1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9135: Integrated Routing and Bridging in Ethernet VPN (EVPN)</title>
<meta content="Ali Sajassi" name="author">
<meta content="Samer Salam" name="author">
<meta content="Samir Thoria" name="author">
<meta content="John E Drake" name="author">
<meta content="Jorge Rabadan" name="author">
<meta content="
Ethernet VPN (EVPN) provides an extensible and flexible multihoming
VPN solution over an MPLS/IP network for intra-subnet connectivity
among Tenant Systems and end devices that can be physical or virtual.
However, there are scenarios for which there is a need for a dynamic
and efficient inter-subnet connectivity among these Tenant Systems
and end devices while maintaining the multihoming capabilities of
EVPN. This document describes an Integrated Routing and Bridging
(IRB) solution based on EVPN to address such requirements.
" name="description">
<meta content="xml2rfc 3.10.0" name="generator">
<meta content="IRB" name="keyword">
<meta content="inter-subnet-forwarding" name="keyword">
<meta content="symmetric" name="keyword">
<meta content="asymmetric" name="keyword">
<meta content="mobility" name="keyword">
<meta content="9135" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.10.0
Python 3.6.13
appdirs 1.4.4
ConfigArgParse 1.4.1
google-i18n-address 2.4.0
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.3
kitchen 1.2.6
lxml 4.4.2
pycairo 1.15.1
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.4.1
requests 2.24.0
setuptools 40.5.0
six 1.14.0
WeasyPrint 52.5
-->
<link href="rfc9135.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
/* Fix PDF info block run off issue */
@media print {
#identifiers dd {
float: none;
}
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: auto;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9135" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-bess-evpn-inter-subnet-forwarding-15" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9135</td>
<td class="center">IRB EVPN</td>
<td class="right">October 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Sajassi, et al.</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9135" class="eref">9135</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-10" class="published">October 2021</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">A. Sajassi</div>
<div class="org">Cisco Systems</div>
</div>
<div class="author">
<div class="author-name">S. Salam</div>
<div class="org">Cisco Systems</div>
</div>
<div class="author">
<div class="author-name">S. Thoria</div>
<div class="org">Cisco Systems</div>
</div>
<div class="author">
<div class="author-name">J. Drake</div>
<div class="org">Juniper</div>
</div>
<div class="author">
<div class="author-name">J. Rabadan</div>
<div class="org">Nokia</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9135</h1>
<h1 id="title">Integrated Routing and Bridging in Ethernet VPN (EVPN)</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">
Ethernet VPN (EVPN) provides an extensible and flexible multihoming
VPN solution over an MPLS/IP network for intra-subnet connectivity
among Tenant Systems and end devices that can be physical or virtual.
However, there are scenarios for which there is a need for a dynamic
and efficient inter-subnet connectivity among these Tenant Systems
and end devices while maintaining the multihoming capabilities of
EVPN. This document describes an Integrated Routing and Bridging
(IRB) solution based on EVPN to address such requirements.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9135">https://www.rfc-editor.org/info/rfc9135</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1" class="keepWithNext"><a href="#section-2" class="xref">2</a>. <a href="#name-terminology" class="xref">Terminology</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-requirements-language" class="xref">Requirements Language</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-evpn-pe-model-for-irb-opera" class="xref">EVPN PE Model for IRB Operation</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-symmetric-and-asymmetric-ir" class="xref">Symmetric and Asymmetric IRB</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-irb-interface-and-its-mac-a" class="xref">IRB Interface and Its MAC and IP Addresses</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-operational-considerations" class="xref">Operational Considerations</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-symmetric-irb-procedures" class="xref">Symmetric IRB Procedures</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="xref">5.1</a>. <a href="#name-control-plane-advertising-p" class="xref">Control Plane - Advertising PE</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="xref">5.2</a>. <a href="#name-control-plane-receiving-pe" class="xref">Control Plane - Receiving PE</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5.2.3">
<p id="section-toc.1-1.5.2.3.1"><a href="#section-5.3" class="xref">5.3</a>. <a href="#name-subnet-route-advertisement" class="xref">Subnet Route Advertisement</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5.2.4">
<p id="section-toc.1-1.5.2.4.1"><a href="#section-5.4" class="xref">5.4</a>. <a href="#name-data-plane-ingress-pe" class="xref">Data Plane - Ingress PE</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5.2.5">
<p id="section-toc.1-1.5.2.5.1"><a href="#section-5.5" class="xref">5.5</a>. <a href="#name-data-plane-egress-pe" class="xref">Data Plane - Egress PE</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-asymmetric-irb-procedures" class="xref">Asymmetric IRB Procedures</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#section-6.1" class="xref">6.1</a>. <a href="#name-control-plane-advertising-pe" class="xref">Control Plane - Advertising PE</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#section-6.2" class="xref">6.2</a>. <a href="#name-control-plane-receiving-pe-2" class="xref">Control Plane - Receiving PE</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6.2.3">
<p id="section-toc.1-1.6.2.3.1"><a href="#section-6.3" class="xref">6.3</a>. <a href="#name-data-plane-ingress-pe-2" class="xref">Data Plane - Ingress PE</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6.2.4">
<p id="section-toc.1-1.6.2.4.1"><a href="#section-6.4" class="xref">6.4</a>. <a href="#name-data-plane-egress-pe-2" class="xref">Data Plane - Egress PE</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-mobility-procedure" class="xref">Mobility Procedure</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>. <a href="#name-initiating-a-gratuitous-arp" class="xref">Initiating a Gratuitous ARP upon a Move</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>. <a href="#name-sending-data-traffic-withou" class="xref">Sending Data Traffic without an ARP Request</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.3">
<p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="xref">7.3</a>. <a href="#name-silent-host" class="xref">Silent Host</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-bgp-encoding" class="xref">BGP Encoding</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8.2.1">
<p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="xref">8.1</a>. <a href="#name-evpn-routers-mac-extended-c" class="xref">EVPN Router's MAC Extended Community</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-operational-models-for-symm" class="xref">Operational Models for Symmetric Inter-Subnet Forwarding</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.1">
<p id="section-toc.1-1.9.2.1.1"><a href="#section-9.1" class="xref">9.1</a>. <a href="#name-irb-forwarding-on-nves-for-" class="xref">IRB Forwarding on NVEs for Tenant Systems</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.1.2.1">
<p id="section-toc.1-1.9.2.1.2.1.1"><a href="#section-9.1.1" class="xref">9.1.1</a>. <a href="#name-control-plane-operation" class="xref">Control Plane Operation</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.1.2.2">
<p id="section-toc.1-1.9.2.1.2.2.1"><a href="#section-9.1.2" class="xref">9.1.2</a>. <a href="#name-data-plane-operation" class="xref">Data Plane Operation</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.2">
<p id="section-toc.1-1.9.2.2.1"><a href="#section-9.2" class="xref">9.2</a>. <a href="#name-irb-forwarding-on-nves-for-s" class="xref">IRB Forwarding on NVEs for Subnets behind Tenant Systems</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.2.2.1">
<p id="section-toc.1-1.9.2.2.2.1.1"><a href="#section-9.2.1" class="xref">9.2.1</a>. <a href="#name-control-plane-operation-2" class="xref">Control Plane Operation</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.2.2.2">
<p id="section-toc.1-1.9.2.2.2.2.1"><a href="#section-9.2.2" class="xref">9.2.2</a>. <a href="#name-data-plane-operation-2" class="xref">Data Plane Operation</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="xref">10</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#section-11" class="xref">11</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#section-12" class="xref">12</a>. <a href="#name-references" class="xref">References</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.12.2.1">
<p id="section-toc.1-1.12.2.1.1"><a href="#section-12.1" class="xref">12.1</a>. <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.12.2.2">
<p id="section-toc.1-1.12.2.2.1"><a href="#section-12.2" class="xref">12.2</a>. <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#appendix-A" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.14">
<p id="section-toc.1-1.14.1"><a href="#appendix-B" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="intro">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">
EVPN <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> provides an extensible and flexible multihoming VPN
solution over an MPLS/IP network for intra-subnet connectivity among
Tenant Systems (TSs) and end devices that can be physical or
virtual, where an IP subnet is represented by an EVPN instance (EVI)
for a VLAN-based service or by an (EVI, VLAN) association for a VLAN-aware bundle
service. However, there are scenarios for which there is a need for
a dynamic and efficient inter-subnet connectivity among these Tenant
Systems and end devices while maintaining the multihoming
capabilities of EVPN. This document describes an Integrated Routing
and Bridging (IRB) solution based on EVPN to address such
requirements.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">
Inter-subnet communication is typically performed by centralized Layer 3 (L3) gateway (GW) devices, which enforce all inter-subnet communication policies
and perform all inter-subnet forwarding. When two TSs belonging to two different
subnets connected to the same Provider Edge (PE) wanted to communicate with each
other, their traffic needed to be backhauled from the PE all the way
to the centralized gateway where inter-subnet switching is performed
and then sent back to the PE. For today's large multi-tenant Data Center (DC),
this scheme is very inefficient and sometimes impractical.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">
In order to overcome the drawback of the centralized L3 GW
approach, IRB functionality is needed on the PEs (also referred to as
EVPN Network Virtualization Edges (NVEs)) attached to TSs in order to avoid inefficient forwarding
of tenant traffic (i.e., avoid backhauling and hair pinning). When
a PE with IRB capability receives tenant traffic over an Attachment
Circuit (AC), it cannot only locally bridge the tenant intra-subnet
traffic but also locally route the tenant inter-subnet traffic on
a packet-by-packet basis, thus meeting the requirements for both intra-
and inter-subnet forwarding and avoiding non-optimal traffic
forwarding associated with a centralized L3 GW approach.<a href="#section-1-3" class="pilcrow">¶</a></p>
<p id="section-1-4">
Some TSs run non-IP protocols in conjunction with their IP traffic.
