1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9063: Host Identity Protocol Architecture</title>
<meta content="Robert Moskowitz" name="author">
<meta content="Miika Komu" name="author">
<meta content="
This memo describes the Host Identity (HI) namespace, which
provides a cryptographic namespace to applications, and the
associated protocol layer, the Host Identity Protocol, located
between the internetworking and transport layers, that supports
end-host mobility, multihoming, and NAT traversal. Herein are
presented the basics of the current namespaces, their strengths
and weaknesses, and how a HI namespace will add completeness to
them. The roles of the HI namespace in the protocols are
defined.
This document obsoletes RFC 4423 and addresses the concerns raised by
the IESG, particularly that of crypto agility. The Security Considerations section
also describes measures against flooding attacks, usage of identities in access control lists,
weaker types of identifiers, and trust on first use.
This document incorporates
lessons learned from the implementations of RFC 7401 and goes further
to explain how HIP works as a secure signaling channel.
" name="description">
<meta content="xml2rfc 3.9.1" name="generator">
<meta content="cryptographic identity" name="keyword">
<meta content="cryptographic namespace" name="keyword">
<meta content="identifier-locator split" name="keyword">
<meta content="mobility" name="keyword">
<meta content="multihoming" name="keyword">
<meta content="NAT traversal" name="keyword">
<meta content="IPsec" name="keyword">
<meta content="ESP" name="keyword">
<meta content="IPv6" name="keyword">
<meta content="end-to-end security" name="keyword">
<meta content="end-to-end connectivity" name="keyword">
<meta content="endpoint identity" name="keyword">
<meta content="leap of faith" name="keyword">
<meta content="rendezvous" name="keyword">
<meta content="9063" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.9.1
Python 3.6.10
appdirs 1.4.4
ConfigArgParse 1.2.3
google-i18n-address 2.3.5
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.2
kitchen 1.2.6
lxml 4.4.2
pycairo 1.19.0
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.3.1
requests 2.22.0
setuptools 40.6.2
six 1.14.0
WeasyPrint 51
-->
<link href="rfc9063.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: avoid-page;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9063" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-hip-rfc4423-bis-20" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9063</td>
<td class="center">Host Identity Protocol Architecture</td>
<td class="right">July 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Moskowitz & Komu</td>
<td class="center">Informational</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9063" class="eref">9063</a></dd>
<dt class="label-obsoletes">Obsoletes:</dt>
<dd class="obsoletes">
<a href="https://www.rfc-editor.org/rfc/rfc4423" class="eref">4423</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Informational</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-07" class="published">July 2021</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">R. Moskowitz, <span class="editor">Ed.</span>
</div>
<div class="org">HTT Consulting</div>
</div>
<div class="author">
<div class="author-name">M. Komu</div>
<div class="org">Ericsson</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9063</h1>
<h1 id="title">Host Identity Protocol Architecture</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This memo describes the Host Identity (HI) namespace, which
provides a cryptographic namespace to applications, and the
associated protocol layer, the Host Identity Protocol, located
between the internetworking and transport layers, that supports
end-host mobility, multihoming, and NAT traversal. Herein are
presented the basics of the current namespaces, their strengths
and weaknesses, and how a HI namespace will add completeness to
them. The roles of the HI namespace in the protocols are
defined.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
<p id="section-abstract-2">
This document obsoletes RFC 4423 and addresses the concerns raised by
the IESG, particularly that of crypto agility. The Security Considerations section
also describes measures against flooding attacks, usage of identities in access control lists,
weaker types of identifiers, and trust on first use.
This document incorporates
lessons learned from the implementations of RFC 7401 and goes further
to explain how HIP works as a secure signaling channel.<a href="#section-abstract-2" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for informational purposes.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9063">https://www.rfc-editor.org/info/rfc9063</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-3">
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s)
controlling the copyright in such materials, this document may not
be modified outside the IETF Standards Process, and derivative
works of it may not be created outside the IETF Standards Process,
except to format it for publication as an RFC or to translate it
into languages other than English.<a href="#section-boilerplate.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="ulEmpty toc compact ulBare">
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a></p>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-terminology" class="xref">Terminology</a></p>
<ul class="toc ulBare ulEmpty compact">
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-terms-common-to-other-docum" class="xref">Terms Common to Other Documents</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1" class="keepWithNext"><a href="#section-2.2" class="xref">2.2</a>. <a href="#name-terms-specific-to-this-and-" class="xref">Terms Specific to This and Other HIP Documents</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-background" class="xref">Background</a></p>
<ul class="toc ulBare ulEmpty compact">
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>. <a href="#name-a-desire-for-a-namespace-fo" class="xref">A Desire for a Namespace for Computing Platforms</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-host-identity-namespace" class="xref">Host Identity Namespace</a></p>
<ul class="toc ulBare ulEmpty compact">
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-host-identifiers" class="xref">Host Identifiers</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-host-identity-hash-hih" class="xref">Host Identity Hash (HIH)</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-host-identity-tag-hit" class="xref">Host Identity Tag (HIT)</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.4.2.4">
<p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>. <a href="#name-local-scope-identifier-lsi" class="xref">Local Scope Identifier (LSI)</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.4.2.5">
<p id="section-toc.1-1.4.2.5.1"><a href="#section-4.5" class="xref">4.5</a>. <a href="#name-storing-host-identifiers-in" class="xref">Storing Host Identifiers in Directories</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-new-stack-architecture" class="xref">New Stack Architecture</a></p>
<ul class="toc ulBare ulEmpty compact">
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>. <a href="#name-on-the-multiplicity-of-iden" class="xref">On the Multiplicity of Identities</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-control-plane" class="xref">Control Plane</a></p>
<ul class="toc ulBare ulEmpty compact">
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-base-exchange" class="xref">Base Exchange</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-end-host-mobility-and-multi" class="xref">End-Host Mobility and Multihoming</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.6.2.3">
<p id="section-toc.1-1.6.2.3.1"><a href="#section-6.3" class="xref">6.3</a>. <a href="#name-rendezvous-mechanism" class="xref">Rendezvous Mechanism</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.6.2.4">
<p id="section-toc.1-1.6.2.4.1"><a href="#section-6.4" class="xref">6.4</a>. <a href="#name-relay-mechanism" class="xref">Relay Mechanism</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.6.2.5">
<p id="section-toc.1-1.6.2.5.1"><a href="#section-6.5" class="xref">6.5</a>. <a href="#name-termination-of-the-control-" class="xref">Termination of the Control Plane</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-data-plane" class="xref">Data Plane</a></p>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-hip-and-nats" class="xref">HIP and NATs</a></p>
<ul class="toc ulBare ulEmpty compact">
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.8.2.1">
<p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="xref">8.1</a>. <a href="#name-hip-and-upper-layer-checksu" class="xref">HIP and Upper-Layer Checksums</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-multicast" class="xref">Multicast</a></p>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-hip-policies" class="xref">HIP Policies</a></p>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
<ul class="toc ulBare ulEmpty compact">
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.11.2.1">
<p id="section-toc.1-1.11.2.1.1"><a href="#section-11.1" class="xref">11.1</a>. <a href="#name-mitm-attacks" class="xref">MitM Attacks</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.11.2.2">
<p id="section-toc.1-1.11.2.2.1"><a href="#section-11.2" class="xref">11.2</a>. <a href="#name-protection-against-flooding" class="xref">Protection against Flooding Attacks</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.11.2.3">
<p id="section-toc.1-1.11.2.3.1"><a href="#section-11.3" class="xref">11.3</a>. <a href="#name-hits-used-in-acls" class="xref">HITs Used in ACLs</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.11.2.4">
<p id="section-toc.1-1.11.2.4.1"><a href="#section-11.4" class="xref">11.4</a>. <a href="#name-alternative-hi-consideratio" class="xref">Alternative HI Considerations</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.11.2.5">
<p id="section-toc.1-1.11.2.5.1"><a href="#section-11.5" class="xref">11.5</a>. <a href="#name-trust-on-first-use" class="xref">Trust on First Use</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-12" class="xref">12</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#section-13" class="xref">13</a>. <a href="#name-changes-from-rfc-4423" class="xref">Changes from RFC 4423</a></p>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#section-14" class="xref">14</a>. <a href="#name-references" class="xref">References</a></p>
<ul class="toc ulBare ulEmpty compact">
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.14.2.1">
<p id="section-toc.1-1.14.2.1.1"><a href="#section-14.1" class="xref">14.1</a>. <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.14.2.2">
<p id="section-toc.1-1.14.2.2.1"><a href="#section-14.2" class="xref">14.2</a>. <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.15">
<p id="section-toc.1-1.15.1"><a href="#appendix-A" class="xref">Appendix A</a>. <a href="#name-design-considerations" class="xref">Design Considerations</a></p>
<ul class="toc ulBare ulEmpty compact">
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.15.2.1">
<p id="section-toc.1-1.15.2.1.1"><a href="#appendix-A.1" class="xref">A.1</a>. <a href="#name-benefits-of-hip" class="xref">Benefits of HIP</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.15.2.2">
<p id="section-toc.1-1.15.2.2.1"><a href="#appendix-A.2" class="xref">A.2</a>. <a href="#name-drawbacks-of-hip" class="xref">Drawbacks of HIP</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.15.2.3">
<p id="section-toc.1-1.15.2.3.1"><a href="#appendix-A.3" class="xref">A.3</a>. <a href="#name-deployment-and-adoption-con" class="xref">Deployment and Adoption Considerations</a></p>
<ul class="toc ulBare ulEmpty compact">
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.15.2.3.2.1">
<p id="section-toc.1-1.15.2.3.2.1.1"><a href="#appendix-A.3.1" class="xref">A.3.1</a>. <a href="#name-deployment-analysis" class="xref">Deployment Analysis</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.15.2.3.2.2">
<p id="section-toc.1-1.15.2.3.2.2.1"><a href="#appendix-A.3.2" class="xref">A.3.2</a>. <a href="#name-hip-in-802154-networks" class="xref">HIP in 802.15.4 Networks</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.15.2.3.2.3">
<p id="section-toc.1-1.15.2.3.2.3.1"><a href="#appendix-A.3.3" class="xref">A.3.3</a>. <a href="#name-hip-and-internet-of-things" class="xref">HIP and Internet of Things</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.15.2.3.2.4">
<p id="section-toc.1-1.15.2.3.2.4.1"><a href="#appendix-A.3.4" class="xref">A.3.4</a>. <a href="#name-infrastructure-applications" class="xref">Infrastructure Applications</a></p>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.15.2.3.2.5">
<p id="section-toc.1-1.15.2.3.2.5.1"><a href="#appendix-A.3.5" class="xref">A.3.5</a>. <a href="#name-management-of-identities-in" class="xref">Management of Identities in a Commercial Product</a></p>
</li>
</ul>
</li>
<li class="toc ulBare ulEmpty compact" id="section-toc.1-1.15.2.4">
<p id="section-toc.1-1.15.2.4.1"><a href="#appendix-A.4" class="xref">A.4</a>. <a href="#name-answers-to-nsrg-questions" class="xref">Answers to NSRG Questions</a></p>
</li>
</ul>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.16">
<p id="section-toc.1-1.16.1"><a href="#appendix-B" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a></p>
</li>
<li class="ulEmpty toc compact ulBare" id="section-toc.1-1.17">
<p id="section-toc.1-1.17.1"><a href="#appendix-C" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">The Internet has two important global namespaces: Internet
Protocol (IP) addresses and Domain Name Service (DNS) names.
These two namespaces have a set of features and abstractions
that have powered the Internet to what it is today. They also
have a number of weaknesses. Basically, since they are all we
have, we try to do too much with them. Semantic overloading
and functionality extensions have greatly complicated these
namespaces.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">The proposed Host Identity namespace is also a global namespace, and it fills an important gap between
the IP and DNS namespaces. A Host Identity conceptually refers
to a computing platform, and there may be multiple such Host
Identities per computing platform (because the platform may wish
to present a different identity to different communicating peers).
The Host Identity namespace consists of Host Identifiers (HI).
There is exactly one Host Identifier for each Host Identity
(although there may be transient periods of time such as key
replacement when more than one identifier may be active).
While this text later talks about non-cryptographic Host Identifiers,
the architecture focuses on the case in which Host Identifiers are
cryptographic in nature. Specifically, the Host Identifier is the
public key of an asymmetric key pair. Each Host Identity uniquely
identifies a single host, i.e., no two hosts have the same Host
Identity. If two or more computing platforms have the same Host
Identifier, then they are instantiating a distributed host. The Host
Identifier can either be public (e.g., published in the DNS) or
unpublished. Client systems will tend to have both public and
unpublished Host Identifiers.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">There is a subtle but important difference between Host
Identities and Host Identifiers. An Identity refers to the
abstract entity that is identified. An Identifier, on the other
hand, refers to the concrete bit pattern that is used in the
identification process.<a href="#section-1-3" class="pilcrow">¶</a></p>
<p id="section-1-4">Although the Host Identifiers could be used in many
authentication systems, such as <span><a href="#RFC7296" class="xref">IKEv2</a> [<a href="#RFC7296" class="xref">RFC7296</a>]</span>, the presented
architecture introduces a new protocol, called the Host Identity
Protocol (HIP), and a cryptographic exchange, called the HIP
base exchange; see also <a href="#control-plane" class="xref">Section 6</a>.
HIP provides for limited forms of
trust between systems, enhances mobility, multihoming, and
dynamic IP renumbering, aids in protocol translation and transition,
and reduces certain types of denial-of-service (DoS) attacks.<a href="#section-1-4" class="pilcrow">¶</a></p>
<p id="section-1-5">When HIP is used, the actual payload traffic between two HIP
hosts is typically, but not necessarily, protected with Encapsulating Security Payload (ESP)
<span>[<a href="#RFC7402" class="xref">RFC7402</a>]</span>.
The Host Identities are used to create the needed ESP Security
Associations (SAs) and to authenticate the hosts. When ESP is
used, the actual payload IP packets do not differ in any way
from standard ESP-protected IP packets.<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6">
Much has been learned about HIP <span>[<a href="#RFC6538" class="xref">RFC6538</a>]</span> since <span>[<a href="#RFC4423" class="xref">RFC4423</a>]</span>
was published. This document expands Host Identities beyond their original use
to enable IP connectivity and security to enable general interhost secure
signaling at any protocol layer. The signal may establish a security
association between the hosts or simply pass information within
the channel.<a href="#section-1-6" class="pilcrow">¶</a></p>
</section>
<section id="section-2">
<h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h2>
<section id="section-2.1">
<h3 id="name-terms-common-to-other-docum">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-terms-common-to-other-docum" class="section-name selfRef">Terms Common to Other Documents</a>
</h3>
<table class="center" id="table-1">
<caption><a href="#table-1" class="selfRef">Table 1</a></caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Term</th>
<th class="text-left" rowspan="1" colspan="1">Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">Public key</td>
<td class="text-left" rowspan="1" colspan="1">The public key of an asymmetric
cryptographic key pair. Used as a publicly known identifier
for cryptographic identity authentication.
Public is a relative term here, ranging from "known to
peers only" to "known to the world".</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Private key</td>
<td class="text-left" rowspan="1" colspan="1">The private or secret key of an
asymmetric cryptographic key pair. Assumed to be known only
to the party identified by the corresponding public key.
Used by the identified party to authenticate its identity to
other parties.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Public key pair</td>
<td class="text-left" rowspan="1" colspan="1">An asymmetric cryptographic key
pair consisting of public and private keys. For example,
Rivest-Shamir-Adleman (RSA), Digital Signature Algorithm
(DSA) and Elliptic Curve DSA (ECDSA) key pairs are such key pairs.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Endpoint</td>
<td class="text-left" rowspan="1" colspan="1">A communicating entity. For
historical reasons, the term 'computing platform' is used in
this document as a (rough) synonym for endpoint.</td>
</tr>
</tbody>
</table>
</section>
<section id="section-2.2">
<h3 id="name-terms-specific-to-this-and-">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-terms-specific-to-this-and-" class="section-name selfRef">Terms Specific to This and Other HIP Documents</a>
</h3>
<p id="section-2.2-1">It should be noted that many of the terms defined herein
are tautologous, self-referential, or defined through circular
reference to other terms. This is due to the succinct nature
of the definitions. See the text elsewhere in this document
and the base specification <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span> for more elaborate
explanations.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<table class="center" id="table-2">
<caption><a href="#table-2" class="selfRef">Table 2</a></caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Term</th>
<th class="text-left" rowspan="1" colspan="1">Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">Computing platform</td>
<td class="text-left" rowspan="1" colspan="1">An entity capable of
communicating and computing, for example, a computer. See
the definition of 'Endpoint', above.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">HIP base exchange</td>
<td class="text-left" rowspan="1" colspan="1">A cryptographic protocol;
see also <a href="#control-plane" class="xref">Section 6</a>.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">HIP packet</td>
<td class="text-left" rowspan="1" colspan="1">An IP packet that carries a 'Host
Identity Protocol' message.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Host Identity</td>
<td class="text-left" rowspan="1" colspan="1">An abstract concept assigned to
a 'computing platform'. See 'Host Identifier', below.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Host Identifier</td>
<td class="text-left" rowspan="1" colspan="1">A public key used as a name
for a Host Identity.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Host Identity namespace</td>
<td class="text-left" rowspan="1" colspan="1">A name space
formed by all possible Host Identifiers.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Host Identity Protocol</td>
<td class="text-left" rowspan="1" colspan="1">A protocol used to
carry and authenticate Host Identifiers and other
information. </td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Host Identity Hash</td>
<td class="text-left" rowspan="1" colspan="1">The cryptographic hash used
in creating the Host Identity Tag from the Host Identifier.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Host Identity Tag</td>
<td class="text-left" rowspan="1" colspan="1">A 128-bit datum created by
taking a cryptographic hash over a Host Identifier plus
bits to identify which hash was used.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Local Scope Identifier</td>
<td class="text-left" rowspan="1" colspan="1">A 32-bit datum denoting
a Host Identity.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Public Host Identifier and Identity</td>
<td class="text-left" rowspan="1" colspan="1">A
published or publicly known Host Identifier used as a public
name for a Host Identity, and the corresponding
Identity.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Unpublished Host Identifier and Identity</td>
<td class="text-left" rowspan="1" colspan="1">A
Host Identifier that is not placed in any public directory,
and the corresponding Host Identity. Unpublished Host
Identities are typically short lived in nature, being often
replaced and possibly used just once.</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Rendezvous Mechanism</td>
<td class="text-left" rowspan="1" colspan="1">A mechanism used to
locate mobile hosts based on their HIT.</td>
</tr>
</tbody>
</table>
</section>
</section>
<section id="section-3">
<h2 id="name-background">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-background" class="section-name selfRef">Background</a>
</h2>
<p id="section-3-1">The Internet is built from three principal components:
computing platforms (endpoints), packet transport
(i.e., internetworking) infrastructure, and services
(applications). The Internet exists to service two principal
components: people and robotic services (silicon-based people,
if you will). All these components need to be named in order to
interact in a scalable manner. Here we concentrate on naming
computing platforms and packet transport elements.<a href="#section-3-1" class="pilcrow">¶</a></p>
<p id="section-3-2">There are two principal namespaces in use in the Internet for
these components: IP addresses, and Domain Names.
Domain Names provide hierarchically assigned names for some
computing platforms and some services. Each hierarchy is
delegated from the level above; there is no anonymity in Domain
Names. Email, HTTP, and SIP addresses all reference Domain
Names.<a href="#section-3-2" class="pilcrow">¶</a></p>
<p id="section-3-3">The IP addressing namespace has been overloaded to name both
interfaces (at Layer 3) and endpoints (for the endpoint-specific
part of Layer 3 and for Layer 4). In their role as interface
names, IP addresses are sometimes called "locators" and serve
as an endpoint within a routing topology.<a href="#section-3-3" class="pilcrow">¶</a></p>
<p id="section-3-4">IP addresses are numbers that name networking interfaces, and typically only
when the interface is connected to the network. Originally, IP
addresses had long-term significance. Today, the vast number of
interfaces use ephemeral and/or non-unique IP addresses. That is,
every time an interface is connected to the network, it is
assigned an IP address.<a href="#section-3-4" class="pilcrow">¶</a></p>
<p id="section-3-5">In the current Internet, the transport layers are coupled to
the IP addresses. Neither can evolve separately from the other.
IPng deliberations were strongly shaped by the decision that a
corresponding TCPng would not be created.<a href="#section-3-5" class="pilcrow">¶</a></p>
<p id="section-3-6">There are three critical deficiencies with the current
namespaces. First, the establishing of initial contact and the sustaining of data flows
between two hosts can be challenging due to private address realms and the ephemeral nature of addresses.
