File: rfc9198.html

package info (click to toggle)
doc-rfc 20230121-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 1,609,944 kB
file content (2739 lines) | stat: -rw-r--r-- 139,679 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9198: Advanced Unidirectional Route Assessment (AURA)</title>
<meta content="J. Ignacio Alvarez-Hamelin" name="author">
<meta content="Al Morton" name="author">
<meta content="Joachim Fabini" name="author">
<meta content="Carlos Pignataro" name="author">
<meta content="Ruediger Geib" name="author">
<meta content="
       This memo introduces an advanced unidirectional route assessment
      (AURA) metric and associated measurement methodology based on the IP
      Performance Metrics (IPPM) framework (RFC 2330). This memo updates RFC
      2330 in the areas of path-related terminology and path description,
      primarily to include the possibility of parallel subpaths between a
      given Source and Destination pair, owing to the presence of multipath
      technologies. 
    " name="description">
<meta content="xml2rfc 3.12.7" name="generator">
<meta content="Performance" name="keyword">
<meta content="Metrics" name="keyword">
<meta content="IPPM" name="keyword">
<meta content="path" name="keyword">
<meta content="parallel paths" name="keyword">
<meta content="9198" name="rfc.number">
<!-- Generator version information:
  xml2rfc 3.12.7
    Python 3.6.15
    appdirs 1.4.4
    ConfigArgParse 1.4.1
    google-i18n-address 2.4.0
    html5lib 1.0.1
    intervaltree 3.0.2
    Jinja2 2.11.3
    kitchen 1.2.6
    lxml 4.4.2
    MarkupSafe 2.0.1
    pycairo 1.15.1
    pycountry 19.8.18
    pyflakes 2.1.1
    PyYAML 5.4.1
    requests 2.24.0
    setuptools 40.5.0
    six 1.14.0
    WeasyPrint 52.5
-->
<link href="rfc9198.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*

  NOTE: Changes at the bottom of this file overrides some earlier settings.

  Once the style has stabilized and has been adopted as an official RFC style,
  this can be consolidated so that style settings occur only in one place, but
  for now the contents of this file consists first of the initial CSS work as
  provided to the RFC Formatter (xml2rfc) work, followed by itemized and
  commented changes found necssary during the development of the v3
  formatters.

*/

/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */

@viewport {
  zoom: 1.0;
  width: extend-to-zoom;
}
@-ms-viewport {
  width: extend-to-zoom;
  zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
  max-width: 90%;
  margin: 1.5em auto;
  color: #222;
  background-color: #fff;
  font-size: 14px;
  font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
  line-height: 1.6;
  scroll-behavior: smooth;
}
.ears {
  display: none;
}

/* headings */
#title, h1, h2, h3, h4, h5, h6 {
  margin: 1em 0 0.5em;
  font-weight: bold;
  line-height: 1.3;
}
#title {
  clear: both;
  border-bottom: 1px solid #ddd;
  margin: 0 0 0.5em 0;
  padding: 1em 0 0.5em;
}
.author {
  padding-bottom: 4px;
}
h1 {
  font-size: 26px;
  margin: 1em 0;
}
h2 {
  font-size: 22px;
  margin-top: -20px;  /* provide offset for in-page anchors */
  padding-top: 33px;
}
h3 {
  font-size: 18px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h4 {
  font-size: 16px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h5, h6 {
  font-size: 14px;
}
#n-copyright-notice {
  border-bottom: 1px solid #ddd;
  padding-bottom: 1em;
  margin-bottom: 1em;
}
/* general structure */
p {
  padding: 0;
  margin: 0 0 1em 0;
  text-align: left;
}
div, span {
  position: relative;
}
div {
  margin: 0;
}
.alignRight.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignRight.art-text pre {
  padding: 0;
}
.alignRight {
  margin: 1em 0;
}
.alignRight > *:first-child {
  border: none;
  margin: 0;
  float: right;
  clear: both;
}
.alignRight > *:nth-child(2) {
  clear: both;
  display: block;
  border: none;
}
svg {
  display: block;
}
.alignCenter.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
  padding: 0;
}
.alignCenter {
  margin: 1em 0;
}
.alignCenter > *:first-child {
  border: none;
  /* this isn't optimal, but it's an existence proof.  PrinceXML doesn't
     support flexbox yet.
  */
  display: table;
  margin: 0 auto;
}

/* lists */
ol, ul {
  padding: 0;
  margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
  margin-left: 1em;
}
li {
  margin: 0 0 0.25em 0;
}
.ulCompact li {
  margin: 0;
}
ul.empty, .ulEmpty {
  list-style-type: none;
}
ul.empty li, .ulEmpty li {
  margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
  margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
  line-height: 100%;
  margin: 0 0 0 2em;
}

/* definition lists */
dl {
}
dl > dt {
  float: left;
  margin-right: 1em;
}
/* 
dl.nohang > dt {
  float: none;
}
*/
dl > dd {
  margin-bottom: .8em;
  min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
  margin-bottom: 0em;
}
dl > dd > dl {
  margin-top: 0.5em;
  margin-bottom: 0em;
}

/* links */
a {
  text-decoration: none;
}
a[href] {
  color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
  background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
  color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
  background-color: transparent;
  cursor: default;
} */

/* Figures */
tt, code, pre, code {
  background-color: #f9f9f9;
  font-family: 'Roboto Mono', monospace;
}
pre {
  border: 1px solid #eee;
  margin: 0;
  padding: 1em;
}
img {
  max-width: 100%;
}
figure {
  margin: 0;
}
figure blockquote {
  margin: 0.8em 0.4em 0.4em;
}
figcaption {
  font-style: italic;
  margin: 0 0 1em 0;
}
@media screen {
  pre {
    overflow-x: auto;
    max-width: 100%;
    max-width: calc(100% - 22px);
  }
}

/* aside, blockquote */
aside, blockquote {
  margin-left: 0;
  padding: 1.2em 2em;
}
blockquote {
  background-color: #f9f9f9;
  color: #111; /* Arlen: WCAG 2019 */
  border: 1px solid #ddd;
  border-radius: 3px;
  margin: 1em 0;
}
cite {
  display: block;
  text-align: right;
  font-style: italic;
}

/* tables */
table {
  width: 100%;
  margin: 0 0 1em;
  border-collapse: collapse;
  border: 1px solid #eee;
}
th, td {
  text-align: left;
  vertical-align: top;
  padding: 0.5em 0.75em;
}
th {
  text-align: left;
  background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
  background-color: #f5f5f5;
}
table caption {
  font-style: italic;
  margin: 0;
  padding: 0;
  text-align: left;
}
table p {
  /* XXX to avoid bottom margin on table row signifiers. If paragraphs should
     be allowed within tables more generally, it would be far better to select on a class. */
  margin: 0;
}

/* pilcrow */
a.pilcrow {
  color: #666; /* Arlen: AHDJ 2019 */
  text-decoration: none;
  visibility: hidden;
  user-select: none;
  -ms-user-select: none;
  -o-user-select:none;
  -moz-user-select: none;
  -khtml-user-select: none;
  -webkit-user-select: none;
  -webkit-touch-callout: none;
}
@media screen {
  aside:hover > a.pilcrow,
  p:hover > a.pilcrow,
  blockquote:hover > a.pilcrow,
  div:hover > a.pilcrow,
  li:hover > a.pilcrow,
  pre:hover > a.pilcrow {
    visibility: visible;
  }
  a.pilcrow:hover {
    background-color: transparent;
  }
}

/* misc */
hr {
  border: 0;
  border-top: 1px solid #eee;
}
.bcp14 {
  font-variant: small-caps;
}

.role {
  font-variant: all-small-caps;
}

/* info block */
#identifiers {
  margin: 0;
  font-size: 0.9em;
}
#identifiers dt {
  width: 3em;
  clear: left;
}
#identifiers dd {
  float: left;
  margin-bottom: 0;
}
/* Fix PDF info block run off issue */
@media print {
  #identifiers dd {
    float: none;
  }
}
#identifiers .authors .author {
  display: inline-block;
  margin-right: 1.5em;
}
#identifiers .authors .org {
  font-style: italic;
}

/* The prepared/rendered info at the very bottom of the page */
.docInfo {
  color: #666; /* Arlen: WCAG 2019 */
  font-size: 0.9em;
  font-style: italic;
  margin-top: 2em;
}
.docInfo .prepared {
  float: left;
}
.docInfo .prepared {
  float: right;
}

/* table of contents */
#toc  {
  padding: 0.75em 0 2em 0;
  margin-bottom: 1em;
}
nav.toc ul {
  margin: 0 0.5em 0 0;
  padding: 0;
  list-style: none;
}
nav.toc li {
  line-height: 1.3em;
  margin: 0.75em 0;
  padding-left: 1.2em;
  text-indent: -1.2em;
}
/* references */
.references dt {
  text-align: right;
  font-weight: bold;
  min-width: 7em;
}
.references dd {
  margin-left: 8em;
  overflow: auto;
}

.refInstance {
  margin-bottom: 1.25em;
}

.references .ascii {
  margin-bottom: 0.25em;
}

/* index */
.index ul {
  margin: 0 0 0 1em;
  padding: 0;
  list-style: none;
}
.index ul ul {
  margin: 0;
}
.index li {
  margin: 0;
  text-indent: -2em;
  padding-left: 2em;
  padding-bottom: 5px;
}
.indexIndex {
  margin: 0.5em 0 1em;
}
.index a {
  font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
  .index ul {
    -moz-column-count: 2;
    -moz-column-gap: 20px;
  }
  .index ul ul {
    -moz-column-count: 1;
    -moz-column-gap: 0;
  }
}

/* authors */
address.vcard {
  font-style: normal;
  margin: 1em 0;
}

address.vcard .nameRole {
  font-weight: 700;
  margin-left: 0;
}
address.vcard .label {
  font-family: "Noto Sans",Arial,Helvetica,sans-serif;
  margin: 0.5em 0;
}
address.vcard .type {
  display: none;
}
.alternative-contact {
  margin: 1.5em 0 1em;
}
hr.addr {
  border-top: 1px dashed;
  margin: 0;
  color: #ddd;
  max-width: calc(100% - 16px);
}

/* temporary notes */
.rfcEditorRemove::before {
  position: absolute;
  top: 0.2em;
  right: 0.2em;
  padding: 0.2em;
  content: "The RFC Editor will remove this note";
  color: #9e2a00; /* Arlen: WCAG 2019 */
  background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
  position: relative;
  padding-top: 1.8em;
  background-color: #ffd; /* Arlen: WCAG 2019 */
  border-radius: 3px;
}
.cref {
  background-color: #ffd; /* Arlen: WCAG 2019 */
  padding: 2px 4px;
}
.crefSource {
  font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
  body {
    padding-top: 2em;
  }
  #title {
    padding: 1em 0;
  }
  h1 {
    font-size: 24px;
  }
  h2 {
    font-size: 20px;
    margin-top: -18px;  /* provide offset for in-page anchors */
    padding-top: 38px;
  }
  #identifiers dd {
    max-width: 60%;
  }
  #toc {
    position: fixed;
    z-index: 2;
    top: 0;
    right: 0;
    padding: 0;
    margin: 0;
    background-color: inherit;
    border-bottom: 1px solid #ccc;
  }
  #toc h2 {
    margin: -1px 0 0 0;
    padding: 4px 0 4px 6px;
    padding-right: 1em;
    min-width: 190px;
    font-size: 1.1em;
    text-align: right;
    background-color: #444;
    color: white;
    cursor: pointer;
  }
  #toc h2::before { /* css hamburger */
    float: right;
    position: relative;
    width: 1em;
    height: 1px;
    left: -164px;
    margin: 6px 0 0 0;
    background: white none repeat scroll 0 0;
    box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
    content: "";
  }
  #toc nav {
    display: none;
    padding: 0.5em 1em 1em;
    overflow: auto;
    height: calc(100vh - 48px);
    border-left: 1px solid #ddd;
  }
}

/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
  body {
    max-width: 724px;
    margin: 42px auto;
    padding-left: 1.5em;
    padding-right: 29em;
  }
  #toc {
    position: fixed;
    top: 42px;
    right: 42px;
    width: 25%;
    margin: 0;
    padding: 0 1em;
    z-index: 1;
  }
  #toc h2 {
    border-top: none;
    border-bottom: 1px solid #ddd;
    font-size: 1em;
    font-weight: normal;
    margin: 0;
    padding: 0.25em 1em 1em 0;
  }
  #toc nav {
    display: block;
    height: calc(90vh - 84px);
    bottom: 0;
    padding: 0.5em 0 0;
    overflow: auto;
  }
  img { /* future proofing */
    max-width: 100%;
    height: auto;
  }
}

/* pagination */
@media print {
  body {

    width: 100%;
  }
  p {
    orphans: 3;
    widows: 3;
  }
  #n-copyright-notice {
    border-bottom: none;
  }
  #toc, #n-introduction {
    page-break-before: always;
  }
  #toc {
    border-top: none;
    padding-top: 0;
  }
  figure, pre {
    page-break-inside: avoid;
  }
  figure {
    overflow: scroll;
  }
  pre.breakable {
    break-inside: auto;
  }
  h1, h2, h3, h4, h5, h6 {
    page-break-after: avoid;
  }
  h2+*, h3+*, h4+*, h5+*, h6+* {
    page-break-before: avoid;
  }
  pre {
    white-space: pre-wrap;
    word-wrap: break-word;
    font-size: 10pt;
  }
  table {
    border: 1px solid #ddd;
  }
  td {
    border-top: 1px solid #ddd;
  }
}

/* This is commented out here, as the string-set: doesn't
   pass W3C validation currently */
/*
.ears thead .left {
  string-set: ears-top-left content();
}