Therefore, it is important to handle both kinds of traffic optimally --
e.g., to bridge non-IP and intra-subnet traffic and to route inter-subnet
IP traffic. Therefore, the solution needs to meet the following
requirements:<a href="#section-1-4" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-1-5">
<dt id="section-1-5.1">R1:</dt>
<dd style="margin-left: 1.5em" id="section-1-5.2"> The solution must provide each tenant with IP routing of its
inter-subnet traffic and Ethernet bridging of its intra-subnet
traffic and non-routable traffic, where non-routable traffic refers
to both non-IP traffic and IP traffic whose version differs from the
IP version configured in IP Virtual Routing and Forwarding (IP-VRF). For example, if an IP-VRF in an
NVE is configured for IPv6 and that NVE receives IPv4 traffic on the
corresponding VLAN, then the IPv4 traffic is treated as non-routable
traffic.<a href="#section-1-5.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1-5.3">
R2:</dt>
<dd style="margin-left: 1.5em" id="section-1-5.4"> The solution must allow IP routing of inter-subnet traffic to be
disabled on a per-VLAN basis on those PEs that are backhauling that
traffic to another PE for routing.<a href="#section-1-5.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="terms">
<section id="section-2">
<h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h2>
<span class="break"></span><dl class="dlParallel" id="section-2-1">
<dt id="section-2-1.1">AC:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.2">Attachment Circuit<a href="#section-2-1.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.3">ARP:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.4">Address Resolution Protocol<a href="#section-2-1.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.5">ARP Table:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.6"> A logical view of a forwarding table on a PE that
maintains an IP to a MAC binding entry on an IP interface for both IPv4
and IPv6. These entries are learned through ARP/ND or through EVPN.<a href="#section-2-1.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.7">BD:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.8">Broadcast Domain. As per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>, an EVI consists of a single BD or multiple
BDs. In the case of VLAN-bundle and VLAN-based service
models (see <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>), a BD is equivalent to an EVI. In the
case of a VLAN-aware bundle service model, an EVI contains multiple BDs. Also, in this document, "BD" and "subnet" are
equivalent terms, and wherever "subnet" is used, it means "IP subnet".<a href="#section-2-1.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.9">BD Route Target:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.10">Refers to the broadcast-domain-assigned Route Target <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span>. In the case of a VLAN-aware bundle
service model, all the BD instances in the MAC-VRF
share the same Route Target.<a href="#section-2-1.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.11">BT:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.12">Bridge Table. The instantiation of a BD in a MAC-VRF,
as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-2-1.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.13">CE:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.14">Customer Edge<a href="#section-2-1.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.15">DA:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.16">Destination Address<a href="#section-2-1.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.17">Ethernet NVO Tunnel:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.18">Refers to Network Virtualization Overlay tunnels
with an Ethernet payload, as specified for VXLAN in <span>[<a href="#RFC7348" class="xref">RFC7348</a>]</span> and for
NVGRE in <span>[<a href="#RFC7637" class="xref">RFC7637</a>]</span>.<a href="#section-2-1.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.19">EVI:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.20">EVPN Instance spanning NVE/PE devices that are participating
on that EVPN, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-2-1.20" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.21">EVPN:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.22">Ethernet VPN, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-2-1.22" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.23">IP NVO Tunnel:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.24">Refers to Network Virtualization Overlay tunnels
with IP payload (no MAC header in the payload) as specified for Generic Protocol Extension (GPE)
in <span>[<a href="#I-D.ietf-nvo3-vxlan-gpe" class="xref">VXLAN-GPE</a>]</span>.<a href="#section-2-1.24" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.25">IP-VRF:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.26">A Virtual Routing and Forwarding table for IP routes on an
NVE/PE. The IP routes could be populated by EVPN and IP-VPN address
families. An IP-VRF is also an instantiation of a Layer 3 VPN in an
NVE/PE.<a href="#section-2-1.26" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.27">IRB:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.28">Integrated Routing and Bridging interface. It connects an IP-VRF to a
BD (or subnet).<a href="#section-2-1.28" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.29">MAC:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.30">Media Access Control<a href="#section-2-1.30" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.31">MAC-VRF:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.32">A Virtual Routing and Forwarding table for
MAC addresses on an NVE/PE, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>. A MAC-VRF is
also an instantiation of an EVI in an NVE/PE.<a href="#section-2-1.32" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.33">ND:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.34">Neighbor Discovery<a href="#section-2-1.34" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.35">NVE:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.36">Network Virtualization Edge<a href="#section-2-1.36" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.37">NVGRE:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.38">Network Virtualization Using Generic Routing Encapsulation, as per
<span>[<a href="#RFC7637" class="xref">RFC7637</a>]</span>.<a href="#section-2-1.38" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.39">NVO:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.40">Network Virtualization Overlay<a href="#section-2-1.40" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.41">PE:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.42">Provider Edge<a href="#section-2-1.42" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.43">RT-2:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.44">EVPN Route Type 2, i.e., MAC/IP Advertisement route, as defined
in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-2-1.44" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.45">RT-5:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.46">EVPN Route Type 5, i.e., IP Prefix route, as defined in <span><a href="https://www.rfc-editor.org/rfc/rfc9136#section-3" class="relref">Section 3</a> of [<a href="#RFC9136" class="xref">RFC9136</a>]</span>.<a href="#section-2-1.46" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.47">SA:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.48">Source Address<a href="#section-2-1.48" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.49">TS:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.50">Tenant System<a href="#section-2-1.50" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.51">VA:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.52">Virtual Appliance<a href="#section-2-1.52" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.53">VNI:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.54">Virtual Network Identifier. As in <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>, the term is used
as a representation of a 24-bit NVO instance identifier, with the
understanding that "VNI" will refer to a VXLAN Network Identifier in
VXLAN, or a Virtual Subnet Identifier in NVGRE, etc., unless it is
stated otherwise.<a href="#section-2-1.54" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.55">VTEP:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.56">VXLAN Termination End Point, as per <span>[<a href="#RFC7348" class="xref">RFC7348</a>]</span>.<a href="#section-2-1.56" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.57">VXLAN:</dt>
<dd style="margin-left: 5.0em" id="section-2-1.58">Virtual eXtensible Local Area Network, as per <span>[<a href="#RFC7348" class="xref">RFC7348</a>]</span>.<a href="#section-2-1.58" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-2-2">
This document also assumes familiarity with the terminology of <span>[<a href="#RFC7365" class="xref">RFC7365</a>]</span>, <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>, and <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>.<a href="#section-2-2" class="pilcrow">¶</a></p>
<div id="sect-1.1">
<section id="section-2.1">
<h3 id="name-requirements-language">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
</h3>
<p id="section-2.1-1">
The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as
described in BCP 14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span>
when, and only when, they appear in all capitals, as shown here.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-3">
<section id="section-3">
<h2 id="name-evpn-pe-model-for-irb-opera">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-evpn-pe-model-for-irb-opera" class="section-name selfRef">EVPN PE Model for IRB Operation</a>
</h2>
<p id="section-3-1">
Since this document discusses IRB operation in relationship to EVPN
MAC-VRF, IP-VRF, EVI, BD, bridge table, and IRB
interfaces, it is important to understand the relationship between
these components. Therefore, the PE model is illustrated
below to a) describe these components and b) illustrate the
relationship among them.<a href="#section-3-1" class="pilcrow">¶</a></p>
<span id="name-evpn-irb-pe-model"></span><div id="fig-1">
<figure id="figure-1">
<div class="alignLeft art-text artwork" id="section-3-2.1">
<pre>
+-------------------------------------------------------------+
| |
| +------------------+ IRB PE |
| Attachment | +------------------+ |
| Circuit(AC1) | | +----------+ | MPLS/NVO tnl
----------------------*Bridge | | +-----
| | | |Table(BT1)| | +-----------+ / \ \
| | | | *---------* |<--> |Eth|
| | | | VLAN x | |IRB1| | \ / /
| | | +----------+ | | | +-----
| | | ... | | IP-VRF1 | |
| | | +----------+ | | RD2/RT2 |MPLS/NVO tnl
| | | |Bridge | | | | +-----
| | | |Table(BT2)| |IRB2| | / \ \
| | | | *---------* |<--> |IP |
----------------------* VLAN y | | +-----------+ \ / /
| AC2 | | +----------+ | +-----
| | | MAC-VRF1 | |
| +-+ RD1/RT1 | |
| +------------------+ |
| |
| |
+-------------------------------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-evpn-irb-pe-model" class="selfRef">EVPN IRB PE Model</a>
</figcaption></figure>
</div>
<p id="section-3-3">
A tenant needing IRB services on a PE requires an IP-VRF table along with one or more MAC-VRF tables. An IP-VRF, as defined in <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span>, is the
instantiation of an IP-VPN instance in a PE. A MAC-VRF, as defined in
<span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>, is the instantiation of an EVI in a PE. A
MAC-VRF consists of one or more bridge tables, where each bridge table
corresponds to a VLAN (broadcast domain). If service interfaces for an
EVPN PE are configured in VLAN-based mode (i.e., <span><a href="https://www.rfc-editor.org/rfc/rfc7432#section-6.1" class="relref">Section 6.1</a> of [<a href="#RFC7432" class="xref">RFC7432</a>]</span>),
then there is only a single bridge table per MAC-VRF (per EVI) -- i.e.,
there is only one tenant VLAN per EVI. However, if service interfaces for
an EVPN PE are configured in VLAN-aware bundle mode (i.e., <span><a href="https://www.rfc-editor.org/rfc/rfc7432#section-6.3" class="relref">Section 6.3</a> of [<a href="#RFC7432" class="xref">RFC7432</a>]</span>), then there are several bridge tables per MAC-VRF (per EVI) --
i.e., there are several tenant VLANs per EVI.<a href="#section-3-3" class="pilcrow">¶</a></p>
<p id="section-3-4">
Each bridge table is connected to an IP-VRF via an L3 interface
called an "IRB interface". Since a single tenant subnet is typically (and
in this document) represented by a VLAN (and thus supported by a
single bridge table), for a given tenant, there are as many bridge
tables as there are subnets. Thus, there are also as many IRB
interfaces between the tenant IP-VRF and the associated bridge tables
as shown in the PE model above.<a href="#section-3-4" class="pilcrow">¶</a></p>
<p id="section-3-5">
IP-VRF is identified by its corresponding Route Target and Route
Distinguisher, and MAC-VRF is also identified by its corresponding Route
Target and Route Distinguisher. If operating in EVPN VLAN-based mode, then
a receiving PE that receives an EVPN route with a MAC-VRF Route Target can
identify the corresponding bridge table; however, if operating in EVPN
VLAN-aware bundle mode, then the receiving PE needs both the MAC-VRF Route
Target and VLAN ID in order to identify the corresponding bridge table.<a href="#section-3-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-4">
<section id="section-4">
<h2 id="name-symmetric-and-asymmetric-ir">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-symmetric-and-asymmetric-ir" class="section-name selfRef">Symmetric and Asymmetric IRB</a>
</h2>
<p id="section-4-1">
This document defines and describes two types of IRB solutions --
namely, symmetric and asymmetric IRB. The description of symmetric
and asymmetric IRB procedures relating to data path operations and
tables in this document is a logical view of data path lookups and
related tables. Actual implementations, while following this logical
view, may not strictly adhere to it for performance trade-offs.
Specifically,<a href="#section-4-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4-2.1">References to an ARP table in the context of asymmetric IRB is a
logical view of a forwarding table that maintains an IP-to-MAC
binding entry on a Layer 3 interface for both IPv4 and IPv6.
These entries are not subject to ARP or ND protocols. For IP-to-MAC bindings learned via EVPN, an implementation may choose to
import these bindings directly to the respective forwarding table
(such as an adjacency/next-hop table) as opposed to importing them
to ARP or ND protocol tables.<a href="#section-4-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4-2.2">References to a host IP lookup followed by a host MAC lookup in the
context of asymmetric IRB <span class="bcp14">MAY</span> be collapsed into a single IP lookup
in a hardware implementation.<a href="#section-4-2.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4-3">
In symmetric IRB, as its name implies, the lookup operation is
symmetric at both the ingress and egress PEs -- i.e., both ingress and
egress PEs perform lookups on both MAC and IP addresses. The ingress
PE performs a MAC lookup followed by an IP lookup, and the egress PE
performs an IP lookup followed by a MAC lookup, as depicted in the
following figure.<a href="#section-4-3" class="pilcrow">¶</a></p>
<span id="name-symmetric-irb"></span><div id="fig-2">
<figure id="figure-2">
<div class="alignLeft art-text artwork" id="section-4-4.1">
<pre>
Ingress PE Egress PE
+-------------------+ +------------------+
| | | |
| +-> IP-VRF ----|---->---|-----> IP-VRF -+ |
| | | | | |
| BT1 BT2 | | BT3 BT2 |
| | | | | |
| ^ | | v |
| | | | | |
+-------------------+ +------------------+
^ |
| |
TS1->-+ +->-TS2
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-symmetric-irb" class="selfRef">Symmetric IRB</a>
</figcaption></figure>
</div>
<p id="section-4-5">
In symmetric IRB, as shown in <a href="#fig-2" class="xref">Figure 2</a>, the inter-subnet forwarding
between two PEs is done between their associated IP-VRFs. Therefore,
the tunnel connecting these IP-VRFs can be either an IP-only tunnel
(e.g., in the case of MPLS or GPE encapsulation) or an Ethernet NVO tunnel
(e.g., in the case of VXLAN encapsulation). If it is an Ethernet NVO
tunnel, the TS1's IP packet is encapsulated in an Ethernet header
consisting of ingress and egress PE MAC addresses -- i.e., there is
no need for the ingress PE to use the destination TS2's MAC address.
Therefore, in symmetric IRB, there is no need for the ingress PE to
maintain ARP entries for the association of the destination TS2's IP and MAC addresses in its ARP table.
Each PE participating in symmetric IRB
only maintains ARP entries for locally connected hosts and
MAC-VRFs/BTs for only locally configured subnets.<a href="#section-4-5" class="pilcrow">¶</a></p>
<p id="section-4-6">
In asymmetric IRB, the lookup operation is asymmetric and the ingress
PE performs three lookups, whereas the egress PE performs a single
lookup -- i.e., the ingress PE performs a MAC lookup, followed by an
IP lookup, followed by a MAC lookup again. The egress PE
performs just a single MAC lookup as depicted in <a href="#fig-3" class="xref">Figure 3</a> below.<a href="#section-4-6" class="pilcrow">¶</a></p>
<span id="name-asymmetric-irb"></span><div id="fig-3">
<figure id="figure-3">
<div class="alignLeft art-text artwork" id="section-4-7.1">
<pre>
Ingress PE Egress PE
+-------------------+ +------------------+
| | | |
| +-> IP-VRF -> | | IP-VRF |
| | | | | |
| BT1 BT2 | | BT3 BT2 |
| | | | | | | |
| | +--|--->----|--------------+ | |
| | | | v |
+-------------------+ +----------------|-+
^ |
| |
TS1->-+ +->-TS2
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-asymmetric-irb" class="selfRef">Asymmetric IRB</a>
</figcaption></figure>
</div>
<p id="section-4-8">
In asymmetric IRB, as shown in <a href="#fig-3" class="xref">Figure 3</a>, the inter-subnet forwarding between
two PEs is done between their associated MAC-VRFs/BTs.
Therefore, the MPLS or NVO tunnel used for inter-subnet forwarding <span class="bcp14">MUST</span> be
of type Ethernet.
Since only MAC lookup is performed at the egress PE
(e.g., no IP lookup), the TS1's IP packets need to be encapsulated with the
destination TS2's MAC address. In order for the ingress PE to perform such
encapsulation, it needs to maintain TS2's IP and MAC address association in
its ARP table. Furthermore, it needs to maintain destination TS2's MAC
address in the corresponding bridge table even though it may not have any
TSs of the corresponding subnet locally attached. In other words, each PE
participating in asymmetric IRB <span class="bcp14">MUST</span> maintain ARP entries for remote hosts
(hosts connected to other PEs) as well as maintain MAC-VRFs/BTs
and IRB interfaces for ALL subnets in an IP-VRF, including subnets that may
not be locally attached. Therefore, careful consideration of the PE scale
aspects for its ARP table size, its IRB interfaces, and the number and size of its
bridge tables should be given for the application of asymmetric IRB.<a href="#section-4-8" class="pilcrow">¶</a></p>
<p id="section-4-9">
It should be noted that whenever a PE performs a host IP lookup for a
packet that is routed, the IPv4 Time To Live (TTL) or IPv6 hop limit for that packet is
decremented by one, and if it reaches zero, the packet is discarded.
