1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9076: DNS Privacy Considerations</title>
<meta content="Tim Wicinski" name="author">
<meta content="
This document describes the privacy issues associated with the use of the DNS
by Internet users. It provides general observations about typical current
privacy practices. It is intended to be an analysis of the present situation
and does not prescribe solutions. This document obsoletes RFC 7626.
" name="description">
<meta content="xml2rfc 3.9.1" name="generator">
<meta content="DNS" name="keyword">
<meta content="9076" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.9.1
Python 3.6.10
appdirs 1.4.4
ConfigArgParse 1.2.3
google-i18n-address 2.3.5
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.2
kitchen 1.2.6
lxml 4.4.2
pycairo 1.19.0
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.3.1
requests 2.22.0
setuptools 40.6.2
six 1.14.0
WeasyPrint 51
-->
<link href="rfc9076.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: avoid-page;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9076" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-dprive-rfc7626-bis-09" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9076</td>
<td class="center">DNS Privacy Considerations</td>
<td class="right">July 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Wicinski</td>
<td class="center">Informational</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9076" class="eref">9076</a></dd>
<dt class="label-obsoletes">Obsoletes:</dt>
<dd class="obsoletes">
<a href="https://www.rfc-editor.org/rfc/rfc7626" class="eref">7626</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Informational</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-07" class="published">July 2021</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Author:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">T. Wicinski, <span class="editor">Ed.</span>
</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9076</h1>
<h1 id="title">DNS Privacy Considerations</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This document describes the privacy issues associated with the use of the DNS
by Internet users. It provides general observations about typical current
privacy practices. It is intended to be an analysis of the present situation
and does not prescribe solutions. This document obsoletes RFC 7626.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for informational purposes.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9076">https://www.rfc-editor.org/info/rfc9076</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="ulEmpty compact ulBare toc">
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1" class="keepWithNext"><a href="#section-2" class="xref">2</a>. <a href="#name-scope" class="xref">Scope</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1" class="keepWithNext"><a href="#section-3" class="xref">3</a>. <a href="#name-risks" class="xref">Risks</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-risks-in-the-dns-data" class="xref">Risks in the DNS Data</a></p>
<ul class="ulBare compact toc ulEmpty">
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-the-public-nature-of-dns-da" class="xref">The Public Nature of DNS Data</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-data-in-the-dns-request" class="xref">Data in the DNS Request</a></p>
<ul class="ulBare compact toc ulEmpty">
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.4.2.2.2.1">
<p id="section-toc.1-1.4.2.2.2.1.1"><a href="#section-4.2.1" class="xref">4.2.1</a>. <a href="#name-data-in-the-dns-payload" class="xref">Data in the DNS Payload</a></p>
</li>
</ul>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-cache-snooping" class="xref">Cache Snooping</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-risks-on-the-wire" class="xref">Risks on the Wire</a></p>
<ul class="ulBare compact toc ulEmpty">
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>. <a href="#name-unencrypted-transports" class="xref">Unencrypted Transports</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>. <a href="#name-encrypted-transports" class="xref">Encrypted Transports</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-risks-in-the-servers" class="xref">Risks in the Servers</a></p>
<ul class="ulBare compact toc ulEmpty">
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-in-the-recursive-resolvers" class="xref">In the Recursive Resolvers</a></p>
<ul class="ulBare compact toc ulEmpty">
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.6.2.1.2.1">
<p id="section-toc.1-1.6.2.1.2.1.1"><a href="#section-6.1.1" class="xref">6.1.1</a>. <a href="#name-resolver-selection" class="xref">Resolver Selection</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.6.2.1.2.2">
<p id="section-toc.1-1.6.2.1.2.2.1"><a href="#section-6.1.2" class="xref">6.1.2</a>. <a href="#name-active-attacks-on-resolver-" class="xref">Active Attacks on Resolver Configuration</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.6.2.1.2.3">
<p id="section-toc.1-1.6.2.1.2.3.1"><a href="#section-6.1.3" class="xref">6.1.3</a>. <a href="#name-blocking-of-dns-resolution-" class="xref">Blocking of DNS Resolution Services</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.6.2.1.2.4">
<p id="section-toc.1-1.6.2.1.2.4.1"><a href="#section-6.1.4" class="xref">6.1.4</a>. <a href="#name-encrypted-transports-and-re" class="xref">Encrypted Transports and Recursive Resolvers</a></p>
</li>
</ul>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-in-the-authoritative-name-s" class="xref">In the Authoritative Name Servers</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-other-risks" class="xref">Other Risks</a></p>
<ul class="ulBare compact toc ulEmpty">
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>. <a href="#name-re-identification-and-other" class="xref">Re-identification and Other Inferences</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>. <a href="#name-more-information" class="xref">More Information</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-actual-attacks" class="xref">Actual "Attacks"</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-legalities" class="xref">Legalities</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-12" class="xref">12</a>. <a href="#name-references" class="xref">References</a></p>
<ul class="ulBare compact toc ulEmpty">
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.12.2.1">
<p id="section-toc.1-1.12.2.1.1"><a href="#section-12.1" class="xref">12.1</a>. <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
<li class="ulBare compact toc ulEmpty" id="section-toc.1-1.12.2.2">
<p id="section-toc.1-1.12.2.2.1"><a href="#section-12.2" class="xref">12.2</a>. <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#appendix-A" class="xref">Appendix A</a>. <a href="#name-updates-since-rfc-7626" class="xref">Updates since RFC 7626</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#appendix-B" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.15">
<p id="section-toc.1-1.15.1"><a href="#appendix-C" class="xref"></a><a href="#name-contributions" class="xref">Contributions</a></p>
</li>
<li class="ulEmpty compact ulBare toc" id="section-toc.1-1.16">
<p id="section-toc.1-1.16.1"><a href="#appendix-D" class="xref"></a><a href="#name-authors-address" class="xref">Author's Address</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="introduction">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">This document is an analysis of the DNS privacy issues, in the spirit
of <span><a href="https://www.rfc-editor.org/rfc/rfc6973#section-8" class="relref">Section 8</a> of [<a href="#RFC6973" class="xref">RFC6973</a>]</span>.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">The Domain Name System (DNS) is specified in <span>[<a href="#RFC1034" class="xref">RFC1034</a>]</span>, <span>[<a href="#RFC1035" class="xref">RFC1035</a>]</span>, and
many later RFCs, which have never been consolidated. It is one of the most
important infrastructure components of the Internet and is often ignored or
misunderstood by Internet users (and even by many professionals). Almost
every activity on the Internet starts with a DNS query (and often several).
Its use has many privacy implications, and this document is an attempt at a
comprehensive and accurate list.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">Let us begin with a simplified reminder of how the DNS works (see also
<span>[<a href="#RFC8499" class="xref">RFC8499</a>]</span>). A client, the stub resolver, issues a
DNS query to a server called the recursive resolver (also called caching
resolver, full resolver, or recursive name server). Let's use the query
"What are the AAAA records for www.example.com?" as an example. AAAA is the
QTYPE (Query Type), and www.example.com is the QNAME (Query Name). (The
description that follows assumes a cold cache, for instance, because the
server just started.) The recursive resolver will first query the root name
servers. In most cases, the root name servers will send a referral. In this
example, the referral will be to the .com name servers. The resolver repeats
the query to one of the .com name servers. The .com name servers, in turn,
will refer to the example.com name servers. The example.com name servers will
then return the answers. The root name servers, the name servers of .com, and
the name servers of example.com are called authoritative name servers. It is
important, when analyzing the privacy issues, to remember that the question
asked to all these name servers is always the original question, not a
derived question. The question sent to the root name servers is "What are
the AAAA records for www.example.com?", not "What are the name servers of
.com?". By repeating the full question, instead of just the relevant part of
the question to the next in line, the DNS provides more information than
necessary to the name server. In this simplified description, recursive
resolvers do not implement QNAME minimization as described in <span>[<a href="#RFC7816" class="xref">RFC7816</a>]</span>,
which will only send the relevant part of the question to the upstream name
server.<a href="#section-1-3" class="pilcrow">¶</a></p>
<p id="section-1-4">DNS relies heavily on caching, so the algorithm described
above is actually a bit more complicated, and not all questions are
sent to the authoritative name servers. If the
stub resolver asks the recursive resolver a few seconds later, "What are the SRV records
of _xmpp-server._tcp.example.com?", the recursive resolver will
remember that it knows the name servers of example.com and will just
query them, bypassing the root and .com. Because there is typically
no caching in the stub resolver, the recursive resolver, unlike the
authoritative servers, sees all the DNS traffic. (Applications, like
web browsers, may have some form of caching that does not follow DNS
rules, for instance, because it may ignore the TTL. So, the
recursive resolver does not see all the name resolution activity.)<a href="#section-1-4" class="pilcrow">¶</a></p>
<p id="section-1-5">It should be noted that DNS recursive resolvers sometimes forward
requests to other recursive resolvers, typically bigger machines,
with a larger and more shared cache (and the query hierarchy can be
even deeper, with more than two levels of recursive resolvers). From
the point of view of privacy, these forwarders are like resolvers
except that they do not see all of the requests being made (due to
caching in the first resolver).<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6">At the time of writing, almost all this DNS traffic is currently
sent unencrypted. However, there is increasing deployment
of DNS over TLS (DoT) <span>[<a href="#RFC7858" class="xref">RFC7858</a>]</span> and DNS over HTTPS (DoH)
<span>[<a href="#RFC8484" class="xref">RFC8484</a>]</span>, particularly in mobile devices, browsers, and by
providers of anycast recursive DNS resolution services. There are a
few cases where there is some alternative channel encryption, for
instance, in an IPsec VPN tunnel, at least between the stub resolver and
the resolver. Some recent analysis on the service quality of encrypted DNS
traffic can be found in <span>[<a href="#dns-over-encryption" class="xref">dns-over-encryption</a>]</span>.<a href="#section-1-6" class="pilcrow">¶</a></p>
<p id="section-1-7">Today, almost all DNS queries are sent over UDP <span>[<a href="#thomas-ditl-tcp" class="xref">thomas-ditl-tcp</a>]</span>. This has
practical consequences when considering encryption of the traffic as a
possible privacy technique. Some encryption solutions are only designed for
TCP, not UDP, although new solutions are still emerging <span>[<a href="#RFC9000" class="xref">RFC9000</a>]</span>
<span>[<a href="#I-D.ietf-dprive-dnsoquic" class="xref">DPRIVE-DNSOQUIC</a>]</span>.<a href="#section-1-7" class="pilcrow">¶</a></p>
<p id="section-1-8">Another important point to keep in mind when analyzing the privacy
issues of DNS is the fact that DNS requests received by a server are
triggered for different reasons. Let's assume an eavesdropper wants
to know which web page is viewed by a user. For a typical web page,
there are three sorts of DNS requests being issued:<a href="#section-1-8" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="section-1-9">
<dt id="section-1-9.1">Primary request:</dt>
<dd style="margin-left: 1.5em" id="section-1-9.2"> This is the domain name in the URL that the user
typed, selected from a bookmark, or chose by clicking on a
hyperlink. Presumably, this is what is of interest for the
eavesdropper.<a href="#section-1-9.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1-9.3">Secondary requests:</dt>
<dd style="margin-left: 1.5em" id="section-1-9.4">These are the additional requests performed by
the user agent (here, the web browser) without any direct
involvement or knowledge of the user. For the Web, they are