.ears thead .center {
  string-set: ears-top-center content();
}

.ears thead .right {
  string-set: ears-top-right content();
}

.ears tfoot .left {
  string-set: ears-bottom-left content();
}

.ears tfoot .center {
  string-set: ears-bottom-center content();
}

.ears tfoot .right {
  string-set: ears-bottom-right content();
}
*/

@page :first {
  padding-top: 0;
  @top-left {
    content: normal;
    border: none;
  }
  @top-center {
    content: normal;
    border: none;
  }
  @top-right {
    content: normal;
    border: none;
  }
}

@page {
  size: A4;
  margin-bottom: 45mm;
  padding-top: 20px;
  /* The follwing is commented out here, but set appropriately by in code, as
     the content depends on the document */
  /*
  @top-left {
    content: 'Internet-Draft';
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-left {
    content: string(ears-top-left);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-center {
    content: string(ears-top-center);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-right {
    content: string(ears-top-right);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @bottom-left {
    content: string(ears-bottom-left);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-center {
    content: string(ears-bottom-center);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-right {
      content: '[Page ' counter(page) ']';
      vertical-align: top;
      border-top: solid 1px #ccc;
  }
  */

}

/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
  z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
  clear: both;
}


/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
  vertical-align: top;
}

/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
  width: 8em;
}

/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
  margin-left: 1em;
}

/* Give floating toc a background color (needed when it's a div inside section */
#toc {
  background-color: white;
}

/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
  #toc h2 a,
  #toc h2 a:link,
  #toc h2 a:focus,
  #toc h2 a:hover,
  #toc a.toplink,
  #toc a.toplink:hover {
    color: white;
    background-color: #444;
    text-decoration: none;
  }
}

/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
  #toc {
    padding: 0 0 1em 1em;
  }
}

/* Style section numbers with more space between number and title */
.section-number {
  padding-right: 0.5em;
}

/* prevent monospace from becoming overly large */
tt, code, pre, code {
  font-size: 95%;
}

/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
  line-height: 1.12;
}


/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
  float: right;
  margin-right: 0.5em;
}

/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
  float: left;
  margin-right: 1em;
}
dl.dlNewline > dt {
  float: none;
}

/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
  text-align: left;
}
table td.text-center,
table th.text-center {
  text-align: center;
}
table td.text-right,
table th.text-right {
  text-align: right;
}

/* Make the alternative author contact informatio look less like just another
   author, and group it closer with the primary author contact information */
.alternative-contact {
  margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
  margin: 0 0 0 2em;
}

/* With it being possible to set tables with alignment
  left, center, and right, { width: 100%; } does not make sense */
table {
  width: auto;
}

/* Avoid reference text that sits in a block with very wide left margin,
   because of a long floating dt label.*/
.references dd {
  overflow: visible;
}

/* Control caption placement */
caption {
  caption-side: bottom;
}

/* Limit the width of the author address vcard, so names in right-to-left
   script don't end up on the other side of the page. */

address.vcard {
  max-width: 30em;
  margin-right: auto;
}

/* For address alignment dependent on LTR or RTL scripts */
address div.left {
  text-align: left;
}
address div.right {
  text-align: right;
}

/* Provide table alignment support.  We can't use the alignX classes above
   since they do unwanted things with caption and other styling. */
table.right {
 margin-left: auto;
 margin-right: 0;
}
table.center {
 margin-left: auto;
 margin-right: auto;
}
table.left {
 margin-left: 0;
 margin-right: auto;
}

/* Give the table caption label the same styling as the figcaption */
caption a[href] {
  color: #222;
}

@media print {
  .toplink {
    display: none;
  }

  /* avoid overwriting the top border line with the ToC header */
  #toc {
    padding-top: 1px;
  }

  /* Avoid page breaks inside dl and author address entries */
  .vcard {
    page-break-inside: avoid;
  }