Second, confidentiality is not provided in a consistent,
trustable manner. Finally, authentication for systems and
datagrams is not provided. All of these deficiencies arise
because computing platforms are not well named with the current
namespaces.<a href="#section-3-6" class="pilcrow">¶</a></p>
<section id="section-3.1">
<h3 id="name-a-desire-for-a-namespace-fo">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-a-desire-for-a-namespace-fo" class="section-name selfRef">A Desire for a Namespace for Computing Platforms</a>
</h3>
<p id="section-3.1-1">An independent namespace for computing platforms could be
used in end-to-end operations independent of the evolution of
the internetworking layer and across the many internetworking
layers. This could support rapid readdressing of the
internetworking layer because of mobility, rehoming, or
renumbering.<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<p id="section-3.1-2">If the namespace for computing platforms is based on
public-key cryptography, it can also provide authentication
services. If this namespace is locally created without
requiring registration, it can provide anonymity.<a href="#section-3.1-2" class="pilcrow">¶</a></p>
<p id="section-3.1-3">Such a namespace (for computing platforms) and the names in
it should have the following characteristics:<a href="#section-3.1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.1-4.1">The namespace should be applied to the IP 'kernel' or stack.
The IP stack is the 'component' between applications and the
packet transport infrastructure.<a href="#section-3.1-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-4.2">The namespace should fully decouple the internetworking
layer from the higher layers. The names should replace
all occurrences of IP addresses within applications (like
in the Transport Control Block, TCB). This replacement can
be handled transparently for legacy applications as the
Local Scope Identifiers (LSIs) and HITs are compatible with IPv4 and IPv6 addresses
<span>[<a href="#RFC5338" class="xref">RFC5338</a>]</span>. However, HIP-aware applications
require some modifications from the developers, who may
employ networking API extensions for HIP <span>[<a href="#RFC6317" class="xref">RFC6317</a>]</span>.<a href="#section-3.1-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-4.3">The introduction of the namespace should not mandate
any administrative infrastructure. Deployment must come
from the bottom up, in a pairwise deployment.<a href="#section-3.1-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-4.4">The names should have a fixed-length representation,
for easy inclusion in datagram headers and existing
programming interfaces (e.g., the TCB).<a href="#section-3.1-4.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-4.5">Using the namespace should be affordable when used in
protocols. This is primarily a packet size issue. There
is also a computational concern in affordability.<a href="#section-3.1-4.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-4.6">Name collisions should be avoided as much as possible. The
mathematics of the birthday paradox can be used to estimate
the chance of a collision in a given population and hash space.
In general, for a random hash space of size n bits, we would
expect to obtain a collision after approximately 1.2*sqrt(2<sup>n</sup>)
hashes were obtained. For 64 bits, this number is roughly
4 billion. A hash size of 64 bits may be too small to avoid
collisions in a large population; for example, there is a 1%
chance of collision in a population of 640M. For 100 bits
(or more), we would not expect a collision until approximately
2<sup>50</sup> (1 quadrillion) hashes were generated. With the currently used hash size of 96 bits
<span>[<a href="#RFC7343" class="xref">RFC7343</a>]</span>, the figure is 2<sup>48</sup> (281 trillions).<a href="#section-3.1-4.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-4.7">The names should have a localized abstraction so that they can be
used in existing protocols and APIs.<a href="#section-3.1-4.7" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-4.8">It must be possible to create names locally. When such names
are not published, this can provide anonymity at the cost of
making resolvability very difficult.<a href="#section-3.1-4.8" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-4.9">The namespace should provide authentication services.<a href="#section-3.1-4.9" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-4.10">The names should be long-lived, but replaceable at any
time. This impacts access control lists; short lifetimes
will tend to result in tedious list maintenance or require
a namespace infrastructure for central control of access
lists.<a href="#section-3.1-4.10" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.1-5">In this document, the namespace approaching these ideas
is called the Host Identity namespace. Using Host Identities
requires its own protocol layer, the Host Identity Protocol,
between the internetworking and transport layers. The names
are based on public-key cryptography to supply authentication
services. Properly designed, it can deliver all of the above-stated
requirements.<a href="#section-3.1-5" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-4">
<h2 id="name-host-identity-namespace">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-host-identity-namespace" class="section-name selfRef">Host Identity Namespace</a>
</h2>
<p id="section-4-1">A name in the Host Identity namespace, a Host Identifier
(HI), represents a statistically globally unique name for naming
any system with an IP stack. This identity is normally
associated with, but not limited to, an IP stack. A system can
have multiple identities, some 'well known', some unpublished or
'anonymous'. A system may self-assert its own identity, or may
use a third-party authenticator like DNSSEC <span>[<a href="#RFC4033" class="xref">RFC4033</a>]</span>, Pretty Good Privacy (PGP), or X.509 to 'notarize' the identity
assertion to another namespace.<a href="#section-4-1" class="pilcrow">¶</a></p>
<p id="section-4-2">In theory, any name that can claim to be 'statistically
globally unique' may serve as a Host Identifier. In the HIP
architecture, the public key of a private-public key pair has
been chosen as the Host Identifier because it can be self-managed
and it is computationally difficult to forge. As
specified in the Host Identity Protocol specification <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>, a public-key-based HI can
authenticate the HIP packets and protect them from man-in-the-middle (MitM)
attacks. Since authenticated datagrams are
mandatory to provide much of HIP's denial-of-service protection,
the Diffie-Hellman exchange in HIP base exchange has to be authenticated.
Thus, only public-key HI and authenticated HIP messages are
supported in practice.<a href="#section-4-2" class="pilcrow">¶</a></p>
<p id="section-4-3">
In this document, some non-cryptographic forms of HI and HIP are referenced, but
cryptographic forms should be preferred because they are more secure than their non-cryptographic counterparts.
There has
been past research in challenge puzzles using non-cryptographic
HI for Radio Frequency IDentification (RFID), in an HIP
exchange tailored to the workings of such challenges (as
described further in <span>[<a href="#urien-rfid" class="xref">urien-rfid</a>]</span> and <span>[<a href="#I-D.irtf-hiprg-rfid" class="xref">urien-rfid-draft</a>]</span>).<a href="#section-4-3" class="pilcrow">¶</a></p>
<section id="section-4.1">
<h3 id="name-host-identifiers">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-host-identifiers" class="section-name selfRef">Host Identifiers</a>
</h3>
<p id="section-4.1-1">Host Identity adds two main features to Internet protocols.
The first is a decoupling of the internetworking and transport
layers; see <a href="#sec-architecture" class="xref">Section 5</a>. This
decoupling will allow for independent evolution of the two
layers. Additionally, it can provide end-to-end services over
multiple internetworking realms. The second feature is host
authentication. Because the Host Identifier is a public key,
this key can be used for authentication in security protocols
like ESP.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">An identity is based on public-private key cryptography in HIP.
The Host Identity is referred to by its public component, the public
key. Thus, the name representing a Host Identity in the Host
Identity namespace, i.e., the Host Identifier, is the public
key. In a way, the possession of the private key defines the
Identity itself. If the private key is possessed by more than
one node, the Identity can be considered to be a distributed
one.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">Architecturally, any other Internet naming convention might
form a usable base for Host Identifiers. However,
non-cryptographic names should only be used in situations of
high trust and/or low risk. That is any place where host
authentication is not needed (no risk of host spoofing) and no
use of ESP. However, at least for interconnected networks
spanning several operational domains, the set of environments
where the risk of host spoofing allowed by non-cryptographic
Host Identifiers is acceptable is the null set. Hence, the
current HIP documents do not specify how to use any other
types of Host Identifiers but public keys. For instance,
the Back to My Mac service <span>[<a href="#RFC6281" class="xref">RFC6281</a>]</span> from Apple comes
pretty close to the functionality of HIP, but unlike HIP, it
is based on non-cryptographic identifiers.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1-4">The actual Host Identifiers are never directly used at the
transport or network layers. The corresponding Host
Identifiers (public keys) may be stored in various DNS or other
directories as identified elsewhere in this document, and they
are passed in the HIP base exchange. A Host Identity Tag
(HIT) is used in other protocols to represent the Host
Identity. Another representation of the Host Identities, the
Local Scope Identifier (LSI), can also be used in protocols
and APIs.<a href="#section-4.1-4" class="pilcrow">¶</a></p>
</section>
<section id="section-4.2">
<h3 id="name-host-identity-hash-hih">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-host-identity-hash-hih" class="section-name selfRef">Host Identity Hash (HIH)</a>
</h3>
<p id="section-4.2-1">The Host Identity Hash (HIH) is the cryptographic hash algorithm used in
producing the HIT from the HI. It is also the hash used
throughout HIP for consistency and simplicity. It
is possible for the two hosts in the HIP exchange to use
different hash algorithms.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2-2">Multiple HIHs within HIP are needed to address the moving
target of creation and eventual compromise of cryptographic
hashes. This significantly complicates HIP and offers an
attacker an additional downgrade attack that is mitigated
in HIP <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>.<a href="#section-4.2-2" class="pilcrow">¶</a></p>
</section>
<section id="section-4.3">
<h3 id="name-host-identity-tag-hit">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-host-identity-tag-hit" class="section-name selfRef">Host Identity Tag (HIT)</a>
</h3>
<p id="section-4.3-1">A Host Identity Tag (HIT) is a 128-bit representation for a Host
Identity. Due to its size, it is suitable for use in the existing sockets API in
the place of IPv6 addresses (e.g., in sockaddr_in6 structure, sin6_addr member) without modifying applications.
It is created from an HIH, an IPv6 prefix <span>[<a href="#RFC7343" class="xref">RFC7343</a>]</span>, and a hash identifier. There are two advantages of using
the HIT over using the Host Identifier in protocols. First,
its fixed length makes for easier protocol coding and also
better manages the packet size cost of this technology.
Second, it presents the identity in a consistent format to
the protocol independent of the cryptographic algorithms
used.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2">In essence, the HIT is a hash over the public key. As such,
two algorithms affect the generation of a HIT: the public-key
algorithm of the HI and the used HIH. The two algorithms are
encoded in the bit presentation of the HIT. As the two
communicating parties may support different algorithms, <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span> defines the minimum set for
interoperability. For further interoperability, the Responder
may store its keys in DNS records, and thus the Initiator may
have to couple destination HITs with appropriate source HITs
according to matching HIH.<a href="#section-4.3-2" class="pilcrow">¶</a></p>
<p id="section-4.3-3">In the HIP packets, the HITs identify the sender and
recipient of a packet. Consequently, a HIT should be unique
in the whole IP universe as long as it is being used. In the
extremely rare case of a single HIT mapping to more than one
Host Identity, the Host Identifiers (public keys) will make
the final difference. If there is more than one public key
for a given node, the HIT acts as a hint for the correct
public key to use.<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<p id="section-4.3-4">Although it may be rare for an accidental collision to cause a single
HIT mapping to more than one Host Identity, it may be the case that
an attacker succeeds to find, by brute force or algorithmic weakness,
a second Host Identity hashing to the same HIT. This type of attack
is known as a preimage attack, and the resistance to finding a second
Host Identifier (public key) that hashes to the same HIT is called
second preimage resistance. Second preimage resistance in HIP is
based on the hash algorithm strength and the length of the hash
output used. Through HIPv2 <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>, this resistance is 96 bits
(less than the 128-bit width of an IPv6 address field due to the
presence of the Overlay Routable Cryptographic Hash Identifiers (ORCHID) prefix <span>[<a href="#RFC7343" class="xref">RFC7343</a>]</span>). 96 bits of resistance
was considered acceptable strength during the design of HIP but may
eventually be considered insufficient for the threat model of an
envisioned deployment. One possible mitigation would be to augment
the use of HITs in the deployment with the HIs themselves (and
mechanisms to securely bind the HIs to the HITs), so that the HI
becomes the final authority. It also may be possible to increase
the difficulty of a brute force attack by making the generation of the
HI more computationally difficult, such as the hash extension
approach of Secure Neighbor Discovery Cryptographically Generated Addresses (CGAs) <span>[<a href="#RFC3972" class="xref">RFC3972</a>]</span>, although the HIP specifications
through HIPv2 do not provide such a mechanism. Finally, deployments
that do not use ORCHIDs (such as certain types of overlay networks)
might also use the full 128-bit width of an IPv6 address field for
the HIT.<a href="#section-4.3-4" class="pilcrow">¶</a></p>
</section>
<div id="lsi">
<section id="section-4.4">
<h3 id="name-local-scope-identifier-lsi">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-local-scope-identifier-lsi" class="section-name selfRef">Local Scope Identifier (LSI)</a>
</h3>
<p id="section-4.4-1">An LSI is a 32-bit localized representation for a Host
Identity.
Due to its size, it is suitable for use in the existing sockets API in
the place of IPv4 addresses (e.g., in sockaddr_in structure, sin_addr member) without modifying applications.
The purpose of an LSI is to facilitate using Host
Identities in existing APIs for IPv4-based
applications.
LSIs are never transmitted on the wire; when an application
sends data using a pair of LSIs, the HIP layer (or sockets
handler) translates the LSIs to the corresponding HITs, and
vice versa for the receiving of data.
Besides facilitating HIP-based connectivity for
legacy IPv4 applications, the LSIs are beneficial in two other
scenarios <span>[<a href="#RFC6538" class="xref">RFC6538</a>]</span>.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<p id="section-4.4-2">In the first scenario, two IPv4-only applications
reside on two separate hosts connected by IPv6-only
network. With HIP-based connectivity, the two applications are
able to communicate despite the mismatch in the protocol
families of the applications and the underlying network. The
reason is that the HIP layer translates the LSIs originating
from the upper layers into routable IPv6 locators before
delivering the packets on the wire.<a href="#section-4.4-2" class="pilcrow">¶</a></p>
<p id="section-4.4-3">The second scenario is the same as the first one, but with
the difference that one of the applications supports only
IPv6. Now two obstacles hinder the communication between the
applications: the addressing families of the two applications
differ, and the application residing at the IPv4-only side is
again unable to communicate because of the mismatch between
addressing families of the application (IPv4) and network
(IPv6). With HIP-based connectivity for applications, this
scenario works; the HIP layer can choose whether to translate
the locator of an incoming packet into an LSI or HIT.<a href="#section-4.4-3" class="pilcrow">¶</a></p>
<p id="section-4.4-4">Effectively, LSIs improve IPv6 interoperability at the
network layer as described in the first scenario and at the
application layer as depicted in the second example. The
interoperability mechanism should not be used to avoid
transition to IPv6; the authors firmly believe in IPv6
adoption and encourage developers to port existing IPv4-only
applications to use IPv6. However, some proprietary,
closed-source, IPv4-only applications may never see the
daylight of IPv6, and the LSI mechanism is suitable for
extending the lifetime of such applications even in IPv6-only
networks.<a href="#section-4.4-4" class="pilcrow">¶</a></p>
<p id="section-4.4-5">The main disadvantage of an LSI is its local
scope. Applications may violate layering principles and pass
LSIs to each other in application-layer protocols. As the LSIs
are valid only in the context of the local host, they may
represent an entirely different host when passed to another
host. However, it should be emphasized here that the LSI
concept is effectively a host-based NAT and does not introduce
any more issues than the prevalent middlebox-based NATs for
IPv4. In other words, the applications violating layering
principles are already broken by the NAT boxes that are
ubiquitously deployed.<a href="#section-4.4-5" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-4.5">
<h3 id="name-storing-host-identifiers-in">
<a href="#section-4.5" class="section-number selfRef">4.5. </a><a href="#name-storing-host-identifiers-in" class="section-name selfRef">Storing Host Identifiers in Directories</a>
</h3>
<p id="section-4.5-1">The public Host Identifiers should be stored in DNS; the
unpublished Host Identifiers should not be stored anywhere
(besides the communicating hosts themselves). The (public) HI
along with the supported HIHs are stored in a new Resource Record (RR) type. This RR type
is defined in the <span><a href="#RFC8005" class="xref">HIP DNS extension</a> [<a href="#RFC8005" class="xref">RFC8005</a>]</span>.<a href="#section-4.5-1" class="pilcrow">¶</a></p>
<p id="section-4.5-2">Alternatively, or in addition to storing Host Identifiers
in the DNS, they may be stored in various other
directories. For instance, a directory based on the
Lightweight Directory Access Protocol (LDAP) or a Public Key
Infrastructure (PKI) <span>[<a href="#RFC8002" class="xref">RFC8002</a>]</span> may be used.
Alternatively, <span><a href="#RFC6537" class="xref">Distributed Hash Tables (DHTs)</a> [<a href="#RFC6537" class="xref">RFC6537</a>]</span> have
successfully been utilized <span>[<a href="#RFC6538" class="xref">RFC6538</a>]</span>. Such a
practice may allow them to be used for purposes other than
pure host identification.<a href="#section-4.5-2" class="pilcrow">¶</a></p>
<p id="section-4.5-3">Some types of applications may cache and use Host
Identifiers directly, while others may indirectly discover
them through a symbolic host name (such as a Fully Qualified Domain Name (FQDN)) look up from a
directory. Even though Host Identities can have a
substantially longer lifetime associated with them than
routable IP addresses, directories may be a better approach to
manage the lifespan of Host Identities. For example, an LDAP-based directory or DHT
can be used for locally published identities whereas DNS
can be more suitable for public advertisement.<a href="#section-4.5-3" class="pilcrow">¶</a></p>
</section>
</section>
<div id="sec-architecture">
<section id="section-5">
<h2 id="name-new-stack-architecture">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-new-stack-architecture" class="section-name selfRef">New Stack Architecture</a>
</h2>
<p id="section-5-1">One way to characterize Host Identity is to compare the
proposed HI-based architecture with the current one.
Using the
terminology from the <span><a href="#I-D.irtf-nsrg-report" class="xref">IRTF
Name Space Research Group Report</a> [<a href="#I-D.irtf-nsrg-report" class="xref">nsrg-report</a>]</span> and, e.g., the
document on <span><a href="#chiappa-endpoints" class="xref">"Endpoints and Endpoint Names"</a> [<a href="#chiappa-endpoints" class="xref">chiappa-endpoints</a>]</span>,
the IP addresses currently embody the dual role
of locators and endpoint identifiers. That is, each IP address
names a topological location in the Internet, thereby acting as
a routing direction vector, or locator. At the same time, the IP
address names the physical network interface currently located
at the point-of-attachment, thereby acting as an endpoint
name.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">In the HIP architecture, the endpoint names and locators are
separated from each other. IP addresses continue to act as
locators. The Host Identifiers take the role of endpoint
identifiers. It is important to understand that the endpoint
names based on Host Identities are slightly different from
interface names; a Host Identity can be simultaneously reachable
through several interfaces.<a href="#section-5-2" class="pilcrow">¶</a></p>
<p id="section-5-3">The difference between the bindings of the logical entities
are illustrated in <a href="#fig-1" class="xref">Figure 1</a>. The left side
illustrates the current TCP/IP architecture and the right side the
HIP-based architecture.<a href="#section-5-3" class="pilcrow">¶</a></p>
<div id="fig-1">
<figure id="figure-1">
<div class="artwork art-text alignLeft" id="section-5-4.1">
<pre>
Transport ---- Socket Transport ------ Socket
association | association |
| |
| |
| |
Endpoint | Endpoint --- Host Identity
\ | |
\ | |
\ | |
\ | |
Location --- IP address Location --- IP address
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a></figcaption></figure>
</div>
<p id="section-5-5">Architecturally, HIP provides for a different binding of
transport-layer protocols. That is, the transport-layer
associations, i.e., TCP connections and UDP associations, are
no longer bound to IP addresses but rather to Host
Identities. In practice, the Host Identities are exposed as
LSIs and HITs for legacy applications and the transport layer
to facilitate backward compatibility with existing networking
APIs and stacks.<a href="#section-5-5" class="pilcrow">¶</a></p>
<p id="section-5-6">The HIP layer is logically located at Layer 3.5, between the
transport and network layers, in the networking stack. It acts
as shim layer for transport data utilizing LSIs or HITs but
leaves other data intact. The HIP layer translates between the two
forms of HIP identifiers originating from the transport layer
into routable IPv4/IPv6 addresses for the network layer and
vice versa for the reverse direction.<a href="#section-5-6" class="pilcrow">¶</a></p>
<section id="section-5.1">
<h3 id="name-on-the-multiplicity-of-iden">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-on-the-multiplicity-of-iden" class="section-name selfRef">On the Multiplicity of Identities</a>
</h3>
<p id="section-5.1-1">A host may have multiple identities both at the client and
server side. This raises some additional concerns that are
addressed in this section.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<p id="section-5.1-2">For security reasons, it may be a bad idea to duplicate the
same Host Identity on multiple hosts because the compromise of
a single host taints the identities of the other hosts.
Management of machines with identical Host Identities may also
present other challenges and, therefore, it is advisable to
have a unique identity for each host.<a href="#section-5.1-2" class="pilcrow">¶</a></p>
<p id="section-5.1-3">At the server side, utilizing DNS is a better alternative than a
shared Host Identity to implement load balancing. A single FQDN entry can be configured
to refer to multiple Host Identities. Each of the FQDN entries
can be associated with the related locators or with a single
shared locator in the case the servers are using the same HIP rendezvous server (<a href="#sec_rvz" class="xref">Section 6.3</a>) or HIP relay server (<a href="#sec_relay" class="xref">Section 6.4</a>).<a href="#section-5.1-3" class="pilcrow">¶</a></p>
<p id="section-5.1-4">Instead of duplicating identities, HIP opportunistic mode
can be employed, where the Initiator leaves out the identifier
of the Responder when initiating the key exchange and learns
it upon the completion of the exchange. The trade-offs are
related to lowered security guarantees, but a benefit of the
approach is to avoid the publishing of Host Identifiers in any
directories <span>[<a href="#komu-leap" class="xref">komu-leap</a>]</span>. Since many public
servers already employ DNS as their directory, opportunistic mode
may be more suitable for, e.g., peer-to-peer connectivity.