triggered by embedded content, Cascading Style Sheets (CSS),
JavaScript code, embedded images, etc. In some cases, there can
be dozens of domain names in different contexts on a single web
page.<a href="#section-1-9.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1-9.5">Tertiary requests:</dt>
<dd style="margin-left: 1.5em" id="section-1-9.6"> These are the additional requests performed by
the DNS service itself. For instance, if the answer to a query is
a referral to a set of name servers and the glue records are not
returned, the resolver will have to send additional requests to turn
the name servers' names into IP addresses. Similarly, even if
glue records are returned, a careful recursive server will send
tertiary requests to verify the IP addresses of those records.<a href="#section-1-9.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-1-10">It can also be noted that, in the case of a typical web browser, more
DNS requests than strictly necessary are sent, for instance, to
prefetch resources that the user may query later or when
autocompleting the URL in the address bar. Both are a significant privacy
concern since they may leak information even about non-explicit
actions. For instance, just reading a local HTML page, even without
selecting the hyperlinks, may trigger DNS requests.<a href="#section-1-10" class="pilcrow">¶</a></p>
<p id="section-1-11">Privacy-related terminology is from
<span>[<a href="#RFC6973" class="xref">RFC6973</a>]</span>. This document obsoletes <span>[<a href="#RFC7626" class="xref">RFC7626</a>]</span>.<a href="#section-1-11" class="pilcrow">¶</a></p>
</section>
</div>
<div id="scope">
<section id="section-2">
<h2 id="name-scope">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-scope" class="section-name selfRef">Scope</a>
</h2>
<p id="section-2-1">This document focuses mostly on the study of privacy risks for the
end user (the one performing DNS requests). The risks of
pervasive surveillance <span>[<a href="#RFC7258" class="xref">RFC7258</a>]</span> are considered as well as risks coming from a more
focused surveillance. In this document, the term "end user" is used
as defined in <span>[<a href="#RFC8890" class="xref">RFC8890</a>]</span>.<a href="#section-2-1" class="pilcrow">¶</a></p>
<p id="section-2-2">This document does not attempt a comparison of specific privacy protections
provided by individual networks or organizations; it makes only general
observations about typical current practices.<a href="#section-2-2" class="pilcrow">¶</a></p>
<p id="section-2-3">Privacy risks for the holder of a zone (the risk that someone gets the data)
are discussed in <span>[<a href="#RFC5155" class="xref">RFC5155</a>]</span> and <span>[<a href="#RFC5936" class="xref">RFC5936</a>]</span>.<a href="#section-2-3" class="pilcrow">¶</a></p>
<p id="section-2-4">Privacy risks for recursive operators (including access providers and
operators in enterprise networks) such as leakage of private namespaces or
blocklists are out of scope for this document.<a href="#section-2-4" class="pilcrow">¶</a></p>
<p id="section-2-5">Non-privacy risks (e.g., security-related considerations such as cache poisoning) are
also out of scope.<a href="#section-2-5" class="pilcrow">¶</a></p>
<p id="section-2-6">The privacy risks associated with the use of other protocols that make use of
DNS information are not considered here.<a href="#section-2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="risks">
<section id="section-3">
<h2 id="name-risks">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-risks" class="section-name selfRef">Risks</a>
</h2>
<p id="section-3-1">The following four sections outline the privacy considerations associated with
different aspects of the DNS for the end user. When reading these sections, it
needs to be kept in mind that many of the considerations (for example, recursive
resolver and transport protocol) can be specific to the network context that a
device is using at a given point in time. A user may have many devices, and each
device might utilize many different networks (e.g., home, work, public, or
cellular) over a period of time or even concurrently. An exhaustive analysis of
the privacy considerations for an individual user would need to take into
account the set of devices used and the multiple dynamic contexts of each
device. This document does not attempt such a complex analysis; instead, it
presents an overview of the various considerations that could form the basis of
such an analysis.<a href="#section-3-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="risks-in-the-dns-data">
<section id="section-4">
<h2 id="name-risks-in-the-dns-data">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-risks-in-the-dns-data" class="section-name selfRef">Risks in the DNS Data</a>
</h2>
<div id="the-public-nature-of-dns-data">
<section id="section-4.1">
<h3 id="name-the-public-nature-of-dns-da">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-the-public-nature-of-dns-da" class="section-name selfRef">The Public Nature of DNS Data</a>
</h3>
<p id="section-4.1-1">It has been stated that "the data in the DNS is public". This sentence
makes sense for an Internet-wide lookup system, and there
are multiple facets to the data and metadata involved that deserve a
more detailed look. First, access control lists (ACLs) and private
namespaces notwithstanding, the DNS operates under the assumption
that public-facing authoritative name servers will respond to "usual"
DNS queries for any zone they are authoritative for, without further
authentication or authorization of the client (resolver). Due to the
lack of search capabilities, only a given QNAME will reveal the
resource records associated with that name (or that name's nonexistence). In other words: one needs to know what to ask for in
order to receive a response. There are many ways in which supposedly "private"
resources currently leak. A few examples are DNSSEC NSEC zone walking <span>[<a href="#RFC4470" class="xref">RFC4470</a>]</span>,
passive DNS services <span>[<a href="#passive-dns" class="xref">passive-dns</a>]</span>, etc. The zone transfer QTYPE <span>[<a href="#RFC5936" class="xref">RFC5936</a>]</span> is
often blocked or restricted to authenticated/authorized access to
enforce this difference (and maybe for other reasons).<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">Another difference between the DNS data and a particular DNS
transaction (i.e., a DNS name lookup): DNS data and the results of a
DNS query are public, within the boundaries described above, and may
not have any confidentiality requirements. However, the same is not
true of a single transaction or a sequence of transactions; those
transactions are not / should not be public. A single transaction
reveals both the originator of the query and the query contents; this
potentially leaks sensitive information about a specific user. A
typical example from outside the DNS world is that the website of Alcoholics Anonymous is public but the fact that you visit it should not be. Furthermore,
the ability to link queries reveals information about individual use
patterns.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="data-in-the-dns-request">
<section id="section-4.2">
<h3 id="name-data-in-the-dns-request">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-data-in-the-dns-request" class="section-name selfRef">Data in the DNS Request</a>
</h3>
<p id="section-4.2-1">The DNS request includes many fields, but two of them seem particularly
relevant for the privacy issues: the QNAME and the source IP address.
"Source IP address" is used in a loose sense of "source IP address + maybe
source
port number", because the port number is also in the request and can be used to
differentiate between several users sharing an IP address (behind a
Carrier-Grade NAT (CGN), for instance <span>[<a href="#RFC6269" class="xref">RFC6269</a>]</span>).<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2-2">The QNAME is the full name sent by the user. It gives information
about what the user does ("What are the MX records of example.net?"
means they probably want to send email to someone at example.net,
which may be a domain used by only a few persons and is therefore
very revealing about communication relationships). Some QNAMEs are
more sensitive than others. For instance, querying the A record of a
well-known web statistics domain reveals very little (everybody
visits websites that use this analytics service), but querying the A
record of www.verybad.example where verybad.example is the domain of
an organization that some people find offensive or objectionable may
create more problems for the user. Also, sometimes, the QNAME embeds
the software one uses, which could be a privacy issue (for instance,
_ldap._tcp.Default-First-Site-Name._sites.gc._msdcs.example.org.
There are also some BitTorrent clients that query an SRV record for
_bittorrent-tracker._tcp.domain.example.<a href="#section-4.2-2" class="pilcrow">¶</a></p>
<p id="section-4.2-3">Another important thing about the privacy of the QNAME is future
usages. Today, the lack of privacy is an obstacle to putting
potentially sensitive or personally identifiable data in the DNS. At
the moment, your DNS traffic might reveal that you are exchanging emails but not with whom. If your Mail User Agent (MUA) starts looking up
Pretty Good Privacy (PGP) keys in the DNS <span>[<a href="#RFC7929" class="xref">RFC7929</a>]</span>, then
privacy becomes a lot more important. And email is just an example;
there would be other really interesting uses for a more privacy-friendly DNS.<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<p id="section-4.2-4">For the communication between the stub resolver and the recursive resolver,
the source IP address is the address of the user's machine. Therefore, all
the issues and warnings about collection of IP addresses apply here. For the communication between the recursive resolver and the authoritative name
servers, the source IP address has a different meaning; it does not have the
same status as the source address in an HTTP connection. It is typically the
IP address of the recursive resolver that, in a way, "hides" the real user.
However, hiding does not always work. The edns-client-subnet (ECS) EDNS0 option <span>[<a href="#RFC7871" class="xref">RFC7871</a>]</span> is sometimes used (see one privacy analysis in <span>[<a href="#denis-edns-client-subnet" class="xref">denis-edns-client-subnet</a>]</span>).
Sometimes the end user has a personal recursive resolver on their machine.
In both cases, the IP address originating queries to the authoritative server
is as sensitive as it is for HTTP <span>[<a href="#sidn-entrada" class="xref">sidn-entrada</a>]</span>.<a href="#section-4.2-4" class="pilcrow">¶</a></p>
<p id="section-4.2-5">A note about IP addresses: there is currently no IETF document that describes
in detail all the privacy issues around IP addressing in general, although
<span>[<a href="#RFC7721" class="xref">RFC7721</a>]</span> does discuss privacy considerations for IPv6 address generation
mechanisms. In the meantime, the discussion here is intended to include both
IPv4 and IPv6 source addresses. For a number of reasons, their assignment and
utilization characteristics are different, which may have implications for
details of information leakage associated with the collection of source
addresses. (For example, a specific IPv6 source address seen on the public
Internet is less likely than an IPv4 address to originate behind an address-sharing scheme.) However, for both IPv4 and IPv6 addresses, it is
important to note that source addresses are propagated with queries
via the ECS option and comprise metadata about the host, user,
or application that originated them.<a href="#section-4.2-5" class="pilcrow">¶</a></p>
<div id="data-in-the-dns-payload">
<section id="section-4.2.1">
<h4 id="name-data-in-the-dns-payload">
<a href="#section-4.2.1" class="section-number selfRef">4.2.1. </a><a href="#name-data-in-the-dns-payload" class="section-name selfRef">Data in the DNS Payload</a>
</h4>
<p id="section-4.2.1-1">At the time of writing, there are no standardized client identifiers contained in
the DNS payload itself (ECS, as described in <span>[<a href="#RFC7871" class="xref">RFC7871</a>]</span>, is widely used; however, <span>[<a href="#RFC7871" class="xref">RFC7871</a>]</span> is only an Informational RFC).<a href="#section-4.2.1-1" class="pilcrow">¶</a></p>
<p id="section-4.2.1-2">DNS Cookies <span>[<a href="#RFC7873" class="xref">RFC7873</a>]</span> are a lightweight DNS transaction security mechanism that
provides limited protection against a variety of increasingly common
denial-of-service and amplification/forgery or cache poisoning attacks by
off-path attackers. It is noted, however, that they are designed to just verify
IP addresses (and should change once a client's IP address changes), but they are
not designed to actively track users (like HTTP cookies).<a href="#section-4.2.1-2" class="pilcrow">¶</a></p>
<p id="section-4.2.1-3">There are anecdotal accounts of <a href="https://lists.dns-oarc.net/pipermail/dns-operations/2016-January/014143.html">Media Access Control (MAC) addresses</a>
and even user names being inserted in nonstandard EDNS(0) options <span>[<a href="#RFC6891" class="xref">RFC6891</a>]</span>
for stub-to-resolver communications to support proprietary functionality
implemented at the resolver (e.g., parental filtering).<a href="#section-4.2.1-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="cache-snooping">
<section id="section-4.3">
<h3 id="name-cache-snooping">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-cache-snooping" class="section-name selfRef">Cache Snooping</a>
</h3>
<p id="section-4.3-1">The content of recursive resolvers' caches can reveal data about the
clients using it (the privacy risks depend on the number of clients).