}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
  font-variant: small-caps;
  font-weight: bold;
  font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
 h2 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 31px;
 }
 h3 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
 h4 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
/* Float artwork pilcrow to the right */
@media screen {
  .artwork a.pilcrow {
    display: block;
    line-height: 0.7;
    margin-top: 0.15em;
  }
}
/* Make pilcrows on dd visible */
@media screen {
  dd:hover > a.pilcrow {
    visibility: visible;
  }
}
/* Make the placement of figcaption match that of a table's caption
   by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
   margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
  margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
   possibly even requiring a new line */
@media print {
  a.pilcrow {
    display: none;
  }
}
/* Styling for the external metadata */
div#external-metadata {
  background-color: #eee;
  padding: 0.5em;
  margin-bottom: 0.5em;
  display: none;
}
div#internal-metadata {
  padding: 0.5em;                       /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
  clear: both;
  margin: 0 0 -1em;
  padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
  margin-bottom: 0.25em;
  min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
  border-left: 1px solid #ddd;
  margin: 1em 0 1em 2em;
  padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
  margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
  figcaption, table caption {
    page-break-before: avoid;
  }
}
/* Font size adjustments for print */
@media print {
  body  { font-size: 10pt;      line-height: normal; max-width: 96%; }
  h1    { font-size: 1.72em;    padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
  h2    { font-size: 1.44em;    padding-top: 1.5em; } /* 1*1.2*1.2 */
  h3    { font-size: 1.2em;     padding-top: 1.5em; } /* 1*1.2 */
  h4    { font-size: 1em;       padding-top: 1.5em; }
  h5, h6 { font-size: 1em;      margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
  .artwork,
  .sourcecode {
    margin-bottom: 1em;
  }
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
  min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
  border: 1px solid #ddd;
}
td {
  border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
  background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
  #toc nav { display: none; }
  #toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
  break-after: avoid-page;
  break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
  break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode  {
  break-before: auto;
  break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
  break-before: auto;
  break-inside: auto;
}
dt {
  break-before: auto;
  break-after: avoid-page;
}
dd {
  break-before: avoid-page;
  break-after: auto;
  orphans: 3;
  widows: 3
}
span.break, dd.break {
  margin-bottom: 0;
  min-height: 0;
  break-before: auto;
  break-inside: auto;
  break-after: auto;
}
/* Undo break-before ToC */
@media print {
  #toc {
    break-before: auto;
  }
}
/* Text in compact lists should not get extra bottim margin space,
   since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
 margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
  margin-bottom: 1em;                    /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
   backgrounds.  Changed to something a bit more selective. */
tt, code {
  background-color: transparent;
}
p tt, p code, li tt, li code {
  background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
   margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
  line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
  margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
  clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
  content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
  margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
  margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9198" rel="alternate">
  <link href="urn:issn:2070-1721" rel="alternate">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-ippm-route-10" rel="prev">
  </head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9198</td>
<td class="center">AURA Metrics &amp; Methods</td>
<td class="right">May 2022</td>
</tr></thead>
<tfoot><tr>
<td class="left">Alvarez-Hamelin, et al.</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9198" class="eref">9198</a></dd>
<dt class="label-updates">Updates:</dt>
<dd class="updates">
<a href="https://www.rfc-editor.org/rfc/rfc2330" class="eref">2330</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2022-05" class="published">May 2022</time>
    </dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
      <div class="author-name">J. Alvarez-Hamelin</div>
<div class="org">Universidad de Buenos Aires</div>
</div>
<div class="author">
      <div class="author-name">A. Morton</div>
<div class="org">AT&amp;T Labs</div>
</div>
<div class="author">
      <div class="author-name">J. Fabini</div>
<div class="org">TU Wien</div>
</div>
<div class="author">
      <div class="author-name">C. Pignataro</div>
<div class="org">Cisco Systems, Inc.</div>
</div>
<div class="author">
      <div class="author-name">R. Geib</div>
<div class="org">Deutsche Telekom</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9198</h1>
<h1 id="title">Advanced Unidirectional Route Assessment (AURA)</h1>
<section id="section-abstract">
      <h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This memo introduces an advanced unidirectional route assessment
      (AURA) metric and associated measurement methodology based on the IP
      Performance Metrics (IPPM) framework (RFC 2330). This memo updates RFC
      2330 in the areas of path-related terminology and path description,
      primarily to include the possibility of parallel subpaths between a
      given Source and Destination pair, owing to the presence of multipath
      technologies.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
        <h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
        </h2>
<p id="section-boilerplate.1-1">
            This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further
            information on Internet Standards is available in Section 2 of 
            RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <span><a href="https://www.rfc-editor.org/info/rfc9198">https://www.rfc-editor.org/info/rfc9198</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
        <h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
        </h2>
<p id="section-boilerplate.2-1">
            Copyright (c) 2022 IETF Trust and the persons identified as the
            document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Revised BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Revised BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
        <a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
        </h2>
<nav class="toc"><ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1">
            <p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>.  <a href="#name-introduction" class="xref">Introduction</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1.2.1">
                <p id="section-toc.1-1.1.2.1.1" class="keepWithNext"><a href="#section-1.1" class="xref">1.1</a>.  <a href="#name-issues-with-earlier-work-to" class="xref">Issues with Earlier Work to Define a Route Metric</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1.2.2">
                <p id="section-toc.1-1.1.2.2.1" class="keepWithNext"><a href="#section-1.2" class="xref">1.2</a>.  <a href="#name-requirements-language" class="xref">Requirements Language</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2">
            <p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>.  <a href="#name-scope" class="xref">Scope</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3">
            <p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>.  <a href="#name-route-metric-specifications" class="xref">Route Metric Specifications</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1">
                <p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>.  <a href="#name-terms-and-definitions" class="xref">Terms and Definitions</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.2">
                <p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>.  <a href="#name-formal-name" class="xref">Formal Name</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3">
                <p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>.  <a href="#name-parameters" class="xref">Parameters</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4">
                <p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="xref">3.4</a>.  <a href="#name-metric-definitions" class="xref">Metric Definitions</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.5">
                <p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="xref">3.5</a>.  <a href="#name-related-round-trip-delay-an" class="xref">Related Round-Trip Delay and Loss Definitions</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.6">
                <p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="xref">3.6</a>.  <a href="#name-discussion" class="xref">Discussion</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.7">
                <p id="section-toc.1-1.3.2.7.1"><a href="#section-3.7" class="xref">3.7</a>.  <a href="#name-reporting-the-metric" class="xref">Reporting the Metric</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4">
            <p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>.  <a href="#name-route-assessment-methodolog" class="xref">Route Assessment Methodologies</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1">
                <p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>.  <a href="#name-active-methodologies" class="xref">Active Methodologies</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1.2.1">
                    <p id="section-toc.1-1.4.2.1.2.1.1"><a href="#section-4.1.1" class="xref">4.1.1</a>.  <a href="#name-temporal-composition-for-ro" class="xref">Temporal Composition for Route Metrics</a></p>
</li>
                  <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1.2.2">
                    <p id="section-toc.1-1.4.2.1.2.2.1"><a href="#section-4.1.2" class="xref">4.1.2</a>.  <a href="#name-routing-class-identificatio" class="xref">Routing Class Identification</a></p>
</li>
                  <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1.2.3">
                    <p id="section-toc.1-1.4.2.1.2.3.1"><a href="#section-4.1.3" class="xref">4.1.3</a>.  <a href="#name-intermediate-observation-po" class="xref">Intermediate Observation Point Route Measurement</a></p>
</li>
                </ul>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2">
                <p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>.  <a href="#name-hybrid-methodologies" class="xref">Hybrid Methodologies</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.3">
                <p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>.  <a href="#name-combining-different-methods" class="xref">Combining Different Methods</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5">
            <p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>.  <a href="#name-background-on-round-trip-de" class="xref">Background on Round-Trip Delay Measurement Goals</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6">
            <p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>.  <a href="#name-rtd-measurements-statistics" class="xref">RTD Measurements Statistics</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7">
            <p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>.  <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8">
            <p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>.  <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9">
            <p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>.  <a href="#name-references" class="xref">References</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.1">
                <p id="section-toc.1-1.9.2.1.1"><a href="#section-9.1" class="xref">9.1</a>.  <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.2">
                <p id="section-toc.1-1.9.2.2.1"><a href="#section-9.2" class="xref">9.2</a>.  <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10">
            <p id="section-toc.1-1.10.1"><a href="#appendix-A" class="xref">Appendix A</a>.  <a href="#name-mpls-methods-for-route-asse" class="xref">MPLS Methods for Route Assessment</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.11">
            <p id="section-toc.1-1.11.1"><a href="#appendix-B" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.12">
            <p id="section-toc.1-1.12.1"><a href="#appendix-C" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
        </ul>
</nav>
</section>
</div>
<section id="section-1">
      <h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
      </h2>
<p id="section-1-1">The IETF IP Performance Metrics (IPPM) Working Group first created a
      framework for metric development in <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span>. This
      framework has stood the test of time and enabled development of many
      fundamental metrics. It has been updated in the area of metric
      composition <span>[<a href="#RFC5835" class="xref">RFC5835</a>]</span> and in several areas related to
      active stream measurement of modern networks with reactive properties
      <span>[<a href="#RFC7312" class="xref">RFC7312</a>]</span>.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">The framework in <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span> motivated the development of
      "performance and reliability metrics for paths through the Internet";
      <span><a href="https://www.rfc-editor.org/rfc/rfc2330#section-5" class="relref">Section 5</a> of [<a href="#RFC2330" class="xref">RFC2330</a>]</span> defines terms that support
      description of a path under test. However, metrics for assessment of
      paths and related performance aspects had not been attempted in IPPM
      when the framework in <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span> was written.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">This memo takes up the Route measurement challenge and specifies a
      new Route metric, two practical frameworks for methods of measurement
      (using either active or hybrid active-passive methods <span>[<a href="#RFC7799" class="xref">RFC7799</a>]</span>), and Round-Trip Delay and link
      information discovery 
      using the results of measurements. All Route measurements are limited by
      the willingness of Hosts along the path to be discovered, to cooperate
      with the methods used, or to recognize that the measurement operation is
      taking place (such as when tunnels are present).<a href="#section-1-3" class="pilcrow">¶</a></p>
<section id="section-1.1">
        <h3 id="name-issues-with-earlier-work-to">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-issues-with-earlier-work-to" class="section-name selfRef">Issues with Earlier Work to Define a Route Metric</a>
        </h3>
<p id="section-1.1-1"><span><a href="https://www.rfc-editor.org/rfc/rfc2330#section-7" class="relref">Section 7</a> of [<a href="#RFC2330" class="xref">RFC2330</a>]</span> presents a simple example of
        a "Route" metric along with several other examples. The example is
        reproduced below (where the reference is to <span><a href="https://www.rfc-editor.org/rfc/rfc2330#section-5" class="relref">Section 5</a> of [<a href="#RFC2330" class="xref">RFC2330</a>]</span>):<a href="#section-1.1-1" class="pilcrow">¶</a></p>
<blockquote id="section-1.1-2">
          <span class="break"></span><dl class="dlParallel" id="section-1.1-2.1">
            <dt id="section-1.1-2.1.1">route:</dt>
            <dd style="margin-left: 1.5em" id="section-1.1-2.1.2">The path, as defined in Section <a href="https://www.rfc-editor.org/rfc/rfc2330#section-5" class="relref">5</a>, from A to B at a given time.<a href="#section-1.1-2.1.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
</dl>
</blockquote>
<p id="section-1.1-3">This example provides a starting point to develop a more complete
        definition of Route. Areas needing clarification include:<a href="#section-1.1-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-1.1-4">
          <dt id="section-1.1-4.1">Time:</dt>
          <dd style="margin-left: 1.5em" id="section-1.1-4.2">In practice, the Route will be assessed over a
            time interval because active path detection methods like Paris-traceroute <span>[<a href="#PT" class="xref">PT</a>]</span> rely on Hop Limits for their
            operation and cannot accomplish discovery of all Hosts using a
            single packet.<a href="#section-1.1-4.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-4.3">Type-P:</dt>
          <dd style="margin-left: 1.5em" id="section-1.1-4.4">The legacy Route definition lacks the option
            to cater for packet-dependent routing. In this memo, we assess the
            Route for a specific packet of Type-P and reflect this in the
            metric definition. The methods of measurement determine the
            specific Type-P used.<a href="#section-1.1-4.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-4.5">Parallel Paths:</dt>
          <dd style="margin-left: 1.5em" id="section-1.1-4.6">Parallel paths are a reality of the
            Internet and a strength of advanced Route assessment methods, so
            the metric must acknowledge this possibility. Use of Equal-Cost
            Multipath (ECMP) and Unequal-Cost Multipath (UCMP) technologies
            are common sources of parallel subpaths.<a href="#section-1.1-4.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-4.7">Cloud Subpath:</dt>
          <dd style="margin-left: 1.5em" id="section-1.1-4.8">Cloud subpaths may contain Hosts that do not
            decrement the Hop Limit but may have two or more exchange links
            connecting "discoverable" Hosts or routers. Parallel subpaths
            contained within clouds cannot be discovered. The assessment
            methods only discover Hosts or routers on the path that decrement
            Hop Limit or cooperate with interrogation protocols. The presence
            of tunnels and nested tunnels further complicate assessment by
            hiding Hops.<a href="#section-1.1-4.8" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-1.1-4.9">Hop:</dt>
          <dd style="margin-left: 1.5em" id="section-1.1-4.10">The definition of Hop in <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span> was a link-Host pair. However, only Hosts
   that were discoverable and cooperated with
            interrogation protocols (where link information may be exposed) provided both link and Host information.<a href="#section-1.1-4.10" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-1.1-5">Note that the actual definitions appear in <a href="#terms" class="xref">Section 3.1</a>.<a href="#section-1.1-5" class="pilcrow">¶</a></p>
</section>
<section id="section-1.2">
        <h3 id="name-requirements-language">
