1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9065: Considerations around Transport Header Confidentiality, Network Operations, and the Evolution of Internet Transport Protocols</title>
<meta content="Godred Fairhurst" name="author">
<meta content="Colin Perkins" name="author">
<meta content="
To protect user data and privacy, Internet transport protocols have
supported payload encryption and authentication for some time. Such
encryption and authentication are now also starting to be applied to the
transport protocol headers. This helps avoid transport protocol
ossification by middleboxes, mitigate attacks against the transport
protocol, and protect metadata about the communication. Current
operational practice in some networks inspect transport header
information within the network, but this is no longer possible when
those transport headers are encrypted.
This document discusses the possible impact when network traffic uses
a protocol with an encrypted transport header. It suggests issues to
consider when designing new transport protocols or features.
" name="description">
<meta content="xml2rfc 3.9.1" name="generator">
<meta content="transport design" name="keyword">
<meta content="operations and management" name="keyword">
<meta content="9065" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.9.1
Python 3.6.10
appdirs 1.4.4
ConfigArgParse 1.2.3
google-i18n-address 2.3.5
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.2
kitchen 1.2.6
lxml 4.4.2
pycairo 1.19.0
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.3.1
requests 2.22.0
setuptools 40.6.2
six 1.14.0
WeasyPrint 51
-->
<link href="rfc9065.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: avoid-page;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9065" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-tsvwg-transport-encrypt-21" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9065</td>
<td class="center">Transport Header Encryption</td>
<td class="right">July 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Fairhurst & Perkins</td>
<td class="center">Informational</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9065" class="eref">9065</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Informational</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-07" class="published">July 2021</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">G. Fairhurst</div>
<div class="org">University of Aberdeen</div>
</div>
<div class="author">
<div class="author-name">C. Perkins</div>
<div class="org">University of Glasgow</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9065</h1>
<h1 id="title">Considerations around Transport Header Confidentiality, Network Operations, and the Evolution of Internet Transport Protocols</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">To protect user data and privacy, Internet transport protocols have
supported payload encryption and authentication for some time. Such
encryption and authentication are now also starting to be applied to the
transport protocol headers. This helps avoid transport protocol
ossification by middleboxes, mitigate attacks against the transport
protocol, and protect metadata about the communication. Current
operational practice in some networks inspect transport header
information within the network, but this is no longer possible when
those transport headers are encrypted.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
<p id="section-abstract-2">This document discusses the possible impact when network traffic uses
a protocol with an encrypted transport header. It suggests issues to
consider when designing new transport protocols or features.<a href="#section-abstract-2" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for informational purposes.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9065">https://www.rfc-editor.org/info/rfc9065</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="ulEmpty compact toc ulBare">
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a></p>
</li>
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-current-uses-of-transport-h" class="xref">Current Uses of Transport Headers within the Network</a></p>
<ul class="ulBare compact toc ulEmpty">
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-to-separate-flows-in-networ" class="xref">To Separate Flows in Network Devices</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1" class="keepWithNext"><a href="#section-2.2" class="xref">2.2</a>. <a href="#name-to-identify-transport-proto" class="xref">To Identify Transport Protocols and Flows</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.2.2.3">
<p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="xref">2.3</a>. <a href="#name-to-understand-transport-pro" class="xref">To Understand Transport Protocol Performance</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.2.2.4">
<p id="section-toc.1-1.2.2.4.1"><a href="#section-2.4" class="xref">2.4</a>. <a href="#name-to-support-network-operatio" class="xref">To Support Network Operations</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.2.2.5">
<p id="section-toc.1-1.2.2.5.1"><a href="#section-2.5" class="xref">2.5</a>. <a href="#name-to-mitigate-the-effects-of-" class="xref">To Mitigate the Effects of Constrained Networks</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.2.2.6">
<p id="section-toc.1-1.2.2.6.1"><a href="#section-2.6" class="xref">2.6</a>. <a href="#name-to-verify-sla-compliance" class="xref">To Verify SLA Compliance</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-research-development-and-de" class="xref">Research, Development, and Deployment</a></p>
<ul class="ulBare compact toc ulEmpty">
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>. <a href="#name-independent-measurement" class="xref">Independent Measurement</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>. <a href="#name-measurable-transport-protoc" class="xref">Measurable Transport Protocols</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.3.2.3">
<p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>. <a href="#name-other-sources-of-informatio" class="xref">Other Sources of Information</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-encryption-and-authenticati" class="xref">Encryption and Authentication of Transport Headers</a></p>
</li>
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-intentionally-exposing-tran" class="xref">Intentionally Exposing Transport Information to the Network</a></p>
<ul class="ulBare compact toc ulEmpty">
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>. <a href="#name-exposing-transport-informat" class="xref">Exposing Transport Information in Extension Headers</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>. <a href="#name-common-exposed-transport-in" class="xref">Common Exposed Transport Information</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.5.2.3">
<p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>. <a href="#name-considerations-for-exposing" class="xref">Considerations for Exposing Transport Information</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-addition-of-transport-oam-i" class="xref">Addition of Transport OAM Information to Network-Layer Headers</a></p>
<ul class="ulBare compact toc ulEmpty">
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-use-of-oam-within-a-mainten" class="xref">Use of OAM within a Maintenance Domain</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-use-of-oam-across-multiple-" class="xref">Use of OAM across Multiple Maintenance Domains</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-conclusions" class="xref">Conclusions</a></p>
</li>
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#appendix-A" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a></p>
</li>
<li class="ulEmpty compact toc ulBare" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#appendix-B" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">The transport layer supports the end-to-end flow of data across a
network path, providing features such as connection establishment,
reliability, framing, ordering, congestion control, flow control, etc.,
as needed to support applications. One of the core functions of an
Internet transport is to discover and adapt to the characteristics of
the network path that is currently being used.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">For some years, it has been common for the transport-layer payload to
be protected by encryption and authentication but for the transport-layer
headers to be sent unprotected. Examples of protocols that behave
in this manner include Transport Layer Security
(TLS) over TCP <span>[<a href="#RFC8446" class="xref">RFC8446</a>]</span>, Datagram TLS <span>[<a href="#RFC6347" class="xref">RFC6347</a>]</span> <span>[<a href="#I-D.ietf-tls-dtls13" class="xref">DTLS</a>]</span>, the Secure
Real-time Transport Protocol <span>[<a href="#RFC3711" class="xref">RFC3711</a>]</span>, and tcpcrypt <span>[<a href="#RFC8548" class="xref">RFC8548</a>]</span>. The use of unencrypted transport headers has led some
network operators, researchers, and others to develop tools and
processes that rely on observations of transport headers both in
aggregate and at the flow level to infer details of the network's
behaviour and inform operational practice.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">Transport protocols are now being developed that encrypt some or all
of the transport headers, in addition to the transport payload data. The
QUIC transport protocol <span>[<a href="#RFC9000" class="xref">RFC9000</a>]</span>
is an example of such a protocol. Such transport header encryption makes
it difficult to observe transport protocol behaviour from the vantage
point of the network. This document discusses some implications of
transport header encryption for network operators and researchers that
have previously observed transport headers, and it highlights some issues
to consider for transport protocol designers.<a href="#section-1-3" class="pilcrow">¶</a></p>
<p id="section-1-4">As discussed in <span>[<a href="#RFC7258" class="xref">RFC7258</a>]</span>, the IETF has
concluded that Pervasive Monitoring (PM) is a technical attack that
needs to be mitigated in the design of IETF protocols. This document
supports that conclusion. It also recognises that <span>[<a href="#RFC7258" class="xref">RFC7258</a>]</span>
states, "Making networks unmanageable to mitigate PM is not an acceptable outcome, but
ignoring PM would go against the consensus documented here. An
appropriate balance will emerge over time as real instances of this
tension are considered." This document is written to provide input to
the discussion around what is an appropriate balance by highlighting
some implications of transport header encryption.<a href="#section-1-4" class="pilcrow">¶</a></p>
<p id="section-1-5">Current uses of transport header information by network devices on
the Internet path are explained. These uses can be beneficial or
malicious. This is written to provide input to the discussion around
what is an appropriate balance by highlighting some implications of
transport header encryption.<a href="#section-1-5" class="pilcrow">¶</a></p>
</section>
<div id="Current">
<section id="section-2">
<h2 id="name-current-uses-of-transport-h">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-current-uses-of-transport-h" class="section-name selfRef">Current Uses of Transport Headers within the Network</a>
</h2>
<p id="section-2-1">In response to pervasive surveillance <span>[<a href="#RFC7624" class="xref">RFC7624</a>]</span>
revelations and the IETF consensus that "Pervasive Monitoring Is an
Attack" <span>[<a href="#RFC7258" class="xref">RFC7258</a>]</span>, efforts are underway to increase
encryption of Internet traffic. Applying confidentiality to transport
header fields can improve privacy and can help to mitigate certain
attacks or manipulation of packets by devices on the network path, but
it can also affect network operations and measurement <span>[<a href="#RFC8404" class="xref">RFC8404</a>]</span>.<a href="#section-2-1" class="pilcrow">¶</a></p>
<p id="section-2-2">When considering what parts of the transport headers should be
encrypted to provide confidentiality and what parts should be visible
to network devices (including unencrypted but authenticated headers),
it is necessary to consider both the impact on network operations and
management and the implications for ossification and user privacy <span>[<a href="#Measurement" class="xref">Measurement</a>]</span>. Different parties will view the relative
importance of these concerns differently. For some, the benefits of
encrypting all the transport headers outweigh the impact of doing so;
others might analyse the security, privacy, and ossification impacts and
arrive at a different trade-off.<a href="#section-2-2" class="pilcrow">¶</a></p>
<p id="section-2-3">This section reviews examples of the observation of transport-layer
headers within the network by using devices on the network path or by using
information exported by an on-path device. Unencrypted transport headers
provide information that can support network operations and management,
and this section notes some ways in which this has been done.
Unencrypted transport header information also contributes metadata that
can be exploited for purposes unrelated to network transport
measurement, diagnostics, or troubleshooting (e.g., to block or to
throttle traffic from a specific content provider), and this section
also notes some threats relating to unencrypted transport headers.<a href="#section-2-3" class="pilcrow">¶</a></p>
<p id="section-2-4">Exposed transport information also provides a source of information
that contributes to linked data sets, which could be exploited to deduce
private information, e.g., user patterns, user location, tracking
behaviour, etc. This might reveal information the parties did not intend
to be revealed. <span>[<a href="#RFC6973" class="xref">RFC6973</a>]</span> aims to make designers,
implementers, and users of Internet protocols aware of privacy-related
design choices in IETF protocols.<a href="#section-2-4" class="pilcrow">¶</a></p>
<p id="section-2-5">This section does not consider intentional modification of transport
headers by middleboxes, such as devices performing Network Address
Translation (NAT) or firewalls.<a href="#section-2-5" class="pilcrow">¶</a></p>
<section id="section-2.1">
<h3 id="name-to-separate-flows-in-networ">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-to-separate-flows-in-networ" class="section-name selfRef">To Separate Flows in Network Devices</a>
</h3>
<p id="section-2.1-1">Some network-layer mechanisms separate network traffic by flow
without resorting to identifying the type of traffic: hash-based
load sharing across paths (e.g., Equal-Cost Multipath
(ECMP)); sharing across a group of links (e.g., using a Link Aggregation
Group (LAG)); ensuring equal access to link capacity (e.g., Fair
Queuing (FQ)); or distributing traffic to servers (e.g., load
balancing). To prevent packet reordering, forwarding engines can
consistently forward the same transport flows along the same
forwarding path, often achieved by calculating a hash using an n-tuple
gleaned from a combination of link header information through to
transport header information. This n-tuple can use the Media Access Control
(MAC) address and IP
addresses and can include observable transport header information.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">When transport header information cannot be observed, there can be
less information to separate flows at equipment along the path.
Flow
separation might not be possible when a transport forms traffic
into an encrypted aggregate. For IPv6, the Flow Label <span>[<a href="#RFC6437" class="xref">RFC6437</a>]</span> can be used even when all transport
information is encrypted, enabling Flow Label-based ECMP <span>[<a href="#RFC6438" class="xref">RFC6438</a>]</span> and load sharing <span>[<a href="#RFC7098" class="xref">RFC7098</a>]</span>.<a href="#section-2.1-2" class="pilcrow">¶</a></p>
</section>
<div id="Current-demux">
<section id="section-2.2">
<h3 id="name-to-identify-transport-proto">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-to-identify-transport-proto" class="section-name selfRef">To Identify Transport Protocols and Flows</a>
</h3>
<p id="section-2.2-1">Information in exposed transport-layer headers can be used by the
network to identify transport protocols and flows <span>[<a href="#RFC8558" class="xref">RFC8558</a>]</span>. The ability to identify transport protocols,
flows, and sessions is a common function performed, for example, by
measurement activities, Quality of Service (QoS) classifiers, and
firewalls. These functions can be beneficial and performed with the
consent of, and in support of, the end user. Alternatively, the same
mechanisms could be used to support practises that might be
adversarial to the end user, including blocking, deprioritising, and
monitoring traffic without consent.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2">Observable transport header information, together with information
in the network header, has been used to identify flows and their
connection state, together with the set of protocol options being
used. Transport protocols, such as TCP <span>[<a href="#RFC7414" class="xref">RFC7414</a>]</span>
and the Stream Control Transmission Protocol (SCTP) <span>[<a href="#RFC4960" class="xref">RFC4960</a>]</span>, specify a standard base header that includes
sequence number information and other data. They also have the
possibility to negotiate additional headers at connection setup,
identified by an option number in the transport header.<a href="#section-2.2-2" class="pilcrow">¶</a></p>
<p id="section-2.2-3">In some uses, an assigned transport port (e.g., 0..49151) can
identify the upper-layer protocol or service <span>[<a href="#RFC7605" class="xref">RFC7605</a>]</span>. However, port information alone is not
sufficient to guarantee identification. Applications can use arbitrary
ports and do not need to use assigned port numbers. The use of an
assigned port number is also not limited to the protocol for which the
port is intended. Multiple sessions can also be multiplexed on a
single port, and ports can be reused by subsequent sessions.<a href="#section-2.2-3" class="pilcrow">¶</a></p>
<p id="section-2.2-4">Some flows can be identified by observing signalling data
(e.g., see <span>[<a href="#RFC3261" class="xref">RFC3261</a>]</span> and <span>[<a href="#RFC8837" class="xref">RFC8837</a>]</span>) or
through the use of magic numbers placed in the first byte(s) of a
datagram payload <span>[<a href="#RFC7983" class="xref">RFC7983</a>]</span>.<a href="#section-2.2-4" class="pilcrow">¶</a></p>
<p id="section-2.2-5">When transport header information cannot be observed, this removes
information that could have been used to classify flows by passive
observers along the path. More ambitious ways could be used to
collect, estimate, or infer flow information, including heuristics
based on the analysis of traffic patterns, such as classification of
flows relying on timing, volumes of information, and correlation
between multiple flows. For example, an operator that cannot access
the Session Description Protocol (SDP) session descriptions <span>[<a href="#RFC8866" class="xref">RFC8866</a>]</span> to classify a flow as audio traffic might
instead use (possibly less-reliable) heuristics to infer that short
UDP packets with regular spacing carry audio traffic. Operational
practises aimed at inferring transport parameters are out of scope for
this document, and are only mentioned here to recognise that
encryption does not prevent operators from attempting to apply
practises that were used with unencrypted transport headers.<a href="#section-2.2-5" class="pilcrow">¶</a></p>
<p id="section-2.2-6">The IAB <span>[<a href="#RFC8546" class="xref">RFC8546</a>]</span> has provided a summary of
expected implications of increased encryption on network functions
that use the observable headers and describe the expected benefits of
designs that explicitly declare protocol-invariant header information
that can be used for this purpose.<a href="#section-2.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="stats">
<section id="section-2.3">
<h3 id="name-to-understand-transport-pro">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-to-understand-transport-pro" class="section-name selfRef">To Understand Transport Protocol Performance</a>
</h3>
<p id="section-2.3-1">This subsection describes use by the network of exposed transport-layer headers to
understand transport protocol performance and
behaviour.<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<section id="section-2.3.1">
<h4 id="name-using-information-derived-f">
<a href="#section-2.3.1" class="section-number selfRef">2.3.1. </a><a href="#name-using-information-derived-f" class="section-name selfRef">Using Information Derived from Transport-Layer Headers</a>
</h4>
<p id="section-2.3.1-1">Observable transport headers enable explicit measurement and
analysis of protocol performance and detection of network anomalies
at any point along the Internet path. Some operators use passive
monitoring to manage their portion of the Internet by characterising
the performance of link/network segments. Inferences from transport
headers are used to derive performance metrics:<a href="#section-2.3.1-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="section-2.3.1-2">
<dt id="section-2.3.1-2.1">Traffic Rate and Volume:</dt>
<dd style="margin-left: 1.5em" id="section-2.3.1-2.2">
<p id="section-2.3.1-2.2.1">Per-application traffic
rate and volume measures can be used to characterise the traffic
that uses a network segment or the pattern of network usage.
Observing the protocol sequence number and packet size offers
one way to measure this (e.g., measurements observing counters
in periodic reports, such as RTCP <span>[<a href="#RFC3550" class="xref">RFC3550</a>]</span> <span>[<a href="#RFC3711" class="xref">RFC3711</a>]</span> <span>[<a href="#RFC4585" class="xref">RFC4585</a>]</span>, or measurements observing
protocol sequence numbers in statistical samples of packet
flows or specific control packets, such as those observed at
the start and end of a flow).<a href="#section-2.3.1-2.2.1" class="pilcrow">¶</a></p>
<p id="section-2.3.1-2.2.2">Measurements can be per endpoint or for an
endpoint aggregate. These could be used to assess usage or for
subscriber billing.<a href="#section-2.3.1-2.2.2" class="pilcrow">¶</a></p>
<p id="section-2.3.1-2.2.3">Such measurements can be used to trigger traffic
shaping and to associate QoS support within the network and
lower layers. This can be done with consent and in support of an
end user to improve quality of service or could be used by the
network to deprioritise certain flows without user consent.<a href="#section-2.3.1-2.2.3" class="pilcrow">¶</a></p>
<p id="section-2.3.1-2.2.4">The traffic rate and volume can be determined,
providing that the packets belonging to individual flows can be
identified, but there might be no additional information about a
flow when the transport headers cannot be observed.<a href="#section-2.3.1-2.2.4" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-2.3.1-2.3">Loss Rate and Loss Pattern:</dt>
<dd style="margin-left: 1.5em" id="section-2.3.1-2.4">
<p id="section-2.3.1-2.4.1">Flow loss rate can be
derived (e.g., from transport sequence numbers or inferred from
observing transport protocol interactions) and has been used as
a metric for performance assessment and to characterise
transport behaviour. Network operators have used the variation
in patterns to detect changes in the offered service.
