1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9136: IP Prefix Advertisement in Ethernet VPN (EVPN)</title>
<meta content="Jorge Rabadan" name="author">
<meta content="Wim Henderickx" name="author">
<meta content="John Drake" name="author">
<meta content="Wen Lin" name="author">
<meta content="Ali Sajassi" name="author">
<meta content="
The BGP MPLS-based Ethernet VPN (EVPN) (RFC 7432) mechanism provides a
flexible control plane that allows intra-subnet connectivity in an
MPLS and/or Network Virtualization Overlay (NVO) (RFC 7365) network.
In some networks, there is also a need for dynamic and efficient
inter-subnet connectivity across Tenant Systems and end devices that
can be physical or virtual and do not necessarily participate in
dynamic routing protocols. This document defines a new EVPN route
type for the advertisement of IP prefixes and explains some use-case
examples where this new route type is used.
" name="description">
<meta content="xml2rfc 3.10.0" name="generator">
<meta content="RT5" name="keyword">
<meta content="RT-5" name="keyword">
<meta content="Type-5" name="keyword">
<meta content="Interface-less" name="keyword">
<meta content="Interface-ful" name="keyword">
<meta content="9136" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.10.0
Python 3.6.13
appdirs 1.4.4
ConfigArgParse 1.4.1
google-i18n-address 2.4.0
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.3
kitchen 1.2.6
lxml 4.4.2
pycairo 1.15.1
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.4.1
requests 2.24.0
setuptools 40.5.0
six 1.14.0
WeasyPrint 52.5
-->
<link href="rfc9136.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
/* Fix PDF info block run off issue */
@media print {
#identifiers dd {
float: none;
}
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: auto;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9136" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-bess-evpn-prefix-advertisement-11" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9136</td>
<td class="center">EVPN Prefix Advertisement</td>
<td class="right">October 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Rabadan, et al.</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9136" class="eref">9136</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-10" class="published">October 2021</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">J. Rabadan, <span class="editor">Ed.</span>
</div>
<div class="org">Nokia</div>
</div>
<div class="author">
<div class="author-name">W. Henderickx</div>
<div class="org">Nokia</div>
</div>
<div class="author">
<div class="author-name">J. Drake</div>
<div class="org">Juniper</div>
</div>
<div class="author">
<div class="author-name">W. Lin</div>
<div class="org">Juniper</div>
</div>
<div class="author">
<div class="author-name">A. Sajassi</div>
<div class="org">Cisco</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9136</h1>
<h1 id="title">IP Prefix Advertisement in Ethernet VPN (EVPN)</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">
The BGP MPLS-based Ethernet VPN (EVPN) (RFC 7432) mechanism provides a
flexible control plane that allows intra-subnet connectivity in an
MPLS and/or Network Virtualization Overlay (NVO) (RFC 7365) network.
In some networks, there is also a need for dynamic and efficient
inter-subnet connectivity across Tenant Systems and end devices that
can be physical or virtual and do not necessarily participate in
dynamic routing protocols. This document defines a new EVPN route
type for the advertisement of IP prefixes and explains some use-case
examples where this new route type is used.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9136">https://www.rfc-editor.org/info/rfc9136</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1.2.1">
<p id="section-toc.1-1.1.2.1.1" class="keepWithNext"><a href="#section-1.1" class="xref">1.1</a>. <a href="#name-terminology" class="xref">Terminology</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-problem-statement" class="xref">Problem Statement</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="xref">2.1</a>. <a href="#name-inter-subnet-connectivity-r" class="xref">Inter-Subnet Connectivity Requirements in Data Centers</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1"><a href="#section-2.2" class="xref">2.2</a>. <a href="#name-the-need-for-the-evpn-ip-pr" class="xref">The Need for the EVPN IP Prefix Route</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-the-bgp-evpn-ip-prefix-rout" class="xref">The BGP EVPN IP Prefix Route</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>. <a href="#name-ip-prefix-route-encoding" class="xref">IP Prefix Route Encoding</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>. <a href="#name-overlay-indexes-and-recursi" class="xref">Overlay Indexes and Recursive Lookup Resolution</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-overlay-index-use-cases" class="xref">Overlay Index Use Cases</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-ts-ip-address-overlay-index" class="xref">TS IP Address Overlay Index Use Case</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-floating-ip-overlay-index-u" class="xref">Floating IP Overlay Index Use Case</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-bump-in-the-wire-use-case" class="xref">Bump-in-the-Wire Use Case</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4">
<p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>. <a href="#name-ip-vrf-to-ip-vrf-model" class="xref">IP-VRF-to-IP-VRF Model</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4.2.1">
<p id="section-toc.1-1.4.2.4.2.1.1"><a href="#section-4.4.1" class="xref">4.4.1</a>. <a href="#name-interface-less-ip-vrf-to-ip" class="xref">Interface-less IP-VRF-to-IP-VRF Model</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4.2.2">
<p id="section-toc.1-1.4.2.4.2.2.1"><a href="#section-4.4.2" class="xref">4.4.2</a>. <a href="#name-interface-ful-ip-vrf-to-ip-" class="xref">Interface-ful IP-VRF-to-IP-VRF with SBD IRB</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4.2.3">
<p id="section-toc.1-1.4.2.4.2.3.1"><a href="#section-4.4.3" class="xref">4.4.3</a>. <a href="#name-interface-ful-ip-vrf-to-ip-v" class="xref">Interface-ful IP-VRF-to-IP-VRF with Unnumbered SBD IRB</a></p>
</li>
</ul>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-references" class="xref">References</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>. <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>. <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#appendix-A" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#appendix-B" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#appendix-C" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="sect-1">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1"><span>[<a href="#RFC7365" class="xref">RFC7365</a>]</span> provides a framework for Data Center (DC) Network Virtualization
over Layer 3 and specifies that the Network Virtualization Edge (NVE) devices must provide Layer 2 and Layer 3 virtualized network services in
multi-tenant DCs. <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span> discusses the use of EVPN as the technology of
choice to provide Layer 2 or intra-subnet services in these DCs. This
document, along with <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span>, specifies the use of EVPN for Layer 3 or inter-subnet connectivity services.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">
<span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> defines some
fairly common inter-subnet forwarding scenarios where Tenant Systems (TSs) can exchange
packets with TSs located in remote subnets. In order to achieve this,
<span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> describes how Media Access
Control (MAC) and IPs encoded in TS RT-2 routes are not only used to populate MAC Virtual Routing and Forwarding (MAC-VRF) and
overlay Address Resolution Protocol (ARP) tables but also IP-VRF tables with the encoded TS host routes
(/32 or /128). In some cases, EVPN may advertise IP prefixes and therefore
provide aggregation in the IP-VRF tables, as opposed to propagating
individual host routes. This document complements the scenarios described
in <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> and defines
how EVPN may be used to advertise IP prefixes. Interoperability between
EVPN and Layer 3 Virtual Private Network (VPN) <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span> IP Prefix routes is out of the
scope of this document.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">
<a href="#sect-2.1" class="xref">Section 2.1</a> describes the
inter-subnet connectivity requirements in DCs. <a href="#sect-2.2" class="xref">Section 2.2</a> explains why a new EVPN route
type is required for IP prefix advertisements. Sections <a href="#sect-3" class="xref">3</a>, <a href="#sect-4" class="xref">4</a>, and <a href="#sect-5" class="xref">5</a> will
describe this route type and how it is used in some specific use
cases.<a href="#section-1-3" class="pilcrow">¶</a></p>
<div id="sect-1.1">
<section id="section-1.1">
<h3 id="name-terminology">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h3>
<p id="section-1.1-1">
The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>",
"<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>", "<span class="bcp14">MAY</span>", and
"<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as described in BCP
14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when, they appear in all
capitals, as shown here.<a href="#section-1.1-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-1.1-2">
<dt id="section-1.1-2.1">AC:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.2">Attachment Circuit<a href="#section-1.1-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.3">ARP:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.4">Address Resolution Protocol<a href="#section-1.1-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.5">BD:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.6">Broadcast Domain. As per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>, an EVI consists
of a single BD or multiple BDs. In case of VLAN-bundle and VLAN-based
service models (see <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>), a BD is equivalent to
an EVI. In case of a VLAN-aware bundle service model, an EVI contains
multiple BDs. Also, in this document, "BD" and "subnet" are equivalent
terms.<a href="#section-1.1-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.7">BD Route Target:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.8">Refers to the broadcast-domain-assigned Route Target <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span>. In case of a VLAN-aware
bundle service model, all the BD instances in the MAC-VRF share the
same Route Target.<a href="#section-1.1-2.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.9">BT:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.10">Bridge Table. The instantiation of a BD in a
MAC-VRF, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-1.1-2.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.11">CE:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.12">Customer Edge<a href="#section-1.1-2.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.13">DA:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.14">Destination Address<a href="#section-1.1-2.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.15">DGW:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.16">Data Center Gateway<a href="#section-1.1-2.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.17">Ethernet A-D Route:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.18">Ethernet Auto-Discovery (A-D)
route, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-1.1-2.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.19">Ethernet NVO Tunnel:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.20">Refers to Network Virtualization
Overlay tunnels with Ethernet payload. Examples of this type of
tunnel are VXLAN or GENEVE.<a href="#section-1.1-2.20" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.21">EVI:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.22">EVPN Instance spanning the NVE/PE devices that are
participating on that EVPN, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-1.1-2.22" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.23">EVPN:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.24">Ethernet VPN, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-1.1-2.24" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.25">GENEVE:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.26">Generic Network Virtualization Encapsulation, as per <span>[<a href="#RFC8926" class="xref">RFC8926</a>]</span>.<a href="#section-1.1-2.26" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.27">GRE:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.28">Generic Routing Encapsulation<a href="#section-1.1-2.28" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.29">GW IP:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.30">Gateway IP address<a href="#section-1.1-2.30" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.31">IPL:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.32">IP Prefix Length<a href="#section-1.1-2.32" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.33">IP NVO Tunnel:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.34">Refers to Network Virtualization
Overlay tunnels with IP payload (no MAC header in the payload).<a href="#section-1.1-2.34" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.35">IP-VRF:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.36">A Virtual Routing and Forwarding table for IP
routes on an NVE/PE. The IP routes could be populated by EVPN and
IP-VPN address families. An IP-VRF is also an instantiation of a Layer
3 VPN in an NVE/PE.<a href="#section-1.1-2.36" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.37">IRB:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.38">Integrated Routing and Bridging interface. It
connects an IP-VRF to a BD (or subnet).<a href="#section-1.1-2.38" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.39">MAC:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.40">Media Access Control<a href="#section-1.1-2.40" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.41">MAC-VRF:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.42">A Virtual Routing and Forwarding table for
MAC addresses on an NVE/PE, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>. A MAC-VRF is also an instantiation of an EVI in an