In the case of symmetric IRB, the TTL / hop limit is decremented by
both ingress and egress PEs (once by each), whereas in the case of
asymmetric IRB, the TTL / hop limit is decremented only once by the
ingress PE.<a href="#section-4-9" class="pilcrow">¶</a></p>
<p id="section-4-10">
The following sections define the control and data plane procedures
for symmetric and asymmetric IRB on ingress and egress PEs. The
following figure is used to describe these procedures, showing a
single IP-VRF and a number of BDs on each PE for a
given tenant. That is, an IP-VRF connects one or more EVIs, and each EVI
contains one MAC-VRF; each MAC VRF consists of one or more bridge
tables, one per BD; and a PE has an associated IRB
interface for each BD.<a href="#section-4-10" class="pilcrow">¶</a></p>
<span id="name-irb-forwarding"></span><div id="fig-4">
<figure id="figure-4">
<div class="alignLeft art-text artwork" id="section-4-11.1">
<pre>
PE 1 +---------+
+-------------+ | |
TS1-----| MACx| | | PE2
(M1/IP1) |(BT1) | | | +-------------+
TS5-----| \ | | MPLS/ | |MACy (BT3) |-----TS3
(M5/IP5) |IPx/Mx \ | | VXLAN/ | | / | (M3/IP3)
| (IP-VRF1)|----| NVGRE |---|(IP-VRF1) |
| / | | | | \ |
TS2-----|(BT2) / | | | | (BT1) |-----TS4
(M2/IP2) | | | | | | (M4/IP4)
+-------------+ | | +-------------+
| |
+---------+
</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-irb-forwarding" class="selfRef">IRB Forwarding</a>
</figcaption></figure>
</div>
<div id="sect-4.1">
<section id="section-4.1">
<h3 id="name-irb-interface-and-its-mac-a">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-irb-interface-and-its-mac-a" class="section-name selfRef">IRB Interface and Its MAC and IP Addresses</a>
</h3>
<p id="section-4.1-1">
To support inter-subnet forwarding on a PE, the PE acts as an IP
default gateway from the perspective of the attached Tenant Systems
where default gateway MAC and IP addresses are configured on each IRB
interface associated with its subnet and fall into one of the
following two options:<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.1-2">
<li id="section-4.1-2.1">
<div id="opt1">All the PEs for a given tenant subnet use the same anycast
default gateway IP and MAC addresses. On each PE, these default
gateway IP and MAC addresses correspond to the IRB interface
connecting the bridge table associated with the tenant's VLAN to
the corresponding tenant's IP-VRF.<a href="#opt1" class="pilcrow">¶</a>
</div>
</li>
<li id="section-4.1-2.2">
<div id="opt2">Each PE for a given tenant subnet uses the same anycast default
gateway IP address but its own MAC address. These MAC addresses
are aliased to the same anycast default gateway IP address
through the use of the Default Gateway extended community as
specified in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>, which is carried in the EVPN MAC/IP
Advertisement routes. On each PE, this default gateway IP
address, along with its associated MAC addresses, correspond to the
IRB interface connecting the bridge table associated with the
tenant's VLAN to the corresponding tenant's IP-VRF.<a href="#opt2" class="pilcrow">¶</a>
</div>
</li>
</ol>
<p id="section-4.1-3">
It is worth noting that if the applications that are running on the
TSs are employing or relying on any form of MAC security, then the
first option (i.e., using an anycast MAC address) should be used to
ensure that the applications receive traffic from the same IRB
interface MAC address to which they are sending. If the second option
is used, then the IRB interface MAC address <span class="bcp14">MUST</span> be the one used in
the initial ARP reply or ND Neighbor Advertisement (NA) for that TS.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1-4">
Although both of these options are applicable to both symmetric and
asymmetric IRB, <a href="#opt1" class="xref">option 1</a> is recommended because of the ease of
anycast MAC address provisioning on not only the IRB interface
associated with a given subnet across all the PEs corresponding to
that VLAN but also on all IRB interfaces associated with all the
tenant's subnets across all the PEs corresponding to all the VLANs
for that tenant. Furthermore, it simplifies the operation as there
is no need for Default Gateway extended community advertisement and
its associated MAC aliasing procedure. Yet another advantage is that
following host mobility, the host does not need to refresh the
default GW ARP/ND entry.<a href="#section-4.1-4" class="pilcrow">¶</a></p>
<p id="section-4.1-5">
If <a href="#opt1" class="xref">option 1</a> is used, an implementation <span class="bcp14">MAY</span> choose to auto-derive the
anycast MAC address. If auto-derivation is used, the anycast MAC
<span class="bcp14">MUST</span> be auto-derived out of the following ranges (which are defined
in <span>[<a href="#RFC5798" class="xref">RFC5798</a>]</span>):<a href="#section-4.1-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-6.1">Anycast IPv4 IRB case: 00-00-5E-00-01-{VRID}<a href="#section-4.1-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1-6.2">Anycast IPv6 IRB case: 00-00-5E-00-02-{VRID}<a href="#section-4.1-6.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.1-7">
Where the last octet is generated based on a configurable Virtual Router ID
(VRID) (range 1-255). If not explicitly configured, the default value for
the VRID octet is '1'. Auto-derivation of the anycast MAC can only be used
if there is certainty that the auto-derived MAC does not collide with any
customer MAC address.<a href="#section-4.1-7" class="pilcrow">¶</a></p>
<p id="section-4.1-8">
In addition to IP anycast addresses, IRB interfaces can be configured
with non-anycast IP addresses for the purpose of OAM (such as sending a traceroute/ping to these interfaces) for both symmetric and
asymmetric IRB. These IP addresses need to be distributed as VPN
routes when PEs operate in symmetric IRB mode. However, they don't
need to be distributed if the PEs are operating in asymmetric IRB
mode as the non-anycast IP addresses are configured along with their
individual MACs, and they get distributed via the EVPN route type 2
advertisement.<a href="#section-4.1-8" class="pilcrow">¶</a></p>
<p id="section-4.1-9">
For <a href="#opt1" class="xref">option 1</a> -- irrespective of whether only the anycast MAC address or
both anycast and non-anycast MAC addresses (where the latter one is
used for the purpose of OAM) are used on the same IRB -- when a TS sends an ARP
request or ND Neighbor Solicitation (NS) to the PE to which it is attached, the request is sent for the anycast IP address of the IRB
interface associated with the TS's subnet. The reply will use
an anycast MAC address (in both the source MAC in the Ethernet header and
sender hardware address in the payload). For example, in <a href="#fig-4" class="xref">Figure 4</a>,
TS1 is configured with the anycast IPx address as its default gateway
IP address; thus, when it sends an ARP request for IPx (anycast IP
address of the IRB interface for BT1), the PE1 sends an ARP reply
with the MACx, which is the anycast MAC address of that IRB interface.
Traffic routed from IP-VRF1 to TS1 uses the anycast MAC address as the
source MAC address.<a href="#section-4.1-9" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-4.2">
<section id="section-4.2">
<h3 id="name-operational-considerations">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-operational-considerations" class="section-name selfRef">Operational Considerations</a>
</h3>
<p id="section-4.2-1">
Symmetric and asymmetric IRB modes may coexist in the same network, and an
ingress PE that supports both forwarding modes for a given tenant can
interwork with egress PEs that support either IRB mode. The egress PE will
indicate the desired forwarding mode for a given host based on the presence
of the Label2 field and the IP-VRF Route Target in the EVPN MAC/IP
Advertisement route. If the Label2 field of the received MAC/IP
Advertisement route for host H1 is non-zero, and one of its Route Targets
identifies the IP-VRF, the ingress PE will use symmetric IRB mode when
forwarding packets destined to H1. If the Label2 field is zero and the
MAC/IP Advertisement route for H1 does not carry any Route Target that
identifies the IP-VRF, the ingress PE will use asymmetric mode when
forwarding traffic to H1.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2-2">
As an example that illustrates the previous statement, suppose PE1
and PE2 need to forward packets from TS2 to TS4 in
<a href="#fig-4" class="xref">Figure 4</a>. Since both PEs are attached to the bridge table of the
destination host, symmetric and asymmetric IRB modes are both
possible as long as the ingress PE, PE1, supports both modes. The
forwarding mode will depend on the mode configured in the egress PE,
PE2. That is:<a href="#section-4.2-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.2-3">
<li id="section-4.2-3.1">If PE2 is configured for symmetric IRB mode, PE2 will advertise TS4
MAC/IP addresses in a MAC/IP Advertisement route with a non-zero Label2
field, e.g., Label2 = Lx, and a Route Target that identifies IP-VRF1 in
PE1. IP4 will be installed in PE1's IP-VRF1; TS4's ARP and MAC
information will also be installed in PE1's IRB interface ARP table and
BT1, respectively. When a packet from TS2 destined to TS4 is looked up
in PE1's IP-VRF route table, a longest prefix match lookup will find
IP4 in the IP-VRF, and PE1 will forward using the symmetric IRB mode
and Label Lx.<a href="#section-4.2-3.1" class="pilcrow">¶</a>
</li>
<li id="section-4.2-3.2">However, if PE2 is configured for asymmetric IRB mode, PE2 will
advertise TS4 MAC/IP information in a MAC/IP Advertisement route
with a zero Label2 field and no Route Target identifying IP-VRF1.
In this case, PE2 will install TS4 information in its ARP table
and BT1. When a packet from TS2 to TS4 arrives at PE1, a longest
prefix match on IP-VRF1's route table will yield the local IRB
interface to BT1, where a subsequent ARP and bridge table lookup
will provide the information for an asymmetric forwarding mode to
PE2.<a href="#section-4.2-3.2" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-4.2-4">
Refer to <span>[<a href="#I-D.ietf-bess-evpn-modes-interop" class="xref">EVPN</a>]</span> for more information
about interoperability between symmetric and asymmetric forwarding
modes.<a href="#section-4.2-4" class="pilcrow">¶</a></p>
<p id="section-4.2-5">
The choice between symmetric or asymmetric mode is based on the
operator's preference, and it is a trade-off between scale (which is better in
the symmetric IRB mode) and control plane simplicity (asymmetric IRB
mode simplifies the control plane). In cases where a tenant has
hosts for every subnet attached to all (or most of) the PEs, the ARP and
MAC entries need to be learned by all PEs anyway; therefore, the
asymmetric IRB mode simplifies the forwarding model and saves space
in the IP-VRF route table, since host routes are not installed in the
route table. However, if the tenant does not need to stretch subnets
(broadcast domains) to multiple PEs and inter-subnet forwarding is
needed, the symmetric IRB model will save ARP and bridge table space
in all the PEs (in comparison with the asymmetric IRB model).<a href="#section-4.2-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-5">
<section id="section-5">
<h2 id="name-symmetric-irb-procedures">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-symmetric-irb-procedures" class="section-name selfRef">Symmetric IRB Procedures</a>
</h2>
<div id="sect-5.1">
<section id="section-5.1">
<h3 id="name-control-plane-advertising-p">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-control-plane-advertising-p" class="section-name selfRef">Control Plane - Advertising PE</a>
</h3>
<p id="section-5.1-1">
When a PE (e.g., PE1 in <a href="#fig-4" class="xref">Figure 4</a> above) learns the MAC and IP address of
a TS (e.g., via an ARP request or Neighbor Solicitation), it adds the
MAC address to the corresponding MAC-VRF/BT of that
tenant's subnet and adds the IP address to the IP-VRF for that
tenant. Furthermore, it adds this TS's MAC and IP address
association to its ARP table or Neighbor Discovery
Protocol (NDP) cache. It then builds an EVPN
MAC/IP Advertisement route (type 2) as follows and advertises it to
other PEs participating in that tenant's VPN.<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5.1-2.1">The Length field of the BGP EVPN Network Layer Reachability Information (NLRI) for an EVPN MAC/IP
Advertisement route <span class="bcp14">MUST</span> be either 40 (if the IPv4 address is carried)
or 52 (if the IPv6 address is carried).<a href="#section-5.1-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-2.2">The Route Distinguisher (RD), Ethernet Segment Identifier, Ethernet
Tag ID, MAC Address Length, MAC Address, IP Address Length, IP
Address, and MPLS Label1 fields <span class="bcp14">MUST</span> be set per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> and
<span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>.<a href="#section-5.1-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5.1-2.3">The MPLS Label2 field is set to either an MPLS label or a VNI
corresponding to the tenant's IP-VRF. In the case of an MPLS
label, this field is encoded as 3 octets, where the high-order 20
bits contain the label value.<a href="#section-5.1-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5.1-3">
Just as in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>, the RD, Ethernet Tag ID, MAC Address Length,
MAC Address, IP Address Length, and IP Address fields are part of the
route key used by BGP to compare routes. The rest of the fields are
not part of the route key.<a href="#section-5.1-3" class="pilcrow">¶</a></p>
<p id="section-5.1-4">
This route is advertised along with the following two extended
communities:<a href="#section-5.1-4" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-5.1-5">
<li id="section-5.1-5.1">Encapsulation Extended Community<a href="#section-5.1-5.1" class="pilcrow">¶</a>
</li>
<li id="section-5.1-5.2">EVPN Router's MAC Extended Community<a href="#section-5.1-5.2" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-5.1-6">
This route is advertised with one or more Encapsulation Extended
Communities <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>, one for each encapsulation type supported by
the advertising PE. If one or more encapsulation types require an
Ethernet frame, a single EVPN Router's MAC Extended Community (<a href="#sect-8.1" class="xref">Section 8.1</a>) is also advertised. This extended community specifies the MAC
address to be used as the inner destination MAC address in an
Ethernet frame sent to the advertising PE.<a href="#section-5.1-6" class="pilcrow">¶</a></p>
<p id="section-5.1-7">
This route <span class="bcp14">MUST</span> be advertised with two Route Targets, one
corresponding to the MAC-VRF of the tenant's subnet and another
corresponding to the tenant's IP-VRF.<a href="#section-5.1-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-5.2">
<section id="section-5.2">
<h3 id="name-control-plane-receiving-pe">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-control-plane-receiving-pe" class="section-name selfRef">Control Plane - Receiving PE</a>
</h3>
<p id="section-5.2-1">
When a PE (e.g., PE2 in <a href="#fig-4" class="xref">Figure 4</a> above) receives this EVPN MAC/IP
Advertisement route, it performs the following:<a href="#section-5.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5.2-2.1">The MAC-VRF Route Target and Ethernet Tag,
if the latter is non-zero, are used to identify the correct MAC-VRF
and bridge table, and if they are found, the MAC address is imported.