Understanding the location and root cause of loss can help an
operator determine whether this requires corrective action.<a href="#section-2.3.1-2.4.1" class="pilcrow">¶</a></p>
<p id="section-2.3.1-2.4.2">There are various causes of loss, including: corruption of
link frames (e.g., due to interference on a radio link);
buffering loss (e.g., overflow due to congestion, Active Queue
Management (AQM) <span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span>, or inadequate
provision following traffic preemption), and policing (e.g., traffic
management <span>[<a href="#RFC2475" class="xref">RFC2475</a>]</span>). Understanding flow
loss rates requires maintaining the per-flow state (flow
identification often requires transport-layer information) and
either observing the increase in sequence numbers in the network
or transport headers or comparing a per-flow packet counter
with the number of packets that the flow actually sent. Per-hop
loss can also sometimes be monitored at the interface level by
devices on the network path or by using in-situ methods operating
over a network segment (see <a href="#other-sources" class="xref">Section 3.3</a>).<a href="#section-2.3.1-2.4.2" class="pilcrow">¶</a></p>
<p id="section-2.3.1-2.4.3">The pattern of loss can provide insight into the cause of
loss. Losses can often occur as bursts, randomly timed events,
etc. It can also be valuable to understand the conditions under
which loss occurs. This usually requires relating loss to the
traffic flowing at a network node or segment at the time of
loss. Transport header information can help identify cases where
loss could have been wrongly identified or where the transport
did not require retransmission of a lost packet.<a href="#section-2.3.1-2.4.3" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-2.3.1-2.5">Throughput and Goodput:</dt>
<dd style="margin-left: 1.5em" id="section-2.3.1-2.6">Throughput is the amount
of payload data sent by a flow per time interval. Goodput (the
subset of throughput consisting of useful traffic; see <span><a href="https://www.rfc-editor.org/rfc/rfc7928#section-2.5" class="relref">Section 2.5</a> of [<a href="#RFC7928" class="xref">RFC7928</a>]</span> and <span>[<a href="#RFC5166" class="xref">RFC5166</a>]</span>) is
a measure of useful data exchanged.
The throughput of a flow can be determined in the absence of
transport header information, providing that the individual flow
can be identified, and the overhead known. Goodput requires the
ability to differentiate loss and retransmission of packets, for
example, by observing packet sequence numbers in the TCP or RTP
headers <span>[<a href="#RFC3550" class="xref">RFC3550</a>]</span>.<a href="#section-2.3.1-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3.1-2.7">Latency:</dt>
<dd style="margin-left: 1.5em" id="section-2.3.1-2.8">
<p id="section-2.3.1-2.8.1">Latency is a key performance metric that
impacts application and user-perceived response times. It often
indirectly impacts throughput and flow completion time. This
determines the reaction time of the transport protocol itself,
impacting flow setup, congestion control, loss recovery, and
other transport mechanisms. The observed latency can have many
components <span>[<a href="#Latency" class="xref">Latency</a>]</span>. Of these,
unnecessary/unwanted queueing in buffers of the network devices
on the path has often been observed as a significant factor
<span>[<a href="#bufferbloat" class="xref">bufferbloat</a>]</span>. Once the cause of unwanted
latency has been identified, this can often be eliminated.<a href="#section-2.3.1-2.8.1" class="pilcrow">¶</a></p>
<p id="section-2.3.1-2.8.2">To measure latency across a part of a path, an observation
point <span>[<a href="#RFC7799" class="xref">RFC7799</a>]</span> can measure the experienced
round-trip time (RTT) by using packet sequence numbers and
acknowledgements or by observing header timestamp information.
Such information allows an observation point on the network path
to determine not only the path RTT but also allows measurement
of the upstream and downstream contribution to the RTT. This
could be used to locate a source of latency, e.g., by observing
cases where the median RTT is much greater than the minimum RTT
for a part of a path.<a href="#section-2.3.1-2.8.2" class="pilcrow">¶</a></p>
<p id="section-2.3.1-2.8.3">The service offered by network operators can benefit from
latency information to understand the impact of configuration
changes and to tune deployed services. Latency metrics are key
to evaluating and deploying AQM <span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span>,
Diffserv <span>[<a href="#RFC2474" class="xref">RFC2474</a>]</span>, and
Explicit Congestion
Notification (ECN) <span>[<a href="#RFC3168" class="xref">RFC3168</a>]</span> <span>[<a href="#RFC8087" class="xref">RFC8087</a>]</span>. Measurements could identify
excessively large buffers, indicating where to deploy or
configure AQM. An AQM method is often deployed in combination
with other techniques, such as scheduling <span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span> <span>[<a href="#RFC8290" class="xref">RFC8290</a>]</span>, and
although parameter-less methods are desired <span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span>, current methods often require tuning
<span>[<a href="#RFC8290" class="xref">RFC8290</a>]</span> <span>[<a href="#RFC8289" class="xref">RFC8289</a>]</span>
<span>[<a href="#RFC8033" class="xref">RFC8033</a>]</span> because they cannot scale across
all possible deployment scenarios.<a href="#section-2.3.1-2.8.3" class="pilcrow">¶</a></p>
<p id="section-2.3.1-2.8.4">Latency and round-trip time information can potentially
expose some information useful for approximate geolocation, as
discussed in <span>[<a href="#PAM-RTT" class="xref">PAM-RTT</a>]</span>.<a href="#section-2.3.1-2.8.4" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-2.3.1-2.9">Variation in Delay:</dt>
<dd style="margin-left: 1.5em" id="section-2.3.1-2.10">Some network applications are
sensitive to (small) changes in packet timing (jitter). Short-
and long-term delay variation can impact the latency of a
flow and hence the perceived quality of applications using a
network path. For example, jitter metrics are often cited when
characterising paths supporting real-time traffic. The expected
performance of such applications can be inferred from a measure
of the variation in delay observed along a portion of the path
<span>[<a href="#RFC3393" class="xref">RFC3393</a>]</span> <span>[<a href="#RFC5481" class="xref">RFC5481</a>]</span>.
The requirements resemble those for the measurement of
latency.<a href="#section-2.3.1-2.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3.1-2.11">Flow Reordering:</dt>
<dd style="margin-left: 1.5em" id="section-2.3.1-2.12">
<p id="section-2.3.1-2.12.1">Significant packet reordering
within a flow can impact time-critical applications and can be
interpreted as loss by reliable transports. Many transport
protocol techniques are impacted by reordering (e.g., triggering
TCP retransmission or rebuffering of real-time applications).
Packet reordering can occur for many reasons, e.g., from equipment
design to misconfiguration of forwarding rules. Flow
identification is often required to avoid significant packet
misordering (e.g., when using ECMP, or LAG). Network tools can
detect and measure unwanted/excessive reordering and the impact
on transport performance.<a href="#section-2.3.1-2.12.1" class="pilcrow">¶</a></p>
<p id="section-2.3.1-2.12.2">There have been initiatives in the IETF transport area to
reduce the impact of reordering within a transport flow,
possibly leading to a reduction in the requirements for
preserving ordering. These have potential to simplify network
equipment design as well as the potential to improve robustness
of the transport service. Measurements of reordering can help
understand the present level of reordering and inform decisions
about how to progress new mechanisms.<a href="#section-2.3.1-2.12.2" class="pilcrow">¶</a></p>
<p id="section-2.3.1-2.12.3">Techniques for measuring reordering typically observe packet
sequence numbers. Metrics have been defined that evaluate
whether a network path has maintained packet order on a
packet-by-packet basis <span>[<a href="#RFC4737" class="xref">RFC4737</a>]</span> <span>[<a href="#RFC5236" class="xref">RFC5236</a>]</span>. Some protocols provide in-built
monitoring and reporting functions. Transport fields in the RTP
header <span>[<a href="#RFC3550" class="xref">RFC3550</a>]</span> <span>[<a href="#RFC4585" class="xref">RFC4585</a>]</span> can be observed to derive traffic
volume measurements and provide information on the progress and
quality of a session using RTP. Metadata assists in
understanding the context under which the data was collected,
including the time, observation point <span>[<a href="#RFC7799" class="xref">RFC7799</a>]</span>, and
way in which metrics were
accumulated. The RTCP protocol directly reports some of this
information in a form that can be directly visible by devices on
the network path.<a href="#section-2.3.1-2.12.3" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-2.3.1-3">In some cases, measurements could involve active injection of
test traffic to perform a measurement (see <span><a href="https://www.rfc-editor.org/rfc/rfc7799#section-3.4" class="relref">Section 3.4</a> of [<a href="#RFC7799" class="xref">RFC7799</a>]</span>). However, most operators do not have
access to user equipment; therefore, the point of test is normally
different from the transport endpoint. Injection of test traffic can
incur an additional cost in running such tests (e.g., the
implications of capacity tests in a mobile network segment are
obvious). Some active measurements <span>[<a href="#RFC7799" class="xref">RFC7799</a>]</span>
(e.g., response under load or particular workloads) perturb other
traffic and could require dedicated access to the network
segment.<a href="#section-2.3.1-3" class="pilcrow">¶</a></p>
<p id="section-2.3.1-4">Passive measurements (see <span><a href="https://www.rfc-editor.org/rfc/rfc7799#section-3.6" class="relref">Section 3.6</a> of [<a href="#RFC7799" class="xref">RFC7799</a>]</span>)
can have advantages in terms of
eliminating unproductive test traffic, reducing the influence of
test traffic on the overall traffic mix, and having the ability to choose
the point of observation (see <a href="#point" class="xref">Section 2.4.1</a>).
Measurements can rely on observing packet headers, which is not
possible if those headers are encrypted, but could utilise
information about traffic volumes or patterns of interaction to
deduce metrics.<a href="#section-2.3.1-4" class="pilcrow">¶</a></p>
<p id="section-2.3.1-5">Passive packet sampling techniques are also often used to scale
the processing involved in observing packets on high-rate links.
This exports only the packet header information of (randomly)
selected packets. Interpretation of the exported information relies
on understanding of the header information. The utility of these
measurements depends on the type of network segment/link and number
of mechanisms used by the network devices. Simple routers are
relatively easy to manage, but a device with more complexity demands
understanding of the choice of many system parameters.<a href="#section-2.3.1-5" class="pilcrow">¶</a></p>
</section>
<div id="tunlhf">
<section id="section-2.3.2">
<h4 id="name-using-information-derived-fr">
<a href="#section-2.3.2" class="section-number selfRef">2.3.2. </a><a href="#name-using-information-derived-fr" class="section-name selfRef">Using Information Derived from Network-Layer Header Fields</a>
</h4>
<p id="section-2.3.2-1">Information from the transport header can be used by a
multi-field (MF) classifier as a part of policy framework. Policies
are commonly used for management of the QoS or Quality of Experience
(QoE) in resource-constrained networks or by firewalls to implement
access rules (see also <span><a href="https://www.rfc-editor.org/rfc/rfc8404#section-2.2.2" class="relref">Section 2.2.2</a> of [<a href="#RFC8404" class="xref">RFC8404</a>]</span>).
Policies can support user
applications/services or protect against unwanted or lower-priority
traffic (<a href="#Implic-Unknown" class="xref">Section 2.4.4</a>).<a href="#section-2.3.2-1" class="pilcrow">¶</a></p>
<p id="section-2.3.2-2">Transport-layer information can also be explicitly carried in
network-layer header fields that are not encrypted, serving as a
replacement/addition to the exposed transport header information
<span>[<a href="#RFC8558" class="xref">RFC8558</a>]</span>. This information can enable a
different forwarding treatment by the devices forming the network
path, even when a transport employs encryption to protect other
header information.<a href="#section-2.3.2-2" class="pilcrow">¶</a></p>
<p id="section-2.3.2-3">On the one hand, the user of a transport that multiplexes
multiple subflows might want to obscure the presence and
characteristics of these subflows. On the other hand, an encrypted
transport could set the network-layer information to indicate the
presence of subflows and to reflect the service requirements of
individual subflows. There are several ways this could be done:<a href="#section-2.3.2-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="section-2.3.2-4">
<dt id="section-2.3.2-4.1">IP Address:</dt>
<dd style="margin-left: 1.5em" id="section-2.3.2-4.2">Applications normally expose the
endpoint addresses used in the forwarding decisions in network
devices. Address and other protocol information can be used by an
MF classifier to determine how traffic is treated <span>[<a href="#RFC2475" class="xref">RFC2475</a>]</span> and hence affects the quality of
experience for a flow. Common issues concerning IP address
sharing are described in <span>[<a href="#RFC6269" class="xref">RFC6269</a>]</span>.<a href="#section-2.3.2-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3.2-4.3">Using the IPv6 Network-Layer Flow Label:</dt>
<dd style="margin-left: 1.5em" id="section-2.3.2-4.4">
<p id="section-2.3.2-4.4.1">A number
of Standards Track and Best Current Practice RFCs (e.g., <span>[<a href="#RFC8085" class="xref">RFC8085</a>]</span>, <span>[<a href="#RFC6437" class="xref">RFC6437</a>]</span>, and <span>[<a href="#RFC6438" class="xref">RFC6438</a>]</span>) encourage endpoints to set the IPv6
Flow Label field of the network-layer header.
As per <span>[<a href="#RFC6437" class="xref">RFC6437</a>]</span>, IPv6 source nodes "<span class="bcp14">SHOULD</span> assign each
unrelated transport connection and application data stream to a
new flow."
A multiplexing transport could choose
to use multiple flow labels to allow the network to
independently forward subflows. <span>[<a href="#RFC6437" class="xref">RFC6437</a>]</span> provides further
guidance on choosing a flow label value, stating these
"should be chosen such that their bits exhibit a high
degree of variability" and chosen so that "third
parties should be unlikely to be able to guess the next value
that a source of flow labels will choose."<a href="#section-2.3.2-4.4.1" class="pilcrow">¶</a></p>
<p id="section-2.3.2-4.4.2">Once set, a flow label can provide information
that can help inform network-layer queueing and forwarding,
including use with IPsec <span>[<a href="#RFC6294" class="xref">RFC6294</a>]</span>,
Equal-Cost Multipath routing, and Link Aggregation <span>[<a href="#RFC6438" class="xref">RFC6438</a>]</span>.<a href="#section-2.3.2-4.4.2" class="pilcrow">¶</a></p>
<p id="section-2.3.2-4.4.3">The choice of how to assign a flow label needs to
avoid introducing linkages between flows that a network device
could not otherwise observe. Inappropriate use by the transport
can have privacy implications (e.g., assigning the same label to
two independent flows that ought not to be classified similarly).<a href="#section-2.3.2-4.4.3" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-2.3.2-4.5">Using the Network-Layer Differentiated Services Code Point:</dt>
<dd style="margin-left: 1.5em" id="section-2.3.2-4.6">Applications
can expose their delivery expectations to network devices by
setting the Differentiated Services Code Point (DSCP) field of
IPv4 and IPv6 packets <span>[<a href="#RFC2474" class="xref">RFC2474</a>]</span>. For
example, WebRTC applications identify different forwarding
treatments for individual subflows (audio vs. video) based on
the value of the DSCP field <span>[<a href="#RFC8837" class="xref">RFC8837</a>]</span>). This provides
explicit information to inform network-layer queueing and
forwarding, rather than an operator inferring traffic
requirements from transport and application headers via a
multi-field classifier. Inappropriate use by the transport can
have privacy implications (e.g., assigning a different DSCP to a
subflow could assist in a network device discovering the traffic
pattern used by an application). The field is mutable, i.e.,
some network devices can be expected to change this field. Since
the DSCP value can impact the quality of experience for a flow,
observations of service performance have to consider this field
when a network path supports differentiated service
treatment.<a href="#section-2.3.2-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2.3.2-4.7">Using Explicit Congestion Notification:</dt>
<dd style="margin-left: 1.5em" id="section-2.3.2-4.8">
<p id="section-2.3.2-4.8.1">Explicit Congestion Notification (ECN) <span>[<a href="#RFC3168" class="xref">RFC3168</a>]</span> is a transport mechanism that uses the
ECN field in the network-layer header. Use of ECN explicitly
informs the network layer that a transport is ECN capable and
requests ECN treatment of the flow. An ECN-capable transport can
offer benefits when used over a path with equipment that
implements an AQM method with Congestion Experienced (CE) marking of IP packets <span>[<a href="#RFC8087" class="xref">RFC8087</a>]</span>, since it can react to congestion
without also having to recover from lost packets.<a href="#section-2.3.2-4.8.1" class="pilcrow">¶</a></p>
<p id="section-2.3.2-4.8.2">ECN exposes the presence of congestion. The reception of
CE-marked packets can be used to estimate the level of incipient
congestion on the upstream portion of the path from the point of
observation (<span><a href="https://www.rfc-editor.org/rfc/rfc8087#section-2.5" class="relref">Section 2.5</a> of [<a href="#RFC8087" class="xref">RFC8087</a>]</span>).
Interpreting the marking behaviour (i.e., assessing congestion
and diagnosing faults) requires context from the transport
layer, such as path RTT.<a href="#section-2.3.2-4.8.2" class="pilcrow">¶</a></p>
<p id="section-2.3.2-4.8.3">AQM and ECN offer a range of algorithms and configuration
options. Tools therefore have to be available to network
operators and researchers to understand the implication of
configuration choices and transport behaviour as the use of ECN
increases and new methods emerge <span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span>.<a href="#section-2.3.2-4.8.3" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-2.3.2-4.9">Network-Layer Options:</dt>
<dd style="margin-left: 1.5em" id="section-2.3.2-4.10">
<p id="section-2.3.2-4.10.1">Network protocols can carry
optional headers (see <a href="#EH" class="xref">Section 5.1</a>). These can
explicitly expose transport header information to on-path
devices operating at the network layer (as discussed further in
<a href="#OAM" class="xref">Section 6</a>).<a href="#section-2.3.2-4.10.1" class="pilcrow">¶</a></p>
<p id="section-2.3.2-4.10.2">IPv4 <span>[<a href="#RFC0791" class="xref">RFC0791</a>]</span> has provisions
for optional header fields. IP routers can examine these headers
and are required to ignore IPv4 options that they do not
recognise. Many current paths include network devices that
forward packets that carry options on a slower processing path.
Some network devices (e.g., firewalls) can be (and are)
configured to drop these packets <span>[<a href="#RFC7126" class="xref">RFC7126</a>]</span>.
