1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9299: An Architectural Introduction to the Locator/ID Separation Protocol (LISP)</title>
<meta content="Albert Cabellos" name="author">
<meta content="Damien Saucez" name="author">
<meta content="
This document describes the architecture of the Locator/ID Separation
Protocol (LISP), making it easier to read the rest of the LISP
specifications and providing a basis for discussion about the details
of the LISP protocols. This document is used for introductory purposes;
more details can be found in the protocol specifications, RFCs 9300 and 9301.
" name="description">
<meta content="xml2rfc 3.15.1" name="generator">
<meta content="LISP" name="keyword">
<meta content="Architecture" name="keyword">
<meta content="9299" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.15.1
Python 3.9.13
appdirs 1.4.4
ConfigArgParse 1.5.3
google-i18n-address 2.5.1
html5lib 1.1
intervaltree 3.1.0
Jinja2 3.1.2
kitchen 1.2.6
lxml 4.9.0
MarkupSafe 2.1.1
pycountry 22.3.5
PyYAML 6.0
requests 2.28.0
setuptools 44.1.1
six 1.16.0
weasyprint 56.1
-->
<link href="rfc9299.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
display: table;
border: none;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
/* Fix PDF info block run off issue */
@media print {
#identifiers dd {
float: none;
}
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
pre.breakable {
break-inside: auto;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.artwork > pre,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr {
break-inside: avoid;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: auto;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9299" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-lisp-introduction-15" rel="prev">
</head>
<body class="xml2rfc">
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9299</td>
<td class="center">LISP Introduction</td>
<td class="right">October 2022</td>
</tr></thead>
<tfoot><tr>
<td class="left">Cabellos & Saucez</td>
<td class="center">Informational</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9299" class="eref">9299</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Informational</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2022-10" class="published">October 2022</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">A. Cabellos</div>
<div class="org">Universitat Politecnica de Catalunya</div>
</div>
<div class="author">
<div class="author-name">D. Saucez, <span class="editor">Ed.</span>
</div>
<div class="org">Inria</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9299</h1>
<h1 id="title">An Architectural Introduction to the Locator/ID Separation Protocol (LISP)</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This document describes the architecture of the Locator/ID Separation
Protocol (LISP), making it easier to read the rest of the LISP
specifications and providing a basis for discussion about the details
of the LISP protocols. This document is used for introductory purposes;
more details can be found in the protocol specifications, RFCs 9300 and 9301.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for informational purposes.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9299">https://www.rfc-editor.org/info/rfc9299</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Revised BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Revised BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="auto internal xref">1</a>. <a href="#name-introduction" class="internal xref">Introduction</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1" class="keepWithNext"><a href="#section-2" class="auto internal xref">2</a>. <a href="#name-definitions-of-terms" class="internal xref">Definitions of Terms</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="auto internal xref">3</a>. <a href="#name-lisp-architecture" class="internal xref">LISP Architecture</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1" class="keepWithNext"><a href="#section-3.1" class="auto internal xref">3.1</a>. <a href="#name-design-principles" class="internal xref">Design Principles</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="auto internal xref">3.2</a>. <a href="#name-overview-of-the-architectur" class="internal xref">Overview of the Architecture</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3">
<p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="auto internal xref">3.3</a>. <a href="#name-data-plane" class="internal xref">Data Plane</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3.2.1">
<p id="section-toc.1-1.3.2.3.2.1.1"><a href="#section-3.3.1" class="auto internal xref">3.3.1</a>. <a href="#name-lisp-encapsulation" class="internal xref">LISP Encapsulation</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3.2.2">
<p id="section-toc.1-1.3.2.3.2.2.1"><a href="#section-3.3.2" class="auto internal xref">3.3.2</a>. <a href="#name-lisp-forwarding-state" class="internal xref">LISP Forwarding State</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4">
<p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="auto internal xref">3.4</a>. <a href="#name-control-plane" class="internal xref">Control Plane</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4.2.1">
<p id="section-toc.1-1.3.2.4.2.1.1"><a href="#section-3.4.1" class="auto internal xref">3.4.1</a>. <a href="#name-lisp-mappings" class="internal xref">LISP Mappings</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4.2.2">
<p id="section-toc.1-1.3.2.4.2.2.1"><a href="#section-3.4.2" class="auto internal xref">3.4.2</a>. <a href="#name-mapping-system-interface" class="internal xref">Mapping System Interface</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4.2.3">
<p id="section-toc.1-1.3.2.4.2.3.1"><a href="#section-3.4.3" class="auto internal xref">3.4.3</a>. <a href="#name-mapping-system" class="internal xref">Mapping System</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.5">
<p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="auto internal xref">3.5</a>. <a href="#name-internetworking-mechanisms" class="internal xref">Internetworking Mechanisms</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="auto internal xref">4</a>. <a href="#name-lisp-operational-mechanisms" class="internal xref">LISP Operational Mechanisms</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="auto internal xref">4.1</a>. <a href="#name-cache-management" class="internal xref">Cache Management</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="auto internal xref">4.2</a>. <a href="#name-rloc-reachability" class="internal xref">RLOC Reachability</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="auto internal xref">4.3</a>. <a href="#name-etr-synchronization" class="internal xref">ETR Synchronization</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4">