It is also worth noting that opportunistic mode is also required
in practice when anycast IP addresses would be utilized as locators.<a href="#section-5.1-4" class="pilcrow">¶</a></p>
<p id="section-5.1-5">HIP opportunistic mode could be utilized in association
with HIP rendezvous servers or HIP relay servers <span>[<a href="#komu-diss" class="xref">komu-diss</a>]</span>. In such a scenario, the Initiator sends
an I1 message with a wildcard destination HIT to the locator of a HIP
rendezvous/relay server. When the receiving rendezvous/relay server is
serving multiple registered Responders, the server can choose
the ultimate destination HIT, thus acting as a HIP-based load
balancer. However, this approach is still experimental and
requires further investigation.<a href="#section-5.1-5" class="pilcrow">¶</a></p>
<p id="section-5.1-6">At the client side, a host may have multiple Host
Identities, for instance, for privacy purposes. Another reason
can be that the person utilizing the host employs different
identities for different administrative domains as an extra
security measure. If a HIP-aware middlebox, such as a
HIP-based firewall, is on the path between the client and
server, the user or the underlying system should carefully
choose the correct identity to avoid the firewall
unnecessarily dropping HIP-based connectivity <span>[<a href="#komu-diss" class="xref">komu-diss</a>]</span>.<a href="#section-5.1-6" class="pilcrow">¶</a></p>
<p id="section-5.1-7">Similarly, a server may have multiple Host Identities. For
instance, a single web server may serve multiple different
administrative domains. Typically, the distinction is
accomplished based on the DNS name, but also the Host Identity
could be used for this purpose. However, a more compelling
reason to employ multiple identities is the HIP-aware firewall
that is unable to see the HTTP traffic inside the encrypted
IPsec tunnel. In such a case, each service could be configured
with a separate identity, thus allowing the firewall to
segregate the different services of the single web server from
each other <span>[<a href="#lindqvist-enterprise" class="xref">lindqvist-enterprise</a>]</span>.<a href="#section-5.1-7" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="control-plane">
<section id="section-6">
<h2 id="name-control-plane">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-control-plane" class="section-name selfRef">Control Plane</a>
</h2>
<p id="section-6-1">HIP decouples the control and data planes from each other. Two
end-hosts initialize the control plane using a key
exchange procedure called the base exchange. The procedure can
be assisted by HIP-specific infrastructural intermediaries called
rendezvous or relay servers. In the event of IP address changes,
the end-hosts sustain control plane connectivity with mobility
and multihoming extensions. Eventually, the end-hosts terminate
the control plane and remove the associated state.<a href="#section-6-1" class="pilcrow">¶</a></p>
<section id="section-6.1">
<h3 id="name-base-exchange">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-base-exchange" class="section-name selfRef">Base Exchange</a>
</h3>
<p id="section-6.1-1">The base exchange is a key exchange procedure that
authenticates the Initiator and Responder to each other using
their public keys. Typically, the Initiator is the client-side
host and the Responder is the server-side host. The roles are
used by the state machine of a HIP implementation but then discarded
upon successful completion.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">
The exchange consists of four messages during which the hosts
also create symmetric keys to protect the control plane with
Hash-based Message Authentication Codes (HMACs). The
keys can be also used to protect the data plane, and IPsec ESP
<span>[<a href="#RFC7402" class="xref">RFC7402</a>]</span> is typically used as the data plane protocol, albeit
HIP can also accommodate others. Both the
control and data planes are terminated using a closing procedure
consisting of two messages.<a href="#section-6.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1-3">In addition, the base exchange also includes a computational puzzle <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span> that the Initiator must
solve. The Responder chooses the difficulty of the puzzle, which
permits the Responder to delay new incoming Initiators according
to local policies, for instance, when the Responder is under
heavy load. The puzzle can offer some resiliency against DoS
attacks because the design of the puzzle mechanism allows the
Responder to remain stateless until the very end of the base
exchange <span>[<a href="#aura-dos" class="xref">aura-dos</a>]</span>. HIP puzzles have also been
studied under steady-state DDoS attacks <span>[<a href="#beal-dos" class="xref">beal-dos</a>]</span>, on multiple adversary models with varying
puzzle difficulties <span>[<a href="#tritilanunt-dos" class="xref">tritilanunt-dos</a>]</span>, and
with ephemeral Host Identities <span>[<a href="#komu-mitigation" class="xref">komu-mitigation</a>]</span>.<a href="#section-6.1-3" class="pilcrow">¶</a></p>
</section>
<section id="section-6.2">
<h3 id="name-end-host-mobility-and-multi">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-end-host-mobility-and-multi" class="section-name selfRef">End-Host Mobility and Multihoming</a>
</h3>
<p id="section-6.2-1">HIP decouples the transport from the internetworking layer
and binds the transport associations to the Host Identities
(actually through either the HIT or LSI). After the initial key
exchange, the HIP layer maintains transport-layer connectivity
and data flows using its extensions for <span><a href="#RFC8046" class="xref">mobility</a> [<a href="#RFC8046" class="xref">RFC8046</a>]</span> and <span><a href="#RFC8047" class="xref">multihoming</a> [<a href="#RFC8047" class="xref">RFC8047</a>]</span>.
Consequently, HIP can provide for a degree of internetworking
mobility and multihoming at a low infrastructure cost. HIP
mobility includes IP address changes (via any method) to either
party. Thus, a system is considered mobile if its IP address
can change dynamically for any reason like PPP, DHCP, IPv6
prefix reassignments, or a NAT device remapping its translation.
Likewise, a system is considered multihomed if it has more than
one globally routable IP address at the same time. HIP links IP
addresses together when multiple IP addresses correspond to the
same Host Identity. If one address becomes unusable, or a
more preferred address becomes available, existing transport
associations can easily be moved to another address.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<p id="section-6.2-2">When a mobile node moves while communication is ongoing,
address changes are rather straightforward.
The mobile node sends a HIP UPDATE packet to inform the
peer of the new address(es), and the peer then verifies that the
mobile node is reachable through these addresses. This way, the peer can
avoid flooding attacks as further discussed in <a href="#ssec-flooding" class="xref">Section 11.2</a>.<a href="#section-6.2-2" class="pilcrow">¶</a></p>
</section>
<div id="sec_rvz">
<section id="section-6.3">
<h3 id="name-rendezvous-mechanism">
<a href="#section-6.3" class="section-number selfRef">6.3. </a><a href="#name-rendezvous-mechanism" class="section-name selfRef">Rendezvous Mechanism</a>
</h3>
<p id="section-6.3-1">Establishing a contact to a mobile, moving node is slightly
more involved. In order to start the HIP exchange, the
Initiator node has to know how to reach the mobile node. For
instance, the mobile node can employ Dynamic DNS <span>[<a href="#RFC2136" class="xref">RFC2136</a>]</span> to update its reachability information in
the DNS. To avoid the dependency to DNS, HIP provides its own
HIP-specific alternative: the HIP rendezvous mechanism as
defined in the <span><a href="#RFC8004" class="xref">HIP rendezvous
specification</a> [<a href="#RFC8004" class="xref">RFC8004</a>]</span>.<a href="#section-6.3-1" class="pilcrow">¶</a></p>
<p id="section-6.3-2">Using the HIP rendezvous extensions, the mobile node keeps
the rendezvous infrastructure continuously updated with its
current IP address(es). The mobile nodes trusts the
rendezvous mechanism in order to properly maintain their HIT
and IP address mappings.<a href="#section-6.3-2" class="pilcrow">¶</a></p>
<p id="section-6.3-3">The rendezvous mechanism is especially useful in scenarios
where both of the nodes are expected to change their address at the
same time. In such a case, the HIP
UPDATE packets will cross each other in the network and never
reach the peer node.<a href="#section-6.3-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec_relay">
<section id="section-6.4">
<h3 id="name-relay-mechanism">
<a href="#section-6.4" class="section-number selfRef">6.4. </a><a href="#name-relay-mechanism" class="section-name selfRef">Relay Mechanism</a>
</h3>
<p id="section-6.4-1">The HIP relay mechanism <span>[<a href="#RFC9028" class="xref">RFC9028</a>]</span> is an
alternative to the HIP rendezvous mechanism. The HIP relay
mechanism is more suitable for IPv4 networks with NATs because
a HIP relay can forward all control and data plane
communications in order to guarantee successful NAT
traversal.<a href="#section-6.4-1" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-6.5">
<h3 id="name-termination-of-the-control-">
<a href="#section-6.5" class="section-number selfRef">6.5. </a><a href="#name-termination-of-the-control-" class="section-name selfRef">Termination of the Control Plane</a>
</h3>
<p id="section-6.5-1">The control plane between two hosts is terminated using
a secure two-message exchange as specified in <span><a href="#RFC7401" class="xref">base exchange
specification</a> [<a href="#RFC7401" class="xref">RFC7401</a>]</span>. The
related state (i.e., host associations) should be removed upon
successful termination.<a href="#section-6.5-1" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="esp">
<section id="section-7">
<h2 id="name-data-plane">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-data-plane" class="section-name selfRef">Data Plane</a>
</h2>
<p id="section-7-1">The encapsulation format for the data
plane used for carrying the application-layer traffic
can be dynamically negotiated during the key
exchange. For instance, <span><a href="#RFC6078" class="xref">HICCUPS
extensions</a> [<a href="#RFC6078" class="xref">RFC6078</a>]</span> define one way to transport application-layer
datagrams directly over the HIP control plane, protected by
asymmetric key cryptography. Also, Secure Real-time Transport Protocol (SRTP) has been considered as
the data encapsulation protocol <span>[<a href="#I-D.tschofenig-hiprg-hip-srtp" class="xref">hip-srtp</a>]</span>. However, the most widely implemented method is the
Encapsulated Security Payload (ESP) <span>[<a href="#RFC7402" class="xref">RFC7402</a>]</span> that is protected by
symmetric keys derived during the key exchange. ESP Security
Associations (SAs) offer both confidentiality and integrity
protection, of which the former can be disabled during the key
exchange. In the future, other ways of transporting
application-layer data may be defined.<a href="#section-7-1" class="pilcrow">¶</a></p>
<p id="section-7-2">The ESP SAs are established and terminated between the
Initiator and the Responder hosts. Usually, the hosts create at
least two SAs, one in each direction (Initiator-to-Responder SA
and Responder-to-Initiator SA). If the IP addresses of either
host changes, the HIP mobility extensions can be used to
renegotiate the corresponding SAs.<a href="#section-7-2" class="pilcrow">¶</a></p>
<p id="section-7-3">On the wire, the difference in the use of identifiers between
the HIP control and data planes is that the HITs are included in
all control packets, but not in the data plane when ESP is
employed. Instead, the ESP employs Security Parameter Index (SPI) numbers that act as
compressed HITs. Any HIP-aware middlebox (for instance, a
HIP-aware firewall) interested in the ESP-based data plane
should keep track between the control and data plane identifiers
in order to associate them with each other.<a href="#section-7-3" class="pilcrow">¶</a></p>
<p id="section-7-4">Since HIP does not negotiate any SA lifetimes, all lifetimes
are subject to local policy. The only lifetimes a HIP implementation must
support are sequence number rollover (for replay protection)
and SA timeout. An SA times out if no packets are received using
that SA. Implementations may support lifetimes for the various
ESP transforms and other data plane protocols.<a href="#section-7-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="nat">
<section id="section-8">
<h2 id="name-hip-and-nats">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-hip-and-nats" class="section-name selfRef">HIP and NATs</a>
</h2>
<p id="section-8-1">Passing packets between different IP addressing realms
requires changing IP addresses in the packet header. This may
occur, for example, when a packet is passed between the public
Internet and a private address space, or between IPv4 and IPv6
networks. The address translation is usually implemented as
<span><a href="#RFC3022" class="xref">Network Address Translation (NAT)</a> [<a href="#RFC3022" class="xref">RFC3022</a>]</span>
or the historic <span><a href="#RFC2766" class="xref">NAT Protocol Translation (NAT-PT)</a> [<a href="#RFC2766" class="xref">RFC2766</a>]</span>.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">In a network environment where identification is based on the
IP addresses, identifying the communicating nodes is difficult
when NATs are employed because private address spaces
are overlapping. In other words, two hosts
cannot be distinguished from each other solely based on their IP
addresses. With HIP, the transport-layer endpoints
(i.e., applications) are bound to unique Host Identities rather
than overlapping private addresses. This allows
two endpoints to distinguish one other even when they are
located in different private address realms. Thus, the IP addresses are used
only for routing purposes and can be changed freely by NATs
when a packet between two HIP-capable hosts traverses through multiple
private address realms.<a href="#section-8-2" class="pilcrow">¶</a></p>
<p id="section-8-3"><span><a href="#RFC9028" class="xref">NAT
traversal extensions for HIP</a> [<a href="#RFC9028" class="xref">RFC9028</a>]</span> can be used to realize the
actual end-to-end connectivity through NAT devices. To support
basic backward compatibility with legacy NATs, the extensions
encapsulate both HIP control and data planes in UDP. The
extensions define mechanisms for forwarding the two planes
through an intermediary host called HIP relay and procedures to
establish direct end-to-end connectivity by penetrating
NATs. Besides this "native" NAT traversal mode for HIP, other
NAT traversal mechanisms have been successfully utilized, such
as Teredo <span>[<a href="#RFC4380" class="xref">RFC4380</a>]</span> (as described in further detail in <span>[<a href="#varjonen-split" class="xref">varjonen-split</a>]</span>).<a href="#section-8-3" class="pilcrow">¶</a></p>
<p id="section-8-4">Besides legacy NATs, a HIP-aware NAT has been designed and
implemented <span>[<a href="#ylitalo-spinat" class="xref">ylitalo-spinat</a>]</span>. For a HIP-based flow, a HIP-aware
NAT or HIP-aware historic NAT-PT system tracks the mapping of HITs, and the
corresponding ESP SPIs, to an IP address. The NAT system has to
learn mappings both from HITs and from SPIs to IP addresses.
Many HITs (and SPIs) can map to a single IP address on a NAT,
simplifying connections on address-poor NAT interfaces. The NAT
can gain much of its knowledge from the HIP packets themselves;
however, some NAT configuration may be necessary.<a href="#section-8-4" class="pilcrow">¶</a></p>
<section id="section-8.1">
<h3 id="name-hip-and-upper-layer-checksu">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-hip-and-upper-layer-checksu" class="section-name selfRef">HIP and Upper-Layer Checksums</a>
</h3>
<p id="section-8.1-1">There is no way for a host to know if any of the IP
addresses in an IP header are the addresses used to calculate
the TCP checksum. That is, it is not feasible to calculate
the TCP checksum using the actual IP addresses in the pseudo
header; the addresses received in the incoming packet are not
necessarily the same as they were on the sending host.
Furthermore, it is not possible to recompute the upper-layer
checksums in the NAT/NAT-PT system, since the traffic is
ESP protected. Consequently, the TCP and UDP checksums are
calculated using the HITs in the place of the IP addresses in
the pseudo header. Furthermore, only the IPv6 pseudo header
format is used. This provides for IPv4 / IPv6 protocol
translation.<a href="#section-8.1-1" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<section id="section-9">
<h2 id="name-multicast">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-multicast" class="section-name selfRef">Multicast</a>
</h2>
<p id="section-9-1">A number of studies investigating HIP-based multicast
have been published (including <span>[<a href="#shields-hip" class="xref">shields-hip</a>]</span>, <span>[<a href="#zhu-hip" class="xref">zhu-hip</a>]</span>, <span>[<a href="#amir-hip" class="xref">amir-hip</a>]</span>, <span>[<a href="#kovacshazi-host" class="xref">kovacshazi-host</a>]</span>, and
<span>[<a href="#zhu-secure" class="xref">zhu-secure</a>]</span>). In particular, so-called Bloom filters,
which allow the compression of multiple labels into small
data structures, may be a promising way forward <span>[<a href="#sarela-bloom" class="xref">sarela-bloom</a>]</span>. However, the different schemes have
not been adopted by the HIP working group (nor the HIP research
group in the IRTF), so the details are not further elaborated here.<a href="#section-9-1" class="pilcrow">¶</a></p>
</section>
<section id="section-10">
<h2 id="name-hip-policies">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-hip-policies" class="section-name selfRef">HIP Policies</a>
</h2>
<p id="section-10-1">There are a number of variables that influence the HIP
exchange that each host must support. All HIP implementations
should support at least two HIs, one to publish in DNS or a similar
directory service and an unpublished one for anonymous usage
(that should expect to be rotated frequently in order to disrupt
linkability and/or trackability). Although unpublished HIs will
rarely be used as Responder HIs, they are likely to be common for
Initiators. As stated in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>, "all HIP implementations <span class="bcp14">MUST</span>
support more than one simultaneous HI, at least one of which <span class="bcp14">SHOULD</span>
be reserved for anonymous usage", and "support for more than two HIs is <span class="bcp14">RECOMMENDED</span>".
This
provides new challenges for systems or users to decide which
type of HI to expose when they start a new session.<a href="#section-10-1" class="pilcrow">¶</a></p>
<p id="section-10-2">Opportunistic mode (where the Initiator starts a HIP exchange
without prior knowledge of the Responder's HI) presents a
security trade-off. At the expense of being subject to MitM
attacks, the opportunistic mode allows the Initiator to learn
the identity of the Responder during communication rather than
from an external directory. Opportunistic mode can be used for
registration to HIP-based services <span>[<a href="#RFC8003" class="xref">RFC8003</a>]</span> (i.e., utilized by HIP for
its own internal purposes) or by the application layer <span>[<a href="#komu-leap" class="xref">komu-leap</a>]</span>. For security reasons, especially the
latter requires some involvement from the user to accept the
identity of the Responder similar to how the Secure Shell (SSH) protocol prompts the
user when connecting to a server for the first time <span>[<a href="#pham-leap" class="xref">pham-leap</a>]</span>. In practice, this can be realized
in end-host-based firewalls in the case of legacy applications
<span>[<a href="#karvonen-usable" class="xref">karvonen-usable</a>]</span> or with <span><a href="#RFC6317" class="xref">native APIs for HIP APIs</a> [<a href="#RFC6317" class="xref">RFC6317</a>]</span> in the case of
HIP-aware applications.<a href="#section-10-2" class="pilcrow">¶</a></p>
<p id="section-10-3">As stated in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>:<a href="#section-10-3" class="pilcrow">¶</a></p>
<blockquote id="section-10-4">Initiators <span class="bcp14">MAY</span> use a different HI for
different Responders to provide basic privacy. Whether such
private HIs are used repeatedly with the same Responder, and how
long these HIs are used, are decided by local policy and depend
on the privacy requirements of the Initiator.<a href="#section-10-4" class="pilcrow">¶</a>
</blockquote>
<p id="section-10-5">According to <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>:<a href="#section-10-5" class="pilcrow">¶</a></p>
<blockquote id="section-10-6">Responders that only
respond to selected Initiators require an Access Control List
(ACL), representing for which hosts they accept HIP base
exchanges, and the preferred transport format and local
lifetimes. Wildcarding <span class="bcp14">SHOULD</span> be supported for such ACLs, and
also for Responders that offer public or anonymous services.<a href="#section-10-6" class="pilcrow">¶</a>
</blockquote>
</section>
<section id="section-11">
<h2 id="name-security-considerations">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-11-1">This section includes discussion on some issues and solutions
related to security in the HIP architecture.<a href="#section-11-1" class="pilcrow">¶</a></p>
<section id="section-11.1">
<h3 id="name-mitm-attacks">
<a href="#section-11.1" class="section-number selfRef">11.1. </a><a href="#name-mitm-attacks" class="section-name selfRef">MitM Attacks</a>
</h3>
<p id="section-11.1-1">HIP takes advantage of the Host Identity paradigm to
provide secure authentication of hosts and to provide a fast key
exchange for ESP. HIP also attempts to limit the exposure of
the host to various denial-of-service (DoS) and
man-in-the-middle (MitM) attacks. In so doing, HIP itself is
subject to its own DoS and MitM attacks that potentially could
be more damaging to a host's ability to conduct business as
usual.<a href="#section-11.1-1" class="pilcrow">¶</a></p>
<p id="section-11.1-2">Resource exhausting DoS attacks take advantage
of the cost of setting up a state for a protocol on the
Responder compared to the 'cheapness' on the Initiator. HIP
allows a Responder to increase the cost of the start of state on
the Initiator and makes an effort to reduce the cost to the
Responder. This is done by having the Responder start the
authenticated Diffie-Hellman exchange instead of the Initiator,
making the HIP base exchange four packets long. The first packet
sent by the Responder can be prebuilt to further mitigate the
costs. This packet also includes a computational puzzle that can
optionally be used to further delay the Initiator, for instance,
when the Responder is overloaded. The details are explained in
the <span><a href="#RFC7401" class="xref">base exchange
specification</a> [<a href="#RFC7401" class="xref">RFC7401</a>]</span>.<a href="#section-11.1-2" class="pilcrow">¶</a></p>
<p id="section-11.1-3">MitM attacks are difficult to defend against
without third-party authentication. A skillful MitM could
easily handle all parts of the HIP base exchange, but HIP
indirectly provides the following protection from a MitM attack.
