File: rfc9136.html

package info (click to toggle)
doc-rfc 20230121-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 1,609,944 kB
file content (3607 lines) | stat: -rw-r--r-- 172,506 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9136: IP Prefix Advertisement in Ethernet VPN (EVPN)</title>
<meta content="Jorge Rabadan" name="author">
<meta content="Wim Henderickx" name="author">
<meta content="John Drake" name="author">
<meta content="Wen Lin" name="author">
<meta content="Ali Sajassi" name="author">
<meta content="
       
   The BGP MPLS-based Ethernet VPN (EVPN) (RFC 7432) mechanism provides a
   flexible control plane that allows intra-subnet connectivity in an
   MPLS and/or Network Virtualization Overlay (NVO) (RFC 7365) network.
   In some networks, there is also a need for dynamic and efficient
   inter-subnet connectivity across Tenant Systems and end devices that
   can be physical or virtual and do not necessarily participate in
   dynamic routing protocols. This document defines a new EVPN route
   type for the advertisement of IP prefixes and explains some use-case
   examples where this new route type is used. 
    " name="description">
<meta content="xml2rfc 3.10.0" name="generator">
<meta content="RT5" name="keyword">
<meta content="RT-5" name="keyword">
<meta content="Type-5" name="keyword">
<meta content="Interface-less" name="keyword">
<meta content="Interface-ful" name="keyword">
<meta content="9136" name="rfc.number">
<!-- Generator version information:
  xml2rfc 3.10.0
    Python 3.6.13
    appdirs 1.4.4
    ConfigArgParse 1.4.1
    google-i18n-address 2.4.0
    html5lib 1.0.1
    intervaltree 3.0.2
    Jinja2 2.11.3
    kitchen 1.2.6
    lxml 4.4.2
    pycairo 1.15.1
    pycountry 19.8.18
    pyflakes 2.1.1
    PyYAML 5.4.1
    requests 2.24.0
    setuptools 40.5.0
    six 1.14.0
    WeasyPrint 52.5
-->
<link href="rfc9136.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*

  NOTE: Changes at the bottom of this file overrides some earlier settings.

  Once the style has stabilized and has been adopted as an official RFC style,
  this can be consolidated so that style settings occur only in one place, but
  for now the contents of this file consists first of the initial CSS work as
  provided to the RFC Formatter (xml2rfc) work, followed by itemized and
  commented changes found necssary during the development of the v3
  formatters.

*/

/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */

@viewport {
  zoom: 1.0;
  width: extend-to-zoom;
}
@-ms-viewport {
  width: extend-to-zoom;
  zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
  max-width: 90%;
  margin: 1.5em auto;
  color: #222;
  background-color: #fff;
  font-size: 14px;
  font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
  line-height: 1.6;
  scroll-behavior: smooth;
}
.ears {
  display: none;
}

/* headings */
#title, h1, h2, h3, h4, h5, h6 {
  margin: 1em 0 0.5em;
  font-weight: bold;
  line-height: 1.3;
}
#title {
  clear: both;
  border-bottom: 1px solid #ddd;
  margin: 0 0 0.5em 0;
  padding: 1em 0 0.5em;
}
.author {
  padding-bottom: 4px;
}
h1 {
  font-size: 26px;
  margin: 1em 0;
}
h2 {
  font-size: 22px;
  margin-top: -20px;  /* provide offset for in-page anchors */
  padding-top: 33px;
}
h3 {
  font-size: 18px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h4 {
  font-size: 16px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h5, h6 {
  font-size: 14px;
}
#n-copyright-notice {
  border-bottom: 1px solid #ddd;
  padding-bottom: 1em;
  margin-bottom: 1em;
}
/* general structure */
p {
  padding: 0;
  margin: 0 0 1em 0;
  text-align: left;
}
div, span {
  position: relative;
}
div {
  margin: 0;
}
.alignRight.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignRight.art-text pre {
  padding: 0;
}
.alignRight {
  margin: 1em 0;
}
.alignRight > *:first-child {
  border: none;
  margin: 0;
  float: right;
  clear: both;
}
.alignRight > *:nth-child(2) {
  clear: both;
  display: block;
  border: none;
}
svg {
  display: block;
}
.alignCenter.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
  padding: 0;
}
.alignCenter {
  margin: 1em 0;
}
.alignCenter > *:first-child {
  border: none;
  /* this isn't optimal, but it's an existence proof.  PrinceXML doesn't
     support flexbox yet.
  */
  display: table;
  margin: 0 auto;
}

/* lists */
ol, ul {
  padding: 0;
  margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
  margin-left: 1em;
}
li {
  margin: 0 0 0.25em 0;
}
.ulCompact li {
  margin: 0;
}
ul.empty, .ulEmpty {
  list-style-type: none;
}
ul.empty li, .ulEmpty li {
  margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
  margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
  line-height: 100%;
  margin: 0 0 0 2em;
}

/* definition lists */
dl {
}
dl > dt {
  float: left;
  margin-right: 1em;
}
/* 
dl.nohang > dt {
  float: none;
}
*/
dl > dd {
  margin-bottom: .8em;
  min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
  margin-bottom: 0em;
}
dl > dd > dl {
  margin-top: 0.5em;
  margin-bottom: 0em;
}

/* links */
a {
  text-decoration: none;
}
a[href] {
  color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
  background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
  color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
  background-color: transparent;
  cursor: default;
} */

/* Figures */
tt, code, pre, code {
  background-color: #f9f9f9;
  font-family: 'Roboto Mono', monospace;
}
pre {
  border: 1px solid #eee;
  margin: 0;
  padding: 1em;
}
img {
  max-width: 100%;
}
figure {
  margin: 0;
}
figure blockquote {
  margin: 0.8em 0.4em 0.4em;
}
figcaption {
  font-style: italic;
  margin: 0 0 1em 0;
}
@media screen {
  pre {
    overflow-x: auto;
    max-width: 100%;
    max-width: calc(100% - 22px);
  }
}

/* aside, blockquote */
aside, blockquote {
  margin-left: 0;
  padding: 1.2em 2em;
}
blockquote {
  background-color: #f9f9f9;
  color: #111; /* Arlen: WCAG 2019 */
  border: 1px solid #ddd;
  border-radius: 3px;
  margin: 1em 0;
}
cite {
  display: block;
  text-align: right;
  font-style: italic;
}

/* tables */
table {
  width: 100%;
  margin: 0 0 1em;
  border-collapse: collapse;
  border: 1px solid #eee;
}
th, td {
  text-align: left;
  vertical-align: top;
  padding: 0.5em 0.75em;
}
th {
  text-align: left;
  background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
  background-color: #f5f5f5;
}
table caption {
  font-style: italic;
  margin: 0;
  padding: 0;
  text-align: left;
}
table p {
  /* XXX to avoid bottom margin on table row signifiers. If paragraphs should
     be allowed within tables more generally, it would be far better to select on a class. */
  margin: 0;
}

/* pilcrow */
a.pilcrow {
  color: #666; /* Arlen: AHDJ 2019 */
  text-decoration: none;
  visibility: hidden;
  user-select: none;
  -ms-user-select: none;
  -o-user-select:none;
  -moz-user-select: none;
  -khtml-user-select: none;
  -webkit-user-select: none;
  -webkit-touch-callout: none;
}
@media screen {
  aside:hover > a.pilcrow,
  p:hover > a.pilcrow,
  blockquote:hover > a.pilcrow,
  div:hover > a.pilcrow,
  li:hover > a.pilcrow,
  pre:hover > a.pilcrow {
    visibility: visible;
  }
  a.pilcrow:hover {
    background-color: transparent;
  }
}

/* misc */
hr {
  border: 0;
  border-top: 1px solid #eee;
}
.bcp14 {
  font-variant: small-caps;
}

.role {
  font-variant: all-small-caps;
}

/* info block */
#identifiers {
  margin: 0;
  font-size: 0.9em;
}
#identifiers dt {
  width: 3em;
  clear: left;
}
#identifiers dd {
  float: left;
  margin-bottom: 0;
}
/* Fix PDF info block run off issue */
@media print {
  #identifiers dd {
    float: none;
  }
}
#identifiers .authors .author {
  display: inline-block;
  margin-right: 1.5em;
}
#identifiers .authors .org {
  font-style: italic;
}

/* The prepared/rendered info at the very bottom of the page */
.docInfo {
  color: #666; /* Arlen: WCAG 2019 */
  font-size: 0.9em;
  font-style: italic;
  margin-top: 2em;
}
.docInfo .prepared {
  float: left;
}
.docInfo .prepared {
  float: right;
}

/* table of contents */
#toc  {
  padding: 0.75em 0 2em 0;
  margin-bottom: 1em;
}
nav.toc ul {
  margin: 0 0.5em 0 0;
  padding: 0;
  list-style: none;
}
nav.toc li {
  line-height: 1.3em;
  margin: 0.75em 0;
  padding-left: 1.2em;
  text-indent: -1.2em;
}
/* references */
.references dt {
  text-align: right;
  font-weight: bold;
  min-width: 7em;
}
.references dd {
  margin-left: 8em;
  overflow: auto;
}

.refInstance {
  margin-bottom: 1.25em;
}

.references .ascii {
  margin-bottom: 0.25em;
}

/* index */
.index ul {
  margin: 0 0 0 1em;
  padding: 0;
  list-style: none;
}
.index ul ul {
  margin: 0;
}
.index li {
  margin: 0;
  text-indent: -2em;
  padding-left: 2em;
  padding-bottom: 5px;
}
.indexIndex {
  margin: 0.5em 0 1em;
}
.index a {
  font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
  .index ul {
    -moz-column-count: 2;
    -moz-column-gap: 20px;
  }
  .index ul ul {
    -moz-column-count: 1;
    -moz-column-gap: 0;
  }
}

/* authors */
address.vcard {
  font-style: normal;
  margin: 1em 0;
}

address.vcard .nameRole {
  font-weight: 700;
  margin-left: 0;
}
address.vcard .label {
  font-family: "Noto Sans",Arial,Helvetica,sans-serif;
  margin: 0.5em 0;
}
address.vcard .type {
  display: none;
}
.alternative-contact {
  margin: 1.5em 0 1em;
}
hr.addr {
  border-top: 1px dashed;
  margin: 0;
  color: #ddd;
  max-width: calc(100% - 16px);
}

/* temporary notes */
.rfcEditorRemove::before {
  position: absolute;
  top: 0.2em;
  right: 0.2em;
  padding: 0.2em;
  content: "The RFC Editor will remove this note";
  color: #9e2a00; /* Arlen: WCAG 2019 */
  background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
  position: relative;
  padding-top: 1.8em;
  background-color: #ffd; /* Arlen: WCAG 2019 */
  border-radius: 3px;
}
.cref {
  background-color: #ffd; /* Arlen: WCAG 2019 */
  padding: 2px 4px;
}
.crefSource {
  font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
  body {
    padding-top: 2em;
  }
  #title {
    padding: 1em 0;
  }
  h1 {
    font-size: 24px;
  }
  h2 {
    font-size: 20px;
    margin-top: -18px;  /* provide offset for in-page anchors */
    padding-top: 38px;
  }
  #identifiers dd {
    max-width: 60%;
  }
  #toc {
    position: fixed;
    z-index: 2;
    top: 0;
    right: 0;
    padding: 0;
    margin: 0;
    background-color: inherit;
    border-bottom: 1px solid #ccc;
  }
  #toc h2 {
    margin: -1px 0 0 0;
    padding: 4px 0 4px 6px;
    padding-right: 1em;
    min-width: 190px;
    font-size: 1.1em;
    text-align: right;
    background-color: #444;
    color: white;
    cursor: pointer;
  }
  #toc h2::before { /* css hamburger */
    float: right;
    position: relative;
    width: 1em;
    height: 1px;
    left: -164px;
    margin: 6px 0 0 0;
    background: white none repeat scroll 0 0;
    box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
    content: "";
  }
  #toc nav {
    display: none;
    padding: 0.5em 1em 1em;
    overflow: auto;
    height: calc(100vh - 48px);
    border-left: 1px solid #ddd;
  }
}

/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
  body {
    max-width: 724px;
    margin: 42px auto;
    padding-left: 1.5em;
    padding-right: 29em;
  }
  #toc {
    position: fixed;
    top: 42px;
    right: 42px;
    width: 25%;
    margin: 0;
    padding: 0 1em;
    z-index: 1;
  }
  #toc h2 {
    border-top: none;
    border-bottom: 1px solid #ddd;
    font-size: 1em;
    font-weight: normal;
    margin: 0;
    padding: 0.25em 1em 1em 0;
  }
  #toc nav {
    display: block;
    height: calc(90vh - 84px);
    bottom: 0;
    padding: 0.5em 0 0;
    overflow: auto;
  }
  img { /* future proofing */
    max-width: 100%;
    height: auto;
  }
}

/* pagination */
@media print {
  body {

    width: 100%;
  }
  p {
    orphans: 3;
    widows: 3;
  }
  #n-copyright-notice {
    border-bottom: none;
  }
  #toc, #n-introduction {
    page-break-before: always;
  }
  #toc {
    border-top: none;
    padding-top: 0;
  }
  figure, pre {
    page-break-inside: avoid;
  }
  figure {
    overflow: scroll;
  }
  h1, h2, h3, h4, h5, h6 {
    page-break-after: avoid;
  }
  h2+*, h3+*, h4+*, h5+*, h6+* {
    page-break-before: avoid;
  }
  pre {
    white-space: pre-wrap;
    word-wrap: break-word;
    font-size: 10pt;
  }
  table {
    border: 1px solid #ddd;
  }
  td {
    border-top: 1px solid #ddd;
  }
}

/* This is commented out here, as the string-set: doesn't
   pass W3C validation currently */
/*
.ears thead .left {
  string-set: ears-top-left content();
}

.ears thead .center {
  string-set: ears-top-center content();
}

.ears thead .right {
  string-set: ears-top-right content();
}

.ears tfoot .left {
  string-set: ears-bottom-left content();
}

.ears tfoot .center {
  string-set: ears-bottom-center content();
}

.ears tfoot .right {
  string-set: ears-bottom-right content();
}
*/

@page :first {
  padding-top: 0;
  @top-left {
    content: normal;
    border: none;
  }
  @top-center {
    content: normal;
    border: none;
  }
  @top-right {
    content: normal;
    border: none;
  }
}

@page {
  size: A4;
  margin-bottom: 45mm;
  padding-top: 20px;
  /* The follwing is commented out here, but set appropriately by in code, as
     the content depends on the document */
  /*
  @top-left {
    content: 'Internet-Draft';
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-left {
    content: string(ears-top-left);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-center {
    content: string(ears-top-center);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-right {
    content: string(ears-top-right);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @bottom-left {
    content: string(ears-bottom-left);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-center {
    content: string(ears-bottom-center);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-right {
      content: '[Page ' counter(page) ']';
      vertical-align: top;
      border-top: solid 1px #ccc;
  }
  */

}

/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
  z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
  clear: both;
}


/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
  vertical-align: top;
}

/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
  width: 8em;
}

/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
  margin-left: 1em;
}

/* Give floating toc a background color (needed when it's a div inside section */
#toc {
  background-color: white;
}

/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
  #toc h2 a,
  #toc h2 a:link,
  #toc h2 a:focus,
  #toc h2 a:hover,
  #toc a.toplink,
  #toc a.toplink:hover {
    color: white;
    background-color: #444;
    text-decoration: none;
  }
}

/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
  #toc {
    padding: 0 0 1em 1em;
  }
}

/* Style section numbers with more space between number and title */
.section-number {
  padding-right: 0.5em;
}

/* prevent monospace from becoming overly large */
tt, code, pre, code {
  font-size: 95%;
}

/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
  line-height: 1.12;
}


/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
  float: right;
  margin-right: 0.5em;
}

/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
  float: left;
  margin-right: 1em;
}
dl.dlNewline > dt {
  float: none;
}

/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
  text-align: left;
}
table td.text-center,
table th.text-center {
  text-align: center;
}
table td.text-right,
table th.text-right {
  text-align: right;
}

/* Make the alternative author contact informatio look less like just another
   author, and group it closer with the primary author contact information */
.alternative-contact {
  margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
  margin: 0 0 0 2em;
}

/* With it being possible to set tables with alignment
  left, center, and right, { width: 100%; } does not make sense */
table {
  width: auto;
}

/* Avoid reference text that sits in a block with very wide left margin,
   because of a long floating dt label.*/
.references dd {
  overflow: visible;
}

/* Control caption placement */
caption {
  caption-side: bottom;
}

/* Limit the width of the author address vcard, so names in right-to-left
   script don't end up on the other side of the page. */

address.vcard {
  max-width: 30em;
  margin-right: auto;
}

/* For address alignment dependent on LTR or RTL scripts */
address div.left {
  text-align: left;
}
address div.right {
  text-align: right;
}

/* Provide table alignment support.  We can't use the alignX classes above
   since they do unwanted things with caption and other styling. */
table.right {
 margin-left: auto;
 margin-right: 0;
}
table.center {
 margin-left: auto;
 margin-right: auto;
}
table.left {
 margin-left: 0;
 margin-right: auto;
}

/* Give the table caption label the same styling as the figcaption */
caption a[href] {
  color: #222;
}