<p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="auto internal xref">4.4</a>. <a href="#name-mtu-handling" class="internal xref">MTU Handling</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="auto internal xref">5</a>. <a href="#name-mobility" class="internal xref">Mobility</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="auto internal xref">6</a>. <a href="#name-multicast" class="internal xref">Multicast</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="auto internal xref">7</a>. <a href="#name-use-cases" class="internal xref">Use Cases</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="auto internal xref">7.1</a>. <a href="#name-traffic-engineering" class="internal xref">Traffic Engineering</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="auto internal xref">7.2</a>. <a href="#name-lisp-for-ipv6-co-existence" class="internal xref">LISP for IPv6 Co-existence</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.3">
<p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="auto internal xref">7.3</a>. <a href="#name-lisp-for-virtual-private-ne" class="internal xref">LISP for Virtual Private Networks</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.4">
<p id="section-toc.1-1.7.2.4.1"><a href="#section-7.4" class="auto internal xref">7.4</a>. <a href="#name-lisp-for-virtual-machine-mo" class="internal xref">LISP for Virtual Machine Mobility in Data Centers</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="auto internal xref">8</a>. <a href="#name-security-considerations" class="internal xref">Security Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#section-9" class="auto internal xref">9</a>. <a href="#name-iana-considerations" class="internal xref">IANA Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#section-10" class="auto internal xref">10</a>. <a href="#name-references" class="internal xref">References</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10.2.1">
<p id="section-toc.1-1.10.2.1.1"><a href="#section-10.1" class="auto internal xref">10.1</a>. <a href="#name-normative-references" class="internal xref">Normative References</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10.2.2">
<p id="section-toc.1-1.10.2.2.1"><a href="#section-10.2" class="auto internal xref">10.2</a>. <a href="#name-informative-references" class="internal xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#appendix-A" class="auto internal xref">Appendix A</a>. <a href="#name-a-brief-history-of-location" class="internal xref">A Brief History of Location/Identity Separation</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.11.2.1">
<p id="section-toc.1-1.11.2.1.1"><a href="#appendix-A.1" class="auto internal xref">A.1</a>. <a href="#name-old-lisp-models" class="internal xref">Old LISP Models</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.12">
<p id="section-toc.1-1.12.1"><a href="#appendix-B" class="auto internal xref"></a><a href="#name-acknowledgments" class="internal xref">Acknowledgments</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.13">
<p id="section-toc.1-1.13.1"><a href="#appendix-C" class="auto internal xref"></a><a href="#name-authors-addresses" class="internal xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">This document introduces the Locator/ID Separation Protocol (LISP) architecture
<span>[<a href="#RFC9300" class="cite xref">RFC9300</a>]</span> <span>[<a href="#RFC9301" class="cite xref">RFC9301</a>]</span>, its
main operational mechanisms, and its design rationale. Fundamentally, LISP is
built following a well-known architectural idea: decoupling the overloaded semantics of IP addresses. As pointed out by <span class="contact-name">Noel Chiappa</span>
<span>[<a href="#RFC4984" class="cite xref">RFC4984</a>]</span>, currently, IP addresses identify
both the topological location of a network attachment point as well
as the node's identity. However, nodes and
routing have fundamentally different requirements. On one hand,
routing systems require that addresses be aggregatable and have
topological meaning; on the other hand, nodes must be identified
independently of their current location <span>[<a href="#RFC4984" class="cite xref">RFC4984</a>]</span>.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">LISP creates two separate namespaces, Endpoint Identifiers (EIDs) and
Routing Locators (RLOCs). Both are
syntactically identical to the current IPv4 and IPv6 addresses. However, EIDs
are used to uniquely identify nodes irrespective of their topological
location and are typically routed intra-domain. RLOCs are assigned
topologically to network attachment points and are typically routed
inter-domain. With LISP, the edge of the Internet (where the nodes
are connected) and the core (where inter-domain routing occurs) can be
logically separated. LISP-capable routers interconnect the two logical spaces.
LISP also introduces a database, called the
Mapping System, to store and retrieve mappings between identity and
location. LISP-capable routers exchange packets over the Internet
core by encapsulating them to the appropriate location.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">In summary:<a href="#section-1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1-4.1">RLOCs have meaning only in the underlay network, that is, the
underlying core routing system.<a href="#section-1-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-4.2">EIDs have meaning only in the overlay network, which is the
encapsulation relationship between LISP-capable routers.<a href="#section-1-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-4.3">The LISP edge maps EIDs to RLOCs.<a href="#section-1-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-4.4">Within the underlay network, RLOCs have both Locator and
identifier semantics.<a href="#section-1-4.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-4.5">An EID within a LISP site carries both identifier and Locator
semantics to other nodes within that site.<a href="#section-1-4.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-4.6">An EID within a LISP site carries identifier and limited Locator
semantics to nodes at other LISP sites (i.e., enough Locator
information to tell that the EID is external to the site).<a href="#section-1-4.6" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-1-5">The relationship described above is not unique to LISP, and it is
common to other overlay technologies.<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6"> The initial motivation in the LISP effort is to be found in the
routing scalability problem <span>[<a href="#RFC4984" class="cite xref">RFC4984</a>]</span>, where, if LISP were to be
completely deployed, the Internet core is populated with RLOCs while
Traffic Engineering (TE) mechanisms are pushed to the Mapping System.
