>
        <dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Fedyk, D.</span>, and <span class="refAuthor">S. Bryant</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane: IP"</span>, <span class="seriesInfo">RFC 8939</span>, <span class="seriesInfo">DOI 10.17487/RFC8939</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8939">https://www.rfc-editor.org/info/rfc8939</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8964">[RFC8964]</dt>
      <dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Malis, A.</span>, <span class="refAuthor">Bryant, S.</span>, and <span class="refAuthor">J. Korhonen</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane: MPLS"</span>, <span class="seriesInfo">RFC 8964</span>, <span class="seriesInfo">DOI 10.17487/RFC8964</span>, <time datetime="2021-01" class="refDate">January 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8964">https://www.rfc-editor.org/info/rfc8964</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-14.2">
        <h3 id="name-informative-references">
<a href="#section-14.2" class="section-number selfRef">14.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
        </h3>
<dl class="references">
<dt id="ARINC664P7">[ARINC664P7]</dt>
        <dd>
<span class="refAuthor">ARINC</span>, <span class="refTitle">"Aircraft Data Network Part 7 Avionics Full-Duplex Switched Ethernet Network"</span>, <span class="seriesInfo">ARINC 664 P7</span>, <time datetime="2009-09" class="refDate">September 2009</time>. </dd>
<dd class="break"></dd>
<dt id="BCP107">[BCP107]</dt>
        <dd>
<div class="refInstance" id="RFC4107">
            <span class="refAuthor">Bellovin, S.</span> and <span class="refAuthor">R. Housley</span>, <span class="refTitle">"Guidelines for Cryptographic Key Management"</span>, <span class="seriesInfo">BCP 107</span>, <span class="seriesInfo">RFC 4107</span>, <time datetime="2005-06" class="refDate">June 2005</time>. </div>
<span>&lt;<a href="https://www.rfc-editor.org/info/bcp107">https://www.rfc-editor.org/info/bcp107</a>&gt;</span>
</dd>
<dd class="break"></dd>
<dt id="BCP72">[BCP72]</dt>
        <dd>
<div class="refInstance" id="RFC3552">
            <span class="refAuthor">Rescorla, E.</span> and <span class="refAuthor">B. Korver</span>, <span class="refTitle">"Guidelines for Writing RFC Text on Security Considerations"</span>, <span class="seriesInfo">BCP 72</span>, <span class="seriesInfo">RFC 3552</span>, <time datetime="2003-07" class="refDate">July 2003</time>. </div>
<span>&lt;<a href="https://www.rfc-editor.org/info/bcp72">https://www.rfc-editor.org/info/bcp72</a>&gt;</span>
</dd>
<dd class="break"></dd>
<dt id="I-D.ietf-detnet-ip-oam">[DETNET-IP-OAM]</dt>
        <dd>
<span class="refAuthor">Mirsky, G.</span>, <span class="refAuthor">Chen, M.</span>, and <span class="refAuthor">D. Black</span>, <span class="refTitle">"Operations, Administration and Maintenance (OAM) for Deterministic Networks (DetNet) with IP Data Plane"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-detnet-ip-oam-02</span>, <time datetime="2021-03-30" class="refDate">30 March 2021</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-ietf-detnet-ip-oam-02">https://datatracker.ietf.org/doc/html/draft-ietf-detnet-ip-oam-02</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-detnet-mpls-oam">[DETNET-MPLS-OAM]</dt>
        <dd>
<span class="refAuthor">Mirsky, G.</span> and <span class="refAuthor">M. Chen</span>, <span class="refTitle">"Operations, Administration and Maintenance (OAM) for Deterministic Networks (DetNet) with MPLS Data Plane"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-detnet-mpls-oam-03</span>, <time datetime="2021-03-30" class="refDate">30 March 2021</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-ietf-detnet-mpls-oam-03">https://datatracker.ietf.org/doc/html/draft-ietf-detnet-mpls-oam-03</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.varga-detnet-service-model">[DETNET-SERVICE-MODEL]</dt>
        <dd>
<span class="refAuthor">Varga, B., Ed.</span> and <span class="refAuthor">J. Farkas</span>, <span class="refTitle">"DetNet Service Model"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-varga-detnet-service-model-02</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-varga-detnet-service-model-02">https://datatracker.ietf.org/doc/html/draft-varga-detnet-service-model-02</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-detnet-yang">[DETNET-YANG]</dt>
        <dd>