The IP-VRF Route Target is used to identify the correct IP-VRF, and if
it is found, the IP address is imported.<a href="#section-5.2-2.1" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5.2-3">
If the MPLS Label2 field is non-zero, it means that this route is to
be used for symmetric IRB, and the MPLS label2 value is to be used
when sending a packet for this IP address to the advertising PE.<a href="#section-5.2-3" class="pilcrow">¶</a></p>
<p id="section-5.2-4">
If the receiving PE supports asymmetric IRB mode and receives this route with both the MAC-VRF and IP-VRF Route Targets but the MAC/IP Advertisement route does not include the MPLS
Label2 field, then the receiving PE installs the MAC address in the corresponding MAC-VRF and the (IP,
MAC) association in the ARP table for that tenant (identified by the
corresponding IP-VRF Route Target).<a href="#section-5.2-4" class="pilcrow">¶</a></p>
<p id="section-5.2-5">
If the receiving PE receives this route with both the MAC-VRF and IP-VRF
Route Targets, and if the receiving PE does not support either asymmetric or
symmetric IRB modes but has the corresponding MAC-VRF, then it only
imports the MAC address.<a href="#section-5.2-5" class="pilcrow">¶</a></p>
<p id="section-5.2-6">
If the receiving PE receives this route with both the MAC-VRF and IP-VRF
Route Targets and the MAC/IP Advertisement route includes the MPLS Label2 field
but the receiving PE only supports asymmetric IRB mode, then the receiving
PE <span class="bcp14">MUST</span> ignore the MPLS Label2 field and install the MAC address in the
corresponding MAC-VRF and (IP, MAC) association in the ARP table for that
tenant (identified by the corresponding IP-VRF Route Target).<a href="#section-5.2-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-5.3">
<section id="section-5.3">
<h3 id="name-subnet-route-advertisement">
<a href="#section-5.3" class="section-number selfRef">5.3. </a><a href="#name-subnet-route-advertisement" class="section-name selfRef">Subnet Route Advertisement</a>
</h3>
<p id="section-5.3-1">
In the case of symmetric IRB, a Layer 3 subnet and IRB interface
corresponding to a MAC-VRF/BT are required to be provisioned at a
PE only if that PE has locally attached hosts in that subnet. In order to
enable inter-subnet routing across PEs in a deployment where not all
subnets are provisioned at all PEs participating in an EVPN IRB instance,
PEs <span class="bcp14">MUST</span> advertise local subnet routes as EVPN RT-5. These subnet routes
are required for bootstrapping host (IP, MAC) learning using gleaning
procedures initiated by an inter-subnet data packet.<a href="#section-5.3-1" class="pilcrow">¶</a></p>
<p id="section-5.3-2">
That is, if a given host's (IP, MAC) association is unknown, and an
ingress PE needs to send a packet to that host, then that ingress PE
needs to know which egress PEs are attached to the subnet in which
the host resides in order to send the packet to one of those PEs,
causing the PE receiving the packet to probe for that host. For
example, consider a subnet A that is locally attached to PE1 and
subnet B that is locally attached to PE2 and PE3. Host A in
subnet A, which is attached to PE1, initiates a data packet destined to
host B in subnet B, which is attached to PE3. If host B's (IP, MAC)
has not yet been learned via either a gratuitous ARP OR a prior
gleaning procedure, a new gleaning procedure <span class="bcp14">MUST</span> be triggered for
host B's (IP, MAC) to be learned and advertised across the EVPN
network. Since host B's subnet is not local to PE1, an IP lookup for
host B at PE1 will not trigger this gleaning procedure for host B's
(IP, MAC). Therefore, PE1 <span class="bcp14">MUST</span> learn subnet B's prefix route via
EVPN RT-5 advertised from PE2 and PE3, so it can route the packet to
one of the PEs that have subnet B locally attached. Once the packet
is received at PE2 OR PE3, and the route lookup yields a glean
result, an ARP request is triggered and flooded across the Layer 2
overlay.
This ARP request would be received and replied to by host
B, resulting in host B (IP, MAC) learning at PE3 and its
advertisement across the EVPN network. Packets from host A to host B
can now be routed directly from PE1 to PE3. Advertisement of local
subnet EVPN RT-5 for an IP-VRF <span class="bcp14">MAY</span> typically be achieved via
provisioning-connected route redistribution to BGP.<a href="#section-5.3-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-5.4">
<section id="section-5.4">
<h3 id="name-data-plane-ingress-pe">
<a href="#section-5.4" class="section-number selfRef">5.4. </a><a href="#name-data-plane-ingress-pe" class="section-name selfRef">Data Plane - Ingress PE</a>
</h3>
<p id="section-5.4-1">
When an Ethernet frame is received by an ingress PE (e.g., PE1 in
<a href="#fig-4" class="xref">Figure 4</a> above), the PE uses the AC ID (e.g., VLAN ID) to identify
the associated MAC-VRF/BT, and it performs a lookup on the
destination MAC address. If the MAC address corresponds to its IRB
interface MAC address, the ingress PE deduces that the packet must be
inter-subnet routed. Hence, the ingress PE performs an IP lookup in
the associated IP-VRF table. The lookup identifies the BGP next hop of the egress PE along with the tunnel/encapsulation type and the associated
MPLS/VNI values. The ingress PE also decrements the TTL / hop limit
for that packet by one, and if it reaches zero, the ingress PE
discards the packet.<a href="#section-5.4-1" class="pilcrow">¶</a></p>
<p id="section-5.4-2">
If the tunnel type is that of an MPLS or IP-only NVO tunnel, then the TS's
IP packet is sent over the tunnel without any Ethernet header.
However, if the tunnel type is that of an Ethernet NVO tunnel, then an
Ethernet header needs to be added to the TS's IP packet. The source
MAC address of this inner Ethernet header is set to the ingress PE's
router MAC address, and the destination MAC address of this inner
Ethernet header is set to the egress PE's router MAC address learned
via the EVPN Router's MAC Extended Community attached to the route. The MPLS VPN
label is set to the received label2 in the route. In the case of the Ethernet NVO tunnel type, the VNI may be set one of two ways:<a href="#section-5.4-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-5.4-3">
<dt id="section-5.4-3.1">downstream mode:</dt>
<dd style="margin-left: 1.5em" id="section-5.4-3.2">The VNI is set to the received label2 in the route,
which is downstream assigned.<a href="#section-5.4-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.4-3.3">global mode:</dt>
<dd style="margin-left: 1.5em" id="section-5.4-3.4">The VNI is set to the received label2 in the route, which
is assigned domain-wide. This VNI value from the received label2 <span class="bcp14">MUST</span>
be the same as the locally configured VNI for the IP-VRF as all
PEs in the NVO <span class="bcp14">MUST</span> be configured with the same IP-VRF VNI for
this mode of operation. If the received label2 value does not
match the locally configured VNI value, the route <span class="bcp14">MUST NOT</span> be used,
and an error message <span class="bcp14">SHOULD</span> be logged.<a href="#section-5.4-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-5.4-4">
PEs may be configured to operate in one of these two modes depending
on the administrative domain boundaries across PEs participating in
the NVO and the PE's capability to support downstream VNI mode.<a href="#section-5.4-4" class="pilcrow">¶</a></p>
<p id="section-5.4-5">
In the case of NVO tunnel encapsulation, the outer source and
destination IP addresses are set to the ingress and egress PE BGP
next-hop IP addresses, respectively.<a href="#section-5.4-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-5.5">
<section id="section-5.5">
<h3 id="name-data-plane-egress-pe">
<a href="#section-5.5" class="section-number selfRef">5.5. </a><a href="#name-data-plane-egress-pe" class="section-name selfRef">Data Plane - Egress PE</a>
</h3>
<p id="section-5.5-1">
When the tenant's MPLS or NVO encapsulated packet is received over an
MPLS or NVO tunnel by the egress PE, the egress PE removes the NVO tunnel
encapsulation and uses the VPN MPLS label (for MPLS encapsulation) or
VNI (for NVO encapsulation) to identify the IP-VRF in which IP lookup
needs to be performed. If the VPN MPLS label or VNI identifies a
MAC-VRF instead of an IP-VRF, then the procedures in <a href="#sect-6.4" class="xref">Section 6.4</a> for
asymmetric IRB are executed.<a href="#section-5.5-1" class="pilcrow">¶</a></p>
<p id="section-5.5-2">
The lookup in the IP-VRF identifies a local adjacency to the IRB
interface associated with the egress subnet's MAC-VRF/BT.
The egress PE also decrements the TTL / hop limit for that packet by
one, and if it reaches zero, the egress PE discards the packet.<a href="#section-5.5-2" class="pilcrow">¶</a></p>
<p id="section-5.5-3">
The egress PE gets the destination TS's MAC address for that TS's IP
address from its ARP table or NDP cache. It encapsulates the packet
with that destination MAC address and a source MAC address
corresponding to that IRB interface and sends the packet to its
destination subnet MAC-VRF/BT.<a href="#section-5.5-3" class="pilcrow">¶</a></p>
<p id="section-5.5-4">
The destination MAC address lookup in the MAC-VRF/BT
results in the local adjacency (e.g., local interface) over which the
Ethernet frame is sent.<a href="#section-5.5-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-6">
<section id="section-6">
<h2 id="name-asymmetric-irb-procedures">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-asymmetric-irb-procedures" class="section-name selfRef">Asymmetric IRB Procedures</a>
</h2>
<div id="sect-6.1">
<section id="section-6.1">
<h3 id="name-control-plane-advertising-pe">
<a href="#section-6.1" class="section-number selfRef">6.1. </a><a href="#name-control-plane-advertising-pe" class="section-name selfRef">Control Plane - Advertising PE</a>
</h3>
<p id="section-6.1-1">
When a PE (e.g., PE1 in <a href="#fig-4" class="xref">Figure 4</a> above) learns the MAC and IP address of
an attached TS (e.g., via an ARP request or ND Neighbor
Solicitation), it populates its MAC-VRF/BT, IP-VRF, and ARP
table or NDP cache just as in the case for symmetric IRB. It then
builds an EVPN MAC/IP Advertisement route (type 2) as follows and
advertises it to other PEs participating in that tenant's VPN.<a href="#section-6.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6.1-2.1">The Length field of the BGP EVPN NLRI for an EVPN MAC/IP
Advertisement route <span class="bcp14">MUST</span> be either 37 (if an IPv4 address is carried)
or 49 (if an IPv6 address is carried).<a href="#section-6.1-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.1-2.2">The RD, Ethernet Segment Identifier, Ethernet
Tag ID, MAC Address Length, MAC Address, IP Address Length, IP
Address, and MPLS Label1 fields <span class="bcp14">MUST</span> be set per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> and
<span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>.<a href="#section-6.1-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.1-2.3">The MPLS Label2 field <span class="bcp14">MUST NOT</span> be included in this route.<a href="#section-6.1-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6.1-3">
Just as in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>, the RD, Ethernet Tag ID, MAC Address Length,
MAC Address, IP Address Length, and IP Address fields are part of the
route key used by BGP to compare routes. The rest of the fields are
not part of the route key.<a href="#section-6.1-3" class="pilcrow">¶</a></p>
<p id="section-6.1-4">
This route is advertised along with the following extended community:<a href="#section-6.1-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6.1-5.1">Tunnel Type Extended Community<a href="#section-6.1-5.1" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6.1-6">
For asymmetric IRB mode, the EVPN Router's MAC Extended Community is not
needed because forwarding is performed using destination TS's MAC
address, which is carried in this EVPN route type 2 advertisement.<a href="#section-6.1-6" class="pilcrow">¶</a></p>
<p id="section-6.1-7">
This route <span class="bcp14">MUST</span> always be advertised with the MAC-VRF Route Target.