In such a scenario, RLOCs are quasi-static (i.e., low
churn), hence making the routing system scalable <span>[<a href="#Quoitin" class="cite xref">Quoitin</a>]</span>, while EIDs can roam anywhere with no churn to the
underlying global routing system. <span>[<a href="#RFC7215" class="cite xref">RFC7215</a>]</span>
discusses the impact of LISP on the global routing system during the
transition period. However, the separation between location and identity
that LISP offers makes it suitable for use in additional scenarios, such
as TE, multihoming, and mobility among others.<a href="#section-1-6" class="pilcrow">¶</a></p>
<p id="section-1-7">This document describes the LISP architecture and its main
operational mechanisms as well as its design rationale. It is important
to note that this document does not specify or complement LISP. The
interested reader should refer to the main LISP
specifications (see <span>[<a href="#RFC9300" class="cite xref">RFC9300</a>]</span> and <span>[<a href="#RFC9301" class="cite xref">RFC9301</a>]</span>), as well as the
complementary documents (i.e., <span>[<a href="#RFC6831" class="cite xref">RFC6831</a>]</span>, <span>[<a href="#RFC6832" class="cite xref">RFC6832</a>]</span>, <span>[<a href="#RFC9302" class="cite xref">RFC9302</a>]</span>, <span>[<a href="#RFC6835" class="cite xref">RFC6835</a>]</span>, <span>[<a href="#RFC6836" class="cite xref">RFC6836</a>]</span>, and <span>[<a href="#RFC7052" class="cite xref">RFC7052</a>]</span>) for the
protocol specifications along with the LISP deployment guidelines <span>[<a href="#RFC7215" class="cite xref">RFC7215</a>]</span>.<a href="#section-1-7" class="pilcrow">¶</a></p>
</section>
<section id="section-2">
<h2 id="name-definitions-of-terms">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-definitions-of-terms" class="section-name selfRef">Definitions of Terms</a>
</h2>
<span class="break"></span><dl class="dlParallel" id="section-2-1">
<dt id="section-2-1.1">Endpoint Identifier (EID):</dt>
<dd style="margin-left: 1.5em" id="section-2-1.2">Addresses used to uniquely identify nodes irrespective
of their topological location. Typically routed
intra-domain.<a href="#section-2-1.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.3">Routing Locator (RLOC):</dt>
<dd style="margin-left: 1.5em" id="section-2-1.4">Addresses assigned topologically to network attachment
points. Typically routed inter-domain.<a href="#section-2-1.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.5">Ingress Tunnel Router (ITR):</dt>
<dd style="margin-left: 1.5em" id="section-2-1.6">A LISP-capable router that encapsulates packets from a LISP site
towards the core network.<a href="#section-2-1.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.7">Egress Tunnel Router (ETR):</dt>
<dd style="margin-left: 1.5em" id="section-2-1.8">A LISP-capable router that decapsulates packets from the core of
the network towards a LISP site.<a href="#section-2-1.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.9">xTR:</dt>
<dd style="margin-left: 1.5em" id="section-2-1.10">A router that implements both ITR and ETR functionalities.<a href="#section-2-1.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.11">Map-Request:</dt>
<dd style="margin-left: 1.5em" id="section-2-1.12">A LISP signaling message used to request an EID-to-RLOC mapping.<a href="#section-2-1.12" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.13">Map-Reply:</dt>
<dd style="margin-left: 1.5em" id="section-2-1.14">A LISP signaling message sent in response to a Map-Request that
contains a resolved EID-to-RLOC mapping.<a href="#section-2-1.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.15">Map-Register:</dt>
<dd style="margin-left: 1.5em" id="section-2-1.16">A LISP signaling message used to register an EID-to-RLOC
mapping.<a href="#section-2-1.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-2-1.17">Map-Notify:</dt>
<dd style="margin-left: 1.5em" id="section-2-1.18">A LISP signaling message sent in response of a Map-Register to
acknowledge the correct reception of an EID-to-RLOC mapping.<a href="#section-2-1.18" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-2-2">This document describes the LISP architecture and does not introduce
any new terms. The reader is referred to <span>[<a href="#RFC9300" class="cite xref">RFC9300</a>]</span>,
<span>[<a href="#RFC9301" class="cite xref">RFC9301</a>]</span>, <span>[<a href="#RFC6831" class="cite xref">RFC6831</a>]</span>,
<span>[<a href="#RFC6832" class="cite xref">RFC6832</a>]</span>, <span>[<a href="#RFC9302" class="cite xref">RFC9302</a>]</span>,
<span>[<a href="#RFC6835" class="cite xref">RFC6835</a>]</span>, <span>[<a href="#RFC6836" class="cite xref">RFC6836</a>]</span>, <span>[<a href="#RFC7052" class="cite xref">RFC7052</a>]</span>, and <span>[<a href="#RFC7215" class="cite xref">RFC7215</a>]</span> for the complete definition of
terms.<a href="#section-2-2" class="pilcrow">¶</a></p>
</section>
<section id="section-3">
<h2 id="name-lisp-architecture">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-lisp-architecture" class="section-name selfRef">LISP Architecture</a>
</h2>
<p id="section-3-1">This section presents the LISP architecture. It first details the
design principles of LISP, and then it proceeds to describe its main aspects:
data plane, control plane, and internetworking mechanisms.<a href="#section-3-1" class="pilcrow">¶</a></p>
<section id="section-3.1">
<h3 id="name-design-principles">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-design-principles" class="section-name selfRef">Design Principles</a>
</h3>
<p id="section-3.1-1">The LISP architecture is built on top of four basic design
principles:<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.1-2">
<dt id="section-3.1-2.1">Locator/Identifier split:</dt>
<dd style="margin-left: 1.5em" id="section-3.1-2.2">Decoupling the overloaded semantics of current IP addresses
allows devices to have identity-based addresses that are separate
from topologically meaningful addresses. By allowing only the
topologically meaningful addresses to be exposed to the Internet
core, those topologically meaningful addresses can be aggregated to
support substantial scaling. Individual devices are assigned
identity-based addresses that are not used for forwarding in the