<span class="refAuthor">Geng, X.</span>, <span class="refAuthor">Chen, M.</span>, <span class="refAuthor">Ryoo, Y.</span>, <span class="refAuthor">Fedyk, D.</span>, <span class="refAuthor">Rahman, R.</span>, and <span class="refAuthor">Z. Li</span>, <span class="refTitle">"Deterministic Networking (DetNet) YANG Model"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-detnet-yang-12</span>, <time datetime="2021-05-19" class="refDate">19 May 2021</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-ietf-detnet-yang-12">https://datatracker.ietf.org/doc/html/draft-ietf-detnet-yang-12</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IEEE1588">[IEEE1588]</dt>
        <dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE 1588 Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems"</span>, <span class="seriesInfo">IEEE Std. 1588-2008</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2008.4579760</span>, <time datetime="2008-07" class="refDate">July 2008</time>, <span>&lt;<a href="https://doi.org/10.1109/IEEESTD.2008.4579760">https://doi.org/10.1109/IEEESTD.2008.4579760</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.1AE-2018">[IEEE802.1AE-2018]</dt>
        <dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and metropolitan area networks-Media Access Control (MAC) Security"</span>, <span class="seriesInfo">IEEE Std. 802.1AE-2018</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2018.8585421</span>, <time datetime="2018-12" class="refDate">December 2018</time>, <span>&lt;<a href="https://ieeexplore.ieee.org/document/8585421">https://ieeexplore.ieee.org/document/8585421</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.1BA">[IEEE802.1BA]</dt>
        <dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and metropolitan area networks--Audio Video Bridging (AVB) Systems"</span>, <span class="seriesInfo">IEEE Std. 802.1BA-2011</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2011.6032690</span>, <time datetime="2011-09" class="refDate">September 2011</time>, <span>&lt;<a href="https://ieeexplore.ieee.org/document/6032690">https://ieeexplore.ieee.org/document/6032690</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.1Q">[IEEE802.1Q]</dt>
        <dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and metropolitan area networks--Bridges and Bridged Networks"</span>, <span class="seriesInfo">IEEE Std. 802.1Q-2014</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2014.6991462</span>, <time datetime="2014-12" class="refDate">December 2014</time>, <span>&lt;<a href="https://ieeexplore.ieee.org/document/6991462">https://ieeexplore.ieee.org/document/6991462</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.1Qbv-2015">[IEEE802.1Qbv-2015]</dt>
        <dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and metropolitan area networks -- Bridges and Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic"</span>, <span class="seriesInfo">IEEE Std. 802.1Qbv-2015</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2016.8613095</span>, <time datetime="2016-03" class="refDate">March 2016</time>, <span>&lt;<a href="https://ieeexplore.ieee.org/document/8613095">https://ieeexplore.ieee.org/document/8613095</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IEEE802.1Qch-2017">[IEEE802.1Qch-2017]</dt>
        <dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and metropolitan area networks--Bridges and Bridged Networks--Amendment 29: Cyclic Queuing and Forwarding"</span>, <span class="seriesInfo">IEEE Std. 802.1Qch-2017</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2017.7961303</span>, <time datetime="2017-06" class="refDate">June 2017</time>, <span>&lt;<a href="https://ieeexplore.ieee.org/document/7961303">https://ieeexplore.ieee.org/document/7961303</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IETF-YANG-SEC">[IETF-YANG-SEC]</dt>
        <dd>
<span class="refAuthor">IETF</span>, <span class="refTitle">"YANG module security considerations"</span>, <time datetime="2018-10" class="refDate">October 2018</time>, <span>&lt;<a href="https://trac.ietf.org/trac/ops/wiki/yang-security-guidelines">https://trac.ietf.org/trac/ops/wiki/yang-security-guidelines</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-ipsecme-g-ikev2">[IPSECME-G-IKEV2]</dt>
        <dd>
<span class="refAuthor">Smyslov, V.</span> and <span class="refAuthor">B. Weis</span>, <span class="refTitle">"Group Key Management using IKEv2"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-ipsecme-g-ikev2-02</span>, <time datetime="2021-01-11" class="refDate">11 January 2021</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-g-ikev2-02">https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-g-ikev2-02</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IT-DEF">[IT-DEF]</dt>
        <dd>