It <span class="bcp14">MAY</span> also be advertised with a second Route Target corresponding to
the IP-VRF.<a href="#section-6.1-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-6.2">
<section id="section-6.2">
<h3 id="name-control-plane-receiving-pe-2">
<a href="#section-6.2" class="section-number selfRef">6.2. </a><a href="#name-control-plane-receiving-pe-2" class="section-name selfRef">Control Plane - Receiving PE</a>
</h3>
<p id="section-6.2-1">
When a PE (e.g., PE2 in <a href="#fig-4" class="xref">Figure 4</a> above) receives this EVPN MAC/IP
Advertisement route, it performs the following:<a href="#section-6.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-6.2-2.1">Using the MAC-VRF Route Target, it identifies
the corresponding MAC-VRF and imports the MAC address into it. For
asymmetric IRB mode, it is assumed that all PEs participating in a
tenant's VPN are configured with all subnets (i.e., all VLANs) and
corresponding MAC-VRFs/BTs even if there are no locally
attached TSs for some of these subnets. This is because the ingress PE needs to do forwarding based on the destination TS's MAC address
and perform NVO tunnel encapsulation as the property of a lookup in the MAC-VRF/BT.<a href="#section-6.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.2-2.2">If only the MAC-VRF Route Target is used, then the receiving PE uses
the MAC-VRF Route Target to identify the corresponding IP-VRF --
i.e., many MAC-VRF Route Targets map to the same IP-VRF for a
given tenant. In this case, MAC-VRF may be used by the receiving
PE to identify the corresponding IP-VRF via the IRB interface
associated with the subnet MAC-VRF/BT. In this case,
the MAC-VRF Route Target may be used by the receiving PE to
identify the corresponding IP-VRF.<a href="#section-6.2-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.2-2.3">Using the MAC-VRF Route Target, the receiving PE identifies the
corresponding ARP table or NDP cache for the tenant, and it adds an
entry to the ARP table or NDP cache for the TS's MAC and IP
address association. It should be noted that the tenant's ARP
table or NDP cache at the receiving PE is identified by all the
MAC-VRF Route Targets for that tenant.<a href="#section-6.2-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-6.2-2.4">If the IP-VRF Route Target is included, it may be used to import the
route to IP-VRF. If the IP-VRF Route Target is not included, MAC-VRF
is used to derive the corresponding IP-VRF for import, as explained in
the prior section. In both cases, an IP-VRF route is installed with
the TS MAC binding included in the received route.<a href="#section-6.2-2.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-6.2-3">
If the receiving PE receives the MAC/IP Advertisement route with the MPLS
Label2 field but the receiving PE only supports asymmetric IRB mode,
then the receiving PE <span class="bcp14">MUST</span> ignore the MPLS Label2 field and install the
MAC address in the corresponding MAC-VRF and (IP, MAC) association in
the ARP table or NDP cache for that tenant (with the IRB interface
identified by the MAC-VRF).<a href="#section-6.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-6.3">
<section id="section-6.3">
<h3 id="name-data-plane-ingress-pe-2">
<a href="#section-6.3" class="section-number selfRef">6.3. </a><a href="#name-data-plane-ingress-pe-2" class="section-name selfRef">Data Plane - Ingress PE</a>
</h3>
<p id="section-6.3-1">
When an Ethernet frame is received by an ingress PE (e.g., PE1 in
<a href="#fig-4" class="xref">Figure 4</a> above), the PE uses the AC ID (e.g., VLAN ID) to identify
the associated MAC-VRF/BT, and it performs a lookup on the
destination MAC address. If the MAC address corresponds to its IRB
interface MAC address, the ingress PE deduces that the packet must be
inter-subnet routed. Hence, the ingress PE performs an IP lookup in
the associated IP-VRF table. The lookup identifies a local adjacency
to the IRB interface associated with the egress subnet's MAC-VRF/
bridge table. The ingress PE also decrements the TTL / hop limit for
that packet by one, and if it reaches zero, the ingress PE discards
the packet.<a href="#section-6.3-1" class="pilcrow">¶</a></p>
<p id="section-6.3-2">
The ingress PE gets the destination TS's MAC address for that TS's IP
address from its ARP table or NDP cache. It encapsulates the packet
with that destination MAC address and a source MAC address
corresponding to that IRB interface and sends the packet to its
destination subnet MAC-VRF/BT.<a href="#section-6.3-2" class="pilcrow">¶</a></p>
<p id="section-6.3-3">
The destination MAC address lookup in the MAC-VRF/BT
results in a BGP next-hop address of the egress PE along with label1 (L2
VPN MPLS label or VNI). The ingress PE encapsulates the packet using
the Ethernet NVO tunnel of the choice (e.g., VXLAN or NVGRE) and sends
the packet to the egress PE. Because the packet forwarding is
between the ingress PE's MAC-VRF/BT and the egress PE's MAC-VRF/
bridge table, the packet encapsulation procedures follow that of
<span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> for MPLS and <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span> for VXLAN encapsulations.<a href="#section-6.3-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-6.4">
<section id="section-6.4">
<h3 id="name-data-plane-egress-pe-2">
<a href="#section-6.4" class="section-number selfRef">6.4. </a><a href="#name-data-plane-egress-pe-2" class="section-name selfRef">Data Plane - Egress PE</a>
</h3>
<p id="section-6.4-1">
When a tenant's Ethernet frame is received over an NVO tunnel by the
egress PE, the egress PE removes the NVO tunnel encapsulation and uses
the VPN MPLS label (for MPLS encapsulation) or VNI (for NVO
encapsulation) to identify the MAC-VRF/BT in which the MAC
lookup needs to be performed.<a href="#section-6.4-1" class="pilcrow">¶</a></p>
<p id="section-6.4-2">
The MAC lookup results in a local adjacency (e.g., local interface)
over which the packet needs to get sent.<a href="#section-6.4-2" class="pilcrow">¶</a></p>
<p id="section-6.4-3">
Note that the forwarding behavior on the egress PE is the same as the EVPN intra-subnet forwarding described in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> for MPLS and
<span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span> for NVO networks. In other words, all the packet
processing associated with the inter-subnet forwarding semantics is
confined to the ingress PE for asymmetric IRB mode.<a href="#section-6.4-3" class="pilcrow">¶</a></p>
<p id="section-6.4-4">
It should also be noted that <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> provides a different level of
granularity for the EVPN label. Besides identifying the bridge
domain table, it can be used to identify the egress interface or a
destination MAC address on that interface. If an EVPN label is used for
an egress interface or individual MAC address identification, then no
MAC lookup is needed in the egress PE for MPLS encapsulation, and the
packet can be directly forwarded to the egress interface just based
on the EVPN label lookup.<a href="#section-6.4-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-7">
<section id="section-7">
<h2 id="name-mobility-procedure">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-mobility-procedure" class="section-name selfRef">Mobility Procedure</a>
</h2>
<p id="section-7-1">
When a TS moves from one NVE (aka source NVE) to another NVE (aka
target NVE), it is important that the MAC Mobility procedures be
properly executed and the corresponding MAC-VRF and IP-VRF tables on
all participating NVEs be updated. <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> describes the MAC
Mobility procedures for L2-only services for both single-homed TS and
multihomed TS. This section describes the incremental procedures
and BGP Extended Communities needed to handle the MAC Mobility for
IRB. In order to place the emphasis on the differences between
L2-only and IRB use cases, the incremental procedure is described for
a single-homed TS with the expectation that the additional steps needed
for a multihomed TS can be extended per <span><a href="https://www.rfc-editor.org/rfc/rfc7432#section-15" class="relref">Section 15</a> of [<a href="#RFC7432" class="xref">RFC7432</a>]</span>.
This section describes mobility procedures for both symmetric and
asymmetric IRB. Although the language used in this section is for
IPv4 ARP, it equally applies to IPv6 ND.<a href="#section-7-1" class="pilcrow">¶</a></p>
<p id="section-7-2">
When a TS moves from a source NVE to a target NVE, it can behave in
one of the following three ways:<a href="#section-7-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-7-3">
<li id="section-7-3.1">
<div id="way1">TS initiates an ARP request upon a move to the target NVE.<a href="#way1" class="pilcrow">¶</a>
</div>
</li>
<li id="section-7-3.2">
<div id="way2">TS sends a data packet without first initiating an ARP request to
the target NVE.<a href="#way2" class="pilcrow">¶</a>
</div>
</li>
<li id="section-7-3.3">
<div id="way3">TS is a silent host and neither initiates an ARP request nor
sends any packets.<a href="#way3" class="pilcrow">¶</a>
</div>
</li>
</ol>
<p id="section-7-4">
Depending on the expected TS's behavior, an NVE needs to handle at least
the <a href="#way1" class="xref">first</a> option and should be able to handle the <a href="#way2" class="xref">second</a> and <a href="#way3" class="xref">third</a> options.
The following subsections describe the procedures for each scenario where it
is assumed that the MAC and IP addresses of a TS have a one-to-one
relationship (i.e., there is one IP address per MAC address and vice
versa). The procedures for host mobility detection in the presence of
a many-to-one relationship is outside the scope of this document, and it is
covered in <span>[<a href="#I-D.ietf-bess-evpn-irb-extended-mobility" class="xref">EXTENDED-MOBILITY</a>]</span>. The
"many-to-one relationship" refers to many host IP addresses corresponding to a
single host MAC address or many host MAC addresses corresponding to a
single IP address. It should be noted that in the case of IPv6, a link-local
IP address does not count in a many-to-one relationship because that address
is confined to a single Ethernet segment, and it is not used for host mobility
(i.e., by definition, host mobility is between two different Ethernet
segments). Therefore, when an IPv6 host is configured with both a Global
Unicast address (or a Unique Local address) and a link-local address, for
the purpose of host mobility, it is considered with a single IP
address.<a href="#section-7-4" class="pilcrow">¶</a></p>
<div id="sect-7.1">
<section id="section-7.1">
<h3 id="name-initiating-a-gratuitous-arp">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-initiating-a-gratuitous-arp" class="section-name selfRef">Initiating a Gratuitous ARP upon a Move</a>
</h3>
<p id="section-7.1-1">
In this scenario, when a TS moves from a source NVE to a target NVE,
the TS initiates a gratuitous ARP upon the move to the target NVE.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
<p id="section-7.1-2">
The target NVE, upon receiving this ARP message, updates its MAC-VRF,
IP-VRF, and ARP table with the host MAC, IP, and local adjacency
information (e.g., local interface).<a href="#section-7.1-2" class="pilcrow">¶</a></p>
<p id="section-7.1-3">
Since this NVE has previously learned the same MAC and IP addresses
from the source NVE, it recognizes that there has been a MAC move, and
it initiates MAC Mobility procedures per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> by advertising an
EVPN MAC/IP Advertisement route with both the MAC and IP addresses
filled in (per Sections <a href="#sect-5.1" class="xref">5.1</a> and <a href="#sect-6.1" class="xref">6.1</a>) along with the MAC Mobility extended
community, with the sequence number incremented by one. The target
NVE also exercises the MAC duplication detection procedure in <span><a href="https://www.rfc-editor.org/rfc/rfc7432#section-15.1" class="relref">Section 15.1</a> of [<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-7.1-3" class="pilcrow">¶</a></p>
<p id="section-7.1-4">
The source NVE, upon receiving this MAC/IP Advertisement route,
realizes that the MAC has moved to the target NVE. It updates its
MAC-VRF and IP-VRF table accordingly with the adjacency information
of the target NVE. In the case of the asymmetric IRB, the source NVE
also updates its ARP table with the received adjacency information,
and in the case of the symmetric IRB, the source NVE removes the
entry associated with the received (IP, MAC) from its local ARP
table. It then withdraws its EVPN MAC/IP Advertisement route.
Furthermore, it sends an ARP probe locally to ensure that the MAC is
gone. If an ARP response is received, the source NVE updates its ARP
entry for that (IP, MAC) and re-advertises an EVPN MAC/IP
Advertisement route for that (IP, MAC) along with the MAC Mobility
extended community, with the sequence number incremented by one. The
source NVE also exercises the MAC duplication detection procedure in
<span><a href="https://www.rfc-editor.org/rfc/rfc7432#section-15.1" class="relref">Section 15.1</a> of [<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-7.1-4" class="pilcrow">¶</a></p>
<p id="section-7.1-5">
All other remote NVE devices, upon receiving the MAC/IP Advertisement route
with the MAC Mobility extended community, compare the sequence number in this
advertisement with the one previously received. If the new sequence number
is greater than the old one, then they update the MAC/IP addresses of the
TS in their corresponding MAC-VRF and IP-VRF tables to point to the target
NVE. Furthermore, upon receiving the MAC/IP withdraw for the TS from the
source NVE, these remote PEs perform the cleanups for their BGP tables.<a href="#section-7.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-7.2">
<section id="section-7.2">
<h3 id="name-sending-data-traffic-withou">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-sending-data-traffic-withou" class="section-name selfRef">Sending Data Traffic without an ARP Request</a>
</h3>
<p id="section-7.2-1">
In this scenario, when a TS moves from a source NVE to a target NVE,
the TS starts sending data traffic without first initiating an ARP
request.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
<p id="section-7.2-2">
The target NVE, upon receiving the first data packet, learns the MAC
address of the TS in the data plane and updates its MAC-VRF table
with the MAC address and the local adjacency information (e.g., local
interface) accordingly. The target NVE realizes that there has been
a MAC move because the same MAC address has been learned remotely
from the source NVE.<a href="#section-7.2-2" class="pilcrow">¶</a></p>
<p id="section-7.2-3">
If EVPN-IRB NVEs are configured to advertise MAC-only routes in
addition to MAC-and-IP EVPN routes, then the following steps are
taken:<a href="#section-7.2-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.2-4.1">The target NVE, upon learning this MAC address in the data plane,
updates this MAC address entry in the corresponding MAC-VRF with
the local adjacency information (e.g., local interface). It also
recognizes that this MAC has moved and initiates MAC Mobility
procedures per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> by advertising an EVPN MAC/IP
Advertisement route with only the MAC address filled in along with the
MAC Mobility extended community, with the sequence number
incremented by one.<a href="#section-7.2-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.2-4.2">The source NVE, upon receiving this MAC/IP Advertisement route,
realizes that the MAC has moved to the new NVE. It updates its
MAC-VRF table with the adjacency information for that MAC address
to point to the target NVE and withdraws its EVPN MAC/IP
Advertisement route that has only the MAC address (if it has
advertised such a route previously). Furthermore, it searches for
the corresponding MAC-IP entry and sends an ARP probe for this
(IP, MAC) pair. The ARP request message is sent both locally to
all attached TSs in that subnet as well as to other
NVEs participating in that subnet, including the target NVE. Note
that the PE needs to maintain a correlation between MAC and MAC-IP
route entries in the MAC-VRF to accomplish this.<a href="#section-7.2-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.2-4.3">The target NVE passes the ARP request to its locally attached TSs,
and when it receives the ARP response, it updates its IP-VRF and
ARP table with the host (IP, MAC) information. It also sends an
EVPN MAC/IP Advertisement route with both the MAC and IP addresses
filled in along with the MAC Mobility extended community, with the
sequence number set to the same value as the one for the MAC-only
Advertisement route it sent previously.<a href="#section-7.2-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.2-4.4">When the source NVE receives the EVPN MAC/IP Advertisement route,
it updates its IP-VRF table with the new adjacency information
(pointing to the target NVE). In the case of the asymmetric IRB,
the source NVE also updates its ARP table with the received
adjacency information, and in the case of the symmetric IRB, the
source NVE removes the entry associated with the received (IP, MAC) from its local ARP table. Furthermore, it withdraws its
previously advertised EVPN MAC/IP route with both the MAC and IP
address fields filled in.<a href="#section-7.2-4.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.2-4.5">All other remote NVE devices, upon receiving the MAC/IP
Advertisement route with the MAC Mobility extended community, compare
the sequence number in this advertisement with the one previously
received. If the new sequence number is greater than the old one,
then they update the MAC/IP addresses of the TS in their
corresponding MAC-VRF, IP-VRF, and ARP tables (in the case of
asymmetric IRB) to point to the new NVE. Furthermore, upon
receiving the MAC/IP withdraw for the TS from the old NVE, these
remote PEs perform the cleanups for their BGP tables.<a href="#section-7.2-4.5" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-7.2-5">
If an EVPN-IRB NVE is configured not to advertise MAC-only routes,
then upon receiving the first data packet, it learns the MAC address
of the TS and updates the MAC entry in the corresponding MAC-VRF
table with the local adjacency information (e.g., local interface).