BCP 186 <span>[<a href="#RFC7126" class="xref">RFC7126</a>]</span> provides
guidance on how operators should treat IPv4 packets
that specify options.<a href="#section-2.3.2-4.10.2" class="pilcrow">¶</a></p>
<p id="section-2.3.2-4.10.3">IPv6 can encode optional network-layer
information in separate headers that may be placed between the
IPv6 header and the upper-layer header <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span>
(e.g., the IPv6 Alternate Marking
Method <span>[<a href="#I-D.ietf-6man-ipv6-alt-mark" class="xref">IPV6-ALT-MARK</a>]</span>, which
can be used to measure packet loss and delay metrics). The
Hop-by-Hop Options header, when present, immediately follows the
IPv6 header. IPv6 permits this header to be examined by any node
along the path if explicitly configured <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span>.<a href="#section-2.3.2-4.10.3" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-2.3.2-5">Careful use of the network-layer features (e.g., extension
headers can; see <a href="#EH2" class="xref">Section 5</a>) help provide similar
information in the case where the network is unable to inspect
transport protocol headers.<a href="#section-2.3.2-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="Measure">
<section id="section-2.4">
<h3 id="name-to-support-network-operatio">
<a href="#section-2.4" class="section-number selfRef">2.4. </a><a href="#name-to-support-network-operatio" class="section-name selfRef">To Support Network Operations</a>
</h3>
<p id="section-2.4-1">Some network operators make use of on-path observations of
transport headers to analyse the service offered to the users of a
network segment and inform operational practice and can help
detect and locate network problems. <span>[<a href="#RFC8517" class="xref">RFC8517</a>]</span>
gives an operator's perspective about such use.<a href="#section-2.4-1" class="pilcrow">¶</a></p>
<p id="section-2.4-2">When observable transport header information is not available,
those seeking an understanding of transport behaviour and dynamics
might learn to work without that information. Alternatively, they
might use more limited measurements combined with pattern inference
and other heuristics to infer network behaviour (see <span><a href="https://www.rfc-editor.org/rfc/rfc8404#section-2.1.1" class="relref">Section 2.1.1</a> of [<a href="#RFC8404" class="xref">RFC8404</a>]</span>). Operational practises aimed at
inferring transport parameters are out of scope for this document and
are only mentioned here to recognise that encryption does not
necessarily stop operators from attempting to apply practises that
have been used with unencrypted transport headers.<a href="#section-2.4-2" class="pilcrow">¶</a></p>
<p id="section-2.4-3">This section discusses topics concerning observation of transport
flows, with a focus on transport measurement.<a href="#section-2.4-3" class="pilcrow">¶</a></p>
<div id="point">
<section id="section-2.4.1">
<h4 id="name-problem-location">
<a href="#section-2.4.1" class="section-number selfRef">2.4.1. </a><a href="#name-problem-location" class="section-name selfRef">Problem Location</a>
</h4>
<p id="section-2.4.1-1">Observations of transport header information can be used to
locate the source of problems or to assess the performance of a
network segment. Often issues can only be understood in the context
of the other flows that share a particular path, particular device
configuration, interface port, etc. A simple example is monitoring
of a network device that uses a scheduler or active queue management
technique <span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span>, where it could be
desirable to understand whether the algorithms are correctly
controlling latency or if overload protection is working. This
implies knowledge of how traffic is assigned to any subqueues used
for flow scheduling but can require information about how the
traffic dynamics impact active queue management, starvation
prevention mechanisms, and circuit breakers.<a href="#section-2.4.1-1" class="pilcrow">¶</a></p>
<p id="section-2.4.1-2">Sometimes correlating observations of headers at multiple points
along the path (e.g., at the ingress and egress of a network
segment) allows an observer to determine the contribution of a
portion of the path to an observed metric (e.g., to locate a source
of delay, jitter, loss, reordering, or congestion marking).<a href="#section-2.4.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-2.4.2">
<h4 id="name-network-planning-and-provis">
<a href="#section-2.4.2" class="section-number selfRef">2.4.2. </a><a href="#name-network-planning-and-provis" class="section-name selfRef">Network Planning and Provisioning</a>
</h4>
<p id="section-2.4.2-1">Traffic rate and volume measurements are used to help plan
deployment of new equipment and configuration in networks. Data is
also valuable to equipment vendors who want to understand traffic
trends and patterns of usage as inputs to decisions about planning
products and provisioning for new deployments.<a href="#section-2.4.2-1" class="pilcrow">¶</a></p>
<p id="section-2.4.2-2">Trends in aggregate traffic can be observed and can be related to
the endpoint addresses being used, but when transport header
information is not observable, it might be impossible to correlate
patterns in measurements with changes in transport protocols. This
increases the dependency on other indirect sources of information to
inform planning and provisioning.<a href="#section-2.4.2-2" class="pilcrow">¶</a></p>
</section>
<div id="Compliance">
<section id="section-2.4.3">
<h4 id="name-compliance-with-congestion-">
<a href="#section-2.4.3" class="section-number selfRef">2.4.3. </a><a href="#name-compliance-with-congestion-" class="section-name selfRef">Compliance with Congestion Control</a>
</h4>
<p id="section-2.4.3-1">The traffic that can be observed by on-path network devices (the
"wire image") is a function of transport protocol design/options,
network use, applications, and user characteristics. In general,
when only a small proportion of the traffic has a specific
(different) characteristic, such traffic seldom leads to operational
concern, although the ability to measure and monitor it is lower.
The desire to understand the traffic and protocol interactions
typically grows as the proportion of traffic increases. The
challenges increase when multiple instances of an evolving protocol
contribute to the traffic that share network capacity.<a href="#section-2.4.3-1" class="pilcrow">¶</a></p>
<p id="section-2.4.3-2">Operators can manage traffic load (e.g., when the network is
severely overloaded) by deploying rate limiters, traffic shaping, or
network transport circuit breakers <span>[<a href="#RFC8084" class="xref">RFC8084</a>]</span>.
The information provided by observing transport headers is a source
of data that can help to inform such mechanisms.<a href="#section-2.4.3-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="section-2.4.3-3">
<dt id="section-2.4.3-3.1">Congestion Control Compliance of Traffic:</dt>
<dd style="margin-left: 1.5em" id="section-2.4.3-3.2">
<p id="section-2.4.3-3.2.1">Congestion control is a key transport function <span>[<a href="#RFC2914" class="xref">RFC2914</a>]</span>. Many network operators implicitly
accept that TCP traffic complies with a behaviour that is
acceptable for the shared Internet. TCP algorithms have been
continuously improved over decades and have reached a level of
efficiency and correctness that is difficult to match in custom
application-layer mechanisms <span>[<a href="#RFC8085" class="xref">RFC8085</a>]</span>.<a href="#section-2.4.3-3.2.1" class="pilcrow">¶</a></p>
<p id="section-2.4.3-3.2.2">A standards-compliant TCP stack provides congestion control
that is judged safe for use across the Internet. Applications
developed on top of well-designed transports can be expected to
appropriately control their network usage, reacting when the
network experiences congestion, by backing off and reducing the load
placed on the network. This is the normal expected behaviour for
IETF-specified transports (e.g., TCP and SCTP).<a href="#section-2.4.3-3.2.2" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-2.4.3-3.3">Congestion Control Compliance for UDP Traffic:</dt>
<dd style="margin-left: 1.5em" id="section-2.4.3-3.4">
<p id="section-2.4.3-3.4.1">UDP
provides a minimal message-passing datagram transport that has
no inherent congestion control mechanisms. Because congestion
control is critical to the stable operation of the Internet,
applications and other protocols that choose to use UDP as a
transport have to employ mechanisms to prevent collapse, avoid
unacceptable contributions to jitter/latency, and establish
an acceptable share of capacity with concurrent traffic <span>[<a href="#RFC8085" class="xref">RFC8085</a>]</span>.<a href="#section-2.4.3-3.4.1" class="pilcrow">¶</a></p>
<p id="section-2.4.3-3.4.2">UDP flows that expose a well-known header can be observed to
gain understanding of the dynamics of a flow and its congestion
control behaviour. For example, tools exist to monitor various
aspects of RTP header information and RTCP reports for real-time
flows (see <a href="#stats" class="xref">Section 2.3</a>). The Secure RTP and
RTCP extensions <span>[<a href="#RFC3711" class="xref">RFC3711</a>]</span> were explicitly
designed to expose some header information to enable such
observation while protecting the payload data.<a href="#section-2.4.3-3.4.2" class="pilcrow">¶</a></p>
<p id="section-2.4.3-3.4.3">A network operator can observe the headers of transport
protocols layered above UDP to understand if the datagram flows
comply with congestion control expectations. This can help
inform a decision on whether it might be appropriate to deploy
methods, such as rate limiters, to enforce acceptable usage. The
available information determines the level of precision with
which flows can be classified and the design space for
conditioning mechanisms (e.g., rate-limiting, circuit breaker
techniques <span>[<a href="#RFC8084" class="xref">RFC8084</a>]</span>, or blocking
uncharacterised traffic) <span>[<a href="#RFC5218" class="xref">RFC5218</a>]</span>.<a href="#section-2.4.3-3.4.3" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-2.4.3-4">When anomalies are detected, tools can interpret the transport
header information to help understand the impact of specific
transport protocols (or protocol mechanisms) on the other traffic
that shares a network. An observer on the network path can gain an
understanding of the dynamics of a flow and its congestion control
behaviour. Analysing observed flows can help to build confidence
that an application flow backs off its share of the network load
under persistent congestion and hence to understand whether the
behaviour is appropriate for sharing limited network capacity. For
example, it is common to visualise plots of TCP sequence numbers
versus time for a flow to understand how a flow shares available
capacity, deduce its dynamics in response to congestion, etc.<a href="#section-2.4.3-4" class="pilcrow">¶</a></p>
<p id="section-2.4.3-5">The ability to identify sources and flows that contribute to
persistent congestion is important to the safe operation of network
infrastructure and can inform configuration of network devices to
complement the endpoint congestion avoidance mechanisms <span>[<a href="#RFC7567" class="xref">RFC7567</a>]</span> <span>[<a href="#RFC8084" class="xref">RFC8084</a>]</span> to avoid a
portion of the network being driven into congestion collapse <span>[<a href="#RFC2914" class="xref">RFC2914</a>]</span>.<a href="#section-2.4.3-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Implic-Unknown">
<section id="section-2.4.4">
<h4 id="name-to-characterise-unknown-net">
<a href="#section-2.4.4" class="section-number selfRef">2.4.4. </a><a href="#name-to-characterise-unknown-net" class="section-name selfRef">To Characterise "Unknown" Network Traffic</a>
</h4>
<p id="section-2.4.4-1">The patterns and types of traffic that share Internet capacity
change over time as networked applications, usage patterns, and
protocols continue to evolve.<a href="#section-2.4.4-1" class="pilcrow">¶</a></p>
<p id="section-2.4.4-2">Encryption can increase the volume of "unknown" or
"uncharacterised" traffic seen by the network. If these traffic
patterns form a small part of the traffic aggregate passing through
a network device or segment of the network path, the dynamics of the
uncharacterised traffic might not have a significant collateral
impact on the performance of other traffic that shares this network
segment. Once the proportion of this traffic increases, monitoring
the traffic can determine if appropriate safety measures have to be
put in place.<a href="#section-2.4.4-2" class="pilcrow">¶</a></p>
<p id="section-2.4.4-3">Tracking the impact of new mechanisms and protocols requires
traffic volume to be measured and new transport behaviours to be
identified. This is especially true of protocols operating over a
UDP substrate. The level and style of encryption needs to be
considered in determining how this activity is performed.<a href="#section-2.4.4-3" class="pilcrow">¶</a></p>
<p id="section-2.4.4-4">Traffic that cannot be classified typically receives a default
treatment. Some networks block or rate-limit traffic that cannot be
classified.<a href="#section-2.4.4-4" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-2.4.5">
<h4 id="name-to-support-network-security">
<a href="#section-2.4.5" class="section-number selfRef">2.4.5. </a><a href="#name-to-support-network-security" class="section-name selfRef">To Support Network Security Functions</a>
</h4>
<p id="section-2.4.5-1">On-path observation of the transport headers of packets can be
used for various security functions. For example, Denial of Service
(DoS) and Distributed DoS (DDoS) attacks against the infrastructure
or against an endpoint can be detected and mitigated by
characterising anomalous traffic (see <a href="#Implic-Unknown" class="xref">Section 2.4.4</a>) on a shorter timescale. Other uses
include support for security audits (e.g., verifying the compliance
with cipher suites), client and application fingerprinting for
inventory, and alerts provided for network intrusion detection and
other next generation firewall functions.<a href="#section-2.4.5-1" class="pilcrow">¶</a></p>
<p id="section-2.4.5-2">When using an encrypted transport, endpoints can directly provide
information to support these security functions. Another method, if
the endpoints do not provide this information, is to use an on-path
network device that relies on pattern inferences in the traffic and
heuristics or machine learning instead of processing observed header
information. An endpoint could also explicitly cooperate with an
on-path device (e.g., a QUIC endpoint could share information about
current uses of connection IDs).<a href="#section-2.4.5-2" class="pilcrow">¶</a></p>
</section>
<div id="Current-diag">
<section id="section-2.4.6">
<h4 id="name-network-diagnostics-and-tro">
<a href="#section-2.4.6" class="section-number selfRef">2.4.6. </a><a href="#name-network-diagnostics-and-tro" class="section-name selfRef">Network Diagnostics and Troubleshooting</a>
</h4>
<p id="section-2.4.6-1">Operators monitor the health of a network segment to support a
variety of operational tasks <span>[<a href="#RFC8404" class="xref">RFC8404</a>]</span>,
including procedures to provide early warning and trigger action, e.g., to
diagnose network problems, to manage security threats (including
DoS), to evaluate equipment or protocol performance, or to respond
to user performance questions. Information about transport flows can
assist in setting buffer sizes and help identify whether
link/network tuning is effective. Information can also support
debugging and diagnosis of the root causes of faults that concern a
particular user's traffic and can support postmortem investigation
after an anomaly. Sections <a href="https://www.rfc-editor.org/rfc/rfc8404#section-3.1.2" class="relref">3.1.2</a>
and <a href="https://www.rfc-editor.org/rfc/rfc8404#section-5" class="relref">5</a> of <span>[<a href="#RFC8404" class="xref">RFC8404</a>]</span> provide further examples.<a href="#section-2.4.6-1" class="pilcrow">¶</a></p>
<p id="section-2.4.6-2">Network segments vary in their complexity. The design trade-offs
for radio networks are often very different from those of wired
networks <span>[<a href="#RFC8462" class="xref">RFC8462</a>]</span>. A radio-based network
(e.g., cellular mobile, enterprise Wireless LAN (WLAN), satellite
access/backhaul, point-to-point radio) adds a subsystem that
performs radio resource management, with impact on the available
capacity and potentially loss/reordering of packets. This impact
can differ by traffic type and can be correlated with link
propagation and interference. These can impact the cost and
performance of a provided service and is expected to increase in
importance as operators bring together heterogeneous types of
network equipment and deploy opportunistic methods to access a shared
radio spectrum.<a href="#section-2.4.6-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Implic-Cost">
<section id="section-2.4.7">
<h4 id="name-tooling-and-network-operati">
<a href="#section-2.4.7" class="section-number selfRef">2.4.7. </a><a href="#name-tooling-and-network-operati" class="section-name selfRef">Tooling and Network Operations</a>
</h4>
<p id="section-2.4.7-1">A variety of open source and proprietary tools have been deployed
that use the transport header information observable with widely
used protocols, such as TCP or RTP/UDP/IP. Tools that dissect network
traffic flows can alert to potential problems that are hard to
derive from volume measurements, link statistics, or device
measurements alone.<a href="#section-2.4.7-1" class="pilcrow">¶</a></p>
<p id="section-2.4.7-2">Any introduction of a new transport protocol, protocol feature,
or application might require changes to such tools and could
impact operational practice and policies. Such changes have
associated costs that are incurred by the network operators that
need to update their tooling or develop alternative practises that
work without access to the changed/removed information.<a href="#section-2.4.7-2" class="pilcrow">¶</a></p>
<p id="section-2.4.7-3">The use of encryption has the desirable effect of preventing
unintended observation of the payload data, and these tools seldom
seek to observe the payload or other application details. A flow
that hides its transport header information could imply "don't
touch" to some operators. This might limit a trouble-shooting
response to "can't help, no trouble found".<a href="#section-2.4.7-3" class="pilcrow">¶</a></p>
<p id="section-2.4.7-4">An alternative that does not require access to an observable
transport headers is to access endpoint diagnostic tools or to
include user involvement in diagnosing and troubleshooting unusual
use cases or to troubleshoot nontrivial problems. Another approach
is to use traffic pattern analysis. Such tools can provide useful
information during network anomalies (e.g., detecting significant
reordering, high or intermittent loss); however, indirect
measurements need to be carefully designed to provide information
for diagnostics and troubleshooting.<a href="#section-2.4.7-4" class="pilcrow">¶</a></p>
<p id="section-2.4.7-5">If new protocols, or protocol extensions, are made to closely
resemble or match existing mechanisms, then the changes to tooling
and the associated costs can be small. Equally, more extensive
changes to the transport tend to require more extensive, and more
expensive, changes to tooling and operational practice. Protocol
designers can mitigate these costs by explicitly choosing to expose
selected information as invariants that are guaranteed not to change
for a particular protocol (e.g., the header invariants and the
spin bit in QUIC <span>[<a href="#RFC9000" class="xref">RFC9000</a>]</span>).