<a href="#section-1.2" class="section-number selfRef">1.2. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
        </h3>
<p id="section-1.2-1">The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
 "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", 
        "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>",
 "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
 "<span class="bcp14">MAY</span>", and 
        "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as described in BCP
        14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only 
        when, they appear in all capitals, as shown here.<a href="#section-1.2-1" class="pilcrow">¶</a></p>
</section>
</section>
<div id="Scope">
<section id="section-2">
      <h2 id="name-scope">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-scope" class="section-name selfRef">Scope</a>
      </h2>
<p id="section-2-1">The purpose of this memo is to add new Route metrics and methods of
      measurement to the existing set of IPPM metrics.<a href="#section-2-1" class="pilcrow">¶</a></p>
<p id="section-2-2">The scope is to define Route metrics that can identify the path taken
      by a packet or a flow traversing the Internet between two Hosts.
      Although primarily intended for Hosts communicating on the Internet, the
      definitions and metrics are constructed to be applicable to other
      network domains, if desired. The methods of measurement to assess the
      path may not be able to discover all Hosts comprising the path, but such
      omissions are often deterministic and explainable sources of error.<a href="#section-2-2" class="pilcrow">¶</a></p>
<p id="section-2-3">This memo also specifies a framework for active methods of
      measurement that uses the techniques described in <span>[<a href="#PT" class="xref">PT</a>]</span>
      as well as a framework for hybrid active-passive methods of measurement,
      such as the Hybrid Type I method <span>[<a href="#RFC7799" class="xref">RFC7799</a>]</span> described in
      <span>[<a href="#RFC9197" class="xref">RFC9197</a>]</span>. Methods using <span>[<a href="#RFC9197" class="xref">RFC9197</a>]</span> are intended only for single
      administrative domains that provide a protocol for explicit
      interrogation of Nodes on a path. Combinations of active methods and
      hybrid active-passive methods are also in scope.<a href="#section-2-3" class="pilcrow">¶</a></p>
<p id="section-2-4">Further, this memo provides additional analysis of the Round-Trip
      Delay measurements made possible by the methods in an effort to
      discover more details about the path, such as the link technology in
      use.<a href="#section-2-4" class="pilcrow">¶</a></p>
<p id="section-2-5">This memo updates <span><a href="https://www.rfc-editor.org/rfc/rfc2330#section-5" class="relref">Section 5</a> of [<a href="#RFC2330" class="xref">RFC2330</a>]</span> in the areas
      of path-related terminology and path description, primarily to include
      the possibility of parallel subpaths between a given Source and
      Destination address pair (possibly resulting from ECMP and UCMP technologies).<a href="#section-2-5" class="pilcrow">¶</a></p>
<p id="section-2-6">There are several simple non-goals of this memo. There is no attempt
      to assess the reverse path from any Host on the path to the Host
      attempting the path measurement. The reverse path contribution to delay
      will be that experienced by ICMP packets (in active methods) and may be
      different from delays experienced by UDP or TCP packets. Also, the
      Round-Trip Delay will include an unknown contribution of processing time
      at 
      the Host that generates the ICMP response. Therefore, the ICMP-based
      active methods are not supposed to yield accurate, reproducible
      estimations of the Round-Trip Delay that UDP or TCP packets will
      experience.<a href="#section-2-6" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3">
      <h2 id="name-route-metric-specifications">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-route-metric-specifications" class="section-name selfRef">Route Metric Specifications</a>
      </h2>
<p id="section-3-1">This section sets requirements for the components of the route
      metric.<a href="#section-3-1" class="pilcrow">¶</a></p>
<div id="terms">
<section id="section-3.1">
        <h3 id="name-terms-and-definitions">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-terms-and-definitions" class="section-name selfRef">Terms and Definitions</a>
        </h3>
<p id="section-3.1-1"></p>
<span class="break"></span><dl class="dlNewline" id="section-3.1-2">
          <dt id="section-3.1-2.1">Host</dt>
          <dd style="margin-left: 1.5em" id="section-3.1-2.2">A Host (as defined in <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span>) is
            a computer capable of IP communication, including routers (aka an
            RFC 2330 Host).<a href="#section-3.1-2.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.1-2.3">Node </dt>
          <dd style="margin-left: 1.5em" id="section-3.1-2.4">A Node is any network function on the path
            capable of IP-layer Communication, including RFC 2330 Hosts.<a href="#section-3.1-2.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.1-2.5">Node Identity</dt>
          <dd style="margin-left: 1.5em" id="section-3.1-2.6">The Node identity is the unique address for Nodes
            communicating within the network domain. For Nodes communicating
            on the Internet with IP, it is the globally routable IP address
            that the Node uses when communicating with other Nodes under
            normal or error conditions. The Node identity revealed (and its
            connection to a Node name through reverse DNS) determines whether
            interfaces to parallel links can be associated with a single Node
            or appear to identify unique Nodes.<a href="#section-3.1-2.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.1-2.7">Discoverable Node</dt>
          <dd style="margin-left: 1.5em" id="section-3.1-2.8">Discoverable Nodes are Nodes that convey their Node
            identity according to the requirements of their network domain,
            such as when error conditions are detected by that Node. For Nodes
            communicating with IP packets, compliance with
            <span><a href="https://www.rfc-editor.org/rfc/rfc1122#section-3.2.2.4" class="relref">Section 3.2.2.4</a> of [<a href="#RFC1122" class="xref">RFC1122</a>]</span>, when
     discarding a packet due to TTL or 
            Hop Limit Exceeded condition, <span class="bcp14">MUST</span> result in sending the
            corresponding Time Exceeded message (containing a form of Node
            identity) to the source. This requirement is also consistent with
            <span><a href="https://www.rfc-editor.org/rfc/rfc1812#section-5.3.1" class="relref">Section 5.3.1</a> of [<a href="#RFC1812" class="xref">RFC1812</a>]</span> for routers.<a href="#section-3.1-2.8" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.1-2.9">Cooperating Node</dt>
          <dd style="margin-left: 1.5em" id="section-3.1-2.10">Cooperating Nodes are Nodes that respond to direct
            queries for their Node identity as part of a previously established and
            agreed upon interrogation protocol. Nodes <span class="bcp14">SHOULD</span> also provide
            information such as arrival/departure interface identification,
            arrival timestamp, and any relevant information about the Node or
            specific link that delivered the query to the Node.<a href="#section-3.1-2.10" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.1-2.11">Hop specification</dt>
          <dd style="margin-left: 1.5em" id="section-3.1-2.12">A Hop specification <span class="bcp14">MUST</span> contain a
            Node identity and <span class="bcp14">MAY</span> contain arrival and/or departure interface
            identification, Round-Trip Delay, and an arrival timestamp.<a href="#section-3.1-2.12" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.1-2.13">Routing Class</dt>
          <dd style="margin-left: 1.5em" id="section-3.1-2.14">Routing Class is a Route that treats a class of
            different types of packets, designated "C" (unrelated to address
            classes of the past) equally (<span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span> <span>[<a href="#RFC8468" class="xref">RFC8468</a>]</span>). Knowledge of such a class allows any one of
            the types of packets within that class to be used for subsequent
            measurement of the Route. The designator "class C" is used for
            historical reasons; see <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span>.<a href="#section-3.1-2.14" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
</section>
</div>
<section id="section-3.2">
        <h3 id="name-formal-name">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-formal-name" class="section-name selfRef">Formal Name</a>
        </h3>
<p id="section-3.2-1">The formal name of the metric is:<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2-2"> Type-P-Route-Ensemble-Method-Variant<a href="#section-3.2-2" class="pilcrow">¶</a></p>
<p id="section-3.2-3">abbreviated as Route Ensemble.<a href="#section-3.2-3" class="pilcrow">¶</a></p>
<p id="section-3.2-4">Note that Type-P depends heavily on the chosen method and
        variant.<a href="#section-3.2-4" class="pilcrow">¶</a></p>
</section>
<section id="section-3.3">
        <h3 id="name-parameters">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-parameters" class="section-name selfRef">Parameters</a>
        </h3>
<p id="section-3.3-1">This section lists the <span class="bcp14">REQUIRED</span> input factors to define and measure
        a Route metric, as specified in this memo.<a href="#section-3.3-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.3-2">
          <dt id="section-3.3-2.1">Src:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.2"> the address of a Node (such as the globally routable IP
            address).<a href="#section-3.3-2.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.3">Dst:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.4"> the address of a Node (such as the globally routable IP
            address).<a href="#section-3.3-2.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.5">i:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.6"> the limit on the number of Hops a specific packet may visit
            as it traverses from the Node at Src to the Node at Dst (such as
            the TTL or Hop Limit).<a href="#section-3.3-2.6" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.7">MaxHops:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.8"> the maximum value of i used (i=1,2,3,...MaxHops).<a href="#section-3.3-2.8" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.9">T0:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.10">a time (start of measurement interval).<a href="#section-3.3-2.10" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.11">Tf:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.12">a time (end of measurement interval).<a href="#section-3.3-2.12" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.13">MP(address):</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.14">the Measurement Point at address, such as Src or Dst,
            usually at the same Node stack layer as "address".<a href="#section-3.3-2.14" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.15">T:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.16"> the Node time of a packet as measured at MP(Src), meaning
            Measurement Point at the Source.<a href="#section-3.3-2.16" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.17">Ta:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.18"> the Node time of a reply packet's <strong>arrival</strong> as measured at
            MP(Src), assigned to packets that arrive within a "reasonable"
            time (see parameter below).<a href="#section-3.3-2.18" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.19">Tmax:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.20"> a maximum waiting time for reply packets to return to the
            source, set sufficiently long to disambiguate packets with long
            delays from packets that are discarded (lost), such that the
            distribution of Round-Trip Delay is not truncated.<a href="#section-3.3-2.20" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.21">F:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.22"> the number of different flows simulated by the method and
            variant.<a href="#section-3.3-2.22" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.23">flow:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.24"> the stream of packets with the same n-tuple of designated
            header fields that (when held constant) result in identical
            treatment in a multipath decision (such as the decision taken in
            load balancing). Note: The IPv6 flow label <span class="bcp14">MAY</span> be included in the
            flow definition if the MP(Src) is a Tunnel Endpoint (TEP)
            complying with the guidelines in <span>[<a href="#RFC6438" class="xref">RFC6438</a>]</span>.<a href="#section-3.3-2.24" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.3-2.25">Type-P:</dt>
          <dd style="margin-left: 1.5em" id="section-3.3-2.26"> the complete description of the packets for which this
            assessment applies (including the flow-defining fields).<a href="#section-3.3-2.26" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
</section>
<div id="Metric">
<section id="section-3.4">
        <h3 id="name-metric-definitions">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-metric-definitions" class="section-name selfRef">Metric Definitions</a>
        </h3>
<p id="section-3.4-1">This section defines the <span class="bcp14">REQUIRED</span> measurement components of the
        Route metrics (unless otherwise indicated):<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.4-2">
          <dt id="section-3.4-2.1">M:</dt>
          <dd style="margin-left: 1.5em" id="section-3.4-2.2"> the total number of packets sent between T0 and Tf.<a href="#section-3.4-2.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.4-2.3">N:</dt>
          <dd style="margin-left: 1.5em" id="section-3.4-2.4"> the smallest value of i needed for a packet to be received at
        Dst (sent between T0 and Tf).<a href="#section-3.4-2.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-3.4-2.5">Nmax:</dt>
          <dd style="margin-left: 1.5em" id="section-3.4-2.6"> the largest value of i needed for a packet to be received at
        Dst (sent between T0 and Tf). Nmax may be equal to N.<a href="#section-3.4-2.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-3.4-3">Next, define a <strong>singleton</strong> for a Node on the path with
        sufficient indexes to identify all Nodes identified in a measurement
        interval (where <strong>singleton</strong> is part of the IPPM Framework <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span>).<a href="#section-3.4-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.4-4">
          <dt id="section-3.4-4.1">singleton:</dt>
          <dd style="margin-left: 1.5em" id="section-3.4-4.2">A Hop specification, designated h(i,j), the IP address and/or
        identity of Discoverable Nodes (or Cooperating Nodes) that are i Hops
        away from the Node with address = Src and part of Route j during the
        measurement interval T0 to Tf. As defined here, a Hop singleton
        measurement <span class="bcp14">MUST</span> contain a Node identity, hid(i,j), and <span class="bcp14">MAY</span> contain
        one or more of the following attributes:<a href="#section-3.4-4.2" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<ul class="normal">
<li class="normal" id="section-3.4-5.1">a(i,j) Arrival Interface ID (e.g., when <span>[<a href="#RFC5837" class="xref">RFC5837</a>]</span> is supported)<a href="#section-3.4-5.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.4-5.2">d(i,j) Departure Interface ID (e.g., when <span>[<a href="#RFC5837" class="xref">RFC5837</a>]</span> is supported)<a href="#section-3.4-5.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.4-5.3">t(i,j) arrival timestamp, where t(i,j) is ideally supplied by
            the Hop (note that t(i,j) might be approximated from the sending
            time of the packet that revealed the Hop, e.g., when the
   round-trip response time is available and divided by 2)<a href="#section-3.4-5.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.4-5.4">Measurements of Round-Trip Delay (for each packet that reveals
            the same Node identity and flow attributes, then this attribute is
            computed; see next section)<a href="#section-3.4-5.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.4-6">Node identities and related information can be ordered by their
        distance from the Node with address Src in Hops h(i,j). Based on this,
        two forms of Routes are distinguished:<a href="#section-3.4-6" class="pilcrow">¶</a></p>
<p id="section-3.4-7">A Route Ensemble is defined as the combination of all Routes
        traversed by different flows from the Node at Src address to the Node
        at Dst address. A single Route traversed by a single flow (determined
        by an unambiguous tuple of addresses Src and Dst and other identical
        flow criteria) is a member of the Route Ensemble and called a Member
        Route.<a href="#section-3.4-7" class="pilcrow">¶</a></p>
<p id="section-3.4-8">Using h(i,j) and components and parameters further define:<a href="#section-3.4-8" class="pilcrow">¶</a></p>
<p id="section-3.4-9">When considering the set of Hops in the context of a single flow, a
        Member Route j is an ordered list {h(1,j), ... h(Nj, j)} where h(i-1,
        j) and h(i, j) are one Hop away from each other and Nj satisfying
        h(Nj,j)=Dst is the minimum count of Hops needed by the packet on
        member Route j to reach Dst. Member Routes must be unique. The
        uniqueness property requires that any two Member Routes, j and k, that
        are part of the same Route Ensemble differ either in terms of minimum
        Hop count Nj and Nk to reach the destination Dst or, in the case of
        identical Hop count Nj=Nk, they have at least one distinct Hop: h(i,j)
        != h(i,k) for at least one i (i=1..Nj).<a href="#section-3.4-9" class="pilcrow">¶</a></p>
<p id="section-3.4-10">All the optional information collected to describe a Member Route,
        such as the arrival interface, departure interface, and Round-Trip
        Delay at each Hop, turns each list item into a rich structure. There
        may be information on the links between Hops, possible information on
        the routing (arrival interface and departure interface), an estimate
        of distance between Hops based on Round-Trip Delay measurements and
        calculations, and a timestamp indicating when all these additional
        details were measured.<a href="#section-3.4-10" class="pilcrow">¶</a></p>
<p id="section-3.4-11">The Route Ensemble from Src to Dst, during the measurement interval
        T0 to Tf, is the aggregate of all m distinct Member Routes discovered
