1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9198: Advanced Unidirectional Route Assessment (AURA)</title>
<meta content="J. Ignacio Alvarez-Hamelin" name="author">
<meta content="Al Morton" name="author">
<meta content="Joachim Fabini" name="author">
<meta content="Carlos Pignataro" name="author">
<meta content="Ruediger Geib" name="author">
<meta content="
This memo introduces an advanced unidirectional route assessment
(AURA) metric and associated measurement methodology based on the IP
Performance Metrics (IPPM) framework (RFC 2330). This memo updates RFC
2330 in the areas of path-related terminology and path description,
primarily to include the possibility of parallel subpaths between a
given Source and Destination pair, owing to the presence of multipath
technologies.
" name="description">
<meta content="xml2rfc 3.12.7" name="generator">
<meta content="Performance" name="keyword">
<meta content="Metrics" name="keyword">
<meta content="IPPM" name="keyword">
<meta content="path" name="keyword">
<meta content="parallel paths" name="keyword">
<meta content="9198" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.12.7
Python 3.6.15
appdirs 1.4.4
ConfigArgParse 1.4.1
google-i18n-address 2.4.0
html5lib 1.0.1
intervaltree 3.0.2
Jinja2 2.11.3
kitchen 1.2.6
lxml 4.4.2
MarkupSafe 2.0.1
pycairo 1.15.1
pycountry 19.8.18
pyflakes 2.1.1
PyYAML 5.4.1
requests 2.24.0
setuptools 40.5.0
six 1.14.0
WeasyPrint 52.5
-->
<link href="rfc9198.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
border: none;
/* this isn't optimal, but it's an existence proof. PrinceXML doesn't
support flexbox yet.
*/
display: table;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
/* Fix PDF info block run off issue */
@media print {
#identifiers dd {
float: none;
}
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
pre.breakable {
break-inside: auto;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: auto;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9198" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-ippm-route-10" rel="prev">
</head>
<body>
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9198</td>
<td class="center">AURA Metrics & Methods</td>
<td class="right">May 2022</td>
</tr></thead>
<tfoot><tr>
<td class="left">Alvarez-Hamelin, et al.</td>
<td class="center">Standards Track</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9198" class="eref">9198</a></dd>
<dt class="label-updates">Updates:</dt>
<dd class="updates">
<a href="https://www.rfc-editor.org/rfc/rfc2330" class="eref">2330</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Standards Track</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2022-05" class="published">May 2022</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">J. Alvarez-Hamelin</div>
<div class="org">Universidad de Buenos Aires</div>
</div>
<div class="author">
<div class="author-name">A. Morton</div>
<div class="org">AT&T Labs</div>
</div>
<div class="author">
<div class="author-name">J. Fabini</div>
<div class="org">TU Wien</div>
</div>
<div class="author">
<div class="author-name">C. Pignataro</div>
<div class="org">Cisco Systems, Inc.</div>
</div>
<div class="author">
<div class="author-name">R. Geib</div>
<div class="org">Deutsche Telekom</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9198</h1>
<h1 id="title">Advanced Unidirectional Route Assessment (AURA)</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This memo introduces an advanced unidirectional route assessment
(AURA) metric and associated measurement methodology based on the IP
Performance Metrics (IPPM) framework (RFC 2330). This memo updates RFC
2330 in the areas of path-related terminology and path description,
primarily to include the possibility of parallel subpaths between a
given Source and Destination pair, owing to the presence of multipath
technologies.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This is an Internet Standards Track document.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9198">https://www.rfc-editor.org/info/rfc9198</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Revised BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Revised BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="xref">1</a>. <a href="#name-introduction" class="xref">Introduction</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1.2.1">
<p id="section-toc.1-1.1.2.1.1" class="keepWithNext"><a href="#section-1.1" class="xref">1.1</a>. <a href="#name-issues-with-earlier-work-to" class="xref">Issues with Earlier Work to Define a Route Metric</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1.2.2">
<p id="section-toc.1-1.1.2.2.1" class="keepWithNext"><a href="#section-1.2" class="xref">1.2</a>. <a href="#name-requirements-language" class="xref">Requirements Language</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="xref">2</a>. <a href="#name-scope" class="xref">Scope</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="xref">3</a>. <a href="#name-route-metric-specifications" class="xref">Route Metric Specifications</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="xref">3.1</a>. <a href="#name-terms-and-definitions" class="xref">Terms and Definitions</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="xref">3.2</a>. <a href="#name-formal-name" class="xref">Formal Name</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3">
<p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="xref">3.3</a>. <a href="#name-parameters" class="xref">Parameters</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4">
<p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="xref">3.4</a>. <a href="#name-metric-definitions" class="xref">Metric Definitions</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.5">
<p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="xref">3.5</a>. <a href="#name-related-round-trip-delay-an" class="xref">Related Round-Trip Delay and Loss Definitions</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.6">
<p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="xref">3.6</a>. <a href="#name-discussion" class="xref">Discussion</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.7">
<p id="section-toc.1-1.3.2.7.1"><a href="#section-3.7" class="xref">3.7</a>. <a href="#name-reporting-the-metric" class="xref">Reporting the Metric</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="xref">4</a>. <a href="#name-route-assessment-methodolog" class="xref">Route Assessment Methodologies</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="xref">4.1</a>. <a href="#name-active-methodologies" class="xref">Active Methodologies</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1.2.1">
<p id="section-toc.1-1.4.2.1.2.1.1"><a href="#section-4.1.1" class="xref">4.1.1</a>. <a href="#name-temporal-composition-for-ro" class="xref">Temporal Composition for Route Metrics</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1.2.2">
<p id="section-toc.1-1.4.2.1.2.2.1"><a href="#section-4.1.2" class="xref">4.1.2</a>. <a href="#name-routing-class-identificatio" class="xref">Routing Class Identification</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1.2.3">
<p id="section-toc.1-1.4.2.1.2.3.1"><a href="#section-4.1.3" class="xref">4.1.3</a>. <a href="#name-intermediate-observation-po" class="xref">Intermediate Observation Point Route Measurement</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="xref">4.2</a>. <a href="#name-hybrid-methodologies" class="xref">Hybrid Methodologies</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="xref">4.3</a>. <a href="#name-combining-different-methods" class="xref">Combining Different Methods</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="xref">5</a>. <a href="#name-background-on-round-trip-de" class="xref">Background on Round-Trip Delay Measurement Goals</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="xref">6</a>. <a href="#name-rtd-measurements-statistics" class="xref">RTD Measurements Statistics</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="xref">7</a>. <a href="#name-security-considerations" class="xref">Security Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="xref">8</a>. <a href="#name-iana-considerations" class="xref">IANA Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="xref">9</a>. <a href="#name-references" class="xref">References</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.1">
<p id="section-toc.1-1.9.2.1.1"><a href="#section-9.1" class="xref">9.1</a>. <a href="#name-normative-references" class="xref">Normative References</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9.2.2">
<p id="section-toc.1-1.9.2.2.1"><a href="#section-9.2" class="xref">9.2</a>. <a href="#name-informative-references" class="xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#appendix-A" class="xref">Appendix A</a>. <a href="#name-mpls-methods-for-route-asse" class="xref">MPLS Methods for Route Assessment</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#appendix-B" class="xref"></a><a href="#name-acknowledgements" class="xref">Acknowledgements</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#appendix-C" class="xref"></a><a href="#name-authors-addresses" class="xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">The IETF IP Performance Metrics (IPPM) Working Group first created a
framework for metric development in <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span>. This
framework has stood the test of time and enabled development of many
fundamental metrics. It has been updated in the area of metric
composition <span>[<a href="#RFC5835" class="xref">RFC5835</a>]</span> and in several areas related to
active stream measurement of modern networks with reactive properties
<span>[<a href="#RFC7312" class="xref">RFC7312</a>]</span>.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">The framework in <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span> motivated the development of
"performance and reliability metrics for paths through the Internet";
<span><a href="https://www.rfc-editor.org/rfc/rfc2330#section-5" class="relref">Section 5</a> of [<a href="#RFC2330" class="xref">RFC2330</a>]</span> defines terms that support
description of a path under test. However, metrics for assessment of
paths and related performance aspects had not been attempted in IPPM
when the framework in <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span> was written.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">This memo takes up the Route measurement challenge and specifies a
new Route metric, two practical frameworks for methods of measurement
(using either active or hybrid active-passive methods <span>[<a href="#RFC7799" class="xref">RFC7799</a>]</span>), and Round-Trip Delay and link
information discovery
using the results of measurements. All Route measurements are limited by
the willingness of Hosts along the path to be discovered, to cooperate
with the methods used, or to recognize that the measurement operation is
taking place (such as when tunnels are present).<a href="#section-1-3" class="pilcrow">¶</a></p>
<section id="section-1.1">
<h3 id="name-issues-with-earlier-work-to">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-issues-with-earlier-work-to" class="section-name selfRef">Issues with Earlier Work to Define a Route Metric</a>
</h3>
<p id="section-1.1-1"><span><a href="https://www.rfc-editor.org/rfc/rfc2330#section-7" class="relref">Section 7</a> of [<a href="#RFC2330" class="xref">RFC2330</a>]</span> presents a simple example of
a "Route" metric along with several other examples. The example is
reproduced below (where the reference is to <span><a href="https://www.rfc-editor.org/rfc/rfc2330#section-5" class="relref">Section 5</a> of [<a href="#RFC2330" class="xref">RFC2330</a>]</span>):<a href="#section-1.1-1" class="pilcrow">¶</a></p>
<blockquote id="section-1.1-2">
<span class="break"></span><dl class="dlParallel" id="section-1.1-2.1">
<dt id="section-1.1-2.1.1">route:</dt>
<dd style="margin-left: 1.5em" id="section-1.1-2.1.2">The path, as defined in Section <a href="https://www.rfc-editor.org/rfc/rfc2330#section-5" class="relref">5</a>, from A to B at a given time.<a href="#section-1.1-2.1.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</blockquote>
<p id="section-1.1-3">This example provides a starting point to develop a more complete
definition of Route. Areas needing clarification include:<a href="#section-1.1-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-1.1-4">
<dt id="section-1.1-4.1">Time:</dt>
<dd style="margin-left: 1.5em" id="section-1.1-4.2">In practice, the Route will be assessed over a
time interval because active path detection methods like Paris-traceroute <span>[<a href="#PT" class="xref">PT</a>]</span> rely on Hop Limits for their
operation and cannot accomplish discovery of all Hosts using a
single packet.<a href="#section-1.1-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-4.3">Type-P:</dt>
<dd style="margin-left: 1.5em" id="section-1.1-4.4">The legacy Route definition lacks the option
to cater for packet-dependent routing. In this memo, we assess the
Route for a specific packet of Type-P and reflect this in the
metric definition. The methods of measurement determine the
specific Type-P used.<a href="#section-1.1-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-4.5">Parallel Paths:</dt>
<dd style="margin-left: 1.5em" id="section-1.1-4.6">Parallel paths are a reality of the
Internet and a strength of advanced Route assessment methods, so
the metric must acknowledge this possibility. Use of Equal-Cost
Multipath (ECMP) and Unequal-Cost Multipath (UCMP) technologies
are common sources of parallel subpaths.<a href="#section-1.1-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-4.7">Cloud Subpath:</dt>
<dd style="margin-left: 1.5em" id="section-1.1-4.8">Cloud subpaths may contain Hosts that do not
decrement the Hop Limit but may have two or more exchange links
connecting "discoverable" Hosts or routers. Parallel subpaths
contained within clouds cannot be discovered. The assessment
methods only discover Hosts or routers on the path that decrement
Hop Limit or cooperate with interrogation protocols. The presence
of tunnels and nested tunnels further complicate assessment by
hiding Hops.<a href="#section-1.1-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.1-4.9">Hop:</dt>
<dd style="margin-left: 1.5em" id="section-1.1-4.10">The definition of Hop in <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span> was a link-Host pair. However, only Hosts
that were discoverable and cooperated with
interrogation protocols (where link information may be exposed) provided both link and Host information.<a href="#section-1.1-4.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-1.1-5">Note that the actual definitions appear in <a href="#terms" class="xref">Section 3.1</a>.<a href="#section-1.1-5" class="pilcrow">¶</a></p>
</section>
<section id="section-1.2">
<h3 id="name-requirements-language">
<a href="#section-1.2" class="section-number selfRef">1.2. </a><a href="#name-requirements-language" class="section-name selfRef">Requirements Language</a>
</h3>
<p id="section-1.2-1">The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
"<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>",
"<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>",
"<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and
"<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as described in BCP
14 <span>[<a href="#RFC2119" class="xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="xref">RFC8174</a>]</span> when, and only
when, they appear in all capitals, as shown here.<a href="#section-1.2-1" class="pilcrow">¶</a></p>
</section>
</section>
<div id="Scope">
<section id="section-2">
<h2 id="name-scope">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-scope" class="section-name selfRef">Scope</a>
</h2>
<p id="section-2-1">The purpose of this memo is to add new Route metrics and methods of
measurement to the existing set of IPPM metrics.<a href="#section-2-1" class="pilcrow">¶</a></p>
<p id="section-2-2">The scope is to define Route metrics that can identify the path taken
by a packet or a flow traversing the Internet between two Hosts.