If the Responder's HI is retrieved from a signed DNS zone or
securely obtained by some other means, the Initiator can use this to
authenticate the signed HIP packets. Likewise, if the
Initiator's HI is in a secure DNS zone, the Responder can
retrieve it and validate the signed HIP packets. However, since
an Initiator may choose to use an unpublished HI, it knowingly
risks a MitM attack. The Responder may choose not to accept a
HIP exchange with an Initiator using an unknown HI.<a href="#section-11.1-3" class="pilcrow">¶</a></p>
<p id="section-11.1-4">Other types of MitM attacks against HIP can be mounted using
ICMP messages that can be used to signal about problems. As an
overall guideline, the ICMP messages should be considered as
unreliable "hints" and should be acted upon only after
timeouts. The exact attack scenarios and countermeasures are
described in full detail in the <span><a href="#RFC7401" class="xref">base
exchange specification</a> [<a href="#RFC7401" class="xref">RFC7401</a>]</span>.<a href="#section-11.1-4" class="pilcrow">¶</a></p>
<p id="section-11.1-5">A MitM attacker could try to replay older I1 or R1 messages using weaker cryptographic algorithms as described in <span><a href="https://www.rfc-editor.org/rfc/rfc7401#section-4.1.4" class="relref">Section 4.1.4</a> of [<a href="#RFC7401" class="xref">RFC7401</a>]</span>.
The base exchange has been augmented to deal with
such an attack by restarting on the detection of the attack. At
worst, this would only lead to a situation in which the
base exchange would never finish (or would be aborted after
some retries). As a drawback, this leads to a six-way base
exchange, which may seem bad at first. However, since this
only occurs in an attack scenario and since the attack can
be handled (so it is not interesting to mount anymore), we
assume the subsequent messages do not represent a security threat. Since
the MitM cannot be successful with a downgrade attack, these
sorts of attacks will only occur as 'nuisance' attacks. So,
the base exchange would still be usually just four packets
even though implementations must be prepared to protect
themselves against the downgrade attack.<a href="#section-11.1-5" class="pilcrow">¶</a></p>
<p id="section-11.1-6">In HIP, the Security Association for ESP is indexed by the
SPI; the source address is always ignored, and the destination
address may be ignored as well. Therefore, HIP-enabled
ESP is IP address independent.
This might seem to make attacking easier, but ESP with
replay protection is already as well protected as possible, and
the removal of the IP address as a check should not increase the
exposure of ESP to DoS attacks.<a href="#section-11.1-6" class="pilcrow">¶</a></p>
</section>
<div id="ssec-flooding">
<section id="section-11.2">
<h3 id="name-protection-against-flooding">
<a href="#section-11.2" class="section-number selfRef">11.2. </a><a href="#name-protection-against-flooding" class="section-name selfRef">Protection against Flooding Attacks</a>
</h3>
<p id="section-11.2-1">Although the idea of informing about address changes by
simply sending packets with a new source address appears
appealing, it is not secure enough. That is, even if HIP does
not rely on the source address for anything (once the base
exchange has been completed), it appears to be necessary to
check a mobile node's reachability at the new address before
actually sending any larger amounts of traffic to the new
address.<a href="#section-11.2-1" class="pilcrow">¶</a></p>
<p id="section-11.2-2">Blindly accepting new addresses would potentially lead to
flooding DoS attacks against third parties <span>[<a href="#RFC4225" class="xref">RFC4225</a>]</span>. In a distributed flooding attack, an
attacker opens high-volume HIP connections with a large number
of hosts (using unpublished HIs) and then claims to all of
these hosts that it has moved to a target node's IP address.
If the peer hosts were to simply accept the move, the result
would be a packet flood to the target node's address. To
prevent this type of attack, HIP mobility extensions include a return routability
check procedure where the reachability of a node is separately
checked at each address before using the address for larger
amounts of traffic.<a href="#section-11.2-2" class="pilcrow">¶</a></p>
<p id="section-11.2-3">A credit-based authorization approach for "<a href="#RFC8046" class="xref">Host Mobility with the Host Identity Protocol</a>" <span>[<a href="#RFC8046" class="xref">RFC8046</a>]</span>
can be used between hosts for sending data prior to completing the address
tests. Otherwise, if HIP is used between two hosts that fully
trust each other, the hosts may optionally decide to skip the
address tests. However, such performance optimization must be
restricted to peers that are known to be trustworthy and
capable of protecting themselves from malicious software.<a href="#section-11.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-11.3">
<h3 id="name-hits-used-in-acls">
<a href="#section-11.3" class="section-number selfRef">11.3. </a><a href="#name-hits-used-in-acls" class="section-name selfRef">HITs Used in ACLs</a>
</h3>
<p id="section-11.3-1">At end-hosts, HITs can be used in IP-based access control
lists at the application and network layers. At middleboxes,
HIP-aware firewalls <span>[<a href="#lindqvist-enterprise" class="xref">lindqvist-enterprise</a>]</span> can use HITs or public
keys to control both ingress and egress access to networks or
individual hosts, even in the presence of mobile devices
because the HITs and public keys are topology
independent. As discussed earlier in <a href="#esp" class="xref">Section 7</a>, once a HIP session has been established, the SPI value in
an ESP packet may be used as an index, indicating the HITs.
In practice, firewalls can inspect HIP packets to learn of the
bindings between HITs, SPI values, and IP addresses. They can
even explicitly control ESP usage, dynamically opening ESP
only for specific SPI values and IP addresses. The signatures
in HIP packets allow a capable firewall to ensure that the HIP
exchange is indeed occurring between two known hosts. This
may increase firewall security.<a href="#section-11.3-1" class="pilcrow">¶</a></p>
<p id="section-11.3-2">A potential drawback of HITs in ACLs is their 'flatness', which
means they cannot be aggregated, and this could potentially
result in larger table searches in HIP-aware firewalls. A
way to optimize this could be to utilize Bloom filters for
grouping HITs <span>[<a href="#sarela-bloom" class="xref">sarela-bloom</a>]</span>. However, it
should be noted that it is also easier to exclude individual,
misbehaving hosts when the firewall rules concern
individual HITs rather than groups.<a href="#section-11.3-2" class="pilcrow">¶</a></p>
<p id="section-11.3-3">There has been considerable bad experience with distributed
ACLs that contain material related to public keys, for example,
with SSH. If the owner of a key needs to revoke it for any
reason, the task of finding all locations where the key is
held in an ACL may be impossible. If the reason for the
revocation is due to private key theft, this could be a
serious issue.<a href="#section-11.3-3" class="pilcrow">¶</a></p>
<p id="section-11.3-4">A host can keep track of all of its partners that might use
its HIT in an ACL by logging all remote HITs. It should only
be necessary to log Responder hosts. With this information,
the host can notify the various hosts about the change to the
HIT. There have been attempts to develop a secure method to
issue the HIT revocation notice <span>[<a href="#I-D.irtf-hiprg-revocation" class="xref">zhang-revocation</a>]</span>.<a href="#section-11.3-4" class="pilcrow">¶</a></p>
<p id="section-11.3-5">Some of the HIP-aware middleboxes, such as firewalls <span>[<a href="#lindqvist-enterprise" class="xref">lindqvist-enterprise</a>]</span> or NATs <span>[<a href="#ylitalo-spinat" class="xref">ylitalo-spinat</a>]</span>, may observe the on-path traffic
passively. Such middleboxes are transparent by their nature
and may not get a notification when a host moves to a
different network. Thus, such middleboxes should maintain soft
state and time out when the control and data planes between two
HIP end-hosts have been idle too long. Correspondingly, the two
end-hosts may send periodically keepalives, such as UPDATE
packets or ICMP messages inside the ESP tunnel, to sustain
state at the on-path middleboxes.<a href="#section-11.3-5" class="pilcrow">¶</a></p>
<p id="section-11.3-6">One general limitation related to end-to-end encryption is
that middleboxes may not be able to participate in the
protection of data flows. While the issue may also affect
other protocols, Heer et al. <span>[<a href="#heer-end-host" class="xref">heer-end-host</a>]</span> have analyzed the problem in the context of HIP. More
specifically, when ESP is used as the data plane protocol for HIP, the
association between the control and data planes is weak and can
be exploited under certain assumptions. In the
scenario, the attacker has already gained access to the target
network protected by a HIP-aware firewall, but wants to
circumvent the HIP-based firewall. To achieve this, the
attacker passively observes a base exchange between two HIP
hosts and later replays it. This way, the attacker manages to
penetrate the firewall and can use a fake ESP tunnel to
transport its own data. This is possible because the firewall
cannot distinguish when the ESP tunnel is valid. As a
solution, HIP-aware middleboxes may participate in the control
plane interaction by adding random nonce parameters to the
control traffic, which the end-hosts have to sign to
guarantee the freshness of the control traffic <span>[<a href="#I-D.heer-hip-middle-auth" class="xref">heer-midauth</a>]</span>. As an alternative, extensions for
transporting the data plane directly over the control plane can be
used <span>[<a href="#RFC6078" class="xref">RFC6078</a>]</span>.<a href="#section-11.3-6" class="pilcrow">¶</a></p>
</section>
<section id="section-11.4">
<h3 id="name-alternative-hi-consideratio">
<a href="#section-11.4" class="section-number selfRef">11.4. </a><a href="#name-alternative-hi-consideratio" class="section-name selfRef">Alternative HI Considerations</a>
</h3>
<p id="section-11.4-1">The definition of the Host Identifier states that the HI
need not be a public key. It implies that the HI could be any
value, for example, a FQDN. This document does not describe
how to support such a non-cryptographic HI, but examples of
such protocol variants do exist (<span>[<a href="#urien-rfid" class="xref">urien-rfid</a>]</span>,
<span>[<a href="#I-D.irtf-hiprg-rfid" class="xref">urien-rfid-draft</a>]</span>). A non-cryptographic HI
would still offer the services of the HIT or LSI for NAT
traversal. It would be possible to carry HITs in HIP packets
that had neither privacy nor authentication. Such schemes may
be employed for resource-constrained devices, such as small
sensors operating on battery power, but are not further
analyzed here.<a href="#section-11.4-1" class="pilcrow">¶</a></p>
<p id="section-11.4-2">If it is desirable to use HIP in a low-security situation
where public key computations are considered expensive, HIP
can be used with very short Diffie-Hellman and Host Identity
keys. Such use makes the participating hosts vulnerable to
MitM and connection hijacking attacks. However, it does not
cause flooding dangers, since the address check mechanism
relies on the routing system and not on cryptographic
strength.<a href="#section-11.4-2" class="pilcrow">¶</a></p>
</section>
<section id="section-11.5">
<h3 id="name-trust-on-first-use">
<a href="#section-11.5" class="section-number selfRef">11.5. </a><a href="#name-trust-on-first-use" class="section-name selfRef">Trust on First Use</a>
</h3>
<p id="section-11.5-1"><span>[<a href="#RFC7435" class="xref">RFC7435</a>]</span> highlights four design principles for
Leap of Faith, or Trust On First Use (TOFU), protocols that apply also to opportunistic HIP:<a href="#section-11.5-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-11.5-2">
<li id="section-11.5-2.1">Coexist with explicit policy<a href="#section-11.5-2.1" class="pilcrow">¶</a>
</li>
<li id="section-11.5-2.2">Prioritize communication<a href="#section-11.5-2.2" class="pilcrow">¶</a>
</li>
<li id="section-11.5-2.3">Maximize security peer by peer<a href="#section-11.5-2.3" class="pilcrow">¶</a>
</li>
<li id="section-11.5-2.4">No misrepresentation of security<a href="#section-11.5-2.4" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-11.5-3">
According to the first TOFU design principle, "Opportunistic
security never displaces or preempts explicit policy". Some
application data may be too sensitive, so the related policy
could require authentication (i.e., the
public key or certificate) in such a case instead of the unauthenticated
opportunistic mode. In practice, this has been realized in
HIP implementations as follows <span>[<a href="#RFC6538" class="xref">RFC6538</a>]</span>.<a href="#section-11.5-3" class="pilcrow">¶</a></p>
<p id="section-11.5-4">The OpenHIP implementation allowed an Initiator to use
opportunistic mode
only with an explicitly configured Responder IP address, when the
Responder's HIT is unknown.
At the Responder, OpenHIP had an option to allow
opportunistic mode with any Initiator -- trust any Initiator.<a href="#section-11.5-4" class="pilcrow">¶</a></p>
<p id="section-11.5-5">HIP for Linux (HIPL) developers experimented with more
fine-grained policies operating at the application level. The HIPL
implementation utilized so-called "LD_PRELOAD" hooking at the
application layer that allowed a dynamically linked library to intercept socket-related calls
without rebuilding the related application
binaries. The library acted as a shim layer between
the application and transport layers. The shim layer translated
the non-HIP-based socket calls from the application into
HIP-based socket calls. While the shim library involved some
level of complexity as described in more detail in <span>[<a href="#komu-leap" class="xref">komu-leap</a>]</span>, it achieved the goal of applying
opportunistic mode at the granularity of
individual applications.<a href="#section-11.5-5" class="pilcrow">¶</a></p>
<p id="section-11.5-6">
The second TOFU principle essentially states that communication
should prioritized over security. So
opportunistic mode should be, in general, allowed even if no
authentication is present, and even possibly a fallback to
unencrypted communications could be allowed (if policy permits) instead of blocking communications.
In practice, this can be realized in three
steps. In the first step, a HIP Initiator can look up the HI of a
Responder from a directory such as DNS. When the Initiator discovers a HI,
it can use the HI for authentication and skip the rest of the
following steps. In the second step, the Initiator can, upon failing to find a HI, try opportunistic mode
with the Responder. In the third step, the
Initiator can fall back to non-HIP-based communications upon
failing with opportunistic mode if
the policy allows it. This three-step model has been implemented successfully
and described in more detail in <span>[<a href="#komu-leap" class="xref">komu-leap</a>]</span>.<a href="#section-11.5-6" class="pilcrow">¶</a></p>
<p id="section-11.5-7">
The third TOFU principle suggests that security should be
maximized, so that at least opportunistic security would be
employed. The three-step model described earlier
prefers authentication when it is available, e.g., via
DNS records (and possibly even via DNSSEC when available) and falls
back to opportunistic mode when no out-of-band credentials are
available. As the last resort, fallback to non-HIP-based
communications can be used if the policy allows it. Also,
since perfect forward secrecy (PFS) is explicitly mentioned
in the third design principle, it is worth mentioning that
HIP supports it.<a href="#section-11.5-7" class="pilcrow">¶</a></p>
<p id="section-11.5-8">
The fourth TOFU principle states that users and noninteractive
applications should be properly informed about the level
of security being applied. In practice, non-HIP-aware
applications would assume that no extra security is being applied,
so misleading at least a noninteractive application
should not be possible. In the case of interactive desktop
applications, system-level prompts have been utilized in
earlier HIP experiments <span>[<a href="#karvonen-usable" class="xref">karvonen-usable</a>]</span>
<span>[<a href="#RFC6538" class="xref">RFC6538</a>]</span> to guide the user about the
underlying HIP-based security. In general, users in those experiments perceived when HIP-based security was being used versus not used.