NVE/PE.<a href="#section-1.1-2.42" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.43">ML:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.44">MAC Address Length<a href="#section-1.1-2.44" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.45">ND:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.46">Neighbor Discovery<a href="#section-1.1-2.46" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.47">NVE:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.48">Network Virtualization Edge<a href="#section-1.1-2.48" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.49">NVO:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.50">Network Virtualization Overlay<a href="#section-1.1-2.50" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.51">PE:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.52">Provider Edge<a href="#section-1.1-2.52" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.53">RT-2:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.54">EVPN Route Type 2, i.e., MAC/IP Advertisement
route, as defined in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-1.1-2.54" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.55">RT-5:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.56">EVPN Route Type 5, i.e., IP Prefix route, as
defined in <a href="#sect-3" class="xref">Section 3</a>.<a href="#section-1.1-2.56" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.57">SBD:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.58">Supplementary Broadcast Domain. A BD that does not
have any ACs, only IRB interfaces, and is used to provide
connectivity among all the IP-VRFs of the tenant. The SBD is only
required in IP-VRF-to-IP-VRF use cases (see <a href="#sect-4.4" class="xref">Section 4.4</a>).<a href="#section-1.1-2.58" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.59">SN:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.60">Subnet<a href="#section-1.1-2.60" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.61">TS:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.62">Tenant System<a href="#section-1.1-2.62" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.63">VA:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.64">Virtual Appliance<a href="#section-1.1-2.64" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.65">VM:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.66">Virtual Machine<a href="#section-1.1-2.66" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.67">VNI:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.68">Virtual Network Identifier. As in <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>, the
term is used as a representation of a 24-bit NVO instance identifier,
with the understanding that "VNI" will refer to a VXLAN Network
Identifier in VXLAN, or a Virtual Network Identifier in GENEVE,
etc., unless it is stated otherwise.<a href="#section-1.1-2.68" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.69">VSID:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.70">Virtual Subnet Identifier<a href="#section-1.1-2.70" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.71">VTEP:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.72">VXLAN Termination End Point, as per <span>[<a href="#RFC7348" class="xref">RFC7348</a>]</span>.<a href="#section-1.1-2.72" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-2.73">VXLAN:</dt>
<dd style="margin-left: 5.0em" id="section-1.1-2.74">Virtual eXtensible Local Area Network, as per <span>[<a href="#RFC7348" class="xref">RFC7348</a>]</span>.<a href="#section-1.1-2.74" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-1.1-3">This document also assumes familiarity with the terminology of
<span>[<a href="#RFC7365" class="xref">RFC7365</a>]</span>, <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>, and <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>.<a href="#section-1.1-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-2">
<section id="section-2">
<h2 id="name-problem-statement">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-problem-statement" class="section-name selfRef">Problem Statement</a>
</h2>
<p id="section-2-1">
This section describes the inter-subnet connectivity requirements in
DCs and why a specific route type to advertise IP prefixes
is needed.<a href="#section-2-1" class="pilcrow">¶</a></p>
<div id="sect-2.1">
<section id="section-2.1">
<h3 id="name-inter-subnet-connectivity-r">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-inter-subnet-connectivity-r" class="section-name selfRef">Inter-Subnet Connectivity Requirements in Data Centers</a>
</h3>
<p id="section-2.1-1">
<span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> is used as the control plane for an NVO solution in DCs, where NVE devices can be located in hypervisors or
Top-of-Rack (ToR) switches, as described in <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">
The following considerations apply to TSs that are
physical or virtual systems identified by MAC (and possibly IP addresses)
and are connected to BDs by Attachment Circuits:<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-3.1">The Tenant Systems may be VMs that generate
traffic from their own MAC and IP.<a href="#section-2.1-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.1-3.2">
<p id="section-2.1-3.2.1">The Tenant Systems may be VA entities that
forward traffic to/from IP addresses of different end devices sitting
behind them.<a href="#section-2.1-3.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-3.2.2.1">These VAs can be firewalls, load balancers, NAT devices, other
appliances, or virtual gateways with virtual routing instances.<a href="#section-2.1-3.2.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.1-3.2.2.2">These VAs do not necessarily participate in dynamic routing
protocols and hence rely on the EVPN NVEs to advertise the routes on
their behalf.<a href="#section-2.1-3.2.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.1-3.2.2.3">In all these cases, the VA will forward traffic to other TSs using
its own source MAC, but the source IP will be the one associated with the
end device sitting behind the VA or a translated IP address (part of a public
NAT pool) if the VA is performing NAT.<a href="#section-2.1-3.2.2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.1-3.2.2.4">Note that the same IP address and endpoint could exist behind two
of these TSs. One example of this would be certain appliance
resiliency mechanisms, where a virtual IP or floating IP can be owned
by one of the two VAs running the resiliency protocol (the Master
VA). The Virtual Router Redundancy Protocol (VRRP) <span>[<a href="#RFC5798" class="xref">RFC5798</a>]</span> is one
particular example of this. Another example is multihomed subnets,
i.e., the same subnet is connected to two VAs.<a href="#section-2.1-3.2.2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.1-3.2.2.5">Although these VAs provide IP connectivity to VMs and the subnets
behind them, they do not always have their own IP interface connected
to the EVPN NVE; Layer 2 firewalls are examples of VAs not
supporting IP interfaces.<a href="#section-2.1-3.2.2.5" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-2.1-4"><a href="#fig-1" class="xref">Figure 1</a> illustrates some of the examples described above.<a href="#section-2.1-4" class="pilcrow">¶</a></p>
<span id="name-dc-inter-subnet-use-cases"></span><div id="fig-1">
<figure id="figure-1">
<div class="alignLeft art-text artwork" id="section-2.1-5.1">
<pre>
NVE1
+-----------+
TS1(VM)--| (BD-10) |-----+
M1/IP1 +-----------+ | DGW1
+---------+ +-------------+
| |----| (BD-10) |
SN1---+ NVE2 | | | IRB1\ |
| +-----------+ | | | (IP-VRF)|---+
SN2---TS2(VA)--| (BD-10) |-| | +-------------+ _|_
| M2/IP2 +-----------+ | VXLAN/ | ( )
IP4---+ <-+ | GENEVE | DGW2 ( WAN )
| | | +-------------+ (___)
vIP23 (floating) | |----| (BD-10) | |
| +---------+ | IRB2\ | |
SN1---+ <-+ NVE3 | | | | (IP-VRF)|---+
| M3/IP3 +-----------+ | | | +-------------+
SN3---TS3(VA)--| (BD-10) |---+ | |
| +-----------+ | |
IP5---+ | |
| |
NVE4 | | NVE5 +--SN5
+---------------------+ | | +-----------+ |
IP6------| (BD-1) | | +-| (BD-10) |--TS4(VA)--SN6
| \ | | +-----------+ |
| (IP-VRF) |--+ ESI4 +--SN7
| / \IRB3 |
|---| (BD-2) (BD-10) |
SN4| +---------------------+
Note:
ESI4 = Ethernet Segment Identifier 4
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-dc-inter-subnet-use-cases" class="selfRef">DC Inter-subnet Use Cases</a>
</figcaption></figure>
</div>
<p id="section-2.1-6">Where:<a href="#section-2.1-6" class="pilcrow">¶</a></p>
<p id="section-2.1-7">NVE1, NVE2, NVE3, NVE4, NVE5, DGW1, and DGW2 share the same BD for a
particular tenant. BD-10 is comprised of the collection of BD
instances defined in all the NVEs. All the hosts connected to BD-10
belong to the same IP subnet. The hosts connected to BD-10 are listed
below:<a href="#section-2.1-7" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-8.1">TS1 is a VM that generates/receives traffic to/from IP1, where IP1
belongs to the BD-10 subnet.<a href="#section-2.1-8.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.1-8.2">TS2 and TS3 are VAs that send/receive traffic
to/from the subnets and hosts sitting behind them (SN1, SN2, SN3, IP4, and
IP5). Their IP addresses (IP2 and IP3) belong to the BD-10 subnet, and they
can also generate/receive traffic. When these VAs receive packets destined
to their own MAC addresses (M2 and M3), they will route the packets to the
proper subnet or host. These VAs do not support routing protocols to
advertise the subnets connected to them and can move to a different server
and NVE when the cloud management system decides to do so. These VAs may
also support redundancy mechanisms for some subnets, similar to VRRP, where
a floating IP is owned by the Master VA and only the Master VA forwards
traffic to a given subnet. For example, vIP23 in <a href="#fig-1" class="xref">Figure 1</a> is a floating IP that
can be owned by TS2 or TS3 depending on which system is the Master. Only
the Master will forward traffic to SN1.<a href="#section-2.1-8.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.1-8.3">Integrated Routing and Bridging interfaces IRB1, IRB2, and IRB3 have
their own IP addresses that belong to the BD-10 subnet too. These IRB
interfaces connect the BD-10 subnet to Virtual Routing and Forwarding
(IP-VRF) instances that can route the traffic to other subnets for the same
tenant (within the DC or at the other end of the WAN).<a href="#section-2.1-8.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.1-8.4">TS4 is a Layer 2 VA that provides connectivity to subnets SN5, SN6, and
SN7 but does not have an IP address itself in the BD-10. TS4 is connected
to a port on NVE5 that is assigned to Ethernet Segment Identifier 4 (ESI4).<a href="#section-2.1-8.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.1-9">
For a BD to which an ingress NVE is attached, "Overlay Index" is
defined as an identifier that the ingress EVPN NVE requires in order
to forward packets to a subnet or host in a remote subnet. As an
example, vIP23 (<a href="#fig-1" class="xref">Figure 1</a>) is an Overlay Index that any NVE attached
to BD-10 needs to know in order to forward packets to SN1. The IRB3 IP
address is an Overlay Index required to get to SN4, and ESI4 is an Overlay Index needed to forward
traffic to SN5. In other words, the Overlay Index is a next hop in
the overlay address space that can be an IP address, a MAC address, or
an ESI. When advertised along with an IP prefix, the Overlay Index
requires a recursive resolution to find out the egress NVE to which the
EVPN packets need to be sent.<a href="#section-2.1-9" class="pilcrow">¶</a></p>
<p id="section-2.1-10">
All the DC use cases in <a href="#fig-1" class="xref">Figure 1</a> require inter-subnet
forwarding; therefore, the individual host routes and subnets:<a href="#section-2.1-10" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-2.1-11">
<dt>a)</dt>
<dd id="section-2.1-11.1">must be advertised from the NVEs (since VAs and VMs do not
participate in dynamic routing protocols) and<a href="#section-2.1-11.1" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>b)</dt>
<dd id="section-2.1-11.2">may be associated with an Overlay Index that can be a VA IP address,
a floating IP address, a MAC address, or an ESI. The Overlay Index is
further discussed in <a href="#sect-3.2" class="xref">Section 3.2</a>.<a href="#section-2.1-11.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="sect-2.2">
<section id="section-2.2">
<h3 id="name-the-need-for-the-evpn-ip-pr">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-the-need-for-the-evpn-ip-pr" class="section-name selfRef">The Need for the EVPN IP Prefix Route</a>
</h3>
<p id="section-2.2-1">
<span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> defines a MAC/IP Advertisement route (also
referred to as "RT-2") where a MAC
address can be advertised together with an IP address length and IP
address (IP). While a variable IP address length might have been used
to indicate the presence of an IP prefix in a route type 2, there are
several specific use cases in which using this route type to deliver
IP prefixes is not suitable.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2">
One example of such use cases is the "floating IP" example described
in <a href="#sect-2.1" class="xref">Section 2.1</a>. In this example, it is
necessary to decouple the advertisement of the prefixes from the advertisement of a MAC address
of either M2 or M3; otherwise, the solution gets highly inefficient
and does not scale.<a href="#section-2.2-2" class="pilcrow">¶</a></p>
<p id="section-2.2-3">
For example, if 1,000 prefixes are advertised from M2 (using RT-2)
and the floating IP owner changes from M2 to M3, 1,000 routes would
be withdrawn by M2 and readvertised by M3. However, if a
separate route type is used, 1,000 routes can be advertised as
associated with the floating IP address (vIP23), and only one RT-2 can be used for
advertising the ownership of the floating IP, i.e., vIP23 and M2 in
the route type 2. When the floating IP owner changes from M2 to M3, a
single RT-2 withdrawal/update is required to indicate the change. The
remote DGW will not change any of the 1,000 prefixes associated with
vIP23 but will only update the ARP resolution entry for vIP23 (now
pointing at M3).<a href="#section-2.2-3" class="pilcrow">¶</a></p>
<p id="section-2.2-4">
An EVPN route (type 5) for the advertisement of IP prefixes is
described in this document. This new route type has a differentiated
role from the RT-2 route and addresses the inter-subnet connectivity
scenarios for DCs (or NVO-based
networks in general) described in
this document. Using this new RT-5, an IP prefix may be advertised