@media print {
  .toplink {
    display: none;
  }

  /* avoid overwriting the top border line with the ToC header */
  #toc {
    padding-top: 1px;
  }

  /* Avoid page breaks inside dl and author address entries */
  .vcard {
    page-break-inside: avoid;
  }

}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
  font-variant: small-caps;
  font-weight: bold;
  font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
 h2 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 31px;
 }
 h3 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
 h4 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
/* Float artwork pilcrow to the right */
@media screen {
  .artwork a.pilcrow {
    display: block;
    line-height: 0.7;
    margin-top: 0.15em;
  }
}
/* Make pilcrows on dd visible */
@media screen {
  dd:hover > a.pilcrow {
    visibility: visible;
  }
}
/* Make the placement of figcaption match that of a table's caption
   by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
   margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
  margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
   possibly even requiring a new line */
@media print {
  a.pilcrow {
    display: none;
  }
}
/* Styling for the external metadata */
div#external-metadata {
  background-color: #eee;
  padding: 0.5em;
  margin-bottom: 0.5em;
  display: none;
}
div#internal-metadata {
  padding: 0.5em;                       /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
  clear: both;
  margin: 0 0 -1em;
  padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
  margin-bottom: 0.25em;
  min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
  border-left: 1px solid #ddd;
  margin: 1em 0 1em 2em;
  padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
  margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
  figcaption, table caption {
    page-break-before: avoid;
  }
}
/* Font size adjustments for print */
@media print {
  body  { font-size: 10pt;      line-height: normal; max-width: 96%; }
  h1    { font-size: 1.72em;    padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
  h2    { font-size: 1.44em;    padding-top: 1.5em; } /* 1*1.2*1.2 */
  h3    { font-size: 1.2em;     padding-top: 1.5em; } /* 1*1.2 */
  h4    { font-size: 1em;       padding-top: 1.5em; }
  h5, h6 { font-size: 1em;      margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
  .artwork,
  .sourcecode {
    margin-bottom: 1em;
  }
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
  min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
  border: 1px solid #ddd;
}
td {
  border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
  background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
  #toc nav { display: none; }
  #toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
  break-after: avoid-page;
  break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
  break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode  {
  break-before: auto;
  break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
  break-before: auto;
  break-inside: auto;
}
dt {
  break-before: auto;
  break-after: avoid-page;
}
dd {
  break-before: avoid-page;
  break-after: auto;
  orphans: 3;
  widows: 3
}
span.break, dd.break {
  margin-bottom: 0;
  min-height: 0;
  break-before: auto;
  break-inside: auto;
  break-after: auto;
}
/* Undo break-before ToC */
@media print {
  #toc {
    break-before: auto;
  }
}
/* Text in compact lists should not get extra bottim margin space,
   since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
 margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
  margin-bottom: 1em;                    /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
   backgrounds.  Changed to something a bit more selective. */
tt, code {
  background-color: transparent;
}
p tt, p code, li tt, li code {
  background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
   margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
  line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
  margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
  clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
  content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
  margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
  margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9136" rel="alternate">
  <link href="urn:issn:2070-1721" rel="alternate">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-bess-evpn-prefix-advertisement-11" rel="prev">
  </head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9136</td>
<td class="center">EVPN Prefix Advertisement</td>
<td class="right">October 2021</td>
</tr></thead>
<tfoot><tr>
<td class="left">Rabadan, et al.</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9136" class="eref">9136</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2021-10" class="published">October 2021</time>
    </dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
      <div class="author-name">J. Rabadan, <span class="editor">Ed.</span>
</div>
<div class="org">Nokia</div>
</div>
<div class="author">
      <div class="author-name">W. Henderickx</div>
<div class="org">Nokia</div>
</div>
<div class="author">
      <div class="author-name">J. Drake</div>
<div class="org">Juniper</div>
</div>
<div class="author">
      <div class="author-name">W. Lin</div>
<div class="org">Juniper</div>
</div>
<div class="author">
      <div class="author-name">A. Sajassi</div>
<div class="org">Cisco</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9136</h1>
<h1 id="title">IP Prefix Advertisement in Ethernet VPN (EVPN)</h1>
<section id="section-abstract">
      <h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">
   The BGP MPLS-based Ethernet VPN (EVPN) (RFC 7432) mechanism provides a
   flexible control plane that allows intra-subnet connectivity in an
   MPLS and/or Network Virtualization Overlay (NVO) (RFC 7365) network.
   In some networks, there is also a need for dynamic and efficient
   inter-subnet connectivity across Tenant Systems and end devices that
   can be physical or virtual and do not necessarily participate in
   dynamic routing protocols. This document defines a new EVPN route
   type for the advertisement of IP prefixes and explains some use-case
   examples where this new route type is used.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
        <h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
        </h2>
<p id="section-boilerplate.1-1">
            This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further
            information on Internet Standards is available in Section 2 of 
            RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <span><a href="https://www.rfc-editor.org/info/rfc9136">https://www.rfc-editor.org/info/rfc9136</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
        <h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
        </h2>
<p id="section-boilerplate.2-1">
            Copyright (c) 2021 IETF Trust and the persons identified as the
            document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
        <a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
        </h2>
<nav class="toc"><ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1">
            <p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>.  <a href="#name-introduction" class="xref">Introduction</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1.2.1">
                <p id="section-toc.1-1.1.2.1.1" class="keepWithNext"><a href="#section-1.1" class="xref">1.1</a>.  <a href="#name-terminology" class="xref">Terminology</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2">
            <p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>.  <a href="#name-problem-statement" class="xref">Problem Statement</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.1">
                <p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="xref">2.1</a>.  <a href="#name-inter-subnet-connectivity-r" class="xref">Inter-Subnet Connectivity Requirements in Data Centers</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.2">
                <p id="section-toc.1-1.2.2.2.1"><a href="#section-2.2" class="xref">2.2</a>.  <a href="#name-the-need-for-the-evpn-ip-pr" class="xref">The Need for the EVPN IP Prefix Route</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3">
            <p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>.  <a href="#name-the-bgp-evpn-ip-prefix-rout" class="xref">The BGP EVPN IP Prefix Route</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1">
                <p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>.  <a href="#name-ip-prefix-route-encoding" class="xref">IP Prefix Route Encoding</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.2">
                <p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>.  <a href="#name-overlay-indexes-and-recursi" class="xref">Overlay Indexes and Recursive Lookup Resolution</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4">
            <p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.  <a href="#name-overlay-index-use-cases" class="xref">Overlay Index Use Cases</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1">
                <p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>.  <a href="#name-ts-ip-address-overlay-index" class="xref">TS IP Address Overlay Index Use Case</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2">
                <p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>.  <a href="#name-floating-ip-overlay-index-u" class="xref">Floating IP Overlay Index Use Case</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.3">
                <p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>.  <a href="#name-bump-in-the-wire-use-case" class="xref">Bump-in-the-Wire Use Case</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4">
                <p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="xref">4.4</a>.  <a href="#name-ip-vrf-to-ip-vrf-model" class="xref">IP-VRF-to-IP-VRF Model</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4.2.1">
                    <p id="section-toc.1-1.4.2.4.2.1.1"><a href="#section-4.4.1" class="xref">4.4.1</a>.  <a href="#name-interface-less-ip-vrf-to-ip" class="xref">Interface-less IP-VRF-to-IP-VRF Model</a></p>
</li>
                  <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4.2.2">
                    <p id="section-toc.1-1.4.2.4.2.2.1"><a href="#section-4.4.2" class="xref">4.4.2</a>.  <a href="#name-interface-ful-ip-vrf-to-ip-" class="xref">Interface-ful IP-VRF-to-IP-VRF with SBD IRB</a></p>
</li>
                  <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4.2.3">
                    <p id="section-toc.1-1.4.2.4.2.3.1"><a href="#section-4.4.3" class="xref">4.4.3</a>.  <a href="#name-interface-ful-ip-vrf-to-ip-v" class="xref">Interface-ful IP-VRF-to-IP-VRF with Unnumbered SBD IRB</a></p>
</li>
                </ul>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5">
            <p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.  <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6">
            <p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.  <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7">
            <p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>.  <a href="#name-references" class="xref">References</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.1">
                <p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="xref">7.1</a>.  <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.2">
                <p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="xref">7.2</a>.  <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8">
            <p id="section-toc.1-1.8.1"><a href="#appendix-A" class="xref"></a><a href="#name-acknowledgments" class="xref">Acknowledgments</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9">
            <p id="section-toc.1-1.9.1"><a href="#appendix-B" class="xref"></a><a href="#name-contributors" class="xref">Contributors</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10">
            <p id="section-toc.1-1.10.1"><a href="#appendix-C" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
        </ul>
</nav>
</section>
</div>
<div id="sect-1">
<section id="section-1">
      <h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
      </h2>
<p id="section-1-1"><span>[<a href="#RFC7365" class="xref">RFC7365</a>]</span> provides a framework for Data Center (DC) Network Virtualization
   over Layer 3 and specifies that the Network Virtualization Edge (NVE) devices must provide Layer 2 and Layer 3 virtualized network services in
   multi-tenant DCs. <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span> discusses the use of EVPN as the technology of
   choice to provide Layer 2 or intra-subnet services in these DCs.  This
   document, along with <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span>, specifies the use of EVPN for Layer 3 or inter-subnet connectivity services.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">
   <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> defines some
   fairly common inter-subnet forwarding scenarios where Tenant Systems (TSs) can exchange
   packets with TSs located in remote subnets. In order to achieve this,
   <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> describes how Media Access
   Control (MAC) and IPs encoded in TS RT-2 routes are not only used to populate MAC Virtual Routing and Forwarding (MAC-VRF) and
   overlay Address Resolution Protocol (ARP) tables but also IP-VRF tables with the encoded TS host routes
   (/32 or /128). In some cases, EVPN may advertise IP prefixes and therefore
   provide aggregation in the IP-VRF tables, as opposed to propagating
   individual host routes. This document complements the scenarios described
   in <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> and defines
   how EVPN may be used to advertise IP prefixes. Interoperability between
   EVPN and Layer 3 Virtual Private Network (VPN) <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span> IP Prefix routes is out of the
   scope of this document.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">
   <a href="#sect-2.1" class="xref">Section 2.1</a> describes the
   inter-subnet connectivity requirements in DCs. <a href="#sect-2.2" class="xref">Section 2.2</a> explains why a new EVPN route
   type is required for IP prefix advertisements. Sections <a href="#sect-3" class="xref">3</a>, <a href="#sect-4" class="xref">4</a>, and <a href="#sect-5" class="xref">5</a> will
   describe this route type and how it is used in some specific use
   cases.<a href="#section-1-3" class="pilcrow">¶</a></p>
<div id="sect-1.1">
<section id="section-1.1">
        <h3 id="name-terminology">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
        </h3>
<p id="section-1.1-1">
   The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>",
   "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>", "<span class="bcp14">MAY</span>", and
   "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as described in BCP
   14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only when, they appear in all
   capitals, as shown here.<a href="#section-1.1-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-1.1-2">
          <dt id="section-1.1-2.1">AC:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.2">Attachment Circuit<a href="#section-1.1-2.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.3">ARP:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.4">Address Resolution Protocol<a href="#section-1.1-2.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.5">BD:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.6">Broadcast Domain. As per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>, an EVI consists
 of a single BD or multiple BDs. In case of VLAN-bundle and VLAN-based
 service models (see <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>), a BD is equivalent to
 an EVI. In case of a VLAN-aware bundle service model, an EVI contains
 multiple BDs.  Also, in this document, "BD" and "subnet" are equivalent
 terms.<a href="#section-1.1-2.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.7">BD Route Target:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.8">Refers to the broadcast-domain-assigned Route Target <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span>. In case of a VLAN-aware
 bundle service model, all the BD instances in the MAC-VRF share the
 same Route Target.<a href="#section-1.1-2.8" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.9">BT:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.10">Bridge Table. The instantiation of a BD in a
   MAC-VRF, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-1.1-2.10" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.11">CE:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.12">Customer Edge<a href="#section-1.1-2.12" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.13">DA:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.14">Destination Address<a href="#section-1.1-2.14" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.15">DGW:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.16">Data Center Gateway<a href="#section-1.1-2.16" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.17">Ethernet A-D Route:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.18">Ethernet Auto-Discovery (A-D)
 route, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-1.1-2.18" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.19">Ethernet NVO Tunnel:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.20">Refers to Network Virtualization
 Overlay tunnels with Ethernet payload. Examples of this type of
 tunnel are VXLAN or GENEVE.<a href="#section-1.1-2.20" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.21">EVI:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.22">EVPN Instance spanning the NVE/PE devices that are
 participating on that EVPN, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-1.1-2.22" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.23">EVPN:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.24">Ethernet VPN, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-1.1-2.24" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.25">GENEVE:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.26">Generic Network Virtualization Encapsulation, as per <span>[<a href="#RFC8926" class="xref">RFC8926</a>]</span>.<a href="#section-1.1-2.26" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.27">GRE:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.28">Generic Routing Encapsulation<a href="#section-1.1-2.28" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.29">GW IP:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.30">Gateway IP address<a href="#section-1.1-2.30" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.31">IPL:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.32">IP Prefix Length<a href="#section-1.1-2.32" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.33">IP NVO Tunnel:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.34">Refers to Network Virtualization
 Overlay tunnels with IP payload (no MAC header in the payload).<a href="#section-1.1-2.34" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.35">IP-VRF:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.36">A Virtual Routing and Forwarding table for IP
 routes on an NVE/PE. The IP routes could be populated by EVPN and
 IP-VPN address families. An IP-VRF is also an instantiation of a Layer
 3 VPN in an NVE/PE.<a href="#section-1.1-2.36" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.37">IRB:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.38">Integrated Routing and Bridging interface. It
   connects an IP-VRF to a BD (or subnet).<a href="#section-1.1-2.38" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.39">MAC:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.40">Media Access Control<a href="#section-1.1-2.40" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.41">MAC-VRF:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.42">A Virtual Routing and Forwarding table for
 MAC addresses on an NVE/PE, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>. A MAC-VRF is also an instantiation of an EVI in an
 NVE/PE.<a href="#section-1.1-2.42" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.43">ML:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.44">MAC Address Length<a href="#section-1.1-2.44" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.45">ND:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.46">Neighbor Discovery<a href="#section-1.1-2.46" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.47">NVE:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.48">Network Virtualization Edge<a href="#section-1.1-2.48" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.49">NVO:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.50">Network Virtualization Overlay<a href="#section-1.1-2.50" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.51">PE:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.52">Provider Edge<a href="#section-1.1-2.52" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.53">RT-2:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.54">EVPN Route Type 2, i.e., MAC/IP Advertisement
   route, as defined in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-1.1-2.54" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.55">RT-5:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.56">EVPN Route Type 5, i.e., IP Prefix route, as
 defined in <a href="#sect-3" class="xref">Section 3</a>.<a href="#section-1.1-2.56" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.57">SBD:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.58">Supplementary Broadcast Domain. A BD that does not
 have any ACs, only IRB interfaces, and is used to provide
 connectivity among all the IP-VRFs of the tenant. The SBD is only
 required in IP-VRF-to-IP-VRF use cases (see <a href="#sect-4.4" class="xref">Section 4.4</a>).<a href="#section-1.1-2.58" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.59">SN:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.60">Subnet<a href="#section-1.1-2.60" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.61">TS:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.62">Tenant System<a href="#section-1.1-2.62" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.63">VA:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.64">Virtual Appliance<a href="#section-1.1-2.64" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.65">VM:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.66">Virtual Machine<a href="#section-1.1-2.66" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.67">VNI:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.68">Virtual Network Identifier. As in <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>, the
 term is used as a representation of a 24-bit NVO instance identifier,
 with the understanding that "VNI" will refer to a VXLAN Network
 Identifier in VXLAN, or a Virtual Network Identifier in GENEVE,
   etc., unless it is stated otherwise.<a href="#section-1.1-2.68" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.69">VSID:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.70">Virtual Subnet Identifier<a href="#section-1.1-2.70" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.71">VTEP:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.72">VXLAN Termination End Point, as per <span>[<a href="#RFC7348" class="xref">RFC7348</a>]</span>.<a href="#section-1.1-2.72" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-2.73">VXLAN:</dt>
          <dd style="margin-left: 5.0em" id="section-1.1-2.74">Virtual eXtensible Local Area Network, as per <span>[<a href="#RFC7348" class="xref">RFC7348</a>]</span>.<a href="#section-1.1-2.74" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-1.1-3">This document also assumes familiarity with the terminology of
 <span>[<a href="#RFC7365" class="xref">RFC7365</a>]</span>, <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>, and <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>.<a href="#section-1.1-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-2">
<section id="section-2">
      <h2 id="name-problem-statement">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-problem-statement" class="section-name selfRef">Problem Statement</a>
      </h2>
<p id="section-2-1">
   This section describes the inter-subnet connectivity requirements in
   DCs and why a specific route type to advertise IP prefixes
   is needed.<a href="#section-2-1" class="pilcrow">¶</a></p>
<div id="sect-2.1">
<section id="section-2.1">
        <h3 id="name-inter-subnet-connectivity-r">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-inter-subnet-connectivity-r" class="section-name selfRef">Inter-Subnet Connectivity Requirements in Data Centers</a>
        </h3>
<p id="section-2.1-1">