Internet core.<a href="#section-3.1-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-2.3">Overlay architecture:</dt>
<dd style="margin-left: 1.5em" id="section-3.1-2.4"> This architecture overlays route packets over the current Internet, allowing
deployment of new protocols without changing the current
infrastructure; hence, this results in a low deployment cost.<a href="#section-3.1-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-2.5">Decoupled data plane and control plane:</dt>
<dd style="margin-left: 1.5em" id="section-3.1-2.6"> Separating the
data plane from the control plane allows them to scale independently
and use different architectural approaches. This is important given
that they typically have different requirements and allows for other
data planes to be added. Even though the data plane and the control plane are
decoupled, they are not completely isolated, because the LISP data plane may trigger
control plane activity.<a href="#section-3.1-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.1-2.7">Incremental deployability:</dt>
<dd style="margin-left: 1.5em" id="section-3.1-2.8"> This principle ensures that the protocol interoperates with the
legacy Internet while providing some of the targeted benefits to
early adopters.<a href="#section-3.1-2.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-3.2">
<h3 id="name-overview-of-the-architectur">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-overview-of-the-architectur" class="section-name selfRef">Overview of the Architecture</a>
</h3>
<p id="section-3.2-1">LISP architecturally splits the core from the edge of the
Internet by creating two separate namespaces: Endpoint
Identifiers (EIDs) and Routing Locators (RLOCs). The edge
consists of LISP sites (e.g., an Autonomous System) that use
EID addresses. EIDs are IPv4 or IPv6 addresses that uniquely
identify communication end hosts and are assigned and
configured by the same mechanisms that exist at the time of
this writing. EIDs do not contain inter-domain topological
information, and because of this, EIDs are usually routable at
the edge (within LISP sites) but not in the core; see
<a href="#sect-3.5" class="auto internal xref">Section 3.5</a> for discussion of LISP site
internetworking with non-LISP sites and domains in the
Internet.<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2-2">LISP sites (at the edge) are connected to the interconnecting core
of the Internet by means of LISP-capable routers (e.g., border
routers). LISP sites are connected across the interconnecting core of the Internet
using tunnels between the LISP-capable routers. When packets
originated from a LISP site are flowing towards the core network, they
ingress into an encapsulated tunnel via an Ingress Tunnel Router
(ITR). When packets flow from the core network to a LISP site, they
egress from an encapsulated tunnel to an Egress Tunnel Router
(ETR). An xTR is a router that can perform both ITR and ETR
operations. In this context, ITRs encapsulate packets, while ETRs
decapsulate them; hence, LISP operates as an overlay on top of the
current Internet core.<a href="#section-3.2-2" class="pilcrow">¶</a></p>
<span id="name-a-schema-of-the-lisp-archit"></span><figure id="figure-1">
<div class="alignLeft art-text artwork" id="section-3.2-3.1">
<pre>
/-----------------\ ---
| Mapping | |
. System | | Control
-| |`, | Plane
,' \-----------------/ . |
/ | ---
,.., - _,....,, | ,.., |
/ ` ,' ,-` `', | / ` |
/ \ +-----+ ,' `, +-----+ / \ |
| EID |-| xTR |--/ RLOC ,--| xTR |-| EID | | Data
| Space |-| |--| Space |--| |-| Space | | Plane
\ / +-----+ . / +-----+ \ / |
`. .' `. ,' `. .' |
`'-` `., ,.' `'-` ---
``'''``
LISP Site (Edge) Core LISP Site (Edge)
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-a-schema-of-the-lisp-archit" class="selfRef">A Schema of the LISP Architecture</a>
</figcaption></figure>
<p id="section-3.2-4">With LISP, the core uses RLOCs. An RLOC is an IPv4 or IPv6
address assigned to a core-facing network interface of an ITR or
ETR.<a href="#section-3.2-4" class="pilcrow">¶</a></p>
<p id="section-3.2-5">A database that is typically distributed, called the Mapping System,
stores mappings between EIDs and RLOCs. Such mappings relate
the identity of the devices attached to LISP sites (EIDs) to the set
of RLOCs configured at the LISP-capable routers servicing the site.
Furthermore, the mappings also include TE policies
and can be configured to achieve multihoming and load balancing. The
LISP Mapping System is conceptually similar to the DNS, where it is
organized as a distributed multi-organization network database. With
LISP, ETRs register mappings, while ITRs retrieve them.<a href="#section-3.2-5" class="pilcrow">¶</a></p>
<p id="section-3.2-6">Finally, the LISP architecture emphasizes incremental
deployment. Given that LISP represents an
overlay to the current Internet architecture, end hosts, as well as
intra-domain and inter-domain routers, remain unchanged. The only required
changes to the existing infrastructure are to routers connecting the
EID space with the RLOC space. Additionally, LISP requires the deployment of
an independent Mapping System; such a distributed database is a new
network entity.<a href="#section-3.2-6" class="pilcrow">¶</a></p>
<p id="section-3.2-7">The following describes a simplified packet flow sequence between
two nodes that are attached to LISP sites. Please note that typical
LISP-capable routers are xTRs (both ITR and ETR). Client HostA wants
to send a packet to server HostB.<a href="#section-3.2-7" class="pilcrow">¶</a></p>
<span id="name-packet-flow-sequence-in-lis"></span><figure id="figure-2">
<div class="alignLeft art-text artwork" id="section-3.2-8.1">
<pre>
/----------------\
| Mapping |
| System |
.| |-
` \----------------/ `.
,` \
/ `.
,' _,..-..,, ',
/ -` `-, \
.' ,' \ `,
` ' \ '
+-----+ | | RLOC_B1+-----+
HostA | | | RLOC |-------| | HostB
EID_A--|ITR_A|----| Space | |ETR_B|--EID_B
| | RLOC_A1 |-------| |
+-----+ | | RLOC_B2+-----+
, /
\ /
`', ,-`
``''-''``
</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-packet-flow-sequence-in-lis" class="selfRef">Packet Flow Sequence in LISP</a>
</figcaption></figure>
<ol start="1" type="1" class="normal type-1" id="section-3.2-9">
<li id="section-3.2-9.1">HostA retrieves the EID_B of HostB, typically querying the DNS
and obtaining an A or AAAA record.