Although primarily intended for Hosts communicating on the Internet, the
definitions and metrics are constructed to be applicable to other
network domains, if desired. The methods of measurement to assess the
path may not be able to discover all Hosts comprising the path, but such
omissions are often deterministic and explainable sources of error.<a href="#section-2-2" class="pilcrow">¶</a></p>
<p id="section-2-3">This memo also specifies a framework for active methods of
measurement that uses the techniques described in <span>[<a href="#PT" class="xref">PT</a>]</span>
as well as a framework for hybrid active-passive methods of measurement,
such as the Hybrid Type I method <span>[<a href="#RFC7799" class="xref">RFC7799</a>]</span> described in
<span>[<a href="#RFC9197" class="xref">RFC9197</a>]</span>. Methods using <span>[<a href="#RFC9197" class="xref">RFC9197</a>]</span> are intended only for single
administrative domains that provide a protocol for explicit
interrogation of Nodes on a path. Combinations of active methods and
hybrid active-passive methods are also in scope.<a href="#section-2-3" class="pilcrow">¶</a></p>
<p id="section-2-4">Further, this memo provides additional analysis of the Round-Trip
Delay measurements made possible by the methods in an effort to
discover more details about the path, such as the link technology in
use.<a href="#section-2-4" class="pilcrow">¶</a></p>
<p id="section-2-5">This memo updates <span><a href="https://www.rfc-editor.org/rfc/rfc2330#section-5" class="relref">Section 5</a> of [<a href="#RFC2330" class="xref">RFC2330</a>]</span> in the areas
of path-related terminology and path description, primarily to include
the possibility of parallel subpaths between a given Source and
Destination address pair (possibly resulting from ECMP and UCMP technologies).<a href="#section-2-5" class="pilcrow">¶</a></p>
<p id="section-2-6">There are several simple non-goals of this memo. There is no attempt
to assess the reverse path from any Host on the path to the Host
attempting the path measurement. The reverse path contribution to delay
will be that experienced by ICMP packets (in active methods) and may be
different from delays experienced by UDP or TCP packets. Also, the
Round-Trip Delay will include an unknown contribution of processing time
at
the Host that generates the ICMP response. Therefore, the ICMP-based
active methods are not supposed to yield accurate, reproducible
estimations of the Round-Trip Delay that UDP or TCP packets will
experience.<a href="#section-2-6" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3">
<h2 id="name-route-metric-specifications">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-route-metric-specifications" class="section-name selfRef">Route Metric Specifications</a>
</h2>
<p id="section-3-1">This section sets requirements for the components of the route
metric.<a href="#section-3-1" class="pilcrow">¶</a></p>
<div id="terms">
<section id="section-3.1">
<h3 id="name-terms-and-definitions">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-terms-and-definitions" class="section-name selfRef">Terms and Definitions</a>
</h3>
<p id="section-3.1-1"></p>
<span class="break"></span><dl class="dlNewline" id="section-3.1-2">
<dt id="section-3.1-2.1">Host</dt>
<dd style="margin-left: 1.5em" id="section-3.1-2.2">A Host (as defined in <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span>) is
a computer capable of IP communication, including routers (aka an
RFC 2330 Host).<a href="#section-3.1-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-2.3">Node </dt>
<dd style="margin-left: 1.5em" id="section-3.1-2.4">A Node is any network function on the path
capable of IP-layer Communication, including RFC 2330 Hosts.<a href="#section-3.1-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-2.5">Node Identity</dt>
<dd style="margin-left: 1.5em" id="section-3.1-2.6">The Node identity is the unique address for Nodes
communicating within the network domain. For Nodes communicating
on the Internet with IP, it is the globally routable IP address
that the Node uses when communicating with other Nodes under
normal or error conditions. The Node identity revealed (and its
connection to a Node name through reverse DNS) determines whether
interfaces to parallel links can be associated with a single Node
or appear to identify unique Nodes.<a href="#section-3.1-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-2.7">Discoverable Node</dt>
<dd style="margin-left: 1.5em" id="section-3.1-2.8">Discoverable Nodes are Nodes that convey their Node
identity according to the requirements of their network domain,
such as when error conditions are detected by that Node. For Nodes
communicating with IP packets, compliance with
<span><a href="https://www.rfc-editor.org/rfc/rfc1122#section-3.2.2.4" class="relref">Section 3.2.2.4</a> of [<a href="#RFC1122" class="xref">RFC1122</a>]</span>, when
discarding a packet due to TTL or
Hop Limit Exceeded condition, <span class="bcp14">MUST</span> result in sending the
corresponding Time Exceeded message (containing a form of Node
identity) to the source. This requirement is also consistent with
<span><a href="https://www.rfc-editor.org/rfc/rfc1812#section-5.3.1" class="relref">Section 5.3.1</a> of [<a href="#RFC1812" class="xref">RFC1812</a>]</span> for routers.<a href="#section-3.1-2.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-2.9">Cooperating Node</dt>
<dd style="margin-left: 1.5em" id="section-3.1-2.10">Cooperating Nodes are Nodes that respond to direct
queries for their Node identity as part of a previously established and
agreed upon interrogation protocol. Nodes <span class="bcp14">SHOULD</span> also provide
information such as arrival/departure interface identification,
arrival timestamp, and any relevant information about the Node or
specific link that delivered the query to the Node.<a href="#section-3.1-2.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-2.11">Hop specification</dt>
<dd style="margin-left: 1.5em" id="section-3.1-2.12">A Hop specification <span class="bcp14">MUST</span> contain a
Node identity and <span class="bcp14">MAY</span> contain arrival and/or departure interface
identification, Round-Trip Delay, and an arrival timestamp.<a href="#section-3.1-2.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-2.13">Routing Class</dt>
<dd style="margin-left: 1.5em" id="section-3.1-2.14">Routing Class is a Route that treats a class of
different types of packets, designated "C" (unrelated to address
classes of the past) equally (<span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span> <span>[<a href="#RFC8468" class="xref">RFC8468</a>]</span>). Knowledge of such a class allows any one of
the types of packets within that class to be used for subsequent
measurement of the Route. The designator "class C" is used for
historical reasons; see <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span>.<a href="#section-3.1-2.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<section id="section-3.2">
<h3 id="name-formal-name">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-formal-name" class="section-name selfRef">Formal Name</a>
</h3>
<p id="section-3.2-1">The formal name of the metric is:<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2-2"> Type-P-Route-Ensemble-Method-Variant<a href="#section-3.2-2" class="pilcrow">¶</a></p>
<p id="section-3.2-3">abbreviated as Route Ensemble.<a href="#section-3.2-3" class="pilcrow">¶</a></p>
<p id="section-3.2-4">Note that Type-P depends heavily on the chosen method and
variant.<a href="#section-3.2-4" class="pilcrow">¶</a></p>
</section>
<section id="section-3.3">
<h3 id="name-parameters">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-parameters" class="section-name selfRef">Parameters</a>
</h3>
<p id="section-3.3-1">This section lists the <span class="bcp14">REQUIRED</span> input factors to define and measure
a Route metric, as specified in this memo.<a href="#section-3.3-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.3-2">
<dt id="section-3.3-2.1">Src:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.2"> the address of a Node (such as the globally routable IP
address).<a href="#section-3.3-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.3">Dst:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.4"> the address of a Node (such as the globally routable IP
address).<a href="#section-3.3-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.5">i:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.6"> the limit on the number of Hops a specific packet may visit
as it traverses from the Node at Src to the Node at Dst (such as
the TTL or Hop Limit).<a href="#section-3.3-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.7">MaxHops:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.8"> the maximum value of i used (i=1,2,3,...MaxHops).<a href="#section-3.3-2.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.9">T0:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.10">a time (start of measurement interval).<a href="#section-3.3-2.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.11">Tf:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.12">a time (end of measurement interval).<a href="#section-3.3-2.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.13">MP(address):</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.14">the Measurement Point at address, such as Src or Dst,
usually at the same Node stack layer as "address".<a href="#section-3.3-2.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.15">T:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.16"> the Node time of a packet as measured at MP(Src), meaning
Measurement Point at the Source.<a href="#section-3.3-2.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.17">Ta:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.18"> the Node time of a reply packet's <strong>arrival</strong> as measured at
MP(Src), assigned to packets that arrive within a "reasonable"
time (see parameter below).<a href="#section-3.3-2.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.19">Tmax:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.20"> a maximum waiting time for reply packets to return to the
source, set sufficiently long to disambiguate packets with long
delays from packets that are discarded (lost), such that the
distribution of Round-Trip Delay is not truncated.<a href="#section-3.3-2.20" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.21">F:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.22"> the number of different flows simulated by the method and
variant.<a href="#section-3.3-2.22" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.23">flow:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.24"> the stream of packets with the same n-tuple of designated
header fields that (when held constant) result in identical
treatment in a multipath decision (such as the decision taken in
load balancing). Note: The IPv6 flow label <span class="bcp14">MAY</span> be included in the
flow definition if the MP(Src) is a Tunnel Endpoint (TEP)
complying with the guidelines in <span>[<a href="#RFC6438" class="xref">RFC6438</a>]</span>.<a href="#section-3.3-2.24" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.3-2.25">Type-P:</dt>
<dd style="margin-left: 1.5em" id="section-3.3-2.26"> the complete description of the packets for which this
assessment applies (including the flow-defining fields).<a href="#section-3.3-2.26" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
<div id="Metric">
<section id="section-3.4">
<h3 id="name-metric-definitions">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-metric-definitions" class="section-name selfRef">Metric Definitions</a>
</h3>
<p id="section-3.4-1">This section defines the <span class="bcp14">REQUIRED</span> measurement components of the
Route metrics (unless otherwise indicated):<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.4-2">