This information can sometimes be examined by sending DNS queries
with RD=0 to inspect cache content, particularly looking at the DNS
TTLs <span>[<a href="#grangeia.snooping" class="xref">grangeia.snooping</a>]</span>. Since this also is a reconnaissance
technique for subsequent cache poisoning attacks, some countermeasures have already been developed and deployed <span>[<a href="#cache-snooping-defence" class="xref">cache-snooping-defence</a>]</span>.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="risks-on-the-wire">
<section id="section-5">
<h2 id="name-risks-on-the-wire">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-risks-on-the-wire" class="section-name selfRef">Risks on the Wire</a>
</h2>
<div id="unencrypted-transports">
<section id="section-5.1">
<h3 id="name-unencrypted-transports">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-unencrypted-transports" class="section-name selfRef">Unencrypted Transports</a>
</h3>
<p id="section-5.1-1">For unencrypted transports, DNS traffic can be seen by an eavesdropper like
any other traffic. (DNSSEC, specified in <span>[<a href="#RFC4033" class="xref">RFC4033</a>]</span>, explicitly excludes
confidentiality from its goals.) So, if an initiator starts an HTTPS
communication with a recipient, the HTTP traffic will be encrypted, but the
DNS exchange prior to it will not be. When other protocols become more
and more privacy aware and secured against surveillance (e.g., <span>[<a href="#RFC8446" class="xref">RFC8446</a>]</span>,
<span>[<a href="#RFC9000" class="xref">RFC9000</a>]</span>), the use of unencrypted transports for DNS may
become "the weakest link" in privacy. It is noted that, at the time of writing,
there is ongoing work attempting to encrypt the Server Name Identification (SNI) in the TLS handshake
<span>[<a href="#RFC8744" class="xref">RFC8744</a>]</span>, which is one of the
last remaining non-DNS cleartext identifiers of a connection target.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<p id="section-5.1-2">An important specificity of the DNS traffic is that it may take a
different path than the communication between the initiator and the
recipient. For instance, an eavesdropper may be unable to tap the
wire between the initiator and the recipient but may have access to
the wire going to the recursive resolver or to the authoritative
name servers.<a href="#section-5.1-2" class="pilcrow">¶</a></p>
<p id="section-5.1-3">The best place to tap, from an eavesdropper's point of view, is
clearly between the stub resolvers and the recursive resolvers,
because traffic is not limited by DNS caching.<a href="#section-5.1-3" class="pilcrow">¶</a></p>
<p id="section-5.1-4">The attack surface between the stub resolver and the rest of the
world can vary widely depending upon how the end user's device is
configured. By order of increasing attack surface:<a href="#section-5.1-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5.1-5.1">The recursive resolver can be on the end user's device. In (currently) a small number of cases, individuals may choose to
operate their own DNS resolver on their local machine. In this
case, the attack surface for the connection between the stub
resolver and the caching resolver is limited to that single
machine. The recursive resolver will expose data to authoritative
resolvers as discussed in <a href="#in-the-authoritative-name-servers" class="xref">Section 6.2</a>.<a href="#section-5.1-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-5.2">The recursive resolver may be at the local network edge. For
many/most enterprise networks and for some residential networks, the
caching resolver may exist on a server at the edge of the local
network. In this case, the attack surface is the local network.
Note that in large enterprise networks, the DNS resolver may not
be located at the edge of the local network but rather at the edge
of the overall enterprise network. In this case, the enterprise
network could be thought of as similar to the Internet Access
Provider (IAP) network referenced below.<a href="#section-5.1-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-5.3">The recursive resolver can be in the IAP network. For most residential
networks and potentially other networks, the typical case is for the
user's device to be configured (typically automatically through DHCP or
relay agent options) with the addresses of the DNS proxy in the Customer
Premises Equipment (CPE), which in turn
points to the DNS recursive resolvers at the IAP. The attack surface for
on-the-wire attacks is therefore from the end user system across the
local network and across the IAP network to the IAP's recursive resolvers.<a href="#section-5.1-5.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-5.4">The recursive resolver can be a public DNS service (or a privately run DNS
resolver hosted on the public Internet). Some machines
may be configured to use public DNS resolvers such as those
operated by Google Public DNS or OpenDNS. The user may
have configured their machine to use these DNS recursive resolvers
themselves -- or their IAP may have chosen to use the public DNS
resolvers rather than operating their own resolvers. In this
case, the attack surface is the entire public Internet between the
user's connection and the public DNS service. It can be noted that if the
user selects a single resolver with a small client population (even when using
an encrypted transport), it can actually serve to aid tracking of that user as
they move across network environments.<a href="#section-5.1-5.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5.1-6">It is also noted that, typically, a device connected <em>only</em> to a modern cellular
network is<a href="#section-5.1-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5.1-7.1">directly configured with only the recursive resolvers of the IAP and<a href="#section-5.1-7.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-7.2">
<p id="section-5.1-7.2.1">afforded some level of protection against some types of eavesdropping
for all traffic (including DNS traffic) due to the cellular network
link-layer encryption.<a href="#section-5.1-7.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
<p id="section-5.1-8">The attack surface for this specific scenario is not considered here.<a href="#section-5.1-8" class="pilcrow">¶</a></p>
</section>
</div>
<div id="encrypted-transports">
<section id="section-5.2">
<h3 id="name-encrypted-transports">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-encrypted-transports" class="section-name selfRef">Encrypted Transports</a>
</h3>
<p id="section-5.2-1">The use of encrypted transports directly mitigates passive surveillance of the
DNS payload; however, some privacy attacks are still possible. This section
enumerates the residual privacy risks to an end user when an attacker can
passively monitor encrypted DNS traffic flows on the wire.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
<p id="section-5.2-2">These are cases where user identification, fingerprinting, or correlations may be
possible due to the use of certain transport layers or cleartext/observable
features. These issues are not specific to DNS, but DNS traffic is susceptible
to these attacks when using specific transports.<a href="#section-5.2-2" class="pilcrow">¶</a></p>
<p id="section-5.2-3">Some general examples exist; for example, certain studies highlight
that the <a href="http://netres.ec/?b=11B99BD">OS fingerprint values</a> of IPv4 TTL, IPv6 Hop Limit, or TCP Window size can be used to fingerprint client OSes or that various techniques can be
used to de-NAT DNS queries <span>[<a href="#dns-de-nat" class="xref">dns-de-nat</a>]</span>.<a href="#section-5.2-3" class="pilcrow">¶</a></p>
<p id="section-5.2-4">Note that even when using encrypted transports, the use of cleartext transport
options to decrease latency can provide correlation of a user's connections,
e.g., using TCP Fast Open <span>[<a href="#RFC7413" class="xref">RFC7413</a>]</span>.<a href="#section-5.2-4" class="pilcrow">¶</a></p>
<p id="section-5.2-5">Implementations that support encrypted transports also commonly reuse
connections for multiple DNS queries to optimize performance (e.g., via DNS
pipelining or HTTPS multiplexing). Default configuration options for encrypted
transports could, in principle, fingerprint a specific client application.
For
example:<a href="#section-5.2-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5.2-6.1">TLS version or cipher suite selection<a href="#section-5.2-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.2-6.2">session resumption<a href="#section-5.2-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.2-6.3">the maximum number of messages to send and<a href="#section-5.2-6.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.2-6.4">a maximum connection time before closing a connections and reopening.<a href="#section-5.2-6.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5.2-7">If libraries or applications offer user configuration of such options (e.g.,
<span>[<a href="#getdns" class="xref">getdns</a>]</span>), then they could, in principle, help to identify a specific user. Users
may want to use only the defaults to avoid this issue.<a href="#section-5.2-7" class="pilcrow">¶</a></p>
<p id="section-5.2-8">While there are known attacks on older versions of TLS, the most recent
recommendations <span>[<a href="#RFC7525" class="xref">RFC7525</a>]</span> and the development of TLS 1.3 <span>[<a href="#RFC8446" class="xref">RFC8446</a>]</span> largely
mitigate those.<a href="#section-5.2-8" class="pilcrow">¶</a></p>
<p id="section-5.2-9">Traffic analysis of unpadded encrypted traffic is also possible
<span>[<a href="#pitfalls-of-dns-encryption" class="xref">pitfalls-of-dns-encryption</a>]</span> because the sizes and timing of encrypted DNS
requests and responses can be correlated to unencrypted DNS requests upstream
of a recursive resolver.<a href="#section-5.2-9" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="risks-in-the-servers">
<section id="section-6">
<h2 id="name-risks-in-the-servers">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-risks-in-the-servers" class="section-name selfRef">Risks in the Servers</a>
</h2>
<p id="section-6-1">Using the terminology of <span>[<a href="#RFC6973" class="xref">RFC6973</a>]</span>, the DNS servers (recursive
resolvers and authoritative servers) are enablers: "they facilitate
communication between an initiator and a recipient without being
directly in the communications path". As a result, they are often
forgotten in risk analysis. But, to quote <span>[<a href="#RFC6973" class="xref">RFC6973</a>]</span> again, "Although
[...] enablers may not generally be considered as attackers, they may
all pose privacy threats (depending on the context) because they are
able to observe, collect, process, and transfer privacy-relevant
data". In <span>[<a href="#RFC6973" class="xref">RFC6973</a>]</span> parlance, enablers become observers when they
start collecting data.<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2">Many programs exist to collect and analyze DNS data at the servers -- from
the "query log" of some programs like BIND to tcpdump and more sophisticated
programs like PacketQ <span>[<a href="#packetq" class="xref">packetq</a>]</span> and DNSmezzo <span>[<a href="#dnsmezzo" class="xref">dnsmezzo</a>]</span>. The
organization managing the DNS server can use this data itself, or it can be
part of a surveillance program like PRISM <span>[<a href="#prism" class="xref">prism</a>]</span> and pass data to an
outside observer.<a href="#section-6-2" class="pilcrow">¶</a></p>
<p id="section-6-3">Sometimes this data is kept for a long time and/or distributed to
third parties for research purposes <span>[<a href="#ditl" class="xref">ditl</a>]</span> <span>[<a href="#day-at-root" class="xref">day-at-root</a>]</span>, security
analysis, or surveillance tasks. These uses are sometimes under some
sort of contract, with various limitations, for instance, on
redistribution, given the sensitive nature of the data. Also, there
are observation points in the network that gather DNS data and then
make it accessible to third parties for research or security purposes
("passive DNS" <span>[<a href="#passive-dns" class="xref">passive-dns</a>]</span>).<a href="#section-6-3" class="pilcrow">¶</a></p>
<div id="in-the-recursive-resolvers">
<section id="section-6.1">
<h3 id="name-in-the-recursive-resolvers">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-in-the-recursive-resolvers" class="section-name selfRef">In the Recursive Resolvers</a>
</h3>
<p id="section-6.1-1">Recursive resolvers see all the traffic since there is typically no
caching before them. To summarize: your recursive resolver knows a
lot about you. The resolver of a large IAP, or a large public
resolver, can collect data from many users.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<div id="resolver-selection">
<section id="section-6.1.1">
<h4 id="name-resolver-selection">
<a href="#section-6.1.1" class="section-number selfRef">6.1.1. </a><a href="#name-resolver-selection" class="section-name selfRef">Resolver Selection</a>
</h4>
<p id="section-6.1.1-1">Given all the above considerations, the choice of recursive resolver has
direct privacy considerations for end users. Historically, end user devices
have used the DHCP-provided local network recursive resolver. The choice by a
user to join a particular network (e.g., by physically plugging in a cable or
selecting a network in an OS dialogue) typically updates a number of system
resources -- these can include IP addresses, the availability of IPv4/IPv6, DHCP
server, and DNS resolver. These individual changes, including the change in
DNS resolver, are not normally communicated directly to the user by the OS
when the network is joined. The choice of network has historically determined
the default system DNS resolver selection; the two are directly coupled in
this model.<a href="#section-6.1.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1.1-2">The vast majority of users do not change their default system DNS settings
and so implicitly accept the network settings for the DNS. The network resolvers
have therefore historically been the sole destination for all of the DNS
queries from a device. These resolvers may have varied
privacy policies depending on the network. Privacy policies for these servers
may or may not be available, and users need to be aware that privacy
guarantees will vary with the network.<a href="#section-6.1.1-2" class="pilcrow">¶</a></p>
<p id="section-6.1.1-3">All major OSes expose the system DNS settings and allow users to manually
override them if desired.<a href="#section-6.1.1-3" class="pilcrow">¶</a></p>
<p id="section-6.1.1-4">More recently, some networks and users have actively chosen
to use a large public resolver, e.g., <a href="https://developers.google.com/speed/public-dns">Google Public
DNS</a>,
<a href="https://developers.cloudflare.com/1.1.1.1/setting-up-1.1.1.1/">Cloudflare</a>,
or <a href="https://www.quad9.net">Quad9</a>. There can be many reasons: cost
considerations for network operators, better reliability, or anti-censorship
considerations are just a few. Such services typically do provide a privacy
policy, and the user can get an idea of the data collected by such
operators by reading one, e.g., <a href="https://developers.google.com/speed/public-dns/privacy">Google Public DNS - Your
Privacy</a>.<a href="#section-6.1.1-4" class="pilcrow">¶</a></p>
<p id="section-6.1.1-5">In general, as with many other protocols, issues around centralization also
arise with DNS.