        between the two Nodes with Src and Dst addresses. More formally, with
        the Node having address Src omitted:<a href="#section-3.4-11" class="pilcrow">¶</a></p>
<div id="section-3.4-12">
<pre class="sourcecode">
Route Ensemble = {
{h(1,1), h(2,1), h(3,1), ... h(N1,1)=Dst},
{h(1,2), h(2,2), h(3,2),..., h(N2,2)=Dst},
...
{h(1,m), h(2,m), h(3,m), ....h(Nm,m)=Dst}
}
</pre><a href="#section-3.4-12" class="pilcrow">¶</a>
</div>
<p id="section-3.4-13">where the following conditions apply: i &lt;= Nj &lt;= Nmax
        (j=1..m)<a href="#section-3.4-13" class="pilcrow">¶</a></p>
<p id="section-3.4-14">Note that some h(i,j) may be empty (null) in the case that systems
        do not reply (not discoverable or not cooperating).<a href="#section-3.4-14" class="pilcrow">¶</a></p>
<p id="section-3.4-15">h(i-1,j) and h(i,j) are the Hops on the same Member Route one Hop
        away from each other.<a href="#section-3.4-15" class="pilcrow">¶</a></p>
<p id="section-3.4-16">Hop h(i,j) may be identical with h(k,l) for i!=k and j!=l, which
        means there may be portions shared among different Member Routes
        (parts of Member Routes may overlap).<a href="#section-3.4-16" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.5">
        <h3 id="name-related-round-trip-delay-an">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-related-round-trip-delay-an" class="section-name selfRef">Related Round-Trip Delay and Loss Definitions</a>
        </h3>
<p id="section-3.5-1">RTD(i,j,T) is defined as a singleton of the <span>[<a href="#RFC2681" class="xref">RFC2681</a>]</span> Round-Trip Delay between the Node with address = 
        Src and the Node at Hop h(i,j) at time T.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
<p id="section-3.5-2">RTL(i,j,T) is defined as a singleton of the <span>[<a href="#RFC6673" class="xref">RFC6673</a>]</span> Round-Trip Loss between the Node with address = Src 
        and the Node at Hop h(i,j) at time T.<a href="#section-3.5-2" class="pilcrow">¶</a></p>
</section>
<section id="section-3.6">
        <h3 id="name-discussion">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-discussion" class="section-name selfRef">Discussion</a>
        </h3>
<p id="section-3.6-1">Depending on the way that the Node identity is revealed, it may be
        difficult to determine parallel subpaths between the same pair of
        Nodes (i.e., multiple parallel links). It is easier to detect parallel
        subpaths involving different Nodes.<a href="#section-3.6-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.6-2.1">If a pair of discovered Nodes identify two different addresses
            (IP or not), then they will appear to be different Nodes. See item
            below.<a href="#section-3.6-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.6-2.2">If a pair of discovered Nodes identify two different IP
            addresses and the IP addresses resolve to the same Node name (in
            the DNS), then they will appear to be the same Node.<a href="#section-3.6-2.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.6-2.3">If a discovered Node always replies using the same network
            address, regardless of the interface a packet arrives on, then
            multiple parallel links cannot be detected in that network domain.
            This condition may apply to traceroute-style methods but may not
            apply to other hybrid methods based on In situ Operations,
            Administration, and Maintenance (IOAM). For example, if the ICMP extension mechanism described in <span>[<a href="#RFC5837" class="xref">RFC5837</a>]</span> is
     implemented, then 
            parallel links can be detected with the discovery traceroute-style
            methods.<a href="#section-3.6-2.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.6-2.4">If parallel links between routers are aggregated below the IP
            layer, then, from the Node's point of view, all these links share the
            same pair of IP addresses. The existence of these parallel links
            can't be detected at the IP layer. This applies to other network
            domains with layers below them as well. This condition may apply
            to traceroute-style methods but may not apply to other hybrid
            methods based on IOAM.<a href="#section-3.6-2.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.6-3">When a Route assessment employs IP packets (for example), the
        reality of flow assignment to parallel subpaths involves layers above
        IP. Thus, the measured Route Ensemble is applicable to IP and higher
        layers (as described in the methodology's packet of Type-P and flow
        parameters).<a href="#section-3.6-3" class="pilcrow">¶</a></p>
</section>
<section id="section-3.7">
        <h3 id="name-reporting-the-metric">
<a href="#section-3.7" class="section-number selfRef">3.7. </a><a href="#name-reporting-the-metric" class="section-name selfRef">Reporting the Metric</a>
        </h3>
<p id="section-3.7-1">An Information Model and an XML Data Model for Storing Traceroute
        Measurements is available in <span>[<a href="#RFC5388" class="xref">RFC5388</a>]</span>. The measured
        information at each Hop includes four pieces of information: a
        one-dimensional Hop index, Node symbolic address, Node IP address, and
        RTD for each response.<a href="#section-3.7-1" class="pilcrow">¶</a></p>
<p id="section-3.7-2">The description of Hop information that may be collected according
        to this memo covers more dimensions, as defined in <a href="#Metric" class="xref">Section 3.4</a>.
        For example, the Hop index is two-dimensional to capture the
        complexity of a Route Ensemble, and it contains corresponding Node
        identities at a minimum. The models need to be expanded to include
        these features as well as Arrival Interface ID, Departure Interface
        ID, and arrival timestamp, when available. The original sending
        Timestamp from the Src Node anchors a particular measurement in
        time.<a href="#section-3.7-2" class="pilcrow">¶</a></p>
</section>
</section>
<div id="Methodologies">
<section id="section-4">
      <h2 id="name-route-assessment-methodolog">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-route-assessment-methodolog" class="section-name selfRef">Route Assessment Methodologies</a>
      </h2>
<p id="section-4-1">There are two classes of methods described in this section, active
      methods relying on the reaction to TTL or Hop Limit Exceeded condition
      to discover Nodes on a path and hybrid active-passive methods that
      involve direct interrogation of Cooperating Nodes (usually within a
      single domain). Description of these methods follow.<a href="#section-4-1" class="pilcrow">¶</a></p>
<section id="section-4.1">
        <h3 id="name-active-methodologies">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-active-methodologies" class="section-name selfRef">Active Methodologies</a>
        </h3>
<p id="section-4.1-1">This section describes the method employed by current open-source
        tools, thereby providing a practical framework for further advanced
        techniques to be included as method variants. This method is
        applicable for use across multiple administrative domains.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">Internet routing is complex because it depends on the policies of
        thousands of Autonomous Systems (ASes). Most routers perform load
        balancing on flows using a form of ECMP.
        <span>[<a href="#RFC2991" class="xref">RFC2991</a>]</span> describes a number of flow-based or hashed
        approaches (e.g., Modulo-N Hash, Hash-Threshold, and Highest Random Weight
        (HRW)) and makes some good suggestions. Flow-based ECMP avoids
        increased packet Delay Variation and possibly overwhelming levels of
        packet reordering in flows.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">A few routers still divide the workload through packet-based
        techniques, such as a round-robin scheme to distribute every new
        outgoing packet to multiple links, as explained in <span>[<a href="#RFC2991" class="xref">RFC2991</a>]</span>. The methods described in this
 section assume flow-based ECMP.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1-4">Taking into account that Internet protocol was designed under the
        "end-to-end" principle, the IP payload and its header do
        not provide any information about the Routes or path necessary to
        reach some destination. For this reason, the popular tool, traceroute,
        was developed to gather the IP addresses of each Hop along a path
        using ICMP <span>[<a href="#RFC0792" class="xref">RFC0792</a>]</span>. Traceroute also
        measures RTD from each Hop. However, the growing complexity of the
        Internet makes it more challenging to develop an accurate traceroute
        implementation. For instance, the early traceroute tools would be
        inaccurate in the current network, mainly because they were not
        designed to retain a flow state. However, evolved traceroute tools,
        such as Paris-traceroute (<span>[<a href="#PT" class="xref">PT</a>]</span> <span>[<a href="#MLB" class="xref">MLB</a>]</span>) and 
        Scamper (<span>[<a href="#SCAMPER" class="xref">SCAMPER</a>]</span>), expect to encounter ECMP and achieve
        more accurate results when they do, where Scamper ensures traceroute
        packets will follow the same path in 98% of cases (<span>[<a href="#SCAMPER" class="xref">SCAMPER</a>]</span>).<a href="#section-4.1-4" class="pilcrow">¶</a></p>
<p id="section-4.1-5">Today's traceroute tools send Type-P of packets, which are either ICMP, UDP,
        or TCP. UDP and TCP are used when a particular characteristic needs to
        be verified, such as filtering or traffic shaping on specific ports
        (i.e., services). UDP and TCP traceroute are also used when ICMP
        responses are not received. <span>[<a href="#SCAMPER" class="xref">SCAMPER</a>]</span> supports IPv6
        traceroute measurements, keeping the Flow Label constant in all
        packets.<a href="#section-4.1-5" class="pilcrow">¶</a></p>
<p id="section-4.1-6">Paris-traceroute allows its users to measure the RTD to every Node
        of the path for a particular flow. Furthermore, either
        Paris-traceroute or Scamper is capable of unveiling the many available
        paths between a source and destination (which are visible to active
        methods). This task is accomplished by repeating complete traceroute
        measurements with different flow parameters for each measurement;
        Paris-traceroute provides an "exhaustive" mode, while Scamper
        provides "tracelb" (which stands for "traceroute load balance").
        <span><a href="#RFC2330" class="xref">"Framework for IP Performance Metrics"</a> [<a href="#RFC2330" class="xref">RFC2330</a>]</span>, updated by <span>[<a href="#RFC7312" class="xref">RFC7312</a>]</span>, has the 
        flexibility to require that the Round-Trip Delay measurement <span>[<a href="#RFC2681" class="xref">RFC2681</a>]</span> uses packets with the constraints
 to assure that 
        all packets in a single measurement appear as the same flow. This
        flexibility covers ICMP, UDP, and TCP. The accompanying methodology of
        <span>[<a href="#RFC2681" class="xref">RFC2681</a>]</span> needs to be expanded to report the sequential
        Hop identifiers along with RTD measurements, but no new metric
        definition is needed.<a href="#section-4.1-6" class="pilcrow">¶</a></p>
<p id="section-4.1-7">The advanced Route assessment methods used in Paris-traceroute
        <span>[<a href="#PT" class="xref">PT</a>]</span> keep the critical fields constant for every packet
        to maintain the appearance of the same flow. When considering IPv6
        headers, it is necessary to ensure that the IP Source and Destination
        addresses and Flow Label are constant (but note that many routers
        ignore the Flow Label field at this time); see <span>[<a href="#RFC6437" class="xref">RFC6437</a>]</span>. Use of IPv6 Extension Headers may add critical 
        fields and <span class="bcp14">SHOULD</span> be avoided. In IPv4, certain fields of the IP
        header and the first 4 bytes of the IP payload should remain
        constant in a flow. In the IPv4 header, the IP Source and Destination
        addresses, protocol number, and Diffserv fields identify flows. The
        first 4 payload bytes include the UDP and TCP ports and the ICMP
        type, code, and checksum fields.<a href="#section-4.1-7" class="pilcrow">¶</a></p>
<p id="section-4.1-8">Maintaining a constant ICMP checksum in IPv4 is most challenging,
        as the ICMP sequence number or identifier fields will usually change
        for different probes of the same path. Probes should use arbitrary
        bytes in the ICMP data field to offset changes to the sequence number and
        identifier, thus keeping the checksum constant.<a href="#section-4.1-8" class="pilcrow">¶</a></p>
<p id="section-4.1-9">Finally, it is also essential to Route the resulting ICMP Time
        Exceeded messages along a consistent path. In IPv6, the fields above
        are sufficient.
 In IPv4, the ICMP Time Exceeded message will contain
        the IP header and the first 8 bytes of the IP payload, both of which
        affect its ICMP checksum calculation. The TCP sequence number, UDP length, and
        UDP checksum will affect this value and should remain constant.<a href="#section-4.1-9" class="pilcrow">¶</a></p>
<p id="section-4.1-10">Formally, to maintain the same flow in the measurements to a
        particular Hop, the Type-P-Route-Ensemble-Method-Variant packets
        should have the following attributes (see <span>[<a href="#PT" class="xref">PT</a>]</span>):<a href="#section-4.1-10" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.1-11">
          <dt id="section-4.1-11.1">TCP case:</dt>
          <dd style="margin-left: 1.5em" id="section-4.1-11.2"> For IPv4, the fields Src, Dst, port-Src, port_Dst,
            sequence number, and Diffserv <span class="bcp14">SHOULD</span> be the same. For IPv6,
            the fields Flow Label, Src, and Dst <span class="bcp14">SHOULD</span> be the same.<a href="#section-4.1-11.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.1-11.3">UDP case:</dt>
          <dd style="margin-left: 1.5em" id="section-4.1-11.4"> For IPv4, the fields Src, Dst, port-Src, port-Dst, and
            Diffserv should be the same, and the UDP checksum <span class="bcp14">SHOULD</span> change to
            keep the IP checksum of the ICMP Time Exceeded reply constant.
            Then, the data length should be fixed, and the data field is used
            to make it so (consider that ICMP checksum uses its data field,
            which contains the original IP header plus 8 bytes of UDP, where
            TTL, IP identification, IP checksum, and UDP checksum changes).
            For IPv6, the field Flow Label and Source and Destination
            addresses <span class="bcp14">SHOULD</span> be the same.<a href="#section-4.1-11.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.1-11.5">ICMP case:</dt>
          <dd style="margin-left: 1.5em" id="section-4.1-11.6"> For IPv4, the data field <span class="bcp14">SHOULD</span> compensate
            variations on TTL or Hop Limit, IP identification, and IP checksum
            for every packet. There is no need to consider ICMPv6 because only
            Flow Label of IPv6 and Source and Destination addresses are used,
            and all of them <span class="bcp14">SHOULD</span> be constant.<a href="#section-4.1-11.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-4.1-12">Then, the way to identify different Hops and attempts of the same
        IPv4 flow is:<a href="#section-4.1-12" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.1-13">
          <dt id="section-4.1-13.1">TCP case:</dt>
          <dd style="margin-left: 1.5em" id="section-4.1-13.2"> The IP identification field.<a href="#section-4.1-13.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.1-13.3">UDP case:</dt>
          <dd style="margin-left: 1.5em" id="section-4.1-13.4"> The IP identification field.<a href="#section-4.1-13.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-4.1-13.5">ICMP case:</dt>
          <dd style="margin-left: 1.5em" id="section-4.1-13.6"> The IP identification field and ICMP sequence
            number.<a href="#section-4.1-13.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<section id="section-4.1.1">
          <h4 id="name-temporal-composition-for-ro">
<a href="#section-4.1.1" class="section-number selfRef">4.1.1. </a><a href="#name-temporal-composition-for-ro" class="section-name selfRef">Temporal Composition for Route Metrics</a>
          </h4>
<p id="section-4.1.1-1">The active Route assessment methods described above have the
          ability to discover portions of a path where ECMP load balancing is
          present, observed as two or more unique Member Routes having one or
          more distinct Hops that are part of the Route Ensemble. Likewise,
          attempts to deliberately vary the flow characteristics to discover
          all Member Routes will reveal portions of the path that are
          flow invariant.<a href="#section-4.1.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1.1-2"><span><a href="https://www.rfc-editor.org/rfc/rfc2330#section-9.2" class="relref">Section 9.2</a> of [<a href="#RFC2330" class="xref">RFC2330</a>]</span> describes the Temporal
          Composition of metrics and introduces the possibility of a
          relationship between earlier measurement results and the results for
          measurement at the current time (for a given metric). There is value
          in establishing a Temporal Composition relationship for Route
          metrics; however, this relationship does not represent a forecast of
          future Route conditions in any way.<a href="#section-4.1.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1.1-3">For Route-metric measurements, the value of Temporal Composition
          is to reduce the measurement iterations required with repeated
          measurements. Reduced iterations are possible by inferring that
          current measurements using fixed and previously measured flow
          characteristics:<a href="#section-4.1.1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1.1-4.1">will have many common Hops with previous measurements.<a href="#section-4.1.1-4.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.1.1-4.2">will have relatively time-stable results at the ingress and
              egress portions of the path when measured from user locations,
              as opposed to measurements of backbone networks and across
              inter-domain gateways.<a href="#section-4.1.1-4.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.1.1-4.3">may have greater potential for time variation in path
              portions where ECMP load balancing is observed (because
              increasing or decreasing the pool of links changes the hash
              calculations).<a href="#section-4.1.1-4.3" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-4.1.1-5">Optionally, measurement systems may take advantage of the
          inferences above when seeking to reduce measurement iterations