<dt id="section-3.4-2.1">M:</dt>
<dd style="margin-left: 1.5em" id="section-3.4-2.2"> the total number of packets sent between T0 and Tf.<a href="#section-3.4-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.4-2.3">N:</dt>
<dd style="margin-left: 1.5em" id="section-3.4-2.4"> the smallest value of i needed for a packet to be received at
Dst (sent between T0 and Tf).<a href="#section-3.4-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.4-2.5">Nmax:</dt>
<dd style="margin-left: 1.5em" id="section-3.4-2.6"> the largest value of i needed for a packet to be received at
Dst (sent between T0 and Tf). Nmax may be equal to N.<a href="#section-3.4-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.4-3">Next, define a <strong>singleton</strong> for a Node on the path with
sufficient indexes to identify all Nodes identified in a measurement
interval (where <strong>singleton</strong> is part of the IPPM Framework <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span>).<a href="#section-3.4-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.4-4">
<dt id="section-3.4-4.1">singleton:</dt>
<dd style="margin-left: 1.5em" id="section-3.4-4.2">A Hop specification, designated h(i,j), the IP address and/or
identity of Discoverable Nodes (or Cooperating Nodes) that are i Hops
away from the Node with address = Src and part of Route j during the
measurement interval T0 to Tf. As defined here, a Hop singleton
measurement <span class="bcp14">MUST</span> contain a Node identity, hid(i,j), and <span class="bcp14">MAY</span> contain
one or more of the following attributes:<a href="#section-3.4-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<ul class="normal">
<li class="normal" id="section-3.4-5.1">a(i,j) Arrival Interface ID (e.g., when <span>[<a href="#RFC5837" class="xref">RFC5837</a>]</span> is supported)<a href="#section-3.4-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.4-5.2">d(i,j) Departure Interface ID (e.g., when <span>[<a href="#RFC5837" class="xref">RFC5837</a>]</span> is supported)<a href="#section-3.4-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.4-5.3">t(i,j) arrival timestamp, where t(i,j) is ideally supplied by
the Hop (note that t(i,j) might be approximated from the sending
time of the packet that revealed the Hop, e.g., when the
round-trip response time is available and divided by 2)<a href="#section-3.4-5.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.4-5.4">Measurements of Round-Trip Delay (for each packet that reveals
the same Node identity and flow attributes, then this attribute is
computed; see next section)<a href="#section-3.4-5.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.4-6">Node identities and related information can be ordered by their
distance from the Node with address Src in Hops h(i,j). Based on this,
two forms of Routes are distinguished:<a href="#section-3.4-6" class="pilcrow">¶</a></p>
<p id="section-3.4-7">A Route Ensemble is defined as the combination of all Routes
traversed by different flows from the Node at Src address to the Node
at Dst address. A single Route traversed by a single flow (determined
by an unambiguous tuple of addresses Src and Dst and other identical
flow criteria) is a member of the Route Ensemble and called a Member
Route.<a href="#section-3.4-7" class="pilcrow">¶</a></p>
<p id="section-3.4-8">Using h(i,j) and components and parameters further define:<a href="#section-3.4-8" class="pilcrow">¶</a></p>
<p id="section-3.4-9">When considering the set of Hops in the context of a single flow, a
Member Route j is an ordered list {h(1,j), ... h(Nj, j)} where h(i-1,
j) and h(i, j) are one Hop away from each other and Nj satisfying
h(Nj,j)=Dst is the minimum count of Hops needed by the packet on
member Route j to reach Dst. Member Routes must be unique. The
uniqueness property requires that any two Member Routes, j and k, that
are part of the same Route Ensemble differ either in terms of minimum
Hop count Nj and Nk to reach the destination Dst or, in the case of
identical Hop count Nj=Nk, they have at least one distinct Hop: h(i,j)
!= h(i,k) for at least one i (i=1..Nj).<a href="#section-3.4-9" class="pilcrow">¶</a></p>
<p id="section-3.4-10">All the optional information collected to describe a Member Route,
such as the arrival interface, departure interface, and Round-Trip
Delay at each Hop, turns each list item into a rich structure. There
may be information on the links between Hops, possible information on
the routing (arrival interface and departure interface), an estimate
of distance between Hops based on Round-Trip Delay measurements and
calculations, and a timestamp indicating when all these additional
details were measured.<a href="#section-3.4-10" class="pilcrow">¶</a></p>
<p id="section-3.4-11">The Route Ensemble from Src to Dst, during the measurement interval
T0 to Tf, is the aggregate of all m distinct Member Routes discovered
between the two Nodes with Src and Dst addresses. More formally, with
the Node having address Src omitted:<a href="#section-3.4-11" class="pilcrow">¶</a></p>
<div id="section-3.4-12">
<pre class="sourcecode">
Route Ensemble = {
{h(1,1), h(2,1), h(3,1), ... h(N1,1)=Dst},
{h(1,2), h(2,2), h(3,2),..., h(N2,2)=Dst},
...
{h(1,m), h(2,m), h(3,m), ....h(Nm,m)=Dst}
}
</pre><a href="#section-3.4-12" class="pilcrow">¶</a>
</div>
<p id="section-3.4-13">where the following conditions apply: i <= Nj <= Nmax
(j=1..m)<a href="#section-3.4-13" class="pilcrow">¶</a></p>
<p id="section-3.4-14">Note that some h(i,j) may be empty (null) in the case that systems
do not reply (not discoverable or not cooperating).<a href="#section-3.4-14" class="pilcrow">¶</a></p>
<p id="section-3.4-15">h(i-1,j) and h(i,j) are the Hops on the same Member Route one Hop
away from each other.<a href="#section-3.4-15" class="pilcrow">¶</a></p>
<p id="section-3.4-16">Hop h(i,j) may be identical with h(k,l) for i!=k and j!=l, which
means there may be portions shared among different Member Routes
(parts of Member Routes may overlap).<a href="#section-3.4-16" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.5">
<h3 id="name-related-round-trip-delay-an">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-related-round-trip-delay-an" class="section-name selfRef">Related Round-Trip Delay and Loss Definitions</a>
</h3>
<p id="section-3.5-1">RTD(i,j,T) is defined as a singleton of the <span>[<a href="#RFC2681" class="xref">RFC2681</a>]</span> Round-Trip Delay between the Node with address =
Src and the Node at Hop h(i,j) at time T.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
<p id="section-3.5-2">RTL(i,j,T) is defined as a singleton of the <span>[<a href="#RFC6673" class="xref">RFC6673</a>]</span> Round-Trip Loss between the Node with address = Src
and the Node at Hop h(i,j) at time T.<a href="#section-3.5-2" class="pilcrow">¶</a></p>
</section>
<section id="section-3.6">
<h3 id="name-discussion">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-discussion" class="section-name selfRef">Discussion</a>
</h3>
<p id="section-3.6-1">Depending on the way that the Node identity is revealed, it may be
difficult to determine parallel subpaths between the same pair of
Nodes (i.e., multiple parallel links). It is easier to detect parallel
subpaths involving different Nodes.<a href="#section-3.6-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.6-2.1">If a pair of discovered Nodes identify two different addresses
(IP or not), then they will appear to be different Nodes. See item
below.<a href="#section-3.6-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.6-2.2">If a pair of discovered Nodes identify two different IP
addresses and the IP addresses resolve to the same Node name (in
the DNS), then they will appear to be the same Node.<a href="#section-3.6-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.6-2.3">If a discovered Node always replies using the same network
address, regardless of the interface a packet arrives on, then
multiple parallel links cannot be detected in that network domain.
This condition may apply to traceroute-style methods but may not
apply to other hybrid methods based on In situ Operations,
Administration, and Maintenance (IOAM). For example, if the ICMP extension mechanism described in <span>[<a href="#RFC5837" class="xref">RFC5837</a>]</span> is
implemented, then
parallel links can be detected with the discovery traceroute-style
methods.<a href="#section-3.6-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.6-2.4">If parallel links between routers are aggregated below the IP
layer, then, from the Node's point of view, all these links share the
same pair of IP addresses. The existence of these parallel links
can't be detected at the IP layer. This applies to other network
domains with layers below them as well. This condition may apply
to traceroute-style methods but may not apply to other hybrid
methods based on IOAM.<a href="#section-3.6-2.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.6-3">When a Route assessment employs IP packets (for example), the
reality of flow assignment to parallel subpaths involves layers above
IP. Thus, the measured Route Ensemble is applicable to IP and higher
layers (as described in the methodology's packet of Type-P and flow
parameters).<a href="#section-3.6-3" class="pilcrow">¶</a></p>
</section>
<section id="section-3.7">
<h3 id="name-reporting-the-metric">
<a href="#section-3.7" class="section-number selfRef">3.7. </a><a href="#name-reporting-the-metric" class="section-name selfRef">Reporting the Metric</a>
</h3>
<p id="section-3.7-1">An Information Model and an XML Data Model for Storing Traceroute
Measurements is available in <span>[<a href="#RFC5388" class="xref">RFC5388</a>]</span>. The measured
information at each Hop includes four pieces of information: a
one-dimensional Hop index, Node symbolic address, Node IP address, and
RTD for each response.<a href="#section-3.7-1" class="pilcrow">¶</a></p>
<p id="section-3.7-2">The description of Hop information that may be collected according
to this memo covers more dimensions, as defined in <a href="#Metric" class="xref">Section 3.4</a>.
For example, the Hop index is two-dimensional to capture the
complexity of a Route Ensemble, and it contains corresponding Node
identities at a minimum. The models need to be expanded to include
these features as well as Arrival Interface ID, Departure Interface
ID, and arrival timestamp, when available. The original sending
Timestamp from the Src Node anchors a particular measurement in
time.<a href="#section-3.7-2" class="pilcrow">¶</a></p>
</section>
</section>
<div id="Methodologies">
<section id="section-4">
<h2 id="name-route-assessment-methodolog">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-route-assessment-methodolog" class="section-name selfRef">Route Assessment Methodologies</a>
</h2>
<p id="section-4-1">There are two classes of methods described in this section, active
methods relying on the reaction to TTL or Hop Limit Exceeded condition
to discover Nodes on a path and hybrid active-passive methods that
involve direct interrogation of Cooperating Nodes (usually within a
single domain). Description of these methods follow.<a href="#section-4-1" class="pilcrow">¶</a></p>
<section id="section-4.1">
<h3 id="name-active-methodologies">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-active-methodologies" class="section-name selfRef">Active Methodologies</a>
</h3>
<p id="section-4.1-1">This section describes the method employed by current open-source
tools, thereby providing a practical framework for further advanced
techniques to be included as method variants. This method is
applicable for use across multiple administrative domains.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">Internet routing is complex because it depends on the policies of
thousands of Autonomous Systems (ASes). Most routers perform load
balancing on flows using a form of ECMP.