Specification of common log formats and development of alternative
approaches can also help mitigate the costs of transport
changes.<a href="#section-2.4.7-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<section id="section-2.5">
<h3 id="name-to-mitigate-the-effects-of-">
<a href="#section-2.5" class="section-number selfRef">2.5. </a><a href="#name-to-mitigate-the-effects-of-" class="section-name selfRef">To Mitigate the Effects of Constrained Networks</a>
</h3>
<p id="section-2.5-1">Some link and network segments are constrained by the capacity they
can offer by the time it takes to access capacity (e.g., due to
underlying radio resource management methods) or by asymmetries in
the design (e.g., many link are designed so that the capacity
available is different in the forward and return directions; some
radio technologies have different access methods in the forward and
return directions resulting from differences in the power budget).<a href="#section-2.5-1" class="pilcrow">¶</a></p>
<p id="section-2.5-2">The impact of path constraints can be mitigated using a proxy
operating at or above the transport layer to use an alternate
transport protocol.<a href="#section-2.5-2" class="pilcrow">¶</a></p>
<p id="section-2.5-3">In many cases, one or both endpoints are unaware of the
characteristics of the constraining link or network segment, and
mitigations are applied below the transport layer. Packet
classification and QoS methods (described in various sections) can be
beneficial in differentially prioritising certain traffic when there
is a capacity constraint or additional delay in scheduling link
transmissions. Another common mitigation is to apply header
compression over the specific link or subnetwork (see <a href="#HC" class="xref">Section 2.5.1</a>).<a href="#section-2.5-3" class="pilcrow">¶</a></p>
<div id="HC">
<section id="section-2.5.1">
<h4 id="name-to-provide-header-compressi">
<a href="#section-2.5.1" class="section-number selfRef">2.5.1. </a><a href="#name-to-provide-header-compressi" class="section-name selfRef">To Provide Header Compression</a>
</h4>
<p id="section-2.5.1-1">Header compression saves link capacity by compressing network and
transport protocol headers on a per-hop basis. This has been widely
used with low bandwidth dial-up access links and still finds
application on wireless links that are subject to capacity
constraints. These methods are effective for bit-congestive links
sending small packets (e.g., reducing the cost for sending control
packets or small data packets over radio links).<a href="#section-2.5.1-1" class="pilcrow">¶</a></p>
<p id="section-2.5.1-2">Examples of header compression include use with TCP/IP and
RTP/UDP/IP flows <span>[<a href="#RFC2507" class="xref">RFC2507</a>]</span> <span>[<a href="#RFC6846" class="xref">RFC6846</a>]</span> <span>[<a href="#RFC2508" class="xref">RFC2508</a>]</span> <span>[<a href="#RFC5795" class="xref">RFC5795</a>]</span> <span>[<a href="#RFC8724" class="xref">RFC8724</a>]</span>. Successful
compression depends on observing the transport headers and
understanding the way fields change between packets and is hence
incompatible with header encryption. Devices that compress transport
headers are dependent on a stable header format, implying
ossification of that format.<a href="#section-2.5.1-2" class="pilcrow">¶</a></p>
<p id="section-2.5.1-3">Introducing a new transport protocol, or changing the format of
the transport header information, will limit the effectiveness of
header compression until the network devices are updated. Encrypting
the transport protocol headers will tend to cause the header
compression to fall back to compressing only the network-layer
headers, with a significant reduction in efficiency. This can limit
connectivity if the resulting flow exceeds the link capacity or if
the packets are dropped because they exceed the link Maximum
Transmission Unit (MTU).<a href="#section-2.5.1-3" class="pilcrow">¶</a></p>
<p id="section-2.5.1-4">The Secure RTP (SRTP) extensions <span>[<a href="#RFC3711" class="xref">RFC3711</a>]</span>
were explicitly designed to leave the transport protocol headers
unencrypted, but authenticated, since support for header compression
was considered important.<a href="#section-2.5.1-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<section id="section-2.6">
<h3 id="name-to-verify-sla-compliance">
<a href="#section-2.6" class="section-number selfRef">2.6. </a><a href="#name-to-verify-sla-compliance" class="section-name selfRef">To Verify SLA Compliance</a>
</h3>
<p id="section-2.6-1">Observable transport headers coupled with published transport
specifications allow operators and regulators to explore and verify
compliance with Service Level Agreements (SLAs). It can also be used
to understand whether a service is providing differential treatment to
certain flows.<a href="#section-2.6-1" class="pilcrow">¶</a></p>
<p id="section-2.6-2">When transport header information cannot be observed, other methods
have to be found to confirm that the traffic produced conforms to the
expectations of the operator or developer.<a href="#section-2.6-2" class="pilcrow">¶</a></p>
<p id="section-2.6-3">Independently verifiable performance metrics can be utilised to
demonstrate regulatory compliance in some jurisdictions and as a
basis for informing design decisions. This can bring assurance to
those operating networks, often avoiding deployment of complex
techniques that routinely monitor and manage Internet traffic flows
(e.g., avoiding the capital and operational costs of deploying flow
rate-limiting and network circuit breaker methods <span>[<a href="#RFC8084" class="xref">RFC8084</a>]</span>).<a href="#section-2.6-3" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="Implic">
<section id="section-3">
<h2 id="name-research-development-and-de">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-research-development-and-de" class="section-name selfRef">Research, Development, and Deployment</a>
</h2>
<p id="section-3-1">Research and development of new protocols and mechanisms need to be
informed by measurement data (as described in the previous section).
Data can also help promote acceptance of proposed standards
specifications by the wider community (e.g., as a method to judge the
safety for Internet deployment).<a href="#section-3-1" class="pilcrow">¶</a></p>
<p id="section-3-2">Observed data is important to ensure the health of the research and
development communities and provides data needed to evaluate new
proposals for standardisation. Open standards motivate a desire to
include independent observation and evaluation of performance and
deployment data. Independent data helps compare different methods, judge
the level of deployment, and ensure the wider applicability of the
results. This is important when considering when a protocol or mechanism
should be standardised for use in the general Internet. This, in turn,
demands control/understanding about where and when measurement samples
are collected. This requires consideration of the methods used to
observe information and the appropriate balance between encrypting all
and no transport header information.<a href="#section-3-2" class="pilcrow">¶</a></p>
<p id="section-3-3">There can be performance and operational trade-offs in exposing
selected information to network tools. This section explores key
implications of tools and procedures that observe transport protocols
but does not endorse or condemn any specific practises.<a href="#section-3-3" class="pilcrow">¶</a></p>
<div id="Implic-Independent">
<section id="section-3.1">
<h3 id="name-independent-measurement">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-independent-measurement" class="section-name selfRef">Independent Measurement</a>
</h3>
<p id="section-3.1-1">Encrypting transport header information has implications on the way
network data is collected and analysed. Independent observations by
multiple actors is currently used by the transport community to
maintain an accurate understanding of the network within transport
area working groups, IRTF research groups, and the broader research
community. This is important to be able to provide accountability and
demonstrate that protocols behave as intended; although, when providing
or using such information, it is important to consider the privacy of
the user and their incentive for providing accurate and detailed
information.<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<p id="section-3.1-2">Protocols that expose the state of the transport protocol in their
header (e.g., timestamps used to calculate the RTT, packet numbers
used to assess congestion, and requests for retransmission) provide an
incentive for a sending endpoint to provide consistent information,
because a protocol will not work otherwise. An on-path observer can
have confidence that well-known (and ossified) transport header
information represents the actual state of the endpoints when this
information is necessary for the protocol's correct operation.<a href="#section-3.1-2" class="pilcrow">¶</a></p>
<p id="section-3.1-3">Encryption of transport header information could reduce the range
of actors that can observe useful data. This would limit the
information sources available to the Internet community to understand
the operation of new transport protocols, reducing information to
inform design decisions and standardisation of the new protocols and
related operational practises. The cooperating dependence of network,
application, and host to provide communication performance on the
Internet is uncertain when only endpoints (i.e., at user devices and
within service platforms) can observe performance and when
performance cannot be independently verified by all parties.<a href="#section-3.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Implic-design">
<section id="section-3.2">
<h3 id="name-measurable-transport-protoc">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-measurable-transport-protoc" class="section-name selfRef">Measurable Transport Protocols</a>
</h3>
<p id="section-3.2-1">Transport protocol evolution and the ability to measure and
understand the impact of protocol changes have to proceed
hand-in-hand. A transport protocol that provides observable headers
can be used to provide open and verifiable measurement data.
Observation of pathologies has a critical role in the design of
transport protocol mechanisms and development of new mechanisms and
protocols and aides in understanding the interactions between
cooperating protocols and network mechanisms, the implications of
sharing capacity with other traffic, and the impact of different
patterns of usage. The ability of other stakeholders to review
transport header traces helps develop insight into the performance and
the traffic contribution of specific variants of a protocol.<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2-2">Development of new transport protocol mechanisms has to consider
the scale of deployment and the range of environments in which the
transport is used. Experience has shown that it is often difficult to
correctly implement new mechanisms <span>[<a href="#RFC8085" class="xref">RFC8085</a>]</span> and
that mechanisms often evolve as a protocol matures or in response to
changes in network conditions, in network traffic, or
to application usage. Analysis is especially valuable when based on
the behaviour experienced across a range of topologies, vendor
equipment, and traffic patterns.<a href="#section-3.2-2" class="pilcrow">¶</a></p>
<p id="section-3.2-3">Encryption enables a transport protocol to choose which internal
state to reveal to devices on the network path, what information to
encrypt, and what fields to grease <span>[<a href="#RFC8701" class="xref">RFC8701</a>]</span>. A
new design can provide summary information regarding its performance,
congestion control state, etc., or make explicit
measurement information available. For example, <span>[<a href="#RFC9000" class="xref">RFC9000</a>]</span>
specifies a way for a QUIC
endpoint to optionally set the spin bit to explicitly reveal the RTT
of an encrypted transport session to the on-path network devices.
There is a choice of what information to expose. For some operational
uses, the information has to contain sufficient detail to understand,
and possibly reconstruct, the network traffic pattern for further
testing. The interpretation of the information needs to consider
whether this information reflects the actual transport state of the
endpoints. This might require the trust of transport protocol
implementers to correctly reveal the desired information.<a href="#section-3.2-3" class="pilcrow">¶</a></p>
<p id="section-3.2-4">New transport protocol formats are expected to facilitate an
increased pace of transport evolution and with it the possibility to
experiment with and deploy a wide range of protocol mechanisms. At the
time of writing, there has been interest in a wide range of new
transport methods, e.g., larger initial window, Proportional Rate
Reduction (PRR), congestion control methods based on measuring
bottleneck bandwidth and round-trip propagation time, the introduction
of AQM techniques, and new forms of ECN response (e.g., Data Centre
TCP, DCTCP, and methods proposed for Low Latency Low Loss Scalable throughput (L4S)). The growth and diversity of
applications and protocols using the Internet also continues to
expand. For each new method or application, it is desirable to build a
body of data reflecting its behaviour under a wide range of deployment
scenarios, traffic load, and interactions with other
deployed/candidate methods.<a href="#section-3.2-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="other-sources">
<section id="section-3.3">
<h3 id="name-other-sources-of-informatio">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-other-sources-of-informatio" class="section-name selfRef">Other Sources of Information</a>
</h3>
<p id="section-3.3-1">Some measurements that traditionally rely on observable transport
information could be completed by utilising endpoint-based logging
(e.g., based on <span><a href="#Quic-Trace" class="xref">QUIC trace</a> [<a href="#Quic-Trace" class="xref">Quic-Trace</a>]</span> and
<span><a href="#I-D.ietf-quic-qlog-main-schema" class="xref">qlog</a> [<a href="#I-D.ietf-quic-qlog-main-schema" class="xref">QLOG</a>]</span>). Such information
has a diversity of uses, including developers wishing to
debug/understand the transport/application protocols with which they
work, researchers seeking to spot trends and anomalies, and
to characterise variants of protocols. A standard format for endpoint
logging could allow these to be shared (after appropriate
anonymisation) to understand performance and pathologies.<a href="#section-3.3-1" class="pilcrow">¶</a></p>
<p id="section-3.3-2">When measurement datasets are made available by servers or client
endpoints, additional metadata, such as the state of the network and
conditions in which the system was observed, is often necessary to
interpret this data to answer questions about network performance or
understand a pathology. Collecting and coordinating such metadata is
more difficult when the observation point is at a different location
to the bottleneck or device under evaluation <span>[<a href="#RFC7799" class="xref">RFC7799</a>]</span>.<a href="#section-3.3-2" class="pilcrow">¶</a></p>
<p id="section-3.3-3">Despite being applicable in some scenarios, endpoint logs do not
provide equivalent information to on-path measurements made by devices
in the network. In particular, endpoint logs contain only a part of
the information to understand the operation of network devices and
identify issues, such as link performance or capacity sharing between
multiple flows. An analysis can require coordination between actors at
different layers to successfully characterise flows and correlate the
performance or behaviour of a specific mechanism with an equipment
configuration and traffic using operational equipment along a network
path (e.g., combining transport and network measurements to explore
congestion control dynamics to understand the implications of traffic
on designs for active queue management or circuit breakers).<a href="#section-3.3-3" class="pilcrow">¶</a></p>
<p id="section-3.3-4">Another source of information could arise from Operations,
Administration, and Maintenance (OAM) (see <a href="#OAM" class="xref">Section 6</a>).
Information data records could be embedded into header information at
different layers to support functions, such as performance evaluation,
path tracing, path verification information, classification, and a
diversity of other uses.<a href="#section-3.3-4" class="pilcrow">¶</a></p>
<p id="section-3.3-5">In-situ OAM (IOAM) data fields <span>[<a href="#I-D.ietf-ippm-ioam-data" class="xref">IOAM-DATA</a>]</span> can be encapsulated into a
variety of protocols to record operational and telemetry information
in an existing packet while that packet traverses a part of the path
between two points in a network (e.g., within a particular IOAM
management domain). IOAM-Data-Fields are independent from the
protocols into which IOAM-Data-Fields are encapsulated. For example, IOAM
can provide proof that a traffic flow takes a
predefined path, SLA verification for the live data traffic, and
statistics relating to traffic distribution.<a href="#section-3.3-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="Transport-encrypt">
<section id="section-4">
<h2 id="name-encryption-and-authenticati">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-encryption-and-authenticati" class="section-name selfRef">Encryption and Authentication of Transport Headers</a>
</h2>
<p id="section-4-1">There are several motivations for transport header encryption.<a href="#section-4-1" class="pilcrow">¶</a></p>
<p id="section-4-2">One motive to encrypt transport headers is to prevent network
ossification from network devices that inspect well-known transport
headers. Once a network device observes a transport header and becomes
reliant upon using it, the overall use of that field can become
ossified, preventing new versions of the protocol and mechanisms from
being deployed. Examples include:<a href="#section-4-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4-3.1">During the development of TLS 1.3 <span>[<a href="#RFC8446" class="xref">RFC8446</a>]</span>,
the design needed to function in the presence of deployed
middleboxes that relied on the presence of certain header fields
exposed in TLS 1.2 <span>[<a href="#RFC5426" class="xref">RFC5426</a>]</span>.<a href="#section-4-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4-3.2">The design of Multipath TCP (MPTCP) <span>[<a href="#RFC8684" class="xref">RFC8684</a>]</span> had to account for middleboxes (known as
"TCP Normalizers") that monitor the evolution of the window
advertised in the TCP header and then reset connections when the
window did not grow as expected.<a href="#section-4-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4-3.3">TCP Fast Open <span>[<a href="#RFC7413" class="xref">RFC7413</a>]</span> can experience
problems due to middleboxes that modify the transport header of
packets by removing "unknown" TCP options. Segments with
unrecognised TCP options can be dropped, segments that contain data
and set the SYN bit can be dropped, and some middleboxes that
disrupt connections can send data before completion of the
three-way handshake.<a href="#section-4-3.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4-3.4">Other examples of TCP ossification have included middleboxes that
modify transport headers by rewriting TCP sequence and
acknowledgement numbers but are unaware of the (newer) TCP
selective acknowledgement (SACK) option and therefore fail to
correctly rewrite the SACK information to match the changes made to
the fixed TCP header, preventing correct SACK operation.<a href="#section-4-3.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4-4">In all these cases, middleboxes with a hard-coded, but incomplete,
understanding of a specific transport behaviour (i.e., TCP) interacted
poorly with transport protocols after the transport behaviour was
changed. In some cases, the middleboxes modified or replaced information
in the transport protocol header.<a href="#section-4-4" class="pilcrow">¶</a></p>
<p id="section-4-5">Transport header encryption prevents an on-path device from observing
the transport headers and therefore stops ossified mechanisms being
used that directly rely on or infer semantics of the transport header
information. This encryption is normally combined with authentication of
the protected information. <span>[<a href="#RFC8546" class="xref">RFC8546</a>]</span> summarises this
approach, stating
that "[t]he wire image, not the protocol's specification, determines
how third parties on the network paths among protocol participants will
interact with that protocol" (<span><a href="https://www.rfc-editor.org/rfc/rfc8546#section-1" class="relref">Section 1</a> of [<a href="#RFC8546" class="xref">RFC8546</a>]</span>), and it can be expected that header information that is not
encrypted will become ossified.<a href="#section-4-5" class="pilcrow">¶</a></p>
<p id="section-4-6">Encryption does not itself prevent ossification of the network
service. People seeking to understand or classify network traffic could
still come to rely on pattern inferences and other heuristics or machine
learning to derive measurement data and as the basis for network
forwarding decisions <span>[<a href="#RFC8546" class="xref">RFC8546</a>]</span>. This can also
create dependencies on the transport protocol or the patterns of
traffic it can generate, also resulting in ossification of the
service.<a href="#section-4-6" class="pilcrow">¶</a></p>
<p id="section-4-7">Another motivation for using transport header encryption is to
improve privacy and to decrease opportunities for surveillance. Users
value the ability to protect their identity and location and defend
against analysis of the traffic. Revelations about the use of pervasive
surveillance <span>[<a href="#RFC7624" class="xref">RFC7624</a>]</span> have, to some extent, eroded
trust in the service offered by network operators and have led to an
increased use of encryption. Concerns have also been voiced about the
addition of metadata to packets by third parties to provide analytics,
customisation, advertising, cross-site tracking of users,
customer billing, or selectively allowing or blocking content.<a href="#section-4-7" class="pilcrow">¶</a></p>
<p id="section-4-8">Whatever the reasons, the IETF is designing protocols that include
transport header encryption (e.g., QUIC <span>[<a href="#RFC9000" class="xref">RFC9000</a>]</span>) to supplement the already
widespread payload encryption and to further limit exposure of
transport metadata to the network.<a href="#section-4-8" class="pilcrow">¶</a></p>
<p id="section-4-9">If a transport protocol uses header encryption, the designers have to
decide whether to encrypt all or a part of the transport-layer
information. <span><a href="https://www.rfc-editor.org/rfc/rfc8558#section-4" class="relref">Section 4</a> of [<a href="#RFC8558" class="xref">RFC8558</a>]</span> states,
"Anything exposed to the path should be done with the intent that it be
used by the network elements on the path."<a href="#section-4-9" class="pilcrow">¶</a></p>
<p id="section-4-10">Certain transport header fields can be made observable to on-path
network devices or can define new fields designed to explicitly expose
observable transport-layer information to the network. Where exposed
fields are intended to be immutable (i.e., can be observed but not
modified by a network device), the endpoints are encouraged to use
authentication to provide a cryptographic integrity check that can
detect if these immutable fields have been modified by network devices.