along with an Overlay Index, which can be a GW IP address, a MAC, or an
ESI. The IP prefix may also be advertised without an Overlay Index, in which case the BGP next hop will
point at the egress NVE, Area Border Router (ABR), or ASBR, and the MAC in the EVPN Router's MAC
Extended Community will provide the inner MAC destination address to
be used. As discussed throughout the document, the EVPN RT-2 does not
meet the requirements for all the DC use cases; therefore, this EVPN
route type 5 is required.<a href="#section-2.2-4" class="pilcrow">¶</a></p>
<p id="section-2.2-5">
The EVPN route type 5 decouples the IP prefix advertisements from the
MAC/IP Advertisement routes in EVPN. Hence:<a href="#section-2.2-5" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-2.2-6">
<dt>a)</dt>
<dd id="section-2.2-6.1">The clean and clear advertisements of IPv4 or IPv6 prefixes
in a Network Layer Reachability Information (NLRI) message without
MAC addresses are allowed.<a href="#section-2.2-6.1" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>b)</dt>
<dd id="section-2.2-6.2">Since the route type is different from the MAC/IP Advertisement
route, the current procedures described in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> do not need to
be modified.<a href="#section-2.2-6.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>c)</dt>
<dd id="section-2.2-6.3">A flexible implementation is allowed where the prefix can be linked to
different types of Overlay/Underlay Indexes: overlay IP addresses,
overlay MAC addresses, overlay ESIs, underlay BGP next hops, etc.<a href="#section-2.2-6.3" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>d)</dt>
<dd id="section-2.2-6.4">An EVPN implementation not requiring IP prefixes can simply discard
them by looking at the route type value.<a href="#section-2.2-6.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-2.2-7">
The following sections describe how EVPN is extended with a route
type for the advertisement of IP prefixes and how this route is used
to address the inter-subnet connectivity requirements existing in the
DC.<a href="#section-2.2-7" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-3">
<section id="section-3">
<h2 id="name-the-bgp-evpn-ip-prefix-rout">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-the-bgp-evpn-ip-prefix-rout" class="section-name selfRef">The BGP EVPN IP Prefix Route</a>
</h2>
<p id="section-3-1"> The BGP EVPN NLRI as defined in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> is shown below:<a href="#section-3-1" class="pilcrow">¶</a></p>
<span id="name-bgp-evpn-nlri"></span><figure id="figure-2">
<div class="alignLeft art-text artwork" id="section-3-2.1">
<pre>
+-----------------------------------+
| Route Type (1 octet) |
+-----------------------------------+
| Length (1 octet) |
+-----------------------------------+
| Route Type specific (variable) |
+-----------------------------------+
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-bgp-evpn-nlri" class="selfRef">BGP EVPN NLRI</a>
</figcaption></figure>
<p id="section-3-3">
This document defines an additional route type (RT-5) in the IANA
"EVPN Route Types" registry <span>[<a href="#EVPNRouteTypes" class="xref">EVPNRouteTypes</a>]</span> to be used for the
advertisement of EVPN routes using IP prefixes:<a href="#section-3-3" class="pilcrow">¶</a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3-4.1">
<span class="break"></span><dl class="dlCompact dlParallel" id="section-3-4.1.1">
<dt id="section-3-4.1.1.1">Value:</dt>
<dd style="margin-left: 1.5em" id="section-3-4.1.1.2">5<a href="#section-3-4.1.1.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3-4.1.1.3">Description:</dt>
<dd style="margin-left: 1.5em" id="section-3-4.1.1.4">IP Prefix<a href="#section-3-4.1.1.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</li>
</ul>
<p id="section-3-5">
According to <span><a href="https://www.rfc-editor.org/rfc/rfc7606#section-5.4" class="relref">Section 5.4</a> of [<a href="#RFC7606" class="xref">RFC7606</a>]</span>, a node that doesn't recognize the
route type 5 (RT-5) will ignore it. Therefore, an NVE following this
document can still be attached to a BD where an NVE ignoring RT-5s is
attached. Regular procedures described in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> would apply in that case for both
NVEs. In case two or more NVEs are attached to different BDs of the same
tenant, they <span class="bcp14">MUST</span> support the RT-5 for the proper inter-subnet forwarding
operation of the tenant.<a href="#section-3-5" class="pilcrow">¶</a></p>
<p id="section-3-6">
The detailed encoding of this route and associated procedures are
described in the following sections.<a href="#section-3-6" class="pilcrow">¶</a></p>
<div id="sect-3.1">
<section id="section-3.1">
<h3 id="name-ip-prefix-route-encoding">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-ip-prefix-route-encoding" class="section-name selfRef">IP Prefix Route Encoding</a>
</h3>
<p id="section-3.1-1">
An IP Prefix route type for IPv4 has the Length field set to 34 and
consists of the following fields:<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<span id="name-evpn-ip-prefix-route-nlri-f"></span><figure id="figure-3">
<div class="alignLeft art-text artwork" id="section-3.1-2.1">
<pre>
+---------------------------------------+
| RD (8 octets) |
+---------------------------------------+
|Ethernet Segment Identifier (10 octets)|
+---------------------------------------+
| Ethernet Tag ID (4 octets) |
+---------------------------------------+
| IP Prefix Length (1 octet, 0 to 32) |
+---------------------------------------+
| IP Prefix (4 octets) |
+---------------------------------------+
| GW IP Address (4 octets) |
+---------------------------------------+
| MPLS Label (3 octets) |
+---------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-evpn-ip-prefix-route-nlri-f" class="selfRef">EVPN IP Prefix Route NLRI for IPv4</a>
</figcaption></figure>
<p id="section-3.1-3">
An IP Prefix route type for IPv6 has the Length field set to 58 and
consists of the following fields:<a href="#section-3.1-3" class="pilcrow">¶</a></p>
<span id="name-evpn-ip-prefix-route-nlri-fo"></span><figure id="figure-4">
<div class="alignLeft art-text artwork" id="section-3.1-4.1">
<pre>
+---------------------------------------+
| RD (8 octets) |
+---------------------------------------+
|Ethernet Segment Identifier (10 octets)|
+---------------------------------------+
| Ethernet Tag ID (4 octets) |
+---------------------------------------+
| IP Prefix Length (1 octet, 0 to 128) |
+---------------------------------------+
| IP Prefix (16 octets) |
+---------------------------------------+
| GW IP Address (16 octets) |
+---------------------------------------+
| MPLS Label (3 octets) |
+---------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-evpn-ip-prefix-route-nlri-fo" class="selfRef">EVPN IP Prefix Route NLRI for IPv6</a>
</figcaption></figure>
<p id="section-3.1-5">
Where:<a href="#section-3.1-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.1-6.1">The Length field of the BGP EVPN NLRI for an EVPN IP Prefix route
<span class="bcp14">MUST</span> be either 34 (if IPv4 addresses are carried) or 58 (if IPv6
addresses are carried). The IP prefix and gateway IP address <span class="bcp14">MUST</span>
be from the same IP address family.<a href="#section-3.1-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-6.2">The Route Distinguisher (RD) and Ethernet Tag ID <span class="bcp14">MUST</span> be used as
defined in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> and <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>. In particular, the RD is unique
per MAC-VRF (or IP-VRF). The MPLS Label field is set to either an
MPLS label or a VNI, as described in <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span> for other EVPN route
types.<a href="#section-3.1-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-6.3">The Ethernet Segment Identifier <span class="bcp14">MUST</span> be a non-zero 10-octet
identifier if the ESI is used as an Overlay Index (see the
definition of "Overlay Index" in <a href="#sect-3.2" class="xref">Section 3.2</a>). It <span class="bcp14">MUST</span> be all bytes zero otherwise. The ESI format is described in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-3.1-6.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-6.4">The IP prefix length can be set to a value between 0 and 32 (bits)
for IPv4 and between 0 and 128 for IPv6, and it specifies the number
of bits in the prefix. The value <span class="bcp14">MUST NOT</span> be greater than 128.<a href="#section-3.1-6.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-6.5">The IP prefix is a 4- or 16-octet field (IPv4 or IPv6).<a href="#section-3.1-6.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-6.6">The GW IP Address field is a 4- or 16-octet field (IPv4 or
IPv6) and will encode a valid IP address as an Overlay Index for
the IP prefixes. The GW IP field <span class="bcp14">MUST</span> be all bytes zero if it is
not used as an Overlay Index. Refer to <a href="#sect-3.2" class="xref">Section 3.2</a> for the
definition and use of the Overlay Index.<a href="#section-3.1-6.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-6.7">The MPLS Label field is encoded as 3 octets, where the high-order
20 bits contain the label value, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>. When sending,
the label value <span class="bcp14">SHOULD</span> be zero if a recursive resolution based on
an Overlay Index is used. If the received MPLS label value is zero,
the route <span class="bcp14">MUST</span> contain an Overlay Index, and the ingress NVE/PE <span class="bcp14">MUST</span>
perform a recursive resolution to find the egress NVE/PE. If the received
label is zero and the route does not contain an Overlay Index, it
<span class="bcp14">MUST</span> be "treat as withdraw" <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>.<a href="#section-3.1-6.7" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.1-7">
The RD, Ethernet Tag ID, IP prefix length, and IP prefix are part of
the route key used by BGP to compare routes. The rest of the fields
are not part of the route key.<a href="#section-3.1-7" class="pilcrow">¶</a></p>
<p id="section-3.1-8">
An IP Prefix route <span class="bcp14">MAY</span> be sent along with an EVPN Router's MAC Extended Community
(defined in <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span>) to
carry the MAC address that is used as the Overlay Index. Note that the MAC
address may be that of a TS.<a href="#section-3.1-8" class="pilcrow">¶</a></p>
<p id="section-3.1-9">
As described in <a href="#sect-3.2" class="xref">Section 3.2</a>, certain data combinations in a received
route would imply a treat-as-withdraw handling of the route
<span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>.<a href="#section-3.1-9" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-3.2">
<section id="section-3.2">
<h3 id="name-overlay-indexes-and-recursi">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-overlay-indexes-and-recursi" class="section-name selfRef">Overlay Indexes and Recursive Lookup Resolution</a>
</h3>
<p id="section-3.2-1">
RT-5 routes support recursive lookup resolution through the use of
Overlay Indexes as follows:<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2-2.1">An Overlay Index can be an ESI or IP address in the address space
of the tenant or MAC address, and it is used by an NVE as the
next hop for a given IP prefix. An Overlay Index always needs a
recursive route resolution on the NVE/PE that installs the RT-5 into
one of its IP-VRFs so that the NVE knows to which egress NVE/PE it
needs to forward the packets. It is important to note that recursive
resolution of the Overlay Index applies upon installation into an
IP-VRF and not upon BGP propagation (for instance, on an ASBR).
Also, as a result of the recursive resolution, the egress NVE/PE is
not necessarily the same NVE that originated the RT-5.<a href="#section-3.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2-2.2">The Overlay Index is indicated along with the RT-5 in the ESI
field, GW IP field, or EVPN Router's MAC Extended Community, depending on
whether the IP prefix next hop is an ESI, an IP address, or a MAC address
in the tenant space. The Overlay Index for a given IP prefix is set
by local policy at the NVE that originates an RT-5 for that IP
prefix (typically managed by the cloud management system).<a href="#section-3.2-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2-2.3">
<p id="section-3.2-2.3.1">In order to enable the recursive lookup resolution at the ingress
NVE, an NVE that is a possible egress NVE for a given Overlay Index
must originate a route advertising itself as the BGP next hop on the
path to the system denoted by the Overlay Index. For instance:<a href="#section-3.2-2.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2-2.3.2.1">If an NVE receives an RT-5 that specifies an Overlay Index, the
NVE cannot use the RT-5 in its IP-VRF unless (or until) it can
recursively resolve the Overlay Index.<a href="#section-3.2-2.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2-2.3.2.2">If the RT-5 specifies an ESI as the Overlay Index, a recursive
resolution can only be done if the NVE has received and installed an
RT-1 (auto-discovery per EVI) route specifying that ESI.<a href="#section-3.2-2.3.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2-2.3.2.3">If the RT-5 specifies a GW IP address as the Overlay Index,
a recursive resolution can only be done if the NVE has received and
installed an RT-2 (MAC/IP Advertisement route) specifying that IP address in the
IP Address field of its NLRI.<a href="#section-3.2-2.3.2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2-2.3.2.4">If the RT-5 specifies a MAC address as the Overlay Index,
a recursive resolution can only be done if the NVE has received and
installed an RT-2 (MAC/IP Advertisement route) specifying that MAC address in the
MAC Address field of its NLRI.<a href="#section-3.2-2.3.2.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2-2.3.3">Note that the RT-1 or RT-2 routes needed for the
recursive resolution may arrive before or after the given RT-5
route.<a href="#section-3.2-2.3.3" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-3.2-2.4">Irrespective of the recursive resolution, if there is no IGP or BGP
route to the BGP next hop of an RT-5, BGP <span class="bcp14">MUST NOT</span> install the RT-5
even if the Overlay Index can be resolved.<a href="#section-3.2-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2-2.5">The ESI and GW IP fields may both be zero at the same time.