 <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> is used as the control plane for an NVO solution in DCs, where NVE devices can be located in hypervisors or
   Top-of-Rack (ToR) switches, as described in <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">
   The following considerations apply to TSs that are
   physical or virtual systems identified by MAC (and possibly IP addresses)
   and are connected to BDs by Attachment Circuits:<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-3.1">The Tenant Systems may be VMs that generate
        traffic from their own MAC and IP.<a href="#section-2.1-3.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.1-3.2">
            <p id="section-2.1-3.2.1">The Tenant Systems may be VA entities that
 forward traffic to/from IP addresses of different end devices sitting
 behind them.<a href="#section-2.1-3.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-3.2.2.1">These VAs can be firewalls, load balancers, NAT devices, other
 appliances, or virtual gateways with virtual routing instances.<a href="#section-2.1-3.2.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-2.1-3.2.2.2">These VAs do not necessarily participate in dynamic routing
 protocols and hence rely on the EVPN NVEs to advertise the routes on
 their behalf.<a href="#section-2.1-3.2.2.2" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-2.1-3.2.2.3">In all these cases, the VA will forward traffic to other TSs using
 its own source MAC, but the source IP will be the one associated with the
 end device sitting behind the VA or a translated IP address (part of a public
       NAT pool) if the VA is performing NAT.<a href="#section-2.1-3.2.2.3" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-2.1-3.2.2.4">Note that the same IP address and endpoint could exist behind two
 of these TSs. One example of this would be certain appliance
 resiliency mechanisms, where a virtual IP or floating IP can be owned
 by one of the two VAs running the resiliency protocol (the Master
 VA). The Virtual Router Redundancy Protocol (VRRP) <span>[<a href="#RFC5798" class="xref">RFC5798</a>]</span> is one
 particular example of this.  Another example is multihomed subnets,
 i.e., the same subnet is connected to two VAs.<a href="#section-2.1-3.2.2.4" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-2.1-3.2.2.5">Although these VAs provide IP connectivity to VMs and the subnets
 behind them, they do not always have their own IP interface connected
 to the EVPN NVE; Layer 2 firewalls are examples of VAs not
 supporting IP interfaces.<a href="#section-2.1-3.2.2.5" class="pilcrow">¶</a>
</li>
            </ul>
</li>
        </ul>
<p id="section-2.1-4"><a href="#fig-1" class="xref">Figure 1</a> illustrates some of the examples described above.<a href="#section-2.1-4" class="pilcrow">¶</a></p>
<span id="name-dc-inter-subnet-use-cases"></span><div id="fig-1">
<figure id="figure-1">
          <div class="alignLeft art-text artwork" id="section-2.1-5.1">
<pre>
                    NVE1
                 +-----------+
        TS1(VM)--|  (BD-10)  |-----+
          M1/IP1 +-----------+     |               DGW1
                               +---------+    +-------------+
                               |         |----|  (BD-10)    |
  SN1---+           NVE2       |         |    |    IRB1\    |
        |        +-----------+ |         |    |     (IP-VRF)|---+
  SN2---TS2(VA)--|  (BD-10)  |-|         |    +-------------+  _|_
        | M2/IP2 +-----------+ |  VXLAN/ |                    (   )
  IP4---+  &lt;-+                 |  GENEVE |         DGW2      ( WAN )
             |                 |         |    +-------------+ (___)
          vIP23 (floating)     |         |----|  (BD-10)    |   |
             |                 +---------+    |    IRB2\    |   |
  SN1---+  &lt;-+      NVE3         |  |  |      |     (IP-VRF)|---+
        | M3/IP3 +-----------+   |  |  |      +-------------+
  SN3---TS3(VA)--|  (BD-10)  |---+  |  |
        |        +-----------+      |  |
  IP5---+                           |  |
                                    |  |
                 NVE4               |  |      NVE5            +--SN5
           +---------------------+  |  | +-----------+        |
  IP6------|  (BD-1)             |  |  +-|  (BD-10)  |--TS4(VA)--SN6
           |       \             |  |    +-----------+        |
           |    (IP-VRF)         |--+                ESI4     +--SN7
           |       /  \IRB3      |
       |---|  (BD-2)  (BD-10)    |
    SN4|   +---------------------+