<span>[<a href="#RFC2991" class="xref">RFC2991</a>]</span> describes a number of flow-based or hashed
approaches (e.g., Modulo-N Hash, Hash-Threshold, and Highest Random Weight
(HRW)) and makes some good suggestions. Flow-based ECMP avoids
increased packet Delay Variation and possibly overwhelming levels of
packet reordering in flows.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">A few routers still divide the workload through packet-based
techniques, such as a round-robin scheme to distribute every new
outgoing packet to multiple links, as explained in <span>[<a href="#RFC2991" class="xref">RFC2991</a>]</span>. The methods described in this
section assume flow-based ECMP.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1-4">Taking into account that Internet protocol was designed under the
"end-to-end" principle, the IP payload and its header do
not provide any information about the Routes or path necessary to
reach some destination. For this reason, the popular tool, traceroute,
was developed to gather the IP addresses of each Hop along a path
using ICMP <span>[<a href="#RFC0792" class="xref">RFC0792</a>]</span>. Traceroute also
measures RTD from each Hop. However, the growing complexity of the
Internet makes it more challenging to develop an accurate traceroute
implementation. For instance, the early traceroute tools would be
inaccurate in the current network, mainly because they were not
designed to retain a flow state. However, evolved traceroute tools,
such as Paris-traceroute (<span>[<a href="#PT" class="xref">PT</a>]</span> <span>[<a href="#MLB" class="xref">MLB</a>]</span>) and
Scamper (<span>[<a href="#SCAMPER" class="xref">SCAMPER</a>]</span>), expect to encounter ECMP and achieve
more accurate results when they do, where Scamper ensures traceroute
packets will follow the same path in 98% of cases (<span>[<a href="#SCAMPER" class="xref">SCAMPER</a>]</span>).<a href="#section-4.1-4" class="pilcrow">¶</a></p>
<p id="section-4.1-5">Today's traceroute tools send Type-P of packets, which are either ICMP, UDP,
or TCP. UDP and TCP are used when a particular characteristic needs to
be verified, such as filtering or traffic shaping on specific ports
(i.e., services). UDP and TCP traceroute are also used when ICMP
responses are not received. <span>[<a href="#SCAMPER" class="xref">SCAMPER</a>]</span> supports IPv6
traceroute measurements, keeping the Flow Label constant in all
packets.<a href="#section-4.1-5" class="pilcrow">¶</a></p>
<p id="section-4.1-6">Paris-traceroute allows its users to measure the RTD to every Node
of the path for a particular flow. Furthermore, either
Paris-traceroute or Scamper is capable of unveiling the many available
paths between a source and destination (which are visible to active
methods). This task is accomplished by repeating complete traceroute
measurements with different flow parameters for each measurement;
Paris-traceroute provides an "exhaustive" mode, while Scamper
provides "tracelb" (which stands for "traceroute load balance").
<span><a href="#RFC2330" class="xref">"Framework for IP Performance Metrics"</a> [<a href="#RFC2330" class="xref">RFC2330</a>]</span>, updated by <span>[<a href="#RFC7312" class="xref">RFC7312</a>]</span>, has the
flexibility to require that the Round-Trip Delay measurement <span>[<a href="#RFC2681" class="xref">RFC2681</a>]</span> uses packets with the constraints
to assure that
all packets in a single measurement appear as the same flow. This
flexibility covers ICMP, UDP, and TCP. The accompanying methodology of
<span>[<a href="#RFC2681" class="xref">RFC2681</a>]</span> needs to be expanded to report the sequential
Hop identifiers along with RTD measurements, but no new metric
definition is needed.<a href="#section-4.1-6" class="pilcrow">¶</a></p>
<p id="section-4.1-7">The advanced Route assessment methods used in Paris-traceroute
<span>[<a href="#PT" class="xref">PT</a>]</span> keep the critical fields constant for every packet
to maintain the appearance of the same flow. When considering IPv6
headers, it is necessary to ensure that the IP Source and Destination
addresses and Flow Label are constant (but note that many routers
ignore the Flow Label field at this time); see <span>[<a href="#RFC6437" class="xref">RFC6437</a>]</span>. Use of IPv6 Extension Headers may add critical
fields and <span class="bcp14">SHOULD</span> be avoided. In IPv4, certain fields of the IP
header and the first 4 bytes of the IP payload should remain
constant in a flow. In the IPv4 header, the IP Source and Destination
addresses, protocol number, and Diffserv fields identify flows. The
first 4 payload bytes include the UDP and TCP ports and the ICMP
type, code, and checksum fields.<a href="#section-4.1-7" class="pilcrow">¶</a></p>
<p id="section-4.1-8">Maintaining a constant ICMP checksum in IPv4 is most challenging,
as the ICMP sequence number or identifier fields will usually change
for different probes of the same path. Probes should use arbitrary
bytes in the ICMP data field to offset changes to the sequence number and
identifier, thus keeping the checksum constant.<a href="#section-4.1-8" class="pilcrow">¶</a></p>
<p id="section-4.1-9">Finally, it is also essential to Route the resulting ICMP Time
Exceeded messages along a consistent path. In IPv6, the fields above
are sufficient.
In IPv4, the ICMP Time Exceeded message will contain
the IP header and the first 8 bytes of the IP payload, both of which
affect its ICMP checksum calculation. The TCP sequence number, UDP length, and
UDP checksum will affect this value and should remain constant.<a href="#section-4.1-9" class="pilcrow">¶</a></p>
<p id="section-4.1-10">Formally, to maintain the same flow in the measurements to a
particular Hop, the Type-P-Route-Ensemble-Method-Variant packets
should have the following attributes (see <span>[<a href="#PT" class="xref">PT</a>]</span>):<a href="#section-4.1-10" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.1-11">
<dt id="section-4.1-11.1">TCP case:</dt>
<dd style="margin-left: 1.5em" id="section-4.1-11.2"> For IPv4, the fields Src, Dst, port-Src, port_Dst,
sequence number, and Diffserv <span class="bcp14">SHOULD</span> be the same. For IPv6,
the fields Flow Label, Src, and Dst <span class="bcp14">SHOULD</span> be the same.<a href="#section-4.1-11.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.1-11.3">UDP case:</dt>
<dd style="margin-left: 1.5em" id="section-4.1-11.4"> For IPv4, the fields Src, Dst, port-Src, port-Dst, and
Diffserv should be the same, and the UDP checksum <span class="bcp14">SHOULD</span> change to
keep the IP checksum of the ICMP Time Exceeded reply constant.
Then, the data length should be fixed, and the data field is used
to make it so (consider that ICMP checksum uses its data field,
which contains the original IP header plus 8 bytes of UDP, where
TTL, IP identification, IP checksum, and UDP checksum changes).
For IPv6, the field Flow Label and Source and Destination
addresses <span class="bcp14">SHOULD</span> be the same.<a href="#section-4.1-11.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.1-11.5">ICMP case:</dt>
<dd style="margin-left: 1.5em" id="section-4.1-11.6"> For IPv4, the data field <span class="bcp14">SHOULD</span> compensate
variations on TTL or Hop Limit, IP identification, and IP checksum
for every packet. There is no need to consider ICMPv6 because only
Flow Label of IPv6 and Source and Destination addresses are used,
and all of them <span class="bcp14">SHOULD</span> be constant.<a href="#section-4.1-11.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.1-12">Then, the way to identify different Hops and attempts of the same
IPv4 flow is:<a href="#section-4.1-12" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.1-13">
<dt id="section-4.1-13.1">TCP case:</dt>
<dd style="margin-left: 1.5em" id="section-4.1-13.2"> The IP identification field.<a href="#section-4.1-13.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.1-13.3">UDP case:</dt>
<dd style="margin-left: 1.5em" id="section-4.1-13.4"> The IP identification field.<a href="#section-4.1-13.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.1-13.5">ICMP case:</dt>
<dd style="margin-left: 1.5em" id="section-4.1-13.6"> The IP identification field and ICMP sequence
number.<a href="#section-4.1-13.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<section id="section-4.1.1">
<h4 id="name-temporal-composition-for-ro">
<a href="#section-4.1.1" class="section-number selfRef">4.1.1. </a><a href="#name-temporal-composition-for-ro" class="section-name selfRef">Temporal Composition for Route Metrics</a>
</h4>
<p id="section-4.1.1-1">The active Route assessment methods described above have the
ability to discover portions of a path where ECMP load balancing is
present, observed as two or more unique Member Routes having one or
more distinct Hops that are part of the Route Ensemble. Likewise,
attempts to deliberately vary the flow characteristics to discover
all Member Routes will reveal portions of the path that are
flow invariant.<a href="#section-4.1.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1.1-2"><span><a href="https://www.rfc-editor.org/rfc/rfc2330#section-9.2" class="relref">Section 9.2</a> of [<a href="#RFC2330" class="xref">RFC2330</a>]</span> describes the Temporal
Composition of metrics and introduces the possibility of a
relationship between earlier measurement results and the results for
measurement at the current time (for a given metric). There is value
in establishing a Temporal Composition relationship for Route
metrics; however, this relationship does not represent a forecast of
future Route conditions in any way.<a href="#section-4.1.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1.1-3">For Route-metric measurements, the value of Temporal Composition
is to reduce the measurement iterations required with repeated
measurements. Reduced iterations are possible by inferring that
current measurements using fixed and previously measured flow
characteristics:<a href="#section-4.1.1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1.1-4.1">will have many common Hops with previous measurements.<a href="#section-4.1.1-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1.1-4.2">will have relatively time-stable results at the ingress and
egress portions of the path when measured from user locations,
as opposed to measurements of backbone networks and across
inter-domain gateways.<a href="#section-4.1.1-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1.1-4.3">may have greater potential for time variation in path
portions where ECMP load balancing is observed (because
increasing or decreasing the pool of links changes the hash
calculations).<a href="#section-4.1.1-4.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.1.1-5">Optionally, measurement systems may take advantage of the
inferences above when seeking to reduce measurement iterations
after exhaustive measurements indicate that the time-stable
properties are present. Repetitive active Route measurement
systems:<a href="#section-4.1.1-5" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.1.1-6">
<li id="section-4.1.1-6.1">
<span class="bcp14">SHOULD</span> occasionally check path portions that have exhibited
stable results over time, particularly ingress and egress
portions of the path (e.g., daily checks if measuring many times
during a day).<a href="#section-4.1.1-6.1" class="pilcrow">¶</a>
</li>
<li id="section-4.1.1-6.2">
<span class="bcp14">SHOULD</span> continue testing portions of the path that have
previously exhibited ECMP load balancing.<a href="#section-4.1.1-6.2" class="pilcrow">¶</a>
</li>
<li id="section-4.1.1-6.3">
<span class="bcp14">SHALL</span> trigger reassessment of the complete path and Route
Ensemble if any change in Hops is observed for a specific (and
previously tested) flow.<a href="#section-4.1.1-6.3" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-4.1.1-7"></p>
</section>
<section id="section-4.1.2">
<h4 id="name-routing-class-identificatio">
<a href="#section-4.1.2" class="section-number selfRef">4.1.2. </a><a href="#name-routing-class-identificatio" class="section-name selfRef">Routing Class Identification</a>
</h4>
<p id="section-4.1.2-1">There is an opportunity to apply the notion from <span>[<a href="#RFC2330" class="xref">RFC2330</a>]</span>
of equal treatment for a class of packets, "...very useful to
know if a given Internet component treats equally a class C of
different types of packets", as it applies to Route measurements.