Then, it generates an IP packet as in the Internet. The packet
has source address EID_A and destination address EID_B.<a href="#section-3.2-9.1" class="pilcrow">¶</a>
</li>
<li id="section-3.2-9.2">The packet is forwarded towards ITR_A in the LISP site using
standard intra-domain mechanisms.<a href="#section-3.2-9.2" class="pilcrow">¶</a>
</li>
<li id="section-3.2-9.3">ITR_A, upon receiving the packet, queries the Mapping System to
retrieve the Locator of ETR_B that is servicing HostB's EID_B. In order
to do so, it uses a LISP control message called Map-Request. The
message contains EID_B as the lookup key. In turn, it receives
another LISP control message called Map-Reply. The message
contains two Locators: RLOC_B1 and RLOC_B2. It also contains
TE policies: priority and weight per Locator. Note that a
Map-Reply can contain more Locators if needed. ITR_A can cache the mapping
in local storage to speed up forwarding of subsequent
packets.<a href="#section-3.2-9.3" class="pilcrow">¶</a>
</li>
<li id="section-3.2-9.4">ITR_A encapsulates the packet towards RLOC_B1 (chosen according
to the priorities/weights specified in the mapping). The packet contains two
IP headers. The outer header has RLOC_A1 as source and RLOC_B1 as
destination. The inner original header has EID_A as source and EID_B as
destination. Furthermore, ITR_A adds a LISP header. More details
about LISP encapsulation can be found in <a href="#encapsulation" class="auto internal xref">Section 3.3.1</a>.<a href="#section-3.2-9.4" class="pilcrow">¶</a>
</li>
<li id="section-3.2-9.5">The encapsulated packet is forwarded over the interconnecting core as a
normal IP packet, making the EID invisible from the core.<a href="#section-3.2-9.5" class="pilcrow">¶</a>
</li>
<li id="section-3.2-9.6">Upon reception of the encapsulated packet by ETR_B, it
decapsulates the packet and forwards it to HostB.<a href="#section-3.2-9.6" class="pilcrow">¶</a>
</li>
</ol>
</section>
<section id="section-3.3">
<h3 id="name-data-plane">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-data-plane" class="section-name selfRef">Data Plane</a>
</h3>
<p id="section-3.3-1">This section provides a high-level description of the LISP data plane,
which is specified in detail in <span>[<a href="#RFC9300" class="cite xref">RFC9300</a>]</span>. The LISP data plane is responsible for
encapsulating and decapsulating data packets and caching the
appropriate forwarding state. It includes two main entities, the ITR
and the ETR. Both are LISP-capable routers that connect the EID with
the RLOC space (ITR) and vice versa (ETR).<a href="#section-3.3-1" class="pilcrow">¶</a></p>
<div id="encapsulation">
<section id="section-3.3.1">
<h4 id="name-lisp-encapsulation">
<a href="#section-3.3.1" class="section-number selfRef">3.3.1. </a><a href="#name-lisp-encapsulation" class="section-name selfRef">LISP Encapsulation</a>
</h4>
<p id="section-3.3.1-1">ITRs encapsulate data packets towards ETRs. LISP data packets are
encapsulated using UDP (port 4341). The source port is usually
selected by the ITR using a 5-tuple hash of the inner header (so as to
be consistent in case of multipath solutions, such as ECMP <span>[<a href="#RFC2992" class="cite xref">RFC2992</a>]</span>) and ignored on reception. LISP
data packets are often encapsulated in UDP packets that include a
zero checksum <span>[<a href="#RFC6935" class="cite xref">RFC6935</a>]</span> <span>[<a href="#RFC6936" class="cite xref">RFC6936</a>]</span> that may not be verified when it is
received, because LISP data packets typically include an inner
transport protocol header with a non-zero checksum. The use of UDP zero checksums
over IPv6 for all tunneling protocols like LISP is subject to the applicability
statement in <span>[<a href="#RFC6936" class="cite xref">RFC6936</a>]</span>. If LISP data packets are
encapsulated in
UDP packets with non-zero checksums, the outer UDP checksums are
verified when the UDP packets are received, as part of normal UDP
processing.<a href="#section-3.3.1-1" class="pilcrow">¶</a></p>
<p id="section-3.3.1-2">LISP-encapsulated packets also include a LISP header (after the
UDP header and before the original IP header). The LISP header is
prepended by ITRs and stripped by ETRs. It carries reachability
information (see more details in <a href="#reachability" class="auto internal xref">Section 4.2</a>) and the 'Instance ID' field.
The 'Instance ID' field is used to distinguish traffic to/from
different tenant address spaces at the LISP site, and this use of the
Instance ID may use
overlapped but logically separated EID addressing.<a href="#section-3.3.1-2" class="pilcrow">¶</a></p>
<p id="section-3.3.1-3">Overall, LISP works on 4 headers: the inner header the source
constructed and the 3 headers a LISP encapsulator prepends ("outer"
to "inner"):<a href="#section-3.3.1-3" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-3.3.1-4">
<li id="section-3.3.1-4.1">Outer IP header containing RLOCs as source and destination
addresses. This header is originated by ITRs and stripped by
ETRs.<a href="#section-3.3.1-4.1" class="pilcrow">¶</a>
</li>
<li id="section-3.3.1-4.2">UDP header (port 4341), usually with zero checksum. This header is
originated by ITRs and stripped by ETRs.<a href="#section-3.3.1-4.2" class="pilcrow">¶</a>
</li>
<li id="section-3.3.1-4.3">LISP header that contains various forwarding-plane features
(such as reachability) and an
'Instance ID' field. This header is originated by ITRs and
stripped by ETRs.<a href="#section-3.3.1-4.3" class="pilcrow">¶</a>
</li>
<li id="section-3.3.1-4.4">Inner IP header containing EIDs as source and destination
addresses. This header is created by the source end host and
is left unchanged by the LISP data plane processing on the ITR and ETR.<a href="#section-3.3.1-4.4" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-3.3.1-5">Finally, in some scenarios, re-encapsulating and/or recursive
tunnels are useful to choose a specified path in the underlay
network, for instance, to avoid congestion or
failure. Re-encapsulating tunnels are consecutive LISP tunnels and
occur when a decapsulator (an ETR action) removes a LISP header and
then acts as an encapsulator (an ITR action) to prepend another one.
On the other hand, recursive tunnels are nested tunnels and are
implemented by using multiple LISP encapsulations on a packet. Such
functions are implemented by Re-encapsulating Tunnel Routers
(RTRs). An RTR can be thought of as a router that first acts as an
ETR by decapsulating packets and then as an ITR by encapsulating
them towards another Locator; more information can be found in <span>[<a href="#RFC9300" class="cite xref">RFC9300</a>]</span> and <span>[<a href="#RFC9301" class="cite xref">RFC9301</a>]</span>.<a href="#section-3.3.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-3.3.2">
<h4 id="name-lisp-forwarding-state">
<a href="#section-3.3.2" class="section-number selfRef">3.3.2. </a><a href="#name-lisp-forwarding-state" class="section-name selfRef">LISP Forwarding State</a>
</h4>
<p id="section-3.3.2-1"> In the LISP architecture, ITRs keep just enough information to route
traffic flowing through them. In other words, ITRs only need to retrieve
from the LISP Mapping System mappings between EID-Prefixes (blocks of EIDs)
and RLOCs that are used to encapsulate packets.