  Note:
  ESI4 = Ethernet Segment Identifier 4
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-dc-inter-subnet-use-cases" class="selfRef">DC Inter-subnet Use Cases</a>
          </figcaption></figure>
</div>
<p id="section-2.1-6">Where:<a href="#section-2.1-6" class="pilcrow">¶</a></p>
<p id="section-2.1-7">NVE1, NVE2, NVE3, NVE4, NVE5, DGW1, and DGW2 share the same BD for a
   particular tenant. BD-10 is comprised of the collection of BD
   instances defined in all the NVEs. All the hosts connected to BD-10
   belong to the same IP subnet. The hosts connected to BD-10 are listed
   below:<a href="#section-2.1-7" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.1-8.1">TS1 is a VM that generates/receives traffic to/from IP1, where IP1
   belongs to the BD-10 subnet.<a href="#section-2.1-8.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.1-8.2">TS2 and TS3 are VAs that send/receive traffic
   to/from the subnets and hosts sitting behind them (SN1, SN2, SN3, IP4, and
   IP5). Their IP addresses (IP2 and IP3) belong to the BD-10 subnet, and they
   can also generate/receive traffic. When these VAs receive packets destined
   to their own MAC addresses (M2 and M3), they will route the packets to the
   proper subnet or host. These VAs do not support routing protocols to
   advertise the subnets connected to them and can move to a different server
   and NVE when the cloud management system decides to do so. These VAs may
   also support redundancy mechanisms for some subnets, similar to VRRP, where
   a floating IP is owned by the Master VA and only the Master VA forwards
   traffic to a given subnet. For example, vIP23 in <a href="#fig-1" class="xref">Figure 1</a> is a floating IP that
   can be owned by TS2 or TS3 depending on which system is the Master. Only
   the Master will forward traffic to SN1.<a href="#section-2.1-8.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.1-8.3">Integrated Routing and Bridging interfaces IRB1, IRB2, and IRB3 have
   their own IP addresses that belong to the BD-10 subnet too. These IRB
   interfaces connect the BD-10 subnet to Virtual Routing and Forwarding
   (IP-VRF) instances that can route the traffic to other subnets for the same
   tenant (within the DC or at the other end of the WAN).<a href="#section-2.1-8.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-2.1-8.4">TS4 is a Layer 2 VA that provides connectivity to subnets SN5, SN6, and
   SN7 but does not have an IP address itself in the BD-10. TS4 is connected
   to a port on NVE5 that is assigned to Ethernet Segment Identifier 4 (ESI4).<a href="#section-2.1-8.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-2.1-9">
   For a BD to which an ingress NVE is attached, "Overlay Index" is
   defined as an identifier that the ingress EVPN NVE requires in order
   to forward packets to a subnet or host in a remote subnet. As an
   example, vIP23 (<a href="#fig-1" class="xref">Figure 1</a>) is an Overlay Index that any NVE attached
   to BD-10 needs to know in order to forward packets to SN1. The IRB3 IP
   address is an Overlay Index required to get to SN4, and ESI4 is an Overlay Index needed to forward
   traffic to SN5. In other words, the Overlay Index is a next hop in
   the overlay address space that can be an IP address, a MAC address, or
   an ESI. When advertised along with an IP prefix, the Overlay Index
   requires a recursive resolution to find out the egress NVE to which the
   EVPN packets need to be sent.<a href="#section-2.1-9" class="pilcrow">¶</a></p>
<p id="section-2.1-10">
   All the DC use cases in <a href="#fig-1" class="xref">Figure 1</a> require inter-subnet
   forwarding; therefore, the individual host routes and subnets:<a href="#section-2.1-10" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-2.1-11">
          <dt>a)</dt>
<dd id="section-2.1-11.1">must be advertised from the NVEs (since VAs and VMs do not
 participate in dynamic routing protocols) and<a href="#section-2.1-11.1" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt>b)</dt>
<dd id="section-2.1-11.2">may be associated with an Overlay Index that can be a VA IP address,
 a floating IP address, a MAC address, or an ESI. The Overlay Index is
 further discussed in <a href="#sect-3.2" class="xref">Section 3.2</a>.<a href="#section-2.1-11.2" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
</section>
</div>
<div id="sect-2.2">
<section id="section-2.2">
        <h3 id="name-the-need-for-the-evpn-ip-pr">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-the-need-for-the-evpn-ip-pr" class="section-name selfRef">The Need for the EVPN IP Prefix Route</a>
        </h3>
<p id="section-2.2-1">
   <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> defines a MAC/IP Advertisement route (also
   referred to as "RT-2") where a MAC
   address can be advertised together with an IP address length and IP
   address (IP). While a variable IP address length might have been used
   to indicate the presence of an IP prefix in a route type 2, there are
   several specific use cases in which using this route type to deliver
   IP prefixes is not suitable.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2">
   One example of such use cases is the "floating IP" example described
   in <a href="#sect-2.1" class="xref">Section 2.1</a>. In this example, it is
   necessary to decouple the advertisement of the prefixes from the advertisement of a MAC address
   of either M2 or M3; otherwise, the solution gets highly inefficient
   and does not scale.<a href="#section-2.2-2" class="pilcrow">¶</a></p>
<p id="section-2.2-3">
   For example, if 1,000 prefixes are advertised from M2 (using RT-2)
   and the floating IP owner changes from M2 to M3, 1,000 routes would
   be withdrawn by M2 and readvertised by M3. However, if a
   separate route type is used, 1,000 routes can be advertised as
   associated with the floating IP address (vIP23), and only one RT-2 can be used for
   advertising the ownership of the floating IP, i.e., vIP23 and M2 in
   the route type 2. When the floating IP owner changes from M2 to M3, a
   single RT-2 withdrawal/update is required to indicate the change. The
   remote DGW will not change any of the 1,000 prefixes associated with
   vIP23 but will only update the ARP resolution entry for vIP23 (now
 pointing at M3).<a href="#section-2.2-3" class="pilcrow">¶</a></p>
<p id="section-2.2-4">
   An EVPN route (type 5) for the advertisement of IP prefixes is
   described in this document. This new route type has a differentiated
   role from the RT-2 route and addresses the inter-subnet connectivity
   scenarios for DCs (or NVO-based
   networks in general) described in
   this document. Using this new RT-5, an IP prefix may be advertised
   along with an Overlay Index, which can be a GW IP address, a MAC, or an
   ESI. The IP prefix may also be advertised without an Overlay Index, in which case the BGP next hop will
   point at the egress NVE, Area Border Router (ABR), or ASBR, and the MAC in the EVPN Router's MAC
   Extended Community will provide the inner MAC destination address to
   be used. As discussed throughout the document, the EVPN RT-2 does not
   meet the requirements for all the DC use cases; therefore, this EVPN
   route type 5 is required.<a href="#section-2.2-4" class="pilcrow">¶</a></p>
<p id="section-2.2-5">
   The EVPN route type 5 decouples the IP prefix advertisements from the
   MAC/IP Advertisement routes in EVPN. Hence:<a href="#section-2.2-5" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-2.2-6">
          <dt>a)</dt>
<dd id="section-2.2-6.1">The clean and clear advertisements of IPv4 or IPv6 prefixes
        in a Network Layer Reachability Information (NLRI) message without
        MAC addresses are allowed.<a href="#section-2.2-6.1" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt>b)</dt>
<dd id="section-2.2-6.2">Since the route type is different from the MAC/IP Advertisement
 route, the current procedures described in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> do not need to
 be modified.<a href="#section-2.2-6.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt>c)</dt>
<dd id="section-2.2-6.3">A flexible implementation is allowed where the prefix can be linked to
 different types of Overlay/Underlay Indexes: overlay IP addresses,
 overlay MAC addresses, overlay ESIs, underlay BGP next hops, etc.<a href="#section-2.2-6.3" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt>d)</dt>
<dd id="section-2.2-6.4">An EVPN implementation not requiring IP prefixes can simply discard
 them by looking at the route type value.<a href="#section-2.2-6.4" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-2.2-7">
   The following sections describe how EVPN is extended with a route
   type for the advertisement of IP prefixes and how this route is used
   to address the inter-subnet connectivity requirements existing in the
   DC.<a href="#section-2.2-7" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-3">
<section id="section-3">
      <h2 id="name-the-bgp-evpn-ip-prefix-rout">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-the-bgp-evpn-ip-prefix-rout" class="section-name selfRef">The BGP EVPN IP Prefix Route</a>
      </h2>
<p id="section-3-1"> The BGP EVPN NLRI as defined in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> is shown below:<a href="#section-3-1" class="pilcrow">¶</a></p>
<span id="name-bgp-evpn-nlri"></span><figure id="figure-2">
        <div class="alignLeft art-text artwork" id="section-3-2.1">
<pre>
    +-----------------------------------+
    |    Route Type (1 octet)           |
    +-----------------------------------+
    |     Length (1 octet)              |
    +-----------------------------------+
    | Route Type specific (variable)    |
    +-----------------------------------+
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-bgp-evpn-nlri" class="selfRef">BGP EVPN NLRI</a>
        </figcaption></figure>
<p id="section-3-3">
   This document defines an additional route type (RT-5) in the IANA
   "EVPN Route Types" registry <span>[<a href="#EVPNRouteTypes" class="xref">EVPNRouteTypes</a>]</span> to be used for the
      advertisement of EVPN routes using IP prefixes:<a href="#section-3-3" class="pilcrow">¶</a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-3-4.1">
          <span class="break"></span><dl class="dlCompact dlParallel" id="section-3-4.1.1">
            <dt id="section-3-4.1.1.1">Value:</dt>
            <dd style="margin-left: 1.5em" id="section-3-4.1.1.2">5<a href="#section-3-4.1.1.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt id="section-3-4.1.1.3">Description:</dt>
            <dd style="margin-left: 1.5em" id="section-3-4.1.1.4">IP Prefix<a href="#section-3-4.1.1.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
</li>
      </ul>
<p id="section-3-5">
   According to <span><a href="https://www.rfc-editor.org/rfc/rfc7606#section-5.4" class="relref">Section 5.4</a> of [<a href="#RFC7606" class="xref">RFC7606</a>]</span>, a node that doesn't recognize the
   route type 5 (RT-5) will ignore it. Therefore, an NVE following this
   document can still be attached to a BD where an NVE ignoring RT-5s is
   attached. Regular procedures described in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> would apply in that case for both
   NVEs. In case two or more NVEs are attached to different BDs of the same
   tenant, they <span class="bcp14">MUST</span> support the RT-5 for the proper inter-subnet forwarding
   operation of the tenant.<a href="#section-3-5" class="pilcrow">¶</a></p>
<p id="section-3-6">
   The detailed encoding of this route and associated procedures are
   described in the following sections.<a href="#section-3-6" class="pilcrow">¶</a></p>
<div id="sect-3.1">
<section id="section-3.1">
        <h3 id="name-ip-prefix-route-encoding">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-ip-prefix-route-encoding" class="section-name selfRef">IP Prefix Route Encoding</a>
        </h3>
<p id="section-3.1-1">
   An IP Prefix route type for IPv4 has the Length field set to 34 and
   consists of the following fields:<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<span id="name-evpn-ip-prefix-route-nlri-f"></span><figure id="figure-3">
          <div class="alignLeft art-text artwork" id="section-3.1-2.1">
<pre>
    +---------------------------------------+
    |      RD (8 octets)                    |
    +---------------------------------------+
    |Ethernet Segment Identifier (10 octets)|
    +---------------------------------------+
    |  Ethernet Tag ID (4 octets)           |
    +---------------------------------------+
    |  IP Prefix Length (1 octet, 0 to 32)  |
    +---------------------------------------+
    |  IP Prefix (4 octets)                 |
    +---------------------------------------+
    |  GW IP Address (4 octets)             |
    +---------------------------------------+
    |  MPLS Label (3 octets)                |
    +---------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-evpn-ip-prefix-route-nlri-f" class="selfRef">EVPN IP Prefix Route NLRI for IPv4</a>
          </figcaption></figure>
<p id="section-3.1-3">
   An IP Prefix route type for IPv6 has the Length field set to 58 and
   consists of the following fields:<a href="#section-3.1-3" class="pilcrow">¶</a></p>
<span id="name-evpn-ip-prefix-route-nlri-fo"></span><figure id="figure-4">
          <div class="alignLeft art-text artwork" id="section-3.1-4.1">
<pre>
    +---------------------------------------+
    |      RD (8 octets)                    |
    +---------------------------------------+
    |Ethernet Segment Identifier (10 octets)|
    +---------------------------------------+
    |  Ethernet Tag ID (4 octets)           |
    +---------------------------------------+
    |  IP Prefix Length (1 octet, 0 to 128) |
    +---------------------------------------+
    |  IP Prefix (16 octets)                |
    +---------------------------------------+
    |  GW IP Address (16 octets)            |
    +---------------------------------------+
    |  MPLS Label (3 octets)                |
    +---------------------------------------+
</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-evpn-ip-prefix-route-nlri-fo" class="selfRef">EVPN IP Prefix Route NLRI for IPv6</a>
          </figcaption></figure>
<p id="section-3.1-5">
   Where:<a href="#section-3.1-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.1-6.1">The Length field of the BGP EVPN NLRI for an EVPN IP Prefix route
     <span class="bcp14">MUST</span> be either 34 (if IPv4 addresses are carried) or 58 (if IPv6
     addresses are carried). The IP prefix and gateway IP address <span class="bcp14">MUST</span>
     be from the same IP address family.<a href="#section-3.1-6.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.1-6.2">The Route Distinguisher (RD) and Ethernet Tag ID <span class="bcp14">MUST</span> be used as
     defined in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> and <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>. In particular, the RD is unique
     per MAC-VRF (or IP-VRF). The MPLS Label field is set to either an
     MPLS label or a VNI, as described in <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span> for other EVPN route
     types.<a href="#section-3.1-6.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.1-6.3">The Ethernet Segment Identifier <span class="bcp14">MUST</span> be a non-zero 10-octet
     identifier if the ESI is used as an Overlay Index (see the
     definition of "Overlay Index" in <a href="#sect-3.2" class="xref">Section 3.2</a>). It <span class="bcp14">MUST</span> be all bytes zero otherwise. The ESI format is described in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-3.1-6.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.1-6.4">The IP prefix length can be set to a value between 0 and 32 (bits)
     for IPv4 and between 0 and 128 for IPv6, and it specifies the number
     of bits in the prefix. The value <span class="bcp14">MUST NOT</span> be greater than 128.<a href="#section-3.1-6.4" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.1-6.5">The IP prefix is a 4- or 16-octet field (IPv4 or IPv6).<a href="#section-3.1-6.5" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.1-6.6">The GW IP Address field is a 4- or 16-octet field (IPv4 or
     IPv6) and will encode a valid IP address as an Overlay Index for
     the IP prefixes. The GW IP field <span class="bcp14">MUST</span> be all bytes zero if it is
     not used as an Overlay Index. Refer to <a href="#sect-3.2" class="xref">Section 3.2</a> for the
     definition and use of the Overlay Index.<a href="#section-3.1-6.6" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.1-6.7">The MPLS Label field is encoded as 3 octets, where the high-order
     20 bits contain the label value, as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>. When sending,
     the label value <span class="bcp14">SHOULD</span> be zero if a recursive resolution based on
     an Overlay Index is used. If the received MPLS label value is zero,
     the route <span class="bcp14">MUST</span> contain an Overlay Index, and the ingress NVE/PE <span class="bcp14">MUST</span>
     perform a recursive resolution to find the egress NVE/PE. If the received
     label is zero and the route does not contain an Overlay Index, it
     <span class="bcp14">MUST</span> be "treat as withdraw" <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>.<a href="#section-3.1-6.7" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.1-7">
   The RD, Ethernet Tag ID, IP prefix length, and IP prefix are part of
   the route key used by BGP to compare routes. The rest of the fields
   are not part of the route key.<a href="#section-3.1-7" class="pilcrow">¶</a></p>
<p id="section-3.1-8">
   An IP Prefix route <span class="bcp14">MAY</span> be sent along with an EVPN Router's MAC Extended Community
   (defined in <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span>) to
   carry the MAC address that is used as the Overlay Index. Note that the MAC
   address may be that of a TS.<a href="#section-3.1-8" class="pilcrow">¶</a></p>
<p id="section-3.1-9">
   As described in <a href="#sect-3.2" class="xref">Section 3.2</a>, certain data combinations in a received
   route would imply a treat-as-withdraw handling of the route
   <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>.<a href="#section-3.1-9" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-3.2">
<section id="section-3.2">
        <h3 id="name-overlay-indexes-and-recursi">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-overlay-indexes-and-recursi" class="section-name selfRef">Overlay Indexes and Recursive Lookup Resolution</a>
        </h3>
<p id="section-3.2-1">
   RT-5 routes support recursive lookup resolution through the use of
   Overlay Indexes as follows:<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2-2.1">An Overlay Index can be an ESI or IP address in the address space
   of the tenant or MAC address, and it is used by an NVE as the
   next hop for a given IP prefix. An Overlay Index always needs a
   recursive route resolution on the NVE/PE that installs the RT-5 into
   one of its IP-VRFs so that the NVE knows to which egress NVE/PE it
   needs to forward the packets. It is important to note that recursive
   resolution of the Overlay Index applies upon installation into an
   IP-VRF and not upon BGP propagation (for instance, on an ASBR).
   Also, as a result of the recursive resolution, the egress NVE/PE is
   not necessarily the same NVE that originated the RT-5.<a href="#section-3.2-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.2-2.2">The Overlay Index is indicated along with the RT-5 in the ESI
   field, GW IP field, or EVPN Router's MAC Extended Community, depending on
   whether the IP prefix next hop is an ESI, an IP address, or a MAC address
   in the tenant space. The Overlay Index for a given IP prefix is set
   by local policy at the NVE that originates an RT-5 for that IP
   prefix (typically managed by the cloud management system).<a href="#section-3.2-2.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.2-2.3">
            <p id="section-3.2-2.3.1">In order to enable the recursive lookup resolution at the ingress
   NVE, an NVE that is a possible egress NVE for a given Overlay Index
   must originate a route advertising itself as the BGP next hop on the
   path to the system denoted by the Overlay Index. For instance:<a href="#section-3.2-2.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2-2.3.2.1">If an NVE receives an RT-5 that specifies an Overlay Index, the
          NVE cannot use the RT-5 in its IP-VRF unless (or until) it can
          recursively resolve the Overlay Index.<a href="#section-3.2-2.3.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2-2.3.2.2">If the RT-5 specifies an ESI as the Overlay Index, a recursive
   resolution can only be done if the NVE has received and installed an
   RT-1 (auto-discovery per EVI) route specifying that ESI.<a href="#section-3.2-2.3.2.2" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2-2.3.2.3">If the RT-5 specifies a GW IP address as the Overlay Index,
   a recursive resolution can only be done if the NVE has received and
   installed an RT-2 (MAC/IP Advertisement route) specifying that IP address in the
   IP Address field of its NLRI.<a href="#section-3.2-2.3.2.3" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-3.2-2.3.2.4">If the RT-5 specifies a MAC address as the Overlay Index,
   a recursive resolution can only be done if the NVE has received and
   installed an RT-2 (MAC/IP Advertisement route) specifying that MAC address in the
   MAC Address field of its NLRI.<a href="#section-3.2-2.3.2.4" class="pilcrow">¶</a>
</li>
            </ul>
<p id="section-3.2-2.3.3">Note that the RT-1 or RT-2 routes needed for the
 recursive resolution may arrive before or after the given RT-5
 route.<a href="#section-3.2-2.3.3" class="pilcrow">¶</a></p>
</li>
          <li class="normal" id="section-3.2-2.4">Irrespective of the recursive resolution, if there is no IGP or BGP
 route to the BGP next hop of an RT-5, BGP <span class="bcp14">MUST NOT</span> install the RT-5
 even if the Overlay Index can be resolved.<a href="#section-3.2-2.4" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.2-2.5">The ESI and GW IP fields may both be zero at the same time.
 However, they <span class="bcp14">MUST NOT</span> both be non-zero at the same time. A route
 containing a non-zero GW IP and a non-zero ESI (at the same time)
 <span class="bcp14">SHOULD</span> be treat as withdraw <span>[<a href="#RFC7606" class="xref">RFC7606</a>]</span>.<a href="#section-3.2-2.5" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.2-2.6">If either the ESI or the GW IP are non-zero, then the non-zero one is
 the Overlay Index, regardless of whether the EVPN Router's MAC Extended
 Community is present or the value of the label. In case the GW IP is
 the Overlay Index (hence, ESI is zero), the EVPN Router's MAC Extended
 Community is ignored if present.<a href="#section-3.2-2.6" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.2-2.7">A route where ESI, GW IP, MAC, and Label are all zero at the same
 time <span class="bcp14">SHOULD</span> be treat as withdraw.<a href="#section-3.2-2.7" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.2-3">
   The indirection provided by the Overlay Index and its recursive
   lookup resolution is required to achieve fast convergence in case of
   a failure of the object represented by the Overlay Index (see the
   example described in <a href="#sect-2.2" class="xref">Section 2.2</a>).<a href="#section-3.2-3" class="pilcrow">¶</a></p>
<p id="section-3.2-4">
   <a href="#fields_overlay_table" class="xref">Table 1</a> shows the different RT-5 field combinations allowed by this
   specification and what Overlay Index must be used by the receiving
   NVE/PE in each case. Cases where there is no Overlay Index are
   indicated as "None" in <a href="#fields_overlay_table" class="xref">Table 1</a>. If there is no Overlay Index, the
   receiving NVE/PE will not perform any recursive resolution, and the
   actual next hop is given by the RT-5's BGP next hop.<a href="#section-3.2-4" class="pilcrow">¶</a></p>
<span id="name-rt-5-fields-and-indicated-o"></span><div id="fields_overlay_table">
<table class="center" id="table-1">
          <caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-rt-5-fields-and-indicated-o" class="selfRef">RT-5 Fields and Indicated Overlay Index</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">ESI</th>
              <th class="text-left" rowspan="1" colspan="1">GW IP</th>
              <th class="text-left" rowspan="1" colspan="1">MAC*</th>
              <th class="text-left" rowspan="1" colspan="1">Label</th>
              <th class="text-left" rowspan="1" colspan="1">Overlay Index</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Don't Care</td>
              <td class="text-left" rowspan="1" colspan="1">ESI</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Don't Care</td>
              <td class="text-left" rowspan="1" colspan="1">ESI</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Don't Care</td>
              <td class="text-left" rowspan="1" colspan="1">GW IP</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">MAC</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
              <td class="text-left" rowspan="1" colspan="1">MAC or None**</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Zero</td>
              <td class="text-left" rowspan="1" colspan="1">Non-Zero</td>
              <td class="text-left" rowspan="1" colspan="1">None***</td>
            </tr>
          </tbody>
        </table>
</div>
<p id="section-3.2-6">Table Notes:<a href="#section-3.2-6" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.2-7">
          <dt id="section-3.2-7.1">*</dt>
          <dd style="margin-left: 3.0em" id="section-3.2-7.2"> MAC with "Zero" value means no EVPN Router's MAC Extended Community is
  present along with the RT-5. "Non-Zero" indicates that the extended
  community is present and carries a valid MAC address. The encoding of
  a MAC address <span class="bcp14">MUST</span> be the 6-octet MAC address specified by <span>[<a href="#IEEE-802.1Q" class="xref">IEEE-802.1Q</a>]</span>. Examples
  of invalid MAC addresses are broadcast or multicast MAC
  addresses. The route <span class="bcp14">MUST</span> be treat as withdraw in case of an invalid
  MAC address. The presence of the EVPN Router's MAC Extended Community
  alone is not enough to indicate the use of the MAC address as the
  Overlay Index since the extended community can be used for other
  purposes.<a href="#section-3.2-7.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.2-7.3">**</dt>
          <dd style="margin-left: 3.0em" id="section-3.2-7.4">In this case, the Overlay Index may be the RT-5's MAC address or
  "None", depending on the local policy of the receiving NVE/PE. Note
  that the advertising NVE/PE that sets the Overlay Index <span class="bcp14">SHOULD</span>
  advertise an RT-2 for the MAC Overlay Index if there are receiving
  NVE/PEs configured to use the MAC as the Overlay Index.  This case in
  <a href="#fields_overlay_table" class="xref">Table 1</a> is used in the IP-VRF-to-IP-VRF
  implementations described in Sections <a href="#sect-4.4.1" class="xref">4.4.1</a> and <a href="#sect-4.4.3" class="xref">4.4.3</a>. The support of a MAC Overlay Index in this model is
  <span class="bcp14">OPTIONAL</span>.<a href="#section-3.2-7.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.2-7.5">***</dt>
          <dd style="margin-left: 3.0em" id="section-3.2-7.6">The Overlay Index is "None". This is a special case used for
  IP-VRF-to-IP-VRF where the NVE/PEs are connected by IP NVO tunnels as
  opposed to Ethernet NVO tunnels.<a href="#section-3.2-7.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-3.2-8">
   If the combination of ESI, GW IP, MAC, and Label in the receiving RT-5
   is different than the combinations shown in <a href="#fields_overlay_table" class="xref">Table 1</a>, the router will
   process the route as per the rules described at the beginning of this
 section (<a href="#sect-3.2" class="xref">Section 3.2</a>).<a href="#section-3.2-8" class="pilcrow">¶</a></p>
<p id="section-3.2-9">
   <a href="#use_overlay_table" class="xref">Table 2</a> shows the different inter-subnet use cases described in this
   document and the corresponding coding of the Overlay Index in the
   route type 5 (RT-5).<a href="#section-3.2-9" class="pilcrow">¶</a></p>
<span id="name-use-cases-and-overlay-index"></span><div id="use_overlay_table">
<table class="center" id="table-2">
          <caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-use-cases-and-overlay-index" class="selfRef">Use Cases and Overlay Indexes for Recursive Resolution</a>
          </caption>
<thead>
            <tr>
              <th class="text-left" rowspan="1" colspan="1">Section</th>
              <th class="text-left" rowspan="1" colspan="1">Use Case</th>
              <th class="text-left" rowspan="1" colspan="1">Overlay Index in the RT-5</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">
                <a href="#sect-4.1" class="xref">4.1</a>
</td>
              <td class="text-left" rowspan="1" colspan="1">TS IP address</td>
              <td class="text-left" rowspan="1" colspan="1">GW IP</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">
                <a href="#sect-4.2" class="xref">4.2</a>
</td>
              <td class="text-left" rowspan="1" colspan="1">Floating IP address</td>
              <td class="text-left" rowspan="1" colspan="1">GW IP</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">
                <a href="#sect-4.3" class="xref">4.3</a>
</td>
              <td class="text-left" rowspan="1" colspan="1">"Bump-in-the-wire"</td>
              <td class="text-left" rowspan="1" colspan="1">ESI or MAC</td>
            </tr>
            <tr>
              <td class="text-left" rowspan="1" colspan="1">
                <a href="#sect-4.4" class="xref">4.4</a>
</td>
              <td class="text-left" rowspan="1" colspan="1">IP-VRF-to-IP-VRF</td>
              <td class="text-left" rowspan="1" colspan="1">GW IP, MAC, or None</td>
            </tr>
          </tbody>
        </table>
</div>
<p id="section-3.2-11">
   The above use cases are representative of the different Overlay
   Indexes supported by the RT-5 (GW IP, ESI, MAC, or None).<a href="#section-3.2-11" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sect-4">
<section id="section-4">
      <h2 id="name-overlay-index-use-cases">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-overlay-index-use-cases" class="section-name selfRef">Overlay Index Use Cases</a>
      </h2>
<p id="section-4-1"> This
 section describes some use cases for the Overlay Index types used with
 the IP Prefix route.