The notion of class C was examined further in <span>[<a href="#RFC8468" class="xref">RFC8468</a>]</span> as it applied to load-balancing flows over
parallel paths, which is the case we develop here. Knowledge of
class C parameters (unrelated to address classes of the past) on a
path potentially reduces the number of flows required for a given
method to assess a Route Ensemble over time.<a href="#section-4.1.2-1" class="pilcrow">¶</a></p>
<p id="section-4.1.2-2">First, recognize that each Member Route of a Route Ensemble will
have a corresponding class C. Class C can be discovered by testing
with multiple flows, all of which traverse the unique set of Hops
that comprise a specific Member Route.<a href="#section-4.1.2-2" class="pilcrow">¶</a></p>
<p id="section-4.1.2-3">Second, recognize that the different classes depend primarily on
the hash functions used at each instance of ECMP load balancing on
the path.<a href="#section-4.1.2-3" class="pilcrow">¶</a></p>
<p id="section-4.1.2-4">Third, recognize the synergy with Temporal Composition methods
(described above), where evaluation intends to discover time-stable
portions of each Member Route so that more emphasis can be placed
on ECMP portions that also determine class C.<a href="#section-4.1.2-4" class="pilcrow">¶</a></p>
<p id="section-4.1.2-5">The methods to assess the various class C characteristics benefit
from the following measurement capabilities:<a href="#section-4.1.2-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1.2-6.1">flows designed to determine which n-tuple header fields are
considered by a given hash function and ECMP Hop on the path
and which are not. This operation immediately narrows the search
space, where possible, and partially defines a class C.<a href="#section-4.1.2-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1.2-6.2">a priori knowledge of the possible types of hash functions in
use also helps to design the flows for testing (major router
vendors publish information about these hash functions; examples
are in <span>[<a href="#LOAD_BALANCE" class="xref">LOAD_BALANCE</a>]</span>).<a href="#section-4.1.2-6.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1.2-6.3">ability to direct the emphasis of current measurements on
ECMP portions of the path, based on recent past measurement
results (the Routing Class of some portions of the path is
essentially "all packets").<a href="#section-4.1.2-6.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.1.2-7"></p>
</section>
<section id="section-4.1.3">
<h4 id="name-intermediate-observation-po">
<a href="#section-4.1.3" class="section-number selfRef">4.1.3. </a><a href="#name-intermediate-observation-po" class="section-name selfRef">Intermediate Observation Point Route Measurement</a>
</h4>
<p id="section-4.1.3-1">There are many examples where passive monitoring of a flow at an
Observation Point within the network can detect unexpected
Round-Trip Delay or Delay Variation. But how can the cause of the
anomalous delay be investigated further <strong>from the Observation Point</strong>
possibly located at an intermediate point on the path?<a href="#section-4.1.3-1" class="pilcrow">¶</a></p>
<p id="section-4.1.3-2">In this case, knowledge that the flow of interest belongs to a
specific Routing Class C will enable measurement of the Route where
anomalous delay has been observed. Specifically, Round-Trip Delay
assessment to each Hop on the path between the Observation Point and
the Destination for the flow of interest may discover high or
variable delay on a specific link and Hop combination.<a href="#section-4.1.3-2" class="pilcrow">¶</a></p>
<p id="section-4.1.3-3">The determination of a Routing Class C that includes the flow of
interest is as described in the section above, aided by computation
of the relevant hash function output as the target.<a href="#section-4.1.3-3" class="pilcrow">¶</a></p>
<p id="section-4.1.3-4"></p>
</section>
</section>
<section id="section-4.2">
<h3 id="name-hybrid-methodologies">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-hybrid-methodologies" class="section-name selfRef">Hybrid Methodologies</a>
</h3>
<p id="section-4.2-1">The Hybrid Type I methods provide an alternative for Route
assessment.
The "Scope, Applicability, and Assumptions" section of <span>[<a href="#RFC9197" class="xref">RFC9197</a>]</span> provides one possible set of data
fields that would support Route identification.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2-2">In general, Nodes in the measured domain would be equipped with
specific abilities:<a href="#section-4.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-3.1">Store the identity of Nodes that a packet has visited in header
data fields in the order the packet visited the Nodes.<a href="#section-4.2-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-3.2">Support of a "Loopback" capability where a copy of the packet
is returned to the encapsulating Node and the packet is processed
like any other IOAM packet on the return transfer.<a href="#section-4.2-3.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.2-4">In addition to Node identity, Nodes may also identify the ingress
and egress interfaces utilized by the tracing packet, the absolute
time when the packet was processed, and other generic data (as
described in <span><a href="https://www.rfc-editor.org/rfc/rfc9197#section-3" class="relref">Section 3</a> of [<a href="#RFC9197" class="xref">RFC9197</a>]</span>).
Interface identification isn't necessarily limited to IP, i.e.,
different links in a bundle (Link Aggregation Control Protocol (LACP))
could be identified. Equally well,
links without explicit IP addresses can be identified (like with
unnumbered interfaces in an IGP deployment).<a href="#section-4.2-4" class="pilcrow">¶</a></p>
<p id="section-4.2-5">Note that the Type-P packet specification for this method will
likely be a partial specification because most of the packet fields
are determined by the user traffic. The packet encapsulation
header or headers added by the hybrid method can certainly be specified in
Type-P, in unpopulated form.<a href="#section-4.2-5" class="pilcrow">¶</a></p>
</section>
<section id="section-4.3">
<h3 id="name-combining-different-methods">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-combining-different-methods" class="section-name selfRef">Combining Different Methods</a>
</h3>
<p id="section-4.3-1">In principle, there are advantages if the entity conducting Route
measurements can utilize both forms of advanced methods (active and
hybrid) and combine the results. For example, if there are Nodes
involved in the path that qualify as Cooperating Nodes but not as
Discoverable Nodes, then a more complete view of Hops on the path is
possible when a hybrid method (or interrogation protocol) is applied
and the results are combined with the active method results collected
across all other domains.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2">In order to combine the results of active and hybrid/interrogation
methods, the network Nodes that are part of a domain supporting an
interrogation protocol have the following attributes:<a href="#section-4.3-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.3-3">
<li id="section-4.3-3.1">Nodes at the ingress to the domain <span class="bcp14">SHOULD</span> be both Discoverable
and Cooperating.<a href="#section-4.3-3.1" class="pilcrow">¶</a>
</li>
<li id="section-4.3-3.2">Any Nodes within the domain that are both Discoverable and
Cooperating <span class="bcp14">SHOULD</span> reveal the same Node identity in response to
both active and hybrid methods.<a href="#section-4.3-3.2" class="pilcrow">¶</a>
</li>
<li id="section-4.3-3.3">Nodes at the egress to the domain <span class="bcp14">SHOULD</span> be both Discoverable
and Cooperating and <span class="bcp14">SHOULD</span> reveal the same Node identity in
response to both active and hybrid methods.<a href="#section-4.3-3.3" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-4.3-4">When Nodes follow these requirements, it becomes a simple matter to
match single-domain measurements with the overlapping results from a
multidomain measurement.<a href="#section-4.3-4" class="pilcrow">¶</a></p>
<p id="section-4.3-5">In practice, Internet users do not typically have the ability to
utilize the Operations, Administrations, and Maintenance (OAM)
capabilities of networks that their packets traverse,
so the results from a remote domain supporting an interrogation
protocol would not normally be accessible. However, a network operator
could combine interrogation results from their access domain with
other measurements revealing the path outside their domain.<a href="#section-4.3-5" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="Cases">
<section id="section-5">
<h2 id="name-background-on-round-trip-de">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-background-on-round-trip-de" class="section-name selfRef">Background on Round-Trip Delay Measurement Goals</a>
</h2>
<p id="section-5-1">The aim of this method is to use packet probes to unveil the paths
between any two End-Nodes of the network. Moreover, information derived
from RTD measurements might be meaningful to identify:<a href="#section-5-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-5-2">
<li id="section-5-2.1">Intercontinental submarine links<a href="#section-5-2.1" class="pilcrow">¶</a>
</li>
<li id="section-5-2.2">Satellite communications<a href="#section-5-2.2" class="pilcrow">¶</a>
</li>
<li id="section-5-2.3">Congestion<a href="#section-5-2.3" class="pilcrow">¶</a>
</li>
<li id="section-5-2.4">Inter-domain paths<a href="#section-5-2.4" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-5-3">This categorization is widely accepted in the literature and among
operators alike, and it can be trusted with empirical data and several
sources as ground of truth (e.g., <span>[<a href="#RTTSub" class="xref">RTTSub</a>]</span>), but it is an
inference measurement nonetheless <span>[<a href="#bdrmap" class="xref">bdrmap</a>]</span> <span>[<a href="#IDCong" class="xref">IDCong</a>]</span>.<a href="#section-5-3" class="pilcrow">¶</a></p>
<p id="section-5-4">The first two categories correspond to the physical distance
dependency on RTD, the next one binds RTD with
queuing delay on routers, and the last one helps to identify different
ASes using traceroutes. Due to the significant contribution of
propagation delay in long-distance Hops, RTD will be on the order of
100 ms on transatlantic Hops, depending on the geolocation of the vantage
points. Moreover, RTD is typically higher than 480 ms when two Hops are
connected using geostationary satellite technology (i.e., their orbit is
at 36000 km). Detecting congestion with latency implies deeper
mathematical understanding, since network traffic load is not stationary.
Nonetheless, as the first approach, a link seems to be congested if
observing different/varying statistical results after sending several
traceroute probes (e.g., see <span>[<a href="#IDCong" class="xref">IDCong</a>]</span>). Finally, to
recognize distinctive ASes in the same traceroute path is challenging
because more data is needed, like AS relationships and Regional Internet
Registry (RIR) delegations
among others (for more details, please consult <span>[<a href="#bdrmap" class="xref">bdrmap</a>]</span>).<a href="#section-5-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Statistics">
<section id="section-6">
<h2 id="name-rtd-measurements-statistics">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-rtd-measurements-statistics" class="section-name selfRef">RTD Measurements Statistics</a>
</h2>
<p id="section-6-1">Several articles have shown that network traffic presents a
self-similar nature <span>[<a href="#SSNT" class="xref">SSNT</a>]</span> <span>[<a href="#MLRM" class="xref">MLRM</a>]</span> that is
accountable for filling the queues of the routers. Moreover, router
queues are designed to handle traffic bursts, which is one of the most
remarkable features of self-similarity. Naturally, while queue length
increases, the delay to traverse the queue increases as well and leads
to an increase on RTD. Due to traffic bursts generating short-term
overflow on buffers (spiky patterns), every RTD only depicts the
queueing status on the instant when that packet probe was in transit.