<span class="refAuthor">Wikipedia</span>, <span class="refTitle">"Information technology"</span>, <time datetime="2020-03" class="refDate">March 2020</time>, <span>&lt;<a href="https://en.wikiquote.org/w/index.php?title=Information_technology&amp;oldid=2749907">https://en.wikiquote.org/w/index.php?title=Information_technology&amp;oldid=2749907</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-mpls-opportunistic-encrypt">[MPLS-OPP-ENCRYPT]</dt>
        <dd>
<span class="refAuthor">Farrel, A.</span> and <span class="refAuthor">S. Farrell</span>, <span class="refTitle">"Opportunistic Security in MPLS Networks"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-mpls-opportunistic-encrypt-03</span>, <time datetime="2017-03-28" class="refDate">28 March 2017</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-ietf-mpls-opportunistic-encrypt-03">https://datatracker.ietf.org/doc/html/draft-ietf-mpls-opportunistic-encrypt-03</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="NS-DEF">[NS-DEF]</dt>
        <dd>
<span class="refAuthor">Wikipedia</span>, <span class="refTitle">"Network segmentation"</span>, <time datetime="2020-12" class="refDate">December 2020</time>, <span>&lt;<a href="https://en.wikipedia.org/w/index.php?title=Network_segmentation&amp;oldid=993163264">https://en.wikipedia.org/w/index.php?title=Network_segmentation&amp;oldid=993163264</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="OT-DEF">[OT-DEF]</dt>
        <dd>
<span class="refAuthor">Wikipedia</span>, <span class="refTitle">"Operational technology"</span>, <time datetime="2021-03" class="refDate">March 2021</time>, <span>&lt;<a href="https://en.wikipedia.org/w/index.php?title=Operational_technology&amp;oldid=1011704361">https://en.wikipedia.org/w/index.php?title=Operational_technology&amp;oldid=1011704361</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2474">[RFC2474]</dt>
        <dd>
<span class="refAuthor">Nichols, K.</span>, <span class="refAuthor">Blake, S.</span>, <span class="refAuthor">Baker, F.</span>, and <span class="refAuthor">D. Black</span>, <span class="refTitle">"Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"</span>, <span class="seriesInfo">RFC 2474</span>, <span class="seriesInfo">DOI 10.17487/RFC2474</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2474">https://www.rfc-editor.org/info/rfc2474</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2475">[RFC2475]</dt>
        <dd>
<span class="refAuthor">Blake, S.</span>, <span class="refAuthor">Black, D.</span>, <span class="refAuthor">Carlson, M.</span>, <span class="refAuthor">Davies, E.</span>, <span class="refAuthor">Wang, Z.</span>, and <span class="refAuthor">W. Weiss</span>, <span class="refTitle">"An Architecture for Differentiated Services"</span>, <span class="seriesInfo">RFC 2475</span>, <span class="seriesInfo">DOI 10.17487/RFC2475</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2475">https://www.rfc-editor.org/info/rfc2475</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3985">[RFC3985]</dt>
        <dd>
<span class="refAuthor">Bryant, S., Ed.</span> and <span class="refAuthor">P. Pate, Ed.</span>, <span class="refTitle">"Pseudo Wire Emulation Edge-to-Edge (PWE3) Architecture"</span>, <span class="seriesInfo">RFC 3985</span>, <span class="seriesInfo">DOI 10.17487/RFC3985</span>, <time datetime="2005-03" class="refDate">March 2005</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3985">https://www.rfc-editor.org/info/rfc3985</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4253">[RFC4253]</dt>
        <dd>
<span class="refAuthor">Ylonen, T.</span> and <span class="refAuthor">C. Lonvick, Ed.</span>, <span class="refTitle">"The Secure Shell (SSH) Transport Layer Protocol"</span>, <span class="seriesInfo">RFC 4253</span>, <span class="seriesInfo">DOI 10.17487/RFC4253</span>, <time datetime="2006-01" class="refDate">January 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4253">https://www.rfc-editor.org/info/rfc4253</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4301">[RFC4301]</dt>
        <dd>
<span class="refAuthor">Kent, S.</span> and <span class="refAuthor">K. Seo</span>, <span class="refTitle">"Security Architecture for the Internet Protocol"</span>, <span class="seriesInfo">RFC 4301</span>, <span class="seriesInfo">DOI 10.17487/RFC4301</span>, <time datetime="2005-12" class="refDate">December 2005</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4301">https://www.rfc-editor.org/info/rfc4301</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4302">[RFC4302]</dt>
        <dd>