Such mappings are stored in a local cache
called the LISP Map-Cache for subsequent packets addressed to the same EID-Prefix. Note that in the case of overlapping EID-Prefixes, after a request,
the ITR may receive a set of mappings covering the requested EID-Prefix and
all more-specific EID-Prefixes (cf., <span><a href="https://www.rfc-editor.org/rfc/rfc9301#section-5.5" class="relref">Section 5.5</a> of [<a href="#RFC9301" class="cite xref">RFC9301</a>]</span>). Mappings include a Time to Live
(TTL) (set by the ETR). More details about the Map-Cache
management can be found in <a href="#management" class="auto internal xref">Section 4.1</a>.<a href="#section-3.3.2-1" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-3.4">
<h3 id="name-control-plane">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-control-plane" class="section-name selfRef">Control Plane</a>
</h3>
<p id="section-3.4-1">The LISP control plane, specified in <span>[<a href="#RFC9301" class="cite xref">RFC9301</a>]</span>, provides a standard
interface to register and request mappings.
The LISP
Mapping System is a database that stores such
mappings. The following sub-sections first describe the mappings, then the
standard interface to the Mapping System, and finally its architecture.<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<section id="section-3.4.1">
<h4 id="name-lisp-mappings">
<a href="#section-3.4.1" class="section-number selfRef">3.4.1. </a><a href="#name-lisp-mappings" class="section-name selfRef">LISP Mappings</a>
</h4>
<p id="section-3.4.1-1">Each mapping includes the bindings between EID-Prefix(es) and a
set of RLOCs as well as TE policies, in the form of
priorities and weights for the RLOCs. Priorities allow the ETR to
configure active/backup policies, while weights are used to
load-balance traffic among the RLOCs (on a per-flow basis).<a href="#section-3.4.1-1" class="pilcrow">¶</a></p>
<p id="section-3.4.1-2">Typical mappings in LISP bind EIDs in the form of IP prefixes
with a set of RLOCs, also in the form of IP addresses. IPv4 and IPv6
addresses are encoded using the appropriate Address Family
Identifier (AFI) <span>[<a href="#RFC8060" class="cite xref">RFC8060</a>]</span>.
However,
LISP can also support more general address encoding by means of the
ongoing effort around the LISP Canonical Address Format (LCAF) <span>[<a href="#RFC8060" class="cite xref">RFC8060</a>]</span>.<a href="#section-3.4.1-2" class="pilcrow">¶</a></p>
<p id="section-3.4.1-3">With such a general syntax for address encoding in place, LISP
aims to provide flexibility to current and future applications. For
instance, LCAFs could support Media Access Control (MAC) addresses,
geocoordinates, ASCII names, and application-specific data.<a href="#section-3.4.1-3" class="pilcrow">¶</a></p>
</section>
<section id="section-3.4.2">
<h4 id="name-mapping-system-interface">
<a href="#section-3.4.2" class="section-number selfRef">3.4.2. </a><a href="#name-mapping-system-interface" class="section-name selfRef">Mapping System Interface</a>
</h4>
<p id="section-3.4.2-1">LISP defines a standard interface between data and control
planes. The interface is specified in <span>[<a href="#RFC9301" class="cite xref">RFC9301</a>]</span> and
defines two entities:<a href="#section-3.4.2-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.4.2-2">
<dt id="section-3.4.2-2.1">Map-Server:</dt>
<dd style="margin-left: 1.5em" id="section-3.4.2-2.2">A network infrastructure component
that learns mappings from ETRs and publishes them into the LISP
Mapping System. Typically, Map-Servers are not authoritative to
reply to queries; hence, they forward them to the ETR.
However, they can also operate in proxy-mode, where the ETRs
delegate replying to queries to Map-Servers. This setup is
useful when the ETR has limited resources (e.g., CPU or power).<a href="#section-3.4.2-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.4.2-2.3">Map-Resolver:</dt>
<dd style="margin-left: 1.5em" id="section-3.4.2-2.4">A network infrastructure component
that interfaces ITRs with the Mapping System by proxying queries
and, in some cases, responses.<a href="#section-3.4.2-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.4.2-3"> The interface defines four LISP control messages that are
sent as UDP datagrams (port 4342):<a href="#section-3.4.2-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.4.2-4">
<dt id="section-3.4.2-4.1">Map-Register:</dt>
<dd style="margin-left: 1.5em" id="section-3.4.2-4.2">This message is used by ETRs to
register mappings in the Mapping System, and it is authenticated
using a shared key between the ETR and the Map-Server.<a href="#section-3.4.2-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.4.2-4.3">Map-Notify:</dt>
<dd style="margin-left: 1.5em" id="section-3.4.2-4.4">When requested by the ETR, this message is sent by the
Map-Server in response to a Map-Register to acknowledge the
correct reception of the mapping and convey the latest Map-Server
state on the EID-to-RLOC mapping. In some cases, a Map-Notify can
be sent to the previous RLOCs when an EID is registered by a new
set of RLOCs.<a href="#section-3.4.2-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.4.2-4.5">Map-Request:</dt>
<dd style="margin-left: 1.5em" id="section-3.4.2-4.6">This message is used by ITRs or
Map-Resolvers to resolve the mapping of a given EID.<a href="#section-3.4.2-4.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.4.2-4.7">Map-Reply:</dt>
<dd style="margin-left: 1.5em" id="section-3.4.2-4.8">This message is sent by Map-Servers or ETRs in response to a
Map-Request and contains the resolved mapping. Please note that a
Map-Reply may contain a negative reply if, for example, the
queried EID is not part of the LISP EID space. In such cases, the
ITR typically forwards the traffic as is (non-encapsulated) to
the public Internet. This behavior is defined to support
incremental deployment of LISP.<a href="#section-3.4.2-4.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-3.4.3">
<h4 id="name-mapping-system">
<a href="#section-3.4.3" class="section-number selfRef">3.4.3. </a><a href="#name-mapping-system" class="section-name selfRef">Mapping System</a>
</h4>
<p id="section-3.4.3-1">LISP architecturally decouples control and data planes by means of
a standard interface. This interface glues the data plane -- routers
responsible for forwarding data packets -- with the LISP Mapping
System -- a database responsible for storing mappings.<a href="#section-3.4.3-1" class="pilcrow">¶</a></p>
<p id="section-3.4.3-2">With this separation in place, the data and control planes can use
different architectures if needed and scale independently.