For this reason, several RTD measurements during a time window could
begin to describe the random behavior of latency. Loss must also be
accounted for in the methodology.<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2">To understand the ongoing process, examining the quartiles provides a
nonparametric way of analysis. Quartiles are defined by five values:
minimum RTD (m), RTD value of the 25% of the Empirical Cumulative
Distribution Function (ECDF) (Q1), the median value (Q2), the RTD value
of the 75% of the ECDF (Q3), and the maximum RTD (M). Congestion can be
inferred when RTD measurements are spread apart; consequently, the
Interquartile Range (IQR), i.e., the distance between Q3 and Q1, increases
its value.<a href="#section-6-2" class="pilcrow">¶</a></p>
<p id="section-6-3">This procedure requires the algorithm presented in <span>[<a href="#P2" class="xref">P2</a>]</span> to compute quartile values "on the fly".<a href="#section-6-3" class="pilcrow">¶</a></p>
<p id="section-6-4">This procedure allows us to update the quartile values whenever a new
measurement arrives, which is radically different from classic methods
of computing quartiles, because they need to use the whole dataset to
compute the values. This way of calculus provides savings in memory and
computing time.<a href="#section-6-4" class="pilcrow">¶</a></p>
<p id="section-6-5">To sum up, the proposed measurement procedure consists of performing
traceroutes several times to obtain samples of the RTD in every Hop from
a path during a time window (W) and compute the quartiles for every
Hop. This procedure could be done for a single Member Route flow, for a
non-exhaustive search with parameter E (defined below) set to False, or
for every detected Route Ensemble flow (E=True).<a href="#section-6-5" class="pilcrow">¶</a></p>
<p id="section-6-6">The identification of a specific Hop in a traceroute is based on the IP
origin address of the returned ICMP Time Exceeded packet and on the
distance identified by the value set in the TTL (or Hop Limit) field
inserted by traceroute. As this specific Hop can be reached by different
paths, the IP Source and Destination addresses of the traceroute
packet also need to be recorded. Finally, different return paths are
distinguished by evaluating the ICMP Time Exceeded TTL (or Hop Limit) of
the reply message; if this TTL (or Hop Limit) is constant for different
paths containing the same Hop, the return paths have the same distance.
Moreover, this distance can be estimated considering that the TTL (or
Hop Limit) value is normally initialized with values 64, 128, or 255.
The 5-tuple (origin IP, destination IP, reply IP, distance, and response TTL
or Hop Limit) unequivocally identifies every measurement.<a href="#section-6-6" class="pilcrow">¶</a></p>
<p id="section-6-7">This algorithm below runs in the origin of the traceroute. It returns
the Qs quartiles for every Hop and Alt (alternative paths because of
balancing). Notice that the "Alt" parameter condenses the parameters of
the 5-tuple (origin IP, destination IP, reply IP, distance, and response
TTL), i.e., one for each possible combination.<a href="#section-6-7" class="pilcrow">¶</a></p>
<div id="section-6-8">
<pre class="lang-pseudocode sourcecode">
================================================================
0 input: W (window time of the measurement)
1 i_t (time between two measurements, set the i_t time
2 long enough to avoid incomplete results)
3 E (True: exhaustive, False: a single path)
4 Dst (destination IP address)
5 output: Qs (quartiles for every Hop and Alt)
----------------------------------------------------------------
6 T := start_timer(W)
7 while T is not finished do:
8 | start_timer(i_t)
9 | RTD(Hop,Alt) = advanced-traceroute(Dst,E)
10 | for each Hop and Alt in RTD do:
11 | | Qs[Dst,Hop,Alt] := ComputeQs(RTD(Hop,Alt))
12 | done
13 | wait until i_t timer is expired
14 done
15 return (Qs)
================================================================
</pre><a href="#section-6-8" class="pilcrow">¶</a>
</div>
<p id="section-6-9">During the time W, lines 6 and 7 assure that the measurement loop is
made.
Lines 8 and 13 set a timer for each cycle of measurements. A cycle
comprises the traceroutes packets, considering every possible Hop and
the alternatives paths in the Alt variable (ensured in lines 9-12). In
line 9, the advanced-traceroute could be either Paris-traceroute or
Scamper, which will use the "exhaustive" mode or
"tracelb" option if E is set to True, respectively. The
procedure returns a list of tuples (m, Q1, Q2, Q3, and M) for each intermediate
Hop, or "Alt" in as a function of the 5-tuple, in the path towards the
Dst. Finally, lines 10 through 12 store each measurement into the
real-time quartiles computation.<a href="#section-6-9" class="pilcrow">¶</a></p>
<p id="section-6-10">Notice there are cases where even having a unique Hop at distance
h from the Src to Dst, the returning path could have several
possibilities, yielding different total paths. In this situation, the
algorithm will return another "Alt" for this particular Hop.<a href="#section-6-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Security">
<section id="section-7">
<h2 id="name-security-considerations">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-7-1">The security considerations that apply to any active measurement of
live paths are relevant here as well. See <span>[<a href="#RFC4656" class="xref">RFC4656</a>]</span> and
<span>[<a href="#RFC5357" class="xref">RFC5357</a>]</span>.<a href="#section-7-1" class="pilcrow">¶</a></p>
<p id="section-7-2">The active measurement process of changing several fields to keep
the checksum of different packets identical does not require special
security considerations because it is part of synthetic traffic
generation and is designed to have minimal to zero impact on network
processing (to process the packets for ECMP).<a href="#section-7-2" class="pilcrow">¶</a></p>
<p id="section-7-3">Some of the protocols used (e.g., ICMP) do not provide cryptographic
protection for the requested/returned data, and there are risks of
processing untrusted data in general, but these are limitations of the
existing protocols where we are applying new methods.<a href="#section-7-3" class="pilcrow">¶</a></p>
<p id="section-7-4">For applicable hybrid methods, the security considerations in <span>[<a href="#RFC9197" class="xref">RFC9197</a>]</span> apply.<a href="#section-7-4" class="pilcrow">¶</a></p>
<p id="section-7-5">When considering the privacy of those involved in measurement or those
whose traffic is measured, the sensitive information available to
potential observers is greatly reduced when using active techniques
that are within this scope of work. Passive observations of user
traffic for measurement purposes raise many privacy issues. We refer the
reader to the privacy considerations described in the Large-scale
Measurement of Broadband Performance (LMAP) Framework <span>[<a href="#RFC7594" class="xref">RFC7594</a>]</span>, which covers active and passive
techniques.<a href="#section-7-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="IANA">
<section id="section-8">
<h2 id="name-iana-considerations">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-8-1">This document has no IANA actions.<a href="#section-8-1" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-9">
<h2 id="name-references">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-9.1">
<h3 id="name-normative-references">
<a href="#section-9.1" class="section-number selfRef">9.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC0792">[RFC0792]</dt>
<dd>
<span class="refAuthor">Postel, J.</span>, <span class="refTitle">"Internet Control Message Protocol"</span>, <span class="seriesInfo">STD 5</span>, <span class="seriesInfo">RFC 792</span>, <span class="seriesInfo">DOI 10.17487/RFC0792</span>, <time datetime="1981-09" class="refDate">September 1981</time>, <span><<a href="https://www.rfc-editor.org/info/rfc792">https://www.rfc-editor.org/info/rfc792</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC1122">[RFC1122]</dt>
<dd>
<span class="refAuthor">Braden, R., Ed.</span>, <span class="refTitle">"Requirements for Internet Hosts - Communication Layers"</span>, <span class="seriesInfo">STD 3</span>, <span class="seriesInfo">RFC 1122</span>, <span class="seriesInfo">DOI 10.17487/RFC1122</span>, <time datetime="1989-10" class="refDate">October 1989</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1122">https://www.rfc-editor.org/info/rfc1122</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC1812">[RFC1812]</dt>
<dd>
<span class="refAuthor">Baker, F., Ed.</span>, <span class="refTitle">"Requirements for IP Version 4 Routers"</span>, <span class="seriesInfo">RFC 1812</span>, <span class="seriesInfo">DOI 10.17487/RFC1812</span>, <time datetime="1995-06" class="refDate">June 1995</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1812">https://www.rfc-editor.org/info/rfc1812</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2330">[RFC2330]</dt>
<dd>
<span class="refAuthor">Paxson, V.</span>, <span class="refAuthor">Almes, G.</span>, <span class="refAuthor">Mahdavi, J.</span>, and <span class="refAuthor">M. Mathis</span>, <span class="refTitle">"Framework for IP Performance Metrics"</span>, <span class="seriesInfo">RFC 2330</span>, <span class="seriesInfo">DOI 10.17487/RFC2330</span>, <time datetime="1998-05" class="refDate">May 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2330">https://www.rfc-editor.org/info/rfc2330</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2681">[RFC2681]</dt>
<dd>
<span class="refAuthor">Almes, G.</span>, <span class="refAuthor">Kalidindi, S.</span>, and <span class="refAuthor">M. Zekauskas</span>, <span class="refTitle">"A Round-trip Delay Metric for IPPM"</span>, <span class="seriesInfo">RFC 2681</span>, <span class="seriesInfo">DOI 10.17487/RFC2681</span>, <time datetime="1999-09" class="refDate">September 1999</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2681">https://www.rfc-editor.org/info/rfc2681</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4656">[RFC4656]</dt>
<dd>
<span class="refAuthor">Shalunov, S.</span>, <span class="refAuthor">Teitelbaum, B.</span>, <span class="refAuthor">Karp, A.</span>, <span class="refAuthor">Boote, J.</span>, and <span class="refAuthor">M. Zekauskas</span>, <span class="refTitle">"A One-way Active Measurement Protocol (OWAMP)"</span>, <span class="seriesInfo">RFC 4656</span>, <span class="seriesInfo">DOI 10.17487/RFC4656</span>, <time datetime="2006-09" class="refDate">September 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4656">https://www.rfc-editor.org/info/rfc4656</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5388">[RFC5388]</dt>
<dd>
<span class="refAuthor">Niccolini, S.</span>, <span class="refAuthor">Tartarelli, S.</span>, <span class="refAuthor">Quittek, J.</span>, <span class="refAuthor">Dietz, T.</span>, and <span class="refAuthor">M. Swany</span>, <span class="refTitle">"Information Model and XML Data Model for Traceroute Measurements"</span>, <span class="seriesInfo">RFC 5388</span>, <span class="seriesInfo">DOI 10.17487/RFC5388</span>, <time datetime="2008-12" class="refDate">December 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5388">https://www.rfc-editor.org/info/rfc5388</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6438">[RFC6438]</dt>