          after exhaustive measurements indicate that the time-stable
          properties are present. Repetitive active Route measurement
          systems:<a href="#section-4.1.1-5" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.1.1-6">
     <li id="section-4.1.1-6.1">
              <span class="bcp14">SHOULD</span> occasionally check path portions that have exhibited
              stable results over time, particularly ingress and egress
              portions of the path (e.g., daily checks if measuring many times
              during a day).<a href="#section-4.1.1-6.1" class="pilcrow">¶</a>
</li>
            <li id="section-4.1.1-6.2">
              <span class="bcp14">SHOULD</span> continue testing portions of the path that have
              previously exhibited ECMP load balancing.<a href="#section-4.1.1-6.2" class="pilcrow">¶</a>
</li>
            <li id="section-4.1.1-6.3">
              <span class="bcp14">SHALL</span> trigger reassessment of the complete path and Route
              Ensemble if any change in Hops is observed for a specific (and
              previously tested) flow.<a href="#section-4.1.1-6.3" class="pilcrow">¶</a>
</li>
          </ol>
<p id="section-4.1.1-7"></p>
</section>
<section id="section-4.1.2">
          <h4 id="name-routing-class-identificatio">
<a href="#section-4.1.2" class="section-number selfRef">4.1.2. </a><a href="#name-routing-class-identificatio" class="section-name selfRef">Routing Class Identification</a>
          </h4>
<p id="section-4.1.2-1">There is an opportunity to apply the notion from <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span>
          of equal treatment for a class of packets, "...very useful to
          know if a given Internet component treats equally a class C of
          different types of packets", as it applies to Route measurements.
          The notion of class C was examined further in <span>[<a href="#RFC8468" class="xref">RFC8468</a>]</span> as it applied to load-balancing flows over 
          parallel paths, which is the case we develop here. Knowledge of
          class C parameters (unrelated to address classes of the past) on a
          path potentially reduces the number of flows required for a given
          method to assess a Route Ensemble over time.<a href="#section-4.1.2-1" class="pilcrow">¶</a></p>
<p id="section-4.1.2-2">First, recognize that each Member Route of a Route Ensemble will
          have a corresponding class C. Class C can be discovered by testing
          with multiple flows, all of which traverse the unique set of Hops
          that comprise a specific Member Route.<a href="#section-4.1.2-2" class="pilcrow">¶</a></p>
<p id="section-4.1.2-3">Second, recognize that the different classes depend primarily on
          the hash functions used at each instance of ECMP load balancing on
          the path.<a href="#section-4.1.2-3" class="pilcrow">¶</a></p>
<p id="section-4.1.2-4">Third, recognize the synergy with Temporal Composition methods
          (described above), where evaluation intends to discover time-stable
          portions of each Member Route so that more emphasis can be placed
          on ECMP portions that also determine class C.<a href="#section-4.1.2-4" class="pilcrow">¶</a></p>
<p id="section-4.1.2-5">The methods to assess the various class C characteristics benefit
          from the following measurement capabilities:<a href="#section-4.1.2-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1.2-6.1">flows designed to determine which n-tuple header fields are
              considered by a given hash function and ECMP Hop on the path
              and which are not. This operation immediately narrows the search
              space, where possible, and partially defines a class C.<a href="#section-4.1.2-6.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.1.2-6.2">a priori knowledge of the possible types of hash functions in
              use also helps to design the flows for testing (major router
              vendors publish information about these hash functions; examples
              are in <span>[<a href="#LOAD_BALANCE" class="xref">LOAD_BALANCE</a>]</span>).<a href="#section-4.1.2-6.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-4.1.2-6.3">ability to direct the emphasis of current measurements on
              ECMP portions of the path, based on recent past measurement
              results (the Routing Class of some portions of the path is
              essentially "all packets").<a href="#section-4.1.2-6.3" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-4.1.2-7"></p>
</section>
<section id="section-4.1.3">
          <h4 id="name-intermediate-observation-po">
<a href="#section-4.1.3" class="section-number selfRef">4.1.3. </a><a href="#name-intermediate-observation-po" class="section-name selfRef">Intermediate Observation Point Route Measurement</a>
          </h4>
<p id="section-4.1.3-1">There are many examples where passive monitoring of a flow at an
          Observation Point within the network can detect unexpected
   Round-Trip Delay or Delay Variation. But how can the cause of the 
          anomalous delay be investigated further <strong>from the Observation Point</strong>
          possibly located at an intermediate point on the path?<a href="#section-4.1.3-1" class="pilcrow">¶</a></p>
<p id="section-4.1.3-2">In this case, knowledge that the flow of interest belongs to a
          specific Routing Class C will enable measurement of the Route where
          anomalous delay has been observed. Specifically, Round-Trip Delay
          assessment to each Hop on the path between the Observation Point and
          the Destination for the flow of interest may discover high or
          variable delay on a specific link and Hop combination.<a href="#section-4.1.3-2" class="pilcrow">¶</a></p>
<p id="section-4.1.3-3">The determination of a Routing Class C that includes the flow of
          interest is as described in the section above, aided by computation
          of the relevant hash function output as the target.<a href="#section-4.1.3-3" class="pilcrow">¶</a></p>
<p id="section-4.1.3-4"></p>
</section>
</section>
<section id="section-4.2">
        <h3 id="name-hybrid-methodologies">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-hybrid-methodologies" class="section-name selfRef">Hybrid Methodologies</a>
        </h3>
<p id="section-4.2-1">The Hybrid Type I methods provide an alternative for Route
        assessment.
 The "Scope, Applicability, and Assumptions" section of <span>[<a href="#RFC9197" class="xref">RFC9197</a>]</span> provides one possible set of data 
        fields that would support Route identification.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2-2">In general, Nodes in the measured domain would be equipped with
        specific abilities:<a href="#section-4.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-3.1">Store the identity of Nodes that a packet has visited in header
            data fields in the order the packet visited the Nodes.<a href="#section-4.2-3.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.2-3.2">Support of a "Loopback" capability where a copy of the packet
            is returned to the encapsulating Node and the packet is processed
            like any other IOAM packet on the return transfer.<a href="#section-4.2-3.2" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-4.2-4">In addition to Node identity, Nodes may also identify the ingress
        and egress interfaces utilized by the tracing packet, the absolute
        time when the packet was processed, and other generic data (as
        described in <span><a href="https://www.rfc-editor.org/rfc/rfc9197#section-3" class="relref">Section 3</a> of [<a href="#RFC9197" class="xref">RFC9197</a>]</span>).
        Interface identification isn't necessarily limited to IP, i.e.,
        different links in a bundle (Link Aggregation Control Protocol (LACP))
 could be identified. Equally well, 
        links without explicit IP addresses can be identified (like with
        unnumbered interfaces in an IGP deployment).<a href="#section-4.2-4" class="pilcrow">¶</a></p>
<p id="section-4.2-5">Note that the Type-P packet specification for this method will
        likely be a partial specification because most of the packet fields
        are determined by the user traffic. The packet encapsulation
        header or headers added by the hybrid method can certainly be specified in
        Type-P, in unpopulated form.<a href="#section-4.2-5" class="pilcrow">¶</a></p>
</section>
<section id="section-4.3">
        <h3 id="name-combining-different-methods">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-combining-different-methods" class="section-name selfRef">Combining Different Methods</a>
        </h3>
<p id="section-4.3-1">In principle, there are advantages if the entity conducting Route
        measurements can utilize both forms of advanced methods (active and
        hybrid) and combine the results. For example, if there are Nodes
        involved in the path that qualify as Cooperating Nodes but not as
        Discoverable Nodes, then a more complete view of Hops on the path is
        possible when a hybrid method (or interrogation protocol) is applied
        and the results are combined with the active method results collected
        across all other domains.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2">In order to combine the results of active and hybrid/interrogation
        methods, the network Nodes that are part of a domain supporting an
        interrogation protocol have the following attributes:<a href="#section-4.3-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.3-3">
   <li id="section-4.3-3.1">Nodes at the ingress to the domain <span class="bcp14">SHOULD</span> be both Discoverable
            and Cooperating.<a href="#section-4.3-3.1" class="pilcrow">¶</a>
</li>
          <li id="section-4.3-3.2">Any Nodes within the domain that are both Discoverable and
            Cooperating <span class="bcp14">SHOULD</span> reveal the same Node identity in response to
            both active and hybrid methods.<a href="#section-4.3-3.2" class="pilcrow">¶</a>
</li>
          <li id="section-4.3-3.3">Nodes at the egress to the domain <span class="bcp14">SHOULD</span> be both Discoverable
            and Cooperating and <span class="bcp14">SHOULD</span> reveal the same Node identity in
            response to both active and hybrid methods.<a href="#section-4.3-3.3" class="pilcrow">¶</a>
</li>
        </ol>
<p id="section-4.3-4">When Nodes follow these requirements, it becomes a simple matter to
        match single-domain measurements with the overlapping results from a
        multidomain measurement.<a href="#section-4.3-4" class="pilcrow">¶</a></p>
<p id="section-4.3-5">In practice, Internet users do not typically have the ability to
        utilize the Operations, Administrations, and Maintenance (OAM)
 capabilities of networks that their packets traverse,
        so the results from a remote domain supporting an interrogation
        protocol would not normally be accessible. However, a network operator
        could combine interrogation results from their access domain with
        other measurements revealing the path outside their domain.<a href="#section-4.3-5" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="Cases">
<section id="section-5">
      <h2 id="name-background-on-round-trip-de">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-background-on-round-trip-de" class="section-name selfRef">Background on Round-Trip Delay Measurement Goals</a>
      </h2>
<p id="section-5-1">The aim of this method is to use packet probes to unveil the paths
      between any two End-Nodes of the network. Moreover, information derived
      from RTD measurements might be meaningful to identify:<a href="#section-5-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-5-2">
 <li id="section-5-2.1">Intercontinental submarine links<a href="#section-5-2.1" class="pilcrow">¶</a>
</li>
        <li id="section-5-2.2">Satellite communications<a href="#section-5-2.2" class="pilcrow">¶</a>
</li>
        <li id="section-5-2.3">Congestion<a href="#section-5-2.3" class="pilcrow">¶</a>
</li>
        <li id="section-5-2.4">Inter-domain paths<a href="#section-5-2.4" class="pilcrow">¶</a>
</li>
      </ol>
<p id="section-5-3">This categorization is widely accepted in the literature and among
      operators alike, and it can be trusted with empirical data and several
      sources as ground of truth (e.g., <span>[<a href="#RTTSub" class="xref">RTTSub</a>]</span>), but it is an
      inference measurement nonetheless <span>[<a href="#bdrmap" class="xref">bdrmap</a>]</span> <span>[<a href="#IDCong" class="xref">IDCong</a>]</span>.<a href="#section-5-3" class="pilcrow">¶</a></p>
<p id="section-5-4">The first two categories correspond to the physical distance
      dependency on RTD, the next one binds RTD with
      queuing delay on routers, and the last one helps to identify different
      ASes using traceroutes. Due to the significant contribution of
      propagation delay in long-distance Hops, RTD will be on the order of
      100 ms on transatlantic Hops, depending on the geolocation of the vantage
      points. Moreover, RTD is typically higher than 480 ms when two Hops are
      connected using geostationary satellite technology (i.e., their orbit is
      at 36000 km). Detecting congestion with latency implies deeper
      mathematical understanding, since network traffic load is not stationary.
      Nonetheless, as the first approach, a link seems to be congested if
      observing different/varying statistical results after sending several
      traceroute probes (e.g., see <span>[<a href="#IDCong" class="xref">IDCong</a>]</span>). Finally, to
      recognize distinctive ASes in the same traceroute path is challenging
      because more data is needed, like AS relationships and Regional Internet
      Registry (RIR) delegations
      among others (for more details, please consult <span>[<a href="#bdrmap" class="xref">bdrmap</a>]</span>).<a href="#section-5-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Statistics">
<section id="section-6">
      <h2 id="name-rtd-measurements-statistics">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-rtd-measurements-statistics" class="section-name selfRef">RTD Measurements Statistics</a>
      </h2>
<p id="section-6-1">Several articles have shown that network traffic presents a
      self-similar nature <span>[<a href="#SSNT" class="xref">SSNT</a>]</span> <span>[<a href="#MLRM" class="xref">MLRM</a>]</span> that is 
      accountable for filling the queues of the routers. Moreover, router
      queues are designed to handle traffic bursts, which is one of the most
      remarkable features of self-similarity. Naturally, while queue length
      increases, the delay to traverse the queue increases as well and leads
      to an increase on RTD. Due to traffic bursts generating short-term
      overflow on buffers (spiky patterns), every RTD only depicts the
      queueing status on the instant when that packet probe was in transit.
      For this reason, several RTD measurements during a time window could
      begin to describe the random behavior of latency. Loss must also be
      accounted for in the methodology.<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2">To understand the ongoing process, examining the quartiles provides a
      nonparametric way of analysis. Quartiles are defined by five values:
      minimum RTD (m), RTD value of the 25% of the Empirical Cumulative
      Distribution Function (ECDF) (Q1), the median value (Q2), the RTD value
      of the 75% of the ECDF (Q3), and the maximum RTD (M). Congestion can be
      inferred when RTD measurements are spread apart; consequently, the
      Interquartile Range (IQR), i.e., the distance between Q3 and Q1, increases
      its value.<a href="#section-6-2" class="pilcrow">¶</a></p>
<p id="section-6-3">This procedure requires the algorithm presented in <span>[<a href="#P2" class="xref">P2</a>]</span> to compute quartile values "on the fly".<a href="#section-6-3" class="pilcrow">¶</a></p>
<p id="section-6-4">This procedure allows us to update the quartile values whenever a new
      measurement arrives, which is radically different from classic methods
      of computing quartiles, because they need to use the whole dataset to
      compute the values. This way of calculus provides savings in memory and
      computing time.<a href="#section-6-4" class="pilcrow">¶</a></p>
<p id="section-6-5">To sum up, the proposed measurement procedure consists of performing
      traceroutes several times to obtain samples of the RTD in every Hop from
      a path during a time window (W) and compute the quartiles for every
      Hop. This procedure could be done for a single Member Route flow, for a
      non-exhaustive search with parameter E (defined below) set to False, or
      for every detected Route Ensemble flow (E=True).<a href="#section-6-5" class="pilcrow">¶</a></p>
<p id="section-6-6">The identification of a specific Hop in a traceroute is based on the IP
      origin address of the returned ICMP Time Exceeded packet and on the
      distance identified by the value set in the TTL (or Hop Limit) field
      inserted by traceroute. As this specific Hop can be reached by different
      paths, the IP Source and Destination addresses of the traceroute
      packet also need to be recorded. Finally, different return paths are
      distinguished by evaluating the ICMP Time Exceeded TTL (or Hop Limit) of
      the reply message; if this TTL (or Hop Limit) is constant for different
      paths containing the same Hop, the return paths have the same distance.
      Moreover, this distance can be estimated considering that the TTL (or
      Hop Limit) value is normally initialized with values 64, 128, or 255.
      The 5-tuple (origin IP, destination IP, reply IP, distance, and response TTL
      or Hop Limit) unequivocally identifies every measurement.<a href="#section-6-6" class="pilcrow">¶</a></p>
<p id="section-6-7">This algorithm below runs in the origin of the traceroute. It returns
      the Qs quartiles for every Hop and Alt (alternative paths because of
      balancing). Notice that the "Alt" parameter condenses the parameters of
      the 5-tuple (origin IP, destination IP, reply IP, distance, and response
      TTL), i.e., one for each possible combination.<a href="#section-6-7" class="pilcrow">¶</a></p>
<div id="section-6-8">
<pre class="lang-pseudocode sourcecode">
================================================================
0  input:   W (window time of the measurement)
1           i_t (time between two measurements, set the i_t time
2                long enough to avoid incomplete results)
3           E (True: exhaustive, False: a single path)
4           Dst (destination IP address)
5  output:  Qs (quartiles for every Hop and Alt)
----------------------------------------------------------------
6  T := start_timer(W)
7  while T is not finished do:
8  |       start_timer(i_t)
9  |       RTD(Hop,Alt) = advanced-traceroute(Dst,E)
10 |       for each Hop and Alt in RTD do:
11 |       |     Qs[Dst,Hop,Alt] := ComputeQs(RTD(Hop,Alt))
12 |       done
13 |       wait until i_t timer is expired
14 done
15  return (Qs)
================================================================