However, the users failed to
notice the difference between opportunistic, non-authenticated HIP and
non-opportunistic, authenticated HIP. The reason for this was that the
opportunistic HIP (i.e., lowered level of security)
was not clearly indicated in the prompt. This provided a
valuable lesson to further improve the user interface.<a href="#section-11.5-8" class="pilcrow">¶</a></p>
<p id="section-11.5-9">
In the case of HIP-aware applications, native sockets APIs for
HIP as specified in <span>[<a href="#RFC6317" class="xref">RFC6317</a>]</span> can be used
to develop application-specific logic instead of using generic
system-level prompting. In such a case, the application itself
can directly prompt the user or otherwise manage the situation
in other ways. In this case, noninteractive
applications also can properly log the level of security being
employed because the developer can now explicitly program the
use of authenticated HIP, opportunistic HIP, and plain-text
communication.<a href="#section-11.5-9" class="pilcrow">¶</a></p>
<p id="section-11.5-10">
It is worth mentioning a few additional items discussed in <span>[<a href="#RFC7435" class="xref">RFC7435</a>]</span>. Related to active attacks,
HIP has built-in protection against ciphersuite downgrade
attacks as described in detail in <span>[<a href="#RFC7401" class="xref">RFC7401</a>]</span>. In addition, pre-deployed certificates could be used to
mitigate against active attacks in the case of opportunistic
mode as mentioned in <span>[<a href="#RFC6538" class="xref">RFC6538</a>]</span>.<a href="#section-11.5-10" class="pilcrow">¶</a></p>
<p id="section-11.5-11">Detection of peer capabilities is also mentioned in the TOFU
context. As discussed in this section, the three-step model can
be used to detect peer capabilities. A host can achieve the
first step of authentication, i.e., discovery of a public key,
via DNS, for instance. If the host finds no keys, the host can then try
opportunistic mode as the second step. Upon a timeout, the host
can then proceed to the third step by falling back to non-HIP-based
communications if the policy permits. This last step is based on
an implicit timeout rather an explicit (negative) acknowledgment
like in the case of DNS, so the user may conclude prematurely
that the connectivity has failed. To speed up the detection
phase by explicitly detecting if the peer supports opportunistic
HIP, researchers have proposed TCP-specific extensions
<span>[<a href="#RFC6538" class="xref">RFC6538</a>]</span> <span>[<a href="#komu-leap" class="xref">komu-leap</a>]</span>. In a
nutshell, an Initiator sends simultaneously both an opportunistic I1 packet and
the related TCP SYN datagram equipped with a special TCP option
to a peer. If the peer supports HIP, it drops the
SYN packet and responds with an R1. If the peer is HIP
incapable, it drops the HIP packet (and the unknown TCP option)
and responds with a TCP SYN-ACK. The benefit of the proposed
scheme is a faster, one round-trip fallback to non-HIP-based
communications. The drawback is that the approach is tied to TCP
(IP options were also considered, but do not work well with firewalls
and NATs). Naturally, the approach does not work against an active
attacker, but opportunistic mode is not supposed to protect
against such an adversary anyway.<a href="#section-11.5-11" class="pilcrow">¶</a></p>
<p id="section-11.5-12">It is worth noting that while the use of opportunistic mode has some benefits related
to incremental deployment, it does not achieve all the benefits
of authenticated HIP <span>[<a href="#komu-diss" class="xref">komu-diss</a>]</span>. Namely,
authenticated HIP supports persistent identifiers in the sense
that hosts are identified with the same HI independent of
their movement. Opportunistic HIP meets this goal only
partially: after the first contact between two hosts, HIP can
successfully sustain connectivity with its mobility management extensions,
but problems emerge when the hosts close the HIP association and try to reestablish connectivity. As hosts
can change their location, it is no longer guaranteed that the same IP
address belongs to the same host. The same address
can be temporally assigned to different hosts, e.g., due to the
reuse of IP addresses (e.g., by a DHCP service), the overlapping of
private address realms (see also the discussion on Internet
transparency in <a href="#sec_benefits" class="xref">Appendix A.1</a>), or due to an
attempted attack.<a href="#section-11.5-12" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-12">
<h2 id="name-iana-considerations">
<a href="#section-12" class="section-number selfRef">12. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-12-1"> This document has no IANA actions.<a href="#section-12-1" class="pilcrow">¶</a></p>
</section>
<section id="section-13">
<h2 id="name-changes-from-rfc-4423">
<a href="#section-13" class="section-number selfRef">13. </a><a href="#name-changes-from-rfc-4423" class="section-name selfRef">Changes from RFC 4423</a>
</h2>
<p id="section-13-1">In a nutshell, the changes from <span><a href="#RFC4423" class="xref">RFC
4423</a> [<a href="#RFC4423" class="xref">RFC4423</a>]</span> are mostly editorial, including clarifications on
topics described in a difficult way and omitting some of the
non-architectural (implementation) details that are already
described in other documents. A number of missing references to
the literature were also added. New topics include the drawbacks
of HIP, a discussion on 802.15.4 and MAC security, HIP for IoT scenarios, deployment
considerations, and a description of the base exchange.<a href="#section-13-1" class="pilcrow">¶</a></p>
</section>
<section id="section-14">
<h2 id="name-references">
<a href="#section-14" class="section-number selfRef">14. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-14.1">
<h3 id="name-normative-references">
<a href="#section-14.1" class="section-number selfRef">14.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC5482">[RFC5482]</dt>
<dd>
<span class="refAuthor">Eggert, L.</span> and <span class="refAuthor">F. Gont</span>, <span class="refTitle">"TCP User Timeout Option"</span>, <span class="seriesInfo">RFC 5482</span>, <span class="seriesInfo">DOI 10.17487/RFC5482</span>, <time datetime="2009-03" class="refDate">March 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5482">https://www.rfc-editor.org/info/rfc5482</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6079">[RFC6079]</dt>
<dd>
<span class="refAuthor">Camarillo, G.</span>, <span class="refAuthor">Nikander, P.</span>, <span class="refAuthor">Hautakorpi, J.</span>, <span class="refAuthor">Keranen, A.</span>, and <span class="refAuthor">A. Johnston</span>, <span class="refTitle">"HIP BONE: Host Identity Protocol (HIP) Based Overlay Networking Environment (BONE)"</span>, <span class="seriesInfo">RFC 6079</span>, <span class="seriesInfo">DOI 10.17487/RFC6079</span>, <time datetime="2011-01" class="refDate">January 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6079">https://www.rfc-editor.org/info/rfc6079</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7086">[RFC7086]</dt>
<dd>
<span class="refAuthor">Keranen, A.</span>, <span class="refAuthor">Camarillo, G.</span>, and <span class="refAuthor">J. Maenpaa</span>, <span class="refTitle">"Host Identity Protocol-Based Overlay Networking Environment (HIP BONE) Instance Specification for REsource LOcation And Discovery (RELOAD)"</span>, <span class="seriesInfo">RFC 7086</span>, <span class="seriesInfo">DOI 10.17487/RFC7086</span>, <time datetime="2014-01" class="refDate">January 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7086">https://www.rfc-editor.org/info/rfc7086</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7343">[RFC7343]</dt>
<dd>
<span class="refAuthor">Laganier, J.</span> and <span class="refAuthor">F. Dupont</span>, <span class="refTitle">"An IPv6 Prefix for Overlay Routable Cryptographic Hash Identifiers Version 2 (ORCHIDv2)"</span>, <span class="seriesInfo">RFC 7343</span>, <span class="seriesInfo">DOI 10.17487/RFC7343</span>, <time datetime="2014-09" class="refDate">September 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7343">https://www.rfc-editor.org/info/rfc7343</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7401">[RFC7401]</dt>
<dd>
<span class="refAuthor">Moskowitz, R., Ed.</span>, <span class="refAuthor">Heer, T.</span>, <span class="refAuthor">Jokela, P.</span>, and <span class="refAuthor">T. Henderson</span>, <span class="refTitle">"Host Identity Protocol Version 2 (HIPv2)"</span>, <span class="seriesInfo">RFC 7401</span>, <span class="seriesInfo">DOI 10.17487/RFC7401</span>, <time datetime="2015-04" class="refDate">April 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7401">https://www.rfc-editor.org/info/rfc7401</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7402">[RFC7402]</dt>
<dd>
<span class="refAuthor">Jokela, P.</span>, <span class="refAuthor">Moskowitz, R.</span>, and <span class="refAuthor">J. Melen</span>, <span class="refTitle">"Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP)"</span>, <span class="seriesInfo">RFC 7402</span>, <span class="seriesInfo">DOI 10.17487/RFC7402</span>, <time datetime="2015-04" class="refDate">April 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7402">https://www.rfc-editor.org/info/rfc7402</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8002">[RFC8002]</dt>
<dd>
<span class="refAuthor">Heer, T.</span> and <span class="refAuthor">S. Varjonen</span>, <span class="refTitle">"Host Identity Protocol Certificates"</span>, <span class="seriesInfo">RFC 8002</span>, <span class="seriesInfo">DOI 10.17487/RFC8002</span>, <time datetime="2016-10" class="refDate">October 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8002">https://www.rfc-editor.org/info/rfc8002</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8003">[RFC8003]</dt>
<dd>
<span class="refAuthor">Laganier, J.</span> and <span class="refAuthor">L. Eggert</span>, <span class="refTitle">"Host Identity Protocol (HIP) Registration Extension"</span>, <span class="seriesInfo">RFC 8003</span>, <span class="seriesInfo">DOI 10.17487/RFC8003</span>, <time datetime="2016-10" class="refDate">October 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8003">https://www.rfc-editor.org/info/rfc8003</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8004">[RFC8004]</dt>
<dd>
<span class="refAuthor">Laganier, J.</span> and <span class="refAuthor">L. Eggert</span>, <span class="refTitle">"Host Identity Protocol (HIP) Rendezvous Extension"</span>, <span class="seriesInfo">RFC 8004</span>, <span class="seriesInfo">DOI 10.17487/RFC8004</span>, <time datetime="2016-10" class="refDate">October 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8004">https://www.rfc-editor.org/info/rfc8004</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8005">[RFC8005]</dt>
<dd>
<span class="refAuthor">Laganier, J.</span>, <span class="refTitle">"Host Identity Protocol (HIP) Domain Name System (DNS) Extension"</span>, <span class="seriesInfo">RFC 8005</span>, <span class="seriesInfo">DOI 10.17487/RFC8005</span>, <time datetime="2016-10" class="refDate">October 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8005">https://www.rfc-editor.org/info/rfc8005</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8046">[RFC8046]</dt>
<dd>
<span class="refAuthor">Henderson, T., Ed.</span>, <span class="refAuthor">Vogt, C.</span>, and <span class="refAuthor">J. Arkko</span>, <span class="refTitle">"Host Mobility with the Host Identity Protocol"</span>, <span class="seriesInfo">RFC 8046</span>, <span class="seriesInfo">DOI 10.17487/RFC8046</span>, <time datetime="2017-02" class="refDate">February 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8046">https://www.rfc-editor.org/info/rfc8046</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8047">[RFC8047]</dt>
<dd>
<span class="refAuthor">Henderson, T., Ed.</span>, <span class="refAuthor">Vogt, C.</span>, and <span class="refAuthor">J. Arkko</span>, <span class="refTitle">"Host Multihoming with the Host Identity Protocol"</span>, <span class="seriesInfo">RFC 8047</span>, <span class="seriesInfo">DOI 10.17487/RFC8047</span>, <time datetime="2017-02" class="refDate">February 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8047">https://www.rfc-editor.org/info/rfc8047</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9028">[RFC9028]</dt>
<dd>
<span class="refAuthor">Keränen, A.</span>, <span class="refAuthor">Melén, J.</span>, and <span class="refAuthor">M. Komu, Ed.</span>, <span class="refTitle">"Native NAT Traversal Mode for the Host Identity Protocol"</span>, <span class="seriesInfo">RFC 9028</span>, <span class="seriesInfo">DOI 10.17487/RFC9028</span>, <time datetime="2021-07" class="refDate">July 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9028">https://www.rfc-editor.org/info/rfc9028</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-14.2">
<h3 id="name-informative-references">
<a href="#section-14.2" class="section-number selfRef">14.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="amir-hip">[amir-hip]</dt>
<dd>
<span class="refAuthor">Amir, K.</span>, <span class="refAuthor">Forsgren, H.</span>, <span class="refAuthor">Grahn, K.</span>, <span class="refAuthor">Karvi, T.</span>, and <span class="refAuthor">G. Pulkkis</span>, <span class="refTitle">"Security and Trust of Public Key Cryptography for HIP and HIP Multicast"</span>, <span class="refContent">International Journal of Dependable and Trustworthy Information Systems (IJDTIS), Vol. 2, Issue 3, pp. 17-35</span>, <span class="seriesInfo">DOI 10.4018/jdtis.2011070102</span>, <time datetime="2013" class="refDate">2013</time>, <span><<a href="https://doi.org/10.4018/jdtis.2011070102">https://doi.org/10.4018/jdtis.2011070102</a>></span>. </dd>
<dd class="break"></dd>
<dt id="aura-dos">[aura-dos]</dt>
<dd>
<span class="refAuthor">Aura, T.</span>, <span class="refAuthor">Nikander, P.</span>, and <span class="refAuthor">J. Leiwo</span>, <span class="refTitle">"DOS-Resistant Authentication with Client Puzzles"</span>, <span class="refContent">8th International Workshop on Security Protocols, Security Protocols 2000, Lecture Notes in Computer Science, Vol. 2133, pp. 170-177, Springer</span>, <span class="seriesInfo">DOI 10.1007/3-540-44810-1_22</span>, <time datetime="2001-09" class="refDate">September 2001</time>, <span><<a href="https://doi.org/10.1007/3-540-44810-1_22">https://doi.org/10.1007/3-540-44810-1_22</a>></span>. </dd>
<dd class="break"></dd>
<dt id="beal-dos">[beal-dos]</dt>
<dd>
<span class="refAuthor">Beal, J.</span> and <span class="refAuthor">T. Shepard</span>, <span class="refTitle">"Deamplification of DoS Attacks via Puzzles"</span>, <time datetime="2004-10" class="refDate">October 2004</time>. </dd>
<dd class="break"></dd>
<dt id="camarillo-p2psip">[camarillo-p2psip]</dt>
<dd>
<span class="refAuthor">Camarillo, G.</span>, <span class="refAuthor">Mäenpää, J.</span>, <span class="refAuthor">Keränen, A.</span>, and <span class="refAuthor">V. Anderson</span>, <span class="refTitle">"Reducing delays related to NAT traversal in P2PSIP session establishments"</span>, <span class="refContent">IEEE Consumer Communications and Networking Conference (CCNC), pp. 549-553</span>, <span class="seriesInfo">DOI 10.1109/CCNC.2011.5766540</span>, <time datetime="2011" class="refDate">2011</time>, <span><<a href="https://doi.org/10.1109/CCNC.2011.5766540">https://doi.org/10.1109/CCNC.2011.5766540</a>></span>. </dd>
<dd class="break"></dd>
<dt id="chiappa-endpoints">[chiappa-endpoints]</dt>
<dd>
<span class="refAuthor">Chiappa, J.</span>, <span class="refTitle">"Endpoints and Endpoint Names: A Proposed Enhancement to the Internet Architecture"</span>, <time datetime="1999" class="refDate">1999</time>, <span><<a href="http://mercury.lcs.mit.edu/~jnc/tech/endpoints.txt">http://mercury.lcs.mit.edu/~jnc/tech/endpoints.txt</a>></span>. </dd>
<dd class="break"></dd>
<dt id="heer-end-host">[heer-end-host]</dt>
<dd>
<span class="refAuthor">Heer, T.</span>, <span class="refAuthor">Hummen, R.</span>, <span class="refAuthor">Komu, M.</span>, <span class="refAuthor">Gotz, S.</span>, and <span class="refAuthor">K. Wehrle</span>, <span class="refTitle">"End-Host Authentication and Authorization for Middleboxes Based on a Cryptographic Namespace"</span>, <span class="refContent">2009 IEEE International Conference on Communications</span>, <span class="seriesInfo">DOI 10.1109/ICC.2009.5198984</span>, <time datetime="2009" class="refDate">2009</time>, <span><<a href="https://doi.org/10.1109/ICC.2009.5198984">https://doi.org/10.1109/ICC.2009.5198984</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.heer-hip-middle-auth">[heer-midauth]</dt>
<dd>
<span class="refAuthor">Heer, T., Ed.</span>, <span class="refAuthor">Hummen, R.</span>, <span class="refAuthor">Wehrle, K.</span>, and <span class="refAuthor">M. Komu</span>, <span class="refTitle">"End-Host Authentication for HIP Middleboxes"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-heer-hip-middle-auth-04</span>, <time datetime="2011-10-31" class="refDate">31 October 2011</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-heer-hip-middle-auth-04">https://datatracker.ietf.org/doc/html/draft-heer-hip-middle-auth-04</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.henderson-hip-vpls">[henderson-vpls]</dt>
<dd>
<span class="refAuthor">Henderson, T. R.</span>, <span class="refAuthor">Venema, S. C.</span>, and <span class="refAuthor">D. Mattes</span>, <span class="refTitle">"HIP-based Virtual Private LAN Service (HIPLS)"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-henderson-hip-vpls-11</span>, <time datetime="2016-08-03" class="refDate">3 August 2016</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-henderson-hip-vpls-11">https://datatracker.ietf.org/doc/html/draft-henderson-hip-vpls-11</a>></span>. </dd>
<dd class="break"></dd>
<dt id="hip-dex">[hip-dex]</dt>
<dd>
<span class="refAuthor">Moskowitz, R., Ed.</span>, <span class="refAuthor">Hummen, R.</span>, and <span class="refAuthor">M. Komu</span>, <span class="refTitle">"HIP Diet EXchange (DEX)"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-hip-dex-24</span>, <time datetime="2021-01-19" class="refDate">19 January 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-hip-dex-24">https://datatracker.ietf.org/doc/html/draft-ietf-hip-dex-24</a>></span>. </dd>
<dd class="break"></dd>
<dt id="hip-lte">[hip-lte]</dt>
<dd>
<span class="refAuthor">Liyanage, M.</span>, <span class="refAuthor">Kumar, P.</span>, <span class="refAuthor">Ylianttila, M.</span>, and <span class="refAuthor">A. Gurtov</span>, <span class="refTitle">"Novel secure VPN architectures for LTE backhaul networks"</span>, <span class="refContent">Security and Communication Networks, Vol. 9, pp. 1198-1215</span>, <span class="seriesInfo">DOI 10.1002/sec.1411</span>, <time datetime="2016-01" class="refDate">January 2016</time>, <span><<a href="https://doi.org/10.1002/sec.1411">https://doi.org/10.1002/sec.1411</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.tschofenig-hiprg-hip-srtp">[hip-srtp]</dt>
<dd>
<span class="refAuthor">Tschofenig, H.</span>, <span class="refAuthor">Shanmugam, M.</span>, and <span class="refAuthor">F. Muenz</span>, <span class="refTitle">"Using SRTP transport format with HIP"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-tschofenig-hiprg-hip-srtp-02</span>, <time datetime="2006-10-25" class="refDate">25 October 2006</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-tschofenig-hiprg-hip-srtp-02">https://datatracker.ietf.org/doc/html/draft-tschofenig-hiprg-hip-srtp-02</a>></span>. </dd>
<dd class="break"></dd>
<dt id="hummen">[hummen]</dt>
<dd>
<span class="refAuthor">Hummen, R.</span>, <span class="refAuthor">Hiller, J.</span>, <span class="refAuthor">Henze, M.</span>, and <span class="refAuthor">K. Wehrle</span>, <span class="refTitle">"Slimfit - A HIP DEX compression layer for the IP-based Internet of Things"</span>, <span class="refContent">2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 259-266</span>, <span class="seriesInfo">DOI 10.1109/WiMOB.2013.6673370</span>, <time datetime="2013-10" class="refDate">October 2013</time>, <span><<a href="https://doi.org/10.1109/WiMOB.2013.6673370">https://doi.org/10.1109/WiMOB.2013.6673370</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE.802.15.4">[IEEE.802.15.4]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Low-Rate Wireless Networks"</span>, <span class="seriesInfo">IEEE Standard 802.15.4</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2020.9144691</span>, <time datetime="2020-07" class="refDate">July 2020</time>, <span><<a href="https://ieeexplore.ieee.org/document/9144691">https://ieeexplore.ieee.org/document/9144691</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IEEE.802.15.9">[IEEE.802.15.9]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Draft Recommended Practice for Transport of Key Management Protocol (KMP) Datagrams"</span>, <span class="seriesInfo">IEEE P802.15.9/D04</span>, <time datetime="2015-05" class="refDate">May 2015</time>. </dd>
<dd class="break"></dd>
<dt id="karvonen-usable">[karvonen-usable]</dt>
<dd>
<span class="refAuthor">Karvonen, K.</span>, <span class="refAuthor">Komu, M.</span>, and <span class="refAuthor">A. Gurtov</span>, <span class="refTitle">"Usable security management with host identity protocol"</span>, <span class="refContent">2009 IEEE/ACS International Conference on Computer Systems and Applications, pp. 279-286</span>, <span class="seriesInfo">DOI 10.1109/AICCSA.2009.5069337</span>, <time datetime="2009" class="refDate">2009</time>, <span><<a href="https://doi.org/10.1109/AICCSA.2009.5069337">https://doi.org/10.1109/AICCSA.2009.5069337</a>></span>. </dd>
<dd class="break"></dd>
<dt id="komu-cloud">[komu-cloud]</dt>
<dd>
<span class="refAuthor">Komu, M.</span>, <span class="refAuthor">Sethi, M.</span>, <span class="refAuthor">Mallavarapu, R.</span>, <span class="refAuthor">Oirola, H.</span>, <span class="refAuthor">Khan, R.</span>, and <span class="refAuthor">S. Tarkoma</span>, <span class="refTitle">"Secure Networking for Virtual Machines in the Cloud"</span>, <span class="refContent">2012 IEEE International Conference
on Cluster Computing Workshops, pp. 88-96</span>, <span class="seriesInfo">DOI 10.1109/ClusterW.2012.29</span>, <time datetime="2012" class="refDate">2012</time>, <span><<a href="https://doi.org/10.1109/ClusterW.2012.29">https://doi.org/10.1109/ClusterW.2012.29</a>></span>. </dd>
<dd class="break"></dd>
<dt id="komu-diss">[komu-diss]</dt>
<dd>
<span class="refAuthor">Komu, M.</span>, <span class="refTitle">"A Consolidated Namespace for Network Applications, Developers, Administrators and Users"</span>, <span class="refContent">Dissertation, Aalto University, Espoo, Finland</span>, <span class="seriesInfo">ISBN 978-952-60-4904-5 (printed)</span>, <span class="seriesInfo">ISBN 978-952-60-4905-2 (electronic)</span>, <time datetime="2012-12" class="refDate">December 2012</time>. </dd>
<dd class="break"></dd>
<dt id="komu-leap">[komu-leap]</dt>
<dd>
<span class="refAuthor">Komu, M.</span> and <span class="refAuthor">J. Lindqvist</span>, <span class="refTitle">"Leap-of-Faith Security is Enough for IP Mobility"</span>, <span class="refContent">2009 6th IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, pp. 1-5</span>, <span class="seriesInfo">DOI 10.1109/CCNC.2009.4784729</span>, <time datetime="2009-01" class="refDate">January 2009</time>, <span><<a href="https://doi.org/10.1109/CCNC.2009.4784729">https://doi.org/10.1109/CCNC.2009.4784729</a>></span>. </dd>
<dd class="break"></dd>
<dt id="komu-mitigation">[komu-mitigation]</dt>
<dd>
<span class="refAuthor">Komu, M.</span>, <span class="refAuthor">Tarkoma, S.</span>, and <span class="refAuthor">A. Lukyanenko</span>, <span class="refTitle">"Mitigation of Unsolicited Traffic Across Domains with Host Identities and Puzzles"</span>, <span class="refContent">15th Nordic Conference on Secure IT Systems, NordSec 2010, Lecture Notes in Computer Science, Vol. 7127, pp. 33-48, Springer</span>, <span class="seriesInfo">ISBN 978-3-642-27936-2</span>, <span class="seriesInfo">DOI 10.1007/978-3-642-27937-9_3</span>, <time datetime="2010-10" class="refDate">October 2010</time>, <span><<a href="https://doi.org/10.1007/978-3-642-27937-9_3">https://doi.org/10.1007/978-3-642-27937-9_3</a>></span>. </dd>
<dd class="break"></dd>
<dt id="kovacshazi-host">[kovacshazi-host]</dt>
<dd>
<span class="refAuthor">Kovacshazi, Z.</span> and <span class="refAuthor">R. Vida</span>, <span class="refTitle">"Host Identity Specific Multicast"</span>, <span class="refContent">International Conference on Networking and Services (ICNS '07), Athens, Greece, pp. 1-1</span>, <span class="seriesInfo">DOI 10.1109/ICNS.2007.66</span>, <time datetime="2007" class="refDate">2007</time>, <span><<a href="https://doi.org/10.1109/ICNS.2007.66">https://doi.org/10.1109/ICNS.2007.66</a>></span>. </dd>
<dd class="break"></dd>
<dt id="levae-barriers">[levae-barriers]</dt>
<dd>
<span class="refAuthor">Levä, T.</span>, <span class="refAuthor">Komu, M.</span>, and <span class="refAuthor">S. Luukkainen</span>, <span class="refTitle">"Adoption barriers of network layer protocols: the case of host identity protocol"</span>, <span class="refContent">Computer Networks, Vol. 57, Issue 10, pp. 2218-2232</span>, <span class="seriesInfo">ISSN 1389-1286</span>, <span class="seriesInfo">DOI 10.1016/j.comnet.2012.11.024</span>, <time datetime="2013-03" class="refDate">March 2013</time>, <span><<a href="https://doi.org/10.1016/j.comnet.2012.11.024">https://doi.org/10.1016/j.comnet.2012.11.024</a>></span>. </dd>
<dd class="break"></dd>
<dt id="lindqvist-enterprise">[lindqvist-enterprise]</dt>
<dd>