<span class="refAuthor">Kent, S.</span>, <span class="refTitle">"IP Authentication Header"</span>, <span class="seriesInfo">RFC 4302</span>, <span class="seriesInfo">DOI 10.17487/RFC4302</span>, <time datetime="2005-12" class="refDate">December 2005</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4302">https://www.rfc-editor.org/info/rfc4302</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4385">[RFC4385]</dt>
        <dd>
<span class="refAuthor">Bryant, S.</span>, <span class="refAuthor">Swallow, G.</span>, <span class="refAuthor">Martini, L.</span>, and <span class="refAuthor">D. McPherson</span>, <span class="refTitle">"Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN"</span>, <span class="seriesInfo">RFC 4385</span>, <span class="seriesInfo">DOI 10.17487/RFC4385</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4385">https://www.rfc-editor.org/info/rfc4385</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4432">[RFC4432]</dt>
        <dd>
<span class="refAuthor">Harris, B.</span>, <span class="refTitle">"RSA Key Exchange for the Secure Shell (SSH) Transport Layer Protocol"</span>, <span class="seriesInfo">RFC 4432</span>, <span class="seriesInfo">DOI 10.17487/RFC4432</span>, <time datetime="2006-03" class="refDate">March 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4432">https://www.rfc-editor.org/info/rfc4432</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5586">[RFC5586]</dt>
        <dd>
<span class="refAuthor">Bocci, M., Ed.</span>, <span class="refAuthor">Vigoureux, M., Ed.</span>, and <span class="refAuthor">S. Bryant, Ed.</span>, <span class="refTitle">"MPLS Generic Associated Channel"</span>, <span class="seriesInfo">RFC 5586</span>, <span class="seriesInfo">DOI 10.17487/RFC5586</span>, <time datetime="2009-06" class="refDate">June 2009</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5586">https://www.rfc-editor.org/info/rfc5586</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5880">[RFC5880]</dt>
        <dd>
<span class="refAuthor">Katz, D.</span> and <span class="refAuthor">D. Ward</span>, <span class="refTitle">"Bidirectional Forwarding Detection (BFD)"</span>, <span class="seriesInfo">RFC 5880</span>, <span class="seriesInfo">DOI 10.17487/RFC5880</span>, <time datetime="2010-06" class="refDate">June 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5880">https://www.rfc-editor.org/info/rfc5880</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5905">[RFC5905]</dt>
        <dd>
<span class="refAuthor">Mills, D.</span>, <span class="refAuthor">Martin, J., Ed.</span>, <span class="refAuthor">Burbank, J.</span>, and <span class="refAuthor">W. Kasch</span>, <span class="refTitle">"Network Time Protocol Version 4: Protocol and Algorithms Specification"</span>, <span class="seriesInfo">RFC 5905</span>, <span class="seriesInfo">DOI 10.17487/RFC5905</span>, <time datetime="2010-06" class="refDate">June 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5905">https://www.rfc-editor.org/info/rfc5905</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5920">[RFC5920]</dt>
        <dd>
<span class="refAuthor">Fang, L., Ed.</span>, <span class="refTitle">"Security Framework for MPLS and GMPLS Networks"</span>, <span class="seriesInfo">RFC 5920</span>, <span class="seriesInfo">DOI 10.17487/RFC5920</span>, <time datetime="2010-07" class="refDate">July 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5920">https://www.rfc-editor.org/info/rfc5920</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5921">[RFC5921]</dt>
        <dd>
<span class="refAuthor">Bocci, M., Ed.</span>, <span class="refAuthor">Bryant, S., Ed.</span>, <span class="refAuthor">Frost, D., Ed.</span>, <span class="refAuthor">Levrau, L.</span>, and <span class="refAuthor">L. Berger</span>, <span class="refTitle">"A Framework for MPLS in Transport Networks"</span>, <span class="seriesInfo">RFC 5921</span>, <span class="seriesInfo">DOI 10.17487/RFC5921</span>, <time datetime="2010-07" class="refDate">July 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5921">https://www.rfc-editor.org/info/rfc5921</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6071">[RFC6071]</dt>
        <dd>
<span class="refAuthor">Frankel, S.</span> and <span class="refAuthor">S. Krishnan</span>, <span class="refTitle">"IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap"</span>, <span class="seriesInfo">RFC 6071</span>, <span class="seriesInfo">DOI 10.17487/RFC6071</span>, <time datetime="2011-02" class="refDate">February 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6071">https://www.rfc-editor.org/info/rfc6071</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6073">[RFC6073]</dt>