</pre><a href="#section-6-8" class="pilcrow">¶</a>
</div>
<p id="section-6-9">During the time W, lines 6 and 7 assure that the measurement loop is
      made.
      Lines 8 and 13 set a timer for each cycle of measurements. A cycle
      comprises the traceroutes packets, considering every possible Hop and
      the alternatives paths in the Alt variable (ensured in lines 9-12). In
      line 9, the advanced-traceroute could be either Paris-traceroute or
      Scamper, which will use the "exhaustive" mode or
      "tracelb" option if E is set to True, respectively. The
      procedure returns a list of tuples (m, Q1, Q2, Q3, and M) for each intermediate
      Hop, or "Alt" in as a function of the 5-tuple, in the path towards the
      Dst. Finally, lines 10 through 12 store each measurement into the
      real-time quartiles computation.<a href="#section-6-9" class="pilcrow">¶</a></p>
<p id="section-6-10">Notice there are cases where even having a unique Hop at distance
      h from the Src to Dst, the returning path could have several
      possibilities, yielding different total paths. In this situation, the
      algorithm will return another "Alt" for this particular Hop.<a href="#section-6-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Security">
<section id="section-7">
      <h2 id="name-security-considerations">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
      </h2>
<p id="section-7-1">The security considerations that apply to any active measurement of
      live paths are relevant here as well. See <span>[<a href="#RFC4656" class="xref">RFC4656</a>]</span> and
      <span>[<a href="#RFC5357" class="xref">RFC5357</a>]</span>.<a href="#section-7-1" class="pilcrow">¶</a></p>
<p id="section-7-2">The active measurement process of changing several fields to keep
      the checksum of different packets identical does not require special
      security considerations because it is part of synthetic traffic
      generation and is designed to have minimal to zero impact on network
      processing (to process the packets for ECMP).<a href="#section-7-2" class="pilcrow">¶</a></p>
<p id="section-7-3">Some of the protocols used (e.g., ICMP) do not provide cryptographic
      protection for the requested/returned data, and there are risks of
      processing untrusted data in general, but these are limitations of the
      existing protocols where we are applying new methods.<a href="#section-7-3" class="pilcrow">¶</a></p>
<p id="section-7-4">For applicable hybrid methods, the security considerations in <span>[<a href="#RFC9197" class="xref">RFC9197</a>]</span> apply.<a href="#section-7-4" class="pilcrow">¶</a></p>
<p id="section-7-5">When considering the privacy of those involved in measurement or those
      whose traffic is measured, the sensitive information available to
      potential observers is greatly reduced when using active techniques
      that are within this scope of work. Passive observations of user
      traffic for measurement purposes raise many privacy issues. We refer the
      reader to the privacy considerations described in the Large-scale
      Measurement of Broadband Performance (LMAP) Framework <span>[<a href="#RFC7594" class="xref">RFC7594</a>]</span>, which covers active and passive
      techniques.<a href="#section-7-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="IANA">
<section id="section-8">
      <h2 id="name-iana-considerations">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
      </h2>
<p id="section-8-1">This document has no IANA actions.<a href="#section-8-1" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-9">
      <h2 id="name-references">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-references" class="section-name selfRef">References</a>
      </h2>
<section id="section-9.1">
        <h3 id="name-normative-references">
<a href="#section-9.1" class="section-number selfRef">9.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
        </h3>
<dl class="references">
<dt id="RFC0792">[RFC0792]</dt>
        <dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Internet Control Message Protocol"</span>, <span class="seriesInfo">STD 5</span>, <span class="seriesInfo">RFC 792</span>, <span class="seriesInfo">DOI 10.17487/RFC0792</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc792">https://www.rfc-editor.org/info/rfc792</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1122">[RFC1122]</dt>
        <dd>
<span class="refAuthor">Braden, R., Ed.</span>, <span class="refTitle">"Requirements for Internet Hosts - Communication Layers"</span>, <span class="seriesInfo">STD 3</span>, <span class="seriesInfo">RFC 1122</span>, <span class="seriesInfo">DOI 10.17487/RFC1122</span>, <time datetime="1989-10" class="refDate">October 1989</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1122">https://www.rfc-editor.org/info/rfc1122</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC1812">[RFC1812]</dt>
        <dd>
<span class="refAuthor">Baker, F., Ed.</span>, <span class="refTitle">"Requirements for IP Version 4 Routers"</span>, <span class="seriesInfo">RFC 1812</span>, <span class="seriesInfo">DOI 10.17487/RFC1812</span>, <time datetime="1995-06" class="refDate">June 1995</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc1812">https://www.rfc-editor.org/info/rfc1812</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2119">[RFC2119]</dt>
        <dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2330">[RFC2330]</dt>
        <dd>
<span class="refAuthor">Paxson, V.</span>, <span class="refAuthor">Almes, G.</span>, <span class="refAuthor">Mahdavi, J.</span>, and <span class="refAuthor">M. Mathis</span>, <span class="refTitle">"Framework for IP Performance Metrics"</span>, <span class="seriesInfo">RFC 2330</span>, <span class="seriesInfo">DOI 10.17487/RFC2330</span>, <time datetime="1998-05" class="refDate">May 1998</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2330">https://www.rfc-editor.org/info/rfc2330</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2681">[RFC2681]</dt>
        <dd>
<span class="refAuthor">Almes, G.</span>, <span class="refAuthor">Kalidindi, S.</span>, and <span class="refAuthor">M. Zekauskas</span>, <span class="refTitle">"A Round-trip Delay Metric for IPPM"</span>, <span class="seriesInfo">RFC 2681</span>, <span class="seriesInfo">DOI 10.17487/RFC2681</span>, <time datetime="1999-09" class="refDate">September 1999</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2681">https://www.rfc-editor.org/info/rfc2681</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4656">[RFC4656]</dt>
        <dd>
<span class="refAuthor">Shalunov, S.</span>, <span class="refAuthor">Teitelbaum, B.</span>, <span class="refAuthor">Karp, A.</span>, <span class="refAuthor">Boote, J.</span>, and <span class="refAuthor">M. Zekauskas</span>, <span class="refTitle">"A One-way Active Measurement Protocol (OWAMP)"</span>, <span class="seriesInfo">RFC 4656</span>, <span class="seriesInfo">DOI 10.17487/RFC4656</span>, <time datetime="2006-09" class="refDate">September 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4656">https://www.rfc-editor.org/info/rfc4656</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5388">[RFC5388]</dt>
        <dd>
<span class="refAuthor">Niccolini, S.</span>, <span class="refAuthor">Tartarelli, S.</span>, <span class="refAuthor">Quittek, J.</span>, <span class="refAuthor">Dietz, T.</span>, and <span class="refAuthor">M. Swany</span>, <span class="refTitle">"Information Model and XML Data Model for Traceroute Measurements"</span>, <span class="seriesInfo">RFC 5388</span>, <span class="seriesInfo">DOI 10.17487/RFC5388</span>, <time datetime="2008-12" class="refDate">December 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5388">https://www.rfc-editor.org/info/rfc5388</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6438">[RFC6438]</dt>
        <dd>
<span class="refAuthor">Carpenter, B.</span> and <span class="refAuthor">S. Amante</span>, <span class="refTitle">"Using the IPv6 Flow Label for Equal Cost Multipath Routing and Link Aggregation in Tunnels"</span>, <span class="seriesInfo">RFC 6438</span>, <span class="seriesInfo">DOI 10.17487/RFC6438</span>, <time datetime="2011-11" class="refDate">November 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6438">https://www.rfc-editor.org/info/rfc6438</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6673">[RFC6673]</dt>
        <dd>
<span class="refAuthor">Morton, A.</span>, <span class="refTitle">"Round-Trip Packet Loss Metrics"</span>, <span class="seriesInfo">RFC 6673</span>, <span class="seriesInfo">DOI 10.17487/RFC6673</span>, <time datetime="2012-08" class="refDate">August 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6673">https://www.rfc-editor.org/info/rfc6673</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7799">[RFC7799]</dt>
        <dd>
<span class="refAuthor">Morton, A.</span>, <span class="refTitle">"Active and Passive Metrics and Methods (with Hybrid Types In-Between)"</span>, <span class="seriesInfo">RFC 7799</span>, <span class="seriesInfo">DOI 10.17487/RFC7799</span>, <time datetime="2016-05" class="refDate">May 2016</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7799">https://www.rfc-editor.org/info/rfc7799</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8029">[RFC8029]</dt>
        <dd>
<span class="refAuthor">Kompella, K.</span>, <span class="refAuthor">Swallow, G.</span>, <span class="refAuthor">Pignataro, C., Ed.</span>, <span class="refAuthor">Kumar, N.</span>, <span class="refAuthor">Aldrin, S.</span>, and <span class="refAuthor">M. Chen</span>, <span class="refTitle">"Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"</span>, <span class="seriesInfo">RFC 8029</span>, <span class="seriesInfo">DOI 10.17487/RFC8029</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8029">https://www.rfc-editor.org/info/rfc8029</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
        <dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8468">[RFC8468]</dt>
        <dd>
<span class="refAuthor">Morton, A.</span>, <span class="refAuthor">Fabini, J.</span>, <span class="refAuthor">Elkins, N.</span>, <span class="refAuthor">Ackermann, M.</span>, and <span class="refAuthor">V. Hegde</span>, <span class="refTitle">"IPv4, IPv6, and IPv4-IPv6 Coexistence: Updates for the IP Performance Metrics (IPPM) Framework"</span>, <span class="seriesInfo">RFC 8468</span>, <span class="seriesInfo">DOI 10.17487/RFC8468</span>, <time datetime="2018-11" class="refDate">November 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8468">https://www.rfc-editor.org/info/rfc8468</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9197">[RFC9197]</dt>
      <dd>
<span class="refAuthor">Brockners, F., Ed.</span>, <span class="refAuthor">Bhandari, S., Ed.</span>, and <span class="refAuthor">T. Mizrahi, Ed.</span>, <span class="refTitle">"Data Fields for In Situ Operations, Administration, and Maintenance (IOAM)"</span>, <span class="seriesInfo">RFC 9197</span>, <span class="seriesInfo">DOI 10.17487/RFC9197</span>, <time datetime="2022-05" class="refDate">May 2022</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9197">https://www.rfc-editor.org/info/rfc9197</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-9.2">
        <h3 id="name-informative-references">
<a href="#section-9.2" class="section-number selfRef">9.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
        </h3>
<dl class="references">
<dt id="bdrmap">[bdrmap]</dt>
        <dd>
<span class="refAuthor">Luckie, M.</span>, <span class="refAuthor">Dhamdhere, A.</span>, <span class="refAuthor">Huffaker, B.</span>, <span class="refAuthor">Clark, D.</span>, and <span class="refAuthor">KC. Claffy</span>, <span class="refTitle">"bdrmap: Inference of Borders Between IP Networks"</span>, <span class="refContent">Proceedings of the 2016 ACM on Internet Measurement Conference, pp. 381-396</span>, <span class="seriesInfo">DOI 10.1145/2987443.2987467</span>, <time datetime="2016-11" class="refDate">November 2016</time>, <span>&lt;<a href="https://doi.org/10.1145/2987443.2987467">https://doi.org/10.1145/2987443.2987467</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="IDCong">[IDCong]</dt>
        <dd>
<span class="refAuthor">Luckie, M.</span>, <span class="refAuthor">Dhamdhere, A.</span>, <span class="refAuthor">Clark, D.</span>, and <span class="refAuthor">B. Huffaker</span>, <span class="refTitle">"Challenges in Inferring Internet Interdomain Congestion"</span>, <span class="refContent">Proceedings of the 2014 Conference on Internet
   Measurement Conference, pp. 15-22</span>, <span class="seriesInfo">DOI 10.1145/2663716.2663741</span>, <time datetime="2014-11" class="refDate">November 2014</time>, <span>&lt;<a href="https://doi.org/10.1145/2663716.2663741">https://doi.org/10.1145/2663716.2663741</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="LOAD_BALANCE">[LOAD_BALANCE]</dt>
        <dd>
<span class="refAuthor">Sanguanpong, S.</span>, <span class="refAuthor">Pittayapitak, W.</span>, and <span class="refAuthor">K. Kasom Koht-Arsa</span>, <span class="refTitle">"COMPARISON OF HASH STRATEGIES FOR FLOW-BASED LOAD BALANCING"</span>, <span class="refContent">International Journal of Electronic
     Commerce Studies, Vol.6, No.2, pp.259-268</span>, <span class="seriesInfo">DOI 10.7903/ijecs.1346</span>, <time datetime="2015-12" class="refDate">December 2015</time>, <span>&lt;<a href="https://doi.org/10.7903/ijecs.1346">https://doi.org/10.7903/ijecs.1346</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="MLB">[MLB]</dt>
        <dd>
<span class="refAuthor">Augustin, B.</span>, <span class="refAuthor">Friedman, T.</span>, and <span class="refAuthor">R. Teixeira</span>, <span class="refTitle">"Measuring load-balanced paths in the internet"</span>, <span class="refContent">Proceedings of the 7th ACM SIGCOMM conference on
   Internet measurement, pp. 149-160</span>, <span class="seriesInfo">DOI 10.1145/1298306.1298329</span>, <time datetime="2007-10" class="refDate">October 2007</time>, <span>&lt;<a href="https://doi.org/10.1145/1298306.1298329">https://doi.org/10.1145/1298306.1298329</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="MLRM">[MLRM]</dt>
        <dd>
<span class="refAuthor">Fontugne, R.</span>, <span class="refAuthor">Mazel, J.</span>, and <span class="refAuthor">K. Fukuda</span>, <span class="refTitle">"An empirical mixture model for large-scale RTT measurements"</span>, <span class="refContent">2015 IEEE Conference on Computer Communications
   (INFOCOM), pp. 2470-2478</span>, <span class="seriesInfo">DOI 10.1109/INFOCOM.2015.7218636</span>, <time datetime="2015-04" class="refDate">April 2015</time>, <span>&lt;<a href="https://doi.org/10.1109/INFOCOM.2015.7218636">https://doi.org/10.1109/INFOCOM.2015.7218636</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="P2">[P2]</dt>
        <dd>
<span class="refAuthor">Jain, R.</span> and <span class="refAuthor">I. Chlamtac</span>, <span class="refTitle">"The P 2 algorithm for dynamic calculation of quartiles and histograms without storing observations"</span>, <span class="refContent">Communications of the ACM 28.10 (1985): 1076-1085</span>, <span class="seriesInfo">DOI 10.1145/4372.4378</span>, <time datetime="1985-10" class="refDate">October 1985</time>, <span>&lt;<a href="https://doi.org/10.1145/4372.4378">https://doi.org/10.1145/4372.4378</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="PT">[PT]</dt>
        <dd>