 Although the examples use IPv4 prefixes and
 subnets, the descriptions of the RT-5 are valid for the same cases
 with IPv6, except that IP Prefixes, IPL, and GW IP are replaced by the
 corresponding IPv6 values.<a href="#section-4-1" class="pilcrow">¶</a></p>
<div id="sect-4.1">
<section id="section-4.1">
        <h3 id="name-ts-ip-address-overlay-index">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-ts-ip-address-overlay-index" class="section-name selfRef">TS IP Address Overlay Index Use Case</a>
        </h3>
<p id="section-4.1-1"><a href="#fig-2" class="xref">Figure 5</a> illustrates an example of inter-subnet forwarding for
   subnets sitting behind VAs (on TS2 and TS3).<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<span id="name-ts-ip-address-use-case"></span><div id="fig-2">
<figure id="figure-5">
          <div class="alignLeft art-text artwork" id="section-4.1-2.1">
<pre>
IP4---+           NVE2                            DGW1
      |        +-----------+ +---------+    +-------------+
SN2---TS2(VA)--|  (BD-10)  |-|         |----|  (BD-10)    |
      | M2/IP2 +-----------+ |         |    |    IRB1\    |
 -+---+                      |         |    |     (IP-VRF)|---+
  |                          |         |    +-------------+  _|_
 SN1                         |  VXLAN/ |                    (   )
  |                          |  GENEVE |         DGW2      ( WAN )
 -+---+           NVE3       |         |    +-------------+ (___)
      | M3/IP3 +-----------+ |         |----|  (BD-10)    |   |
SN3---TS3(VA)--|  (BD-10)  |-|         |    |    IRB2\    |   |
      |        +-----------+ +---------+    |     (IP-VRF)|---+
IP5---+                                     +-------------+
</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-ts-ip-address-use-case" class="selfRef">TS IP Address Use Case</a>
          </figcaption></figure>
</div>
<p id="section-4.1-3">
   An example of inter-subnet forwarding between subnet SN1, which uses
   a 24-bit IP prefix (written as SN1/24 in the future), and a subnet
   sitting in the WAN is described below. NVE2, NVE3, DGW1, and DGW2 are
   running BGP EVPN. TS2 and TS3 do not participate in dynamic routing
   protocols, and they only have a static route to forward the traffic
   to the WAN. SN1/24 is dual-homed to NVE2 and NVE3.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1-4">
   In this case, a GW IP is used as an Overlay Index. Although a
   different Overlay Index type could have been used, this use case
   assumes that the operator knows the VA's IP addresses beforehand,
   whereas the VA's MAC address is unknown and the VA's ESI is zero.
   Because of this, the GW IP is the suitable Overlay Index to be used
   with the RT-5s. The NVEs know the GW IP to be used for a given prefix
   by policy.<a href="#section-4.1-4" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.1-5">
          <dt>(1)</dt>
<dd id="section-4.1-5.1">
            <p id="section-4.1-5.1.1">NVE2 advertises the following BGP routes on behalf of TS2:<a href="#section-4.1-5.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.1.2.1">Route type 2 (MAC/IP Advertisement route) containing: ML = 48 (MAC address length),
      M = M2 (MAC address), IPL = 32 (IP prefix length), IP = IP2, and BGP
      Encapsulation Extended Community <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span> with the corresponding tunnel type. The
      MAC and IP addresses may be learned via ARP snooping.<a href="#section-4.1-5.1.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.1-5.1.2.2">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
       ESI = 0, and GW
      IP address = IP2. The prefix and GW IP are learned by policy.<a href="#section-4.1-5.1.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.1-5.2">
            <p id="section-4.1-5.2.1">Similarly, NVE3 advertises the following BGP routes on behalf of TS3:<a href="#section-4.1-5.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.2.2.1">Route type 2 (MAC/IP Advertisement route) containing: ML = 48, M = M3, IPL = 32, IP = IP3
       (and BGP Encapsulation Extended Community).<a href="#section-4.1-5.2.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.1-5.2.2.2">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
       ESI = 0, and GW IP address = IP3.<a href="#section-4.1-5.2.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.1-5.3">
            <p id="section-4.1-5.3.1">DGW1 and DGW2 import both received routes based on the Route Targets:<a href="#section-4.1-5.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.3.2.1">Based on the BD-10 Route Target in DGW1 and DGW2, the MAC/IP Advertisement route
       is imported, and M2 is added to the BD-10 along with its corresponding
       tunnel information. For instance, if VXLAN is used, the VTEP will be
       derived from the MAC/IP Advertisement route BGP next hop and VNI from the MPLS Label1
       field. M2/IP2 is added to the ARP table. Similarly, M3 is added to
       BD-10, and M3/IP3 is added to the ARP table.<a href="#section-4.1-5.3.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.1-5.3.2.2">Based on the BD-10 Route Target in DGW1 and DGW2, the IP Prefix
       route is also imported, and SN1/24 is added to the IP-VRF with Overlay
       Index IP2 pointing at the local BD-10. In this example, it is assumed
       that the RT-5 from NVE2 is preferred over the RT-5 from NVE3. If both
       routes were equally preferable and ECMP enabled, SN1/24 would also be
       added to the routing table with Overlay Index IP3.<a href="#section-4.1-5.3.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.1-5.4">
            <p id="section-4.1-5.4.1"> When DGW1 receives a packet from the WAN with destination IPx,
     where IPx belongs to SN1/24:<a href="#section-4.1-5.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.4.2.1">A destination IP lookup is performed on the DGW1 IP-VRF table, and Overlay Index = IP2 is found. Since IP2 is an Overlay Index, a
       recursive route resolution is required for IP2.<a href="#section-4.1-5.4.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.1-5.4.2.2">IP2 is resolved to M2 in the ARP table, and M2 is resolved to the
       tunnel information given by the BD FIB (e.g., remote VTEP and VNI for
       the VXLAN case).<a href="#section-4.1-5.4.2.2" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.1-5.4.2.3">
                <p id="section-4.1-5.4.2.3.1">The IP packet destined to IPx is encapsulated with:<a href="#section-4.1-5.4.2.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.4.2.3.2.1">Inner source MAC = IRB1 MAC.<a href="#section-4.1-5.4.2.3.2.1" class="pilcrow">¶</a>
</li>
                  <li class="normal" id="section-4.1-5.4.2.3.2.2">Inner destination MAC = M2.<a href="#section-4.1-5.4.2.3.2.2" class="pilcrow">¶</a>
</li>
                  <li class="normal" id="section-4.1-5.4.2.3.2.3">Tunnel information provided by the BD (VNI, VTEP IPs, and MACs for
       the VXLAN case).<a href="#section-4.1-5.4.2.3.2.3" class="pilcrow">¶</a>
</li>
                </ul>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(5)</dt>
<dd id="section-4.1-5.5">
            <p id="section-4.1-5.5.1">When the packet arrives at NVE2:<a href="#section-4.1-5.5.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-5.5.2.1">Based on the tunnel information (VNI for the VXLAN case), the BD-10
       context is identified for a MAC lookup.<a href="#section-4.1-5.5.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.1-5.5.2.2">Encapsulation is stripped off and, based on a MAC lookup
       (assuming MAC forwarding on the egress NVE), the packet is
       forwarded to TS2, where it will be properly routed.<a href="#section-4.1-5.5.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(6)</dt>
<dd id="section-4.1-5.6">Should TS2 move from NVE2 to NVE3, MAC Mobility procedures will be applied
to the MAC route M2/IP2, as defined in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.  Route type 5
prefixes are not subject to MAC Mobility procedures; hence, no changes in the
DGW IP-VRF table will occur for TS2 mobility -- i.e., all the prefixes will still
be pointing at IP2 as the Overlay Index. There is an indirection for, e.g., SN1/24,
which still points at Overlay Index IP2 in the routing table, but IP2 will be
simply resolved to a different tunnel based on the outcome of the MAC
Mobility procedures for the MAC/IP Advertisement route M2/IP2.<a href="#section-4.1-5.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-4.1-6">
   Note that in the opposite direction, TS2 will send traffic based on
   its static-route next-hop information (IRB1 and/or IRB2), and regular
   EVPN procedures will be applied.<a href="#section-4.1-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-4.2">
<section id="section-4.2">
        <h3 id="name-floating-ip-overlay-index-u">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-floating-ip-overlay-index-u" class="section-name selfRef">Floating IP Overlay Index Use Case</a>
        </h3>
<p id="section-4.2-1">
   Sometimes TSs work in active/standby mode where an
   upstream floating IP owned by the active TS is used as the
   Overlay Index to get to some subnets behind the TS. This redundancy mode,
   already introduced in Sections <a href="#sect-2.1" class="xref">2.1</a> and <a href="#sect-2.2" class="xref">2.2</a>, is illustrated in <a href="#fig-3" class="xref">Figure 6</a>.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<span id="name-floating-ip-overlay-index-f"></span><div id="fig-3">
<figure id="figure-6">
          <div class="alignLeft art-text artwork" id="section-4.2-2.1">
<pre>
                 NVE2                           DGW1
              +-----------+ +---------+    +-------------+
 +---TS2(VA)--|  (BD-10)  |-|         |----|  (BD-10)    |
 |     M2/IP2 +-----------+ |         |    |    IRB1\    |
 |      &lt;-+                 |         |    |     (IP-VRF)|---+
 |        |                 |         |    +-------------+  _|_
SN1    vIP23 (floating)     |  VXLAN/ |                    (   )
 |        |                 |  GENEVE |         DGW2      ( WAN )
 |      &lt;-+      NVE3       |         |    +-------------+ (___)
 |     M3/IP3 +-----------+ |         |----|  (BD-10)    |   |
 +---TS3(VA)--|  (BD-10)  |-|         |    |    IRB2\    |   |
              +-----------+ +---------+    |     (IP-VRF)|---+
                                           +-------------+
</pre>
</div>
<figcaption><a href="#figure-6" class="selfRef">Figure 6</a>:
<a href="#name-floating-ip-overlay-index-f" class="selfRef">Floating IP Overlay Index for Redundant TS</a>
          </figcaption></figure>
</div>
<p id="section-4.2-3">
   In this use case, a GW IP is used as an Overlay Index for the same
   reasons as in <a href="#sect-4.1" class="xref">Section 4.1</a>. However, this GW IP is a floating IP that belongs
   to the active TS. Assuming TS2 is the active TS and owns vIP23:<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.2-4">
          <dt>(1)</dt>
<dd id="section-4.2-4.1">
            <p id="section-4.2-4.1.1">NVE2 advertises the following BGP routes for TS2:<a href="#section-4.2-4.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.1.2.1">Route type 2 (MAC/IP Advertisement route) containing: ML = 48, M = M2, IPL = 32, and
       IP = vIP23 (as well as BGP Encapsulation Extended Community). The MAC and IP
       addresses may be learned via ARP snooping.<a href="#section-4.2-4.1.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.2-4.1.2.2">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
       ESI = 0, and GW
       IP address = vIP23. The prefix and GW IP are learned by policy.<a href="#section-4.2-4.1.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.2-4.2">
            <p id="section-4.2-4.2.1">NVE3 advertises the following BGP route for TS3 (it does not advertise an
RT-2 for M3/vIP23):<a href="#section-4.2-4.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.2.2.1">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
       ESI = 0, and GW
     IP address = vIP23. The prefix and GW IP are learned by policy.<a href="#section-4.2-4.2.2.1" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.2-4.3">
            <p id="section-4.2-4.3.1">DGW1 and DGW2 import both received routes based on the Route Target:<a href="#section-4.2-4.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.3.2.1">M2 is added to the BD-10 FIB along with its corresponding tunnel
     information. For the VXLAN use case, the VTEP will be derived from the
     MAC/IP Advertisement route BGP next hop and VNI from the VNI field. M2/vIP23 is added
     to the ARP table.<a href="#section-4.2-4.3.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.2-4.3.2.2">SN1/24 is added to the IP-VRF in DGW1 and DGW2 with Overlay Index
     vIP23 pointing at M2 in the local BD-10.<a href="#section-4.2-4.3.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.2-4.4">
            <p id="section-4.2-4.4.1">When DGW1 receives a packet from the WAN with destination IPx, where IPx
belongs to SN1/24:<a href="#section-4.2-4.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.4.2.1">A destination IP lookup is performed on the DGW1 IP-VRF table,
     and Overlay Index = vIP23 is found. Since vIP23 is an Overlay Index, a
     recursive route resolution for vIP23 is required.<a href="#section-4.2-4.4.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.2-4.4.2.2">vIP23 is resolved to M2 in the ARP table, and M2 is resolved to the
     tunnel information given by the BD (remote VTEP and VNI for the VXLAN
     case).<a href="#section-4.2-4.4.2.2" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.2-4.4.2.3">
                <p id="section-4.2-4.4.2.3.1">The IP packet destined to IPx is encapsulated with:<a href="#section-4.2-4.4.2.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.4.2.3.2.1">Inner source MAC = IRB1 MAC.<a href="#section-4.2-4.4.2.3.2.1" class="pilcrow">¶</a>
</li>
                  <li class="normal" id="section-4.2-4.4.2.3.2.2">Inner destination MAC = M2.<a href="#section-4.2-4.4.2.3.2.2" class="pilcrow">¶</a>
</li>
                  <li class="normal" id="section-4.2-4.4.2.3.2.3">Tunnel information provided by the BD FIB (VNI, VTEP IPs, and MACs
          for the VXLAN case).<a href="#section-4.2-4.4.2.3.2.3" class="pilcrow">¶</a>
</li>
                </ul>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(5)</dt>
<dd id="section-4.2-4.5">
            <p id="section-4.2-4.5.1">When the packet arrives at NVE2:<a href="#section-4.2-4.5.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-4.5.2.1">Based on the tunnel information (VNI for the VXLAN case), the BD-10
       context is identified for a MAC lookup.<a href="#section-4.2-4.5.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.2-4.5.2.2">Encapsulation is stripped off and, based on a MAC lookup (assuming
       MAC forwarding on the egress NVE), the packet is forwarded to TS2,
       where it will be properly routed.<a href="#section-4.2-4.5.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(6)</dt>
<dd id="section-4.2-4.6">When the redundancy protocol running between TS2 and TS3 appoints TS3 as
the new active TS for SN1, TS3 will now own the floating vIP23 and will signal
this new ownership using a gratuitous ARP REPLY message (explained in <span>[<a href="#RFC5227" class="xref">RFC5227</a>]</span>) or similar. Upon receiving the new owner's notification,
NVE3 will issue a route type 2 for M3/vIP23, and NVE2 will withdraw the RT-2
for M2/vIP23. DGW1 and DGW2 will update their ARP tables with the new MAC
resolving the floating IP. No changes are made in the IP-VRF table.<a href="#section-4.2-4.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
</section>
</div>
<div id="sect-4.3">
<section id="section-4.3">
        <h3 id="name-bump-in-the-wire-use-case">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-bump-in-the-wire-use-case" class="section-name selfRef">Bump-in-the-Wire Use Case</a>
        </h3>
<p id="section-4.3-1">
 <a href="#fig-4" class="xref">Figure 7</a> illustrates an example of inter-subnet forwarding for an IP
   Prefix route that carries subnet SN1. In this use case, TS2 and TS3
   are Layer 2 VA devices without any IP addresses that can be included as
   an Overlay Index in the GW IP field of the IP Prefix route. Their MAC
   addresses are M2 and M3, respectively, and are connected to BD-10. Note
   that IRB1 and IRB2 (in DGW1 and DGW2, respectively) have IP addresses
   in a subnet different than SN1.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<span id="name-bump-in-the-wire-use-case-2"></span><div id="fig-4">
<figure id="figure-7">
          <div class="alignLeft art-text artwork" id="section-4.3-2.1">
<pre>
                   NVE2                           DGW1
            M2 +-----------+ +---------+    +-------------+
  +---TS2(VA)--|  (BD-10)  |-|         |----|  (BD-10)    |
  |      ESI23 +-----------+ |         |    |    IRB1\    |
  |        +                 |         |    |     (IP-VRF)|---+
  |        |                 |         |    +-------------+  _|_
 SN1       |                 |  VXLAN/ |                    (   )
  |        |                 |  GENEVE |         DGW2      ( WAN )
  |        +      NVE3       |         |    +-------------+ (___)
  |      ESI23 +-----------+ |         |----|  (BD-10)    |   |
  +---TS3(VA)--|  (BD-10)  |-|         |    |    IRB2\    |   |
            M3 +-----------+ +---------+    |     (IP-VRF)|---+
                                            +-------------+
</pre>
</div>
<figcaption><a href="#figure-7" class="selfRef">Figure 7</a>:
<a href="#name-bump-in-the-wire-use-case-2" class="selfRef">Bump-in-the-Wire Use Case</a>
          </figcaption></figure>
</div>
<p id="section-4.3-3">
   Since TS2 and TS3 cannot participate in any dynamic routing
   protocol and neither has an IP address assigned, there are two potential
   Overlay Index types that can be used when advertising SN1:<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.3-4">
          <dt>a)</dt>
<dd id="section-4.3-4.1">an ESI, i.e., ESI23, that can be provisioned on the attachment
   ports of NVE2 and NVE3, as shown in <a href="#fig-4" class="xref">Figure 7</a> or<a href="#section-4.3-4.1" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt>b)</dt>
<dd id="section-4.3-4.2">the VA's MAC address, which can be added to NVE2 and NVE3 by
   policy.<a href="#section-4.3-4.2" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-4.3-5">
   The advantage of using an ESI as the Overlay Index as opposed to the VA's MAC