The picture is fluid with several competing factors
contributing, where these factors can also vary by geographic region. These include:<a href="#section-6.1.1-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6.1.1-6.1">ISP outsourcing, including to third-party and public resolvers<a href="#section-6.1.1-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.1.1-6.2">regional market domination by one or only a few ISPs<a href="#section-6.1.1-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.1.1-6.3">applications directing DNS traffic by default to a limited subset of resolvers (see <a href="#applicationspecific-resolver-selection" class="xref">Section 6.1.1.2</a>)<a href="#section-6.1.1-6.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6.1.1-7">An increased proportion of the global DNS resolution traffic being served by
only a few entities means that the privacy considerations for users are
highly dependent on the privacy policies and practices of those
entities. Many of the issues around centralization are discussed in
<span>[<a href="#centralisation-and-data-sovereignty" class="xref">centralisation-and-data-sovereignty</a>]</span>.<a href="#section-6.1.1-7" class="pilcrow">¶</a></p>
<div id="dynamic-discovery-of-doh-and-strict-dot">
<section id="section-6.1.1.1">
<h5 id="name-dynamic-discovery-of-doh-an">
<a href="#section-6.1.1.1" class="section-number selfRef">6.1.1.1. </a><a href="#name-dynamic-discovery-of-doh-an" class="section-name selfRef">Dynamic Discovery of DoH and Strict DoT</a>
</h5>
<p id="section-6.1.1.1-1">While support for opportunistic DoT can be determined by probing a resolver on
port 853, there is currently no standardized discovery mechanism for DoH and
Strict DoT servers.<a href="#section-6.1.1.1-1" class="pilcrow">¶</a></p>
<p id="section-6.1.1.1-2">This means that clients that might want to dynamically discover such encrypted
services, and where users are willing to trust such services, are not able to do
so. At the time of writing, efforts to provide standardized signaling mechanisms
to discover the services offered by local resolvers are in progress
<span>[<a href="#I-D.ietf-dnsop-resolver-information" class="xref">DNSOP-RESOLVER</a>]</span>. Note that an increasing number of ISPs
are deploying encrypted DNS; for example, see the Encrypted DNS Deployment
Initiative <span>[<a href="#EDDI" class="xref">EDDI</a>]</span>.<a href="#section-6.1.1.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="applicationspecific-resolver-selection">
<section id="section-6.1.1.2">
<h5 id="name-application-specific-resolv">
<a href="#section-6.1.1.2" class="section-number selfRef">6.1.1.2. </a><a href="#name-application-specific-resolv" class="section-name selfRef">Application-Specific Resolver Selection</a>
</h5>
<p id="section-6.1.1.2-1">An increasing number of applications are offering application-specific encrypted DNS resolution settings, rather than defaulting to
using only the system resolver. A variety of heuristics and
resolvers are available in different applications, including hard-coded lists of recognized DoH/DoT servers.<a href="#section-6.1.1.2-1" class="pilcrow">¶</a></p>
<p id="section-6.1.1.2-2">Generally, users are not aware of application-specific DNS settings and may
not have control over those settings. To address these limitations, users
will only be aware of and have the ability to control such settings if
applications provide the following functions:<a href="#section-6.1.1.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6.1.1.2-3.1">communicate the change clearly to users when the default application
resolver changes away from the system resolver<a href="#section-6.1.1.2-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.1.1.2-3.2">provide configuration options to change the default
application resolver, including a choice to always use the system resolver<a href="#section-6.1.1.2-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.1.1.2-3.3">provide mechanisms for users to locally inspect, selectively forward,
and filter queries (either via the application itself or use of the
system resolver)<a href="#section-6.1.1.2-3.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6.1.1.2-4">Application-specific changes to default destinations for users' DNS
queries might increase or decrease user privacy; it is highly
dependent on the network context and the application-specific
default. This is an area of active debate, and the IETF is working on
a number of issues related to application-specific DNS settings.<a href="#section-6.1.1.2-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="active-attacks-on-resolver-configuration">
<section id="section-6.1.2">
<h4 id="name-active-attacks-on-resolver-">
<a href="#section-6.1.2" class="section-number selfRef">6.1.2. </a><a href="#name-active-attacks-on-resolver-" class="section-name selfRef">Active Attacks on Resolver Configuration</a>
</h4>
<p id="section-6.1.2-1">The previous section discussed DNS privacy, assuming that all the traffic
was directed to the intended servers (i.e., those that would be used in the
absence of an active attack) and that the potential attacker was purely
passive. But, in reality, there can be active attackers in the network.<a href="#section-6.1.2-1" class="pilcrow">¶</a></p>
<p id="section-6.1.2-2">The Internet Threat model, as described in <span>[<a href="#RFC3552" class="xref">RFC3552</a>]</span>, assumes that the attacker
controls the network. Such an attacker can completely control any insecure DNS
resolution, both passively monitoring the queries and responses and substituting
their own responses. Even if encrypted DNS such as DoH or DoT is used, unless
the client has been configured in a secure way with the server identity, an active attacker can impersonate the server. This implies that opportunistic
modes of DoH/DoT as well as modes where the client learns of the DoH/DoT server
via in-network mechanisms such as DHCP are vulnerable to attack. In addition, if
the client is compromised, the attacker can replace the DNS configuration with
one of its own choosing.<a href="#section-6.1.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="blocking-of-dns-resolution-services">
<section id="section-6.1.3">
<h4 id="name-blocking-of-dns-resolution-">
<a href="#section-6.1.3" class="section-number selfRef">6.1.3. </a><a href="#name-blocking-of-dns-resolution-" class="section-name selfRef">Blocking of DNS Resolution Services</a>
</h4>
<p id="section-6.1.3-1">User privacy can also be at risk if there is blocking
of access to remote recursive servers
that offer encrypted transports, e.g., when the local resolver does not offer
encryption and/or has very poor privacy policies. For example, active blocking
of port 853 for DoT or blocking of specific IP addresses could restrict the resolvers
available to the user. The extent of the risk to user privacy is highly
dependent on the specific network and user context; a user on a network that
is known to perform surveillance would be compromised if they could not access
such services, whereas a user on a trusted network might have no privacy
motivation to do so.<a href="#section-6.1.3-1" class="pilcrow">¶</a></p>
<p id="section-6.1.3-2">As a matter of policy, some recursive resolvers use their position in the query
path to selectively block access to certain DNS records. This is a form of
rendezvous-based blocking as described in <span><a href="https://www.rfc-editor.org/rfc/rfc7754#section-4.3" class="relref">Section 4.3</a> of [<a href="#RFC7754" class="xref">RFC7754</a>]</span>. Such
blocklists often include servers known to be used for malware, bots, or other
security risks. In order to prevent circumvention of their blocking policies,
some networks also block access to resolvers with incompatible policies.<a href="#section-6.1.3-2" class="pilcrow">¶</a></p>
<p id="section-6.1.3-3">It is also noted that attacks on remote resolver services, e.g., DDoS, could
force users to switch to other services that do not offer encrypted transports
for DNS.<a href="#section-6.1.3-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="encrypted-transports-and-recursive-resolvers">
<section id="section-6.1.4">
<h4 id="name-encrypted-transports-and-re">
<a href="#section-6.1.4" class="section-number selfRef">6.1.4. </a><a href="#name-encrypted-transports-and-re" class="section-name selfRef">Encrypted Transports and Recursive Resolvers</a>
</h4>
<div id="dot-and-doh">
<section id="section-6.1.4.1">
<h5 id="name-dot-and-doh">
<a href="#section-6.1.4.1" class="section-number selfRef">6.1.4.1. </a><a href="#name-dot-and-doh" class="section-name selfRef">DoT and DoH</a>
</h5>
<p id="section-6.1.4.1-1">Use of encrypted transports does not reduce the data available in the recursive
resolver and ironically can actually expose more information about users to
operators. As described in <a href="#encrypted-transports" class="xref">Section 5.2</a>, use of session-based encrypted
transports (TCP/TLS) can expose correlation data about users.<a href="#section-6.1.4.1-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="doh-specific-considerations">
<section id="section-6.1.4.2">
<h5 id="name-doh-specific-considerations">
<a href="#section-6.1.4.2" class="section-number selfRef">6.1.4.2. </a><a href="#name-doh-specific-considerations" class="section-name selfRef">DoH-Specific Considerations</a>
</h5>
<p id="section-6.1.4.2-1">DoH inherits the full privacy properties of the HTTPS stack and as a consequence
introduces new privacy considerations when compared with DNS over UDP, TCP, or
TLS <span>[<a href="#RFC7858" class="xref">RFC7858</a>]</span>. <span><a href="https://www.rfc-editor.org/rfc/rfc8484#section-8.2" class="relref">Section 8.2</a> of [<a href="#RFC8484" class="xref">RFC8484</a>]</span> describes the privacy considerations in
the server of the DoH protocol.<a href="#section-6.1.4.2-1" class="pilcrow">¶</a></p>
<p id="section-6.1.4.2-2">A brief summary of some of the issues includes the following:<a href="#section-6.1.4.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6.1.4.2-3.1">HTTPS presents new considerations for correlation, such as explicit HTTP
cookies and implicit fingerprinting of the unique set and ordering of HTTP
request header fields.<a href="#section-6.1.4.2-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.1.4.2-3.2">The User-Agent and Accept-Language request header fields often convey specific
information about the client version or locale.<a href="#section-6.1.4.2-3.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.1.4.2-3.3">Utilizing the full set of HTTP features enables DoH to be more than an HTTP
tunnel, but it is at the cost of opening up implementations to the full set of
privacy considerations of HTTP.<a href="#section-6.1.4.2-3.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.1.4.2-3.4">Implementations are advised to expose the minimal set of data needed to
achieve the desired feature set.<a href="#section-6.1.4.2-3.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6.1.4.2-4"><span>[<a href="#RFC8484" class="xref">RFC8484</a>]</span> specifically makes selection of HTTPS functionality vs. privacy an
implementation choice. At the extremes, there may be implementations that
attempt to achieve parity with DoT from a privacy perspective at the cost of
using no identifiable HTTP headers, and there might be others that provide feature-rich data flows where the low-level origin of the DNS query is easily
identifiable. Some implementations have, in fact, chosen to restrict the use of the User-Agent header so that resolver operators cannot identify the specific
application that is originating the DNS queries.<a href="#section-6.1.4.2-4" class="pilcrow">¶</a></p>
<p id="section-6.1.4.2-5">Privacy-focused users should be aware of the potential for additional client
identifiers in DoH compared to DoT and may want to only use DoH client
implementations that provide clear guidance on what identifiers they add.<a href="#section-6.1.4.2-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="in-the-authoritative-name-servers">
<section id="section-6.2">
<h3 id="name-in-the-authoritative-name-s">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-in-the-authoritative-name-s" class="section-name selfRef">In the Authoritative Name Servers</a>
</h3>
<p id="section-6.2-1">Unlike what happens for recursive resolvers, the observation capabilities of
authoritative name servers are limited by caching; they see only the requests
for which the answer was not in the cache. For aggregated statistics ("What
is the percentage of LOC queries?"), this is sufficient, but it prevents an
observer from seeing everything. Similarly, the increasing deployment of QNAME
minimization <span>[<a href="#ripe-qname-measurements" class="xref">ripe-qname-measurements</a>]</span> reduces the data visible at the
authoritative name server. Still, the authoritative name servers see a part
of the traffic, and this subset may be sufficient to violate some privacy
expectations.<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<p id="section-6.2-2">Also, the user often has some legal/contractual link with the
recursive resolver (they have chosen the IAP, or they have chosen to use a
given public resolver) while having no control and perhaps no
awareness of the role of the authoritative name servers and their
observation abilities.<a href="#section-6.2-2" class="pilcrow">¶</a></p>
<p id="section-6.2-3">As noted before, using a local resolver or a resolver close to the
machine decreases the attack surface for an on-the-wire eavesdropper.