However, they <span class="bcp14">MUST NOT</span> both be non-zero at the same time. A route
containing a non-zero GW IP and a non-zero ESI (at the same time)
<span class="bcp14">SHOULD</span> be treat as withdraw <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>.<a href="#section-3.2-2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2-2.6">If either the ESI or the GW IP are non-zero, then the non-zero one is
the Overlay Index, regardless of whether the EVPN Router's MAC Extended
Community is present or the value of the label. In case the GW IP is
the Overlay Index (hence, ESI is zero), the EVPN Router's MAC Extended
Community is ignored if present.<a href="#section-3.2-2.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2-2.7">A route where ESI, GW IP, MAC, and Label are all zero at the same
time <span class="bcp14">SHOULD</span> be treat as withdraw.<a href="#section-3.2-2.7" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2-3">
The indirection provided by the Overlay Index and its recursive
lookup resolution is required to achieve fast convergence in case of
a failure of the object represented by the Overlay Index (see the
example described in <a href="#sect-2.2" class="xref">Section 2.2</a>).<a href="#section-3.2-3" class="pilcrow">¶</a></p>
<p id="section-3.2-4">
<a href="#fields_overlay_table" class="xref">Table 1</a> shows the different RT-5 field combinations allowed by this
specification and what Overlay Index must be used by the receiving
NVE/PE in each case. Cases where there is no Overlay Index are
indicated as "None" in <a href="#fields_overlay_table" class="xref">Table 1</a>. If there is no Overlay Index, the
receiving NVE/PE will not perform any recursive resolution, and the
actual next hop is given by the RT-5's BGP next hop.<a href="#section-3.2-4" class="pilcrow">¶</a></p>
<span id="name-rt-5-fields-and-indicated-o"></span><div id="fields_overlay_table">
<table class="center" id="table-1">
<caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-rt-5-fields-and-indicated-o" class="selfRef">RT-5 Fields and Indicated Overlay Index</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">ESI</th>
<th class="text-left" rowspan="1" colspan="1">GW IP</th>
<th class="text-left" rowspan="1" colspan="1">MAC*</th>
<th class="text-left" rowspan="1" colspan="1">Label</th>
<th class="text-left" rowspan="1" colspan="1">Overlay Index</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Don't Care</td>
<td class="text-left" rowspan="1" colspan="1">ESI</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
<td class="text-left" rowspan="1" colspan="1">Don't Care</td>
<td class="text-left" rowspan="1" colspan="1">ESI</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Don't Care</td>
<td class="text-left" rowspan="1" colspan="1">GW IP</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">MAC</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
<td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
<td class="text-left" rowspan="1" colspan="1">MAC or None**</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Zero</td>
<td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
<td class="text-left" rowspan="1" colspan="1">None***</td>
</tr>
</tbody>
</table>
</div>
<p id="section-3.2-6">Table Notes:<a href="#section-3.2-6" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.2-7">
<dt id="section-3.2-7.1">*</dt>
<dd style="margin-left: 3.0em" id="section-3.2-7.2"> MAC with "Zero" value means no EVPN Router's MAC Extended Community is
present along with the RT-5. "Non-Zero" indicates that the extended
community is present and carries a valid MAC address. The encoding of
a MAC address <span class="bcp14">MUST</span> be the 6-octet MAC address specified by <span>[<a href="#IEEE-802.1Q" class="xref">IEEE-802.1Q</a>]</span>. Examples
of invalid MAC addresses are broadcast or multicast MAC
addresses. The route <span class="bcp14">MUST</span> be treat as withdraw in case of an invalid
MAC address. The presence of the EVPN Router's MAC Extended Community
alone is not enough to indicate the use of the MAC address as the
Overlay Index since the extended community can be used for other
purposes.<a href="#section-3.2-7.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.2-7.3">**</dt>
<dd style="margin-left: 3.0em" id="section-3.2-7.4">In this case, the Overlay Index may be the RT-5's MAC address or
"None", depending on the local policy of the receiving NVE/PE. Note
that the advertising NVE/PE that sets the Overlay Index <span class="bcp14">SHOULD</span>
advertise an RT-2 for the MAC Overlay Index if there are receiving
NVE/PEs configured to use the MAC as the Overlay Index. This case in
<a href="#fields_overlay_table" class="xref">Table 1</a> is used in the IP-VRF-to-IP-VRF
implementations described in Sections <a href="#sect-4.4.1" class="xref">4.4.1</a> and <a href="#sect-4.4.3" class="xref">4.4.3</a>. The support of a MAC Overlay Index in this model is
<span class="bcp14">OPTIONAL</span>.<a href="#section-3.2-7.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.2-7.5">***</dt>
<dd style="margin-left: 3.0em" id="section-3.2-7.6">The Overlay Index is "None". This is a special case used for
IP-VRF-to-IP-VRF where the NVE/PEs are connected by IP NVO tunnels as
opposed to Ethernet NVO tunnels.<a href="#section-3.2-7.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.2-8">
If the combination of ESI, GW IP, MAC, and Label in the receiving RT-5
is different than the combinations shown in <a href="#fields_overlay_table" class="xref">Table 1</a>, the router will
process the route as per the rules described at the beginning of this
section (<a href="#sect-3.2" class="xref">Section 3.2</a>).<a href="#section-3.2-8" class="pilcrow">¶</a></p>
<p id="section-3.2-9">
<a href="#use_overlay_table" class="xref">Table 2</a> shows the different inter-subnet use cases described in this
document and the corresponding coding of the Overlay Index in the
route type 5 (RT-5).<a href="#section-3.2-9" class="pilcrow">¶</a></p>
<span id="name-use-cases-and-overlay-index"></span><div id="use_overlay_table">
<table class="center" id="table-2">
<caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-use-cases-and-overlay-index" class="selfRef">Use Cases and Overlay Indexes for Recursive Resolution</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Section</th>
<th class="text-left" rowspan="1" colspan="1">Use Case</th>
<th class="text-left" rowspan="1" colspan="1">Overlay Index in the RT-5</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<a href="#sect-4.1" class="xref">4.1</a>
</td>
<td class="text-left" rowspan="1" colspan="1">TS IP address</td>
<td class="text-left" rowspan="1" colspan="1">GW IP</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<a href="#sect-4.2" class="xref">4.2</a>
</td>
<td class="text-left" rowspan="1" colspan="1">Floating IP address</td>
<td class="text-left" rowspan="1" colspan="1">GW IP</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<a href="#sect-4.3" class="xref">4.3</a>
</td>
<td class="text-left" rowspan="1" colspan="1">"Bump-in-the-wire"</td>
<td class="text-left" rowspan="1" colspan="1">ESI or MAC</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">
<a href="#sect-4.4" class="xref">4.4</a>
</td>
<td class="text-left" rowspan="1" colspan="1">IP-VRF-to-IP-VRF</td>
<td class="text-left" rowspan="1" colspan="1">GW IP, MAC, or None</td>
</tr>
</tbody>
</table>
</div>
<p id="section-3.2-11">
The above use cases are representative of the different Overlay
Indexes supported by the RT-5 (GW IP, ESI, MAC, or None).<a href="#section-3.2-11" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-4">
<section id="section-4">
<h2 id="name-overlay-index-use-cases">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-overlay-index-use-cases" class="section-name selfRef">Overlay Index Use Cases</a>
</h2>
<p id="section-4-1"> This
section describes some use cases for the Overlay Index types used with
the IP Prefix route.
Although the examples use IPv4 prefixes and
subnets, the descriptions of the RT-5 are valid for the same cases
with IPv6, except that IP Prefixes, IPL, and GW IP are replaced by the
corresponding IPv6 values.<a href="#section-4-1" class="pilcrow">¶</a></p>
<div id="sect-4.1">
<section id="section-4.1">
<h3 id="name-ts-ip-address-overlay-index">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-ts-ip-address-overlay-index" class="section-name selfRef">TS IP Address Overlay Index Use Case</a>
</h3>
<p id="section-4.1-1"><a href="#fig-2" class="xref">Figure 5</a> illustrates an example of inter-subnet forwarding for
subnets sitting behind VAs (on TS2 and TS3).<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<span id="name-ts-ip-address-use-case"></span><div id="fig-2">
<figure id="figure-5">
<div class="alignLeft art-text artwork" id="section-4.1-2.1">
<pre>
IP4---+ NVE2 DGW1
| +-----------+ +---------+ +-------------+
SN2---TS2(VA)--| (BD-10) |-| |----| (BD-10) |
| M2/IP2 +-----------+ | | | IRB1\ |
-+---+ | | | (IP-VRF)|---+
| | | +-------------+ _|_
SN1 | VXLAN/ | ( )
| | GENEVE | DGW2 ( WAN )
-+---+ NVE3 | | +-------------+ (___)
| M3/IP3 +-----------+ | |----| (BD-10) | |
SN3---TS3(VA)--| (BD-10) |-| | | IRB2\ | |
| +-----------+ +---------+ | (IP-VRF)|---+
IP5---+ +-------------+
</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-ts-ip-address-use-case" class="selfRef">TS IP Address Use Case</a>
</figcaption></figure>
</div>
<p id="section-4.1-3">
An example of inter-subnet forwarding between subnet SN1, which uses
a 24-bit IP prefix (written as SN1/24 in the future), and a subnet
sitting in the WAN is described below. NVE2, NVE3, DGW1, and DGW2 are
running BGP EVPN. TS2 and TS3 do not participate in dynamic routing
protocols, and they only have a static route to forward the traffic
to the WAN. SN1/24 is dual-homed to NVE2 and NVE3.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1-4">
In this case, a GW IP is used as an Overlay Index. Although a
different Overlay Index type could have been used, this use case
assumes that the operator knows the VA's IP addresses beforehand,
whereas the VA's MAC address is unknown and the VA's ESI is zero.
Because of this, the GW IP is the suitable Overlay Index to be used
with the RT-5s. The NVEs know the GW IP to be used for a given prefix
by policy.<a href="#section-4.1-4" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.1-5">
<dt>(1)</dt>
<dd id="section-4.1-5.1">
<p id="section-4.1-5.1.1">NVE2 advertises the following BGP routes on behalf of TS2:<a href="#section-4.1-5.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.1.2.1">Route type 2 (MAC/IP Advertisement route) containing: ML = 48 (MAC address length),
M = M2 (MAC address), IPL = 32 (IP prefix length), IP = IP2, and BGP
Encapsulation Extended Community <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span> with the corresponding tunnel type. The
MAC and IP addresses may be learned via ARP snooping.<a href="#section-4.1-5.1.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1-5.1.2.2">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
ESI = 0, and GW
IP address = IP2. The prefix and GW IP are learned by policy.<a href="#section-4.1-5.1.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.1-5.2">
<p id="section-4.1-5.2.1">Similarly, NVE3 advertises the following BGP routes on behalf of TS3:<a href="#section-4.1-5.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.2.2.1">Route type 2 (MAC/IP Advertisement route) containing: ML = 48, M = M3, IPL = 32, IP = IP3
(and BGP Encapsulation Extended Community).<a href="#section-4.1-5.2.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1-5.2.2.2">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
ESI = 0, and GW IP address = IP3.<a href="#section-4.1-5.2.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.1-5.3">
<p id="section-4.1-5.3.1">DGW1 and DGW2 import both received routes based on the Route Targets:<a href="#section-4.1-5.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.3.2.1">Based on the BD-10 Route Target in DGW1 and DGW2, the MAC/IP Advertisement route
is imported, and M2 is added to the BD-10 along with its corresponding
tunnel information. For instance, if VXLAN is used, the VTEP will be
derived from the MAC/IP Advertisement route BGP next hop and VNI from the MPLS Label1
field. M2/IP2 is added to the ARP table. Similarly, M3 is added to
BD-10, and M3/IP3 is added to the ARP table.<a href="#section-4.1-5.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1-5.3.2.2">Based on the BD-10 Route Target in DGW1 and DGW2, the IP Prefix
route is also imported, and SN1/24 is added to the IP-VRF with Overlay
Index IP2 pointing at the local BD-10. In this example, it is assumed
that the RT-5 from NVE2 is preferred over the RT-5 from NVE3. If both
routes were equally preferable and ECMP enabled, SN1/24 would also be
added to the routing table with Overlay Index IP3.<a href="#section-4.1-5.3.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.1-5.4">
<p id="section-4.1-5.4.1"> When DGW1 receives a packet from the WAN with destination IPx,
where IPx belongs to SN1/24:<a href="#section-4.1-5.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.4.2.1">A destination IP lookup is performed on the DGW1 IP-VRF table, and Overlay Index = IP2 is found. Since IP2 is an Overlay Index, a
recursive route resolution is required for IP2.<a href="#section-4.1-5.4.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1-5.4.2.2">IP2 is resolved to M2 in the ARP table, and M2 is resolved to the
tunnel information given by the BD FIB (e.g., remote VTEP and VNI for
the VXLAN case).<a href="#section-4.1-5.4.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1-5.4.2.3">
<p id="section-4.1-5.4.2.3.1">The IP packet destined to IPx is encapsulated with:<a href="#section-4.1-5.4.2.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.4.2.3.2.1">Inner source MAC = IRB1 MAC.<a href="#section-4.1-5.4.2.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1-5.4.2.3.2.2">Inner destination MAC = M2.<a href="#section-4.1-5.4.2.3.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1-5.4.2.3.2.3">Tunnel information provided by the BD (VNI, VTEP IPs, and MACs for
the VXLAN case).<a href="#section-4.1-5.4.2.3.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(5)</dt>
<dd id="section-4.1-5.5">
<p id="section-4.1-5.5.1">When the packet arrives at NVE2:<a href="#section-4.1-5.5.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.5.2.1">Based on the tunnel information (VNI for the VXLAN case), the BD-10
context is identified for a MAC lookup.<a href="#section-4.1-5.5.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1-5.5.2.2">Encapsulation is stripped off and, based on a MAC lookup
(assuming MAC forwarding on the egress NVE), the packet is
forwarded to TS2, where it will be properly routed.<a href="#section-4.1-5.5.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(6)</dt>
<dd id="section-4.1-5.6">Should TS2 move from NVE2 to NVE3, MAC Mobility procedures will be applied
to the MAC route M2/IP2, as defined in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>. Route type 5
prefixes are not subject to MAC Mobility procedures; hence, no changes in the
DGW IP-VRF table will occur for TS2 mobility -- i.e., all the prefixes will still
be pointing at IP2 as the Overlay Index. There is an indirection for, e.g., SN1/24,
which still points at Overlay Index IP2 in the routing table, but IP2 will be
simply resolved to a different tunnel based on the outcome of the MAC
Mobility procedures for the MAC/IP Advertisement route M2/IP2.<a href="#section-4.1-5.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.1-6">
Note that in the opposite direction, TS2 will send traffic based on
its static-route next-hop information (IRB1 and/or IRB2), and regular
EVPN procedures will be applied.<a href="#section-4.1-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-4.2">
<section id="section-4.2">
<h3 id="name-floating-ip-overlay-index-u">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-floating-ip-overlay-index-u" class="section-name selfRef">Floating IP Overlay Index Use Case</a>
</h3>
<p id="section-4.2-1">
Sometimes TSs work in active/standby mode where an
upstream floating IP owned by the active TS is used as the