Typically, the data plane is optimized to route packets according to
hierarchical IP addresses. However, the control plane may have
different requirements, for instance, and by taking advantage of the
LCAFs, the Mapping System may be used to store
nonhierarchical keys (such as MAC addresses),
requiring different architectural approaches for scalability.
Another important difference between the LISP control and
data planes is that, and as a result of the local mapping cache
available at the ITR, the Mapping System does not need to operate at
line-rate.<a href="#section-3.4.3-2" class="pilcrow">¶</a></p>
<p id="section-3.4.3-3">Many of the existing mechanisms to create distributed systems
have been explored and considered for the Mapping System
architecture: graph-based databases in the form of LISP Alternative
Logical Topology (LISP-ALT) <span>[<a href="#RFC6836" class="cite xref">RFC6836</a>]</span>, hierarchical databases in the
form of the LISP Delegated Database Tree (LISP-DDT) <span>[<a href="#RFC8111" class="cite xref">RFC8111</a>]</span>, monolithic databases in the
form of the LISP Not-so-novel EID-to-RLOC Database (LISP-NERD) <span>[<a href="#RFC6837" class="cite xref">RFC6837</a>]</span>, flat databases in the form of
the LISP Distributed Hash Table (LISP-DHT) <span>[<a href="#I-D.cheng-lisp-shdht" class="cite xref">LISP-SHDHT</a>]</span> <span>[<a href="#Mathy" class="cite xref">Mathy</a>]</span>, and a multicast-based database <span>[<a href="#I-D.curran-lisp-emacs" class="cite xref">LISP-EMACS</a>]</span>. Furthermore, it
is worth noting that, in some scenarios, such as private deployments,
the Mapping System can operate as logically centralized. In such
cases, it is typically composed of a single
Map-Server/Map-Resolver.<a href="#section-3.4.3-3" class="pilcrow">¶</a></p>
<p id="section-3.4.3-4">The following sub-sections focus on the two Mapping Systems that have
been implemented and deployed (LISP-ALT and LISP-DDT).<a href="#section-3.4.3-4" class="pilcrow">¶</a></p>
<section id="section-3.4.3.1">
<h5 id="name-lisp-alt">
<a href="#section-3.4.3.1" class="section-number selfRef">3.4.3.1. </a><a href="#name-lisp-alt" class="section-name selfRef">LISP-ALT</a>
</h5>
<p id="section-3.4.3.1-1">LISP-ALT <span>[<a href="#RFC6836" class="cite xref">RFC6836</a>]</span> was the first
Mapping System proposed, developed, and deployed on the LISP pilot
network. It is based on a distributed BGP overlay in which
Map-Servers and Map-Resolvers participate. The nodes connect to their peers
through static tunnels. Each Map-Server involved in the ALT topology
advertises the EID-Prefixes registered by the serviced ETRs, making
the EID routable on the ALT topology.<a href="#section-3.4.3.1-1" class="pilcrow">¶</a></p>
<p id="section-3.4.3.1-2">When an ITR needs a mapping, it sends a Map-Request to a Map-Resolver
that, using the ALT topology, forwards the Map-Request towards the
Map-Server responsible for the mapping. Upon reception, the Map-Server
forwards the request to the ETR, which in turn replies directly to the ITR.<a href="#section-3.4.3.1-2" class="pilcrow">¶</a></p>
</section>
<section id="section-3.4.3.2">
<h5 id="name-lisp-ddt">
<a href="#section-3.4.3.2" class="section-number selfRef">3.4.3.2. </a><a href="#name-lisp-ddt" class="section-name selfRef">LISP-DDT</a>
</h5>
<p id="section-3.4.3.2-1">LISP-DDT <span>[<a href="#RFC8111" class="cite xref">RFC8111</a>]</span> is
conceptually similar to the DNS, a hierarchical directory whose
internal structure mirrors the hierarchical nature of the EID
address space. The DDT hierarchy is composed of DDT nodes forming
a tree structure; the leafs of the tree are Map-Servers. On top
of the structure, there is the DDT root node, which is a particular
instance of a DDT node, that matches the entire address space. As
in the case of DNS, DDT supports multiple redundant DDT nodes
and/or DDT roots. Finally, Map-Resolvers are the clients of the
DDT hierarchy and can query the DDT root and/or other DDT
nodes.<a href="#section-3.4.3.2-1" class="pilcrow">¶</a></p>
<span id="name-a-schematic-representation-"></span><figure id="figure-3">
<div class="alignLeft art-text artwork" id="section-3.4.3.2-2.1">
<pre>
/---------\
| |
| DDT Root|
| /0 |
,.\---------/-,
,-'` | `'.,
-'` | `-
/-------\ /-------\ /-------\
| DDT | | DDT | | DDT |
| Node | | Node | | Node | ...