Authentication can help to prevent attacks that rely on sending packets
that fake exposed control signals in transport headers (e.g., TCP RST
spoofing). Making a part of a transport header observable or exposing
new header fields can lead to ossification of that part of a header as
network devices come to rely on observations of the exposed fields.<a href="#section-4-10" class="pilcrow">¶</a></p>
<p id="section-4-11">The use of transport header authentication and encryption therefore
exposes a tussle between middlebox vendors, operators, researchers,
applications developers, and end users:<a href="#section-4-11" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4-12.1">On the one hand, future Internet protocols that support transport
header encryption assist in the restoration of the end-to-end nature
of the Internet by returning complex processing to the endpoints.
Since middleboxes cannot modify what they cannot see, the use of
transport header encryption can improve application and end-user
privacy by reducing leakage of transport metadata to operators that
deploy middleboxes.<a href="#section-4-12.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4-12.2">On the other hand, encryption of transport-layer information has
implications for network operators and researchers seeking to
understand the dynamics of protocols and traffic patterns, since it
reduces the information that is available to them.<a href="#section-4-12.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4-13">The following briefly reviews some security design options for
transport protocols. "A Survey of the Interaction between Security
Protocols and Transport Services" <span>[<a href="#RFC8922" class="xref">RFC8922</a>]</span> provides
more details concerning commonly used encryption methods at the
transport layer.<a href="#section-4-13" class="pilcrow">¶</a></p>
<p id="section-4-14">Security work typically employs a design technique that seeks to
expose only what is needed <span>[<a href="#RFC3552" class="xref">RFC3552</a>]</span>. This approach
provides incentives to not reveal any information that is not necessary
for the end-to-end communication. The IETF has provided guidelines for
writing security considerations for IETF specifications <span>[<a href="#RFC3552" class="xref">RFC3552</a>]</span>.<a href="#section-4-14" class="pilcrow">¶</a></p>
<p id="section-4-15">Endpoint design choices impacting privacy also need to be considered
as a part of the design process <span>[<a href="#RFC6973" class="xref">RFC6973</a>]</span>. The IAB
has provided guidance for analysing and documenting privacy
considerations within IETF specifications <span>[<a href="#RFC6973" class="xref">RFC6973</a>]</span>.<a href="#section-4-15" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="section-4-16">
<dt id="section-4-16.1">Authenticating the Transport Protocol Header:</dt>
<dd style="margin-left: 1.5em" id="section-4-16.2">
<p id="section-4-16.2.1">Transport-layer header information can be authenticated. An example transport
authentication mechanism is TCP Authentication Option (TCP-AO) <span>[<a href="#RFC5925" class="xref">RFC5925</a>]</span>. This TCP option authenticates the IP
pseudo-header, TCP header, and TCP data. TCP-AO protects the
transport layer, preventing attacks from disabling the TCP
connection itself and provides replay protection. Such
authentication might interact with middleboxes, depending on their
behaviour <span>[<a href="#RFC3234" class="xref">RFC3234</a>]</span>.<a href="#section-4-16.2.1" class="pilcrow">¶</a></p>
<p id="section-4-16.2.2">The IPsec Authentication Header (AH) <span>[<a href="#RFC4302" class="xref">RFC4302</a>]</span> was designed to work at the network layer and authenticate
the IP payload. This approach authenticates all transport headers
and verifies their integrity at the receiver, preventing
modification by network devices on the path. The IPsec Encapsulating
Security Payload (ESP) <span>[<a href="#RFC4303" class="xref">RFC4303</a>]</span> can also
provide authentication and integrity without confidentiality using
the NULL encryption algorithm <span>[<a href="#RFC2410" class="xref">RFC2410</a>]</span>. SRTP
<span>[<a href="#RFC3711" class="xref">RFC3711</a>]</span> is another example of a transport
protocol that allows header authentication.<a href="#section-4-16.2.2" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-4-16.3">Integrity Check:</dt>
<dd style="margin-left: 1.5em" id="section-4-16.4">Transport protocols usually employ
integrity checks on the transport header information. Security
methods usually employ stronger checks and can combine this with
authentication. An integrity check that protects the immutable
transport header fields, but can still expose the transport header
information in the clear, allows on-path network devices to observe
these fields. An integrity check is not able to prevent modification
by network devices on the path but can prevent a receiving endpoint
from accepting changes and avoid impact on the transport protocol
operation, including some types of attack.<a href="#section-4-16.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4-16.5">Selectively Encrypting Transport Headers and Payload:</dt>
<dd style="margin-left: 1.5em" id="section-4-16.6">
<p id="section-4-16.6.1">A
transport protocol design that encrypts selected header fields
allows specific transport header fields to be made observable by
network devices on the path. This information is explicitly exposed
either in a transport header field or lower layer protocol header. A
design that only exposes immutable fields can also perform
end-to-end authentication of these fields across the path to prevent
undetected modification of the immutable transport headers.<a href="#section-4-16.6.1" class="pilcrow">¶</a></p>
<p id="section-4-16.6.2">Mutable fields in the transport header provide opportunities
where on-path network devices can modify the transport behaviour
(e.g., the extended headers described in <span>[<a href="#I-D.trammell-plus-abstract-mech" class="xref">PLUS-ABSTRACT-MECH</a>]</span>). An example of a
method that encrypts some, but not all, transport header information
is GRE-in-UDP <span>[<a href="#RFC8086" class="xref">RFC8086</a>]</span> when used with GRE
encryption.<a href="#section-4-16.6.2" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-4-16.7">Optional Encryption of Header Information:</dt>
<dd style="margin-left: 1.5em" id="section-4-16.8">There are
implications to the use of optional header encryption in the design
of a transport protocol, where support of optional mechanisms can
increase the complexity of the protocol and its implementation and
in the management decisions that have to be made to use variable
format fields. Instead, fields of a specific type ought to be sent
with the same level of confidentiality or integrity protection.<a href="#section-4-16.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4-16.9">Greasing:</dt>
<dd style="margin-left: 1.5em" id="section-4-16.10">
<p id="section-4-16.10.1">Protocols often provide extensibility
features, reserving fields or values for use by future versions of a
specification. The specification of receivers has traditionally
ignored unspecified values; however, on-path network devices have
emerged that ossify to require a certain value in a field or reuse
a field for another purpose. When the specification is later
updated, it is impossible to deploy the new use of the field and
forwarding of the protocol could even become conditional on a
specific header field value.<a href="#section-4-16.10.1" class="pilcrow">¶</a></p>
<p id="section-4-16.10.2">A protocol can intentionally vary the value, format,
and/or presence of observable transport header fields at random
<span>[<a href="#RFC8701" class="xref">RFC8701</a>]</span>. This prevents a network device
ossifying the use of a specific observable field and can ease future
deployment of new uses of the value or code point. This is not a
security mechanism, although the use can be combined with an
authentication mechanism.<a href="#section-4-16.10.2" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4-17">Different transports use encryption to protect their header
information to varying degrees. The trend is towards increased
protection.<a href="#section-4-17" class="pilcrow">¶</a></p>
</section>
</div>
<div id="EH2">
<section id="section-5">
<h2 id="name-intentionally-exposing-tran">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-intentionally-exposing-tran" class="section-name selfRef">Intentionally Exposing Transport Information to the Network</a>
</h2>
<p id="section-5-1">A transport protocol can choose to expose certain transport
information to on-path devices operating at the network layer by sending
observable fields. One approach is to make an explicit choice not to
encrypt certain transport header fields, making this transport
information observable by an on-path network device. Another approach is
to expose transport information in a network-layer extension header (see
<a href="#EH" class="xref">Section 5.1</a>). Both are examples of explicit information
intended to be used by network devices on the path <span>[<a href="#RFC8558" class="xref">RFC8558</a>]</span>.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">Whatever the mechanism used to expose the information, a decision to
expose only specific information places the transport endpoint in
control of what to expose outside of the encrypted transport header.
This decision can then be made independently of the transport protocol
functionality. This can be done by exposing part of the transport header
or as a network-layer option/extension.<a href="#section-5-2" class="pilcrow">¶</a></p>
<div id="EH">
<section id="section-5.1">
<h3 id="name-exposing-transport-informat">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-exposing-transport-informat" class="section-name selfRef">Exposing Transport Information in Extension Headers</a>
</h3>
<p id="section-5.1-1">At the network layer, packets can carry optional headers that
explicitly expose transport header information to the on-path devices
operating at the network layer (<a href="#tunlhf" class="xref">Section 2.3.2</a>). For
example, an endpoint that sends an IPv6 hop-by-hop option <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span> can provide explicit transport-layer
information that can be observed and used by network devices on the
path. New hop-by-hop options are not recommended in <span>[<a href="#RFC8200" class="xref">RFC8200</a>]</span> "because nodes may be configured to
ignore the Hop-by-Hop Options header, drop packets containing a
Hop-by-Hop Options header, or assign packets containing a Hop-by-Hop
Options header to a slow processing path. Designers considering
defining new hop-by-hop options need to be aware of this likely
behavior."<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<p id="section-5.1-2">Network-layer optional headers explicitly indicate the information
that is exposed, whereas use of exposed transport header information
first requires an observer to identify the transport protocol and its
format. See <a href="#Current-demux" class="xref">Section 2.2</a>.<a href="#section-5.1-2" class="pilcrow">¶</a></p>
<p id="section-5.1-3">An arbitrary path can include one or more network devices that drop
packets that include a specific header or option used for this purpose
(see <span>[<a href="#RFC7872" class="xref">RFC7872</a>]</span>). This could impact the proper
functioning of the protocols using the path. Protocol methods can be
designed to probe to discover whether the specific option(s) can be
used along the current path, enabling use on arbitrary paths.<a href="#section-5.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-5.2">
<h3 id="name-common-exposed-transport-in">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-common-exposed-transport-in" class="section-name selfRef">Common Exposed Transport Information</a>
</h3>
<p id="section-5.2-1">There are opportunities for multiple transport protocols to
consistently supply common observable information <span>[<a href="#RFC8558" class="xref">RFC8558</a>]</span>. A common approach can result in an open
definition of the observable fields. This has the potential that the
same information can be utilised across a range of operational and
analysis tools.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
</section>
<div id="exposing">
<section id="section-5.3">
<h3 id="name-considerations-for-exposing">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-considerations-for-exposing" class="section-name selfRef">Considerations for Exposing Transport Information</a>
</h3>
<p id="section-5.3-1">Considerations concerning what information, if any, it is
appropriate to expose include:<a href="#section-5.3-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5.3-2.1">On the one hand, explicitly exposing derived fields containing
relevant transport information (e.g., metrics for loss, latency,
etc.) can avoid network devices needing to derive this information
from other header fields. This could result in development and
evolution of transport-independent tools around a common
observable header and permit transport protocols to also evolve
independently of this ossified header <span>[<a href="#RFC8558" class="xref">RFC8558</a>]</span>.<a href="#section-5.3-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.3-2.2">On the other hand, protocols and implementations might be
designed to avoid consistently exposing external information that
corresponds to the actual internal information used by the
protocol itself. An endpoint/protocol could choose to expose
transport header information to optimise the benefit it gets from
the network <span>[<a href="#RFC8558" class="xref">RFC8558</a>]</span>. The value of this
information for analysing operation of the transport layer would
be enhanced if the exposed information could be verified to match
the transport protocol's observed behavior.<a href="#section-5.3-2.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5.3-3">The motivation to include actual transport header information and
the implications of network devices using this information has to be
considered when proposing such a method. <span>[<a href="#RFC8558" class="xref">RFC8558</a>]</span>
summarises this as:<a href="#section-5.3-3" class="pilcrow">¶</a></p>
<blockquote id="section-5.3-4">
When signals from endpoints to the path are independent from the
signals used by endpoints to manage the flow's state mechanics, they
may be falsified by an endpoint without affecting the peer's
understanding of the flow's state. For encrypted flows, this
divergence is not detectable by on-path devices.<a href="#section-5.3-4" class="pilcrow">¶</a>
</blockquote>
</section>
</div>
</section>
</div>
<div id="OAM">
<section id="section-6">
<h2 id="name-addition-of-transport-oam-i">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-addition-of-transport-oam-i" class="section-name selfRef">Addition of Transport OAM Information to Network-Layer Headers</a>
</h2>
<p id="section-6-1">Even when the transport headers are encrypted, on-path devices can
make measurements by utilising additional protocol headers carrying OAM
information in an additional packet header. OAM information can be
included with packets to perform functions, such as identification of
transport protocols and flows, to aide understanding of network or
transport performance or to support network operations or mitigate the
effects of specific network segments.<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2">Using network-layer approaches to reveal information has the
potential that the same method (and hence same observation and analysis
tools) can be consistently used by multiple transport protocols. This
approach also could be applied to methods beyond OAM (see <a href="#EH2" class="xref">Section 5</a>). There can also be less desirable implications
from separating the operation of the transport protocol from the
measurement framework.<a href="#section-6-2" class="pilcrow">¶</a></p>
<section id="section-6.1">
<h3 id="name-use-of-oam-within-a-mainten">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-use-of-oam-within-a-mainten" class="section-name selfRef">Use of OAM within a Maintenance Domain</a>
</h3>
<p id="section-6.1-1">OAM information can be restricted to a maintenance domain,
typically owned and operated by a single entity. OAM information can
be added at the ingress to the maintenance domain (e.g., an Ethernet
protocol header with timestamps and sequence number information using
a method such as 802.11ag or in-situ OAM <span>[<a href="#I-D.ietf-ippm-ioam-data" class="xref">IOAM-DATA</a>]</span> or as a part of the
encapsulation protocol). This additional header information is not
delivered to the endpoints and is typically removed at the egress of
the maintenance domain.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1-2">Although some types of measurements are supported, this approach
does not cover the entire range of measurements described in this
document. In some cases, it can be difficult to position measurement
tools at the appropriate segments/nodes, and there can be challenges in
correlating the downstream/upstream information when in-band OAM data
is inserted by an on-path device.<a href="#section-6.1-2" class="pilcrow">¶</a></p>
</section>
<section id="section-6.2">
<h3 id="name-use-of-oam-across-multiple-">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-use-of-oam-across-multiple-" class="section-name selfRef">Use of OAM across Multiple Maintenance Domains</a>
</h3>
<p id="section-6.2-1">OAM information can also be added at the network layer by the
sender as an IPv6 extension header or an IPv4 option or in an
encapsulation/tunnel header that also includes an extension header or
option. This information can be used across multiple network segments
or between the transport endpoints.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<p id="section-6.2-2">One example is the IPv6 Performance and Diagnostic Metrics (PDM)
destination option <span>[<a href="#RFC8250" class="xref">RFC8250</a>]</span>. This allows a
sender to optionally include a destination option that carries header
fields that can be used to observe timestamps and packet sequence
numbers. This information could be authenticated by a receiving
transport endpoint when the information is added at the sender and
visible at the receiving endpoint, although methods to do this have
not currently been proposed. This needs to be explicitly enabled at
the sender.<a href="#section-6.2-2" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<section id="section-7">
<h2 id="name-conclusions">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-conclusions" class="section-name selfRef">Conclusions</a>
</h2>
<p id="section-7-1">Header authentication and encryption and strong integrity checks are being incorporated
into new transport protocols and have important benefits. The pace of the
development of transports using the WebRTC data channel and the rapid
deployment of the QUIC transport protocol can both be attributed to
using the combination of UDP as a substrate while providing
confidentiality and authentication of the encapsulated transport headers
and payload.<a href="#section-7-1" class="pilcrow">¶</a></p>
<p id="section-7-2">This document has described some current practises, and the
implications for some stakeholders, when transport-layer header
encryption is used. It does not judge whether these practises are
necessary or endorse the use of any specific practise. Rather, the
intent is to highlight operational tools and practises to consider when
designing and modifying transport protocols, so protocol designers can
make informed choices about what transport header fields to encrypt and
whether it might be beneficial to make an explicit choice to expose
certain fields to devices on the network path. In making such a
decision, it is important to balance:<a href="#section-7-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="section-7-3">
<dt id="section-7-3.1">User Privacy:</dt>
<dd style="margin-left: 1.5em" id="section-7-3.2">The less transport header information that is
exposed to the network, the lower the risk of leaking metadata that
might have user privacy implications. Transports that chose to
expose some header fields need to make a privacy assessment to
understand the privacy cost versus benefit trade-off in making that
information available. The design of the QUIC spin bit to the
network is an example of such considered analysis.<a href="#section-7-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7-3.3">Transport Ossification:</dt>
<dd style="margin-left: 1.5em" id="section-7-3.4">Unencrypted transport header fields are
likely to ossify rapidly, as network devices come to rely on their
presence, making it difficult to change the transport in future.
This argues that the choice to expose information to the network is
made deliberately and with care, since it is essentially defining a
stable interface between the transport and the network. Some
protocols will want to make that interface as limited as possible;
other protocols might find value in exposing certain information to
signal to the network or in allowing the network to change certain
header fields as signals to the transport. The visible wire image of
a protocol should be explicitly designed.<a href="#section-7-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7-3.5">Network Ossification:</dt>
<dd style="margin-left: 1.5em" id="section-7-3.6">While encryption can reduce ossification of
the transport protocol, it does not itself prevent ossification of
the network service. People seeking to understand network traffic
could still come to rely on pattern inferences and other heuristics
or machine learning to derive measurement data and as the basis for
network forwarding decisions <span>[<a href="#RFC8546" class="xref">RFC8546</a>]</span>. This
creates dependencies on the transport protocol or the patterns of
traffic it can generate, resulting in ossification of the
service.<a href="#section-7-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7-3.7">Impact on Operational Practice:</dt>
<dd style="margin-left: 1.5em" id="section-7-3.8">The network operations community
has long relied on being able to understand Internet traffic
patterns, both in aggregate and at the flow level, to support
network management, traffic engineering, and troubleshooting.
Operational practice has developed based on the information
available from unencrypted transport headers. The IETF has supported
this practice by developing operations and management specifications, interface
specifications, and associated Best
Current Practices. Widespread deployment of transport protocols that
encrypt their information will impact network operations unless
operators can develop alternative practises that work without access
to the transport header.<a href="#section-7-3.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7-3.9">Pace of Evolution:</dt>
<dd style="margin-left: 1.5em" id="section-7-3.10">Removing obstacles to change can enable an
increased pace of evolution. If a protocol changes its transport
header format (wire image) or its transport behaviour, this can
result in the currently deployed tools and methods becoming no
longer relevant. Where this needs to be accompanied by development
of appropriate operational support functions and procedures, it can
incur a cost in new tooling to catch up with each change. Protocols
that consistently expose observable data do not require such
development but can suffer from ossification and need to consider
if the exposed protocol metadata has privacy implications. There is
no single deployment context; therefore, designers need to
consider the diversity of operational networks (ISPs, enterprises,
DDoS mitigation and firewall maintainers, etc.).<a href="#section-7-3.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7-3.11">Supporting Common Specifications:</dt>
<dd style="margin-left: 1.5em" id="section-7-3.12">Common, open, transport
specifications can stimulate engagement by developers, users,
researchers, and the broader community. Increased protocol diversity
can be beneficial in meeting new requirements, but the ability to
innovate without public scrutiny risks point solutions that optimise
for specific cases and that can accidentally disrupt operations
of/in different parts of the network. The social contract that
maintains the stability of the Internet relies on accepting common
transport specifications and on it being possible to detect
violations. The existence of independent measurements, transparency,
and public scrutiny of transport protocol behaviour helps the
community to enforce the social norm that protocol implementations
behave fairly and conform (at least mostly) to the specifications.