Overlay Index to get to some subnets behind the TS. This redundancy mode,
already introduced in Sections <a href="#sect-2.1" class="xref">2.1</a> and <a href="#sect-2.2" class="xref">2.2</a>, is illustrated in <a href="#fig-3" class="xref">Figure 6</a>.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<span id="name-floating-ip-overlay-index-f"></span><div id="fig-3">
<figure id="figure-6">
<div class="alignLeft art-text artwork" id="section-4.2-2.1">
<pre>
NVE2 DGW1
+-----------+ +---------+ +-------------+
+---TS2(VA)--| (BD-10) |-| |----| (BD-10) |
| M2/IP2 +-----------+ | | | IRB1\ |
| <-+ | | | (IP-VRF)|---+
| | | | +-------------+ _|_
SN1 vIP23 (floating) | VXLAN/ | ( )
| | | GENEVE | DGW2 ( WAN )
| <-+ NVE3 | | +-------------+ (___)
| M3/IP3 +-----------+ | |----| (BD-10) | |
+---TS3(VA)--| (BD-10) |-| | | IRB2\ | |
+-----------+ +---------+ | (IP-VRF)|---+
+-------------+
</pre>
</div>
<figcaption><a href="#figure-6" class="selfRef">Figure 6</a>:
<a href="#name-floating-ip-overlay-index-f" class="selfRef">Floating IP Overlay Index for Redundant TS</a>
</figcaption></figure>
</div>
<p id="section-4.2-3">
In this use case, a GW IP is used as an Overlay Index for the same
reasons as in <a href="#sect-4.1" class="xref">Section 4.1</a>. However, this GW IP is a floating IP that belongs
to the active TS. Assuming TS2 is the active TS and owns vIP23:<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.2-4">
<dt>(1)</dt>
<dd id="section-4.2-4.1">
<p id="section-4.2-4.1.1">NVE2 advertises the following BGP routes for TS2:<a href="#section-4.2-4.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.1.2.1">Route type 2 (MAC/IP Advertisement route) containing: ML = 48, M = M2, IPL = 32, and
IP = vIP23 (as well as BGP Encapsulation Extended Community). The MAC and IP
addresses may be learned via ARP snooping.<a href="#section-4.2-4.1.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-4.1.2.2">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
ESI = 0, and GW
IP address = vIP23. The prefix and GW IP are learned by policy.<a href="#section-4.2-4.1.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.2-4.2">
<p id="section-4.2-4.2.1">NVE3 advertises the following BGP route for TS3 (it does not advertise an
RT-2 for M3/vIP23):<a href="#section-4.2-4.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.2.2.1">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
ESI = 0, and GW
IP address = vIP23. The prefix and GW IP are learned by policy.<a href="#section-4.2-4.2.2.1" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.2-4.3">
<p id="section-4.2-4.3.1">DGW1 and DGW2 import both received routes based on the Route Target:<a href="#section-4.2-4.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.3.2.1">M2 is added to the BD-10 FIB along with its corresponding tunnel
information. For the VXLAN use case, the VTEP will be derived from the
MAC/IP Advertisement route BGP next hop and VNI from the VNI field. M2/vIP23 is added
to the ARP table.<a href="#section-4.2-4.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-4.3.2.2">SN1/24 is added to the IP-VRF in DGW1 and DGW2 with Overlay Index
vIP23 pointing at M2 in the local BD-10.<a href="#section-4.2-4.3.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.2-4.4">
<p id="section-4.2-4.4.1">When DGW1 receives a packet from the WAN with destination IPx, where IPx
belongs to SN1/24:<a href="#section-4.2-4.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.4.2.1">A destination IP lookup is performed on the DGW1 IP-VRF table,
and Overlay Index = vIP23 is found. Since vIP23 is an Overlay Index, a
recursive route resolution for vIP23 is required.<a href="#section-4.2-4.4.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-4.4.2.2">vIP23 is resolved to M2 in the ARP table, and M2 is resolved to the
tunnel information given by the BD (remote VTEP and VNI for the VXLAN
case).<a href="#section-4.2-4.4.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-4.4.2.3">
<p id="section-4.2-4.4.2.3.1">The IP packet destined to IPx is encapsulated with:<a href="#section-4.2-4.4.2.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.4.2.3.2.1">Inner source MAC = IRB1 MAC.<a href="#section-4.2-4.4.2.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-4.4.2.3.2.2">Inner destination MAC = M2.<a href="#section-4.2-4.4.2.3.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-4.4.2.3.2.3">Tunnel information provided by the BD FIB (VNI, VTEP IPs, and MACs
for the VXLAN case).<a href="#section-4.2-4.4.2.3.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(5)</dt>
<dd id="section-4.2-4.5">
<p id="section-4.2-4.5.1">When the packet arrives at NVE2:<a href="#section-4.2-4.5.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.5.2.1">Based on the tunnel information (VNI for the VXLAN case), the BD-10
context is identified for a MAC lookup.<a href="#section-4.2-4.5.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-4.5.2.2">Encapsulation is stripped off and, based on a MAC lookup (assuming
MAC forwarding on the egress NVE), the packet is forwarded to TS2,
where it will be properly routed.<a href="#section-4.2-4.5.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(6)</dt>
<dd id="section-4.2-4.6">When the redundancy protocol running between TS2 and TS3 appoints TS3 as
the new active TS for SN1, TS3 will now own the floating vIP23 and will signal
this new ownership using a gratuitous ARP REPLY message (explained in <span>[<a href="#RFC5227" class="xref">RFC5227</a>]</span>) or similar. Upon receiving the new owner's notification,
NVE3 will issue a route type 2 for M3/vIP23, and NVE2 will withdraw the RT-2
for M2/vIP23. DGW1 and DGW2 will update their ARP tables with the new MAC
resolving the floating IP. No changes are made in the IP-VRF table.<a href="#section-4.2-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="sect-4.3">
<section id="section-4.3">
<h3 id="name-bump-in-the-wire-use-case">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-bump-in-the-wire-use-case" class="section-name selfRef">Bump-in-the-Wire Use Case</a>
</h3>
<p id="section-4.3-1">
<a href="#fig-4" class="xref">Figure 7</a> illustrates an example of inter-subnet forwarding for an IP
Prefix route that carries subnet SN1. In this use case, TS2 and TS3
are Layer 2 VA devices without any IP addresses that can be included as
an Overlay Index in the GW IP field of the IP Prefix route. Their MAC
addresses are M2 and M3, respectively, and are connected to BD-10. Note
that IRB1 and IRB2 (in DGW1 and DGW2, respectively) have IP addresses
in a subnet different than SN1.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<span id="name-bump-in-the-wire-use-case-2"></span><div id="fig-4">
<figure id="figure-7">
<div class="alignLeft art-text artwork" id="section-4.3-2.1">
<pre>
NVE2 DGW1
M2 +-----------+ +---------+ +-------------+
+---TS2(VA)--| (BD-10) |-| |----| (BD-10) |
| ESI23 +-----------+ | | | IRB1\ |
| + | | | (IP-VRF)|---+
| | | | +-------------+ _|_
SN1 | | VXLAN/ | ( )
| | | GENEVE | DGW2 ( WAN )
| + NVE3 | | +-------------+ (___)
| ESI23 +-----------+ | |----| (BD-10) | |
+---TS3(VA)--| (BD-10) |-| | | IRB2\ | |
M3 +-----------+ +---------+ | (IP-VRF)|---+
+-------------+
</pre>
</div>
<figcaption><a href="#figure-7" class="selfRef">Figure 7</a>:
<a href="#name-bump-in-the-wire-use-case-2" class="selfRef">Bump-in-the-Wire Use Case</a>
</figcaption></figure>
</div>
<p id="section-4.3-3">
Since TS2 and TS3 cannot participate in any dynamic routing
protocol and neither has an IP address assigned, there are two potential
Overlay Index types that can be used when advertising SN1:<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.3-4">
<dt>a)</dt>
<dd id="section-4.3-4.1">an ESI, i.e., ESI23, that can be provisioned on the attachment
ports of NVE2 and NVE3, as shown in <a href="#fig-4" class="xref">Figure 7</a> or<a href="#section-4.3-4.1" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>b)</dt>
<dd id="section-4.3-4.2">the VA's MAC address, which can be added to NVE2 and NVE3 by
policy.<a href="#section-4.3-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.3-5">
The advantage of using an ESI as the Overlay Index as opposed to the VA's MAC
address is that the forwarding to the egress NVE can be done purely based
on the state of the AC in the Ethernet segment (notified by the Ethernet A-D per EVI
route), and all the EVPN multihoming redundancy mechanisms can be
reused. For instance, the mass withdrawal mechanism described in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> for fast
failure detection and propagation can be used. It is assumed per this section that
an ESI Overlay Index is used in this use case, but this use case does not preclude the
use of the VA's MAC address as an Overlay Index. If a MAC is used as
the Overlay Index, the control plane must follow the procedures described in
<a href="#sect-4.4.3" class="xref">Section 4.4.3</a>.<a href="#section-4.3-5" class="pilcrow">¶</a></p>
<p id="section-4.3-6">
The model supports VA redundancy in a similar way to the one
described in <a href="#sect-4.2" class="xref">Section 4.2</a> for the floating IP Overlay Index use case,
except that it uses the EVPN Ethernet A-D per EVI route instead of
the MAC advertisement route to advertise the location of the Overlay
Index. The procedure is explained below:<a href="#section-4.3-6" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.3-7">
<dt>(1)</dt>
<dd id="section-4.3-7.1">
<p id="section-4.3-7.1.1"> Assuming TS2 is the active TS in ESI23, NVE2 advertises the
following BGP routes:<a href="#section-4.3-7.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.1.2.1">Route type 1 (Ethernet A-D route for BD-10) containing: ESI = ESI23 and
the corresponding tunnel information (VNI field), as well as the BGP
Encapsulation Extended Community as per <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>.<a href="#section-4.3-7.1.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.3-7.1.2.2">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
ESI = ESI23, and GW IP address = 0. The EVPN Router's MAC Extended Community defined in
<span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> is added and carries the MAC address (M2)
associated with the TS behind which SN1 sits. M2 may be learned by policy; however, the
MAC in the Extended Community is preferred if sent with the route.<a href="#section-4.3-7.1.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.3-7.2">
<p id="section-4.3-7.2.1">NVE3 advertises the following BGP route for TS3 (no AD per EVI route is
advertised):<a href="#section-4.3-7.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.2.2.1">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
ESI = 23, and GW IP address = 0. The EVPN Router's MAC Extended Community is added and
carries the MAC address (M3) associated with the TS behind which SN1
sits. M3 may be learned by policy; however, the MAC in the Extended
Community is preferred if sent with the route.<a href="#section-4.3-7.2.2.1" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.3-7.3">
<p id="section-4.3-7.3.1">DGW1 and DGW2 import the received routes based on the Route Target:<a href="#section-4.3-7.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.3.2.1">The tunnel information to get to ESI23 is installed in DGW1 and
DGW2. For the VXLAN use case, the VTEP will be derived from the
Ethernet A-D route BGP next hop and VNI from the VNI/VSID field (see
<span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>).<a href="#section-4.3-7.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.3-7.3.2.2">The RT-5 coming from the NVE that advertised the RT-1 is
selected, and SN1/24 is added to the IP-VRF in DGW1 and DGW2 with Overlay Index
ESI23 and MAC = M2.<a href="#section-4.3-7.3.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.3-7.4">
<p id="section-4.3-7.4.1">When DGW1 receives a packet from the WAN with destination IPx, where IPx
belongs to SN1/24:<a href="#section-4.3-7.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.4.2.1">A destination IP lookup is performed on the DGW1 IP-VRF table, and Overlay Index = ESI23 is found. Since ESI23 is an Overlay
Index, a recursive route resolution is required to find the egress NVE
where ESI23 resides.<a href="#section-4.3-7.4.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.3-7.4.2.2">
<p id="section-4.3-7.4.2.2.1">The IP packet destined to IPx is encapsulated with:<a href="#section-4.3-7.4.2.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.4.2.2.2.1">Inner source MAC = IRB1 MAC.<a href="#section-4.3-7.4.2.2.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.3-7.4.2.2.2.2">Inner destination MAC = M2 (this MAC will be obtained from the
EVPN Router's MAC Extended Community received along with the RT-5 for
SN1). Note that the EVPN Router's MAC Extended Community is used in this
case to carry the TS's MAC address, as opposed to the MAC
address of the NVE/PE.<a href="#section-4.3-7.4.2.2.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.3-7.4.2.2.2.3">Tunnel information for the NVO tunnel is provided by the Ethernet
A-D route per EVI for ESI23 (VNI and VTEP IP for the VXLAN
case).<a href="#section-4.3-7.4.2.2.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(5)</dt>
<dd id="section-4.3-7.5">
<p id="section-4.3-7.5.1">When the packet arrives at NVE2:<a href="#section-4.3-7.5.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.5.2.1">Based on the tunnel demultiplexer information (VNI for the VXLAN
case), the BD-10 context is identified for a MAC lookup (assuming a MAC-based disposition model <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>), or the VNI may directly identify
the egress interface (for an MPLS-based disposition model, which in this
context is a VNI-based disposition model).<a href="#section-4.3-7.5.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.3-7.5.2.2">Encapsulation is stripped off and, based on a MAC lookup (assuming MAC
forwarding on the egress NVE) or a VNI lookup (in case of VNI
forwarding), the packet is forwarded to TS2, where it will be forwarded
to SN1.<a href="#section-4.3-7.5.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(6)</dt>
<dd id="section-4.3-7.6">If the redundancy protocol running between TS2 and TS3 follows an
active/standby model and there is a failure, TS3 is appointed as the new active
TS for SN1. TS3 will now own the connectivity to SN1 and will signal this new
ownership. Upon receiving the new owner's notification, NVE3's AC will become
active and issue a route type 1 for ESI23, whereas NVE2 will withdraw its
Ethernet A-D route for ESI23. DGW1 and DGW2 will update their tunnel
information to resolve ESI23. The inner destination MAC will be changed to
M3.<a href="#section-4.3-7.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="sect-4.4">
<section id="section-4.4">
<h3 id="name-ip-vrf-to-ip-vrf-model">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-ip-vrf-to-ip-vrf-model" class="section-name selfRef">IP-VRF-to-IP-VRF Model</a>
</h3>
<p id="section-4.4-1">
This use case is similar to the scenario described in <span><a href="https://www.rfc-editor.org/rfc/rfc9135#section-9.1" class="relref">Section 9.1</a> of [<a href="#RFC9135" class="xref">RFC9135</a>]</span>; however, the new
requirement here is the advertisement of IP prefixes as opposed to
only host routes.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<p id="section-4.4-2">
In the examples described in Sections <a href="#sect-4.1" class="xref">4.1</a>, <a href="#sect-4.2" class="xref">4.2</a>, and <a href="#sect-4.3" class="xref">4.3</a>, the BD
instance can connect IRB interfaces and any other Tenant Systems
connected to it. EVPN provides connectivity for:<a href="#section-4.4-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.4-3">
<li id="section-4.4-3.1">
<div id="step1">Traffic destined to the IRB or TS IP interfaces, as well as<a href="#step1" class="pilcrow">¶</a>
</div>
</li>
<li id="section-4.4-3.2">
<div id="step2">Traffic destined to IP subnets sitting behind the TS, e.g., SN1
or SN2.<a href="#step2" class="pilcrow">¶</a>
</div>
</li>
</ol>
<p id="section-4.4-4">
In order to provide connectivity for <a href="#step1" class="xref">(1)</a>, MAC/IP Advertisement routes (RT-2) are
needed so that IRB or TS MACs and IPs can be distributed.