<span class="refAuthor">Lindqvist, J.</span>, <span class="refAuthor">Vehmersalo, E.</span>, <span class="refAuthor">Komu, M.</span>, and <span class="refAuthor">J. Manner</span>, <span class="refTitle">"Enterprise Network Packet Filtering for Mobile Cryptographic Identities"</span>, <span class="refContent">International Journal of Handheld Computing Research (IJHCR), Vol. 1, Issue 1, pp. 79-94</span>, <span class="seriesInfo">DOI 10.4018/jhcr.2010090905</span>, <time datetime="2010" class="refDate">2010</time>, <span><<a href="https://doi.org/10.4018/jhcr.2010090905">https://doi.org/10.4018/jhcr.2010090905</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Nik2001">[Nik2001]</dt>
<dd>
<span class="refAuthor">Nikander, P.</span>, <span class="refTitle">"Denial-of-Service, Address Ownership, and Early Authentication in the IPv6 World"</span>, <span class="refContent">9th International Workshop on Security Protocols, Security Protocols 2001, Lecture Notes in Computer Science, Vol. 2467, pp. 12-21, Springer</span>, <span class="seriesInfo">DOI 10.1007/3-540-45807-7_3</span>, <time datetime="2002" class="refDate">2002</time>, <span><<a href="https://doi.org/10.1007/3-540-45807-7_3">https://doi.org/10.1007/3-540-45807-7_3</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.irtf-nsrg-report">[nsrg-report]</dt>
<dd>
<span class="refAuthor">Lear, E.</span> and <span class="refAuthor">R. Droms</span>, <span class="refTitle">"What's In A Name: Thoughts from the NSRG"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-irtf-nsrg-report-10</span>, <time datetime="2003-09-22" class="refDate">22 September 2003</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-irtf-nsrg-report-10">https://datatracker.ietf.org/doc/html/draft-irtf-nsrg-report-10</a>></span>. </dd>
<dd class="break"></dd>
<dt id="paine-hip">[paine-hip]</dt>
<dd>
<span class="refAuthor">Paine, R. H.</span>, <span class="refTitle">"Beyond HIP: The End to Hacking As We Know It"</span>, <span class="refContent">BookSurge Publishing</span>, <span class="seriesInfo">ISBN-10 1439256047</span>, <span class="seriesInfo">ISBN-13 978-1439256046</span>, <time datetime="2009" class="refDate">2009</time>. </dd>
<dd class="break"></dd>
<dt id="pham-leap">[pham-leap]</dt>
<dd>
<span class="refAuthor">Pham, V.</span> and <span class="refAuthor">T. Aura</span>, <span class="refTitle">"Security Analysis of Leap-of-Faith Protocols"</span>, <span class="refContent">7th International ICST Conference, Security and Privacy for Communication Networks, SecureComm 2011, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol. 96</span>, <span class="seriesInfo">DOI 10.1007/978-3-642-31909-9_19</span>, <time datetime="2012" class="refDate">2012</time>, <span><<a href="https://doi.org/10.1007/978-3-642-31909-9_19">https://doi.org/10.1007/978-3-642-31909-9_19</a>></span>. </dd>
<dd class="break"></dd>
<dt id="ranjbar-synaptic">[ranjbar-synaptic]</dt>
<dd>
<span class="refAuthor">Ranjbar, A.</span>, <span class="refAuthor">Komu, M.</span>, <span class="refAuthor">Salmela, P.</span>, and <span class="refAuthor">T. Aura</span>, <span class="refTitle">"SynAPTIC: Secure and Persistent Connectivity for Containers"</span>, <span class="refContent">2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid, 2017, pp. 262-267</span>, <span class="seriesInfo">DOI 10.1109/CCGRID.2017.62</span>, <time datetime="2017" class="refDate">2017</time>, <span><<a href="https://doi.org/10.1109/CCGRID.2017.62">https://doi.org/10.1109/CCGRID.2017.62</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2136">[RFC2136]</dt>
<dd>
<span class="refAuthor">Vixie, P., Ed.</span>, <span class="refAuthor">Thomson, S.</span>, <span class="refAuthor">Rekhter, Y.</span>, and <span class="refAuthor">J. Bound</span>, <span class="refTitle">"Dynamic Updates in the Domain Name System (DNS UPDATE)"</span>, <span class="seriesInfo">RFC 2136</span>, <span class="seriesInfo">DOI 10.17487/RFC2136</span>, <time datetime="1997-04" class="refDate">April 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2136">https://www.rfc-editor.org/info/rfc2136</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2766">[RFC2766]</dt>
<dd>
<span class="refAuthor">Tsirtsis, G.</span> and <span class="refAuthor">P. Srisuresh</span>, <span class="refTitle">"Network Address Translation - Protocol Translation (NAT-PT)"</span>, <span class="seriesInfo">RFC 2766</span>, <span class="seriesInfo">DOI 10.17487/RFC2766</span>, <time datetime="2000-02" class="refDate">February 2000</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2766">https://www.rfc-editor.org/info/rfc2766</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3022">[RFC3022]</dt>
<dd>
<span class="refAuthor">Srisuresh, P.</span> and <span class="refAuthor">K. Egevang</span>, <span class="refTitle">"Traditional IP Network Address Translator (Traditional NAT)"</span>, <span class="seriesInfo">RFC 3022</span>, <span class="seriesInfo">DOI 10.17487/RFC3022</span>, <time datetime="2001-01" class="refDate">January 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3022">https://www.rfc-editor.org/info/rfc3022</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3102">[RFC3102]</dt>
<dd>
<span class="refAuthor">Borella, M.</span>, <span class="refAuthor">Lo, J.</span>, <span class="refAuthor">Grabelsky, D.</span>, and <span class="refAuthor">G. Montenegro</span>, <span class="refTitle">"Realm Specific IP: Framework"</span>, <span class="seriesInfo">RFC 3102</span>, <span class="seriesInfo">DOI 10.17487/RFC3102</span>, <time datetime="2001-10" class="refDate">October 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3102">https://www.rfc-editor.org/info/rfc3102</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3748">[RFC3748]</dt>
<dd>
<span class="refAuthor">Aboba, B.</span>, <span class="refAuthor">Blunk, L.</span>, <span class="refAuthor">Vollbrecht, J.</span>, <span class="refAuthor">Carlson, J.</span>, and <span class="refAuthor">H. Levkowetz, Ed.</span>, <span class="refTitle">"Extensible Authentication Protocol (EAP)"</span>, <span class="seriesInfo">RFC 3748</span>, <span class="seriesInfo">DOI 10.17487/RFC3748</span>, <time datetime="2004-06" class="refDate">June 2004</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3748">https://www.rfc-editor.org/info/rfc3748</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3972">[RFC3972]</dt>
<dd>
<span class="refAuthor">Aura, T.</span>, <span class="refTitle">"Cryptographically Generated Addresses (CGA)"</span>, <span class="seriesInfo">RFC 3972</span>, <span class="seriesInfo">DOI 10.17487/RFC3972</span>, <time datetime="2005-03" class="refDate">March 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3972">https://www.rfc-editor.org/info/rfc3972</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4033">[RFC4033]</dt>
<dd>
<span class="refAuthor">Arends, R.</span>, <span class="refAuthor">Austein, R.</span>, <span class="refAuthor">Larson, M.</span>, <span class="refAuthor">Massey, D.</span>, and <span class="refAuthor">S. Rose</span>, <span class="refTitle">"DNS Security Introduction and Requirements"</span>, <span class="seriesInfo">RFC 4033</span>, <span class="seriesInfo">DOI 10.17487/RFC4033</span>, <time datetime="2005-03" class="refDate">March 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4033">https://www.rfc-editor.org/info/rfc4033</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4225">[RFC4225]</dt>
<dd>
<span class="refAuthor">Nikander, P.</span>, <span class="refAuthor">Arkko, J.</span>, <span class="refAuthor">Aura, T.</span>, <span class="refAuthor">Montenegro, G.</span>, and <span class="refAuthor">E. Nordmark</span>, <span class="refTitle">"Mobile IP Version 6 Route Optimization Security Design Background"</span>, <span class="seriesInfo">RFC 4225</span>, <span class="seriesInfo">DOI 10.17487/RFC4225</span>, <time datetime="2005-12" class="refDate">December 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4225">https://www.rfc-editor.org/info/rfc4225</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4380">[RFC4380]</dt>
<dd>
<span class="refAuthor">Huitema, C.</span>, <span class="refTitle">"Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs)"</span>, <span class="seriesInfo">RFC 4380</span>, <span class="seriesInfo">DOI 10.17487/RFC4380</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4380">https://www.rfc-editor.org/info/rfc4380</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4423">[RFC4423]</dt>
<dd>
<span class="refAuthor">Moskowitz, R.</span> and <span class="refAuthor">P. Nikander</span>, <span class="refTitle">"Host Identity Protocol (HIP) Architecture"</span>, <span class="seriesInfo">RFC 4423</span>, <span class="seriesInfo">DOI 10.17487/RFC4423</span>, <time datetime="2006-05" class="refDate">May 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4423">https://www.rfc-editor.org/info/rfc4423</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5218">[RFC5218]</dt>
<dd>
<span class="refAuthor">Thaler, D.</span> and <span class="refAuthor">B. Aboba</span>, <span class="refTitle">"What Makes for a Successful Protocol?"</span>, <span class="seriesInfo">RFC 5218</span>, <span class="seriesInfo">DOI 10.17487/RFC5218</span>, <time datetime="2008-07" class="refDate">July 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5218">https://www.rfc-editor.org/info/rfc5218</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5338">[RFC5338]</dt>
<dd>
<span class="refAuthor">Henderson, T.</span>, <span class="refAuthor">Nikander, P.</span>, and <span class="refAuthor">M. Komu</span>, <span class="refTitle">"Using the Host Identity Protocol with Legacy Applications"</span>, <span class="seriesInfo">RFC 5338</span>, <span class="seriesInfo">DOI 10.17487/RFC5338</span>, <time datetime="2008-09" class="refDate">September 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5338">https://www.rfc-editor.org/info/rfc5338</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5887">[RFC5887]</dt>
<dd>
<span class="refAuthor">Carpenter, B.</span>, <span class="refAuthor">Atkinson, R.</span>, and <span class="refAuthor">H. Flinck</span>, <span class="refTitle">"Renumbering Still Needs Work"</span>, <span class="seriesInfo">RFC 5887</span>, <span class="seriesInfo">DOI 10.17487/RFC5887</span>, <time datetime="2010-05" class="refDate">May 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5887">https://www.rfc-editor.org/info/rfc5887</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6078">[RFC6078]</dt>
<dd>
<span class="refAuthor">Camarillo, G.</span> and <span class="refAuthor">J. Melen</span>, <span class="refTitle">"Host Identity Protocol (HIP) Immediate Carriage and Conveyance of Upper-Layer Protocol Signaling (HICCUPS)"</span>, <span class="seriesInfo">RFC 6078</span>, <span class="seriesInfo">DOI 10.17487/RFC6078</span>, <time datetime="2011-01" class="refDate">January 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6078">https://www.rfc-editor.org/info/rfc6078</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6250">[RFC6250]</dt>
<dd>
<span class="refAuthor">Thaler, D.</span>, <span class="refTitle">"Evolution of the IP Model"</span>, <span class="seriesInfo">RFC 6250</span>, <span class="seriesInfo">DOI 10.17487/RFC6250</span>, <time datetime="2011-05" class="refDate">May 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6250">https://www.rfc-editor.org/info/rfc6250</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6281">[RFC6281]</dt>
<dd>
<span class="refAuthor">Cheshire, S.</span>, <span class="refAuthor">Zhu, Z.</span>, <span class="refAuthor">Wakikawa, R.</span>, and <span class="refAuthor">L. Zhang</span>, <span class="refTitle">"Understanding Apple's Back to My Mac (BTMM) Service"</span>, <span class="seriesInfo">RFC 6281</span>, <span class="seriesInfo">DOI 10.17487/RFC6281</span>, <time datetime="2011-06" class="refDate">June 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6281">https://www.rfc-editor.org/info/rfc6281</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6317">[RFC6317]</dt>
<dd>
<span class="refAuthor">Komu, M.</span> and <span class="refAuthor">T. Henderson</span>, <span class="refTitle">"Basic Socket Interface Extensions for the Host Identity Protocol (HIP)"</span>, <span class="seriesInfo">RFC 6317</span>, <span class="seriesInfo">DOI 10.17487/RFC6317</span>, <time datetime="2011-07" class="refDate">July 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6317">https://www.rfc-editor.org/info/rfc6317</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6537">[RFC6537]</dt>
<dd>
<span class="refAuthor">Ahrenholz, J.</span>, <span class="refTitle">"Host Identity Protocol Distributed Hash Table Interface"</span>, <span class="seriesInfo">RFC 6537</span>, <span class="seriesInfo">DOI 10.17487/RFC6537</span>, <time datetime="2012-02" class="refDate">February 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6537">https://www.rfc-editor.org/info/rfc6537</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6538">[RFC6538]</dt>
<dd>
<span class="refAuthor">Henderson, T.</span> and <span class="refAuthor">A. Gurtov</span>, <span class="refTitle">"The Host Identity Protocol (HIP) Experiment Report"</span>, <span class="seriesInfo">RFC 6538</span>, <span class="seriesInfo">DOI 10.17487/RFC6538</span>, <time datetime="2012-03" class="refDate">March 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6538">https://www.rfc-editor.org/info/rfc6538</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7296">[RFC7296]</dt>
<dd>
<span class="refAuthor">Kaufman, C.</span>, <span class="refAuthor">Hoffman, P.</span>, <span class="refAuthor">Nir, Y.</span>, <span class="refAuthor">Eronen, P.</span>, and <span class="refAuthor">T. Kivinen</span>, <span class="refTitle">"Internet Key Exchange Protocol Version 2 (IKEv2)"</span>, <span class="seriesInfo">STD 79</span>, <span class="seriesInfo">RFC 7296</span>, <span class="seriesInfo">DOI 10.17487/RFC7296</span>, <time datetime="2014-10" class="refDate">October 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7296">https://www.rfc-editor.org/info/rfc7296</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7435">[RFC7435]</dt>
<dd>
<span class="refAuthor">Dukhovni, V.</span>, <span class="refTitle">"Opportunistic Security: Some Protection Most of the Time"</span>, <span class="seriesInfo">RFC 7435</span>, <span class="seriesInfo">DOI 10.17487/RFC7435</span>, <time datetime="2014-12" class="refDate">December 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7435">https://www.rfc-editor.org/info/rfc7435</a>></span>. </dd>
<dd class="break"></dd>
<dt id="sarela-bloom">[sarela-bloom]</dt>
<dd>
<span class="refAuthor">Särelä, M.</span>, <span class="refAuthor">Esteve Rothenberg, C.</span>, <span class="refAuthor">Zahemszky, A.</span>, <span class="refAuthor">Nikander, P.</span>, and <span class="refAuthor">J. Ott</span>, <span class="refTitle">"BloomCasting: Security in Bloom Filter Based Multicast"</span>, <span class="refContent">Information Security Technology for Applications, NordSec 2010, Lecture Notes in Computer Science, Vol. 7127, pages 1-16, Springer</span>, <span class="seriesInfo">DOI 10.1007/978-3-642-27937-9_1</span>, <time datetime="2012" class="refDate">2012</time>, <span><<a href="https://doi.org/10.1007/978-3-642-27937-9_1">https://doi.org/10.1007/978-3-642-27937-9_1</a>></span>. </dd>
<dd class="break"></dd>
<dt id="schuetz-intermittent">[schuetz-intermittent]</dt>
<dd>
<span class="refAuthor">Schütz, S.</span>, <span class="refAuthor">Eggert, L.</span>, <span class="refAuthor">Schmid, S.</span>, and <span class="refAuthor">M. Brunner</span>, <span class="refTitle">"Protocol enhancements for intermittently connected hosts"</span>, <span class="refContent">ACM SIGCOMM Computer Communication Review, Vol. 35, Issue 3, pp. 5-18</span>, <span class="seriesInfo">DOI 10.1145/1070873.1070875</span>, <time datetime="2005-07" class="refDate">July 2005</time>, <span><<a href="https://doi.org/10.1145/1070873.1070875">https://doi.org/10.1145/1070873.1070875</a>></span>. </dd>
<dd class="break"></dd>
<dt id="shields-hip">[shields-hip]</dt>
<dd>
<span class="refAuthor">Shields, C.</span> and <span class="refAuthor">J. J. Garcia-Luna-Aceves</span>, <span class="refTitle">"The HIP protocol for hierarchical multicast routing"</span>, <span class="refContent">Proceedings of the seventeenth annual ACM symposium on Principles of distributed computing, pp. 257-266</span>, <span class="seriesInfo">ISBN 0-89791-977-7</span>, <span class="seriesInfo">DOI 10.1145/277697.277744</span>, <time datetime="1998" class="refDate">1998</time>, <span><<a href="https://doi.org/10.1145/277697.277744">https://doi.org/10.1145/277697.277744</a>></span>. </dd>
<dd class="break"></dd>
<dt id="tempered-networks">[tempered-networks]</dt>
<dd>
<span class="refAuthor">Tempered Networks</span>, <span class="refTitle">"Identity-Defined Network (IDN) Architecture: Unified, Secure Networking Made Simple"</span>, <span class="refContent">White Paper</span>, <time datetime="2016" class="refDate">2016</time>. </dd>
<dd class="break"></dd>
<dt id="tritilanunt-dos">[tritilanunt-dos]</dt>
<dd>
<span class="refAuthor">Tritilanunt, S.</span>, <span class="refAuthor">Boyd, C.</span>, <span class="refAuthor">Foo, E.</span>, and <span class="refAuthor">J.M.G. Nieto</span>, <span class="refTitle">"Examining the DoS Resistance of HIP"</span>, <span class="refContent">On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, Lecture Notes in Computer Science, Vol. 4277, pp. 616-625, Springer</span>, <span class="seriesInfo">DOI 10.1007/11915034_85</span>, <time datetime="2006" class="refDate">2006</time>, <span><<a href="https://doi.org/10.1007/11915034_85">https://doi.org/10.1007/11915034_85</a>></span>. </dd>
<dd class="break"></dd>
<dt id="urien-rfid">[urien-rfid]</dt>
<dd>
<span class="refAuthor">Urien, P.</span>, <span class="refAuthor">Chabanne, H.</span>, <span class="refAuthor">Pepin, C.</span>, <span class="refAuthor">Orga, S.</span>, <span class="refAuthor">Bouet, M.</span>, <span class="refAuthor">de Cunha, D.O.</span>, <span class="refAuthor">Guyot, V.</span>, <span class="refAuthor">Pujolle, G.</span>, <span class="refAuthor">Paradinas, P.</span>, <span class="refAuthor">Gressier, E.</span>, and <span class="refAuthor">J.-F. Susini</span>, <span class="refTitle">"HIP-based RFID Networking Architecture"</span>, <span class="refContent">2007 IFIP International Conference on Wireless and Optical Communications Networks, pp. 1-5</span>, <span class="seriesInfo">DOI 10.1109/WOCN.2007.4284140</span>, <time datetime="2007" class="refDate">2007</time>, <span><<a href="https://doi.org/10.1109/WOCN.2007.4284140">https://doi.org/10.1109/WOCN.2007.4284140</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.irtf-hiprg-rfid">[urien-rfid-draft]</dt>
<dd>
<span class="refAuthor">Urien, P.</span>, <span class="refAuthor">Lee, G. M.</span>, and <span class="refAuthor">G. Pujolle</span>, <span class="refTitle">"HIP support for RFIDs"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-irtf-hiprg-rfid-07</span>, <time datetime="2013-04-23" class="refDate">23 April 2013</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-irtf-hiprg-rfid-07">https://datatracker.ietf.org/doc/html/draft-irtf-hiprg-rfid-07</a>></span>. </dd>
<dd class="break"></dd>
<dt id="varjonen-split">[varjonen-split]</dt>
<dd>
<span class="refAuthor">Varjonen, S.</span>, <span class="refAuthor">Komu, M.</span>, and <span class="refAuthor">A. Gurtov</span>, <span class="refTitle">"Secure and Efficient IPv4/IPv6 Handovers Using Host-Based Identifier-Location Split"</span>, <span class="refContent">Journal of Communications Software and Systems, Vol. 6, Issue 1</span>, <span class="seriesInfo">ISSN 18456421</span>, <span class="seriesInfo">DOI 10.24138/jcomss.v6i1.193</span>, <time datetime="2010" class="refDate">2010</time>, <span><<a href="https://doi.org/10.24138/jcomss.v6i1.193">https://doi.org/10.24138/jcomss.v6i1.193</a>></span>. </dd>
<dd class="break"></dd>
<dt id="xin-hip-lib">[xin-hip-lib]</dt>
<dd>
<span class="refAuthor">Xin, G.</span>, <span class="refTitle">"Host Identity Protocol Version 2.5"</span>, <span class="refContent">Master's Thesis, Aalto University, Espoo, Finland</span>, <time datetime="2012-06" class="refDate">June 2012</time>. </dd>
<dd class="break"></dd>
<dt id="ylitalo-diss">[ylitalo-diss]</dt>
<dd>
<span class="refAuthor">Ylitalo, J.</span>, <span class="refTitle">"Secure Mobility at Multiple Granularity Levels over Heterogeneous Datacom Networks"</span>, <span class="refContent">Dissertation, Helsinki University of Technology, Espoo, Finland</span>, <span class="seriesInfo">ISBN 978-951-22-9531-9</span>, <time datetime="2008" class="refDate">2008</time>. </dd>
<dd class="break"></dd>
<dt id="ylitalo-spinat">[ylitalo-spinat]</dt>
<dd>
<span class="refAuthor">Ylitalo, J.</span>, <span class="refAuthor">Salmela, P.</span>, and <span class="refAuthor">H. Tschofenig</span>, <span class="refTitle">"SPINAT: Integrating IPsec into Overlay Routing"</span>, <span class="refContent">First International Conference on Security and Privacy for Emerging Areas in Communication Networks, SECURECOMM'05, Athens, Greece, pp. 315-326</span>, <span class="seriesInfo">ISBN 0-7695-2369-2</span>, <span class="seriesInfo">DOI 10.1109/SECURECOMM.2005.53</span>, <time datetime="2005" class="refDate">2005</time>, <span><<a href="https://doi.org/10.1109/SECURECOMM.2005.53">https://doi.org/10.1109/SECURECOMM.2005.53</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.irtf-hiprg-revocation">[zhang-revocation]</dt>
<dd>
<span class="refAuthor">Zhang, D.</span>, <span class="refAuthor">Kuptsov, D.</span>, and <span class="refAuthor">S. Shen</span>, <span class="refTitle">"Host Identifier Revocation in HIP"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-irtf-hiprg-revocation-05</span>, <time datetime="2012-03-09" class="refDate">9 March 2012</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-irtf-hiprg-revocation-05">https://datatracker.ietf.org/doc/html/draft-irtf-hiprg-revocation-05</a>></span>. </dd>
<dd class="break"></dd>
<dt id="zhu-hip">[zhu-hip]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span>, <span class="refAuthor">Ding, Z.</span>, and <span class="refAuthor">X. Wang</span>, <span class="refTitle">"A Multicast Routing Algorithm Applied to HIP-Multicast Model"</span>, <span class="refContent">2011 International Conference on Network Computing and Information Security, Guilin, China, pp. 169-174</span>, <span class="seriesInfo">DOI 10.1109/NCIS.2011.42</span>, <time datetime="2011" class="refDate">2011</time>, <span><<a href="https://doi.org/10.1109/NCIS.2011.42">https://doi.org/10.1109/NCIS.2011.42</a>></span>. </dd>
<dd class="break"></dd>
<dt id="zhu-secure">[zhu-secure]</dt>
<dd>
<span class="refAuthor">Zhu, X.</span> and <span class="refAuthor">J. W. Atwood</span>, <span class="refTitle">"A Secure Multicast Model for Peer-to-Peer and Access Networks Using the Host Identity Protocol"</span>, <span class="refContent">2007 4th IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, pages 1098-1102</span>, <span class="seriesInfo">DOI 10.1109/CCNC.2007.221</span>, <time datetime="2007" class="refDate">2007</time>, <span><<a href="https://doi.org/10.1109/CCNC.2007.221">https://doi.org/10.1109/CCNC.2007.221</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="appendix-A">
<h2 id="name-design-considerations">
<a href="#appendix-A" class="section-number selfRef">Appendix A. </a><a href="#name-design-considerations" class="section-name selfRef">Design Considerations</a>
</h2>
<div id="sec_benefits">
<section id="appendix-A.1">
<h3 id="name-benefits-of-hip">
<a href="#appendix-A.1" class="section-number selfRef">A.1. </a><a href="#name-benefits-of-hip" class="section-name selfRef">Benefits of HIP</a>
</h3>
<p id="appendix-A.1-1">In the beginning, the network layer protocol (i.e., IP) had
the following four "classic" invariants:<a href="#appendix-A.1-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="appendix-A.1-2">
<li id="appendix-A.1-2.1">Non-mutable: The address sent is the address
received.<a href="#appendix-A.1-2.1" class="pilcrow">¶</a>
</li>
<li id="appendix-A.1-2.2">Non-mobile: The address doesn't change during the course
of an "association".<a href="#appendix-A.1-2.2" class="pilcrow">¶</a>
</li>
<li id="appendix-A.1-2.3">Reversible: A return header can always be formed by
reversing the source and destination addresses.<a href="#appendix-A.1-2.3" class="pilcrow">¶</a>
</li>
<li id="appendix-A.1-2.4">Omniscient: Each host knows what address a partner host
can use to send packets to it.<a href="#appendix-A.1-2.4" class="pilcrow">¶</a>
</li>
</ol>
<p id="appendix-A.1-3">Actually, the fourth can be inferred from 1 and 3, but it is
worth mentioning explicitly for reasons that will be obvious soon if not
already.<a href="#appendix-A.1-3" class="pilcrow">¶</a></p>
<p id="appendix-A.1-4">In the current "post-classic" world, we are intentionally
trying to get rid of the second invariant (both for mobility and
for multihoming), and we have been forced to give up the first
and the fourth. <span><a href="#RFC3102" class="xref">Realm Specific IP</a> [<a href="#RFC3102" class="xref">RFC3102</a>]</span>
is an attempt to reinstate the fourth invariant without the
first invariant. IPv6 attempts to reinstate the first
invariant.<a href="#appendix-A.1-4" class="pilcrow">¶</a></p>
<p id="appendix-A.1-5">Few client-side systems on the Internet have DNS names that are
meaningful. That is, if they have a Fully Qualified Domain Name
(FQDN), that name typically belongs to a NAT device or a dial-up
server, and does not really identify the system itself but its
current connectivity. FQDNs (and their extensions as email
names) are application-layer names; more frequently naming
services than particular systems. This is why many systems on
the Internet are not registered in the DNS; they do not have
services of interest to other Internet hosts.<a href="#appendix-A.1-5" class="pilcrow">¶</a></p>
<p id="appendix-A.1-6">DNS names are references to IP addresses. This only
demonstrates the interrelationship of the networking and
application layers. DNS, as the Internet's only deployed and
distributed database, is also the repository of other namespaces,
due in part to DNSSEC and application-specific key records.