But it may decrease privacy against an observer located on an
authoritative name server. This authoritative name server will see
the IP address of the end client instead of the address of a big
recursive resolver shared by many users.<a href="#section-6.2-3" class="pilcrow">¶</a></p>
<p id="section-6.2-4">This "protection", when using a large resolver with many clients, is
no longer present if ECS <span>[<a href="#RFC7871" class="xref">RFC7871</a>]</span> is used because, in this case,
the authoritative name server sees the original IP address (or
prefix, depending on the setup).<a href="#section-6.2-4" class="pilcrow">¶</a></p>
<p id="section-6.2-5">As of today, all the instances of one root name server, L-root,
receive together around 50,000 queries per second. While most of it
is "junk" (errors on the Top-Level Domain (TLD) name), it gives an
idea of the amount of big data that pours into name servers. (And
even "junk" can leak information; for instance, if there is a typing
error in the TLD, the user will send data to a TLD that is not the
usual one.)<a href="#section-6.2-5" class="pilcrow">¶</a></p>
<p id="section-6.2-6">Many domains, including TLDs, are partially hosted by third-party
servers, sometimes in a different country. The contracts between the
domain manager and these servers may or may not take privacy into
account. Whatever the contract, the third-party hoster may or may not be honest; in any case, it will have to follow its local laws. For
example,
requests to a given ccTLD may go to servers managed by organizations
outside of the ccTLD's country. Users may not anticipate that
when doing a security analysis.<a href="#section-6.2-6" class="pilcrow">¶</a></p>
<p id="section-6.2-7">Also, it seems (see the survey described in <span>[<a href="#aeris-dns" class="xref">aeris-dns</a>]</span>) that there is a
strong concentration of authoritative name servers among "popular" domains
(such as the Alexa Top N list). For instance, among the <a href="https://www.alexa.com/topsites">Alexa Top
100K</a>, one DNS provider hosts 10% of
the domains today. The ten most important DNS providers together host one-third of
all domains. With the control (or the ability to sniff the traffic) of a few
name servers, you can gather a lot of information.<a href="#section-6.2-7" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="other-risks">
<section id="section-7">
<h2 id="name-other-risks">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-other-risks" class="section-name selfRef">Other Risks</a>
</h2>
<div id="reidentification-and-other-inferences">
<section id="section-7.1">
<h3 id="name-re-identification-and-other">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-re-identification-and-other" class="section-name selfRef">Re-identification and Other Inferences</a>
</h3>
<p id="section-7.1-1">An observer has access not only to the data they directly collect but also
to the results of various inferences about this data. The term "observer" here is used very generally; for example, the observer might
passively observe cleartext DNS traffic or be in the network
that is actively attacking the user by redirecting DNS resolution, or it might be a
local or remote resolver operator.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
<p id="section-7.1-2">For instance, a user can be re-identified via DNS queries. If the
adversary knows a user's identity and can watch their DNS queries for
a period, then that same adversary may be able to re-identify the
user solely based on their pattern of DNS queries later on regardless
of the location from which the user makes those queries. For
example, one study <span>[<a href="#herrmann-reidentification" class="xref">herrmann-reidentification</a>]</span> found that such re-identification is possible so that "73.1% of all day-to-day links
were correctly established, i.e. user u was either re-identified
unambiguously (1) or the classifier correctly reported that u was not
present on day t + 1 any more (2)". While that study related to web
browsing behavior, equally characteristic patterns may be produced
even in machine-to-machine communications or without a user taking
specific actions, e.g., at reboot time if a characteristic set of
services are accessed by the device.<a href="#section-7.1-2" class="pilcrow">¶</a></p>
<p id="section-7.1-3">For instance, one could imagine that an intelligence agency
identifies people going to a site by putting in a very long DNS name
and looking for queries of a specific length. Such traffic analysis
could weaken some privacy solutions.<a href="#section-7.1-3" class="pilcrow">¶</a></p>
<p id="section-7.1-4">The IAB Privacy and Security Program also has a document
<span>[<a href="#RFC7624" class="xref">RFC7624</a>]</span> that considers such inference-based attacks in a more
general framework.<a href="#section-7.1-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="more-information">
<section id="section-7.2">
<h3 id="name-more-information">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-more-information" class="section-name selfRef">More Information</a>
</h3>
<p id="section-7.2-1">Useful background information can also be found in <span>[<a href="#tor-leak" class="xref">tor-leak</a>]</span> (regarding the risk of privacy leaks through DNS) and in a few academic papers:
<span>[<a href="#yanbin-tsudik" class="xref">yanbin-tsudik</a>]</span>, <span>[<a href="#castillo-garcia" class="xref">castillo-garcia</a>]</span>, <span>[<a href="#fangming-hori-sakurai" class="xref">fangming-hori-sakurai</a>]</span>, and
<span>[<a href="#federrath-fuchs-herrmann-piosecny" class="xref">federrath-fuchs-herrmann-piosecny</a>]</span>.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="actual-attacks">
<section id="section-8">
<h2 id="name-actual-attacks">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-actual-attacks" class="section-name selfRef">Actual "Attacks"</a>
</h2>
<p id="section-8-1">A very quick examination of DNS traffic may lead to the false conclusion that
extracting the needle from the haystack is difficult. "Interesting" primary
DNS requests are mixed with useless (for the eavesdropper) secondary and
tertiary requests (see the terminology in <a href="#introduction" class="xref">Section 1</a>). But, in
this time of "big data" processing, powerful techniques now exist to get from
the raw data to what the eavesdropper is actually interested in.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">Many research papers about malware detection use DNS traffic to
detect "abnormal" behavior that can be traced back to the activity of
malware on infected machines.
Yes, this research was done for the greater good, but technically it is a privacy attack and it demonstrates the
power of the observation of DNS traffic. See <span>[<a href="#dns-footprint" class="xref">dns-footprint</a>]</span>,
<span>[<a href="#dagon-malware" class="xref">dagon-malware</a>]</span>, and <span>[<a href="#darkreading-dns" class="xref">darkreading-dns</a>]</span>.<a href="#section-8-2" class="pilcrow">¶</a></p>
<p id="section-8-3">Passive DNS services <span>[<a href="#passive-dns" class="xref">passive-dns</a>]</span> allow reconstruction of the data of sometimes an entire zone. Well-known passive DNS services keep only the DNS
responses and not the source IP address of the client, precisely for
privacy reasons. Other passive DNS services may not be so careful.
And there are still potential problems with revealing QNAMEs.<a href="#section-8-3" class="pilcrow">¶</a></p>
<p id="section-8-4">The revelations from the Edward Snowden documents, which were leaked from the
National Security Agency (NSA), provide evidence of the use of the DNS in mass
surveillance operations <span>[<a href="#morecowbell" class="xref">morecowbell</a>]</span>. For example, the MORECOWBELL
surveillance program uses a dedicated covert monitoring infrastructure
to actively query DNS servers and perform HTTP requests to obtain meta-information about services and to check their availability. Also, the
<a href="https://theintercept.com/document/2014/03/12/nsa-gchqs-quantumtheory-hacking-tactics/">QUANTUMTHEORY</a>
project, which includes detecting lookups for certain addresses and injecting
bogus replies, is another good example showing that the lack of privacy
protections in the DNS is actively exploited.<a href="#section-8-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="legalities">
<section id="section-9">
<h2 id="name-legalities">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-legalities" class="section-name selfRef">Legalities</a>
</h2>
<p id="section-9-1">To our knowledge, there are no specific privacy laws for DNS data in any
country. Interpreting general privacy laws, like the European Union's <span>[<a href="#data-protection-directive" class="xref">data-protection-directive</a>]</span>
or <a href="https://gdpr.eu/tag/gdpr/">GDPR</a>, in the context of DNS traffic data is not an easy task, and
there is no known court precedent. See an interesting analysis in
<span>[<a href="#sidn-entrada" class="xref">sidn-entrada</a>]</span>.<a href="#section-9-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="security-considerations">
<section id="section-10">
<h2 id="name-security-considerations">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-10-1">This document is entirely about security -- more precisely, privacy. It just
lays out the problem; it does not try to set requirements (with the choices
and compromises they imply), much less define solutions. Possible solutions
to the issues described here are discussed in other documents (currently too
many to all be mentioned); see, for instance, "Recommendations for DNS
Privacy Operators" <span>[<a href="#RFC8932" class="xref">RFC8932</a>]</span>.<a href="#section-10-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="iana-considerations">
<section id="section-11">
<h2 id="name-iana-considerations">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-11-1">This document has no IANA actions.<a href="#section-11-1" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-12">
<h2 id="name-references">
<a href="#section-12" class="section-number selfRef">12. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-12.1">
<h3 id="name-normative-references">
<a href="#section-12.1" class="section-number selfRef">12.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC1034">[RFC1034]</dt>
<dd>
<span class="refAuthor">Mockapetris, P.</span>, <span class="refTitle">"Domain names - concepts and facilities"</span>, <span class="seriesInfo">STD 13</span>, <span class="seriesInfo">RFC 1034</span>, <span class="seriesInfo">DOI 10.17487/RFC1034</span>, <time datetime="1987-11" class="refDate">November 1987</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1034">https://www.rfc-editor.org/info/rfc1034</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC1035">[RFC1035]</dt>
<dd>
<span class="refAuthor">Mockapetris, P.</span>, <span class="refTitle">"Domain names - implementation and specification"</span>, <span class="seriesInfo">STD 13</span>, <span class="seriesInfo">RFC 1035</span>, <span class="seriesInfo">DOI 10.17487/RFC1035</span>, <time datetime="1987-11" class="refDate">November 1987</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1035">https://www.rfc-editor.org/info/rfc1035</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6973">[RFC6973]</dt>
<dd>
<span class="refAuthor">Cooper, A.</span>, <span class="refAuthor">Tschofenig, H.</span>, <span class="refAuthor">Aboba, B.</span>, <span class="refAuthor">Peterson, J.</span>, <span class="refAuthor">Morris, J.</span>, <span class="refAuthor">Hansen, M.</span>, and <span class="refAuthor">R. Smith</span>, <span class="refTitle">"Privacy Considerations for Internet Protocols"</span>, <span class="seriesInfo">RFC 6973</span>, <span class="seriesInfo">DOI 10.17487/RFC6973</span>, <time datetime="2013-07" class="refDate">July 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6973">https://www.rfc-editor.org/info/rfc6973</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7258">[RFC7258]</dt>