Connectivity type <a href="#step2" class="xref">(2)</a> is accomplished by the exchange of IP Prefix
routes (RT-5) for IPs and subnets sitting behind certain Overlay
Indexes, e.g., GW IP, ESI, or TS MAC.<a href="#section-4.4-4" class="pilcrow">¶</a></p>
<p id="section-4.4-5">
In some cases, IP Prefix routes may be advertised for subnets and IPs
sitting behind an IRB. This use case is referred to as the
"IP-VRF-to-IP-VRF" model.<a href="#section-4.4-5" class="pilcrow">¶</a></p>
<p id="section-4.4-6">
<span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> defines an asymmetric IRB model and a symmetric
IRB model based on the required lookups at the ingress and egress
NVE. The asymmetric model requires an IP lookup and a MAC lookup at
the ingress NVE, whereas only a MAC lookup is needed at the egress
NVE; the symmetric model requires IP and MAC lookups at both the ingress
and egress NVE. From that perspective, the IP-VRF-to-IP-VRF use case
described in this section is a symmetric IRB model.<a href="#section-4.4-6" class="pilcrow">¶</a></p>
<p id="section-4.4-7">
Note that in an IP-VRF-to-IP-VRF scenario, out of the many subnets that a
tenant may have, it may be the case that only a few are attached to a given
IP-VRF of the NVE/PE. In order to provide inter-subnet connectivity among the
set of NVE/PEs where the tenant is connected, a new SBD is created on all
of them if a recursive resolution is needed. This SBD is instantiated as a
regular BD (with no ACs) in each NVE/PE and has an IRB interface that
connects the SBD to the IP-VRF. The IRB interface's IP or MAC address is
used as the Overlay Index for a recursive resolution.<a href="#section-4.4-7" class="pilcrow">¶</a></p>
<p id="section-4.4-8">
Depending on the existence and characteristics of the SBD and IRB
interfaces for the IP-VRFs, there are three different IP-VRF-to-IP-VRF
scenarios identified and described in this document:<a href="#section-4.4-8" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.4-9">
<li id="section-4.4-9.1">Interface-less model: no SBD and no Overlay Indexes required.<a href="#section-4.4-9.1" class="pilcrow">¶</a>
</li>
<li id="section-4.4-9.2">Interface-ful with an SBD IRB model: requires SBD as well as GW IP addresses as Overlay Indexes.<a href="#section-4.4-9.2" class="pilcrow">¶</a>
</li>
<li id="section-4.4-9.3">Interface-ful with an unnumbered SBD IRB model: requires SBD as well as MAC addresses as Overlay Indexes.<a href="#section-4.4-9.3" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-4.4-10">
Inter-subnet IP multicast is outside the scope of this document.<a href="#section-4.4-10" class="pilcrow">¶</a></p>
<div id="sect-4.4.1">
<section id="section-4.4.1">
<h4 id="name-interface-less-ip-vrf-to-ip">
<a href="#section-4.4.1" class="section-number selfRef">4.4.1. </a><a href="#name-interface-less-ip-vrf-to-ip" class="section-name selfRef">Interface-less IP-VRF-to-IP-VRF Model</a>
</h4>
<p id="section-4.4.1-1"><a href="#fig-5" class="xref">Figure 8</a> depicts the Interface-less IP-VRF-to-IP-VRF model.<a href="#section-4.4.1-1" class="pilcrow">¶</a></p>
<span id="name-interface-less-ip-vrf-to-ip-"></span><div id="fig-5">
<figure id="figure-8">
<div class="alignLeft art-text artwork" id="section-4.4.1-2.1">
<pre>
NVE1(M1)
+------------+
IP1+----| (BD-1) | DGW1(M3)
| \ | +---------+ +--------+
| (IP-VRF)|----| |-|(IP-VRF)|----+
| / | | | +--------+ |
+---| (BD-2) | | | _+_
| +------------+ | | ( )
SN1| | VXLAN/ | ( WAN )--H1
| NVE2(M2) | GENEVE/| (___)
| +------------+ | MPLS | +
+---| (BD-2) | | | DGW2(M4) |
| \ | | | +--------+ |
| (IP-VRF)|----| |-|(IP-VRF)|----+
| / | +---------+ +--------+
SN2+----| (BD-3) |
+------------+
</pre>
</div>
<figcaption><a href="#figure-8" class="selfRef">Figure 8</a>:
<a href="#name-interface-less-ip-vrf-to-ip-" class="selfRef">Interface-less IP-VRF-to-IP-VRF Model</a>
</figcaption></figure>
</div>
<p id="section-4.4.1-3">In this case:<a href="#section-4.4.1-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.1-4">
<dt>a)</dt>
<dd id="section-4.4.1-4.1">The NVEs and DGWs must provide connectivity between hosts in SN1,
SN2, and IP1 and hosts sitting at the other end of the WAN -- for example,
H1. It is assumed that the DGWs import/export IP and/or VPN-IP routes
to/from the WAN.<a href="#section-4.4.1-4.1" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>b)</dt>
<dd id="section-4.4.1-4.2">The IP-VRF instances in the NVE/DGWs are directly connected through
NVO tunnels, and no IRBs and/or BD instances are instantiated to
connect the IP-VRFs.<a href="#section-4.4.1-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>c)</dt>
<dd id="section-4.4.1-4.3">The solution must provide Layer 3 connectivity among the IP-VRFs
for Ethernet NVO tunnels -- for instance, VXLAN or GENEVE.<a href="#section-4.4.1-4.3" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>d)</dt>
<dd id="section-4.4.1-4.4">The solution may provide Layer 3 connectivity among the IP-VRFs for
IP NVO tunnels -- for example, GENEVE (with IP payload).<a href="#section-4.4.1-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.4.1-5">
In order to meet the above requirements, the EVPN route type 5 will be used
to advertise the IP prefixes, along with the EVPN Router's MAC Extended
Community as defined in <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> if the advertising
NVE/DGW uses Ethernet NVO tunnels. Each NVE/DGW will advertise an RT-5 for
each of its prefixes with the following fields:<a href="#section-4.4.1-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-6.1">RD as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-4.4.1-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-6.2">Ethernet Tag ID = 0.<a href="#section-4.4.1-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-6.3">IP prefix length and IP address, as explained in the previous
sections.<a href="#section-4.4.1-6.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-6.4">GW IP address = 0.<a href="#section-4.4.1-6.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-6.5">ESI = 0.<a href="#section-4.4.1-6.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-6.6">MPLS label or VNI corresponding to the IP-VRF.<a href="#section-4.4.1-6.6" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.4.1-7">
Each RT-5 will be sent with a Route Target identifying the tenant
(IP-VRF) and may be sent with two BGP extended communities:<a href="#section-4.4.1-7" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-8.1">The first one is the BGP Encapsulation Extended Community, as per
<span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>, identifying the tunnel type.<a href="#section-4.4.1-8.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-8.2">The second one is the EVPN Router's MAC Extended Community, as per
<span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span>, containing the MAC address associated with the NVE advertising the
route. This MAC address identifies the NVE/DGW and <span class="bcp14">MAY</span> be reused for
all the IP-VRFs in the NVE. The EVPN Router's MAC Extended Community must
be sent if the route is associated with an Ethernet NVO tunnel -- for
instance, VXLAN. If the route is associated with an IP NVO tunnel -- for
instance, GENEVE with an IP payload -- the EVPN Router's MAC Extended Community
should not be sent.<a href="#section-4.4.1-8.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.4.1-9">
The following example illustrates the procedure to advertise and
forward packets to SN1/24 (IPv4 prefix advertised from NVE1):<a href="#section-4.4.1-9" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.1-10">
<dt>(1)</dt>
<dd id="section-4.4.1-10.1">
<p id="section-4.4.1-10.1.1">NVE1 advertises the following BGP route:<a href="#section-4.4.1-10.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-10.1.2.1">
<p id="section-4.4.1-10.1.2.1.1">Route type 5 (IP Prefix route) containing:<a href="#section-4.4.1-10.1.2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-10.1.2.1.2.1">IPL = 24, IP = SN1, Label = 10.<a href="#section-4.4.1-10.1.2.1.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-10.1.2.1.2.2">GW IP = set to 0.<a href="#section-4.4.1-10.1.2.1.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-10.1.2.1.2.3"> BGP Encapsulation Extended
Community <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>.<a href="#section-4.4.1-10.1.2.1.2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-10.1.2.1.2.4">EVPN Router's MAC Extended Community that contains M1.<a href="#section-4.4.1-10.1.2.1.2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-10.1.2.1.2.5">Route Target identifying the tenant (IP-VRF).<a href="#section-4.4.1-10.1.2.1.2.5" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.4.1-10.2">
<p id="section-4.4.1-10.2.1">DGW1 imports the received routes from NVE1:<a href="#section-4.4.1-10.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-10.2.2.1">DGW1 installs SN1/24 in the IP-VRF identified by the RT-5
Route Target.<a href="#section-4.4.1-10.2.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-10.2.2.2">Since GW IP = ESI = 0, the label is a non-zero value, and the
local policy indicates this interface-less model, DGW1, will use
the label and next hop of the RT-5, as well as the MAC address
conveyed in the EVPN Router's MAC Extended Community (as the inner
destination MAC address) to set up the forwarding state and
later encapsulate the routed IP packets.<a href="#section-4.4.1-10.2.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.4.1-10.3">
<p id="section-4.4.1-10.3.1">When DGW1 receives a packet from the WAN with destination IPx,
where IPx belongs to SN1/24:<a href="#section-4.4.1-10.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-10.3.2.1">A destination IP lookup is performed on the DGW1 IP-VRF
table. The lookup yields SN1/24.<a href="#section-4.4.1-10.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-10.3.2.2">Since the RT-5 for SN1/24 had a GW IP = ESI = 0, a non-zero
label, and a next hop, and since the model is interface-less, DGW1 will
not need a recursive lookup to resolve the route.<a href="#section-4.4.1-10.3.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-10.3.2.3">The IP packet destined to IPx is encapsulated with: inner source MAC = DGW1 MAC, inner destination MAC = M1, outer source
IP (tunnel source IP) = DGW1 IP, and outer destination IP (tunnel
destination IP) = NVE1 IP. The source and inner destination MAC
addresses are not needed if IP NVO tunnels are used.<a href="#section-4.4.1-10.3.2.3" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.4.1-10.4">
<p id="section-4.4.1-10.4.1">When the packet arrives at NVE1:<a href="#section-4.4.1-10.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-10.4.2.1">NVE1 will identify the IP-VRF for an IP lookup based on the
label (the inner destination MAC is not needed to identify the
IP-VRF).<a href="#section-4.4.1-10.4.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-10.4.2.2">An IP lookup is performed in the routing context, where SN1
turns out to be a local subnet associated with BD-2. A subsequent
lookup in the ARP table and the BD FIB will provide the
forwarding information for the packet in BD-2.<a href="#section-4.4.1-10.4.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.4.1-11">
The model described above is called an "interface-less" model since the
IP-VRFs are connected directly through tunnels, and they don't require
those tunnels to be terminated in SBDs instead, as in Sections <a href="#sect-4.4.2" class="xref">4.4.2</a> or <a href="#sect-4.4.3" class="xref">4.4.3</a>.<a href="#section-4.4.1-11" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-4.4.2">
<section id="section-4.4.2">
<h4 id="name-interface-ful-ip-vrf-to-ip-">
<a href="#section-4.4.2" class="section-number selfRef">4.4.2. </a><a href="#name-interface-ful-ip-vrf-to-ip-" class="section-name selfRef">Interface-ful IP-VRF-to-IP-VRF with SBD IRB</a>
</h4>
<p id="section-4.4.2-1"><a href="#fig-6" class="xref">Figure 9</a> depicts the Interface-ful IP-VRF-to-IP-VRF with SBD IRB model.<a href="#section-4.4.2-1" class="pilcrow">¶</a></p>
<span id="name-interface-ful-with-sbd-irb-"></span><div id="fig-6">
<figure id="figure-9">
<div class="alignLeft art-text artwork" id="section-4.4.2-2.1">
<pre>
NVE1
+------------+ DGW1
IP10+---+(BD-1) | +---------------+ +------------+
| \ | | | | |
|(IP-VRF)-(SBD)| |(SBD)-(IP-VRF)|-----+
| / IRB(M1/IP1) IRB(M3/IP3) | |
+---+(BD-2) | | | +------------+ _+_
| +------------+ | | ( )
SN1| | VXLAN/ | ( WAN )--H1
| NVE2 | GENEVE/ | (___)
| +------------+ | MPLS | DGW2 +
+---+(BD-2) | | | +------------+ |
| \ | | | | | |
|(IP-VRF)-(SBD)| |(SBD)-(IP-VRF)|-----+
| / IRB(M2/IP2) IRB(M4/IP4) |
SN2+----+(BD-3) | +---------------+ +------------+
+------------+
</pre>
</div>
<figcaption><a href="#figure-9" class="selfRef">Figure 9</a>:
<a href="#name-interface-ful-with-sbd-irb-" class="selfRef">Interface-ful with SBD IRB Model</a>
</figcaption></figure>
</div>
<p id="section-4.4.2-3">In this model:<a href="#section-4.4.2-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.2-4">
<dt>a)</dt>
<dd id="section-4.4.2-4.1">As in <a href="#sect-4.4.1" class="xref">Section 4.4.1</a>, the NVEs and DGWs must provide connectivity
between hosts in SN1, SN2, and IP10 and in hosts sitting at the other end
of the WAN.<a href="#section-4.4.2-4.1" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>b)</dt>
<dd id="section-4.4.2-4.2">However, the NVE/DGWs are now connected through Ethernet NVO
tunnels terminated in the SBD instance. The IP-VRFs use IRB
interfaces for their connectivity to the SBD.<a href="#section-4.4.2-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>c)</dt>
<dd id="section-4.4.2-4.3">Each SBD IRB has an IP and a MAC address, where the IP address
must be reachable from other NVEs or DGWs.<a href="#section-4.4.2-4.3" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>d)</dt>