   address is that the forwarding to the egress NVE can be done purely based
   on the state of the AC in the Ethernet segment (notified by the Ethernet A-D per EVI
   route), and all the EVPN multihoming redundancy mechanisms can be
   reused. For instance, the mass withdrawal mechanism described in <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> for fast
   failure detection and propagation can be used.  It is assumed per this section that
   an ESI Overlay Index is used in this use case, but this use case does not preclude the
   use of the VA's MAC address as an Overlay Index. If a MAC is used as
   the Overlay Index, the control plane must follow the procedures described in
   <a href="#sect-4.4.3" class="xref">Section 4.4.3</a>.<a href="#section-4.3-5" class="pilcrow">¶</a></p>
<p id="section-4.3-6">
   The model supports VA redundancy in a similar way to the one
   described in <a href="#sect-4.2" class="xref">Section 4.2</a> for the floating IP Overlay Index use case,
   except that it uses the EVPN Ethernet A-D per EVI route instead of
   the MAC advertisement route to advertise the location of the Overlay
   Index. The procedure is explained below:<a href="#section-4.3-6" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.3-7">
          <dt>(1)</dt>
<dd id="section-4.3-7.1">
            <p id="section-4.3-7.1.1"> Assuming TS2 is the active TS in ESI23, NVE2 advertises the
   following BGP routes:<a href="#section-4.3-7.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.1.2.1">Route type 1 (Ethernet A-D route for BD-10) containing: ESI = ESI23 and
     the corresponding tunnel information (VNI field), as well as the BGP
     Encapsulation Extended Community as per <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>.<a href="#section-4.3-7.1.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.3-7.1.2.2">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
       ESI = ESI23, and GW IP address = 0. The EVPN Router's MAC Extended Community defined in
     <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> is added and carries the MAC address (M2)
     associated with the TS behind which SN1 sits. M2 may be learned by policy; however, the
     MAC in the Extended Community is preferred if sent with the route.<a href="#section-4.3-7.1.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.3-7.2">
            <p id="section-4.3-7.2.1">NVE3 advertises the following BGP route for TS3 (no AD per EVI route is
advertised):<a href="#section-4.3-7.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.2.2.1">Route type 5 (IP Prefix route) containing: IPL = 24, IP = SN1,
       ESI = 23, and GW IP address = 0. The EVPN Router's MAC Extended Community is added and
       carries the MAC address (M3) associated with the TS behind which SN1
       sits. M3 may be learned by policy; however, the MAC in the Extended
       Community is preferred if sent with the route.<a href="#section-4.3-7.2.2.1" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.3-7.3">
            <p id="section-4.3-7.3.1">DGW1 and DGW2 import the received routes based on the Route Target:<a href="#section-4.3-7.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.3.2.1">The tunnel information to get to ESI23 is installed in DGW1 and
       DGW2. For the VXLAN use case, the VTEP will be derived from the
       Ethernet A-D route BGP next hop and VNI from the VNI/VSID field (see
       <span>[<a href="#RFC8365" class="xref">RFC8365</a>]</span>).<a href="#section-4.3-7.3.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.3-7.3.2.2">The RT-5 coming from the NVE that advertised the RT-1 is
       selected, and SN1/24 is added to the IP-VRF in DGW1 and DGW2 with Overlay Index
       ESI23 and MAC = M2.<a href="#section-4.3-7.3.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.3-7.4">
            <p id="section-4.3-7.4.1">When DGW1 receives a packet from the WAN with destination IPx, where IPx
belongs to SN1/24:<a href="#section-4.3-7.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.4.2.1">A destination IP lookup is performed on the DGW1 IP-VRF table, and Overlay Index = ESI23 is found. Since ESI23 is an Overlay
       Index, a recursive route resolution is required to find the egress NVE
       where ESI23 resides.<a href="#section-4.3-7.4.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.3-7.4.2.2">
                <p id="section-4.3-7.4.2.2.1">The IP packet destined to IPx is encapsulated with:<a href="#section-4.3-7.4.2.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.4.2.2.2.1">Inner source MAC = IRB1 MAC.<a href="#section-4.3-7.4.2.2.2.1" class="pilcrow">¶</a>
</li>
                  <li class="normal" id="section-4.3-7.4.2.2.2.2">Inner destination MAC = M2 (this MAC will be obtained from the
          EVPN Router's MAC Extended Community received along with the RT-5 for
          SN1). Note that the EVPN Router's MAC Extended Community is used in this
          case to carry the TS's MAC address, as opposed to the MAC
          address of the NVE/PE.<a href="#section-4.3-7.4.2.2.2.2" class="pilcrow">¶</a>
</li>
                  <li class="normal" id="section-4.3-7.4.2.2.2.3">Tunnel information for the NVO tunnel is provided by the Ethernet
          A-D route per EVI for ESI23 (VNI and VTEP IP for the VXLAN
   case).<a href="#section-4.3-7.4.2.2.2.3" class="pilcrow">¶</a>
</li>
                </ul>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(5)</dt>
<dd id="section-4.3-7.5">
            <p id="section-4.3-7.5.1">When the packet arrives at NVE2:<a href="#section-4.3-7.5.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.3-7.5.2.1">Based on the tunnel demultiplexer information (VNI for the VXLAN
     case), the BD-10 context is identified for a MAC lookup (assuming a MAC-based disposition model <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>), or the VNI may directly identify
     the egress interface (for an MPLS-based disposition model, which in this
     context is a VNI-based disposition model).<a href="#section-4.3-7.5.2.1" class="pilcrow">¶</a>
</li>
              <li class="normal" id="section-4.3-7.5.2.2">Encapsulation is stripped off and, based on a MAC lookup (assuming MAC
     forwarding on the egress NVE) or a VNI lookup (in case of VNI
     forwarding), the packet is forwarded to TS2, where it will be forwarded
     to SN1.<a href="#section-4.3-7.5.2.2" class="pilcrow">¶</a>
</li>
            </ul>
</dd>
          <dd class="break"></dd>
<dt>(6)</dt>
<dd id="section-4.3-7.6">If the redundancy protocol running between TS2 and TS3 follows an
active/standby model and there is a failure, TS3 is appointed as the new active
TS for SN1. TS3 will now own the connectivity to SN1 and will signal this new
ownership. Upon receiving the new owner's notification, NVE3's AC will become
active and issue a route type 1 for ESI23, whereas NVE2 will withdraw its
Ethernet A-D route for ESI23. DGW1 and DGW2 will update their tunnel
information to resolve ESI23. The inner destination MAC will be changed to
M3.<a href="#section-4.3-7.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
</section>
</div>
<div id="sect-4.4">
<section id="section-4.4">
        <h3 id="name-ip-vrf-to-ip-vrf-model">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-ip-vrf-to-ip-vrf-model" class="section-name selfRef">IP-VRF-to-IP-VRF Model</a>
        </h3>
<p id="section-4.4-1">
   This use case is similar to the scenario described in <span><a href="https://www.rfc-editor.org/rfc/rfc9135#section-9.1" class="relref">Section 9.1</a> of [<a href="#RFC9135" class="xref">RFC9135</a>]</span>; however, the new
   requirement here is the advertisement of IP prefixes as opposed to
   only host routes.<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<p id="section-4.4-2">
   In the examples described in Sections <a href="#sect-4.1" class="xref">4.1</a>, <a href="#sect-4.2" class="xref">4.2</a>, and <a href="#sect-4.3" class="xref">4.3</a>, the BD
   instance can connect IRB interfaces and any other Tenant Systems
   connected to it. EVPN provides connectivity for:<a href="#section-4.4-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.4-3">
          <li id="section-4.4-3.1">
<div id="step1">Traffic destined to the IRB or TS IP interfaces, as well as<a href="#step1" class="pilcrow">¶</a>
</div>
          </li>
<li id="section-4.4-3.2">
<div id="step2">Traffic destined to IP subnets sitting behind the TS, e.g., SN1
   or SN2.<a href="#step2" class="pilcrow">¶</a>
</div>
        </li>
</ol>
<p id="section-4.4-4">
   In order to provide connectivity for <a href="#step1" class="xref">(1)</a>, MAC/IP Advertisement routes (RT-2) are
   needed so that IRB or TS MACs and IPs can be distributed.
   Connectivity type <a href="#step2" class="xref">(2)</a> is accomplished by the exchange of IP Prefix
   routes (RT-5) for IPs and subnets sitting behind certain Overlay
   Indexes, e.g., GW IP, ESI, or TS MAC.<a href="#section-4.4-4" class="pilcrow">¶</a></p>
<p id="section-4.4-5">
   In some cases, IP Prefix routes may be advertised for subnets and IPs
   sitting behind an IRB. This use case is referred to as the
   "IP-VRF-to-IP-VRF" model.<a href="#section-4.4-5" class="pilcrow">¶</a></p>
<p id="section-4.4-6">
   <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> defines an asymmetric IRB model and a symmetric
   IRB model based on the required lookups at the ingress and egress
   NVE. The asymmetric model requires an IP lookup and a MAC lookup at
   the ingress NVE, whereas only a MAC lookup is needed at the egress
   NVE; the symmetric model requires IP and MAC lookups at both the ingress
   and egress NVE. From that perspective, the IP-VRF-to-IP-VRF use case
   described in this section is a symmetric IRB model.<a href="#section-4.4-6" class="pilcrow">¶</a></p>
<p id="section-4.4-7">
   Note that in an IP-VRF-to-IP-VRF scenario, out of the many subnets that a
   tenant may have, it may be the case that only a few are attached to a given
   IP-VRF of the NVE/PE. In order to provide inter-subnet connectivity among the
   set of NVE/PEs where the tenant is connected, a new SBD is created on all
   of them if a recursive resolution is needed. This SBD is instantiated as a
   regular BD (with no ACs) in each NVE/PE and has an IRB interface that
   connects the SBD to the IP-VRF. The IRB interface's IP or MAC address is
   used as the Overlay Index for a recursive resolution.<a href="#section-4.4-7" class="pilcrow">¶</a></p>
<p id="section-4.4-8">
   Depending on the existence and characteristics of the SBD and IRB
   interfaces for the IP-VRFs, there are three different IP-VRF-to-IP-VRF
   scenarios identified and described in this document:<a href="#section-4.4-8" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.4-9">
<li id="section-4.4-9.1">Interface-less model: no SBD and no Overlay Indexes required.<a href="#section-4.4-9.1" class="pilcrow">¶</a>
</li>
          <li id="section-4.4-9.2">Interface-ful with an SBD IRB model: requires SBD as well as GW IP addresses as Overlay Indexes.<a href="#section-4.4-9.2" class="pilcrow">¶</a>
</li>
          <li id="section-4.4-9.3">Interface-ful with an unnumbered SBD IRB model: requires SBD as well as MAC addresses as Overlay Indexes.<a href="#section-4.4-9.3" class="pilcrow">¶</a>
</li>
        </ol>
<p id="section-4.4-10">
   Inter-subnet IP multicast is outside the scope of this document.<a href="#section-4.4-10" class="pilcrow">¶</a></p>
<div id="sect-4.4.1">
<section id="section-4.4.1">
          <h4 id="name-interface-less-ip-vrf-to-ip">
<a href="#section-4.4.1" class="section-number selfRef">4.4.1. </a><a href="#name-interface-less-ip-vrf-to-ip" class="section-name selfRef">Interface-less IP-VRF-to-IP-VRF Model</a>
          </h4>
<p id="section-4.4.1-1"><a href="#fig-5" class="xref">Figure 8</a> depicts the Interface-less IP-VRF-to-IP-VRF model.<a href="#section-4.4.1-1" class="pilcrow">¶</a></p>
<span id="name-interface-less-ip-vrf-to-ip-"></span><div id="fig-5">
<figure id="figure-8">
            <div class="alignLeft art-text artwork" id="section-4.4.1-2.1">
<pre>
                   NVE1(M1)
          +------------+
  IP1+----|  (BD-1)    |                DGW1(M3)
          |      \     |    +---------+ +--------+
          |    (IP-VRF)|----|         |-|(IP-VRF)|----+
          |      /     |    |         | +--------+    |
      +---|  (BD-2)    |    |         |              _+_
      |   +------------+    |         |             (   )
   SN1|                     |  VXLAN/ |            ( WAN )--H1
      |            NVE2(M2) |  GENEVE/|             (___)
      |   +------------+    |  MPLS   |               +
      +---|  (BD-2)    |    |         | DGW2(M4)      |
          |       \    |    |         | +--------+    |
          |    (IP-VRF)|----|         |-|(IP-VRF)|----+
          |       /    |    +---------+ +--------+
  SN2+----|  (BD-3)    |
          +------------+
</pre>
</div>
<figcaption><a href="#figure-8" class="selfRef">Figure 8</a>:
<a href="#name-interface-less-ip-vrf-to-ip-" class="selfRef">Interface-less IP-VRF-to-IP-VRF Model</a>
            </figcaption></figure>
</div>
<p id="section-4.4.1-3">In this case:<a href="#section-4.4.1-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.1-4">
            <dt>a)</dt>
<dd id="section-4.4.1-4.1">The NVEs and DGWs must provide connectivity between hosts in SN1,
 SN2, and IP1 and hosts sitting at the other end of the WAN -- for example,
 H1. It is assumed that the DGWs import/export IP and/or VPN-IP routes
 to/from the WAN.<a href="#section-4.4.1-4.1" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt>b)</dt>
<dd id="section-4.4.1-4.2">The IP-VRF instances in the NVE/DGWs are directly connected through
 NVO tunnels, and no IRBs and/or BD instances are instantiated to
 connect the IP-VRFs.<a href="#section-4.4.1-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt>c)</dt>
<dd id="section-4.4.1-4.3">The solution must provide Layer 3 connectivity among the IP-VRFs
 for Ethernet NVO tunnels -- for instance, VXLAN or GENEVE.<a href="#section-4.4.1-4.3" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt>d)</dt>
<dd id="section-4.4.1-4.4">The solution may provide Layer 3 connectivity among the IP-VRFs for
 IP NVO tunnels -- for example, GENEVE (with IP payload).<a href="#section-4.4.1-4.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.4.1-5">
   In order to meet the above requirements, the EVPN route type 5 will be used
   to advertise the IP prefixes, along with the EVPN Router's MAC Extended
   Community as defined in <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span> if the advertising
   NVE/DGW uses Ethernet NVO tunnels. Each NVE/DGW will advertise an RT-5 for
   each of its prefixes with the following fields:<a href="#section-4.4.1-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-6.1">RD as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-4.4.1-6.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.4.1-6.2">Ethernet Tag ID = 0.<a href="#section-4.4.1-6.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.4.1-6.3">IP prefix length and IP address, as explained in the previous
   sections.<a href="#section-4.4.1-6.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.4.1-6.4">GW IP address = 0.<a href="#section-4.4.1-6.4" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.4.1-6.5">ESI = 0.<a href="#section-4.4.1-6.5" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.4.1-6.6">MPLS label or VNI corresponding to the IP-VRF.<a href="#section-4.4.1-6.6" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-4.4.1-7">
   Each RT-5 will be sent with a Route Target identifying the tenant
   (IP-VRF) and may be sent with two BGP extended communities:<a href="#section-4.4.1-7" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-8.1">The first one is the BGP Encapsulation Extended Community, as per
   <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>, identifying the tunnel type.<a href="#section-4.4.1-8.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.4.1-8.2">The second one is the EVPN Router's MAC Extended Community, as per
   <span>[<a href="#RFC9135" class="xref">RFC9135</a>]</span>, containing the MAC address associated with the NVE advertising the
   route. This MAC address identifies the NVE/DGW and <span class="bcp14">MAY</span> be reused for
   all the IP-VRFs in the NVE. The EVPN Router's MAC Extended Community must
   be sent if the route is associated with an Ethernet NVO tunnel -- for
   instance, VXLAN. If the route is associated with an IP NVO tunnel -- for
   instance, GENEVE with an IP payload -- the EVPN Router's MAC Extended Community
   should not be sent.<a href="#section-4.4.1-8.2" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-4.4.1-9">
   The following example illustrates the procedure to advertise and
   forward packets to SN1/24 (IPv4 prefix advertised from NVE1):<a href="#section-4.4.1-9" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.1-10">
            <dt>(1)</dt>
<dd id="section-4.4.1-10.1">
              <p id="section-4.4.1-10.1.1">NVE1 advertises the following BGP route:<a href="#section-4.4.1-10.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-10.1.2.1">
                  <p id="section-4.4.1-10.1.2.1.1">Route type 5 (IP Prefix route) containing:<a href="#section-4.4.1-10.1.2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-10.1.2.1.2.1">IPL = 24, IP = SN1, Label = 10.<a href="#section-4.4.1-10.1.2.1.2.1" class="pilcrow">¶</a>
</li>
                    <li class="normal" id="section-4.4.1-10.1.2.1.2.2">GW IP =  set to 0.<a href="#section-4.4.1-10.1.2.1.2.2" class="pilcrow">¶</a>
</li>
                    <li class="normal" id="section-4.4.1-10.1.2.1.2.3"> BGP Encapsulation Extended
    Community <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>.<a href="#section-4.4.1-10.1.2.1.2.3" class="pilcrow">¶</a>
</li>
                    <li class="normal" id="section-4.4.1-10.1.2.1.2.4">EVPN Router's MAC Extended Community that contains M1.<a href="#section-4.4.1-10.1.2.1.2.4" class="pilcrow">¶</a>
</li>
                    <li class="normal" id="section-4.4.1-10.1.2.1.2.5">Route Target identifying the tenant (IP-VRF).<a href="#section-4.4.1-10.1.2.1.2.5" class="pilcrow">¶</a>
</li>
                  </ul>
</li>
              </ul>
</dd>
            <dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.4.1-10.2">
              <p id="section-4.4.1-10.2.1">DGW1 imports the received routes from NVE1:<a href="#section-4.4.1-10.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-10.2.2.1">DGW1 installs SN1/24 in the IP-VRF identified by the RT-5