Although each namespace can be stretched (IP with v6, DNS with
KEY records), neither can adequately provide for host
authentication or act as a separation between internetworking
and transport layers.<a href="#appendix-A.1-6" class="pilcrow">¶</a></p>
<p id="appendix-A.1-7">The Host Identity (HI) namespace fills an important gap
between the IP and DNS namespaces. An interesting thing about
the HI is that it actually allows a host to give up all but the
3rd network-layer invariant. That is to say, as long as the
source and destination addresses in the network-layer protocol
are reversible, HIP takes care of host identification, and
reversibility allows a local host to receive a packet back from
a remote host. The address changes occurring during NAT transit
(non-mutable) or host movement (non-omniscient or non-mobile)
can be managed by the HIP layer.<a href="#appendix-A.1-7" class="pilcrow">¶</a></p>
<p id="appendix-A.1-8">With the exception of high-performance computing applications,
the sockets API is the most common way to develop network
applications. Applications use the sockets API either directly
or indirectly through some libraries or frameworks. However, the
sockets API is based on the assumption of static IP addresses,
and DNS with its lifetime values was invented at later stages
during the evolution of the Internet. Hence, the sockets API
does not deal with the lifetime of addresses <span>[<a href="#RFC6250" class="xref">RFC6250</a>]</span>. As the majority of the end-user equipment is
mobile today, their addresses are effectively ephemeral, but the
sockets API still gives a fallacious illusion of persistent IP
addresses to the unwary developer. HIP can be used to solidify
this illusion because HIP provides persistent, surrogate
addresses to the application layer in the form of LSIs and
HITs.<a href="#appendix-A.1-8" class="pilcrow">¶</a></p>
<p id="appendix-A.1-9">The persistent identifiers as provided by HIP are useful in
multiple scenarios (see, e.g., <span>[<a href="#ylitalo-diss" class="xref">ylitalo-diss</a>]</span> or
<span>[<a href="#komu-diss" class="xref">komu-diss</a>]</span> for a more elaborate
discussion):<a href="#appendix-A.1-9" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.1-10.1">When a mobile host moves physically between two different
WLAN networks and obtains a new address, an application using
the identifiers remains isolated regardless of the topology changes
while the underlying HIP layer reestablishes connectivity
(i.e., a horizontal handoff).<a href="#appendix-A.1-10.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-10.2">Similarly, the application utilizing the identifiers
remains again unaware of the topological changes when the
underlying host equipped with WLAN and cellular network
interfaces switches between the two different access
technologies (i.e., a vertical handoff).<a href="#appendix-A.1-10.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-10.3">Even when hosts are located in private address realms,
applications can uniquely distinguish different hosts from
each other based on their identifiers. In other words, it can
be stated that HIP improves Internet transparency
for the application layer <span>[<a href="#komu-diss" class="xref">komu-diss</a>]</span>.<a href="#appendix-A.1-10.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-10.4">Site renumbering events for services can occur due to
corporate mergers or acquisitions, or by changes in Internet
service provider. They can involve changing the entire
network prefix of an organization, which is problematic due
to hard-coded addresses in service configuration files or
cached IP addresses at the client side <span>[<a href="#RFC5887" class="xref">RFC5887</a>]</span>. Considering such human errors, a site employing
location-independent identifiers as promoted by HIP may
experience fewer problems while renumbering their network.<a href="#appendix-A.1-10.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-10.5">More agile IPv6 interoperability can be achieved,
as discussed in <a href="#lsi" class="xref">Section 4.4</a>. IPv6-based applications can
communicate using HITs with IPv4-based applications that are
using LSIs. Additionally, the underlying network type (IPv4 or IPv6)
becomes independent of the addressing family of the
application.<a href="#appendix-A.1-10.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-10.6">HITs (or LSIs) can be used in IP-based access control
lists as a more secure replacement for IPv6
addresses. Besides security, HIT-based access control has two
other benefits. First, the use of HITs can potentially halve the size of access control lists
because separate rules for IPv4 are not
needed <span>[<a href="#komu-diss" class="xref">komu-diss</a>]</span>. Second, HIT-based configuration
rules in HIP-aware middleboxes remain static and independent
of topology changes, thus simplifying administrative efforts
particularly for mobile environments. For instance, the
benefits of HIT-based access control have been harnessed in the
case of HIP-aware firewalls, but can be utilized
directly at the end-hosts as well <span>[<a href="#RFC6538" class="xref">RFC6538</a>]</span>.<a href="#appendix-A.1-10.6" class="pilcrow">¶</a>
</li>
</ul>
<p id="appendix-A.1-11">While some of these benefits could be and have been
redundantly implemented by individual applications, providing
such generic functionality at the lower layers is useful because
it reduces software development effort and networking software
bugs (as the layer is tested with multiple applications). It
also allows the developer to focus on building the application
itself rather than delving into the intricacies of mobile
networking, thus facilitating separation of concerns.<a href="#appendix-A.1-11" class="pilcrow">¶</a></p>
<p id="appendix-A.1-12">HIP could also be realized by combining a number of different
protocols, but the complexity of the resulting software may
become substantially larger, and the interaction between multiple,
possibly layered protocols may have adverse effects on latency
and throughput. It is also worth noting that virtually nothing
prevents realizing the HIP architecture, for instance, as an
application-layer library, which has been actually implemented
in the past <span>[<a href="#xin-hip-lib" class="xref">xin-hip-lib</a>]</span>. However, the trade-off
in moving the HIP layer to the application layer is that legacy
applications may not be supported.<a href="#appendix-A.1-12" class="pilcrow">¶</a></p>
</section>
</div>
<section id="appendix-A.2">
<h3 id="name-drawbacks-of-hip">
<a href="#appendix-A.2" class="section-number selfRef">A.2. </a><a href="#name-drawbacks-of-hip" class="section-name selfRef">Drawbacks of HIP</a>
</h3>
<p id="appendix-A.2-1">In computer science, many problems can be solved with an
extra layer of indirection. However, the indirection always
involves some costs as there is no such a thing as a "free lunch". In
the case of HIP, the main costs could be stated as follows:<a href="#appendix-A.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.2-2.1">In general, an additional layer and a namespace always involve
some initial effort in terms of implementation,
deployment, and maintenance. Some education of developers and administrators may
also be needed. However, the HIP community at the IETF has
spent years in experimenting, exploring, testing,
documenting, and implementing HIP to ease the adoption costs.<a href="#appendix-A.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.2-2.2">HIP introduces a need to manage HIs and
requires a centralized approach to manage HIP-aware
endpoints at scale. What were formerly IP address-based ACLs
are now trusted HITs, and the HIT-to-IP address mappings as
well as access policies must be managed. HIP-aware endpoints
must also be able to operate autonomously to ensure mobility
and availability (an endpoint must be able to run without
having to have a persistent management connection). The
users who want this better security and mobility of HIs
instead of IP address-based ACLs have to then manage this
additional 'identity layer' in a nonpersistent fashion. As
exemplified in <a href="#tempered" class="xref">Appendix A.3.5</a>, these challenges
have been already solved in an infrastructure setting to
distribute policy and manage the mappings and trust
relationships between HIP-aware endpoints.<a href="#appendix-A.2-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.2-2.3">HIP decouples identifier and locator roles of IP
addresses. Consequently, a mapping mechanism is needed to
associate them together. A failure to map a HIT to its
corresponding locator may result in failed connectivity
because a HIT is "flat" by its nature and cannot be looked
up from the hierarchically organized DNS. HITs are flat by
design due to a security trade-off. The more bits that are
allocated for the hash in the HIT, the less likely there
will be (malicious) collisions.<a href="#appendix-A.2-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.2-2.4">From performance viewpoint, HIP control and data plane
processing introduces some overhead in terms of throughput and
latency as elaborated below.<a href="#appendix-A.2-2.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="appendix-A.2-3">Related to deployment drawbacks, firewalls are commonly used to control access
to various services and devices in the current Internet. Since HIP introduces an additional namespace,
it is expected that the HIP namespace would be filtered for
unwanted connectivity also. While this can be achieved with existing tools
directly in the end-hosts, filtering at the middleboxes requires
modifications to existing firewall software or additional middleboxes <span>[<a href="#RFC6538" class="xref">RFC6538</a>]</span>.<a href="#appendix-A.2-3" class="pilcrow">¶</a></p>
<p id="appendix-A.2-4">The key exchange introduces some extra latency (two round
trips) in the initial transport-layer connection establishment between two hosts.
With TCP, additional delay occurs if the underlying network stack implementation drops
the triggering SYN packet during the key exchange.
The same cost may also occur during HIP handoff
procedures. However, subsequent TCP sessions using the same HIP association will not bear this cost (within the key lifetime).
Both the key exchange and handoff penalties can be minimized by caching TCP
packets. The latter case can further be optimized with
TCP user timeout extensions <span>[<a href="#RFC5482" class="xref">RFC5482</a>]</span> as described in further
detail by <span class="contact-name">Schütz</span> et al. <span>[<a href="#schuetz-intermittent" class="xref">schuetz-intermittent</a>]</span>.<a href="#appendix-A.2-4" class="pilcrow">¶</a></p>
<p id="appendix-A.2-5">The most CPU-intensive operations involve the use of the
asymmetric keys and Diffie-Hellman key derivation at the control
plane, but this occurs only during the key exchange, its
maintenance (handoffs and refreshing of key material), and teardown
procedures of HIP associations. The data plane is typically
implemented with ESP because it has a smaller overhead due to symmetric key
encryption. Naturally, even ESP involves some overhead in terms of
latency (processing costs) and throughput (tunneling) (see,
e.g., <span>[<a href="#ylitalo-diss" class="xref">ylitalo-diss</a>]</span> for a performance
evaluation).<a href="#appendix-A.2-5" class="pilcrow">¶</a></p>
</section>
<section id="appendix-A.3">
<h3 id="name-deployment-and-adoption-con">
<a href="#appendix-A.3" class="section-number selfRef">A.3. </a><a href="#name-deployment-and-adoption-con" class="section-name selfRef">Deployment and Adoption Considerations</a>
</h3>
<p id="appendix-A.3-1">This section describes some deployment and adoption
considerations related to HIP from a technical perspective.<a href="#appendix-A.3-1" class="pilcrow">¶</a></p>
<section id="appendix-A.3.1">
<h4 id="name-deployment-analysis">
<a href="#appendix-A.3.1" class="section-number selfRef">A.3.1. </a><a href="#name-deployment-analysis" class="section-name selfRef">Deployment Analysis</a>
</h4>
<p id="appendix-A.3.1-1">
HIP has been adapted and deployed in an industrial control
network in a production factory, in which HIP's strong network-layer
identity supports the secure coexistence of the control
network with many untrusted network devices operated by
third-party vendors <span>[<a href="#paine-hip" class="xref">paine-hip</a>]</span>. Similarly,
HIP has also been included in a security product to support
Layer 2 VPNs <span>[<a href="#I-D.henderson-hip-vpls" class="xref">henderson-vpls</a>]</span> to enable security zones in a
supervisory control and data acquisition (SCADA)
network. However, HIP has not been a "wild success" <span>[<a href="#RFC5218" class="xref">RFC5218</a>]</span> in the Internet as argued by <span class="contact-name">Levä</span> et al. <span>[<a href="#levae-barriers" class="xref">levae-barriers</a>]</span>. Here, we briefly highlight
some of their findings based on interviews with 19 experts from
the industry and academia.<a href="#appendix-A.3.1-1" class="pilcrow">¶</a></p>
<p id="appendix-A.3.1-2">From a marketing perspective, the demand for HIP has been low
and substitute technologies have been favored. Another
identified reason has been that some technical misconceptions
related to the early stages of HIP specifications still
persist. Two identified misconceptions are that HIP does not
support NAT traversal and that HIP must be implemented in the OS
kernel. Both of these claims are untrue; HIP does have NAT
traversal extensions <span>[<a href="#RFC9028" class="xref">RFC9028</a>]</span>, and kernel
modifications can be avoided with modern operating systems by
diverting packets for userspace processing.<a href="#appendix-A.3.1-2" class="pilcrow">¶</a></p>
<p id="appendix-A.3.1-3">The analysis by <span class="contact-name">Levä</span> et al. clarifies infrastructural requirements for
HIP. In a minimal setup, a client and server machine have to
run HIP software. However, to avoid manual configurations,
usually DNS records for HIP are set up. For instance, the
popular DNS server software Bind9 does not require any changes
to accommodate DNS records for HIP because they can be supported
in binary format in its configuration files <span>[<a href="#RFC6538" class="xref">RFC6538</a>]</span>. HIP
rendezvous servers and firewalls are optional. No changes are
required to network address points, NATs, edge routers, or core
networks. HIP may require holes in legacy firewalls.<a href="#appendix-A.3.1-3" class="pilcrow">¶</a></p>
<p id="appendix-A.3.1-4">The analysis also clarifies the requirements for the host
components that consist of three parts. First, a HIP control
plane component is required, typically implemented as a
userspace daemon. Second, a data plane component is needed. Most
HIP implementations utilize the so-called Bound End-to-End Tunnel (BEET) mode of ESP that
has been available since Linux kernel 2.6.27, but the BEET mode is also included
as a userspace component in a few of the
implementations. Third, HIP systems usually provide a DNS proxy
for the local host that translates HIP DNS records to LSIs and
HITs, and communicates the corresponding locators to the HIP
userspace daemon. While the third component is not
mandatory, it is very useful for avoiding manual
configurations. The three components are further described in
the <span><a href="#RFC6538" class="xref">HIP experiment report</a> [<a href="#RFC6538" class="xref">RFC6538</a>]</span>.<a href="#appendix-A.3.1-4" class="pilcrow">¶</a></p>
<p id="appendix-A.3.1-5">Based on the interviews, <span class="contact-name">Levä</span> et al. suggest further
directions to facilitate HIP deployment.
Transitioning a number of HIP specifications to the Standards Track in the
IETF has already taken place, but the authors suggest other additional measures
based on the interviews.