<dd>
<span class="refAuthor">Carpenter, B.</span> and <span class="refAuthor">S. Amante</span>, <span class="refTitle">"Using the IPv6 Flow Label for Equal Cost Multipath Routing and Link Aggregation in Tunnels"</span>, <span class="seriesInfo">RFC 6438</span>, <span class="seriesInfo">DOI 10.17487/RFC6438</span>, <time datetime="2011-11" class="refDate">November 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6438">https://www.rfc-editor.org/info/rfc6438</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6673">[RFC6673]</dt>
<dd>
<span class="refAuthor">Morton, A.</span>, <span class="refTitle">"Round-Trip Packet Loss Metrics"</span>, <span class="seriesInfo">RFC 6673</span>, <span class="seriesInfo">DOI 10.17487/RFC6673</span>, <time datetime="2012-08" class="refDate">August 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6673">https://www.rfc-editor.org/info/rfc6673</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7799">[RFC7799]</dt>
<dd>
<span class="refAuthor">Morton, A.</span>, <span class="refTitle">"Active and Passive Metrics and Methods (with Hybrid Types In-Between)"</span>, <span class="seriesInfo">RFC 7799</span>, <span class="seriesInfo">DOI 10.17487/RFC7799</span>, <time datetime="2016-05" class="refDate">May 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7799">https://www.rfc-editor.org/info/rfc7799</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8029">[RFC8029]</dt>
<dd>
<span class="refAuthor">Kompella, K.</span>, <span class="refAuthor">Swallow, G.</span>, <span class="refAuthor">Pignataro, C., Ed.</span>, <span class="refAuthor">Kumar, N.</span>, <span class="refAuthor">Aldrin, S.</span>, and <span class="refAuthor">M. Chen</span>, <span class="refTitle">"Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"</span>, <span class="seriesInfo">RFC 8029</span>, <span class="seriesInfo">DOI 10.17487/RFC8029</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8029">https://www.rfc-editor.org/info/rfc8029</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8468">[RFC8468]</dt>
<dd>
<span class="refAuthor">Morton, A.</span>, <span class="refAuthor">Fabini, J.</span>, <span class="refAuthor">Elkins, N.</span>, <span class="refAuthor">Ackermann, M.</span>, and <span class="refAuthor">V. Hegde</span>, <span class="refTitle">"IPv4, IPv6, and IPv4-IPv6 Coexistence: Updates for the IP Performance Metrics (IPPM) Framework"</span>, <span class="seriesInfo">RFC 8468</span>, <span class="seriesInfo">DOI 10.17487/RFC8468</span>, <time datetime="2018-11" class="refDate">November 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8468">https://www.rfc-editor.org/info/rfc8468</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9197">[RFC9197]</dt>
<dd>
<span class="refAuthor">Brockners, F., Ed.</span>, <span class="refAuthor">Bhandari, S., Ed.</span>, and <span class="refAuthor">T. Mizrahi, Ed.</span>, <span class="refTitle">"Data Fields for In Situ Operations, Administration, and Maintenance (IOAM)"</span>, <span class="seriesInfo">RFC 9197</span>, <span class="seriesInfo">DOI 10.17487/RFC9197</span>, <time datetime="2022-05" class="refDate">May 2022</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9197">https://www.rfc-editor.org/info/rfc9197</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-9.2">
<h3 id="name-informative-references">
<a href="#section-9.2" class="section-number selfRef">9.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="bdrmap">[bdrmap]</dt>
<dd>
<span class="refAuthor">Luckie, M.</span>, <span class="refAuthor">Dhamdhere, A.</span>, <span class="refAuthor">Huffaker, B.</span>, <span class="refAuthor">Clark, D.</span>, and <span class="refAuthor">KC. Claffy</span>, <span class="refTitle">"bdrmap: Inference of Borders Between IP Networks"</span>, <span class="refContent">Proceedings of the 2016 ACM on Internet Measurement Conference, pp. 381-396</span>, <span class="seriesInfo">DOI 10.1145/2987443.2987467</span>, <time datetime="2016-11" class="refDate">November 2016</time>, <span><<a href="https://doi.org/10.1145/2987443.2987467">https://doi.org/10.1145/2987443.2987467</a>></span>. </dd>
<dd class="break"></dd>
<dt id="IDCong">[IDCong]</dt>
<dd>
<span class="refAuthor">Luckie, M.</span>, <span class="refAuthor">Dhamdhere, A.</span>, <span class="refAuthor">Clark, D.</span>, and <span class="refAuthor">B. Huffaker</span>, <span class="refTitle">"Challenges in Inferring Internet Interdomain Congestion"</span>, <span class="refContent">Proceedings of the 2014 Conference on Internet
Measurement Conference, pp. 15-22</span>, <span class="seriesInfo">DOI 10.1145/2663716.2663741</span>, <time datetime="2014-11" class="refDate">November 2014</time>, <span><<a href="https://doi.org/10.1145/2663716.2663741">https://doi.org/10.1145/2663716.2663741</a>></span>. </dd>
<dd class="break"></dd>
<dt id="LOAD_BALANCE">[LOAD_BALANCE]</dt>
<dd>
<span class="refAuthor">Sanguanpong, S.</span>, <span class="refAuthor">Pittayapitak, W.</span>, and <span class="refAuthor">K. Kasom Koht-Arsa</span>, <span class="refTitle">"COMPARISON OF HASH STRATEGIES FOR FLOW-BASED LOAD BALANCING"</span>, <span class="refContent">International Journal of Electronic
Commerce Studies, Vol.6, No.2, pp.259-268</span>, <span class="seriesInfo">DOI 10.7903/ijecs.1346</span>, <time datetime="2015-12" class="refDate">December 2015</time>, <span><<a href="https://doi.org/10.7903/ijecs.1346">https://doi.org/10.7903/ijecs.1346</a>></span>. </dd>
<dd class="break"></dd>
<dt id="MLB">[MLB]</dt>
<dd>
<span class="refAuthor">Augustin, B.</span>, <span class="refAuthor">Friedman, T.</span>, and <span class="refAuthor">R. Teixeira</span>, <span class="refTitle">"Measuring load-balanced paths in the internet"</span>, <span class="refContent">Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, pp. 149-160</span>, <span class="seriesInfo">DOI 10.1145/1298306.1298329</span>, <time datetime="2007-10" class="refDate">October 2007</time>, <span><<a href="https://doi.org/10.1145/1298306.1298329">https://doi.org/10.1145/1298306.1298329</a>></span>. </dd>
<dd class="break"></dd>
<dt id="MLRM">[MLRM]</dt>
<dd>
<span class="refAuthor">Fontugne, R.</span>, <span class="refAuthor">Mazel, J.</span>, and <span class="refAuthor">K. Fukuda</span>, <span class="refTitle">"An empirical mixture model for large-scale RTT measurements"</span>, <span class="refContent">2015 IEEE Conference on Computer Communications
(INFOCOM), pp. 2470-2478</span>, <span class="seriesInfo">DOI 10.1109/INFOCOM.2015.7218636</span>, <time datetime="2015-04" class="refDate">April 2015</time>, <span><<a href="https://doi.org/10.1109/INFOCOM.2015.7218636">https://doi.org/10.1109/INFOCOM.2015.7218636</a>></span>. </dd>
<dd class="break"></dd>
<dt id="P2">[P2]</dt>
<dd>
<span class="refAuthor">Jain, R.</span> and <span class="refAuthor">I. Chlamtac</span>, <span class="refTitle">"The P 2 algorithm for dynamic calculation of quartiles and histograms without storing observations"</span>, <span class="refContent">Communications of the ACM 28.10 (1985): 1076-1085</span>, <span class="seriesInfo">DOI 10.1145/4372.4378</span>, <time datetime="1985-10" class="refDate">October 1985</time>, <span><<a href="https://doi.org/10.1145/4372.4378">https://doi.org/10.1145/4372.4378</a>></span>. </dd>
<dd class="break"></dd>
<dt id="PT">[PT]</dt>
<dd>
<span class="refAuthor">Augustin, B.</span>, <span class="refAuthor">Cuvellier, X.</span>, <span class="refAuthor">Orgogozo, B.</span>, <span class="refAuthor">Viger, F.</span>, <span class="refAuthor">Friedman, T.</span>, <span class="refAuthor">Latapy, M.</span>, <span class="refAuthor">Magnien, C.</span>, and <span class="refAuthor">R. Teixeira</span>, <span class="refTitle">"Avoiding traceroute anomalies with Paris traceroute"</span>, <span class="refContent">Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, pp. 153-158</span>, <span class="seriesInfo">DOI 10.1145/1177080.1177100</span>, <time datetime="2006-10" class="refDate">October 2006</time>, <span><<a href="https://doi.org/10.1145/1177080.1177100">https://doi.org/10.1145/1177080.1177100</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2991">[RFC2991]</dt>
<dd>
<span class="refAuthor">Thaler, D.</span> and <span class="refAuthor">C. Hopps</span>, <span class="refTitle">"Multipath Issues in Unicast and Multicast Next-Hop Selection"</span>, <span class="seriesInfo">RFC 2991</span>, <span class="seriesInfo">DOI 10.17487/RFC2991</span>, <time datetime="2000-11" class="refDate">November 2000</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2991">https://www.rfc-editor.org/info/rfc2991</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5357">[RFC5357]</dt>
<dd>
<span class="refAuthor">Hedayat, K.</span>, <span class="refAuthor">Krzanowski, R.</span>, <span class="refAuthor">Morton, A.</span>, <span class="refAuthor">Yum, K.</span>, and <span class="refAuthor">J. Babiarz</span>, <span class="refTitle">"A Two-Way Active Measurement Protocol (TWAMP)"</span>, <span class="seriesInfo">RFC 5357</span>, <span class="seriesInfo">DOI 10.17487/RFC5357</span>, <time datetime="2008-10" class="refDate">October 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5357">https://www.rfc-editor.org/info/rfc5357</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5835">[RFC5835]</dt>
<dd>
<span class="refAuthor">Morton, A., Ed.</span> and <span class="refAuthor">S. Van den Berghe, Ed.</span>, <span class="refTitle">"Framework for Metric Composition"</span>, <span class="seriesInfo">RFC 5835</span>, <span class="seriesInfo">DOI 10.17487/RFC5835</span>, <time datetime="2010-04" class="refDate">April 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5835">https://www.rfc-editor.org/info/rfc5835</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5837">[RFC5837]</dt>
<dd>
<span class="refAuthor">Atlas, A., Ed.</span>, <span class="refAuthor">Bonica, R., Ed.</span>, <span class="refAuthor">Pignataro, C., Ed.</span>, <span class="refAuthor">Shen, N.</span>, and <span class="refAuthor">JR. Rivers</span>, <span class="refTitle">"Extending ICMP for Interface and Next-Hop Identification"</span>, <span class="seriesInfo">RFC 5837</span>, <span class="seriesInfo">DOI 10.17487/RFC5837</span>, <time datetime="2010-04" class="refDate">April 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5837">https://www.rfc-editor.org/info/rfc5837</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6437">[RFC6437]</dt>
<dd>
<span class="refAuthor">Amante, S.</span>, <span class="refAuthor">Carpenter, B.</span>, <span class="refAuthor">Jiang, S.</span>, and <span class="refAuthor">J. Rajahalme</span>, <span class="refTitle">"IPv6 Flow Label Specification"</span>, <span class="seriesInfo">RFC 6437</span>, <span class="seriesInfo">DOI 10.17487/RFC6437</span>, <time datetime="2011-11" class="refDate">November 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6437">https://www.rfc-editor.org/info/rfc6437</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7312">[RFC7312]</dt>
<dd>