It is important to find new ways of maintaining that community trust
as increased use of transport header encryption limits visibility
into transport behaviour (see also <a href="#exposing" class="xref">Section 5.3</a>).<a href="#section-7-3.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7-3.13">Impact on Benchmarking and Understanding Feature Interactions:</dt>
<dd style="margin-left: 1.5em" id="section-7-3.14">An appropriate vantage point for observation, coupled with timing
information about traffic flows, provides a valuable tool for
benchmarking network devices, endpoint stacks, and/or
configurations. This can help understand complex feature
interactions. An inability to observe transport header information
can make it harder to diagnose and explore interactions between
features at different protocol layers, a side effect of not allowing
a choice of vantage point from which this information is observed.
New approaches might have to be developed.<a href="#section-7-3.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-7-3.15">Impact on Research and Development:</dt>
<dd style="margin-left: 1.5em" id="section-7-3.16">Hiding transport header
information can impede independent research into new mechanisms,
measurements of behaviour, and development initiatives. Experience
shows that transport protocols are complicated to design and complex
to deploy and that individual mechanisms have to be evaluated while
considering other mechanisms across a broad range of network
topologies and with attention to the impact on traffic sharing the
capacity. If increased use of transport header encryption results in
reduced availability of open data, it could eliminate the
independent checks to the standardisation process that have
previously been in place from research and academic contributors
(e.g., the role of the IRTF Internet Congestion Control Research
Group (ICCRG) and research publications in reviewing new transport
mechanisms and assessing the impact of their deployment).<a href="#section-7-3.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-7-4">Observable transport header information might be useful to various
stakeholders. Other sets of stakeholders have incentives to limit what
can be observed. This document does not make recommendations about what
information ought to be exposed, to whom it ought to be observable, or
how this will be achieved. There are also design choices about where
observable fields are placed. For example, one location could be a part
of the transport header outside of the encryption envelope; another
alternative is to carry the information in a network-layer option or
extension header. New transport protocol designs ought to explicitly
identify any fields that are intended to be observed, consider if there
are alternative ways of providing the information, and reflect on the
implications of observable fields being used by on-path network devices
and how this might impact user privacy and protocol evolution when these
fields become ossified.<a href="#section-7-4" class="pilcrow">¶</a></p>
<p id="section-7-5">As <span>[<a href="#RFC7258" class="xref">RFC7258</a>]</span> notes, "Making networks
unmanageable to mitigate PM is not an acceptable
outcome, but ignoring PM would go against the
consensus documented here." Providing explicit information can help
avoid traffic being inappropriately classified, impacting application
performance. An appropriate balance will emerge over time as real
instances of this tension are analysed <span>[<a href="#RFC7258" class="xref">RFC7258</a>]</span>.
This balance between information exposed and information hidden ought to
be carefully considered when specifying new transport protocols.<a href="#section-7-5" class="pilcrow">¶</a></p>
</section>
<div id="Security">
<section id="section-8">
<h2 id="name-security-considerations">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-8-1">This document is about design and deployment considerations for
transport protocols. Issues relating to security are discussed
throughout this document.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">Authentication, confidentiality protection, and integrity protection
are identified as transport features by <span>[<a href="#RFC8095" class="xref">RFC8095</a>]</span>.
As currently deployed in the Internet, these features are generally
provided by a protocol or layer on top of the transport protocol <span>[<a href="#RFC8922" class="xref">RFC8922</a>]</span>.<a href="#section-8-2" class="pilcrow">¶</a></p>
<p id="section-8-3">Confidentiality and strong integrity checks have properties that can
also be incorporated into the design of a transport protocol or to
modify an existing transport. Integrity checks can protect an endpoint
from undetected modification of protocol fields by on-path network
devices, whereas encryption and obfuscation or greasing can further
prevent these headers being utilised by network devices <span>[<a href="#RFC8701" class="xref">RFC8701</a>]</span>. Preventing observation of headers provides an
opportunity for greater freedom to update the protocols and can ease
experimentation with new techniques and their final deployment in
endpoints. A protocol specification needs to weigh the costs of
ossifying common headers versus the potential benefits of exposing
specific information that could be observed along the network path to
provide tools to manage new variants of protocols.<a href="#section-8-3" class="pilcrow">¶</a></p>
<p id="section-8-4">Header encryption can provide confidentiality of some or all of the
transport header information. This prevents an on-path device from
gaining knowledge of the header field. It therefore prevents mechanisms
being built that directly rely on the information or seeks to infer
semantics of an exposed header field. Reduced visibility into transport
metadata can limit the ability to measure and characterise traffic and
conversely can provide privacy benefits.<a href="#section-8-4" class="pilcrow">¶</a></p>
<p id="section-8-5">Extending the transport payload security context to also include the
transport protocol header protects both types of information with the
same key. A privacy concern would arise if this key was shared with a
third party, e.g., providing access to transport header information to
debug a performance issue would also result in exposing the transport
payload data to the same third party. Such risks would be mitigated
using a layered security design that provides one domain of protection
and associated keys for the transport payload and encrypted transport
headers and a separate domain of protection and associated keys for any
observable transport header fields.<a href="#section-8-5" class="pilcrow">¶</a></p>
<p id="section-8-6">Exposed transport headers are sometimes utilised as a part of the
information to detect anomalies in network traffic. As stated in <span>[<a href="#RFC7258" class="xref">RFC7258</a>]</span>, "While PM is an
attack, other forms of monitoring that might fit the definition of PM
can be beneficial and not part of any attack, e.g., network management
functions monitor packets or flows and anti-spam mechanisms need to see
mail message content." This can be used
as the first line of defence to identify potential threats from DoS or
malware and redirect suspect traffic to dedicated nodes responsible for
DoS analysis, for malware detection, or to perform packet "scrubbing" (the
normalisation of packets so that there are no ambiguities in
interpretation by the ultimate destination of the packet). These
techniques are currently used by some operators to also defend from
distributed DoS attacks.<a href="#section-8-6" class="pilcrow">¶</a></p>
<p id="section-8-7">Exposed transport header fields can also form a part of the
information used by the receiver of a transport protocol to protect the
transport layer from data injection by an attacker. In evaluating this
use of exposed header information, it is important to consider whether
it introduces a significant DoS threat. For example, an attacker could
construct a DoS attack by sending packets with a sequence number that
falls within the currently accepted range of sequence numbers at the
receiving endpoint. This would then introduce additional work at the
receiving endpoint, even though the data in the attacking packet might
not finally be delivered by the transport layer. This is sometimes known
as a "shadowing attack". An attack can, for example, disrupt
receiver processing, trigger loss and retransmission, or make a
receiving endpoint perform unproductive decryption of packets that
cannot be successfully decrypted (forcing a receiver to commit
decryption resources, or to update and then restore protocol state).<a href="#section-8-7" class="pilcrow">¶</a></p>
<p id="section-8-8">One mitigation to off-path attacks is to deny knowledge of what header
information is accepted by a receiver or obfuscate the accepted header
information, e.g., setting a nonpredictable initial value for a
sequence number during a protocol handshake, as in <span>[<a href="#RFC3550" class="xref">RFC3550</a>]</span>
and <span>[<a href="#RFC6056" class="xref">RFC6056</a>]</span>, or a port
value that cannot be predicted (see <span><a href="https://www.rfc-editor.org/rfc/rfc8085#section-5.1" class="relref">Section 5.1</a> of [<a href="#RFC8085" class="xref">RFC8085</a>]</span>). A receiver could also require additional
information to be used as a part of a validation check before accepting
packets at the transport layer, e.g., utilising a part of the sequence
number space that is encrypted or by verifying an encrypted token not
visible to an attacker. This would also mitigate against on-path
attacks. An additional processing cost can be incurred when decryption
is attempted before a receiver discards an injected packet.<a href="#section-8-8" class="pilcrow">¶</a></p>
<p id="section-8-9">The existence of open transport protocol standards and a research
and operations community with a history of independent observation and
evaluation of performance data encourage fairness and conformance to
those standards. This suggests careful consideration will be made over
where, and when, measurement samples are collected. An appropriate
balance between encrypting some or all of the transport header
information needs to be considered. Open data and accessibility to
tools that can help understand trends in application deployment, network
traffic, and usage patterns can all contribute to understanding security
challenges.<a href="#section-8-9" class="pilcrow">¶</a></p>
<p id="section-8-10">The security and privacy considerations in "A Framework for
Large-Scale Measurement of Broadband Performance (LMAP)" <span>[<a href="#RFC7594" class="xref">RFC7594</a>]</span> contain considerations for Active and Passive
measurement techniques and supporting material on measurement
context.<a href="#section-8-10" class="pilcrow">¶</a></p>
<p id="section-8-11">Addition of observable transport information to the path increases
the information available to an observer and may, when this information
can be linked to a node or user, reduce the privacy of the user. See the
security considerations of <span>[<a href="#RFC8558" class="xref">RFC8558</a>]</span>.<a href="#section-8-11" class="pilcrow">¶</a></p>
</section>
</div>
<div id="IANA">
<section id="section-9">
<h2 id="name-iana-considerations">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-9-1">This document has no IANA actions.<a href="#section-9-1" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-10">
<h2 id="name-informative-references">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h2>
<dl class="references">
<dt id="bufferbloat">[bufferbloat]</dt>
<dd>
<span class="refAuthor">Gettys, J.</span> and <span class="refAuthor">K. Nichols</span>, <span class="refTitle">"Bufferbloat: Dark Buffers in the Internet"</span>, <span class="refContent">Communications of the ACM, Vol. 55, no. 1, pp. 57-65</span>, <span class="seriesInfo">DOI 10.1145/2063176.2063196</span>, <time datetime="2012-01" class="refDate">January 2012</time>, <span><<a href="https://doi.org/10.1145/2063176.2063196">https://doi.org/10.1145/2063176.2063196</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-tls-dtls13">[DTLS]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refAuthor">Tschofenig, H.</span>, and <span class="refAuthor">N. Modadugu</span>, <span class="refTitle">"The Datagram Transport Layer Security (DTLS) Protocol Version 1.3"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-tls-dtls13-43</span>, <time datetime="2021-04-30" class="refDate">30 April 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43">https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-ippm-ioam-data">[IOAM-DATA]</dt>
<dd>
<span class="refAuthor">Brockners, F.</span>, <span class="refAuthor">Bhandari, S.</span>, and <span class="refAuthor">T. Mizrahi</span>, <span class="refTitle">"Data Fields for In-situ OAM"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-ippm-ioam-data-12</span>, <time datetime="2021-02-21" class="refDate">21 February 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-12">https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-12</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-6man-ipv6-alt-mark">[IPV6-ALT-MARK]</dt>
<dd>
<span class="refAuthor">Fioccola, G.</span>, <span class="refAuthor">Zhou, T.</span>, <span class="refAuthor">Cociglio, M.</span>, <span class="refAuthor">Qin, F.</span>, and <span class="refAuthor">R. Pang</span>, <span class="refTitle">"IPv6 Application of the Alternate Marking Method"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-6man-ipv6-alt-mark-06</span>, <time datetime="2021-05-31" class="refDate">31 May 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-6man-ipv6-alt-mark-06">https://datatracker.ietf.org/doc/html/draft-ietf-6man-ipv6-alt-mark-06</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Latency">[Latency]</dt>
<dd>
<span class="refAuthor">Briscoe, B.</span>, <span class="refAuthor">Brunstrom, A.</span>, <span class="refAuthor">Petlund, A.</span>, <span class="refAuthor">Hayes, D.</span>, <span class="refAuthor">Ros, D.</span>, <span class="refAuthor">Tsang, I.</span>, <span class="refAuthor">Gjessing, S.</span>, <span class="refAuthor">Fairhurst, G.</span>, <span class="refAuthor">Griwodz, C.</span>, and <span class="refAuthor">M. Welzl</span>, <span class="refTitle">"Reducing Internet Latency: A Survey of Techniques and Their Merits"</span>, <span class="refContent">IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 2149-2196,
thirdquarter 2016</span>, <span class="seriesInfo">DOI 10.1109/COMST.2014.2375213</span>, <time datetime="2014-11" class="refDate">November 2014</time>, <span><<a href="https://doi.org/10.1109/COMST.2014.2375213">https://doi.org/10.1109/COMST.2014.2375213</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Measurement">[Measurement]</dt>
<dd>
<span class="refAuthor">Fairhurst, G.</span>, <span class="refAuthor">Kuehlewind, M.</span>, and <span class="refAuthor">D. Lopez</span>, <span class="refTitle">"Measurement-based Protocol Design"</span>, <span class="refContent">European Conference on Networks and Communications, Oulu, Finland.</span>, <time datetime="2017-06" class="refDate">June 2017</time>. </dd>
<dd class="break"></dd>
<dt id="PAM-RTT">[PAM-RTT]</dt>
<dd>
<span class="refAuthor">Trammell, B.</span> and <span class="refAuthor">M. Kuehlewind</span>, <span class="refTitle">"Revisiting the Privacy Implications of Two-Way Internet Latency Data"</span>, <span class="refContent">Passive and Active Measurement</span>, <time datetime="2018-03" class="refDate">March 2018</time>. </dd>
<dd class="break"></dd>
<dt id="I-D.trammell-plus-abstract-mech">[PLUS-ABSTRACT-MECH]</dt>
<dd>
<span class="refAuthor">Trammell, B.</span>, <span class="refTitle">"Abstract Mechanisms for a Cooperative Path Layer under Endpoint Control"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-trammell-plus-abstract-mech-00</span>, <time datetime="2016-09-28" class="refDate">28 September 2016</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-trammell-plus-abstract-mech-00">https://datatracker.ietf.org/doc/html/draft-trammell-plus-abstract-mech-00</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-quic-qlog-main-schema">[QLOG]</dt>
<dd>
<span class="refAuthor">Marx, R.</span>, <span class="refAuthor">Niccolini, L.</span>, and <span class="refAuthor">M. Seemann</span>, <span class="refTitle">"Main logging schema for qlog"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-quic-qlog-main-schema-00</span>, <time datetime="2021-06-10" class="refDate">10 June 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-00">https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-00</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Quic-Trace">[Quic-Trace]</dt>
<dd>
<span class="refTitle">"QUIC trace utilities"</span>, <span class="refContent">Commit 413c3a4</span>, <span><<a href="https://github.com/google/quic-trace">https://github.com/google/quic-trace</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC0791">[RFC0791]</dt>
<dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Internet Protocol"</span>, <span class="seriesInfo">STD 5</span>, <span class="seriesInfo">RFC 791</span>, <span class="seriesInfo">DOI 10.17487/RFC0791</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span><<a href="https://www.rfc-editor.org/info/rfc791">https://www.rfc-editor.org/info/rfc791</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2410">[RFC2410]</dt>
<dd>
<span class="refAuthor">Glenn, R.</span> and <span class="refAuthor">S. Kent</span>, <span class="refTitle">"The NULL Encryption Algorithm and Its Use With IPsec"</span>, <span class="seriesInfo">RFC 2410</span>, <span class="seriesInfo">DOI 10.17487/RFC2410</span>, <time datetime="1998-11" class="refDate">November 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2410">https://www.rfc-editor.org/info/rfc2410</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2474">[RFC2474]</dt>
<dd>
<span class="refAuthor">Nichols, K.</span>, <span class="refAuthor">Blake, S.</span>, <span class="refAuthor">Baker, F.</span>, and <span class="refAuthor">D. Black</span>, <span class="refTitle">"Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"</span>, <span class="seriesInfo">RFC 2474</span>, <span class="seriesInfo">DOI 10.17487/RFC2474</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2474">https://www.rfc-editor.org/info/rfc2474</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2475">[RFC2475]</dt>
<dd>
<span class="refAuthor">Blake, S.</span>, <span class="refAuthor">Black, D.</span>, <span class="refAuthor">Carlson, M.</span>, <span class="refAuthor">Davies, E.</span>, <span class="refAuthor">Wang, Z.</span>, and <span class="refAuthor">W. Weiss</span>, <span class="refTitle">"An Architecture for Differentiated Services"</span>, <span class="seriesInfo">RFC 2475</span>, <span class="seriesInfo">DOI 10.17487/RFC2475</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2475">https://www.rfc-editor.org/info/rfc2475</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2507">[RFC2507]</dt>
<dd>
<span class="refAuthor">Degermark, M.</span>, <span class="refAuthor">Nordgren, B.</span>, and <span class="refAuthor">S. Pink</span>, <span class="refTitle">"IP Header Compression"</span>, <span class="seriesInfo">RFC 2507</span>, <span class="seriesInfo">DOI 10.17487/RFC2507</span>, <time datetime="1999-02" class="refDate">February 1999</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2507">https://www.rfc-editor.org/info/rfc2507</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2508">[RFC2508]</dt>
<dd>