It also realizes that there has been a MAC move because the same MAC
address has been learned remotely from the source NVE. It uses the
local MAC route to find the corresponding local MAC-IP route and
sends a unicast ARP request to the host. When receiving an ARP
response, it follows the procedure outlined in <a href="#sect-7.1" class="xref">Section 7.1</a>. In the
prior case, where MAC-only routes are also advertised, this procedure
of triggering a unicast ARP probe at the target PE <span class="bcp14">MAY</span> also be used
in addition to the source PE broadcast ARP probing procedure
described earlier for better convergence.<a href="#section-7.2-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-7.3">
<section id="section-7.3">
<h3 id="name-silent-host">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-silent-host" class="section-name selfRef">Silent Host</a>
</h3>
<p id="section-7.3-1">
In this scenario, when a TS moves from a source NVE to a target NVE,
the TS is silent, and it neither initiates an ARP request nor sends
any data traffic. Therefore, neither the target nor the source NVEs
are aware of the MAC move.<a href="#section-7.3-1" class="pilcrow">¶</a></p>
<p id="section-7.3-2">
On the source NVE, an age-out timer (for the silent host that has
moved) is used to trigger an ARP probe. This age-out timer can be
either an ARP timer or a MAC age-out timer, and this is an implementation
choice. The ARP request gets sent both locally to all the attached
TSs on that subnet as well as to all the remote NVEs
(including the target NVE) participating in that subnet. The source
NVE also withdraws the EVPN MAC/IP Advertisement route with only the
MAC address (if it has previously advertised such a route).<a href="#section-7.3-2" class="pilcrow">¶</a></p>
<p id="section-7.3-3">
The target NVE passes the ARP request to its locally attached TSs, and when
it receives the ARP response, it updates its MAC-VRF, IP-VRF, and ARP table
with the host (IP, MAC) and local adjacency information (e.g., local
interface). It also sends an EVPN MAC/IP Advertisement route with both the
MAC and IP address fields filled in along with the MAC Mobility extended
community, with the sequence number incremented by one.<a href="#section-7.3-3" class="pilcrow">¶</a></p>
<p id="section-7.3-4">
When the source NVE receives the EVPN MAC/IP Advertisement route, it
updates its IP-VRF table with the new adjacency information (pointing
to the target NVE). In the case of the asymmetric IRB, the source
NVE also updates its ARP table with the received adjacency
information, and in the case of the symmetric IRB, the source NVE
removes the entry associated with the received (IP, MAC) from its
local ARP table. Furthermore, it withdraws its previously advertised
EVPN MAC/IP route with both the MAC and IP address fields filled in.<a href="#section-7.3-4" class="pilcrow">¶</a></p>
<p id="section-7.3-5">
All other remote NVE devices, upon receiving the MAC/IP Advertisement route
with the MAC Mobility extended community, compare the sequence number in this
advertisement with the one previously received. If the new sequence number
is greater than the old one, then they update the MAC/IP addresses of the
TS in their corresponding MAC-VRF, IP-VRF, and ARP (in the case of
asymmetric IRB) tables to point to the new NVE. Furthermore, upon
receiving the MAC/IP withdraw for the TS from the old NVE, these remote PEs
perform the cleanups for their BGP tables.<a href="#section-7.3-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-8">
<section id="section-8">
<h2 id="name-bgp-encoding">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-bgp-encoding" class="section-name selfRef">BGP Encoding</a>
</h2>
<p id="section-8-1">
This document defines one new BGP Extended Community for EVPN.<a href="#section-8-1" class="pilcrow">¶</a></p>
<div id="sect-8.1">
<section id="section-8.1">
<h3 id="name-evpn-routers-mac-extended-c">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-evpn-routers-mac-extended-c" class="section-name selfRef">EVPN Router's MAC Extended Community</a>
</h3>
<p id="section-8.1-1">
A new EVPN BGP Extended Community called "EVPN Router's MAC" is introduced
here. This new extended community is a transitive extended community
with a Type field of 0x06 (EVPN) and a Sub-Type field of 0x03. It may
be advertised along with the Encapsulation Extended Community defined in
<span><a href="https://www.rfc-editor.org/rfc/rfc9012#section-4.1" class="relref">Section 4.1</a> of [<a href="#RFC9012" class="xref">RFC9012</a>]</span>.<a href="#section-8.1-1" class="pilcrow">¶</a></p>
<p id="section-8.1-2">
The EVPN Router's MAC Extended Community is encoded as an 8-octet value as
follows:<a href="#section-8.1-2" class="pilcrow">¶</a></p>
<span id="name-evpn-routers-mac-extended-co"></span><div id="fig-5">
<figure id="figure-5">
<div class="alignLeft art-text artwork" id="section-8.1-3.1">
<pre>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type=0x06 | Sub-Type=0x03 | EVPN Router's MAC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| EVPN Router's MAC Cont'd |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-evpn-routers-mac-extended-co" class="selfRef">EVPN Router's MAC Extended Community</a>
</figcaption></figure>
</div>
<p id="section-8.1-4">
This extended community is used to carry the PE's MAC address for
symmetric IRB scenarios, and it is sent with EVPN RT-2. The
advertising PE <span class="bcp14">SHALL</span> only attach a single EVPN Router's MAC Extended
Community to a route. In case the receiving PE receives more than
one EVPN Router's MAC Extended Community with a route, it <span class="bcp14">SHALL</span> process
the first one in the list and not store and propagate the others.<a href="#section-8.1-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-9">
<section id="section-9">
<h2 id="name-operational-models-for-symm">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-operational-models-for-symm" class="section-name selfRef">Operational Models for Symmetric Inter-Subnet Forwarding</a>
</h2>
<p id="section-9-1">
The following sections describe two main symmetric IRB forwarding
scenarios (within a DC -- i.e., intra-DC) along with the
corresponding procedures. In the following scenarios, without loss
of generality, it is assumed that a given tenant is represented by a
single IP-VPN instance. Therefore, on a given PE, a tenant is
represented by a single IP-VRF table and one or more MAC-VRF tables.<a href="#section-9-1" class="pilcrow">¶</a></p>
<div id="sect-9.1">
<section id="section-9.1">
<h3 id="name-irb-forwarding-on-nves-for-">
<a href="#section-9.1" class="section-number selfRef">9.1. </a><a href="#name-irb-forwarding-on-nves-for-" class="section-name selfRef">IRB Forwarding on NVEs for Tenant Systems</a>
</h3>
<p id="section-9.1-1">
This section covers the symmetric IRB procedures for the scenario
where each TS is attached to one or more NVEs, and its
host IP and MAC addresses are learned by the attached NVEs and are
distributed to all other NVEs that are interested in participating in
both intra-subnet and inter-subnet communications with that TS.<a href="#section-9.1-1" class="pilcrow">¶</a></p>
<p id="section-9.1-2">
In this scenario, without loss of generality, it is assumed that NVEs
operate in VLAN-based service interface mode with one bridge table(s)
per MAC-VRF. Thus, for a given tenant, an NVE has one MAC-VRF for
each tenant subnet (e.g., each VLAN) that is configured for extension
via VXLAN or NVGRE encapsulation. In the case of VLAN-aware
bundling, each MAC-VRF consists of multiple bridge tables (e.g.,
one bridge table per VLAN). The MAC-VRFs on an NVE for a given
tenant are associated with an IP-VRF corresponding to that tenant (or
IP-VPN instance) via their IRB interfaces.<a href="#section-9.1-2" class="pilcrow">¶</a></p>
<p id="section-9.1-3">
Since VXLAN and NVGRE encapsulations require an inner Ethernet header
(inner MAC SA/DA) and since a TS MAC address cannot be used for inter-subnet traffic, the ingress NVE's MAC address is used as an inner MAC
SA. The NVE's MAC address is the device MAC address, and it is common
across all MAC-VRFs and IP-VRFs. This MAC address is advertised
using the new EVPN Router's MAC Extended Community (<a href="#sect-8.1" class="xref">Section 8.1</a>).<a href="#section-9.1-3" class="pilcrow">¶</a></p>
<p id="section-9.1-4">
<a href="#fig-6" class="xref">Figure 6</a> below illustrates this scenario, where a given tenant (e.g., an
IP-VPN instance) has three subnets represented by MAC-VRF1, MAC-VRF2, and
MAC-VRF3 across two NVEs. There are five TSs that are associated with
these three MAC-VRFs -- i.e., TS1, TS4, and TS5 are on the same subnet
(e.g., the same MAC-VRF/VLAN). TS1 and TS5 are associated with MAC-VRF1 on
NVE1, while TS4 is associated with MAC-VRF1 on NVE2. TS2 is associated
with MAC-VRF2 on NVE1, and TS3 is associated with MAC-VRF3 on NVE2.
MAC-VRF1 and MAC-VRF2 on NVE1 are, in turn, associated with IP-VRF1 on NVE1,
and MAC-VRF1 and MAC-VRF3 on NVE2 are associated with IP-VRF1 on NVE2.
When TS1, TS5, and TS4 exchange traffic with each other, only the L2
forwarding (bridging) part of the IRB solution is exercised because all
these TSs belong to the same subnet. However, when TS1 wants to exchange
traffic with TS2 or TS3, which belong to different subnets, both the bridging
and routing parts of the IRB solution are exercised. The following
subsections describe the control and data plane operations for this IRB
scenario in detail.<a href="#section-9.1-4" class="pilcrow">¶</a></p>
<span id="name-irb-forwarding-on-nves-for-t"></span><div id="fig-6">
<figure id="figure-6">
<div class="alignLeft art-text artwork" id="section-9.1-5.1">
<pre>
NVE1 +---------+
+-------------+ | |
TS1-----| MACx| | | NVE2
(M1/IP1) |(MAC- | | | +-------------+
TS5-----| VRF1)\ | | MPLS/ | |MACy (MAC- |-----TS3
(M5/IP5) | \ | | VXLAN/ | | / VRF3) | (M3/IP3)
| (IP-VRF1)|----| NVGRE |---|(IP-VRF1) |
| / | | | | \ |
TS2-----|(MAC- / | | | | (MAC- |-----TS4
(M2/IP2) | VRF2) | | | | VRF1) | (M4/IP4)
+-------------+ | | +-------------+
| |
+---------+
</pre>
</div>
<figcaption><a href="#figure-6" class="selfRef">Figure 6</a>:
<a href="#name-irb-forwarding-on-nves-for-t" class="selfRef">IRB Forwarding on NVEs for Tenant Systems</a>
</figcaption></figure>
</div>
<div id="sect-9.1.1">
<section id="section-9.1.1">
<h4 id="name-control-plane-operation">
<a href="#section-9.1.1" class="section-number selfRef">9.1.1. </a><a href="#name-control-plane-operation" class="section-name selfRef">Control Plane Operation</a>
</h4>
<p id="section-9.1.1-1">
Each NVE advertises a MAC/IP Advertisement route (i.e., route type 2)
for each of its TSs with the following field set:<a href="#section-9.1.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-9.1.1-2.1">RD and Ethernet Segment Identifier (ESI) per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span><a href="#section-9.1.1-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.1-2.2">Ethernet Tag = 0 (assuming VLAN-based service)<a href="#section-9.1.1-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.1-2.3">MAC Address Length = 48<a href="#section-9.1.1-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.1-2.4">MAC Address = Mi (where i = 1, 2, 3, 4, or 5) in <a href="#fig-6" class="xref">Figure 6</a>, above<a href="#section-9.1.1-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.1-2.5">IP Address Length = 32 or 128<a href="#section-9.1.1-2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.1-2.6">IP Address = IPi (where i = 1, 2, 3, 4, or 5) in <a href="#fig-6" class="xref">Figure 6</a>, above<a href="#section-9.1.1-2.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.1-2.7">Label1 = MPLS label or VNI corresponding to MAC-VRF<a href="#section-9.1.1-2.7" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.1-2.8">Label2 = MPLS label or VNI corresponding to IP-VRF<a href="#section-9.1.1-2.8" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-9.1.1-3">
Each NVE advertises an EVPN RT-2 route with two Route Targets (one
corresponding to its MAC-VRF and the other corresponding to its IP-VRF).
Furthermore, the EVPN RT-2 is advertised with two BGP Extended Communities.