<dd>
<span class="refAuthor">Farrell, S.</span> and <span class="refAuthor">H. Tschofenig</span>, <span class="refTitle">"Pervasive Monitoring Is an Attack"</span>, <span class="seriesInfo">BCP 188</span>, <span class="seriesInfo">RFC 7258</span>, <span class="seriesInfo">DOI 10.17487/RFC7258</span>, <time datetime="2014-05" class="refDate">May 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7258">https://www.rfc-editor.org/info/rfc7258</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-12.2">
<h3 id="name-informative-references">
<a href="#section-12.2" class="section-number selfRef">12.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="aeris-dns">[aeris-dns]</dt>
<dd>
<span class="refAuthor">Vinot, N.</span>, <span class="refTitle">"Vie privée: et le DNS alors? [Privacy: what about DNS?]"</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span><<a href="https://blog.imirhil.fr/vie-privee-et-le-dns-alors.html">https://blog.imirhil.fr/vie-privee-et-le-dns-alors.html</a>></span>. </dd>
<dd class="break"></dd>
<dt id="cache-snooping-defence">[cache-snooping-defence]</dt>
<dd>
<span class="refAuthor">ISC</span>, <span class="refTitle">"DNS Cache snooping - should I be concerned?"</span>, <time datetime="2018-10" class="refDate">October 2018</time>, <span><<a href="https://kb.isc.org/docs/aa-00482">https://kb.isc.org/docs/aa-00482</a>></span>. </dd>
<dd class="break"></dd>
<dt id="castillo-garcia">[castillo-garcia]</dt>
<dd>
<span class="refAuthor">Castillo-Perez, S.</span> and <span class="refAuthor">J. Garcia-Alfaro</span>, <span class="refTitle">"Anonymous Resolution of DNS Queries"</span>, <span class="refContent">Lecture Notes in Computer Science, Vol. 5332</span>, <span class="seriesInfo">DOI 10.1007/978-3-540-88873-4_5</span>, <time datetime="2008" class="refDate">2008</time>, <span><<a href="https://dl.acm.org/doi/10.1007/978-3-540-88873-4_5">https://dl.acm.org/doi/10.1007/978-3-540-88873-4_5</a>></span>. </dd>
<dd class="break"></dd>
<dt id="centralisation-and-data-sovereignty">[centralisation-and-data-sovereignty]</dt>
<dd>
<span class="refAuthor">De Filippi, P.</span> and <span class="refAuthor">S. McCarthy</span>, <span class="refTitle">"Cloud Computing: Centralization and Data Sovereignty"</span>, <span class="refContent">European Journal of Law and Technology, Vol. 3, No. 2</span>, <time datetime="2012-10" class="refDate">October 2012</time>, <span><<a href="https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2167372">https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2167372</a>></span>. </dd>
<dd class="break"></dd>
<dt id="dagon-malware">[dagon-malware]</dt>
<dd>
<span class="refAuthor">Dagon, D.</span>, <span class="refTitle">"Corrupted DNS Resolution Paths: The Rise of a Malicious Resolution Authority"</span>, <span class="refContent">ISC/OARC Workshop</span>, <time datetime="2007" class="refDate">2007</time>, <span><<a href="https://www.dns-oarc.net/files/workshop-2007/Dagon-Resolution-corruption.pdf">https://www.dns-oarc.net/files/workshop-2007/Dagon-Resolution-corruption.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="darkreading-dns">[darkreading-dns]</dt>
<dd>
<span class="refAuthor">Lemos, R.</span>, <span class="refTitle">"Got Malware? Three Signs Revealed In DNS Traffic"</span>, <time datetime="2013-05" class="refDate">May 2013</time>, <span><<a href="https://www.darkreading.com/analytics/security-monitoring/got-malware-three-signs-revealed-in-dns-traffic/d/d-id/1139680">https://www.darkreading.com/analytics/security-monitoring/got-malware-three-signs-revealed-in-dns-traffic/d/d-id/1139680</a>></span>. </dd>
<dd class="break"></dd>
<dt id="data-protection-directive">[data-protection-directive]</dt>
<dd>
<span class="refAuthor">European Parliament</span>, <span class="refTitle">"Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of individuals with regard to the processing of personal data and on the free movement of such data"</span>, <span class="refContent">Official Journal L 281, pp. 31-50</span>, <time datetime="1995-11" class="refDate">November 1995</time>, <span><<a href="https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML">https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML</a>></span>. </dd>
<dd class="break"></dd>
<dt id="day-at-root">[day-at-root]</dt>
<dd>
<span class="refAuthor">Castro, S.</span>, <span class="refAuthor">Wessels, D.</span>, <span class="refAuthor">Fomenkov, M.</span>, and <span class="refAuthor">K. Claffy</span>, <span class="refTitle">"A Day at the Root of the Internet"</span>, <span class="refContent">ACM SIGCOMM Computer Communication Review, Vol. 38, No. 5</span>, <span class="seriesInfo">DOI 10.1145/1452335.1452341</span>, <time datetime="2008-10" class="refDate">October 2008</time>, <span><<a href="https://www.sigcomm.org/sites/default/files/ccr/papers/2008/October/1452335-1452341.pdf">https://www.sigcomm.org/sites/default/files/ccr/papers/2008/October/1452335-1452341.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="denis-edns-client-subnet">[denis-edns-client-subnet]</dt>
<dd>
<span class="refAuthor">Denis, F.</span>, <span class="refTitle">"Security and privacy issues of edns-client-subnet"</span>, <time datetime="2013-08" class="refDate">August 2013</time>, <span><<a href="https://00f.net/2013/08/07/edns-client-subnet/">https://00f.net/2013/08/07/edns-client-subnet/</a>></span>. </dd>
<dd class="break"></dd>
<dt id="ditl">[ditl]</dt>
<dd>
<span class="refAuthor">CAIDA</span>, <span class="refTitle">"A Day in the Life of the Internet (DITL)"</span>, <span><<a href="https://www.caida.org/projects/ditl/">https://www.caida.org/projects/ditl/</a>></span>. </dd>
<dd class="break"></dd>
<dt id="dns-de-nat">[dns-de-nat]</dt>
<dd>
<span class="refAuthor">Orevi, L.</span>, <span class="refAuthor">Herzberg, A.</span>, <span class="refAuthor">Zlatokrilov, H.</span>, and <span class="refAuthor">D. Sigron</span>, <span class="refTitle">"DNS-DNS: DNS-based De-NAT Scheme"</span>, <time datetime="2017-01" class="refDate">January 2017</time>, <span><<a href="https://www.researchgate.net/publication/320322146_DNS-DNS_DNS-based_De-NAT_Scheme">https://www.researchgate.net/publication/320322146_DNS-DNS_DNS-based_De-NAT_Scheme</a>></span>. </dd>
<dd class="break"></dd>
<dt id="dns-footprint">[dns-footprint]</dt>
<dd>
<span class="refAuthor">Stoner, E.</span>, <span class="refTitle">"DNS Footprint of Malware"</span>, <span class="refContent">OARC Workshop</span>, <time datetime="2010-10" class="refDate">October 2010</time>, <span><<a href="https://www.dns-oarc.net/files/workshop-201010/OARC-ers-20101012.pdf">https://www.dns-oarc.net/files/workshop-201010/OARC-ers-20101012.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="dns-over-encryption">[dns-over-encryption]</dt>
<dd>
<span class="refAuthor">Lu, C.</span>, <span class="refAuthor">Liu, B.</span>, <span class="refAuthor">Li, Z.</span>, <span class="refAuthor">Hao, S.</span>, <span class="refAuthor">Duan, H.</span>, <span class="refAuthor">Zhang, M.</span>, <span class="refAuthor">Leng, C.</span>, <span class="refAuthor">Liu, Y.</span>, <span class="refAuthor">Zhang, Z.</span>, and <span class="refAuthor">J. Wu</span>, <span class="refTitle">"An End-to-End, Large-Scale Measurement of DNS-over-Encryption: How Far Have We Come?"</span>, <span class="refContent">IMC '19: Proceedings of the Internet Measurement Conference, pp. 22-35</span>, <span class="seriesInfo">DOI 10.1145/3355369.3355580</span>, <time datetime="2019-10" class="refDate">October 2019</time>, <span><<a href="https://dl.acm.org/citation.cfm?id=3355369.3355580">https://dl.acm.org/citation.cfm?id=3355369.3355580</a>></span>. </dd>
<dd class="break"></dd>
<dt id="dnsmezzo">[dnsmezzo]</dt>
<dd>
<span class="refAuthor">Bortzmeyer, S.</span>, <span class="refTitle">"DNSmezzo"</span>, <span><<a href="http://www.dnsmezzo.net/">http://www.dnsmezzo.net/</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-dnsop-resolver-information">[DNSOP-RESOLVER]</dt>
<dd>
<span class="refAuthor">Sood, P.</span>, <span class="refAuthor">Arends, R.</span>, and <span class="refAuthor">P. Hoffman</span>, <span class="refTitle">"DNS Resolver Information Self-publication"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-dnsop-resolver-information-01</span>, <time datetime="2020-02-11" class="refDate">11 February 2020</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-resolver-information-01">https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-resolver-information-01</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-dprive-dnsoquic">[DPRIVE-DNSOQUIC]</dt>
<dd>
<span class="refAuthor">Huitema, C.</span>, <span class="refAuthor">Dickinson, S.</span>, and <span class="refAuthor">A. Mankin</span>, <span class="refTitle">"Specification of DNS over Dedicated QUIC Connections"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-dprive-dnsoquic-03</span>, <time datetime="2021-07-12" class="refDate">12 July 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-dprive-dnsoquic-03">https://datatracker.ietf.org/doc/html/draft-ietf-dprive-dnsoquic-03</a>></span>. </dd>
<dd class="break"></dd>
<dt id="EDDI">[EDDI]</dt>
<dd>
<span class="refAuthor">EDDI</span>, <span class="refTitle">"Encrypted DNS Deployment Initiative"</span>, <span><<a href="https://www.encrypted-dns.org">https://www.encrypted-dns.org</a>></span>. </dd>
<dd class="break"></dd>
<dt id="fangming-hori-sakurai">[fangming-hori-sakurai]</dt>
<dd>
<span class="refAuthor">Zhao, F.</span>, <span class="refAuthor">Hori, Y.</span>, and <span class="refAuthor">K. Sakurai</span>, <span class="refTitle">"Analysis of Privacy Disclosure in DNS Query"</span>, <span class="refContent">MUE '07: Proceedings of the 2007 International Conference on Multimedia and Ubiquitous Engineering</span>, <span class="refContent">pp. 952-957</span>, <span class="seriesInfo">DOI 10.1109/MUE.2007.84</span>, <span class="seriesInfo">ISBN 0-7695-2777-9</span>, <time datetime="2007-04" class="refDate">April 2007</time>, <span><<a href="https://dl.acm.org/citation.cfm?id=1262690.1262986">https://dl.acm.org/citation.cfm?id=1262690.1262986</a>></span>. </dd>
<dd class="break"></dd>
<dt id="federrath-fuchs-herrmann-piosecny">[federrath-fuchs-herrmann-piosecny]</dt>
<dd>
<span class="refAuthor">Federrath, H.</span>, <span class="refAuthor">Fuchs, K.-P.</span>, <span class="refAuthor">Herrmann, D.</span>, and <span class="refAuthor">C. Piosecny</span>, <span class="refTitle">"Privacy-Preserving DNS: Analysis of Broadcast, Range Queries and Mix-based Protection Methods"</span>, <span class="refContent">ESORICS 2011, pp. 665-683</span>, <span class="seriesInfo">DOI 10.1007/978-3-642-23822-2_36</span>, <span class="seriesInfo">ISBN 978-3-642-23822-2</span>, <time datetime="2011" class="refDate">2011</time>, <span><<a href="https://svs.informatik.uni-hamburg.de/publications/2011/2011-09-14_FFHP_PrivacyPreservingDNS_ESORICS2011.pdf">https://svs.informatik.uni-hamburg.de/publications/2011/2011-09-14_FFHP_PrivacyPreservingDNS_ESORICS2011.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="getdns">[getdns]</dt>
<dd>
<span class="refTitle">"getdns"</span>, <span><<a href="https://getdnsapi.net">https://getdnsapi.net</a>></span>. </dd>
<dd class="break"></dd>
<dt id="grangeia.snooping">[grangeia.snooping]</dt>
<dd>