       Route Target.<a href="#section-4.4.1-10.2.2.1" class="pilcrow">¶</a>
</li>
                <li class="normal" id="section-4.4.1-10.2.2.2">Since GW IP = ESI = 0, the label is a non-zero value, and the
       local policy indicates this interface-less model, DGW1, will use
       the label and next hop of the RT-5, as well as the MAC address
       conveyed in the EVPN Router's MAC Extended Community (as the inner
       destination MAC address) to set up the forwarding state and
       later encapsulate the routed IP packets.<a href="#section-4.4.1-10.2.2.2" class="pilcrow">¶</a>
</li>
              </ul>
</dd>
            <dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.4.1-10.3">
              <p id="section-4.4.1-10.3.1">When DGW1 receives a packet from the WAN with destination IPx,
 where IPx belongs to SN1/24:<a href="#section-4.4.1-10.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-10.3.2.1">A destination IP lookup is performed on the DGW1 IP-VRF
        table. The lookup yields SN1/24.<a href="#section-4.4.1-10.3.2.1" class="pilcrow">¶</a>
</li>
                <li class="normal" id="section-4.4.1-10.3.2.2">Since the RT-5 for SN1/24 had a GW IP = ESI = 0, a non-zero
        label, and a next hop, and since the model is interface-less, DGW1 will
        not need a recursive lookup to resolve the route.<a href="#section-4.4.1-10.3.2.2" class="pilcrow">¶</a>
</li>
                <li class="normal" id="section-4.4.1-10.3.2.3">The IP packet destined to IPx is encapsulated with: inner source MAC = DGW1 MAC, inner destination MAC = M1, outer source
        IP (tunnel source IP) = DGW1 IP, and outer destination IP (tunnel
        destination IP) = NVE1 IP. The source and inner destination MAC
        addresses are not needed if IP NVO tunnels are used.<a href="#section-4.4.1-10.3.2.3" class="pilcrow">¶</a>
</li>
              </ul>
</dd>
            <dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.4.1-10.4">
              <p id="section-4.4.1-10.4.1">When the packet arrives at NVE1:<a href="#section-4.4.1-10.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-10.4.2.1">NVE1 will identify the IP-VRF for an IP lookup based on the
        label (the inner destination MAC is not needed to identify the
        IP-VRF).<a href="#section-4.4.1-10.4.2.1" class="pilcrow">¶</a>
</li>
                <li class="normal" id="section-4.4.1-10.4.2.2">An IP lookup is performed in the routing context, where SN1
        turns out to be a local subnet associated with BD-2. A subsequent
        lookup in the ARP table and the BD FIB will provide the
        forwarding information for the packet in BD-2.<a href="#section-4.4.1-10.4.2.2" class="pilcrow">¶</a>
</li>
              </ul>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.4.1-11">
   The model described above is called an "interface-less" model since the
   IP-VRFs are connected directly through tunnels, and they don't require
   those tunnels to be terminated in SBDs instead, as in Sections <a href="#sect-4.4.2" class="xref">4.4.2</a> or <a href="#sect-4.4.3" class="xref">4.4.3</a>.<a href="#section-4.4.1-11" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-4.4.2">
<section id="section-4.4.2">
          <h4 id="name-interface-ful-ip-vrf-to-ip-">
<a href="#section-4.4.2" class="section-number selfRef">4.4.2. </a><a href="#name-interface-ful-ip-vrf-to-ip-" class="section-name selfRef">Interface-ful IP-VRF-to-IP-VRF with SBD IRB</a>
          </h4>
<p id="section-4.4.2-1"><a href="#fig-6" class="xref">Figure 9</a> depicts the Interface-ful IP-VRF-to-IP-VRF with SBD IRB model.<a href="#section-4.4.2-1" class="pilcrow">¶</a></p>
<span id="name-interface-ful-with-sbd-irb-"></span><div id="fig-6">
<figure id="figure-9">
            <div class="alignLeft art-text artwork" id="section-4.4.2-2.1">
<pre>
                 NVE1
        +------------+                       DGW1
IP10+---+(BD-1)      | +---------------+ +------------+
        |  \         | |               | |            |
        |(IP-VRF)-(SBD)|               |(SBD)-(IP-VRF)|-----+
        |  /    IRB(M1/IP1)           IRB(M3/IP3)     |     |
    +---+(BD-2)      | |               | +------------+    _+_
    |   +------------+ |               |                  (   )
 SN1|                  |     VXLAN/    |                 ( WAN )--H1
    |            NVE2  |     GENEVE/   |                  (___)
    |   +------------+ |     MPLS      |     DGW2           +
    +---+(BD-2)      | |               | +------------+     |
        |  \         | |               | |            |     |
        |(IP-VRF)-(SBD)|               |(SBD)-(IP-VRF)|-----+
        |  /    IRB(M2/IP2)           IRB(M4/IP4)     |
SN2+----+(BD-3)      | +---------------+ +------------+
        +------------+
</pre>
</div>
<figcaption><a href="#figure-9" class="selfRef">Figure 9</a>:
<a href="#name-interface-ful-with-sbd-irb-" class="selfRef">Interface-ful with SBD IRB Model</a>
            </figcaption></figure>
</div>
<p id="section-4.4.2-3">In this model:<a href="#section-4.4.2-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.2-4">
            <dt>a)</dt>
<dd id="section-4.4.2-4.1">As in <a href="#sect-4.4.1" class="xref">Section 4.4.1</a>, the NVEs and DGWs must provide connectivity
   between hosts in SN1, SN2, and IP10 and in hosts sitting at the other end
   of the WAN.<a href="#section-4.4.2-4.1" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt>b)</dt>
<dd id="section-4.4.2-4.2">However, the NVE/DGWs are now connected through Ethernet NVO
   tunnels terminated in the SBD instance. The IP-VRFs use IRB
   interfaces for their connectivity to the SBD.<a href="#section-4.4.2-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt>c)</dt>
<dd id="section-4.4.2-4.3">Each SBD IRB has an IP and a MAC address, where the IP address
   must be reachable from other NVEs or DGWs.<a href="#section-4.4.2-4.3" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt>d)</dt>
<dd id="section-4.4.2-4.4">The SBD is attached to all the NVE/DGWs in the tenant domain BDs.<a href="#section-4.4.2-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt>e)</dt>
<dd id="section-4.4.2-4.5">The solution must provide Layer 3 connectivity for Ethernet NVO
   tunnels -- for instance, VXLAN or GENEVE (with Ethernet payload).<a href="#section-4.4.2-4.5" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.4.2-5">
   EVPN type 5 routes will be used to advertise the IP prefixes, whereas
   EVPN RT-2 routes will advertise the MAC/IP addresses of each SBD IRB
   interface. Each NVE/DGW will advertise an RT-5 for each of its
   prefixes with the following fields:<a href="#section-4.4.2-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-6.1">RD as per <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span>.<a href="#section-4.4.2-6.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.4.2-6.2">Ethernet Tag ID = 0.<a href="#section-4.4.2-6.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.4.2-6.3">IP prefix length and IP address, as explained in the previous
   sections.<a href="#section-4.4.2-6.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.4.2-6.4">GW IP address = IRB-IP of the SBD (this is the Overlay Index that
   will be used for the recursive route resolution).<a href="#section-4.4.2-6.4" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.4.2-6.5">ESI = 0.<a href="#section-4.4.2-6.5" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.4.2-6.6">Label value should be zero since the RT-5 route requires a
   recursive lookup resolution to an RT-2 route. It is ignored on
   reception, and the MPLS label or VNI from
   the RT-2's MPLS Label1 field is used when forwarding packets.<a href="#section-4.4.2-6.6" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-4.4.2-7">
   Each RT-5 will be sent with a Route Target identifying the tenant
   (IP-VRF). The EVPN Router's MAC Extended Community should not be sent in
   this case.<a href="#section-4.4.2-7" class="pilcrow">¶</a></p>
<p id="section-4.4.2-8">
   The following example illustrates the procedure to advertise and
   forward packets to SN1/24 (IPv4 prefix advertised from NVE1):<a href="#section-4.4.2-8" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.2-9">
            <dt>(1)</dt>
<dd id="section-4.4.2-9.1">
              <p id="section-4.4.2-9.1.1">NVE1 advertises the following BGP routes:<a href="#section-4.4.2-9.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.1.2.1">
                  <p id="section-4.4.2-9.1.2.1.1">Route type 5 (IP Prefix route) containing:<a href="#section-4.4.2-9.1.2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.1.2.1.2.1">IPL = 24, IP = SN1, Label = <span class="bcp14">SHOULD</span> be set to 0.<a href="#section-4.4.2-9.1.2.1.2.1" class="pilcrow">¶</a>
</li>
                    <li class="normal" id="section-4.4.2-9.1.2.1.2.2">GW IP = IP1 (SBD IRB's IP).<a href="#section-4.4.2-9.1.2.1.2.2" class="pilcrow">¶</a>
</li>
                    <li class="normal" id="section-4.4.2-9.1.2.1.2.3">Route Target identifying the tenant (IP-VRF).<a href="#section-4.4.2-9.1.2.1.2.3" class="pilcrow">¶</a>
</li>
                  </ul>
</li>
                <li class="normal" id="section-4.4.2-9.1.2.2">
                  <p id="section-4.4.2-9.1.2.2.1">Route type 2 (MAC/IP Advertisement route for the SBD IRB) containing:<a href="#section-4.4.2-9.1.2.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.1.2.2.2.1">ML = 48, M = M1, IPL = 32, IP = IP1, Label = 10.<a href="#section-4.4.2-9.1.2.2.2.1" class="pilcrow">¶</a>
</li>
                    <li class="normal" id="section-4.4.2-9.1.2.2.2.2">A BGP Encapsulation Extended Community <span>[<a href="#RFC9012" class="xref">RFC9012</a>]</span>.<a href="#section-4.4.2-9.1.2.2.2.2" class="pilcrow">¶</a>
</li>
                    <li class="normal" id="section-4.4.2-9.1.2.2.2.3">Route Target identifying the SBD. This Route Target may be the
   same as the one used with the RT-5.<a href="#section-4.4.2-9.1.2.2.2.3" class="pilcrow">¶</a>
</li>
                  </ul>
</li>
              </ul>
</dd>
            <dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.4.2-9.2">
              <p id="section-4.4.2-9.2.1">DGW1 imports the received routes from NVE1:<a href="#section-4.4.2-9.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.2.2.1">
                  <p id="section-4.4.2-9.2.2.1.1">DGW1 installs SN1/24 in the IP-VRF identified by the RT-5 Route
   Target.<a href="#section-4.4.2-9.2.2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.2.2.1.2.1">Since GW IP is different from zero, the GW IP (IP1) will be
     used as the Overlay Index for the recursive route resolution to
     the RT-2 carrying IP1.<a href="#section-4.4.2-9.2.2.1.2.1" class="pilcrow">¶</a>
</li>
                  </ul>
</li>
              </ul>
</dd>
            <dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.4.2-9.3">
              <p id="section-4.4.2-9.3.1">When DGW1 receives a packet from the WAN with destination IPx,
 where IPx belongs to SN1/24:<a href="#section-4.4.2-9.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.3.2.1">A destination IP lookup is performed on the DGW1 IP-VRF
      table. The lookup yields SN1/24, which is associated with
      the Overlay Index IP1. The forwarding information is derived from
      the RT-2 received for IP1.<a href="#section-4.4.2-9.3.2.1" class="pilcrow">¶</a>
</li>
                <li class="normal" id="section-4.4.2-9.3.2.2">The IP packet destined to IPx is encapsulated with: inner source MAC = M3, inner destination MAC = M1, outer source IP
      (source VTEP) = DGW1 IP, and outer destination IP (destination VTEP)
      = NVE1 IP.<a href="#section-4.4.2-9.3.2.2" class="pilcrow">¶</a>
</li>
              </ul>
</dd>
            <dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.4.2-9.4">
              <p id="section-4.4.2-9.4.1">When the packet arrives at NVE1:<a href="#section-4.4.2-9.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.2-9.4.2.1">NVE1 will identify the IP-VRF for an IP lookup based on the
      label and the inner MAC DA.<a href="#section-4.4.2-9.4.2.1" class="pilcrow">¶</a>
</li>
                <li class="normal" id="section-4.4.2-9.4.2.2">An IP lookup is performed in the routing context, where SN1
      turns out to be a local subnet associated with BD-2. A subsequent
      lookup in the ARP table and the BD FIB will provide the
      forwarding information for the packet in BD-2.<a href="#section-4.4.2-9.4.2.2" class="pilcrow">¶</a>
</li>
              </ul>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.4.2-10">
   The model described above is called an "interface-ful with SBD IRB" model because the tunnels connecting the DGWs and NVEs need to be
   terminated into the SBD. The SBD is connected to the IP-VRFs via SBD
   IRB interfaces, and that allows the recursive resolution of RT-5s to
   GW IP addresses.<a href="#section-4.4.2-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-4.4.3">
<section id="section-4.4.3">
          <h4 id="name-interface-ful-ip-vrf-to-ip-v">
<a href="#section-4.4.3" class="section-number selfRef">4.4.3. </a><a href="#name-interface-ful-ip-vrf-to-ip-v" class="section-name selfRef">Interface-ful IP-VRF-to-IP-VRF with Unnumbered SBD IRB</a>
          </h4>
<p id="section-4.4.3-1">
<a href="#fig-7" class="xref">Figure 10</a> depicts the Interface-ful IP-VRF-to-IP-VRF with unnumbered SBD IRB model. Note that this model is similar to the one described in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, only
   without IP addresses on the SBD IRB interfaces.<a href="#section-4.4.3-1" class="pilcrow">¶</a></p>
<span id="name-interface-ful-with-unnumber"></span><div id="fig-7">
<figure id="figure-10">
            <div class="alignLeft art-text artwork" id="section-4.4.3-2.1">
<pre>
                 NVE1
        +------------+                       DGW1
IP1+----+(BD-1)      | +---------------+ +------------+
        |  \         | |               | |            |
        |(IP-VRF)-(SBD)|               (SBD)-(IP-VRF) |-----+
        |  /    IRB(M1)|               | IRB(M3)      |     |
    +---+(BD-2)      | |               | +------------+    _+_
    |   +------------+ |               |                  (   )
 SN1|                  |     VXLAN/    |                 ( WAN )--H1
    |            NVE2  |     GENEVE/   |                  (___)
    |   +------------+ |     MPLS      |     DGW2           +
    +---+(BD-2)      | |               | +------------+     |
        |  \         | |               | |            |     |
        |(IP-VRF)-(SBD)|               (SBD)-(IP-VRF) |-----+
        |  /    IRB(M2)|               | IRB(M4)      |
SN2+----+(BD-3)      | +---------------+ +------------+
        +------------+
</pre>
</div>
<figcaption><a href="#figure-10" class="selfRef">Figure 10</a>:
<a href="#name-interface-ful-with-unnumber" class="selfRef">Interface-ful with Unnumbered SBD IRB Model</a>
            </figcaption></figure>
</div>
<p id="section-4.4.3-3">In this model:<a href="#section-4.4.3-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.3-4">
            <dt>a)</dt>
<dd id="section-4.4.3-4.1">As in Sections <a href="#sect-4.4.1" class="xref">4.4.1</a> and <a href="#sect-4.4.2" class="xref">4.4.2</a>, the NVEs and DGWs must provide
 connectivity between hosts in SN1, SN2, and IP1 and in hosts sitting at the
 other end of the WAN.<a href="#section-4.4.3-4.1" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt>b)</dt>
<dd id="section-4.4.3-4.2">As in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, the NVE/DGWs are connected through Ethernet
 NVO tunnels terminated in the SBD instance. The IP-VRFs use IRB
 interfaces for their connectivity to the SBD.<a href="#section-4.4.3-4.2" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt>c)</dt>
<dd id="section-4.4.3-4.3">However, each SBD IRB has a MAC address only and no IP address
 (which is why the model refers to an "unnumbered" SBD IRB). In this
 model, there is no need to have IP reachability to the SBD IRB
 interfaces themselves, and there is a requirement to limit the number
 of IP addresses used.<a href="#section-4.4.3-4.3" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt>d)</dt>
<dd id="section-4.4.3-4.4">As in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, the SBD is composed of all the NVE/DGW BDs of
 the tenant that need inter-subnet forwarding.<a href="#section-4.4.3-4.4" class="pilcrow">¶</a>
</dd>
            <dd class="break"></dd>
<dt>e)</dt>
<dd id="section-4.4.3-4.5">As in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, the solution must provide Layer 3 connectivity
 for Ethernet NVO tunnels -- for instance, VXLAN or GENEVE (with Ethernet
 payload).<a href="#section-4.4.3-4.5" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.4.3-5">
   This model will also make use of the RT-5 recursive resolution. EVPN
   type 5 routes will advertise the IP prefixes along with the EVPN Router's
   MAC Extended Community used for the recursive lookup, whereas EVPN
   RT-2 routes will advertise the MAC addresses of each SBD IRB
   interface (this time without an IP).<a href="#section-4.4.3-5" class="pilcrow">¶</a></p>
<p id="section-4.4.3-6">
   Each NVE/DGW will advertise an RT-5 for each of its prefixes with the
   same fields as described in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, except:<a href="#section-4.4.3-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-7.1">GW IP address = set to 0.<a href="#section-4.4.3-7.1" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-4.4.3-8">
   Each RT-5 will be sent with a Route Target identifying the tenant
   (IP-VRF) and the EVPN Router's MAC Extended Community containing the MAC
   address associated with the SBD IRB interface. This MAC address may be
   reused for all the IP-VRFs in the NVE.<a href="#section-4.4.3-8" class="pilcrow">¶</a></p>
<p id="section-4.4.3-9">
   The example is similar to the one in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>:<a href="#section-4.4.3-9" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="olPercent" id="section-4.4.3-10">
            <dt>(1)</dt>
<dd id="section-4.4.3-10.1">
              <p id="section-4.4.3-10.1.1">NVE1 advertises the following BGP routes:<a href="#section-4.4.3-10.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.1.2.1">
                  <p id="section-4.4.3-10.1.2.1.1">Route type 5 (IP Prefix route) containing the same values as
          in the example in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, except:<a href="#section-4.4.3-10.1.2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.1.2.1.2.1">GW IP =  <span class="bcp14">SHOULD</span> be set to 0.<a href="#section-4.4.3-10.1.2.1.2.1" class="pilcrow">¶</a>