        <dd>
<span class="refAuthor">Martini, L.</span>, <span class="refAuthor">Metz, C.</span>, <span class="refAuthor">Nadeau, T.</span>, <span class="refAuthor">Bocci, M.</span>, and <span class="refAuthor">M. Aissaoui</span>, <span class="refTitle">"Segmented Pseudowire"</span>, <span class="seriesInfo">RFC 6073</span>, <span class="seriesInfo">DOI 10.17487/RFC6073</span>, <time datetime="2011-01" class="refDate">January 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6073">https://www.rfc-editor.org/info/rfc6073</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6274">[RFC6274]</dt>
        <dd>
<span class="refAuthor">Gont, F.</span>, <span class="refTitle">"Security Assessment of the Internet Protocol Version 4"</span>, <span class="seriesInfo">RFC 6274</span>, <span class="seriesInfo">DOI 10.17487/RFC6274</span>, <time datetime="2011-07" class="refDate">July 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6274">https://www.rfc-editor.org/info/rfc6274</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6478">[RFC6478]</dt>
        <dd>
<span class="refAuthor">Martini, L.</span>, <span class="refAuthor">Swallow, G.</span>, <span class="refAuthor">Heron, G.</span>, and <span class="refAuthor">M. Bocci</span>, <span class="refTitle">"Pseudowire Status for Static Pseudowires"</span>, <span class="seriesInfo">RFC 6478</span>, <span class="seriesInfo">DOI 10.17487/RFC6478</span>, <time datetime="2012-05" class="refDate">May 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6478">https://www.rfc-editor.org/info/rfc6478</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6562">[RFC6562]</dt>
        <dd>
<span class="refAuthor">Perkins, C.</span> and <span class="refAuthor">JM. Valin</span>, <span class="refTitle">"Guidelines for the Use of Variable Bit Rate Audio with Secure RTP"</span>, <span class="seriesInfo">RFC 6562</span>, <span class="seriesInfo">DOI 10.17487/RFC6562</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6562">https://www.rfc-editor.org/info/rfc6562</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6632">[RFC6632]</dt>
        <dd>
<span class="refAuthor">Ersue, M., Ed.</span> and <span class="refAuthor">B. Claise</span>, <span class="refTitle">"An Overview of the IETF Network Management Standards"</span>, <span class="seriesInfo">RFC 6632</span>, <span class="seriesInfo">DOI 10.17487/RFC6632</span>, <time datetime="2012-06" class="refDate">June 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6632">https://www.rfc-editor.org/info/rfc6632</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6941">[RFC6941]</dt>
        <dd>
<span class="refAuthor">Fang, L., Ed.</span>, <span class="refAuthor">Niven-Jenkins, B., Ed.</span>, <span class="refAuthor">Mansfield, S., Ed.</span>, and <span class="refAuthor">R. Graveman, Ed.</span>, <span class="refTitle">"MPLS Transport Profile (MPLS-TP) Security Framework"</span>, <span class="seriesInfo">RFC 6941</span>, <span class="seriesInfo">DOI 10.17487/RFC6941</span>, <time datetime="2013-04" class="refDate">April 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6941">https://www.rfc-editor.org/info/rfc6941</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7384">[RFC7384]</dt>
        <dd>
<span class="refAuthor">Mizrahi, T.</span>, <span class="refTitle">"Security Requirements of Time Protocols in Packet Switched Networks"</span>, <span class="seriesInfo">RFC 7384</span>, <span class="seriesInfo">DOI 10.17487/RFC7384</span>, <time datetime="2014-10" class="refDate">October 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7384">https://www.rfc-editor.org/info/rfc7384</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7567">[RFC7567]</dt>
        <dd>
<span class="refAuthor">Baker, F., Ed.</span> and <span class="refAuthor">G. Fairhurst, Ed.</span>, <span class="refTitle">"IETF Recommendations Regarding Active Queue Management"</span>, <span class="seriesInfo">BCP 197</span>, <span class="seriesInfo">RFC 7567</span>, <span class="seriesInfo">DOI 10.17487/RFC7567</span>, <time datetime="2015-07" class="refDate">July 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7567">https://www.rfc-editor.org/info/rfc7567</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7641">[RFC7641]</dt>
        <dd>
<span class="refAuthor">Hartke, K.</span>, <span class="refTitle">"Observing Resources in the Constrained Application Protocol (CoAP)"</span>, <span class="seriesInfo">RFC 7641</span>, <span class="seriesInfo">DOI 10.17487/RFC7641</span>, <time datetime="2015-09" class="refDate">September 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7641">https://www.rfc-editor.org/info/rfc7641</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7748">[RFC7748]</dt>