The first BGP Extended Community identifies the tunnel type, and it is
called "Encapsulation Extended Community" as defined in
<span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>, and the second BGP Extended Community includes
the MAC address of the NVE (e.g., MACx for NVE1 or MACy for NVE2) as
defined in <a href="#sect-8.1" class="xref">Section 8.1</a>. The EVPN Router's MAC Extended Community <span class="bcp14">MUST</span> be added
when the Ethernet NVO tunnel is used. If the IP NVO tunnel type is used, then
there is no need to send this second Extended Community. It should be
noted that the IP NVO tunnel type is only applicable to symmetric IRB
procedures.<a href="#section-9.1.1-3" class="pilcrow">¶</a></p>
<p id="section-9.1.1-4">
Upon receiving this advertisement, the receiving NVE performs the
following:<a href="#section-9.1.1-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-9.1.1-5.1">It uses Route Targets corresponding to its MAC-VRF and IP-VRF for
identifying these tables and subsequently importing the MAC and IP
addresses into them, respectively.<a href="#section-9.1.1-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.1-5.2">It imports the MAC address from the MAC/IP Advertisement route into
the MAC-VRF with the BGP next-hop address as the underlay tunnel
destination address (e.g., VTEP DA for VXLAN encapsulation) and
label1 as the VNI for VXLAN encapsulation or an EVPN label for MPLS
encapsulation.<a href="#section-9.1.1-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.1-5.3">If the route carries the new EVPN Router's MAC Extended Community and
if the receiving NVE uses an Ethernet NVO tunnel, then the receiving
NVE imports the IP address into IP-VRF with NVE's MAC address
(from the new EVPN Router's MAC Extended Community) as the inner MAC DA, the BGP next-hop address as the underlay tunnel destination address, the VTEP DA for VXLAN encapsulation, and label2 as the IP-VPN VNI for VXLAN
encapsulation.<a href="#section-9.1.1-5.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.1-5.4">If the receiving NVE uses MPLS encapsulation, then the receiving
NVE imports the IP address into IP-VRF with the BGP next-hop address
as the underlay tunnel destination address and label2 as the IP-VPN
label for MPLS encapsulation.<a href="#section-9.1.1-5.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-9.1.1-6">
If the receiving NVE receives an EVPN RT-2 with only label1 and only
a single Route Target corresponding to IP-VRF; an
EVPN RT-2 with only a single Route Target corresponding to MAC-VRF
but with both label1 and label2; or an EVPN RT-2 with a
MAC address length of zero, then it <span class="bcp14">MUST</span> use the treat-as-withdraw
approach <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span> and <span class="bcp14">SHOULD</span> log an error message.<a href="#section-9.1.1-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-9.1.2">
<section id="section-9.1.2">
<h4 id="name-data-plane-operation">
<a href="#section-9.1.2" class="section-number selfRef">9.1.2. </a><a href="#name-data-plane-operation" class="section-name selfRef">Data Plane Operation</a>
</h4>
<p id="section-9.1.2-1">
The following description of the data plane operation describes just
the logical functions, and the actual implementation may differ. Let's consider the data plane operation when TS1 in subnet-1 (MAC-VRF1) on NVE1
wants to send traffic to TS3 in subnet-3 (MAC-VRF3) on NVE2.<a href="#section-9.1.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-9.1.2-2.1">NVE1 receives a packet with the MAC DA corresponding to the MAC-VRF1 IRB
interface on NVE1 (the interface between MAC-VRF1 and IP-VRF1) and
the VLAN tag corresponding to MAC-VRF1.<a href="#section-9.1.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.2-2.2">Upon receiving the packet, the NVE1 uses the VLAN tag to identify the
MAC-VRF1. It then looks up the MAC DA and forwards the frame to
its IRB interface.<a href="#section-9.1.2-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.2-2.3">The Ethernet header of the packet is stripped, and the packet is
fed to the IP-VRF, where an IP lookup is performed on the
destination IP address. NVE1 also decrements the TTL / hop limit
for that packet by one, and if it reaches zero, NVE1 discards the
packet. This lookup yields the outgoing NVO tunnel and the
required encapsulation. If the encapsulation is for the Ethernet NVO
tunnel, then it includes the egress NVE's MAC address as the inner MAC
DA, the egress NVE's IP address (e.g., BGP next-hop address) as
the VTEP DA, and the VPN-ID as the VNI. The inner MAC SA and VTEP
SA are set to NVE's MAC and IP addresses, respectively. If it is an
MPLS encapsulation, then the corresponding EVPN and LSP labels are
added to the packet. The packet is then forwarded to the egress
NVE.<a href="#section-9.1.2-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.2-2.4">If the egress NVE receives a packet from the Ethernet NVO tunnel (e.g., it is VXLAN encapsulated),
then it removes the Ethernet header. Since the inner MAC DA is the egress NVE's MAC address,
the egress NVE knows that it needs to perform an IP lookup. It
uses the VNI to identify the IP-VRF table. If the packet is MPLS
encapsulated, then the EVPN label lookup identifies the IP-VRF
table. Next, an IP lookup is performed for the destination TS
(TS3), which results in an access-facing IRB interface over which
the packet is sent. Before sending the packet over this
interface, the ARP table is consulted to get the destination TS's
MAC address. NVE2 also decrements the TTL / hop limit for that
packet by one, and if it reaches zero, NVE2 discards the packet.<a href="#section-9.1.2-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.1.2-2.5">The IP packet is encapsulated with an Ethernet header, with the MAC SA
set to that of the IRB interface MAC address (i.e., the IRB interface
between MAC-VRF3 and IP-VRF1 on NVE2) and the MAC DA set to that of the
destination TS (TS3) MAC address. The packet is sent to the
corresponding MAC-VRF (i.e., MAC-VRF3) and, after a lookup of MAC
DA, is forwarded to the destination TS (TS3) over the
corresponding interface.<a href="#section-9.1.2-2.5" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-9.1.2-3">
In this symmetric IRB scenario, inter-subnet traffic between NVEs
will always use the IP-VRF VNI/MPLS label. For instance, traffic
from TS2 to TS4 will be encapsulated by NVE1 using NVE2's IP-VRF VNI/MPLS label, as long as TS4's host IP is present in NVE1's IP-VRF.<a href="#section-9.1.2-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-9.2">
<section id="section-9.2">
<h3 id="name-irb-forwarding-on-nves-for-s">
<a href="#section-9.2" class="section-number selfRef">9.2. </a><a href="#name-irb-forwarding-on-nves-for-s" class="section-name selfRef">IRB Forwarding on NVEs for Subnets behind Tenant Systems</a>
</h3>
<p id="section-9.2-1">
This section covers the symmetric IRB procedures for the scenario where
some TSs support one or more subnets and these TSs are
associated with one or more NVEs. Therefore, besides the advertisement of
MAC/IP addresses for each TS, which can be multihomed with All-Active
redundancy mode, the associated NVE needs to also advertise the subnets
statically configured on each TS.<a href="#section-9.2-1" class="pilcrow">¶</a></p>
<p id="section-9.2-2">
The main difference between this solution and the previous one is the
additional advertisement corresponding to each subnet. These subnet
advertisements are accomplished using the EVPN IP Prefix route
defined in <span>[<a href="#RFC9136" class="xref">RFC9136</a>]</span>. These subnet
prefixes are advertised with the IP address of their associated TS
(which is in an overlay address space) as their next hop. The receiving
NVEs perform recursive route resolution to resolve the subnet prefix
with its advertising NVE so that they know which NVE to forward the
packets to when they are destined for that subnet prefix.<a href="#section-9.2-2" class="pilcrow">¶</a></p>
<p id="section-9.2-3">
The advantage of this recursive route resolution is that when a TS
moves from one NVE to another, there is no need to re-advertise any
of the subnet prefixes for that TS. All that is needed is to advertise
the IP/MAC addresses associated with the TS itself and exercise the MAC
Mobility procedures for that TS. The recursive route resolution
automatically takes care of the updates for the subnet prefixes of
that TS.<a href="#section-9.2-3" class="pilcrow">¶</a></p>
<p id="section-9.2-4">
<a href="#fig-7" class="xref">Figure 7</a> illustrates this scenario where a given tenant (e.g., an IP-VPN
service) has three subnets represented by MAC-VRF1, MAC-VRF2, and MAC-VRF3
across two NVEs. There are four TSs associated with these three MAC-VRFs
-- i.e., TS1 is connected to MAC-VRF1 on NVE1, TS2 is connected to MAC-VRF2
on NVE1, TS3 is connected to MAC-VRF3 on NVE2, and TS4 is connected to
MAC-VRF1 on NVE2. TS1 has two subnet prefixes (SN1 and SN2), and TS3 has a
single subnet prefix (SN3). The MAC-VRFs on each NVE are associated with
their corresponding IP-VRF using their IRB interfaces. When TS4 and TS1
exchange intra-subnet traffic, only the L2 forwarding (bridging) part of the
IRB solution is used (i.e., the traffic only goes through their MAC-VRFs);
however, when TS3 wants to forward traffic to SN1 or SN2 sitting behind TS1
(inter-subnet traffic), then both the bridging and routing parts of the IRB
solution are exercised (i.e., the traffic goes through the corresponding
MAC-VRFs and IP-VRFs).
If TS4, for example, wants to reach SN1, it uses
its default route and sends the packet to the MAC address associated with
the IRB interface on NVE2; NVE2 then performs an IP lookup in its IP-VRF and
finds an entry for SN1. The following subsections describe the control and
data plane operations for this IRB scenario in detail.<a href="#section-9.2-4" class="pilcrow">¶</a></p>
<span id="name-irb-forwarding-on-nves-for-su"></span><div id="fig-7">
<figure id="figure-7">
<div class="alignLeft art-text artwork" id="section-9.2-5.1">
<pre>
NVE1 +----------+
SN1--+ +-------------+ | |
|--TS1-----|(MAC- \ | | |
SN2--+ M1/IP1 | VRF1) \ | | |
| (IP-VRF)|---| |
| / | | |
TS2-----|(MAC- / | | MPLS/ |
M2/IP2 | VRF2) | | VXLAN/ |
+-------------+ | NVGRE |
+-------------+ | |
SN3--+--TS3-----|(MAC-\ | | |
M3/IP3 | VRF3)\ | | |
| (IP-VRF)|---| |
| / | | |
TS4-----|(MAC- / | | |
M4/IP4 | VRF1) | | |
+-------------+ +----------+
NVE2
</pre>
</div>
<figcaption><a href="#figure-7" class="selfRef">Figure 7</a>:
<a href="#name-irb-forwarding-on-nves-for-su" class="selfRef">IRB Forwarding on NVEs for Subnets behind TSs</a>
</figcaption></figure>
</div>
<p id="section-9.2-6">
Note that in <a href="#fig-7" class="xref">Figure 7</a>, above, SN1 and SN2 are configured on NVE1,
which then advertises each in an IP Prefix route. Similarly, SN3 is
configured on NVE2, which then advertises it in an IP Prefix route.<a href="#section-9.2-6" class="pilcrow">¶</a></p>
<div id="sect-9.2.1">
<section id="section-9.2.1">
<h4 id="name-control-plane-operation-2">
<a href="#section-9.2.1" class="section-number selfRef">9.2.1. </a><a href="#name-control-plane-operation-2" class="section-name selfRef">Control Plane Operation</a>
</h4>
<p id="section-9.2.1-1">
Each NVE advertises a route type 5 (EVPN RT-5, IP Prefix route
defined in <span>[<a href="#RFC9136" class="xref">RFC9136</a>]</span>) for each of its
subnet prefixes with the IP address of its TS as the next hop
(Gateway Address field) as follows:<a href="#section-9.2.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-9.2.1-2.1">RD associated with the IP-VRF<a href="#section-9.2.1-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.1-2.2">ESI = 0<a href="#section-9.2.1-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.1-2.3">Ethernet Tag = 0<a href="#section-9.2.1-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.1-2.4">IP Prefix Length = 0 to 32 or 0 to 128<a href="#section-9.2.1-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.1-2.5">IP Prefix = SNi<a href="#section-9.2.1-2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.1-2.6">Gateway Address = IPi (IP address of TS)<a href="#section-9.2.1-2.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.1-2.7">MPLS Label = 0<a href="#section-9.2.1-2.7" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-9.2.1-3">
This EVPN RT-5 is advertised with one or more Route Targets associated with
the IP-VRF from which the route is originated.<a href="#section-9.2.1-3" class="pilcrow">¶</a></p>
<p id="section-9.2.1-4">
Each NVE also advertises an EVPN RT-2 (MAC/IP Advertisement route)
along with its associated Route Targets and Extended Communities
for each of its TSs exactly as described in <a href="#sect-9.1.1" class="xref">Section 9.1.1</a>.<a href="#section-9.2.1-4" class="pilcrow">¶</a></p>
<p id="section-9.2.1-5">
Upon receiving the EVPN RT-5 advertisement, the receiving NVE
performs the following:<a href="#section-9.2.1-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-9.2.1-6.1">It uses the Route Target to identify the corresponding IP-VRF.<a href="#section-9.2.1-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.1-6.2">It imports the IP prefix into its corresponding IP-VRF
configured with an import RT that is one of the RTs being carried
by the EVPN RT-5 route, along with the IP address of the associated
TS as its next hop.<a href="#section-9.2.1-6.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-9.2.1-7">
When receiving the EVPN RT-2 advertisement, the receiving NVE imports the
MAC/IP addresses of the TS into the corresponding MAC-VRF and IP-VRF
per <a href="#sect-9.1.1" class="xref">Section 9.1.1</a>. When both routes exist, recursive route
resolution is performed to resolve the IP prefix (received in EVPN
RT-5) to its corresponding NVE's IP address (e.g., its BGP next hop).
The BGP next hop will be used as the underlay tunnel destination address
(e.g., VTEP DA for VXLAN encapsulation), and the EVPN Router's MAC will be used
as the inner MAC for VXLAN encapsulation.<a href="#section-9.2.1-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-9.2.2">
<section id="section-9.2.2">
<h4 id="name-data-plane-operation-2">
<a href="#section-9.2.2" class="section-number selfRef">9.2.2. </a><a href="#name-data-plane-operation-2" class="section-name selfRef">Data Plane Operation</a>
</h4>
<p id="section-9.2.2-1">
The following description of the data plane operation describes just
the logical functions, and the actual implementation may differ. Let's consider the data plane operation when a host in SN1 behind TS1 wants to send traffic
to a host in SN3 behind TS3.<a href="#section-9.2.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-9.2.2-2.1">TS1 sends a packet with MAC DA corresponding to the MAC-VRF1 IRB
interface of NVE1 and a VLAN tag corresponding to MAC-VRF1.<a href="#section-9.2.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.2-2.2">Upon receiving the packet, the ingress NVE1 uses the VLAN tag to
identify the MAC-VRF1. It then looks up the MAC DA and forwards
the frame to its IRB interface as in <a href="#sect-9.1.1" class="xref">Section 9.1.1</a>.<a href="#section-9.2.2-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.2-2.3">The Ethernet header of the packet is stripped, and the packet is
fed to the IP-VRF, where an IP lookup is performed on the
destination address.