As a more radical measure, the authors
suggest to implement HIP as a purely application-layer library
<span>[<a href="#xin-hip-lib" class="xref">xin-hip-lib</a>]</span> or other kind of middleware. On
the other hand, more conservative measures include focusing on
private deployments controlled by a single stakeholder. As a
more concrete example of such a scenario, HIP could be used by a
single service provider to facilitate secure connectivity between its
servers <span>[<a href="#komu-cloud" class="xref">komu-cloud</a>]</span>.<a href="#appendix-A.3.1-5" class="pilcrow">¶</a></p>
</section>
<div id="MACsec">
<section id="appendix-A.3.2">
<h4 id="name-hip-in-802154-networks">
<a href="#appendix-A.3.2" class="section-number selfRef">A.3.2. </a><a href="#name-hip-in-802154-networks" class="section-name selfRef">HIP in 802.15.4 Networks</a>
</h4>
<p id="appendix-A.3.2-1">The IEEE 802 standards have been defining MAC-layer security. Many
of these standards use Extensible Authentication Protocol (EAP) <span>[<a href="#RFC3748" class="xref">RFC3748</a>]</span>
as a Key Management System (KMS) transport, but some like IEEE
802.15.4 <span>[<a href="#IEEE.802.15.4" class="xref">IEEE.802.15.4</a>]</span> leave the
KMS and its transport as "out of scope".<a href="#appendix-A.3.2-1" class="pilcrow">¶</a></p>
<p id="appendix-A.3.2-2">HIP is well suited as a KMS in these environments:<a href="#appendix-A.3.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.3.2-3.1">HIP is independent of IP addressing and can be directly
transported over any network protocol.<a href="#appendix-A.3.2-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.3.2-3.2">Master keys in 802 protocols are commonly pair-based with
group keys transported from the group controller using pairwise
keys.<a href="#appendix-A.3.2-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.3.2-3.3">Ad hoc 802 networks can be better served by a peer-to-peer
KMS than the EAP client/server model.<a href="#appendix-A.3.2-3.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.3.2-3.4">Some devices are very memory constrained, and a common KMS
for both MAC and IP security represents a considerable code
savings.<a href="#appendix-A.3.2-3.4" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<section id="appendix-A.3.3">
<h4 id="name-hip-and-internet-of-things">
<a href="#appendix-A.3.3" class="section-number selfRef">A.3.3. </a><a href="#name-hip-and-internet-of-things" class="section-name selfRef">HIP and Internet of Things</a>
</h4>
<p id="appendix-A.3.3-1">HIP requires certain amount computational resources from a
device due to cryptographic processing. HIP scales down to
phones and small system-on-chip devices (such as Raspberry Pis,
Intel Edison), but small sensors operating with small batteries
have remained problematic. Different extensions to the HIP have
been developed to scale HIP down to smaller devices, typically
with different security trade-offs. For example, the
non-cryptographic identifiers have been proposed in RFID
scenarios. The Slimfit approach <span>[<a href="#hummen" class="xref">hummen</a>]</span> proposes a
compression layer for HIP to make it more suitable for
constrained networks. The approach is applied to a lightweight
version of HIP (i.e., "Diet HIP") in order to scale down to small
sensors.<a href="#appendix-A.3.3-1" class="pilcrow">¶</a></p>
<p id="appendix-A.3.3-2">The HIP Diet EXchange (DEX) <span>[<a href="#hip-dex" class="xref">hip-dex</a>]</span> design aims to
reduce the overhead of the employed cryptographic primitives
by omitting public-key signatures and hash functions. In doing
so, the main goal is to still deliver security
properties similar to the Base Exchange (BEX).<a href="#appendix-A.3.3-2" class="pilcrow">¶</a></p>
<p id="appendix-A.3.3-3">DEX is primarily designed for computation- or memory-constrained
sensor/actuator devices. Like BEX, it is expected to
be used together with a suitable security protocol such as the
ESP for the protection of upper-layer
protocol data. In addition, DEX can also be used as a keying
mechanism for security primitives at the MAC layer, e.g., for IEEE
802.15.9 networks <span>[<a href="#IEEE.802.15.9" class="xref">IEEE.802.15.9</a>]</span>.<a href="#appendix-A.3.3-3" class="pilcrow">¶</a></p>
<p id="appendix-A.3.3-4">The main differences between HIP BEX and DEX are:<a href="#appendix-A.3.3-4" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="appendix-A.3.3-5">
<li id="appendix-A.3.3-5.1">
<p id="appendix-A.3.3-5.1.1">Minimum collection of cryptographic primitives to reduce the
protocol overhead.<a href="#appendix-A.3.3-5.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.3.3-5.1.2.1">Static Elliptic Curve Diffie-Hellman (ECDH) key pairs for peer
authentication and encryption of the session key.<a href="#appendix-A.3.3-5.1.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.3.3-5.1.2.2">AES-CTR for symmetric encryption and AES-CMAC for MACing
function.<a href="#appendix-A.3.3-5.1.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.3.3-5.1.2.3">A simple fold function for HIT generation.<a href="#appendix-A.3.3-5.1.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li id="appendix-A.3.3-5.2">Forfeit of perfect forward secrecy with the dropping of an
ephemeral Diffie-Hellman key agreement.<a href="#appendix-A.3.3-5.2" class="pilcrow">¶</a>
</li>
<li id="appendix-A.3.3-5.3">Forfeit of digital signatures with the removal of a hash
function. Reliance on the ECDH-derived key used in HIP_MAC to prove
ownership of the private key.<a href="#appendix-A.3.3-5.3" class="pilcrow">¶</a>
</li>
<li id="appendix-A.3.3-5.4">Diffie-Hellman derived key ONLY used to protect the HIP packets.
A separate secret exchange within the HIP packets creates the
session key(s).<a href="#appendix-A.3.3-5.4" class="pilcrow">¶</a>
</li>
<li id="appendix-A.3.3-5.5">Optional retransmission strategy tailored to handle the
potentially extensive processing time of the employed
cryptographic operations on computationally constrained devices.<a href="#appendix-A.3.3-5.5" class="pilcrow">¶</a>
</li>
</ol>
</section>
<section id="appendix-A.3.4">
<h4 id="name-infrastructure-applications">
<a href="#appendix-A.3.4" class="section-number selfRef">A.3.4. </a><a href="#name-infrastructure-applications" class="section-name selfRef">Infrastructure Applications</a>
</h4>
<p id="appendix-A.3.4-1">
The <span><a href="#RFC6538" class="xref">HIP experimentation report</a> [<a href="#RFC6538" class="xref">RFC6538</a>]</span>
enumerates a number of client and server applications that
have been trialed with HIP. Based on
the report, this section highlights and complements some
potential ways how HIP could be exploited in existing
infrastructure such as routers, gateways, and proxies.<a href="#appendix-A.3.4-1" class="pilcrow">¶</a></p>
<p id="appendix-A.3.4-2">HIP has been successfully used with forward web proxies (i.e., client-side proxies). HIP was used between a client
host (web browser) and a forward proxy (Apache server) that terminated the HIP/ESP tunnel. The
forward web proxy translated HIP-based traffic originating from the
client into non-HIP traffic towards any web server in the Internet. Consequently, the HIP-capable
client could communicate with HIP-incapable web servers. This
way, the client could utilize mobility support as provided by HIP
while using the fixed IP address of the web proxy, for instance, to access services
that were allowed only from the IP address range of the proxy.<a href="#appendix-A.3.4-2" class="pilcrow">¶</a></p>
<p id="appendix-A.3.4-3">HIP with reverse web proxies (i.e., server-side proxies) has also been investigated,
as described in more detail in <span>[<a href="#komu-cloud" class="xref">komu-cloud</a>]</span>. In
this scenario, a HIP-incapable client accessed a HIP-capable web service
via an intermediary load balancer (a web-based load
balancer implementation called HAProxy). The load
balancer translated non-HIP traffic originating from the
client into HIP-based traffic for the web service (consisting
of front-end and back-end servers). Both the load balancer and
the web service were located in a data center. One of the
key benefits for encrypting the web traffic with HIP in this
scenario was supporting a private-public cloud scenario
(i.e., hybrid cloud) where the load balancer, front-end servers,
and back-end servers were located in different data centers,
and thus the traffic needed to be protected when it passed through
potentially insecure networks between the borders of the private and public clouds.<a href="#appendix-A.3.4-3" class="pilcrow">¶</a></p>
<p id="appendix-A.3.4-4">While HIP could be used to secure access to intermediary
devices (e.g., access to switches with legacy telnet), it has
also been used to secure intermittent connectivity between
middlebox infrastructure. For instance, earlier research <span>[<a href="#komu-mitigation" class="xref">komu-mitigation</a>]</span> utilized HIP between Simple Mail
Transport Protocol (SMTP) servers in order to exploit the
computational puzzles of HIP as a spam mitigation mechanism. A
rather obvious practical challenge in this approach was the lack
of HIP adoption on existing SMTP servers.<a href="#appendix-A.3.4-4" class="pilcrow">¶</a></p>
<p id="appendix-A.3.4-5">To avoid deployment hurdles with existing infrastructure, HIP
could be applied in the context of new protocols with little
deployment. Namely, HIP has been studied in the context of
a new protocol, peer-to-peer SIP <span>[<a href="#camarillo-p2psip" class="xref">camarillo-p2psip</a>]</span>. The work has resulted in a
number of related RFCs <span>[<a href="#RFC6078" class="xref">RFC6078</a>]</span>, <span>[<a href="#RFC6079" class="xref">RFC6079</a>]</span>, and <span>[<a href="#RFC7086" class="xref">RFC7086</a>]</span>. The key idea in the research work was to
avoid redundant, time-consuming ICE procedures by grouping
different connections (i.e., SIP and media streams) together
using the low-layer HIP, which executes NAT traversal procedures
only once per host. An interesting aspect in the approach was
the use of P2P-SIP infrastructure as rendezvous servers for the HIP
control plane instead of utilizing the traditional HIP rendezvous
services <span>[<a href="#RFC8004" class="xref">RFC8004</a>]</span>.<a href="#appendix-A.3.4-5" class="pilcrow">¶</a></p>
<p id="appendix-A.3.4-6">Researchers have proposed using HIP in cellular
networks as a mobility, multihoming, and security solution. <span>[<a href="#hip-lte" class="xref">hip-lte</a>]</span> provides a security analysis and simulation
measurements of using HIP in Long Term Evolution (LTE) backhaul networks.<a href="#appendix-A.3.4-6" class="pilcrow">¶</a></p>
<p id="appendix-A.3.4-7">HIP has been studied for securing cloud internal
connectivity. First with virtual machines <span>[<a href="#komu-cloud" class="xref">komu-cloud</a>]</span> and then between Linux
containers <span>[<a href="#ranjbar-synaptic" class="xref">ranjbar-synaptic</a>]</span>. In both cases,
HIP was suggested as a solution to NAT traversal that could be
utilized both internally by a cloud network and between
multi-cloud deployments. Specifically in the former case, HIP
was beneficial sustaining connectivity with a virtual machine
while it migrated to a new location. In the latter case, a
Software-Defined Networking (SDN) controller acted as a rendezvous
server for HIP-capable containers. The controller enforced
strong replay protection by adding middlebox nonces <span>[<a href="#heer-end-host" class="xref">heer-end-host</a>]</span> to the passing HIP base exchange
and UPDATE messages.<a href="#appendix-A.3.4-7" class="pilcrow">¶</a></p>
</section>
<div id="tempered">
<section id="appendix-A.3.5">
<h4 id="name-management-of-identities-in">
<a href="#appendix-A.3.5" class="section-number selfRef">A.3.5. </a><a href="#name-management-of-identities-in" class="section-name selfRef">Management of Identities in a Commercial Product</a>
</h4>
<p id="appendix-A.3.5-1">Tempered Networks provides HIP-based products.
They refer to their platform as <span><a href="#tempered-networks" class="xref">Identity-Defined Networking
(IDN)</a> [<a href="#tempered-networks" class="xref">tempered-networks</a>]</span> because of HIP's identity-first networking
architecture. Their objective has been to make it simple and
nondisruptive to deploy HIP-enabled services widely in
production environments with the purpose of enabling transparent
device authentication and authorization, cloaking, segmentation,
and end-to-end networking. The goal is to eliminate much of the
circular dependencies, exploits, and layered complexity of
traditional "address-defined networking" that prevents mobility
and verifiable device access control. The products in the
portfolio of Tempered Networks utilize HIP are as follows:<a href="#appendix-A.3.5-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="appendix-A.3.5-2">
<dt id="appendix-A.3.5-2.1">HIP Switches / Gateways</dt>
<dd style="margin-left: 1.5em" id="appendix-A.3.5-2.2">These are physical or virtual
appliances that serve as the HIP gateway and policy enforcement
point for non-HIP-aware applications and devices located behind
it. No IP or infrastructure changes are required in order to
connect, cloak, and protect the non-HIP-aware
devices. Currently known supported platforms for HIP gateways
are x86 and ARM chipsets, ESXi, Hyper-V, KVM, AWS, Azure, and
Google clouds.<a href="#appendix-A.3.5-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-A.3.5-2.3">HIP Relays / Rendezvous</dt>
<dd style="margin-left: 1.5em" id="appendix-A.3.5-2.4">These are physical or virtual appliances
that serve as identity-based routers authorizing and bridging
HIP endpoints without decrypting the HIP session. A HIP relay
can be deployed as a standalone appliance or in a cluster for
horizontal scaling. All HIP-aware endpoints and the devices
they're connecting and protecting can remain privately
addressed. The appliances eliminate IP conflicts, tunnel through NAT and
carrier-grade NAT, and require no changes to the underlying
infrastructure. The only requirement is that a HIP endpoint
should have outbound access to the Internet and that a HIP Relay should have
a public address.<a href="#appendix-A.3.5-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-A.3.5-2.5">HIP-Aware Clients and Servers</dt>
<dd style="margin-left: 1.5em" id="appendix-A.3.5-2.6">This is software that is installed in
the host's network stack and enforces policy for that host. HIP
clients support split tunneling. Both the HIP client and HIP server
can interface with the local host firewall, and the HIP server can
be locked down to listen only on the port used for HIP, making
the server invisible from unauthorized devices. Currently known
supported platforms are Windows, OS X, iOS, Android, Ubuntu,
CentOS, and other Linux derivatives.<a href="#appendix-A.3.5-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-A.3.5-2.7">Policy Orchestration Managers</dt>
<dd style="margin-left: 1.5em" id="appendix-A.3.5-2.8">These physical or virtual
appliances serve as the engine to define and distribute
network and security policy (HI and IP mappings, overlay networks, and whitelist policies, etc.) to HIP-aware endpoints. Orchestration does not need to
persist to the HIP endpoints and vice versa, allowing for
autonomous host networking and security.<a href="#appendix-A.3.5-2.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
</section>
<section id="appendix-A.4">
<h3 id="name-answers-to-nsrg-questions">
<a href="#appendix-A.4" class="section-number selfRef">A.4. </a><a href="#name-answers-to-nsrg-questions" class="section-name selfRef">Answers to NSRG Questions</a>
</h3>
<p id="appendix-A.4-1">The IRTF Name Space Research Group has posed a number of
evaluating questions in <span><a href="#I-D.irtf-nsrg-report" class="xref">their report</a> [<a href="#I-D.irtf-nsrg-report" class="xref">nsrg-report</a>]</span>. In this
section, we provide answers to these questions.<a href="#appendix-A.4-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="appendix-A.4-2">
<li id="appendix-A.4-2.1">
<p id="appendix-A.4-2.1.1">How would a stack name improve the overall
functionality of the Internet?<a href="#appendix-A.4-2.1.1" class="pilcrow">¶</a></p>
<p id="appendix-A.4-2.1.2">HIP decouples the internetworking layer from the
transport layer, allowing each to evolve separately.
The decoupling makes end-host mobility and
multihoming easier, also across IPv4 and IPv6
networks. HIs make network renumbering easier, and
they also make process migration and clustered servers
easier to implement. Furthermore, being cryptographic
in nature, they provide the basis for solving the
security problems related to end-host mobility and
multihoming.<a href="#appendix-A.4-2.1.2" class="pilcrow">¶</a></p>
</li>
<li id="appendix-A.4-2.2">
<p id="appendix-A.4-2.2.1">What does a stack name look like?<a href="#appendix-A.4-2.2.1" class="pilcrow">¶</a></p>
<p id="appendix-A.4-2.2.2">A HI is a cryptographic public key. However,
instead of using the keys directly, most protocols use
a fixed-size hash of the public key.<a href="#appendix-A.4-2.2.2" class="pilcrow">¶</a></p>
</li>
<li id="appendix-A.4-2.3">
<p id="appendix-A.4-2.3.1">What is its lifetime?<a href="#appendix-A.4-2.3.1" class="pilcrow">¶</a></p>
<p id="appendix-A.4-2.3.2">HIP provides both stable and temporary Host
Identifiers. Stable HIs are typically long-lived,
with a lifetime of years or more. The lifetime of
temporary HIs depends on how long the upper-layer
connections and applications need them, and can range
from a few seconds to years.<a href="#appendix-A.4-2.3.2" class="pilcrow">¶</a></p>
</li>
<li id="appendix-A.4-2.4">
<p id="appendix-A.4-2.4.1">Where does it live in the stack?<a href="#appendix-A.4-2.4.1" class="pilcrow">¶</a></p>
<p id="appendix-A.4-2.4.2">The HIs live between the transport and
internetworking layers.<a href="#appendix-A.4-2.4.2" class="pilcrow">¶</a></p>
</li>
<li id="appendix-A.4-2.5">
<p id="appendix-A.4-2.5.1">How is it used on the endpoints?<a href="#appendix-A.4-2.5.1" class="pilcrow">¶</a></p>
<p id="appendix-A.4-2.5.2">The Host Identifiers may be used directly or
indirectly (in the form of HITs or LSIs) by
applications when they access network services.
Additionally, the Host Identifiers, as public keys,
are used in the built-in key agreement protocol,
called the HIP base exchange, to authenticate the
hosts to each other.<a href="#appendix-A.4-2.5.2" class="pilcrow">¶</a></p>
</li>
<li id="appendix-A.4-2.6">
<p id="appendix-A.4-2.6.1">What administrative infrastructure is needed to support
it?<a href="#appendix-A.4-2.6.1" class="pilcrow">¶</a></p>
<p id="appendix-A.4-2.6.2">In some environments, it is possible to use HIP
opportunistically, without any infrastructure.
However, to gain full benefit from HIP, the HIs must
be stored in the DNS or a PKI, and the rendezvous
mechanism is needed <span>[<a href="#RFC8005" class="xref">RFC8005</a>]</span>.<a href="#appendix-A.4-2.6.2" class="pilcrow">¶</a></p>
</li>
<li id="appendix-A.4-2.7">
<p id="appendix-A.4-2.7.1">If we add an additional layer, would it make the address
list in SCTP unnecessary?<a href="#appendix-A.4-2.7.1" class="pilcrow">¶</a></p>
<p id="appendix-A.4-2.7.2">Yes<a href="#appendix-A.4-2.7.2" class="pilcrow">¶</a></p>
</li>
<li id="appendix-A.4-2.8">
<p id="appendix-A.4-2.8.1">What additional security benefits would a new naming
scheme offer?<a href="#appendix-A.4-2.8.1" class="pilcrow">¶</a></p>
<p id="appendix-A.4-2.8.2">HIP reduces dependency on IP addresses, making the
so-called address ownership <span>[<a href="#Nik2001" class="xref">Nik2001</a>]</span>
problems easier to solve. In practice, HIP provides
security for end-host mobility and multihoming.
Furthermore, since HIP Host Identifiers are public
keys, standard public key certificate infrastructures
can be applied on the top of HIP.<a href="#appendix-A.4-2.8.2" class="pilcrow">¶</a></p>
</li>
<li id="appendix-A.4-2.9">
<p id="appendix-A.4-2.9.1">What would the resolution mechanisms be, or what
characteristics of a resolution mechanisms would be
required?<a href="#appendix-A.4-2.9.1" class="pilcrow">¶</a></p>
<p id="appendix-A.4-2.9.2">For most purposes, an approach where DNS names are
resolved simultaneously to HIs and IP addresses is
sufficient. However, if it becomes necessary to
resolve HIs into IP addresses or back to DNS names, a
flat resolution infrastructure is needed. Such an
infrastructure could be based on the ideas of
Distributed Hash Tables, but would require significant
new development and deployment.<a href="#appendix-A.4-2.9.2" class="pilcrow">¶</a></p>
</li>
</ol>
</section>
</section>
<section id="appendix-B">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<p id="appendix-B-1">For the people historically involved in the early stages of
HIP, see the Acknowledgments section in the
Host Identity Protocol specification.<a href="#appendix-B-1" class="pilcrow">¶</a></p>
<p id="appendix-B-2">During the later stages of this document, when the editing
baton was transferred to <span class="contact-name">Pekka Nikander</span>, the comments from the
early implementers and others, including <span class="contact-name">Jari Arkko</span>, <span class="contact-name">Jeff Ahrenholz</span>, <span class="contact-name">Tom Henderson</span>, <span class="contact-name">Petri Jokela</span>, <span class="contact-name">Miika Komu</span>, <span class="contact-name">Mika Kousa</span>, <span class="contact-name">Andrew McGregor</span>, <span class="contact-name">Jan Melen</span>, <span class="contact-name">Tim Shepard</span>, <span class="contact-name">Jukka Ylitalo</span>, <span class="contact-name">Sasu Tarkoma</span>,
and <span class="contact-name">Jorma Wall</span>, were invaluable. Also, the comments from <span class="contact-name">Lars Eggert</span>,
<span class="contact-name">Spencer Dawkins</span>, <span class="contact-name">Dave Crocker</span>, and <span class="contact-name">Erik Giesa</span> were also useful.<a href="#appendix-B-2" class="pilcrow">¶</a></p>
<p id="appendix-B-3">The authors want to express their special thanks to
<span class="contact-name">Tom Henderson</span>, who took the burden of editing the document
in response to IESG comments at the time when both of the
authors were busy doing other things. Without his perseverance,
the original document might have never made it as RFC 4423.<a href="#appendix-B-3" class="pilcrow">¶</a></p>
<p id="appendix-B-4">This main effort to update and move HIP forward within the
IETF process owes its impetus to a number of HIP development
teams. The authors are grateful for Boeing, Helsinki Institute
for Information Technology (HIIT), NomadicLab of Ericsson, and
the three universities: RWTH Aachen, Aalto, and University of
Helsinki for their efforts. Without their collective efforts,
HIP would have withered as on the IETF vine as a nice
concept.<a href="#appendix-B-4" class="pilcrow">¶</a></p>
<p id="appendix-B-5">Thanks also to <span class="contact-name">Suvi Koskinen</span> for her help with proofreading
and with the reference jungle.<a href="#appendix-B-5" class="pilcrow">¶</a></p>
</section>
<div id="authors-addresses">
<section id="appendix-C">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Robert Moskowitz (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">HTT Consulting</span></div>
<div dir="auto" class="left">
<span class="locality">Oak Park</span>, <span class="region">Michigan</span> </div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:rgm@labs.htt-consult.com" class="email">rgm@labs.htt-consult.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Miika Komu</span></div>
<div dir="auto" class="left"><span class="org">Ericsson</span></div>
<div dir="auto" class="left"><span class="street-address">Hirsalantie 11</span></div>
<div dir="auto" class="left">FI-<span class="postal-code">02420</span> <span class="locality">Jorvas</span>
</div>
<div dir="auto" class="left"><span class="country-name">Finland</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:miika.komu@ericsson.com" class="email">miika.komu@ericsson.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|