<span class="refAuthor">Augustin, B.</span>, <span class="refAuthor">Cuvellier, X.</span>, <span class="refAuthor">Orgogozo, B.</span>, <span class="refAuthor">Viger, F.</span>, <span class="refAuthor">Friedman, T.</span>, <span class="refAuthor">Latapy, M.</span>, <span class="refAuthor">Magnien, C.</span>, and <span class="refAuthor">R. Teixeira</span>, <span class="refTitle">"Avoiding traceroute anomalies with Paris traceroute"</span>, <span class="refContent">Proceedings of the 6th ACM SIGCOMM conference on
   Internet measurement, pp. 153-158</span>, <span class="seriesInfo">DOI 10.1145/1177080.1177100</span>, <time datetime="2006-10" class="refDate">October 2006</time>, <span>&lt;<a href="https://doi.org/10.1145/1177080.1177100">https://doi.org/10.1145/1177080.1177100</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2991">[RFC2991]</dt>
        <dd>
<span class="refAuthor">Thaler, D.</span> and <span class="refAuthor">C. Hopps</span>, <span class="refTitle">"Multipath Issues in Unicast and Multicast Next-Hop Selection"</span>, <span class="seriesInfo">RFC 2991</span>, <span class="seriesInfo">DOI 10.17487/RFC2991</span>, <time datetime="2000-11" class="refDate">November 2000</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2991">https://www.rfc-editor.org/info/rfc2991</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5357">[RFC5357]</dt>
        <dd>
<span class="refAuthor">Hedayat, K.</span>, <span class="refAuthor">Krzanowski, R.</span>, <span class="refAuthor">Morton, A.</span>, <span class="refAuthor">Yum, K.</span>, and <span class="refAuthor">J. Babiarz</span>, <span class="refTitle">"A Two-Way Active Measurement Protocol (TWAMP)"</span>, <span class="seriesInfo">RFC 5357</span>, <span class="seriesInfo">DOI 10.17487/RFC5357</span>, <time datetime="2008-10" class="refDate">October 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5357">https://www.rfc-editor.org/info/rfc5357</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5835">[RFC5835]</dt>
        <dd>
<span class="refAuthor">Morton, A., Ed.</span> and <span class="refAuthor">S. Van den Berghe, Ed.</span>, <span class="refTitle">"Framework for Metric Composition"</span>, <span class="seriesInfo">RFC 5835</span>, <span class="seriesInfo">DOI 10.17487/RFC5835</span>, <time datetime="2010-04" class="refDate">April 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5835">https://www.rfc-editor.org/info/rfc5835</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5837">[RFC5837]</dt>
        <dd>
<span class="refAuthor">Atlas, A., Ed.</span>, <span class="refAuthor">Bonica, R., Ed.</span>, <span class="refAuthor">Pignataro, C., Ed.</span>, <span class="refAuthor">Shen, N.</span>, and <span class="refAuthor">JR. Rivers</span>, <span class="refTitle">"Extending ICMP for Interface and Next-Hop Identification"</span>, <span class="seriesInfo">RFC 5837</span>, <span class="seriesInfo">DOI 10.17487/RFC5837</span>, <time datetime="2010-04" class="refDate">April 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5837">https://www.rfc-editor.org/info/rfc5837</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6437">[RFC6437]</dt>
        <dd>
<span class="refAuthor">Amante, S.</span>, <span class="refAuthor">Carpenter, B.</span>, <span class="refAuthor">Jiang, S.</span>, and <span class="refAuthor">J. Rajahalme</span>, <span class="refTitle">"IPv6 Flow Label Specification"</span>, <span class="seriesInfo">RFC 6437</span>, <span class="seriesInfo">DOI 10.17487/RFC6437</span>, <time datetime="2011-11" class="refDate">November 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6437">https://www.rfc-editor.org/info/rfc6437</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7312">[RFC7312]</dt>
        <dd>
<span class="refAuthor">Fabini, J.</span> and <span class="refAuthor">A. Morton</span>, <span class="refTitle">"Advanced Stream and Sampling Framework for IP Performance Metrics (IPPM)"</span>, <span class="seriesInfo">RFC 7312</span>, <span class="seriesInfo">DOI 10.17487/RFC7312</span>, <time datetime="2014-08" class="refDate">August 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7312">https://www.rfc-editor.org/info/rfc7312</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7325">[RFC7325]</dt>
        <dd>
<span class="refAuthor">Villamizar, C., Ed.</span>, <span class="refAuthor">Kompella, K.</span>, <span class="refAuthor">Amante, S.</span>, <span class="refAuthor">Malis, A.</span>, and <span class="refAuthor">C. Pignataro</span>, <span class="refTitle">"MPLS Forwarding Compliance and Performance Requirements"</span>, <span class="seriesInfo">RFC 7325</span>, <span class="seriesInfo">DOI 10.17487/RFC7325</span>, <time datetime="2014-08" class="refDate">August 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7325">https://www.rfc-editor.org/info/rfc7325</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7594">[RFC7594]</dt>
        <dd>
<span class="refAuthor">Eardley, P.</span>, <span class="refAuthor">Morton, A.</span>, <span class="refAuthor">Bagnulo, M.</span>, <span class="refAuthor">Burbridge, T.</span>, <span class="refAuthor">Aitken, P.</span>, and <span class="refAuthor">A. Akhter</span>, <span class="refTitle">"A Framework for Large-Scale Measurement of Broadband Performance (LMAP)"</span>, <span class="seriesInfo">RFC 7594</span>, <span class="seriesInfo">DOI 10.17487/RFC7594</span>, <time datetime="2015-09" class="refDate">September 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7594">https://www.rfc-editor.org/info/rfc7594</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8403">[RFC8403]</dt>
        <dd>
<span class="refAuthor">Geib, R., Ed.</span>, <span class="refAuthor">Filsfils, C.</span>, <span class="refAuthor">Pignataro, C., Ed.</span>, and <span class="refAuthor">N. Kumar</span>, <span class="refTitle">"A Scalable and Topology-Aware MPLS Data-Plane Monitoring System"</span>, <span class="seriesInfo">RFC 8403</span>, <span class="seriesInfo">DOI 10.17487/RFC8403</span>, <time datetime="2018-07" class="refDate">July 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8403">https://www.rfc-editor.org/info/rfc8403</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RTTSub">[RTTSub]</dt>
        <dd>
<span class="refAuthor">Bischof, Z.</span>, <span class="refAuthor">Rula, J.</span>, and <span class="refAuthor">F. Bustamante</span>, <span class="refTitle">"In and out of Cuba: Characterizing Cuba's Connectivity"</span>, <span class="refContent">Proceedings of the 2015 ACM Conference on Internet
   Measurement Conference, pp. 487-493</span>, <span class="seriesInfo">DOI 10.1145/2815675.2815718</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span>&lt;<a href="https://doi.org/10.1145/2815675.2815718">https://doi.org/10.1145/2815675.2815718</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="SCAMPER">[SCAMPER]</dt>
        <dd>
<span class="refAuthor">Matthew Luckie, M.</span>, <span class="refTitle">"Scamper: a scalable and extensible packet prober for active measurement of the internet"</span>, <span class="refContent">Proceedings of the 10th ACM SIGCOMM conference on
   Internet measurement, pp. 239-245</span>, <span class="seriesInfo">DOI 10.1145/1879141.1879171</span>, <time datetime="2010-11" class="refDate">November 2010</time>, <span>&lt;<a href="https://doi.org/10.1145/1879141.1879171">https://doi.org/10.1145/1879141.1879171</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="SSNT">[SSNT]</dt>
      <dd>
<span class="refAuthor">Park, K.</span> and <span class="refAuthor">W. Willinger</span>, <span class="refTitle">"Self-Similar Network Traffic and Performance Evaluation (1st ed.)"</span>, <span class="seriesInfo">DOI 10.1002/047120644X</span>, <span class="seriesInfo"> John Wiley &amp; Sons, Inc., New York, NY, USA</span>, <time datetime="2000-08" class="refDate">August 2000</time>, <span>&lt;<a href="https://doi.org/10.1002/047120644X">https://doi.org/10.1002/047120644X</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="appendix-A">
      <h2 id="name-mpls-methods-for-route-asse">
<a href="#appendix-A" class="section-number selfRef">Appendix A. </a><a href="#name-mpls-methods-for-route-asse" class="section-name selfRef">MPLS Methods for Route Assessment</a>
      </h2>
<p id="appendix-A-1">A Node assessing an MPLS path must be part of the MPLS domain where
      the path is implemented. When this condition is met, <span>[<a href="#RFC8029" class="xref">RFC8029</a>]</span> provides a
      powerful set of mechanisms to detect "correct operation of the
      data plane, as well as a mechanism to verify the data plane against the
      control plane".<a href="#appendix-A-1" class="pilcrow">¶</a></p>
<p id="appendix-A-2">MPLS routing is based on the presence of a Forwarding Equivalence
      Class (FEC) Stack in all visited Nodes. Selecting one of several
      Equal-Cost Multipaths (ECMPs) is, however, based on information hidden
      deeper in 
      the stack. Late deployments may support a so-called "Entropy label" for
      this purpose. State-of-the-art deployments base their choice of an ECMP
      member interface on the complete MPLS label stack and on IP addresses up
      to the complete 5-tuple IP header information (see <span><a href="https://www.rfc-editor.org/rfc/rfc7325#section-2.4" class="relref">Section 2.4</a> of [<a href="#RFC7325" class="xref">RFC7325</a>]</span>). Load sharing based
      on IP information decouples this 
      function from the actual MPLS routing information. Thus, an MPLS
      traceroute is able to check how packets with a contiguous number of
      ECMP-relevant IP addresses (and an identical MPLS label stack) are
      forwarded 
      by a particular router. The minimum number of equivalent MPLS paths
      traceable at a router should be 32. Implementations supporting more
      paths are available.<a href="#appendix-A-2" class="pilcrow">¶</a></p>
<p id="appendix-A-3">The MPLS echo request and reply messages offering this feature must
      support the Downstream Detailed Mapping TLV (was Downstream Mapping
      initially, but the latter has been deprecated). The MPLS echo response
      includes the incoming interface where a router received the MPLS echo
      request. The MPLS echo reply further informs which of the n addresses
      relevant for the load-sharing decision results in a particular next-hop
      interface and contains the next Hop's interface address (if
      available). This ensures that the next Hop will receive a properly coded
      MPLS echo request in the next step Route of assessment.<a href="#appendix-A-3" class="pilcrow">¶</a></p>
<p id="appendix-A-4"><span>[<a href="#RFC8403" class="xref">RFC8403</a>]</span> explains how a central Path Monitoring
      System could be used to detect arbitrary MPLS paths between any routers
      within a single MPLS domain. The combination of MPLS forwarding, Segment
      Routing, and MPLS traceroute offers a simple architecture and a powerful
      mechanism to detect and validate (segment-routed) MPLS paths.<a href="#appendix-A-4" class="pilcrow">¶</a></p>
</section>
<div id="Acknowledgements">
<section id="appendix-B">
      <h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
      </h2>
<p id="appendix-B-1">The original three authors (Ignacio, Al, Joachim) acknowledge <span class="contact-name">Ruediger       Geib</span> for his penetrating comments on the initial document and his initial
      text for the appendix on MPLS. <span class="contact-name">Carlos Pignataro</span> challenged the authors
      to consider a wider scope and applied his substantial expertise with
      many technologies and their measurement features in his extensive
      comments. <span class="contact-name">Frank Brockners</span> also shared useful
      comments and so did <span class="contact-name">Footer        Foote</span>. We thank them all!<a href="#appendix-B-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="appendix-C">
      <h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">J. Ignacio Alvarez-Hamelin</span></div>
<div dir="auto" class="left"><span class="org">Universidad de Buenos Aires</span></div>
<div dir="auto" class="left"><span class="street-address">Av. Paseo Colón 850</span></div>
<div dir="auto" class="left">
<span class="postal-code">C1063ACV</span> <span class="locality">Buenos Aires</span>
</div>
<div dir="auto" class="left"><span class="country-name">Argentina</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+54%2011%205285-0716" class="tel">+54 11 5285-0716</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:ihameli@cnet.fi.uba.ar" class="email">ihameli@cnet.fi.uba.ar</a>
</div>
<div class="url">
<span>URI:</span>
<a href="http://cnet.fi.uba.ar/ignacio.alvarez-hamelin/" class="url">http://cnet.fi.uba.ar/ignacio.alvarez-hamelin/</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Al Morton</span></div>
<div dir="auto" class="left"><span class="org">AT&amp;T Labs</span></div>
<div dir="auto" class="left"><span class="street-address">200 Laurel Avenue South</span></div>
<div dir="auto" class="left">
<span class="locality">Middletown</span>, <span class="region">NJ</span> <span class="postal-code">07748</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+1%20732%20420%201571" class="tel">+1 732 420 1571</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:acm@research.att.com" class="email">acm@research.att.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Joachim Fabini</span></div>
<div dir="auto" class="left"><span class="org">TU Wien</span></div>
<div dir="auto" class="left"><span class="street-address">Gusshausstrasse 25/E389</span></div>
<div dir="auto" class="left">
<span class="postal-code">1040</span> <span class="locality">Vienna</span>
</div>
<div dir="auto" class="left"><span class="country-name">Austria</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+43%201%2058801%2038813" class="tel">+43 1 58801 38813</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:Joachim.Fabini@tuwien.ac.at" class="email">Joachim.Fabini@tuwien.ac.at</a>
</div>
<div class="url">
<span>URI:</span>
<a href="http://www.tc.tuwien.ac.at/about-us/staff/joachim-fabini/" class="url">http://www.tc.tuwien.ac.at/about-us/staff/joachim-fabini/</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Carlos Pignataro</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems, Inc.</span></div>
<div dir="auto" class="left"><span class="street-address">7200-11 Kit Creek Road</span></div>
<div dir="auto" class="left">
<span class="locality">Research Triangle Park</span>, <span class="region">NC</span> <span class="postal-code">27709</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:cpignata@cisco.com" class="email">cpignata@cisco.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Ruediger Geib</span></div>
<div dir="auto" class="left"><span class="org">Deutsche Telekom</span></div>
<div dir="auto" class="left"><span class="street-address">Heinrich Hertz Str. 3-7</span></div>
<div dir="auto" class="left">
<span class="postal-code">64295</span> <span class="locality">Darmstadt</span>
</div>
<div dir="auto" class="left"><span class="country-name">Germany</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+49%206151%205812747" class="tel">+49 6151 5812747</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:Ruediger.Geib@telekom.de" class="email">Ruediger.Geib@telekom.de</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
  toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
  toc.classList.remove("active");
});
</script>
</body>
</html>