        <dd>
<span class="refAuthor">Langley, A.</span>, <span class="refAuthor">Hamburg, M.</span>, and <span class="refAuthor">S. Turner</span>, <span class="refTitle">"Elliptic Curves for Security"</span>, <span class="seriesInfo">RFC 7748</span>, <span class="seriesInfo">DOI 10.17487/RFC7748</span>, <time datetime="2016-01" class="refDate">January 2016</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7748">https://www.rfc-editor.org/info/rfc7748</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7835">[RFC7835]</dt>
        <dd>
<span class="refAuthor">Saucez, D.</span>, <span class="refAuthor">Iannone, L.</span>, and <span class="refAuthor">O. Bonaventure</span>, <span class="refTitle">"Locator/ID Separation Protocol (LISP) Threat Analysis"</span>, <span class="seriesInfo">RFC 7835</span>, <span class="seriesInfo">DOI 10.17487/RFC7835</span>, <time datetime="2016-04" class="refDate">April 2016</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7835">https://www.rfc-editor.org/info/rfc7835</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8446">[RFC8446]</dt>
        <dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refTitle">"The Transport Layer Security (TLS) Protocol Version 1.3"</span>, <span class="seriesInfo">RFC 8446</span>, <span class="seriesInfo">DOI 10.17487/RFC8446</span>, <time datetime="2018-08" class="refDate">August 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8446">https://www.rfc-editor.org/info/rfc8446</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8578">[RFC8578]</dt>
        <dd>
<span class="refAuthor">Grossman, E., Ed.</span>, <span class="refTitle">"Deterministic Networking Use Cases"</span>, <span class="seriesInfo">RFC 8578</span>, <span class="seriesInfo">DOI 10.17487/RFC8578</span>, <time datetime="2019-05" class="refDate">May 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8578">https://www.rfc-editor.org/info/rfc8578</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9016">[RFC9016]</dt>
        <dd>
<span class="refAuthor">Varga, B.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Cummings, R.</span>, <span class="refAuthor">Jiang, Y.</span>, and <span class="refAuthor">D. Fedyk</span>, <span class="refTitle">"Flow and Service Information Model for Deterministic Networking (DetNet)"</span>, <span class="seriesInfo">RFC 9016</span>, <span class="seriesInfo">DOI 10.17487/RFC9016</span>, <time datetime="2021-03" class="refDate">March 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9016">https://www.rfc-editor.org/info/rfc9016</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9023">[RFC9023]</dt>
        <dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Malis, A.</span>, and <span class="refAuthor">S. Bryant</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane: IP over IEEE 802.1 Time-Sensitive Networking (TSN)"</span>, <span class="seriesInfo">RFC 9023</span>, <span class="seriesInfo">DOI 10.17487/RFC9023</span>, <time datetime="2021-06" class="refDate">June 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9023">https://www.rfc-editor.org/info/rfc9023</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9025">[RFC9025]</dt>
        <dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Farkas, J.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Malis, A.</span>, and <span class="refAuthor">S. Bryant</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane: MPLS over UDP/IP"</span>, <span class="seriesInfo">RFC 9025</span>, <span class="seriesInfo">DOI 10.17487/RFC9025</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9025">https://www.rfc-editor.org/info/rfc9025</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9056">[RFC9056]</dt>
      <dd>
<span class="refAuthor">Varga, B., Ed.</span>, <span class="refAuthor">Berger, L.</span>, <span class="refAuthor">Fedyk, D.</span>, <span class="refAuthor">Bryant, S.</span>, and <span class="refAuthor">J. Korhonen</span>, <span class="refTitle">"Deterministic Networking (DetNet) Data Plane: IP over MPLS"</span>, <span class="seriesInfo">RFC 9056</span>, <span class="seriesInfo">DOI 10.17487/RFC9056</span>, <time datetime="2021-06" class="refDate">June 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9056">https://www.rfc-editor.org/info/rfc9056</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="appendix-A">
      <h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
      </h2>
<p id="appendix-A-1">The Editor would like to recognize the contributions of the following