<span class="refAuthor">Casner, S.</span> and <span class="refAuthor">V. Jacobson</span>, <span class="refTitle">"Compressing IP/UDP/RTP Headers for Low-Speed Serial Links"</span>, <span class="seriesInfo">RFC 2508</span>, <span class="seriesInfo">DOI 10.17487/RFC2508</span>, <time datetime="1999-02" class="refDate">February 1999</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2508">https://www.rfc-editor.org/info/rfc2508</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2914">[RFC2914]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span>, <span class="refTitle">"Congestion Control Principles"</span>, <span class="seriesInfo">BCP 41</span>, <span class="seriesInfo">RFC 2914</span>, <span class="seriesInfo">DOI 10.17487/RFC2914</span>, <time datetime="2000-09" class="refDate">September 2000</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2914">https://www.rfc-editor.org/info/rfc2914</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3168">[RFC3168]</dt>
<dd>
<span class="refAuthor">Ramakrishnan, K.</span>, <span class="refAuthor">Floyd, S.</span>, and <span class="refAuthor">D. Black</span>, <span class="refTitle">"The Addition of Explicit Congestion Notification (ECN) to IP"</span>, <span class="seriesInfo">RFC 3168</span>, <span class="seriesInfo">DOI 10.17487/RFC3168</span>, <time datetime="2001-09" class="refDate">September 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3168">https://www.rfc-editor.org/info/rfc3168</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3234">[RFC3234]</dt>
<dd>
<span class="refAuthor">Carpenter, B.</span> and <span class="refAuthor">S. Brim</span>, <span class="refTitle">"Middleboxes: Taxonomy and Issues"</span>, <span class="seriesInfo">RFC 3234</span>, <span class="seriesInfo">DOI 10.17487/RFC3234</span>, <time datetime="2002-02" class="refDate">February 2002</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3234">https://www.rfc-editor.org/info/rfc3234</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3261">[RFC3261]</dt>
<dd>
<span class="refAuthor">Rosenberg, J.</span>, <span class="refAuthor">Schulzrinne, H.</span>, <span class="refAuthor">Camarillo, G.</span>, <span class="refAuthor">Johnston, A.</span>, <span class="refAuthor">Peterson, J.</span>, <span class="refAuthor">Sparks, R.</span>, <span class="refAuthor">Handley, M.</span>, and <span class="refAuthor">E. Schooler</span>, <span class="refTitle">"SIP: Session Initiation Protocol"</span>, <span class="seriesInfo">RFC 3261</span>, <span class="seriesInfo">DOI 10.17487/RFC3261</span>, <time datetime="2002-06" class="refDate">June 2002</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3261">https://www.rfc-editor.org/info/rfc3261</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3393">[RFC3393]</dt>
<dd>
<span class="refAuthor">Demichelis, C.</span> and <span class="refAuthor">P. Chimento</span>, <span class="refTitle">"IP Packet Delay Variation Metric for IP Performance Metrics (IPPM)"</span>, <span class="seriesInfo">RFC 3393</span>, <span class="seriesInfo">DOI 10.17487/RFC3393</span>, <time datetime="2002-11" class="refDate">November 2002</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3393">https://www.rfc-editor.org/info/rfc3393</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3550">[RFC3550]</dt>
<dd>
<span class="refAuthor">Schulzrinne, H.</span>, <span class="refAuthor">Casner, S.</span>, <span class="refAuthor">Frederick, R.</span>, and <span class="refAuthor">V. Jacobson</span>, <span class="refTitle">"RTP: A Transport Protocol for Real-Time Applications"</span>, <span class="seriesInfo">STD 64</span>, <span class="seriesInfo">RFC 3550</span>, <span class="seriesInfo">DOI 10.17487/RFC3550</span>, <time datetime="2003-07" class="refDate">July 2003</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3550">https://www.rfc-editor.org/info/rfc3550</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3552">[RFC3552]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span> and <span class="refAuthor">B. Korver</span>, <span class="refTitle">"Guidelines for Writing RFC Text on Security Considerations"</span>, <span class="seriesInfo">BCP 72</span>, <span class="seriesInfo">RFC 3552</span>, <span class="seriesInfo">DOI 10.17487/RFC3552</span>, <time datetime="2003-07" class="refDate">July 2003</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3552">https://www.rfc-editor.org/info/rfc3552</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3711">[RFC3711]</dt>
<dd>
<span class="refAuthor">Baugher, M.</span>, <span class="refAuthor">McGrew, D.</span>, <span class="refAuthor">Naslund, M.</span>, <span class="refAuthor">Carrara, E.</span>, and <span class="refAuthor">K. Norrman</span>, <span class="refTitle">"The Secure Real-time Transport Protocol (SRTP)"</span>, <span class="seriesInfo">RFC 3711</span>, <span class="seriesInfo">DOI 10.17487/RFC3711</span>, <time datetime="2004-03" class="refDate">March 2004</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3711">https://www.rfc-editor.org/info/rfc3711</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4302">[RFC4302]</dt>
<dd>
<span class="refAuthor">Kent, S.</span>, <span class="refTitle">"IP Authentication Header"</span>, <span class="seriesInfo">RFC 4302</span>, <span class="seriesInfo">DOI 10.17487/RFC4302</span>, <time datetime="2005-12" class="refDate">December 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4302">https://www.rfc-editor.org/info/rfc4302</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4303">[RFC4303]</dt>
<dd>
<span class="refAuthor">Kent, S.</span>, <span class="refTitle">"IP Encapsulating Security Payload (ESP)"</span>, <span class="seriesInfo">RFC 4303</span>, <span class="seriesInfo">DOI 10.17487/RFC4303</span>, <time datetime="2005-12" class="refDate">December 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4303">https://www.rfc-editor.org/info/rfc4303</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4585">[RFC4585]</dt>
<dd>
<span class="refAuthor">Ott, J.</span>, <span class="refAuthor">Wenger, S.</span>, <span class="refAuthor">Sato, N.</span>, <span class="refAuthor">Burmeister, C.</span>, and <span class="refAuthor">J. Rey</span>, <span class="refTitle">"Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"</span>, <span class="seriesInfo">RFC 4585</span>, <span class="seriesInfo">DOI 10.17487/RFC4585</span>, <time datetime="2006-07" class="refDate">July 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4585">https://www.rfc-editor.org/info/rfc4585</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4737">[RFC4737]</dt>
<dd>
<span class="refAuthor">Morton, A.</span>, <span class="refAuthor">Ciavattone, L.</span>, <span class="refAuthor">Ramachandran, G.</span>, <span class="refAuthor">Shalunov, S.</span>, and <span class="refAuthor">J. Perser</span>, <span class="refTitle">"Packet Reordering Metrics"</span>, <span class="seriesInfo">RFC 4737</span>, <span class="seriesInfo">DOI 10.17487/RFC4737</span>, <time datetime="2006-11" class="refDate">November 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4737">https://www.rfc-editor.org/info/rfc4737</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4960">[RFC4960]</dt>
<dd>
<span class="refAuthor">Stewart, R., Ed.</span>, <span class="refTitle">"Stream Control Transmission Protocol"</span>, <span class="seriesInfo">RFC 4960</span>, <span class="seriesInfo">DOI 10.17487/RFC4960</span>, <time datetime="2007-09" class="refDate">September 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4960">https://www.rfc-editor.org/info/rfc4960</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5166">[RFC5166]</dt>
<dd>
<span class="refAuthor">Floyd, S., Ed.</span>, <span class="refTitle">"Metrics for the Evaluation of Congestion Control Mechanisms"</span>, <span class="seriesInfo">RFC 5166</span>, <span class="seriesInfo">DOI 10.17487/RFC5166</span>, <time datetime="2008-03" class="refDate">March 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5166">https://www.rfc-editor.org/info/rfc5166</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5218">[RFC5218]</dt>
<dd>
<span class="refAuthor">Thaler, D.</span> and <span class="refAuthor">B. Aboba</span>, <span class="refTitle">"What Makes for a Successful Protocol?"</span>, <span class="seriesInfo">RFC 5218</span>, <span class="seriesInfo">DOI 10.17487/RFC5218</span>, <time datetime="2008-07" class="refDate">July 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5218">https://www.rfc-editor.org/info/rfc5218</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5236">[RFC5236]</dt>
<dd>
<span class="refAuthor">Jayasumana, A.</span>, <span class="refAuthor">Piratla, N.</span>, <span class="refAuthor">Banka, T.</span>, <span class="refAuthor">Bare, A.</span>, and <span class="refAuthor">R. Whitner</span>, <span class="refTitle">"Improved Packet Reordering Metrics"</span>, <span class="seriesInfo">RFC 5236</span>, <span class="seriesInfo">DOI 10.17487/RFC5236</span>, <time datetime="2008-06" class="refDate">June 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5236">https://www.rfc-editor.org/info/rfc5236</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5426">[RFC5426]</dt>
<dd>
<span class="refAuthor">Okmianski, A.</span>, <span class="refTitle">"Transmission of Syslog Messages over UDP"</span>, <span class="seriesInfo">RFC 5426</span>, <span class="seriesInfo">DOI 10.17487/RFC5426</span>, <time datetime="2009-03" class="refDate">March 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5426">https://www.rfc-editor.org/info/rfc5426</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5481">[RFC5481]</dt>
<dd>
<span class="refAuthor">Morton, A.</span> and <span class="refAuthor">B. Claise</span>, <span class="refTitle">"Packet Delay Variation Applicability Statement"</span>, <span class="seriesInfo">RFC 5481</span>, <span class="seriesInfo">DOI 10.17487/RFC5481</span>, <time datetime="2009-03" class="refDate">March 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5481">https://www.rfc-editor.org/info/rfc5481</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5795">[RFC5795]</dt>
<dd>
<span class="refAuthor">Sandlund, K.</span>, <span class="refAuthor">Pelletier, G.</span>, and <span class="refAuthor">L-E. Jonsson</span>, <span class="refTitle">"The RObust Header Compression (ROHC) Framework"</span>, <span class="seriesInfo">RFC 5795</span>, <span class="seriesInfo">DOI 10.17487/RFC5795</span>, <time datetime="2010-03" class="refDate">March 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5795">https://www.rfc-editor.org/info/rfc5795</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5925">[RFC5925]</dt>
<dd>
<span class="refAuthor">Touch, J.</span>, <span class="refAuthor">Mankin, A.</span>, and <span class="refAuthor">R. Bonica</span>, <span class="refTitle">"The TCP Authentication Option"</span>, <span class="seriesInfo">RFC 5925</span>, <span class="seriesInfo">DOI 10.17487/RFC5925</span>, <time datetime="2010-06" class="refDate">June 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5925">https://www.rfc-editor.org/info/rfc5925</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6056">[RFC6056]</dt>
<dd>
<span class="refAuthor">Larsen, M.</span> and <span class="refAuthor">F. Gont</span>, <span class="refTitle">"Recommendations for Transport-Protocol Port Randomization"</span>, <span class="seriesInfo">BCP 156</span>, <span class="seriesInfo">RFC 6056</span>, <span class="seriesInfo">DOI 10.17487/RFC6056</span>, <time datetime="2011-01" class="refDate">January 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6056">https://www.rfc-editor.org/info/rfc6056</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6269">[RFC6269]</dt>
<dd>
<span class="refAuthor">Ford, M., Ed.</span>, <span class="refAuthor">Boucadair, M.</span>, <span class="refAuthor">Durand, A.</span>, <span class="refAuthor">Levis, P.</span>, and <span class="refAuthor">P. Roberts</span>, <span class="refTitle">"Issues with IP Address Sharing"</span>, <span class="seriesInfo">RFC 6269</span>, <span class="seriesInfo">DOI 10.17487/RFC6269</span>, <time datetime="2011-06" class="refDate">June 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6269">https://www.rfc-editor.org/info/rfc6269</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6294">[RFC6294]</dt>
<dd>
<span class="refAuthor">Hu, Q.</span> and <span class="refAuthor">B. Carpenter</span>, <span class="refTitle">"Survey of Proposed Use Cases for the IPv6 Flow Label"</span>, <span class="seriesInfo">RFC 6294</span>, <span class="seriesInfo">DOI 10.17487/RFC6294</span>, <time datetime="2011-06" class="refDate">June 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6294">https://www.rfc-editor.org/info/rfc6294</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6347">[RFC6347]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span> and <span class="refAuthor">N. Modadugu</span>, <span class="refTitle">"Datagram Transport Layer Security Version 1.2"</span>, <span class="seriesInfo">RFC 6347</span>, <span class="seriesInfo">DOI 10.17487/RFC6347</span>, <time datetime="2012-01" class="refDate">January 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6347">https://www.rfc-editor.org/info/rfc6347</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6437">[RFC6437]</dt>
<dd>
<span class="refAuthor">Amante, S.</span>, <span class="refAuthor">Carpenter, B.</span>, <span class="refAuthor">Jiang, S.</span>, and <span class="refAuthor">J. Rajahalme</span>, <span class="refTitle">"IPv6 Flow Label Specification"</span>, <span class="seriesInfo">RFC 6437</span>, <span class="seriesInfo">DOI 10.17487/RFC6437</span>, <time datetime="2011-11" class="refDate">November 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6437">https://www.rfc-editor.org/info/rfc6437</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6438">[RFC6438]</dt>
<dd>
<span class="refAuthor">Carpenter, B.</span> and <span class="refAuthor">S. Amante</span>, <span class="refTitle">"Using the IPv6 Flow Label for Equal Cost Multipath Routing and Link Aggregation in Tunnels"</span>, <span class="seriesInfo">RFC 6438</span>, <span class="seriesInfo">DOI 10.17487/RFC6438</span>, <time datetime="2011-11" class="refDate">November 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6438">https://www.rfc-editor.org/info/rfc6438</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6846">[RFC6846]</dt>
<dd>
<span class="refAuthor">Pelletier, G.</span>, <span class="refAuthor">Sandlund, K.</span>, <span class="refAuthor">Jonsson, L-E.</span>, and <span class="refAuthor">M. West</span>, <span class="refTitle">"RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP)"</span>, <span class="seriesInfo">RFC 6846</span>, <span class="seriesInfo">DOI 10.17487/RFC6846</span>, <time datetime="2013-01" class="refDate">January 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6846">https://www.rfc-editor.org/info/rfc6846</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6973">[RFC6973]</dt>
<dd>
<span class="refAuthor">Cooper, A.</span>, <span class="refAuthor">Tschofenig, H.</span>, <span class="refAuthor">Aboba, B.</span>, <span class="refAuthor">Peterson, J.</span>, <span class="refAuthor">Morris, J.</span>, <span class="refAuthor">Hansen, M.</span>, and <span class="refAuthor">R. Smith</span>, <span class="refTitle">"Privacy Considerations for Internet Protocols"</span>, <span class="seriesInfo">RFC 6973</span>, <span class="seriesInfo">DOI 10.17487/RFC6973</span>, <time datetime="2013-07" class="refDate">July 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6973">https://www.rfc-editor.org/info/rfc6973</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7098">[RFC7098]</dt>
<dd>
<span class="refAuthor">Carpenter, B.</span>, <span class="refAuthor">Jiang, S.</span>, and <span class="refAuthor">W. Tarreau</span>, <span class="refTitle">"Using the IPv6 Flow Label for Load Balancing in Server Farms"</span>, <span class="seriesInfo">RFC 7098</span>, <span class="seriesInfo">DOI 10.17487/RFC7098</span>, <time datetime="2014-01" class="refDate">January 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7098">https://www.rfc-editor.org/info/rfc7098</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7126">[RFC7126]</dt>
<dd>
<span class="refAuthor">Gont, F.</span>, <span class="refAuthor">Atkinson, R.</span>, and <span class="refAuthor">C. Pignataro</span>, <span class="refTitle">"Recommendations on Filtering of IPv4 Packets Containing IPv4 Options"</span>, <span class="seriesInfo">BCP 186</span>, <span class="seriesInfo">RFC 7126</span>, <span class="seriesInfo">DOI 10.17487/RFC7126</span>, <time datetime="2014-02" class="refDate">February 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7126">https://www.rfc-editor.org/info/rfc7126</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7258">[RFC7258]</dt>
<dd>
<span class="refAuthor">Farrell, S.</span> and <span class="refAuthor">H. Tschofenig</span>, <span class="refTitle">"Pervasive Monitoring Is an Attack"</span>, <span class="seriesInfo">BCP 188</span>, <span class="seriesInfo">RFC 7258</span>, <span class="seriesInfo">DOI 10.17487/RFC7258</span>, <time datetime="2014-05" class="refDate">May 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7258">https://www.rfc-editor.org/info/rfc7258</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7413">[RFC7413]</dt>
<dd>
<span class="refAuthor">Cheng, Y.</span>, <span class="refAuthor">Chu, J.</span>, <span class="refAuthor">Radhakrishnan, S.</span>, and <span class="refAuthor">A. Jain</span>, <span class="refTitle">"TCP Fast Open"</span>, <span class="seriesInfo">RFC 7413</span>, <span class="seriesInfo">DOI 10.17487/RFC7413</span>, <time datetime="2014-12" class="refDate">December 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7413">https://www.rfc-editor.org/info/rfc7413</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7414">[RFC7414]</dt>
<dd>
<span class="refAuthor">Duke, M.</span>, <span class="refAuthor">Braden, R.</span>, <span class="refAuthor">Eddy, W.</span>, <span class="refAuthor">Blanton, E.</span>, and <span class="refAuthor">A. Zimmermann</span>, <span class="refTitle">"A Roadmap for Transmission Control Protocol (TCP) Specification Documents"</span>, <span class="seriesInfo">RFC 7414</span>, <span class="seriesInfo">DOI 10.17487/RFC7414</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7414">https://www.rfc-editor.org/info/rfc7414</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7567">[RFC7567]</dt>
<dd>
<span class="refAuthor">Baker, F., Ed.</span> and <span class="refAuthor">G. Fairhurst, Ed.</span>, <span class="refTitle">"IETF Recommendations Regarding Active Queue Management"</span>, <span class="seriesInfo">BCP 197</span>, <span class="seriesInfo">RFC 7567</span>, <span class="seriesInfo">DOI 10.17487/RFC7567</span>, <time datetime="2015-07" class="refDate">July 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7567">https://www.rfc-editor.org/info/rfc7567</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7594">[RFC7594]</dt>
<dd>
<span class="refAuthor">Eardley, P.</span>, <span class="refAuthor">Morton, A.</span>, <span class="refAuthor">Bagnulo, M.</span>, <span class="refAuthor">Burbridge, T.</span>, <span class="refAuthor">Aitken, P.</span>, and <span class="refAuthor">A. Akhter</span>, <span class="refTitle">"A Framework for Large-Scale Measurement of Broadband Performance (LMAP)"</span>, <span class="seriesInfo">RFC 7594</span>, <span class="seriesInfo">DOI 10.17487/RFC7594</span>, <time datetime="2015-09" class="refDate">September 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7594">https://www.rfc-editor.org/info/rfc7594</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7605">[RFC7605]</dt>
<dd>