<span class="refAuthor">Grangeia, L.</span>, <span class="refTitle">"Cache Snooping or Snooping the Cache for Fun and Profit"</span>, <time datetime="2005" class="refDate">2005</time>, <span><<a href="https://www.semanticscholar.org/paper/Cache-Snooping-or-Snooping-the-Cache-for-Fun-and-1-Grangeia/9b22f606e10b3609eafbdcbfc9090b63be8778c3">https://www.semanticscholar.org/paper/Cache-Snooping-or-Snooping-the-Cache-for-Fun-and-1-Grangeia/9b22f606e10b3609eafbdcbfc9090b63be8778c3</a>></span>. </dd>
<dd class="break"></dd>
<dt id="herrmann-reidentification">[herrmann-reidentification]</dt>
<dd>
<span class="refAuthor">Herrmann, D.</span>, <span class="refAuthor">Gerber, C.</span>, <span class="refAuthor">Banse, C.</span>, and <span class="refAuthor">H. Federrath</span>, <span class="refTitle">"Analyzing Characteristic Host Access Patterns for Re-Identification of Web User Sessions"</span>, <span class="refContent">Lecture Notes in Computer Science, Vol. 7127</span>, <span class="seriesInfo">DOI 10.1007/978-3-642-27937-9_10</span>, <time datetime="2012" class="refDate">2012</time>, <span><<a href="https://epub.uni-regensburg.de/21103/1/Paper_PUL_nordsec_published.pdf">https://epub.uni-regensburg.de/21103/1/Paper_PUL_nordsec_published.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="morecowbell">[morecowbell]</dt>
<dd>
<span class="refAuthor">Grothoff, C.</span>, <span class="refAuthor">Wachs, M.</span>, <span class="refAuthor">Ermert, M.</span>, and <span class="refAuthor">J. Appelbaum</span>, <span class="refTitle">"NSA's MORECOWBELL: Knell for DNS"</span>, <time datetime="2015-01" class="refDate">January 2015</time>, <span><<a href="https://pdfs.semanticscholar.org/2610/2b99bdd6a258a98740af8217ba8da8a1e4fa.pdf">https://pdfs.semanticscholar.org/2610/2b99bdd6a258a98740af8217ba8da8a1e4fa.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="packetq">[packetq]</dt>
<dd>
<span class="refAuthor">DNS-OARC</span>, <span class="refTitle">"A tool that provides a basic SQL-frontend to PCAP-files"</span>, <span class="refContent">Release 1.4.3</span>, <span class="refContent">commit 29a8288</span>, <time datetime="2020-10" class="refDate">October 2020</time>, <span><<a href="https://github.com/DNS-OARC/PacketQ">https://github.com/DNS-OARC/PacketQ</a>></span>. </dd>
<dd class="break"></dd>
<dt id="passive-dns">[passive-dns]</dt>
<dd>
<span class="refAuthor">Weimer, F.</span>, <span class="refTitle">"Passive DNS Replication"</span>, <span class="refContent">17th Annual FIRST Conference</span>, <time datetime="2005-04" class="refDate">April 2005</time>, <span><<a href="https://www.first.org/conference/2005/papers/florian-weimer-slides-1.pdf">https://www.first.org/conference/2005/papers/florian-weimer-slides-1.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="pitfalls-of-dns-encryption">[pitfalls-of-dns-encryption]</dt>
<dd>
<span class="refAuthor">Shulman, H.</span>, <span class="refTitle">"Pretty Bad Privacy: Pitfalls of DNS Encryption"</span>, <span class="refContent">WPES '14: Proceedings of the 13th Workshop on Privacy in the Electronic Society, pp. 191-200</span>, <span class="seriesInfo">DOI 10.1145/2665943.2665959</span>, <time datetime="2014-11" class="refDate">November 2014</time>, <span><<a href="https://dl.acm.org/citation.cfm?id=2665959">https://dl.acm.org/citation.cfm?id=2665959</a>></span>. </dd>
<dd class="break"></dd>
<dt id="prism">[prism]</dt>
<dd>
<span class="refAuthor">Wikipedia</span>, <span class="refTitle">"PRISM (surveillance program)"</span>, <time datetime="2015-07" class="refDate">July 2015</time>, <span><<a href="https://en.wikipedia.org/w/index.php?title=PRISM_(surveillance_program)&oldid=673789455">https://en.wikipedia.org/w/index.php?title=PRISM_(surveillance_program)&oldid=673789455</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3552">[RFC3552]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span> and <span class="refAuthor">B. Korver</span>, <span class="refTitle">"Guidelines for Writing RFC Text on Security Considerations"</span>, <span class="seriesInfo">BCP 72</span>, <span class="seriesInfo">RFC 3552</span>, <span class="seriesInfo">DOI 10.17487/RFC3552</span>, <time datetime="2003-07" class="refDate">July 2003</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3552">https://www.rfc-editor.org/info/rfc3552</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4033">[RFC4033]</dt>
<dd>
<span class="refAuthor">Arends, R.</span>, <span class="refAuthor">Austein, R.</span>, <span class="refAuthor">Larson, M.</span>, <span class="refAuthor">Massey, D.</span>, and <span class="refAuthor">S. Rose</span>, <span class="refTitle">"DNS Security Introduction and Requirements"</span>, <span class="seriesInfo">RFC 4033</span>, <span class="seriesInfo">DOI 10.17487/RFC4033</span>, <time datetime="2005-03" class="refDate">March 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4033">https://www.rfc-editor.org/info/rfc4033</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4470">[RFC4470]</dt>
<dd>
<span class="refAuthor">Weiler, S.</span> and <span class="refAuthor">J. Ihren</span>, <span class="refTitle">"Minimally Covering NSEC Records and DNSSEC On-line Signing"</span>, <span class="seriesInfo">RFC 4470</span>, <span class="seriesInfo">DOI 10.17487/RFC4470</span>, <time datetime="2006-04" class="refDate">April 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4470">https://www.rfc-editor.org/info/rfc4470</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5155">[RFC5155]</dt>
<dd>
<span class="refAuthor">Laurie, B.</span>, <span class="refAuthor">Sisson, G.</span>, <span class="refAuthor">Arends, R.</span>, and <span class="refAuthor">D. Blacka</span>, <span class="refTitle">"DNS Security (DNSSEC) Hashed Authenticated Denial of Existence"</span>, <span class="seriesInfo">RFC 5155</span>, <span class="seriesInfo">DOI 10.17487/RFC5155</span>, <time datetime="2008-03" class="refDate">March 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5155">https://www.rfc-editor.org/info/rfc5155</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5936">[RFC5936]</dt>
<dd>
<span class="refAuthor">Lewis, E.</span> and <span class="refAuthor">A. Hoenes, Ed.</span>, <span class="refTitle">"DNS Zone Transfer Protocol (AXFR)"</span>, <span class="seriesInfo">RFC 5936</span>, <span class="seriesInfo">DOI 10.17487/RFC5936</span>, <time datetime="2010-06" class="refDate">June 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5936">https://www.rfc-editor.org/info/rfc5936</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6269">[RFC6269]</dt>
<dd>
<span class="refAuthor">Ford, M., Ed.</span>, <span class="refAuthor">Boucadair, M.</span>, <span class="refAuthor">Durand, A.</span>, <span class="refAuthor">Levis, P.</span>, and <span class="refAuthor">P. Roberts</span>, <span class="refTitle">"Issues with IP Address Sharing"</span>, <span class="seriesInfo">RFC 6269</span>, <span class="seriesInfo">DOI 10.17487/RFC6269</span>, <time datetime="2011-06" class="refDate">June 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6269">https://www.rfc-editor.org/info/rfc6269</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6891">[RFC6891]</dt>
<dd>
<span class="refAuthor">Damas, J.</span>, <span class="refAuthor">Graff, M.</span>, and <span class="refAuthor">P. Vixie</span>, <span class="refTitle">"Extension Mechanisms for DNS (EDNS(0))"</span>, <span class="seriesInfo">STD 75</span>, <span class="seriesInfo">RFC 6891</span>, <span class="seriesInfo">DOI 10.17487/RFC6891</span>, <time datetime="2013-04" class="refDate">April 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6891">https://www.rfc-editor.org/info/rfc6891</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7413">[RFC7413]</dt>
<dd>
<span class="refAuthor">Cheng, Y.</span>, <span class="refAuthor">Chu, J.</span>, <span class="refAuthor">Radhakrishnan, S.</span>, and <span class="refAuthor">A. Jain</span>, <span class="refTitle">"TCP Fast Open"</span>, <span class="seriesInfo">RFC 7413</span>, <span class="seriesInfo">DOI 10.17487/RFC7413</span>, <time datetime="2014-12" class="refDate">December 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7413">https://www.rfc-editor.org/info/rfc7413</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7525">[RFC7525]</dt>
<dd>
<span class="refAuthor">Sheffer, Y.</span>, <span class="refAuthor">Holz, R.</span>, and <span class="refAuthor">P. Saint-Andre</span>, <span class="refTitle">"Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"</span>, <span class="seriesInfo">BCP 195</span>, <span class="seriesInfo">RFC 7525</span>, <span class="seriesInfo">DOI 10.17487/RFC7525</span>, <time datetime="2015-05" class="refDate">May 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7525">https://www.rfc-editor.org/info/rfc7525</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7624">[RFC7624]</dt>
<dd>
<span class="refAuthor">Barnes, R.</span>, <span class="refAuthor">Schneier, B.</span>, <span class="refAuthor">Jennings, C.</span>, <span class="refAuthor">Hardie, T.</span>, <span class="refAuthor">Trammell, B.</span>, <span class="refAuthor">Huitema, C.</span>, and <span class="refAuthor">D. Borkmann</span>, <span class="refTitle">"Confidentiality in the Face of Pervasive Surveillance: A Threat Model and Problem Statement"</span>, <span class="seriesInfo">RFC 7624</span>, <span class="seriesInfo">DOI 10.17487/RFC7624</span>, <time datetime="2015-08" class="refDate">August 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7624">https://www.rfc-editor.org/info/rfc7624</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7626">[RFC7626]</dt>
<dd>
<span class="refAuthor">Bortzmeyer, S.</span>, <span class="refTitle">"DNS Privacy Considerations"</span>, <span class="seriesInfo">RFC 7626</span>, <span class="seriesInfo">DOI 10.17487/RFC7626</span>, <time datetime="2015-08" class="refDate">August 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7626">https://www.rfc-editor.org/info/rfc7626</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7721">[RFC7721]</dt>
<dd>
<span class="refAuthor">Cooper, A.</span>, <span class="refAuthor">Gont, F.</span>, and <span class="refAuthor">D. Thaler</span>, <span class="refTitle">"Security and Privacy Considerations for IPv6 Address Generation Mechanisms"</span>, <span class="seriesInfo">RFC 7721</span>, <span class="seriesInfo">DOI 10.17487/RFC7721</span>, <time datetime="2016-03" class="refDate">March 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7721">https://www.rfc-editor.org/info/rfc7721</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7754">[RFC7754]</dt>
<dd>
<span class="refAuthor">Barnes, R.</span>, <span class="refAuthor">Cooper, A.</span>, <span class="refAuthor">Kolkman, O.</span>, <span class="refAuthor">Thaler, D.</span>, and <span class="refAuthor">E. Nordmark</span>, <span class="refTitle">"Technical Considerations for Internet Service Blocking and Filtering"</span>, <span class="seriesInfo">RFC 7754</span>, <span class="seriesInfo">DOI 10.17487/RFC7754</span>, <time datetime="2016-03" class="refDate">March 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7754">https://www.rfc-editor.org/info/rfc7754</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7816">[RFC7816]</dt>
<dd>
<span class="refAuthor">Bortzmeyer, S.</span>, <span class="refTitle">"DNS Query Name Minimisation to Improve Privacy"</span>, <span class="seriesInfo">RFC 7816</span>, <span class="seriesInfo">DOI 10.17487/RFC7816</span>, <time datetime="2016-03" class="refDate">March 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7816">https://www.rfc-editor.org/info/rfc7816</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7858">[RFC7858]</dt>
<dd>