This lookup yields the fields needed for
VXLAN encapsulation with NVE2's MAC address as the inner MAC DA,
NVE2's IP address as the VTEP DA, and the VNI. The MAC SA is set to
NVE1's MAC address, and the VTEP SA is set to NVE1's IP address. NVE1
also decrements the TTL / hop limit for that packet by one, and if it
reaches zero, NVE1 discards the packet.<a href="#section-9.2.2-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.2-2.4">The packet is then encapsulated with the proper header based on
the above info and is forwarded to the egress NVE (NVE2).<a href="#section-9.2.2-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.2-2.5">On the egress NVE (NVE2), assuming the packet is VXLAN
encapsulated, the VXLAN and the inner Ethernet headers are removed,
and the resultant IP packet is fed to the IP-VRF associated with
that VNI.<a href="#section-9.2.2-2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.2-2.6">Next, a lookup is performed based on the IP DA (which is in SN3) in the
associated IP-VRF of NVE2. The IP lookup yields the access-facing IRB
interface over which the packet needs to be sent. Before sending the
packet over this interface, the ARP table is consulted to get the
destination TS (TS3) MAC address. NVE2 also decrements the TTL / hop
limit for that packet by one, and if it reaches zero, NVE2 discards the
packet.<a href="#section-9.2.2-2.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-9.2.2-2.7">The IP packet is encapsulated with an Ethernet header with the MAC
SA set to that of the access-facing IRB interface of the egress
NVE (NVE2), and the MAC DA is set to that of the destination TS (TS3)
MAC address. The packet is sent to the corresponding MAC-VRF3 and,
after a lookup of MAC DA, is forwarded to the destination TS (TS3)
over the corresponding interface.<a href="#section-9.2.2-2.7" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="sect-11">
<section id="section-10">
<h2 id="name-security-considerations">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-10-1">
The security considerations for Layer 2 forwarding in this document
follow those of <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> for MPLS encapsulation and those
of <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span> for VXLAN or NVGRE encapsulations. This section
describes additional considerations.<a href="#section-10-1" class="pilcrow">¶</a></p>
<p id="section-10-2">
This document describes a set of procedures for inter-subnet
forwarding of tenant traffic across PEs (or NVEs). These procedures
include both Layer 2 forwarding and Layer 3 routing on a packet-by-packet basis. The security consideration for Layer 3 routing in this
document follows that of <span>[<a href="#RFC4365" class="xref">RFC4365</a>]</span>, with the exception of the
application of routing protocols between CEs and PEs. Contrary to
<span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span>, this document does not describe route distribution
techniques between CEs and PEs but rather considers the CEs as TSs
or VAs that do not run dynamic routing protocols. This can be
considered a security advantage, since dynamic routing protocols can
be blocked on the NVE/PE ACs, not allowing the tenant to interact
with the infrastructure's dynamic routing protocols.<a href="#section-10-2" class="pilcrow">¶</a></p>
<p id="section-10-3">
The VPN scheme described in this document does not provide the
quartet of security properties mentioned in <span>[<a href="#RFC4365" class="xref">RFC4365</a>]</span>
(confidentiality protection, source authentication, integrity
protection, and replay protection). If these are desired, they must be
provided by mechanisms that are outside the scope of the VPN
mechanisms.<a href="#section-10-3" class="pilcrow">¶</a></p>
<p id="section-10-4">
In this document, the EVPN RT-5 is used for certain scenarios. This
route uses an Overlay Index that requires a recursive resolution to a
different EVPN route (an EVPN RT-2). Because of this, it is worth
noting that any action that ends up filtering or modifying the EVPN
RT-2 route used to convey the Overlay Indexes will modify the
resolution of the EVPN RT-5 and therefore the forwarding of packets
to the remote subnet.<a href="#section-10-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-12">
<section id="section-11">
<h2 id="name-iana-considerations">
<a href="#section-11" class="section-number selfRef">11. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-11-1">
IANA has allocated Sub-Type value 0x03 in the "EVPN Extended Community Sub-Types" registry as follows:<a href="#section-11-1" class="pilcrow">¶</a></p>
<div id="IANA_table">
<table class="center" id="table-1">
<caption><a href="#table-1" class="selfRef">Table 1</a></caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Sub-Type Value</th>
<th class="text-left" rowspan="1" colspan="1">Name</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">0x03</td>
<td class="text-left" rowspan="1" colspan="1">EVPN Router's MAC Extended Community</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9135</td>
</tr>
</tbody>
</table>
</div>
<p id="section-11-3">
This document has been listed as an additional reference for the MAC/IP Advertisement route in the "EVPN Route Types" registry.<a href="#section-11-3" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-12">
<h2 id="name-references">
<a href="#section-12" class="section-number selfRef">12. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-12.1">
<h3 id="name-normative-references">
<a href="#section-12.1" class="section-number selfRef">12.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4364">[RFC4364]</dt>
<dd>
<span class="refAuthor">Rosen, E.</span> and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"BGP/MPLS IP Virtual Private Networks (VPNs)"</span>, <span class="seriesInfo">RFC 4364</span>, <span class="seriesInfo">DOI 10.17487/RFC4364</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4364">https://www.rfc-editor.org/info/rfc4364</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7432">[RFC7432]</dt>
<dd>
<span class="refAuthor">Sajassi, A., Ed.</span>, <span class="refAuthor">Aggarwal, R.</span>, <span class="refAuthor">Bitar, N.</span>, <span class="refAuthor">Isaac, A.</span>, <span class="refAuthor">Uttaro, J.</span>, <span class="refAuthor">Drake, J.</span>, and <span class="refAuthor">W. Henderickx</span>, <span class="refTitle">"BGP MPLS-Based Ethernet VPN"</span>, <span class="seriesInfo">RFC 7432</span>, <span class="seriesInfo">DOI 10.17487/RFC7432</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7432">https://www.rfc-editor.org/info/rfc7432</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7606">[RFC7606]</dt>
<dd>
<span class="refAuthor">Chen, E., Ed.</span>, <span class="refAuthor">Scudder, J., Ed.</span>, <span class="refAuthor">Mohapatra, P.</span>, and <span class="refAuthor">K. Patel</span>, <span class="refTitle">"Revised Error Handling for BGP UPDATE Messages"</span>, <span class="seriesInfo">RFC 7606</span>, <span class="seriesInfo">DOI 10.17487/RFC7606</span>, <time datetime="2015-08" class="refDate">August 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7606">https://www.rfc-editor.org/info/rfc7606</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8365">[RFC8365]</dt>
<dd>
<span class="refAuthor">Sajassi, A., Ed.</span>, <span class="refAuthor">Drake, J., Ed.</span>, <span class="refAuthor">Bitar, N.</span>, <span class="refAuthor">Shekhar, R.</span>, <span class="refAuthor">Uttaro, J.</span>, and <span class="refAuthor">W. Henderickx</span>, <span class="refTitle">"A Network Virtualization Overlay Solution Using Ethernet VPN (EVPN)"</span>, <span class="seriesInfo">RFC 8365</span>, <span class="seriesInfo">DOI 10.17487/RFC8365</span>, <time datetime="2018-03" class="refDate">March 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8365">https://www.rfc-editor.org/info/rfc8365</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9012">[RFC9012]</dt>
<dd>
<span class="refAuthor">Patel, K.</span>, <span class="refAuthor">Van de Velde, G.</span>, <span class="refAuthor">Sangli, S.</span>, and <span class="refAuthor">J. Scudder</span>, <span class="refTitle">"The BGP Tunnel Encapsulation Attribute"</span>, <span class="seriesInfo">RFC 9012</span>, <span class="seriesInfo">DOI 10.17487/RFC9012</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9012">https://www.rfc-editor.org/info/rfc9012</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9136">[RFC9136]</dt>
<dd>
<span class="refAuthor">Rabadan, J., Ed.</span>, <span class="refAuthor">Henderickx, W.</span>, <span class="refAuthor">Drake, J.</span>, <span class="refAuthor">Lin, W.</span>, and <span class="refAuthor">A. Sajassi</span>, <span class="refTitle">"IP Prefix Advertisement in Ethernet VPN (EVPN)"</span>, <span class="seriesInfo">RFC 9136</span>, <span class="seriesInfo">DOI 10.17487/RFC9136</span>, <time datetime="2021-10" class="refDate">October 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9136">https://www.rfc-editor.org/info/rfc9136</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-12.2">
<h3 id="name-informative-references">
<a href="#section-12.2" class="section-number selfRef">12.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="I-D.ietf-bess-evpn-modes-interop">[EVPN]</dt>
<dd>
<span class="refAuthor">Krattiger, L., Ed.</span>, <span class="refAuthor">Sajassi, A., Ed.</span>, <span class="refAuthor">Thoria, S.</span>, <span class="refAuthor">Rabadan, J.</span>, and <span class="refAuthor">J. Drake</span>, <span class="refTitle">"EVPN Interoperability Modes"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-bess-evpn-modes-interop-00</span>, <time datetime="2021-05-26" class="refDate">26 May 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-bess-evpn-modes-interop-00">https://datatracker.ietf.org/doc/html/draft-ietf-bess-evpn-modes-interop-00</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-bess-evpn-irb-extended-mobility">[EXTENDED-MOBILITY]</dt>
<dd>
<span class="refAuthor">Malhotra, N., Ed.</span>, <span class="refAuthor">Sajassi, A.</span>, <span class="refAuthor">Pattekar, A.</span>, <span class="refAuthor">Rabadan, J.</span>, <span class="refAuthor">Lingala, A.</span>, and <span class="refAuthor">J. Drake</span>, <span class="refTitle">"Extended Mobility Procedures for EVPN-IRB"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-bess-evpn-irb-extended-mobility-07</span>, <time datetime="2021-10-02" class="refDate">2 October 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-bess-evpn-irb-extended-mobility-07">https://datatracker.ietf.org/doc/html/draft-ietf-bess-evpn-irb-extended-mobility-07</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4365">[RFC4365]</dt>
<dd>
<span class="refAuthor">Rosen, E.</span>, <span class="refTitle">"Applicability Statement for BGP/MPLS IP Virtual Private Networks (VPNs)"</span>, <span class="seriesInfo">RFC 4365</span>, <span class="seriesInfo">DOI 10.17487/RFC4365</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4365">https://www.rfc-editor.org/info/rfc4365</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5798">[RFC5798]</dt>
<dd>
<span class="refAuthor">Nadas, S., Ed.</span>, <span class="refTitle">"Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6"</span>, <span class="seriesInfo">RFC 5798</span>, <span class="seriesInfo">DOI 10.17487/RFC5798</span>, <time datetime="2010-03" class="refDate">March 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5798">https://www.rfc-editor.org/info/rfc5798</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7348">[RFC7348]</dt>
<dd>
<span class="refAuthor">Mahalingam, M.</span>, <span class="refAuthor">Dutt, D.</span>, <span class="refAuthor">Duda, K.</span>, <span class="refAuthor">Agarwal, P.</span>, <span class="refAuthor">Kreeger, L.</span>, <span class="refAuthor">Sridhar, T.</span>, <span class="refAuthor">Bursell, M.</span>, and <span class="refAuthor">C. Wright</span>, <span class="refTitle">"Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks"</span>, <span class="seriesInfo">RFC 7348</span>, <span class="seriesInfo">DOI 10.17487/RFC7348</span>, <time datetime="2014-08" class="refDate">August 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7348">https://www.rfc-editor.org/info/rfc7348</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7365">[RFC7365]</dt>
<dd>
<span class="refAuthor">Lasserre, M.</span>, <span class="refAuthor">Balus, F.</span>, <span class="refAuthor">Morin, T.</span>, <span class="refAuthor">Bitar, N.</span>, and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"Framework for Data Center (DC) Network Virtualization"</span>, <span class="seriesInfo">RFC 7365</span>, <span class="seriesInfo">DOI 10.17487/RFC7365</span>, <time datetime="2014-10" class="refDate">October 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7365">https://www.rfc-editor.org/info/rfc7365</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7637">[RFC7637]</dt>
<dd>
<span class="refAuthor">Garg, P., Ed.</span> and <span class="refAuthor">Y. Wang, Ed.</span>, <span class="refTitle">"NVGRE: Network Virtualization Using Generic Routing Encapsulation"</span>, <span class="seriesInfo">RFC 7637</span>, <span class="seriesInfo">DOI 10.17487/RFC7637</span>, <time datetime="2015-09" class="refDate">September 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7637">https://www.rfc-editor.org/info/rfc7637</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-nvo3-vxlan-gpe">[VXLAN-GPE]</dt>
<dd>
<span class="refAuthor">Maino, F., Ed.</span>, <span class="refAuthor">Kreeger, L., Ed.</span>, and <span class="refAuthor">U. Elzur, Ed.</span>, <span class="refTitle">"Generic Protocol Extension for VXLAN (VXLAN-GPE)"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-nvo3-vxlan-gpe-12</span>, <time datetime="2021-09-22" class="refDate">22 September 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-vxlan-gpe-12">https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-vxlan-gpe-12</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="sect-10">
<section id="appendix-A">
<h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
</h2>
<p id="appendix-A-1">
The authors would like to thank <span class="contact-name">Sami Boutros</span>, <span class="contact-name">Jeffrey Zhang</span>,
<span class="contact-name">Krzysztof Szarkowicz</span>, <span class="contact-name">Lukas Krattiger</span> and <span class="contact-name">Neeraj Malhotra</span> for their
valuable comments. The authors would also like to thank <span class="contact-name">Linda Dunbar</span>, <span class="contact-name">Florin Balus</span>, <span class="contact-name">Yakov Rekhter</span>, <span class="contact-name">Wim Henderickx</span>, <span class="contact-name">Lucy Yong</span>, and
<span class="contact-name">Dennis Cai</span> for their feedback and contributions.<a href="#appendix-A-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="appendix-B">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Ali Sajassi</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:sajassi@cisco.com" class="email">sajassi@cisco.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Samer Salam</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ssalam@cisco.com" class="email">ssalam@cisco.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Samir Thoria</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:sthoria@cisco.com" class="email">sthoria@cisco.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">John E Drake</span></div>
<div dir="auto" class="left"><span class="org">Juniper</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jdrake@juniper.net" class="email">jdrake@juniper.net</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Jorge Rabadan</span></div>
<div dir="auto" class="left"><span class="org">Nokia</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jorge.rabadan@nokia.com" class="email">jorge.rabadan@nokia.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|