</li>
                    <li class="normal" id="section-4.4.3-10.1.2.1.2.2">EVPN Router's MAC Extended Community containing M1 (this will be used
   for the recursive lookup to an RT-2).<a href="#section-4.4.3-10.1.2.1.2.2" class="pilcrow">¶</a>
</li>
                  </ul>
</li>
                <li class="normal" id="section-4.4.3-10.1.2.2">
                  <p id="section-4.4.3-10.1.2.2.1">Route type 2 (MAC route for the SBD IRB) with the same values
          as in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>, except:<a href="#section-4.4.3-10.1.2.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.1.2.2.2.1">ML = 48, M = M1, IPL = 0, Label = 10.<a href="#section-4.4.3-10.1.2.2.2.1" class="pilcrow">¶</a>
</li>
                  </ul>
</li>
              </ul>
</dd>
            <dd class="break"></dd>
<dt>(2)</dt>
<dd id="section-4.4.3-10.2">
              <p id="section-4.4.3-10.2.1">DGW1 imports the received routes from NVE1:<a href="#section-4.4.3-10.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.2.2.1">
                  <p id="section-4.4.3-10.2.2.1.1">DGW1 installs SN1/24 in the IP-VRF identified by the RT-5
          Route Target.<a href="#section-4.4.3-10.2.2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.2.2.1.2.1">The MAC contained in the EVPN Router's MAC Extended Community sent
     along with the RT-5 (M1) will be used as the Overlay Index for the
     recursive route resolution to the RT-2 carrying M1.<a href="#section-4.4.3-10.2.2.1.2.1" class="pilcrow">¶</a>
</li>
                  </ul>
</li>
              </ul>
</dd>
            <dd class="break"></dd>
<dt>(3)</dt>
<dd id="section-4.4.3-10.3">
              <p id="section-4.4.3-10.3.1">When DGW1 receives a packet from the WAN with destination IPx,
 where IPx belongs to SN1/24:<a href="#section-4.4.3-10.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.3.2.1">A destination IP lookup is performed on the DGW1 IP-VRF
       table. The lookup yields SN1/24, which is associated with
       the Overlay Index M1. The forwarding information is derived from
       the RT-2 received for M1.<a href="#section-4.4.3-10.3.2.1" class="pilcrow">¶</a>
</li>
                <li class="normal" id="section-4.4.3-10.3.2.2">The IP packet destined to IPx is encapsulated with: inner source MAC = M3, inner destination MAC = M1, outer source IP
       (source VTEP) = DGW1 IP, and outer destination IP (destination VTEP)
       = NVE1 IP.<a href="#section-4.4.3-10.3.2.2" class="pilcrow">¶</a>
</li>
              </ul>
</dd>
            <dd class="break"></dd>
<dt>(4)</dt>
<dd id="section-4.4.3-10.4">
              <p id="section-4.4.3-10.4.1">When the packet arrives at NVE1:<a href="#section-4.4.3-10.4.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.3-10.4.2.1">NVE1 will identify the IP-VRF for an IP lookup based on the
        label and the inner MAC DA.<a href="#section-4.4.3-10.4.2.1" class="pilcrow">¶</a>
</li>
                <li class="normal" id="section-4.4.3-10.4.2.2">An IP lookup is performed in the routing context, where SN1
        turns out to be a local subnet associated with BD-2. A subsequent
        lookup in the ARP table and the BD FIB will provide the
        forwarding information for the packet in BD-2.<a href="#section-4.4.3-10.4.2.2" class="pilcrow">¶</a>
</li>
              </ul>
</dd>
          <dd class="break"></dd>
</dl>
<p id="section-4.4.3-11">
   The model described above is called an "interface-ful with unnumbered SBD
   IRB" model (as in <a href="#sect-4.4.2" class="xref">Section 4.4.2</a>) but without the SBD IRB having an IP address.<a href="#section-4.4.3-11" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
<div id="sect-5">
<section id="section-5">
      <h2 id="name-security-considerations">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
      </h2>
<p id="section-5-1">
   This document provides a set of procedures to achieve inter-subnet
   forwarding across NVEs or PEs attached to a group of BDs that belong
   to the same tenant (or VPN). The security considerations discussed in
   <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> apply to the intra-subnet forwarding or communication
   within each of those BDs. In addition, the security considerations in
   <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span> should also be understood, since this document and
   <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span> may be used in similar applications.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">
   Contrary to <span>[<a href="#RFC4364" class="xref">RFC4364</a>]</span>, this document does not describe PE/CE route
   distribution techniques but rather considers the CEs as TSs or VAs
   that do not run dynamic routing protocols. This can be considered a
   security advantage, since dynamic routing protocols can be blocked on
   the NVE/PE ACs, not allowing the tenant to interact with the
   infrastructure's dynamic routing protocols.<a href="#section-5-2" class="pilcrow">¶</a></p>
<p id="section-5-3">
   In this document, the RT-5 may use a regular BGP next hop for its
   resolution or an Overlay Index that requires a recursive resolution
   to a different EVPN route (an RT-2 or an RT-1). In the latter case,
   it is worth noting that any action that ends up filtering or
   modifying the RT-2 or RT-1 routes used to convey the Overlay Indexes
   will modify the resolution of the RT-5 and therefore the forwarding
   of packets to the remote subnet.<a href="#section-5-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-6">
<section id="section-6">
      <h2 id="name-iana-considerations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
      </h2>
<p id="section-6-1">
   IANA has registered value 5 in the "EVPN Route Types" registry <span>[<a href="#EVPNRouteTypes" class="xref">EVPNRouteTypes</a>]</span>
      defined by <span>[<a href="#RFC7432" class="xref">RFC7432</a>]</span> as follows:<a href="#section-6-1" class="pilcrow">¶</a></p>
<table class="center" id="table-3">
        <caption><a href="#table-3" class="selfRef">Table 3</a></caption>
<thead>
          <tr>
            <th class="text-left" rowspan="1" colspan="1">Value</th>
            <th class="text-left" rowspan="1" colspan="1">Description</th>
            <th class="text-left" rowspan="1" colspan="1">Reference</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <td class="text-left" rowspan="1" colspan="1">5</td>
            <td class="text-left" rowspan="1" colspan="1">IP Prefix</td>
            <td class="text-left" rowspan="1" colspan="1">RFC 9136</td>
          </tr>
        </tbody>
      </table>
</section>
</div>
<section id="section-7">
      <h2 id="name-references">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-references" class="section-name selfRef">References</a>
      </h2>
<section id="section-7.1">
        <h3 id="name-normative-references">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
        </h3>
<dl class="references">
<dt id="EVPNRouteTypes">[EVPNRouteTypes]</dt>
        <dd>
<span class="refAuthor">IANA</span>, <span class="refTitle">"EVPN Route Types"</span>, <span>&lt;<a href="https://www.iana.org/assignments/evpn">https://www.iana.org/assignments/evpn</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2119">[RFC2119]</dt>
        <dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7432">[RFC7432]</dt>
        <dd>
<span class="refAuthor">Sajassi, A., Ed.</span>, <span class="refAuthor">Aggarwal, R.</span>, <span class="refAuthor">Bitar, N.</span>, <span class="refAuthor">Isaac, A.</span>, <span class="refAuthor">Uttaro, J.</span>, <span class="refAuthor">Drake, J.</span>, and <span class="refAuthor">W. Henderickx</span>, <span class="refTitle">"BGP MPLS-Based Ethernet VPN"</span>, <span class="seriesInfo">RFC 7432</span>, <span class="seriesInfo">DOI 10.17487/RFC7432</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7432">https://www.rfc-editor.org/info/rfc7432</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
        <dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8365">[RFC8365]</dt>
        <dd>
<span class="refAuthor">Sajassi, A., Ed.</span>, <span class="refAuthor">Drake, J., Ed.</span>, <span class="refAuthor">Bitar, N.</span>, <span class="refAuthor">Shekhar, R.</span>, <span class="refAuthor">Uttaro, J.</span>, and <span class="refAuthor">W. Henderickx</span>, <span class="refTitle">"A Network Virtualization Overlay Solution Using Ethernet VPN (EVPN)"</span>, <span class="seriesInfo">RFC 8365</span>, <span class="seriesInfo">DOI 10.17487/RFC8365</span>, <time datetime="2018-03" class="refDate">March 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8365">https://www.rfc-editor.org/info/rfc8365</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9012">[RFC9012]</dt>
        <dd>
<span class="refAuthor">Patel, K.</span>, <span class="refAuthor">Van de Velde, G.</span>, <span class="refAuthor">Sangli, S.</span>, and <span class="refAuthor">J. Scudder</span>, <span class="refTitle">"The BGP Tunnel Encapsulation Attribute"</span>, <span class="seriesInfo">RFC 9012</span>, <span class="seriesInfo">DOI 10.17487/RFC9012</span>, <time datetime="2021-04" class="refDate">April 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9012">https://www.rfc-editor.org/info/rfc9012</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9135">[RFC9135]</dt>
      <dd>
<span class="refAuthor">Sajassi, A.</span>, <span class="refAuthor">Salam, S.</span>, <span class="refAuthor">Thoria, S.</span>, <span class="refAuthor">Drake, J.</span>, and <span class="refAuthor">J. Rabadan</span>, <span class="refTitle">"Integrated Routing and Bridging in Ethernet VPN (EVPN)"</span>, <span class="seriesInfo">RFC 9135</span>, <span class="seriesInfo">DOI 10.17487/RFC9135</span>, <time datetime="2021-10" class="refDate">October 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9135">https://www.rfc-editor.org/info/rfc9135</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-7.2">
        <h3 id="name-informative-references">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
        </h3>
<dl class="references">
<dt id="IEEE-802.1Q">[IEEE-802.1Q]</dt>
        <dd>
<span class="refAuthor">IEEE</span>, <span class="refTitle">"IEEE Standard for Local and Metropolitan Area Networks -- Bridges and Bridged Networks"</span>, <span class="seriesInfo">DOI 10.1109/IEEESTD.2018.8403927</span>, <span class="seriesInfo">IEEE Std 802.1Q</span>, <time datetime="2018-07" class="refDate">July 2018</time>, <span>&lt;<a href="https://standards.ieee.org/standard/802_1Q-2018.html">https://standards.ieee.org/standard/802_1Q-2018.html</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4364">[RFC4364]</dt>
        <dd>
<span class="refAuthor">Rosen, E.</span> and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"BGP/MPLS IP Virtual Private Networks (VPNs)"</span>, <span class="seriesInfo">RFC 4364</span>, <span class="seriesInfo">DOI 10.17487/RFC4364</span>, <time datetime="2006-02" class="refDate">February 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4364">https://www.rfc-editor.org/info/rfc4364</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5227">[RFC5227]</dt>
        <dd>
<span class="refAuthor">Cheshire, S.</span>, <span class="refTitle">"IPv4 Address Conflict Detection"</span>, <span class="seriesInfo">RFC 5227</span>, <span class="seriesInfo">DOI 10.17487/RFC5227</span>, <time datetime="2008-07" class="refDate">July 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5227">https://www.rfc-editor.org/info/rfc5227</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5798">[RFC5798]</dt>
        <dd>
<span class="refAuthor">Nadas, S., Ed.</span>, <span class="refTitle">"Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6"</span>, <span class="seriesInfo">RFC 5798</span>, <span class="seriesInfo">DOI 10.17487/RFC5798</span>, <time datetime="2010-03" class="refDate">March 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5798">https://www.rfc-editor.org/info/rfc5798</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7348">[RFC7348]</dt>
        <dd>
<span class="refAuthor">Mahalingam, M.</span>, <span class="refAuthor">Dutt, D.</span>, <span class="refAuthor">Duda, K.</span>, <span class="refAuthor">Agarwal, P.</span>, <span class="refAuthor">Kreeger, L.</span>, <span class="refAuthor">Sridhar, T.</span>, <span class="refAuthor">Bursell, M.</span>, and <span class="refAuthor">C. Wright</span>, <span class="refTitle">"Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks"</span>, <span class="seriesInfo">RFC 7348</span>, <span class="seriesInfo">DOI 10.17487/RFC7348</span>, <time datetime="2014-08" class="refDate">August 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7348">https://www.rfc-editor.org/info/rfc7348</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7365">[RFC7365]</dt>
        <dd>
<span class="refAuthor">Lasserre, M.</span>, <span class="refAuthor">Balus, F.</span>, <span class="refAuthor">Morin, T.</span>, <span class="refAuthor">Bitar, N.</span>, and <span class="refAuthor">Y. Rekhter</span>, <span class="refTitle">"Framework for Data Center (DC) Network Virtualization"</span>, <span class="seriesInfo">RFC 7365</span>, <span class="seriesInfo">DOI 10.17487/RFC7365</span>, <time datetime="2014-10" class="refDate">October 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7365">https://www.rfc-editor.org/info/rfc7365</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7606">[RFC7606]</dt>
        <dd>
<span class="refAuthor">Chen, E., Ed.</span>, <span class="refAuthor">Scudder, J., Ed.</span>, <span class="refAuthor">Mohapatra, P.</span>, and <span class="refAuthor">K. Patel</span>, <span class="refTitle">"Revised Error Handling for BGP UPDATE Messages"</span>, <span class="seriesInfo">RFC 7606</span>, <span class="seriesInfo">DOI 10.17487/RFC7606</span>, <time datetime="2015-08" class="refDate">August 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7606">https://www.rfc-editor.org/info/rfc7606</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8926">[RFC8926]</dt>
      <dd>
<span class="refAuthor">Gross, J., Ed.</span>, <span class="refAuthor">Ganga, I., Ed.</span>, and <span class="refAuthor">T. Sridhar, Ed.</span>, <span class="refTitle">"Geneve: Generic Network Virtualization Encapsulation"</span>, <span class="seriesInfo">RFC 8926</span>, <span class="seriesInfo">DOI 10.17487/RFC8926</span>, <time datetime="2020-11" class="refDate">November 2020</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8926">https://www.rfc-editor.org/info/rfc8926</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="sect-8">
<section id="appendix-A">
      <h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
      </h2>
<p id="appendix-A-1">
   The authors would like to thank <span class="contact-name">Mukul Katiyar</span>, <span class="contact-name">Jeffrey Zhang</span>, and <span class="contact-name">Alex Nichol</span> for
   their valuable feedback and contributions. <span class="contact-name">Tony Przygienda</span>
   and <span class="contact-name">Thomas Morin</span> also helped improve this document with their feedback. Special thanks to <span class="contact-name">Eric Rosen</span> for his detailed
   review, which really helped improve the readability and clarify the
   concepts. We also thank <span class="contact-name">Alvaro Retana</span> for his thorough review.<a href="#appendix-A-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sect-9">
<section id="appendix-B">
      <h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
      </h2>
<p id="appendix-B-1">
   In addition to the authors listed on the front page, the following
      coauthors have also contributed to this document:<a href="#appendix-B-1" class="pilcrow">¶</a></p>
<ul class="compact ulEmpty">
<li class="compact ulEmpty" id="appendix-B-2.1">
          <p id="appendix-B-2.1.1"><span class="contact-name">Senthil Sathappan</span><a href="#appendix-B-2.1.1" class="pilcrow">¶</a></p>
</li>
        <li class="compact ulEmpty" id="appendix-B-2.2">
          <p id="appendix-B-2.2.1"><span class="contact-name">Florin Balus</span><a href="#appendix-B-2.2.1" class="pilcrow">¶</a></p>
</li>
        <li class="compact ulEmpty" id="appendix-B-2.3">
          <p id="appendix-B-2.3.1"> <span class="contact-name">Aldrin Isaac</span><a href="#appendix-B-2.3.1" class="pilcrow">¶</a></p>
</li>
        <li class="compact ulEmpty" id="appendix-B-2.4">
          <p id="appendix-B-2.4.1"> <span class="contact-name">Senad Palislamovic</span><a href="#appendix-B-2.4.1" class="pilcrow">¶</a></p>
</li>
        <li class="compact ulEmpty" id="appendix-B-2.5">
          <p id="appendix-B-2.5.1"> <span class="contact-name">Samir Thoria</span><a href="#appendix-B-2.5.1" class="pilcrow">¶</a></p>
</li>
      </ul>
</section>
</div>
<div id="authors-addresses">
<section id="appendix-C">
      <h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Jorge Rabadan (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Nokia</span></div>
<div dir="auto" class="left"><span class="street-address">777 E. Middlefield Road</span></div>
<div dir="auto" class="left">
<span class="locality">Mountain View</span>, <span class="region">CA</span> <span class="postal-code">94043</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jorge.rabadan@nokia.com" class="email">jorge.rabadan@nokia.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Wim Henderickx</span></div>
<div dir="auto" class="left"><span class="org">Nokia</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:wim.henderickx@nokia.com" class="email">wim.henderickx@nokia.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">John Drake</span></div>
<div dir="auto" class="left"><span class="org">Juniper</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jdrake@juniper.net" class="email">jdrake@juniper.net</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Wen Lin</span></div>
<div dir="auto" class="left"><span class="org">Juniper</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:wlin@juniper.net" class="email">wlin@juniper.net</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Ali Sajassi</span></div>
<div dir="auto" class="left"><span class="org">Cisco</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:sajassi@cisco.com" class="email">sajassi@cisco.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
  toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
  toc.classList.remove("active");
});
</script>
</body>
</html>