<span class="refAuthor">Hu, Z.</span>, <span class="refAuthor">Zhu, L.</span>, <span class="refAuthor">Heidemann, J.</span>, <span class="refAuthor">Mankin, A.</span>, <span class="refAuthor">Wessels, D.</span>, and <span class="refAuthor">P. Hoffman</span>, <span class="refTitle">"Specification for DNS over Transport Layer Security (TLS)"</span>, <span class="seriesInfo">RFC 7858</span>, <span class="seriesInfo">DOI 10.17487/RFC7858</span>, <time datetime="2016-05" class="refDate">May 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7858">https://www.rfc-editor.org/info/rfc7858</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7871">[RFC7871]</dt>
<dd>
<span class="refAuthor">Contavalli, C.</span>, <span class="refAuthor">van der Gaast, W.</span>, <span class="refAuthor">Lawrence, D.</span>, and <span class="refAuthor">W. Kumari</span>, <span class="refTitle">"Client Subnet in DNS Queries"</span>, <span class="seriesInfo">RFC 7871</span>, <span class="seriesInfo">DOI 10.17487/RFC7871</span>, <time datetime="2016-05" class="refDate">May 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7871">https://www.rfc-editor.org/info/rfc7871</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7873">[RFC7873]</dt>
<dd>
<span class="refAuthor">Eastlake 3rd, D.</span> and <span class="refAuthor">M. Andrews</span>, <span class="refTitle">"Domain Name System (DNS) Cookies"</span>, <span class="seriesInfo">RFC 7873</span>, <span class="seriesInfo">DOI 10.17487/RFC7873</span>, <time datetime="2016-05" class="refDate">May 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7873">https://www.rfc-editor.org/info/rfc7873</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7929">[RFC7929]</dt>
<dd>
<span class="refAuthor">Wouters, P.</span>, <span class="refTitle">"DNS-Based Authentication of Named Entities (DANE) Bindings for OpenPGP"</span>, <span class="seriesInfo">RFC 7929</span>, <span class="seriesInfo">DOI 10.17487/RFC7929</span>, <time datetime="2016-08" class="refDate">August 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7929">https://www.rfc-editor.org/info/rfc7929</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8446">[RFC8446]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refTitle">"The Transport Layer Security (TLS) Protocol Version 1.3"</span>, <span class="seriesInfo">RFC 8446</span>, <span class="seriesInfo">DOI 10.17487/RFC8446</span>, <time datetime="2018-08" class="refDate">August 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8446">https://www.rfc-editor.org/info/rfc8446</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8484">[RFC8484]</dt>
<dd>
<span class="refAuthor">Hoffman, P.</span> and <span class="refAuthor">P. McManus</span>, <span class="refTitle">"DNS Queries over HTTPS (DoH)"</span>, <span class="seriesInfo">RFC 8484</span>, <span class="seriesInfo">DOI 10.17487/RFC8484</span>, <time datetime="2018-10" class="refDate">October 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8484">https://www.rfc-editor.org/info/rfc8484</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8499">[RFC8499]</dt>
<dd>
<span class="refAuthor">Hoffman, P.</span>, <span class="refAuthor">Sullivan, A.</span>, and <span class="refAuthor">K. Fujiwara</span>, <span class="refTitle">"DNS Terminology"</span>, <span class="seriesInfo">BCP 219</span>, <span class="seriesInfo">RFC 8499</span>, <span class="seriesInfo">DOI 10.17487/RFC8499</span>, <time datetime="2019-01" class="refDate">January 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8499">https://www.rfc-editor.org/info/rfc8499</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8744">[RFC8744]</dt>
<dd>
<span class="refAuthor">Huitema, C.</span>, <span class="refTitle">"Issues and Requirements for Server Name Identification (SNI) Encryption in TLS"</span>, <span class="seriesInfo">RFC 8744</span>, <span class="seriesInfo">DOI 10.17487/RFC8744</span>, <time datetime="2020-07" class="refDate">July 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8744">https://www.rfc-editor.org/info/rfc8744</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8890">[RFC8890]</dt>
<dd>
<span class="refAuthor">Nottingham, M.</span>, <span class="refTitle">"The Internet is for End Users"</span>, <span class="seriesInfo">RFC 8890</span>, <span class="seriesInfo">DOI 10.17487/RFC8890</span>, <time datetime="2020-08" class="refDate">August 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8890">https://www.rfc-editor.org/info/rfc8890</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8932">[RFC8932]</dt>
<dd>
<span class="refAuthor">Dickinson, S.</span>, <span class="refAuthor">Overeinder, B.</span>, <span class="refAuthor">van Rijswijk-Deij, R.</span>, and <span class="refAuthor">A. Mankin</span>, <span class="refTitle">"Recommendations for DNS Privacy Service Operators"</span>, <span class="seriesInfo">BCP 232</span>, <span class="seriesInfo">RFC 8932</span>, <span class="seriesInfo">DOI 10.17487/RFC8932</span>, <time datetime="2020-10" class="refDate">October 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8932">https://www.rfc-editor.org/info/rfc8932</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9000">[RFC9000]</dt>
<dd>
<span class="refAuthor">Iyengar, J., Ed.</span> and <span class="refAuthor">M. Thomson, Ed.</span>, <span class="refTitle">"QUIC: A UDP-Based Multiplexed and Secure Transport"</span>, <span class="seriesInfo">RFC 9000</span>, <span class="seriesInfo">DOI 10.17487/RFC9000</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9000">https://www.rfc-editor.org/info/rfc9000</a>></span>. </dd>
<dd class="break"></dd>
<dt id="ripe-qname-measurements">[ripe-qname-measurements]</dt>
<dd>
<span class="refAuthor">de Vries, W.</span>, <span class="refTitle">"Making the DNS More Private with QNAME Minimisation"</span>, <time datetime="2019-04" class="refDate">April 2019</time>, <span><<a href="https://labs.ripe.net/Members/wouter_de_vries/make-dns-a-bit-more-private-with-qname-minimisation">https://labs.ripe.net/Members/wouter_de_vries/make-dns-a-bit-more-private-with-qname-minimisation</a>></span>. </dd>
<dd class="break"></dd>
<dt id="sidn-entrada">[sidn-entrada]</dt>
<dd>
<span class="refAuthor">Hesselman, C.</span>, <span class="refAuthor">Jansen, J.</span>, <span class="refAuthor">Wullink, M.</span>, <span class="refAuthor">Vink, K.</span>, and <span class="refAuthor">M. Simon</span>, <span class="refTitle">"A privacy framework for 'DNS big data' applications"</span>, <time datetime="2014-11" class="refDate">November 2014</time>, <span><<a href="https://www.sidnlabs.nl/downloads/yBW6hBoaSZe4m6GJc_0b7w/2211058ab6330c7f3788141ea19d3db7/SIDN_Labs_Privacyraamwerk_Position_Paper_V1.4_ENG.pdf">https://www.sidnlabs.nl/downloads/yBW6hBoaSZe4m6GJc_0b7w/2211058ab6330c7f3788141ea19d3db7/SIDN_Labs_Privacyraamwerk_Position_Paper_V1.4_ENG.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="thomas-ditl-tcp">[thomas-ditl-tcp]</dt>
<dd>
<span class="refAuthor">Thomas, M.</span> and <span class="refAuthor">D. Wessels</span>, <span class="refTitle">"An Analysis of TCP Traffic in Root Server DITL Data"</span>, <span class="refContent">DNS-OARC 2014 Fall Workshop</span>, <time datetime="2014-10" class="refDate">October 2014</time>, <span><<a href="https://indico.dns-oarc.net/event/20/session/2/contribution/15/material/slides/1.pdf">https://indico.dns-oarc.net/event/20/session/2/contribution/15/material/slides/1.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="tor-leak">[tor-leak]</dt>
<dd>
<span class="refAuthor">Tor</span>, <span class="refTitle">"Tor FAQs: I keep seeing these warnings about SOCKS and DNS information leaks. Should I worry?"</span>, <span><<a href="https://www.torproject.org/docs/faq.html.en#WarningsAboutSOCKSandDNSInformationLeaks">https://www.torproject.org/docs/faq.html.en#WarningsAboutSOCKSandDNSInformationLeaks</a>></span>. </dd>
<dd class="break"></dd>
<dt id="yanbin-tsudik">[yanbin-tsudik]</dt>
<dd>
<span class="refAuthor">Yanbin, L.</span> and <span class="refAuthor">G. Tsudik</span>, <span class="refTitle">"Towards Plugging Privacy Leaks in Domain Name System"</span>, <time datetime="2010-06" class="refDate">June 2010</time>, <span><<a href="https://arxiv.org/abs/0910.2472">https://arxiv.org/abs/0910.2472</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="updates-since-rfc7626">
<section id="appendix-A">
<h2 id="name-updates-since-rfc-7626">
<a href="#appendix-A" class="section-number selfRef">Appendix A. </a><a href="#name-updates-since-rfc-7626" class="section-name selfRef">Updates since RFC 7626</a>
</h2>
<p id="appendix-A-1">Many references were updated. Discussions of encrypted transports, including
DoT and DoH, and sections on DNS payload, authentication of servers, and blocking of services were added.
With the publishing of
<span>[<a href="#RFC7816" class="xref">RFC7816</a>]</span> on QNAME minimization, text, references, and initial attempts to
measure deployment were added to reflect this. The text and references on the
Snowden revelations were updated.<a href="#appendix-A-1" class="pilcrow">¶</a></p>
<p id="appendix-A-2">The "Risks Overview" section was changed to "Scope" to help clarify the risks
being considered. Text on cellular network DNS, blocking, and
security was added. Considerations for recursive resolvers were collected and placed
together. A discussion on resolver selection was added.<a href="#appendix-A-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="acknowledgments">
<section id="appendix-B">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<p id="appendix-B-1">Thanks to <span class="contact-name">Nathalie Boulvard</span> and to the CENTR members for the original work
that led to this document. Thanks to <span class="contact-name">Ondrej Sury</span> for the interesting
discussions. Thanks to <span class="contact-name">Mohsen Souissi</span> and <span class="contact-name">John Heidemann</span> for proofreading and
to <span class="contact-name">Paul Hoffman</span>, <span class="contact-name">Matthijs Mekking</span>, <span class="contact-name">Marcos Sanz</span>, <span class="contact-name">Francis Dupont</span>,
<span class="contact-name">Allison Mankin</span>, and <span class="contact-name">Warren Kumari</span> for proofreading, providing technical
remarks, and making many readability improvements. Thanks to <span class="contact-name">Dan York</span>,
<span class="contact-name">Suzanne Woolf</span>, <span class="contact-name">Tony Finch</span>, <span class="contact-name">Stephen Farrell</span>, <span class="contact-name">Peter Koch</span>, <span class="contact-name">Simon Josefsson</span>, and
<span class="contact-name">Frank Denis</span> for good written contributions. Thanks to <span class="contact-name">Vittorio Bertola</span> and
<span class="contact-name">Mohamed Boucadair</span> for a detailed review of the -bis. And thanks to the IESG
members for the last remarks.<a href="#appendix-B-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="contributions">
<section id="appendix-C">
<h2 id="name-contributions">
<a href="#name-contributions" class="section-name selfRef">Contributions</a>
</h2>
<p id="appendix-C-1"><span class="contact-name">Sara Dickinson</span> and <span class="contact-name">Stephane Bortzmeyer</span> were the original authors of the
document, and their contribution to the initial draft of this document is greatly appreciated.<a href="#appendix-C-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="appendix-D">
<h2 id="name-authors-address">
<a href="#name-authors-address" class="section-name selfRef">Author's Address</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Tim Wicinski (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left">
<span class="locality">Elkins</span>, <span class="region">WV</span> <span class="postal-code">26241</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:tjw.ietf@gmail.com" class="email">tjw.ietf@gmail.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|