<dd id="section-4.4.2-4.4">The SBD is attached to all the NVE/DGWs in the tenant domain BDs.<a href="#section-4.4.2-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>e)</dt>
<dd id="section-4.4.2-4.5">The solution must provide Layer 3 connectivity for Ethernet NVO
tunnels -- for instance, VXLAN or GENEVE (with Ethernet payload).<a href="#section-4.4.2-4.5" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.4.2-5">
EVPN type 5 routes will be used to advertise the IP prefixes, whereas
EVPN RT-2 routes will advertise the MAC/IP addresses of each SBD IRB
interface. Each NVE/DGW will advertise an RT-5 for each of its
prefixes with the following fields:<a href="#section-4.4.2-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-6.1">RD as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-4.4.2-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.2-6.2">Ethernet Tag ID = 0.<a href="#section-4.4.2-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.2-6.3">IP prefix length and IP address, as explained in the previous
sections.<a href="#section-4.4.2-6.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.2-6.4">GW IP address = IRB-IP of the SBD (this is the Overlay Index that
will be used for the recursive route resolution).<a href="#section-4.4.2-6.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.2-6.5">ESI = 0.<a href="#section-4.4.2-6.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.2-6.6">Label value should be zero since the RT-5 route requires a
recursive lookup resolution to an RT-2 route. It is ignored on
reception, and the MPLS label or VNI from
the RT-2's MPLS Label1 field is used when forwarding packets.<a href="#section-4.4.2-6.6" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.4.2-7">
Each RT-5 will be sent with a Route Target identifying the tenant
(IP-VRF). The EVPN Router's MAC Extended Community should not be sent in
this case.<a href="#section-4.4.2-7" class="pilcrow">¶</a></p>
<p id="section-4.4.2-8">
The following example illustrates the procedure to advertise and
forward packets to SN1/24 (IPv4 prefix advertised from NVE1):<a href="#section-4.4.2-8" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.2-9">
<dt>(1)</dt>
<dd id="section-4.4.2-9.1">
<p id="section-4.4.2-9.1.1">NVE1 advertises the following BGP routes:<a href="#section-4.4.2-9.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.1.2.1">
<p id="section-4.4.2-9.1.2.1.1">Route type 5 (IP Prefix route) containing:<a href="#section-4.4.2-9.1.2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.1.2.1.2.1">IPL = 24, IP = SN1, Label = <span class="bcp14">SHOULD</span> be set to 0.<a href="#section-4.4.2-9.1.2.1.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.2-9.1.2.1.2.2">GW IP = IP1 (SBD IRB's IP).<a href="#section-4.4.2-9.1.2.1.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.2-9.1.2.1.2.3">Route Target identifying the tenant (IP-VRF).<a href="#section-4.4.2-9.1.2.1.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="normal" id="section-4.4.2-9.1.2.2">
<p id="section-4.4.2-9.1.2.2.1">Route type 2 (MAC/IP Advertisement route for the SBD IRB) containing:<a href="#section-4.4.2-9.1.2.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.1.2.2.2.1">ML = 48, M = M1, IPL = 32, IP = IP1, Label = 10.<a href="#section-4.4.2-9.1.2.2.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.2-9.1.2.2.2.2">A BGP Encapsulation Extended Community <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>.<a href="#section-4.4.2-9.1.2.2.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.2-9.1.2.2.2.3">Route Target identifying the SBD. This Route Target may be the
same as the one used with the RT-5.<a href="#section-4.4.2-9.1.2.2.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.4.2-9.2">
<p id="section-4.4.2-9.2.1">DGW1 imports the received routes from NVE1:<a href="#section-4.4.2-9.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.2.2.1">
<p id="section-4.4.2-9.2.2.1.1">DGW1 installs SN1/24 in the IP-VRF identified by the RT-5 Route
Target.<a href="#section-4.4.2-9.2.2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.2.2.1.2.1">Since GW IP is different from zero, the GW IP (IP1) will be
used as the Overlay Index for the recursive route resolution to
the RT-2 carrying IP1.<a href="#section-4.4.2-9.2.2.1.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.4.2-9.3">
<p id="section-4.4.2-9.3.1">When DGW1 receives a packet from the WAN with destination IPx,
where IPx belongs to SN1/24:<a href="#section-4.4.2-9.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.3.2.1">A destination IP lookup is performed on the DGW1 IP-VRF
table. The lookup yields SN1/24, which is associated with
the Overlay Index IP1. The forwarding information is derived from
the RT-2 received for IP1.<a href="#section-4.4.2-9.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.2-9.3.2.2">The IP packet destined to IPx is encapsulated with: inner source MAC = M3, inner destination MAC = M1, outer source IP
(source VTEP) = DGW1 IP, and outer destination IP (destination VTEP)
= NVE1 IP.<a href="#section-4.4.2-9.3.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.4.2-9.4">
<p id="section-4.4.2-9.4.1">When the packet arrives at NVE1:<a href="#section-4.4.2-9.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.4.2.1">NVE1 will identify the IP-VRF for an IP lookup based on the
label and the inner MAC DA.<a href="#section-4.4.2-9.4.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.2-9.4.2.2">An IP lookup is performed in the routing context, where SN1
turns out to be a local subnet associated with BD-2. A subsequent
lookup in the ARP table and the BD FIB will provide the
forwarding information for the packet in BD-2.<a href="#section-4.4.2-9.4.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.4.2-10">
The model described above is called an "interface-ful with SBD IRB" model because the tunnels connecting the DGWs and NVEs need to be
terminated into the SBD. The SBD is connected to the IP-VRFs via SBD
IRB interfaces, and that allows the recursive resolution of RT-5s to
GW IP addresses.<a href="#section-4.4.2-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-4.4.3">
<section id="section-4.4.3">
<h4 id="name-interface-ful-ip-vrf-to-ip-v">
<a href="#section-4.4.3" class="section-number selfRef">4.4.3. </a><a href="#name-interface-ful-ip-vrf-to-ip-v" class="section-name selfRef">Interface-ful IP-VRF-to-IP-VRF with Unnumbered SBD IRB</a>
</h4>
<p id="section-4.4.3-1">
<a href="#fig-7" class="xref">Figure 10</a> depicts the Interface-ful IP-VRF-to-IP-VRF with unnumbered SBD IRB model. Note that this model is similar to the one described in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, only
without IP addresses on the SBD IRB interfaces.<a href="#section-4.4.3-1" class="pilcrow">¶</a></p>
<span id="name-interface-ful-with-unnumber"></span><div id="fig-7">
<figure id="figure-10">
<div class="alignLeft art-text artwork" id="section-4.4.3-2.1">
<pre>
NVE1
+------------+ DGW1
IP1+----+(BD-1) | +---------------+ +------------+
| \ | | | | |
|(IP-VRF)-(SBD)| (SBD)-(IP-VRF) |-----+
| / IRB(M1)| | IRB(M3) | |
+---+(BD-2) | | | +------------+ _+_
| +------------+ | | ( )
SN1| | VXLAN/ | ( WAN )--H1
| NVE2 | GENEVE/ | (___)
| +------------+ | MPLS | DGW2 +
+---+(BD-2) | | | +------------+ |
| \ | | | | | |
|(IP-VRF)-(SBD)| (SBD)-(IP-VRF) |-----+
| / IRB(M2)| | IRB(M4) |
SN2+----+(BD-3) | +---------------+ +------------+
+------------+
</pre>
</div>
<figcaption><a href="#figure-10" class="selfRef">Figure 10</a>:
<a href="#name-interface-ful-with-unnumber" class="selfRef">Interface-ful with Unnumbered SBD IRB Model</a>
</figcaption></figure>
</div>
<p id="section-4.4.3-3">In this model:<a href="#section-4.4.3-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.3-4">
<dt>a)</dt>
<dd id="section-4.4.3-4.1">As in Sections <a href="#sect-4.4.1" class="xref">4.4.1</a> and <a href="#sect-4.4.2" class="xref">4.4.2</a>, the NVEs and DGWs must provide
connectivity between hosts in SN1, SN2, and IP1 and in hosts sitting at the
other end of the WAN.<a href="#section-4.4.3-4.1" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>b)</dt>
<dd id="section-4.4.3-4.2">As in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, the NVE/DGWs are connected through Ethernet
NVO tunnels terminated in the SBD instance. The IP-VRFs use IRB
interfaces for their connectivity to the SBD.<a href="#section-4.4.3-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>c)</dt>
<dd id="section-4.4.3-4.3">However, each SBD IRB has a MAC address only and no IP address
(which is why the model refers to an "unnumbered" SBD IRB). In this
model, there is no need to have IP reachability to the SBD IRB
interfaces themselves, and there is a requirement to limit the number
of IP addresses used.<a href="#section-4.4.3-4.3" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>d)</dt>
<dd id="section-4.4.3-4.4">As in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, the SBD is composed of all the NVE/DGW BDs of
the tenant that need inter-subnet forwarding.<a href="#section-4.4.3-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt>e)</dt>
<dd id="section-4.4.3-4.5">As in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, the solution must provide Layer 3 connectivity
for Ethernet NVO tunnels -- for instance, VXLAN or GENEVE (with Ethernet
payload).<a href="#section-4.4.3-4.5" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.4.3-5">
This model will also make use of the RT-5 recursive resolution. EVPN
type 5 routes will advertise the IP prefixes along with the EVPN Router's
MAC Extended Community used for the recursive lookup, whereas EVPN
RT-2 routes will advertise the MAC addresses of each SBD IRB
interface (this time without an IP).<a href="#section-4.4.3-5" class="pilcrow">¶</a></p>
<p id="section-4.4.3-6">
Each NVE/DGW will advertise an RT-5 for each of its prefixes with the
same fields as described in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, except:<a href="#section-4.4.3-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-7.1">GW IP address = set to 0.<a href="#section-4.4.3-7.1" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.4.3-8">
Each RT-5 will be sent with a Route Target identifying the tenant
(IP-VRF) and the EVPN Router's MAC Extended Community containing the MAC
address associated with the SBD IRB interface. This MAC address may be
reused for all the IP-VRFs in the NVE.<a href="#section-4.4.3-8" class="pilcrow">¶</a></p>
<p id="section-4.4.3-9">
The example is similar to the one in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>:<a href="#section-4.4.3-9" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.3-10">
<dt>(1)</dt>
<dd id="section-4.4.3-10.1">
<p id="section-4.4.3-10.1.1">NVE1 advertises the following BGP routes:<a href="#section-4.4.3-10.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.1.2.1">
<p id="section-4.4.3-10.1.2.1.1">Route type 5 (IP Prefix route) containing the same values as
in the example in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, except:<a href="#section-4.4.3-10.1.2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.1.2.1.2.1">GW IP = <span class="bcp14">SHOULD</span> be set to 0.<a href="#section-4.4.3-10.1.2.1.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.3-10.1.2.1.2.2">EVPN Router's MAC Extended Community containing M1 (this will be used
for the recursive lookup to an RT-2).<a href="#section-4.4.3-10.1.2.1.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="normal" id="section-4.4.3-10.1.2.2">
<p id="section-4.4.3-10.1.2.2.1">Route type 2 (MAC route for the SBD IRB) with the same values
as in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, except:<a href="#section-4.4.3-10.1.2.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.1.2.2.2.1">ML = 48, M = M1, IPL = 0, Label = 10.<a href="#section-4.4.3-10.1.2.2.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.4.3-10.2">
<p id="section-4.4.3-10.2.1">DGW1 imports the received routes from NVE1:<a href="#section-4.4.3-10.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.2.2.1">
<p id="section-4.4.3-10.2.2.1.1">DGW1 installs SN1/24 in the IP-VRF identified by the RT-5
Route Target.<a href="#section-4.4.3-10.2.2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.2.2.1.2.1">The MAC contained in the EVPN Router's MAC Extended Community sent
along with the RT-5 (M1) will be used as the Overlay Index for the
recursive route resolution to the RT-2 carrying M1.<a href="#section-4.4.3-10.2.2.1.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.4.3-10.3">
<p id="section-4.4.3-10.3.1">When DGW1 receives a packet from the WAN with destination IPx,
where IPx belongs to SN1/24:<a href="#section-4.4.3-10.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.3.2.1">A destination IP lookup is performed on the DGW1 IP-VRF
table. The lookup yields SN1/24, which is associated with
the Overlay Index M1. The forwarding information is derived from
the RT-2 received for M1.<a href="#section-4.4.3-10.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.3-10.3.2.2">The IP packet destined to IPx is encapsulated with: inner source MAC = M3, inner destination MAC = M1, outer source IP
(source VTEP) = DGW1 IP, and outer destination IP (destination VTEP)
= NVE1 IP.<a href="#section-4.4.3-10.3.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.4.3-10.4">
<p id="section-4.4.3-10.4.1">When the packet arrives at NVE1:<a href="#section-4.4.3-10.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.4.2.1">NVE1 will identify the IP-VRF for an IP lookup based on the
label and the inner MAC DA.<a href="#section-4.4.3-10.4.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.3-10.4.2.2">An IP lookup is performed in the routing context, where SN1
turns out to be a local subnet associated with BD-2. A subsequent
lookup in the ARP table and the BD FIB will provide the
forwarding information for the packet in BD-2.<a href="#section-4.4.3-10.4.2.2" class="pilcrow">¶</a>