<span class="refAuthor">Touch, J.</span>, <span class="refTitle">"Recommendations on Using Assigned Transport Port Numbers"</span>, <span class="seriesInfo">BCP 165</span>, <span class="seriesInfo">RFC 7605</span>, <span class="seriesInfo">DOI 10.17487/RFC7605</span>, <time datetime="2015-08" class="refDate">August 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7605">https://www.rfc-editor.org/info/rfc7605</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7624">[RFC7624]</dt>
<dd>
<span class="refAuthor">Barnes, R.</span>, <span class="refAuthor">Schneier, B.</span>, <span class="refAuthor">Jennings, C.</span>, <span class="refAuthor">Hardie, T.</span>, <span class="refAuthor">Trammell, B.</span>, <span class="refAuthor">Huitema, C.</span>, and <span class="refAuthor">D. Borkmann</span>, <span class="refTitle">"Confidentiality in the Face of Pervasive Surveillance: A Threat Model and Problem Statement"</span>, <span class="seriesInfo">RFC 7624</span>, <span class="seriesInfo">DOI 10.17487/RFC7624</span>, <time datetime="2015-08" class="refDate">August 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7624">https://www.rfc-editor.org/info/rfc7624</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7799">[RFC7799]</dt>
<dd>
<span class="refAuthor">Morton, A.</span>, <span class="refTitle">"Active and Passive Metrics and Methods (with Hybrid Types In-Between)"</span>, <span class="seriesInfo">RFC 7799</span>, <span class="seriesInfo">DOI 10.17487/RFC7799</span>, <time datetime="2016-05" class="refDate">May 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7799">https://www.rfc-editor.org/info/rfc7799</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7872">[RFC7872]</dt>
<dd>
<span class="refAuthor">Gont, F.</span>, <span class="refAuthor">Linkova, J.</span>, <span class="refAuthor">Chown, T.</span>, and <span class="refAuthor">W. Liu</span>, <span class="refTitle">"Observations on the Dropping of Packets with IPv6 Extension Headers in the Real World"</span>, <span class="seriesInfo">RFC 7872</span>, <span class="seriesInfo">DOI 10.17487/RFC7872</span>, <time datetime="2016-06" class="refDate">June 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7872">https://www.rfc-editor.org/info/rfc7872</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7928">[RFC7928]</dt>
<dd>
<span class="refAuthor">Kuhn, N., Ed.</span>, <span class="refAuthor">Natarajan, P., Ed.</span>, <span class="refAuthor">Khademi, N., Ed.</span>, and <span class="refAuthor">D. Ros</span>, <span class="refTitle">"Characterization Guidelines for Active Queue Management (AQM)"</span>, <span class="seriesInfo">RFC 7928</span>, <span class="seriesInfo">DOI 10.17487/RFC7928</span>, <time datetime="2016-07" class="refDate">July 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7928">https://www.rfc-editor.org/info/rfc7928</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7983">[RFC7983]</dt>
<dd>
<span class="refAuthor">Petit-Huguenin, M.</span> and <span class="refAuthor">G. Salgueiro</span>, <span class="refTitle">"Multiplexing Scheme Updates for Secure Real-time Transport Protocol (SRTP) Extension for Datagram Transport Layer Security (DTLS)"</span>, <span class="seriesInfo">RFC 7983</span>, <span class="seriesInfo">DOI 10.17487/RFC7983</span>, <time datetime="2016-09" class="refDate">September 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7983">https://www.rfc-editor.org/info/rfc7983</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8033">[RFC8033]</dt>
<dd>
<span class="refAuthor">Pan, R.</span>, <span class="refAuthor">Natarajan, P.</span>, <span class="refAuthor">Baker, F.</span>, and <span class="refAuthor">G. White</span>, <span class="refTitle">"Proportional Integral Controller Enhanced (PIE): A Lightweight Control Scheme to Address the Bufferbloat Problem"</span>, <span class="seriesInfo">RFC 8033</span>, <span class="seriesInfo">DOI 10.17487/RFC8033</span>, <time datetime="2017-02" class="refDate">February 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8033">https://www.rfc-editor.org/info/rfc8033</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8084">[RFC8084]</dt>
<dd>
<span class="refAuthor">Fairhurst, G.</span>, <span class="refTitle">"Network Transport Circuit Breakers"</span>, <span class="seriesInfo">BCP 208</span>, <span class="seriesInfo">RFC 8084</span>, <span class="seriesInfo">DOI 10.17487/RFC8084</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8084">https://www.rfc-editor.org/info/rfc8084</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8085">[RFC8085]</dt>
<dd>
<span class="refAuthor">Eggert, L.</span>, <span class="refAuthor">Fairhurst, G.</span>, and <span class="refAuthor">G. Shepherd</span>, <span class="refTitle">"UDP Usage Guidelines"</span>, <span class="seriesInfo">BCP 145</span>, <span class="seriesInfo">RFC 8085</span>, <span class="seriesInfo">DOI 10.17487/RFC8085</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8085">https://www.rfc-editor.org/info/rfc8085</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8086">[RFC8086]</dt>
<dd>
<span class="refAuthor">Yong, L., Ed.</span>, <span class="refAuthor">Crabbe, E.</span>, <span class="refAuthor">Xu, X.</span>, and <span class="refAuthor">T. Herbert</span>, <span class="refTitle">"GRE-in-UDP Encapsulation"</span>, <span class="seriesInfo">RFC 8086</span>, <span class="seriesInfo">DOI 10.17487/RFC8086</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8086">https://www.rfc-editor.org/info/rfc8086</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8087">[RFC8087]</dt>
<dd>
<span class="refAuthor">Fairhurst, G.</span> and <span class="refAuthor">M. Welzl</span>, <span class="refTitle">"The Benefits of Using Explicit Congestion Notification (ECN)"</span>, <span class="seriesInfo">RFC 8087</span>, <span class="seriesInfo">DOI 10.17487/RFC8087</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8087">https://www.rfc-editor.org/info/rfc8087</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8095">[RFC8095]</dt>
<dd>
<span class="refAuthor">Fairhurst, G., Ed.</span>, <span class="refAuthor">Trammell, B., Ed.</span>, and <span class="refAuthor">M. Kuehlewind, Ed.</span>, <span class="refTitle">"Services Provided by IETF Transport Protocols and Congestion Control Mechanisms"</span>, <span class="seriesInfo">RFC 8095</span>, <span class="seriesInfo">DOI 10.17487/RFC8095</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8095">https://www.rfc-editor.org/info/rfc8095</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8200">[RFC8200]</dt>
<dd>
<span class="refAuthor">Deering, S.</span> and <span class="refAuthor">R. Hinden</span>, <span class="refTitle">"Internet Protocol, Version 6 (IPv6) Specification"</span>, <span class="seriesInfo">STD 86</span>, <span class="seriesInfo">RFC 8200</span>, <span class="seriesInfo">DOI 10.17487/RFC8200</span>, <time datetime="2017-07" class="refDate">July 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8200">https://www.rfc-editor.org/info/rfc8200</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8250">[RFC8250]</dt>
<dd>
<span class="refAuthor">Elkins, N.</span>, <span class="refAuthor">Hamilton, R.</span>, and <span class="refAuthor">M. Ackermann</span>, <span class="refTitle">"IPv6 Performance and Diagnostic Metrics (PDM) Destination Option"</span>, <span class="seriesInfo">RFC 8250</span>, <span class="seriesInfo">DOI 10.17487/RFC8250</span>, <time datetime="2017-09" class="refDate">September 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8250">https://www.rfc-editor.org/info/rfc8250</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8289">[RFC8289]</dt>
<dd>
<span class="refAuthor">Nichols, K.</span>, <span class="refAuthor">Jacobson, V.</span>, <span class="refAuthor">McGregor, A., Ed.</span>, and <span class="refAuthor">J. Iyengar, Ed.</span>, <span class="refTitle">"Controlled Delay Active Queue Management"</span>, <span class="seriesInfo">RFC 8289</span>, <span class="seriesInfo">DOI 10.17487/RFC8289</span>, <time datetime="2018-01" class="refDate">January 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8289">https://www.rfc-editor.org/info/rfc8289</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8290">[RFC8290]</dt>
<dd>
<span class="refAuthor">Hoeiland-Joergensen, T.</span>, <span class="refAuthor">McKenney, P.</span>, <span class="refAuthor">Taht, D.</span>, <span class="refAuthor">Gettys, J.</span>, and <span class="refAuthor">E. Dumazet</span>, <span class="refTitle">"The Flow Queue CoDel Packet Scheduler and Active Queue Management Algorithm"</span>, <span class="seriesInfo">RFC 8290</span>, <span class="seriesInfo">DOI 10.17487/RFC8290</span>, <time datetime="2018-01" class="refDate">January 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8290">https://www.rfc-editor.org/info/rfc8290</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8404">[RFC8404]</dt>
<dd>
<span class="refAuthor">Moriarty, K., Ed.</span> and <span class="refAuthor">A. Morton, Ed.</span>, <span class="refTitle">"Effects of Pervasive Encryption on Operators"</span>, <span class="seriesInfo">RFC 8404</span>, <span class="seriesInfo">DOI 10.17487/RFC8404</span>, <time datetime="2018-07" class="refDate">July 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8404">https://www.rfc-editor.org/info/rfc8404</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8446">[RFC8446]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refTitle">"The Transport Layer Security (TLS) Protocol Version 1.3"</span>, <span class="seriesInfo">RFC 8446</span>, <span class="seriesInfo">DOI 10.17487/RFC8446</span>, <time datetime="2018-08" class="refDate">August 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8446">https://www.rfc-editor.org/info/rfc8446</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8462">[RFC8462]</dt>
<dd>
<span class="refAuthor">Rooney, N.</span> and <span class="refAuthor">S. Dawkins, Ed.</span>, <span class="refTitle">"Report from the IAB Workshop on Managing Radio Networks in an Encrypted World (MaRNEW)"</span>, <span class="seriesInfo">RFC 8462</span>, <span class="seriesInfo">DOI 10.17487/RFC8462</span>, <time datetime="2018-10" class="refDate">October 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8462">https://www.rfc-editor.org/info/rfc8462</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8517">[RFC8517]</dt>
<dd>
<span class="refAuthor">Dolson, D., Ed.</span>, <span class="refAuthor">Snellman, J.</span>, <span class="refAuthor">Boucadair, M., Ed.</span>, and <span class="refAuthor">C. Jacquenet</span>, <span class="refTitle">"An Inventory of Transport-Centric Functions Provided by Middleboxes: An Operator Perspective"</span>, <span class="seriesInfo">RFC 8517</span>, <span class="seriesInfo">DOI 10.17487/RFC8517</span>, <time datetime="2019-02" class="refDate">February 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8517">https://www.rfc-editor.org/info/rfc8517</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8546">[RFC8546]</dt>
<dd>
<span class="refAuthor">Trammell, B.</span> and <span class="refAuthor">M. Kuehlewind</span>, <span class="refTitle">"The Wire Image of a Network Protocol"</span>, <span class="seriesInfo">RFC 8546</span>, <span class="seriesInfo">DOI 10.17487/RFC8546</span>, <time datetime="2019-04" class="refDate">April 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8546">https://www.rfc-editor.org/info/rfc8546</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8548">[RFC8548]</dt>
<dd>
<span class="refAuthor">Bittau, A.</span>, <span class="refAuthor">Giffin, D.</span>, <span class="refAuthor">Handley, M.</span>, <span class="refAuthor">Mazieres, D.</span>, <span class="refAuthor">Slack, Q.</span>, and <span class="refAuthor">E. Smith</span>, <span class="refTitle">"Cryptographic Protection of TCP Streams (tcpcrypt)"</span>, <span class="seriesInfo">RFC 8548</span>, <span class="seriesInfo">DOI 10.17487/RFC8548</span>, <time datetime="2019-05" class="refDate">May 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8548">https://www.rfc-editor.org/info/rfc8548</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8558">[RFC8558]</dt>
<dd>
<span class="refAuthor">Hardie, T., Ed.</span>, <span class="refTitle">"Transport Protocol Path Signals"</span>, <span class="seriesInfo">RFC 8558</span>, <span class="seriesInfo">DOI 10.17487/RFC8558</span>, <time datetime="2019-04" class="refDate">April 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8558">https://www.rfc-editor.org/info/rfc8558</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8684">[RFC8684]</dt>
<dd>
<span class="refAuthor">Ford, A.</span>, <span class="refAuthor">Raiciu, C.</span>, <span class="refAuthor">Handley, M.</span>, <span class="refAuthor">Bonaventure, O.</span>, and <span class="refAuthor">C. Paasch</span>, <span class="refTitle">"TCP Extensions for Multipath Operation with Multiple Addresses"</span>, <span class="seriesInfo">RFC 8684</span>, <span class="seriesInfo">DOI 10.17487/RFC8684</span>, <time datetime="2020-03" class="refDate">March 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8684">https://www.rfc-editor.org/info/rfc8684</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8701">[RFC8701]</dt>
<dd>
<span class="refAuthor">Benjamin, D.</span>, <span class="refTitle">"Applying Generate Random Extensions And Sustain Extensibility (GREASE) to TLS Extensibility"</span>, <span class="seriesInfo">RFC 8701</span>, <span class="seriesInfo">DOI 10.17487/RFC8701</span>, <time datetime="2020-01" class="refDate">January 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8701">https://www.rfc-editor.org/info/rfc8701</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8724">[RFC8724]</dt>
<dd>
<span class="refAuthor">Minaburo, A.</span>, <span class="refAuthor">Toutain, L.</span>, <span class="refAuthor">Gomez, C.</span>, <span class="refAuthor">Barthel, D.</span>, and <span class="refAuthor">JC. Zúñiga</span>, <span class="refTitle">"SCHC: Generic Framework for Static Context Header Compression and Fragmentation"</span>, <span class="seriesInfo">RFC 8724</span>, <span class="seriesInfo">DOI 10.17487/RFC8724</span>, <time datetime="2020-04" class="refDate">April 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8724">https://www.rfc-editor.org/info/rfc8724</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8837">[RFC8837]</dt>
<dd>
<span class="refAuthor">Jones, P.</span>, <span class="refAuthor">Dhesikan, S.</span>, <span class="refAuthor">Jennings, C.</span>, and <span class="refAuthor">D. Druta</span>, <span class="refTitle">"Differentiated Services Code Point (DSCP) Packet Markings for WebRTC QoS"</span>, <span class="seriesInfo">RFC 8837</span>, <span class="seriesInfo">DOI 10.17487/RFC8837</span>, <time datetime="2021-01" class="refDate">January 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8837">https://www.rfc-editor.org/info/rfc8837</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8866">[RFC8866]</dt>
<dd>
<span class="refAuthor">Begen, A.</span>, <span class="refAuthor">Kyzivat, P.</span>, <span class="refAuthor">Perkins, C.</span>, and <span class="refAuthor">M. Handley</span>, <span class="refTitle">"SDP: Session Description Protocol"</span>, <span class="seriesInfo">RFC 8866</span>, <span class="seriesInfo">DOI 10.17487/RFC8866</span>, <time datetime="2021-01" class="refDate">January 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8866">https://www.rfc-editor.org/info/rfc8866</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8922">[RFC8922]</dt>
<dd>
<span class="refAuthor">Enghardt, T.</span>, <span class="refAuthor">Pauly, T.</span>, <span class="refAuthor">Perkins, C.</span>, <span class="refAuthor">Rose, K.</span>, and <span class="refAuthor">C. Wood</span>, <span class="refTitle">"A Survey of the Interaction between Security Protocols and Transport Services"</span>, <span class="seriesInfo">RFC 8922</span>, <span class="seriesInfo">DOI 10.17487/RFC8922</span>, <time datetime="2020-10" class="refDate">October 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8922">https://www.rfc-editor.org/info/rfc8922</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9000">[RFC9000]</dt>
<dd>
<span class="refAuthor">Iyengar, J., Ed.</span> and <span class="refAuthor">M. Thomson, Ed.</span>, <span class="refTitle">"QUIC: A UDP-Based Multiplexed and Secure Transport"</span>, <span class="seriesInfo">RFC 9000</span>, <span class="seriesInfo">DOI 10.17487/RFC9000</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9000">https://www.rfc-editor.org/info/rfc9000</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<div id="Acknowledgements">
<section id="appendix-A">
<h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
</h2>
<p id="appendix-A-1">The authors would like to thank <span class="contact-name">Mohamed Boucadair</span>, <span class="contact-name">Spencer Dawkins</span>, <span class="contact-name">Tom Herbert</span>, <span class="contact-name">Jana Iyengar</span>, <span class="contact-name">Mirja Kühlewind</span>, <span class="contact-name">Kyle Rose</span>,
<span class="contact-name">Kathleen Moriarty</span>, <span class="contact-name">Al Morton</span>, <span class="contact-name">Chris Seal</span>, <span class="contact-name">Joe Touch</span>, <span class="contact-name">Brian Trammell</span>, <span class="contact-name">Chris Wood</span>,
<span class="contact-name">Thomas Fossati</span>, <span class="contact-name">Mohamed Boucadair</span>, <span class="contact-name">Martin Thomson</span>, <span class="contact-name">David Black</span>, <span class="contact-name">Martin Duke</span>, <span class="contact-name">Joel Halpern</span>, and members of TSVWG for their comments and
feedback.<a href="#appendix-A-1" class="pilcrow">¶</a></p>
<p id="appendix-A-2">This work has received funding from the European Union's
Horizon 2020 research and innovation programme under grant agreement No
688421 and the EU Stand ICT Call 4. The opinions expressed and
arguments employed reflect only the authors' views. The European
Commission is not responsible for any use that might be made of that
information.<a href="#appendix-A-2" class="pilcrow">¶</a></p>
<p id="appendix-A-3">This work has received funding from the UK Engineering and Physical
Sciences Research Council under grant EP/R04144X/1.<a href="#appendix-A-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="appendix-B">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Godred Fairhurst</span></div>
<div dir="auto" class="left"><span class="org">University of Aberdeen</span></div>
<div dir="auto" class="left"><span class="extended-address">Department of Engineering</span></div>
<div dir="auto" class="left"><span class="street-address">Fraser Noble Building</span></div>
<div dir="auto" class="left"><span class="locality">Aberdeen, Scotland</span></div>
<div dir="auto" class="left"><span class="postal-code">AB24 3UE</span></div>
<div dir="auto" class="left"><span class="country-name">United Kingdom</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:gorry@erg.abdn.ac.uk" class="email">gorry@erg.abdn.ac.uk</a>
</div>
<div class="url">
<span>URI:</span>
<a href="http://www.erg.abdn.ac.uk/" class="url">http://www.erg.abdn.ac.uk/</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Colin Perkins</span></div>
<div dir="auto" class="left"><span class="org">University of Glasgow</span></div>
<div dir="auto" class="left"><span class="extended-address">School of Computing Science</span></div>
<div dir="auto" class="left"><span class="locality">Glasgow, Scotland</span></div>
<div dir="auto" class="left"><span class="postal-code">G12 8QQ</span></div>
<div dir="auto" class="left"><span class="country-name">United Kingdom</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:csp@csperkins.org" class="email">csp@csperkins.org</a>
</div>
<div class="url">
<span>URI:</span>
<a href="https://csperkins.org/" class="url">https://csperkins.org/</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|