<span class="refAuthor">Fabini, J.</span> and <span class="refAuthor">A. Morton</span>, <span class="refTitle">"Advanced Stream and Sampling Framework for IP Performance Metrics (IPPM)"</span>, <span class="seriesInfo">RFC 7312</span>, <span class="seriesInfo">DOI 10.17487/RFC7312</span>, <time datetime="2014-08" class="refDate">August 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7312">https://www.rfc-editor.org/info/rfc7312</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7325">[RFC7325]</dt>
<dd>
<span class="refAuthor">Villamizar, C., Ed.</span>, <span class="refAuthor">Kompella, K.</span>, <span class="refAuthor">Amante, S.</span>, <span class="refAuthor">Malis, A.</span>, and <span class="refAuthor">C. Pignataro</span>, <span class="refTitle">"MPLS Forwarding Compliance and Performance Requirements"</span>, <span class="seriesInfo">RFC 7325</span>, <span class="seriesInfo">DOI 10.17487/RFC7325</span>, <time datetime="2014-08" class="refDate">August 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7325">https://www.rfc-editor.org/info/rfc7325</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7594">[RFC7594]</dt>
<dd>
<span class="refAuthor">Eardley, P.</span>, <span class="refAuthor">Morton, A.</span>, <span class="refAuthor">Bagnulo, M.</span>, <span class="refAuthor">Burbridge, T.</span>, <span class="refAuthor">Aitken, P.</span>, and <span class="refAuthor">A. Akhter</span>, <span class="refTitle">"A Framework for Large-Scale Measurement of Broadband Performance (LMAP)"</span>, <span class="seriesInfo">RFC 7594</span>, <span class="seriesInfo">DOI 10.17487/RFC7594</span>, <time datetime="2015-09" class="refDate">September 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7594">https://www.rfc-editor.org/info/rfc7594</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8403">[RFC8403]</dt>
<dd>
<span class="refAuthor">Geib, R., Ed.</span>, <span class="refAuthor">Filsfils, C.</span>, <span class="refAuthor">Pignataro, C., Ed.</span>, and <span class="refAuthor">N. Kumar</span>, <span class="refTitle">"A Scalable and Topology-Aware MPLS Data-Plane Monitoring System"</span>, <span class="seriesInfo">RFC 8403</span>, <span class="seriesInfo">DOI 10.17487/RFC8403</span>, <time datetime="2018-07" class="refDate">July 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8403">https://www.rfc-editor.org/info/rfc8403</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RTTSub">[RTTSub]</dt>
<dd>
<span class="refAuthor">Bischof, Z.</span>, <span class="refAuthor">Rula, J.</span>, and <span class="refAuthor">F. Bustamante</span>, <span class="refTitle">"In and out of Cuba: Characterizing Cuba's Connectivity"</span>, <span class="refContent">Proceedings of the 2015 ACM Conference on Internet
Measurement Conference, pp. 487-493</span>, <span class="seriesInfo">DOI 10.1145/2815675.2815718</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span><<a href="https://doi.org/10.1145/2815675.2815718">https://doi.org/10.1145/2815675.2815718</a>></span>. </dd>
<dd class="break"></dd>
<dt id="SCAMPER">[SCAMPER]</dt>
<dd>
<span class="refAuthor">Matthew Luckie, M.</span>, <span class="refTitle">"Scamper: a scalable and extensible packet prober for active measurement of the internet"</span>, <span class="refContent">Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, pp. 239-245</span>, <span class="seriesInfo">DOI 10.1145/1879141.1879171</span>, <time datetime="2010-11" class="refDate">November 2010</time>, <span><<a href="https://doi.org/10.1145/1879141.1879171">https://doi.org/10.1145/1879141.1879171</a>></span>. </dd>
<dd class="break"></dd>
<dt id="SSNT">[SSNT]</dt>
<dd>
<span class="refAuthor">Park, K.</span> and <span class="refAuthor">W. Willinger</span>, <span class="refTitle">"Self-Similar Network Traffic and Performance Evaluation (1st ed.)"</span>, <span class="seriesInfo">DOI 10.1002/047120644X</span>, <span class="seriesInfo"> John Wiley & Sons, Inc., New York, NY, USA</span>, <time datetime="2000-08" class="refDate">August 2000</time>, <span><<a href="https://doi.org/10.1002/047120644X">https://doi.org/10.1002/047120644X</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="appendix-A">
<h2 id="name-mpls-methods-for-route-asse">
<a href="#appendix-A" class="section-number selfRef">Appendix A. </a><a href="#name-mpls-methods-for-route-asse" class="section-name selfRef">MPLS Methods for Route Assessment</a>
</h2>
<p id="appendix-A-1">A Node assessing an MPLS path must be part of the MPLS domain where
the path is implemented. When this condition is met, <span>[<a href="#RFC8029" class="xref">RFC8029</a>]</span> provides a
powerful set of mechanisms to detect "correct operation of the
data plane, as well as a mechanism to verify the data plane against the
control plane".<a href="#appendix-A-1" class="pilcrow">¶</a></p>
<p id="appendix-A-2">MPLS routing is based on the presence of a Forwarding Equivalence
Class (FEC) Stack in all visited Nodes. Selecting one of several
Equal-Cost Multipaths (ECMPs) is, however, based on information hidden
deeper in
the stack. Late deployments may support a so-called "Entropy label" for
this purpose. State-of-the-art deployments base their choice of an ECMP
member interface on the complete MPLS label stack and on IP addresses up
to the complete 5-tuple IP header information (see <span><a href="https://www.rfc-editor.org/rfc/rfc7325#section-2.4" class="relref">Section 2.4</a> of [<a href="#RFC7325" class="xref">RFC7325</a>]</span>). Load sharing based
on IP information decouples this
function from the actual MPLS routing information. Thus, an MPLS
traceroute is able to check how packets with a contiguous number of
ECMP-relevant IP addresses (and an identical MPLS label stack) are
forwarded
by a particular router. The minimum number of equivalent MPLS paths
traceable at a router should be 32. Implementations supporting more
paths are available.<a href="#appendix-A-2" class="pilcrow">¶</a></p>
<p id="appendix-A-3">The MPLS echo request and reply messages offering this feature must
support the Downstream Detailed Mapping TLV (was Downstream Mapping
initially, but the latter has been deprecated). The MPLS echo response
includes the incoming interface where a router received the MPLS echo
request. The MPLS echo reply further informs which of the n addresses
relevant for the load-sharing decision results in a particular next-hop
interface and contains the next Hop's interface address (if
available). This ensures that the next Hop will receive a properly coded
MPLS echo request in the next step Route of assessment.<a href="#appendix-A-3" class="pilcrow">¶</a></p>
<p id="appendix-A-4"><span>[<a href="#RFC8403" class="xref">RFC8403</a>]</span> explains how a central Path Monitoring
System could be used to detect arbitrary MPLS paths between any routers
within a single MPLS domain. The combination of MPLS forwarding, Segment
Routing, and MPLS traceroute offers a simple architecture and a powerful
mechanism to detect and validate (segment-routed) MPLS paths.<a href="#appendix-A-4" class="pilcrow">¶</a></p>
</section>
<div id="Acknowledgements">
<section id="appendix-B">
<h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
</h2>
<p id="appendix-B-1">The original three authors (Ignacio, Al, Joachim) acknowledge <span class="contact-name">Ruediger Geib</span> for his penetrating comments on the initial document and his initial
text for the appendix on MPLS. <span class="contact-name">Carlos Pignataro</span> challenged the authors
to consider a wider scope and applied his substantial expertise with
many technologies and their measurement features in his extensive
comments. <span class="contact-name">Frank Brockners</span> also shared useful
comments and so did <span class="contact-name">Footer Foote</span>. We thank them all!<a href="#appendix-B-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="appendix-C">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">J. Ignacio Alvarez-Hamelin</span></div>
<div dir="auto" class="left"><span class="org">Universidad de Buenos Aires</span></div>
<div dir="auto" class="left"><span class="street-address">Av. Paseo Colón 850</span></div>
<div dir="auto" class="left">
<span class="postal-code">C1063ACV</span> <span class="locality">Buenos Aires</span>
</div>
<div dir="auto" class="left"><span class="country-name">Argentina</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+54%2011%205285-0716" class="tel">+54 11 5285-0716</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:ihameli@cnet.fi.uba.ar" class="email">ihameli@cnet.fi.uba.ar</a>
</div>
<div class="url">
<span>URI:</span>
<a href="http://cnet.fi.uba.ar/ignacio.alvarez-hamelin/" class="url">http://cnet.fi.uba.ar/ignacio.alvarez-hamelin/</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Al Morton</span></div>
<div dir="auto" class="left"><span class="org">AT&T Labs</span></div>
<div dir="auto" class="left"><span class="street-address">200 Laurel Avenue South</span></div>
<div dir="auto" class="left">
<span class="locality">Middletown</span>, <span class="region">NJ</span> <span class="postal-code">07748</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+1%20732%20420%201571" class="tel">+1 732 420 1571</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:acm@research.att.com" class="email">acm@research.att.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Joachim Fabini</span></div>
<div dir="auto" class="left"><span class="org">TU Wien</span></div>
<div dir="auto" class="left"><span class="street-address">Gusshausstrasse 25/E389</span></div>
<div dir="auto" class="left">
<span class="postal-code">1040</span> <span class="locality">Vienna</span>
</div>
<div dir="auto" class="left"><span class="country-name">Austria</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+43%201%2058801%2038813" class="tel">+43 1 58801 38813</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:Joachim.Fabini@tuwien.ac.at" class="email">Joachim.Fabini@tuwien.ac.at</a>
</div>
<div class="url">
<span>URI:</span>
<a href="http://www.tc.tuwien.ac.at/about-us/staff/joachim-fabini/" class="url">http://www.tc.tuwien.ac.at/about-us/staff/joachim-fabini/</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Carlos Pignataro</span></div>
<div dir="auto" class="left"><span class="org">Cisco Systems, Inc.</span></div>
<div dir="auto" class="left"><span class="street-address">7200-11 Kit Creek Road</span></div>
<div dir="auto" class="left">
<span class="locality">Research Triangle Park</span>, <span class="region">NC</span> <span class="postal-code">27709</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:cpignata@cisco.com" class="email">cpignata@cisco.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Ruediger Geib</span></div>
<div dir="auto" class="left"><span class="org">Deutsche Telekom</span></div>
<div dir="auto" class="left"><span class="street-address">Heinrich Hertz Str. 3-7</span></div>
<div dir="auto" class="left">
<span class="postal-code">64295</span> <span class="locality">Darmstadt</span>
</div>
<div dir="auto" class="left"><span class="country-name">Germany</span></div>
<div class="tel">
<span>Phone:</span>
<a href="tel:+49%206151%205812747" class="tel">+49 6151 5812747</a>
</div>
<div class="email">
<span>Email:</span>
<a href="mailto:Ruediger.Geib@telekom.de" class="email">Ruediger.Geib@telekom.de</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|