</li>
</ul>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.4.3-11">
The model described above is called an "interface-ful with unnumbered SBD
IRB" model (as in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>) but without the SBD IRB having an IP address.<a href="#section-4.4.3-11" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="sect-5">
<section id="section-5">
<h2 id="name-security-considerations">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-5-1">
This document provides a set of procedures to achieve inter-subnet
forwarding across NVEs or PEs attached to a group of BDs that belong
to the same tenant (or VPN). The security considerations discussed in
<span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> apply to the intra-subnet forwarding or communication
within each of those BDs. In addition, the security considerations in
<span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span> should also be understood, since this document and
<span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span> may be used in similar applications.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">
Contrary to <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span>, this document does not describe PE/CE route
distribution techniques but rather considers the CEs as TSs or VAs
that do not run dynamic routing protocols. This can be considered a
security advantage, since dynamic routing protocols can be blocked on
the NVE/PE ACs, not allowing the tenant to interact with the
infrastructure's dynamic routing protocols.<a href="#section-5-2" class="pilcrow">¶</a></p>
<p id="section-5-3">
In this document, the RT-5 may use a regular BGP next hop for its
resolution or an Overlay Index that requires a recursive resolution
to a different EVPN route (an RT-2 or an RT-1). In the latter case,
it is worth noting that any action that ends up filtering or
modifying the RT-2 or RT-1 routes used to convey the Overlay Indexes
will modify the resolution of the RT-5 and therefore the forwarding
of packets to the remote subnet.<a href="#section-5-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-6">
<section id="section-6">
<h2 id="name-iana-considerations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-6-1">
IANA has registered value 5 in the "EVPN Route Types" registry <span>[<a href="#EVPNRouteTypes" class="xref">EVPNRouteTypes</a>]</span>
defined by <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> as follows:<a href="#section-6-1" class="pilcrow">¶</a></p>
<table class="center" id="table-3">
<caption><a href="#table-3" class="selfRef">Table 3</a></caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Value</th>
<th class="text-left" rowspan="1" colspan="1">Description</th>
<th class="text-left" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">5</td>
<td class="text-left" rowspan="1" colspan="1">IP Prefix</td>
<td class="text-left" rowspan="1" colspan="1">RFC 9136</td>
</tr>
</tbody>
</table>
</section>
</div>
<section id="section-7">
<h2 id="name-references">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-7.1">
<h3 id="name-normative-references">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="EVPNRouteTypes">[EVPNRouteTypes]</dt>
<dd>
<span class="refAuthor">IANA</span>, <span class="refTitle">"EVPN Route Types"</span>, <span><<a href="https://www.iana.org/assignments/evpn">https://www.iana.org/assignments/evpn</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7432">[RFC7432]</dt>
<dd>
<span class="refAuthor">Sajassi, A., Ed.</span>, <span class="refAuthor">Aggarwal, R.</span>, <span class="refAuthor">Bitar, N.</span>, <span class="refAuthor">Isaac, A.</span>, <span class="refAuthor">Uttaro, J.</span>, <span class="refAuthor">Drake, J.</span>, and <span class="refAuthor">W. Henderickx</span>, <span class="refTitle">"BGP MPLS-Based Ethernet VPN"</span>, <span class="seriesInfo">RFC 7432</span>, <span class="seriesInfo">DOI 10.17487/RFC7432</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7432">https://www.rfc-editor.org/info/rfc7432</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8365">[RFC8365]</dt>
<dd>
<span class="refAuthor">Sajassi, A., Ed.</span>, <span class="refAuthor">Drake, J., Ed.</span>, <span class="refAuthor">Bitar, N.</span>, <span class="refAuthor">Shekhar, R.</span>, <span class="refAuthor">Uttaro, J.</span>, and <span class="refAuthor">W. Henderickx</span>, <span class="refTitle">"A Network Virtualization Overlay Solution Using Ethernet VPN (EVPN)"</span>, <span class="seriesInfo">RFC 8365</span>, <span class="seriesInfo">DOI 10.17487/RFC8365</span>, <time datetime="2018-03" class="refDate">March 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8365">https://www.rfc-editor.org/info/rfc8365</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9012">[RFC9012]</dt>
<dd>
<span class="refAuthor">Patel, K.</span>, <span class="refAuthor">Van de Velde, G.</span>, <span class="refAuthor">Sangli, S.</span>, and <span class="refAuthor">J. Scudder</span>, <span class="refTitle">"The BGP Tunnel Encapsulation Attribute"</span>, <span class="seriesInfo">RFC 9012</span>, <span class="seriesInfo">DOI 10.17487/RFC9012</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9012">https://www.rfc-editor.org/info/rfc9012</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9135">[RFC9135]</dt>
<dd>
<span class="refAuthor">Sajassi, A.</span>, <span class="refAuthor">Salam, S.</span>, <span class="refAuthor">Thoria, S.</span>, <span class="refAuthor">Drake, J.</span>, and <span class="refAuthor">J. Rabadan</span>, <span class="refTitle">"Integrated Routing and Bridging in Ethernet VPN (EVPN)"</span>, <span class="seriesInfo">RFC 9135</span>, <span class="seriesInfo">DOI 10.17487/RFC9135</span>, <time datetime="2021-10" class="refDate">October 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9135">https://www.rfc-editor.org/info/rfc9135</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-7.2">
<h3 id="name-informative-references">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="IEEE-802.1Q">[IEEE-802.1Q]</dt>
<dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and Metropolitan Area Networks -- Bridges and Bridged Networks"</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2018.8403927</span>, <span class="seriesInfo">IEEE Std 802.1Q</span>, <time datetime="2018-07" class="refDate">July 2018</time>, <span><<a href="https://standards.ieee.org/standard/802_1Q-2018.html">https://standards.ieee.org/standard/802_1Q-2018.html</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4364">[RFC4364]</dt>
<dd>
<span class="refAuthor">Rosen, E.</span> and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"BGP/MPLS IP Virtual Private Networks (VPNs)"</span>, <span class="seriesInfo">RFC 4364</span>, <span class="seriesInfo">DOI 10.17487/RFC4364</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4364">https://www.rfc-editor.org/info/rfc4364</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5227">[RFC5227]</dt>
<dd>
<span class="refAuthor">Cheshire, S.</span>, <span class="refTitle">"IPv4 Address Conflict Detection"</span>, <span class="seriesInfo">RFC 5227</span>, <span class="seriesInfo">DOI 10.17487/RFC5227</span>, <time datetime="2008-07" class="refDate">July 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5227">https://www.rfc-editor.org/info/rfc5227</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5798">[RFC5798]</dt>
<dd>
<span class="refAuthor">Nadas, S., Ed.</span>, <span class="refTitle">"Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6"</span>, <span class="seriesInfo">RFC 5798</span>, <span class="seriesInfo">DOI 10.17487/RFC5798</span>, <time datetime="2010-03" class="refDate">March 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5798">https://www.rfc-editor.org/info/rfc5798</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7348">[RFC7348]</dt>
<dd>
<span class="refAuthor">Mahalingam, M.</span>, <span class="refAuthor">Dutt, D.</span>, <span class="refAuthor">Duda, K.</span>, <span class="refAuthor">Agarwal, P.</span>, <span class="refAuthor">Kreeger, L.</span>, <span class="refAuthor">Sridhar, T.</span>, <span class="refAuthor">Bursell, M.</span>, and <span class="refAuthor">C. Wright</span>, <span class="refTitle">"Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks"</span>, <span class="seriesInfo">RFC 7348</span>, <span class="seriesInfo">DOI 10.17487/RFC7348</span>, <time datetime="2014-08" class="refDate">August 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7348">https://www.rfc-editor.org/info/rfc7348</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7365">[RFC7365]</dt>
<dd>
<span class="refAuthor">Lasserre, M.</span>, <span class="refAuthor">Balus, F.</span>, <span class="refAuthor">Morin, T.</span>, <span class="refAuthor">Bitar, N.</span>, and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"Framework for Data Center (DC) Network Virtualization"</span>, <span class="seriesInfo">RFC 7365</span>, <span class="seriesInfo">DOI 10.17487/RFC7365</span>, <time datetime="2014-10" class="refDate">October 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7365">https://www.rfc-editor.org/info/rfc7365</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7606">[RFC7606]</dt>
<dd>
<span class="refAuthor">Chen, E., Ed.</span>, <span class="refAuthor">Scudder, J., Ed.</span>, <span class="refAuthor">Mohapatra, P.</span>, and <span class="refAuthor">K. Patel</span>, <span class="refTitle">"Revised Error Handling for BGP UPDATE Messages"</span>, <span class="seriesInfo">RFC 7606</span>, <span class="seriesInfo">DOI 10.17487/RFC7606</span>, <time datetime="2015-08" class="refDate">August 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7606">https://www.rfc-editor.org/info/rfc7606</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8926">[RFC8926]</dt>
<dd>
<span class="refAuthor">Gross, J., Ed.</span>, <span class="refAuthor">Ganga, I., Ed.</span>, and <span class="refAuthor">T. Sridhar, Ed.</span>, <span class="refTitle">"Geneve: Generic Network Virtualization Encapsulation"</span>, <span class="seriesInfo">RFC 8926</span>, <span class="seriesInfo">DOI 10.17487/RFC8926</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8926">https://www.rfc-editor.org/info/rfc8926</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="sect-8">
<section id="appendix-A">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<p id="appendix-A-1">
The authors would like to thank <span class="contact-name">Mukul Katiyar</span>, <span class="contact-name">Jeffrey Zhang</span>, and <span class="contact-name">Alex Nichol</span> for
their valuable feedback and contributions. <span class="contact-name">Tony Przygienda</span>
and <span class="contact-name">Thomas Morin</span> also helped improve this document with their feedback. Special thanks to <span class="contact-name">Eric Rosen</span> for his detailed
review, which really helped improve the readability and clarify the
concepts. We also thank <span class="contact-name">Alvaro Retana</span> for his thorough review.<a href="#appendix-A-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-9">
<section id="appendix-B">
<h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
</h2>
<p id="appendix-B-1">
In addition to the authors listed on the front page, the following
coauthors have also contributed to this document:<a href="#appendix-B-1" class="pilcrow">¶</a></p>
<ul class="compact ulEmpty">
<li class="compact ulEmpty" id="appendix-B-2.1">
<p id="appendix-B-2.1.1"><span class="contact-name">Senthil Sathappan</span><a href="#appendix-B-2.1.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty" id="appendix-B-2.2">
<p id="appendix-B-2.2.1"><span class="contact-name">Florin Balus</span><a href="#appendix-B-2.2.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty" id="appendix-B-2.3">
<p id="appendix-B-2.3.1"> <span class="contact-name">Aldrin Isaac</span><a href="#appendix-B-2.3.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty" id="appendix-B-2.4">
<p id="appendix-B-2.4.1"> <span class="contact-name">Senad Palislamovic</span><a href="#appendix-B-2.4.1" class="pilcrow">¶</a></p>
</li>
<li class="compact ulEmpty" id="appendix-B-2.5">
<p id="appendix-B-2.5.1"> <span class="contact-name">Samir Thoria</span><a href="#appendix-B-2.5.1" class="pilcrow">¶</a></p>
</li>
</ul>
</section>
</div>
<div id="authors-addresses">
<section id="appendix-C">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Jorge Rabadan (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Nokia</span></div>
<div dir="auto" class="left"><span class="street-address">777 E. Middlefield Road</span></div>
<div dir="auto" class="left">
<span class="locality">Mountain View</span>, <span class="region">CA</span> <span class="postal-code">94043</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jorge.rabadan@nokia.com" class="email">jorge.rabadan@nokia.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Wim Henderickx</span></div>
<div dir="auto" class="left"><span class="org">Nokia</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:wim.henderickx@nokia.com" class="email">wim.henderickx@nokia.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">John Drake</span></div>
<div dir="auto" class="left"><span class="org">Juniper</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jdrake@juniper.net" class="email">jdrake@juniper.net</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Wen Lin</span></div>
<div dir="auto" class="left"><span class="org">Juniper</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:wlin@juniper.net" class="email">wlin@juniper.net</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Ali Sajassi</span></div>
<div dir="auto" class="left"><span class="org">Cisco</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:sajassi@cisco.com" class="email">sajassi@cisco.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|