      individuals to this document.<a href="#appendix-A-1" class="pilcrow">ΒΆ</a></p>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Stewart Bryant</span></div>
<div dir="auto" class="left"><span class="org">Futurewei Technologies</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:sb@stewartbryant.com" class="email">sb@stewartbryant.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">David Black</span></div>
<div dir="auto" class="left"><span class="org">Dell EMC</span></div>
<div dir="auto" class="left"><span class="street-address">176 South Street</span></div>
<div dir="auto" class="left">
<span class="locality">Hopkinton</span>, <span class="region">Massachusetts</span> <span class="postal-code">01748</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Henrik Austad</span></div>
<div dir="auto" class="left"><span class="org">SINTEF Digital</span></div>
<div dir="auto" class="left"><span class="street-address">Klaebuveien 153</span></div>
<div dir="auto" class="left">
<span class="postal-code">7037</span> <span class="locality">Trondheim</span>
</div>
<div dir="auto" class="left"><span class="country-name">Norway</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:henrik@austad.us" class="email">henrik@austad.us</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">John Dowdell</span></div>
<div dir="auto" class="left"><span class="org">Airbus Defence and Space</span></div>
<div dir="auto" class="left"><span class="locality">Celtic Springs</span></div>
<div dir="auto" class="left"><span class="postal-code">Newport, NP10 8FZ</span></div>
<div dir="auto" class="left"><span class="country-name">United Kingdom</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:john.dowdell.ietf@gmail.com" class="email">john.dowdell.ietf@gmail.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Norman Finn</span></div>
<div dir="auto" class="left"><span class="street-address">3101 Rio Way</span></div>
<div dir="auto" class="left">
<span class="locality">Spring Valley</span>, <span class="region">California</span> <span class="postal-code">91977</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:nfinn@nfinnconsulting.com" class="email">nfinn@nfinnconsulting.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Subir Das</span></div>
<div dir="auto" class="left"><span class="org">Applied Communication Sciences</span></div>
<div dir="auto" class="left"><span class="street-address">150 Mount Airy Road</span></div>
<div dir="auto" class="left">
<span class="locality">Basking Ridge</span>, <span class="region">New Jersey</span> <span class="postal-code">07920</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:sdas@appcomsci.com" class="email">sdas@appcomsci.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Carsten Bormann</span></div>
<div dir="auto" class="left"><span class="org">Universitat Bremen TZI</span></div>
<div dir="auto" class="left">
<span class="postal-code">Postfach 330440</span> <span class="locality">D-28359 Bremen</span>
</div>
<div dir="auto" class="left"><span class="country-name">Germany</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:cabo@tzi.org" class="email">cabo@tzi.org</a>
</div>
</address>
</section>
<div id="authors-addresses">
<section id="appendix-B">
      <h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Ethan Grossman (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Dolby Laboratories, Inc.</span></div>
<div dir="auto" class="left"><span class="street-address">1275 Market Street</span></div>
<div dir="auto" class="left">
<span class="locality">San Francisco</span>, <span class="region">CA</span> <span class="postal-code">94103</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ethan@ieee.org" class="email">ethan@ieee.org</a>
</div>
<div class="url">
<span>URI:</span>
<a href="https://www.dolby.com" class="url">https://www.dolby.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Tal Mizrahi</span></div>
<div dir="auto" class="left"><span class="org">Huawei</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:tal.mizrahi.phd@gmail.com" class="email">tal.mizrahi.phd@gmail.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Andrew J. Hacker</span></div>
<div dir="auto" class="left"><span class="org">Thought LLC</span></div>
<div dir="auto" class="left">
<span class="locality">Harrisburg</span>, <span class="region">PA</span> </div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:andrew@thought.live" class="email">andrew@thought.live</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
  toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
  toc.classList.remove("active");
});
</script>
</body>
</html>