| 0/8 | | 1/8 | | 2/8 |
\-------/ \-------/ \-------/
_. _. . -..,,,_
-` -` \ ````''--
+------------+ +------------+ +------------+ +------------+
| Map-Server | | Map-Server | | Map-Server | | Map-Server |
| EID-Prefix1| | EID-Prefix2| | EID-Prefix3| | EID-Prefix4|
+------------+ +------------+ +------------+ +------------+
</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-a-schematic-representation-" class="selfRef">A Schematic Representation of the DDT Tree Structure</a>
</figcaption></figure>
<p id="section-3.4.3.2-3">Please note that the prefixes and the structure depicted in the
figure above should only be considered as an example.<a href="#section-3.4.3.2-3" class="pilcrow">¶</a></p>
<p id="section-3.4.3.2-4"> The DDT structure does not actually index EID-Prefixes; rather, it
indexes Extended EID-Prefixes (XEID-Prefixes). An XEID-Prefix is just the
concatenation of the following fields (from most significant bit
to less significant bits): Database-ID, Instance ID, Address Family
Identifier, and the actual EID-Prefix. The Database-ID is provided
for possible future requirements of higher levels in the hierarchy
and to enable the creation of multiple and separate database
trees.<a href="#section-3.4.3.2-4" class="pilcrow">¶</a></p>
<p id="section-3.4.3.2-5">In order to resolve a query, LISP-DDT operates in a similar way to the
DNS but only supports iterative lookups. DDT clients (usually Map-Resolvers)
generate Map-Requests to the DDT root node. In response, they
receive a newly introduced LISP control message: a Map-Referral. A
Map-Referral provides the list of RLOCs of the set of DDT nodes
matching a configured XEID delegation. That is, the information
contained in the Map-Referral points to the child of the queried
DDT node that has more specific information about the queried
XEID-Prefix. This process is repeated until the DDT client walks
the tree structure (downwards) and discovers the Map-Server
servicing the queried XEID. At this point, the client sends a
Map-Request and receives a Map-Reply containing the mappings. It
is important to note that DDT clients can also cache the
information contained in Map-Referrals; that is, they cache the
DDT structure. This is used to reduce the time required to retrieve
mappings <span>[<a href="#Jakab" class="cite xref">Jakab</a>]</span>.<a href="#section-3.4.3.2-5" class="pilcrow">¶</a></p>
<p id="section-3.4.3.2-6">The DDT Mapping System relies on manual configuration. That is,
Map-Resolvers are configured with the set of available
DDT root nodes, while DDT nodes are configured with the
appropriate XEID delegations. Configuration changes in the DDT
nodes are only required when the tree structure changes itself,
but it doesn't depend on EID dynamics (RLOC allocation or
TE policy changes).<a href="#section-3.4.3.2-6" class="pilcrow">¶</a></p>
</section>
</section>
</section>
<div id="sect-3.5">
<section id="section-3.5">
<h3 id="name-internetworking-mechanisms">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-internetworking-mechanisms" class="section-name selfRef">Internetworking Mechanisms</a>
</h3>
<p id="section-3.5-1">EIDs are typically identical to either IPv4 or IPv6 addresses, and
they are stored in the LISP Mapping System. However, they are usually not
announced in the routing system beyond the local LISP domain. As a result, LISP
requires an internetworking mechanism to allow LISP sites to speak
with non-LISP sites and vice versa. LISP internetworking mechanisms are
specified in <span>[<a href="#RFC6832" class="cite xref">RFC6832</a>]</span>.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
<p id="section-3.5-2">LISP defines two entities to provide internetworking:<a href="#section-3.5-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-3.5-3">
<dt id="section-3.5-3.1">Proxy Ingress Tunnel Router (PITR):</dt>
<dd style="margin-left: 1.5em" id="section-3.5-3.2">PITRs provide
connectivity from the legacy Internet to LISP sites. PITRs
announce in the global routing system blocks of EID-Prefixes
(aggregating when possible) to attract traffic. For each incoming
packet from a source not in a LISP site (a non-EID),
the PITR LISP-encapsulates it towards the RLOC(s) of
the appropriate LISP site. The impact of PITRs on the routing
table size of the Default-Free Zone (DFZ) is, in the worst case, similar to the case
in which LISP is not deployed. EID-Prefixes will be aggregated
as much as possible, both by the PITR and by the global routing system.<a href="#section-3.5-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.5-3.3">Proxy Egress Tunnel Router (PETR):</dt>
<dd style="margin-left: 1.5em" id="section-3.5-3.4">PETRs provide connectivity from LISP sites to the legacy
Internet. In some scenarios, LISP sites may be unable to send
encapsulated packets with a local EID address as a source to the
legacy Internet, for instance, when Unicast Reverse Path
Forwarding (uRPF) is used by Provider Edge routers or when an
intermediate network between a LISP site and a non-LISP site does
not support the desired version of IP (IPv4 or IPv6). In both
cases, the PETR overcomes such limitations by
encapsulating packets over the network. There is no specified
provision for the distribution of PETR RLOC addresses to the
ITRs.<a href="#section-3.5-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-3.5-4">Additionally, LISP also defines mechanisms to operate with private
EIDs <span>[<a href="#RFC1918" class="cite xref">RFC1918</a>]</span> by means of LISP-NAT
<span>[<a href="#RFC6832" class="cite xref">RFC6832</a>]</span>. In this case, the xTR
replaces a private EID source address with a routable one. At the time
of this writing, work is ongoing to define NAT-traversal capabilities,
that is, xTRs behind a NAT using non-routable RLOCs.<a href="#section-3.5-4" class="pilcrow">¶</a></p>
<p id="section-3.5-5">PITRs, PETRs, and LISP-NAT enable incremental deployment of LISP by
providing significant flexibility in the placement of the boundaries
between the LISP and non-LISP portions of the network and making it
easy to change those boundaries over time.<a href="#section-3.5-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<section id="section-4">
<h2 id="name-lisp-operational-mechanisms">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-lisp-operational-mechanisms" class="section-name selfRef">LISP Operational Mechanisms</a>
</h2>
<p id="section-4-1">This section details the main operational mechanisms defined in
LISP.<a href="#section-4-1" class="pilcrow">¶</a></p>
<div id="management">
<section id="section-4.1">
<h3 id="name-cache-management">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-cache-management" class="section-name selfRef">Cache Management</a>
</h3>
<p id="section-4.1-1">LISP's decoupled control and data planes, where mappings are
stored in the control plane and used for forwarding in the data
plane, require a local cache in ITRs to reduce signaling
overhead (Map-Request/Map-Reply) and increase forwarding speed. The
local cache available at the ITRs, called Map-Cache, is used by the
router to LISP-encapsulate packets. The Map-Cache is indexed by
(Instance ID, EID-Prefix) and contains basically the set
of RLOCs with the associated TE policies (priorities and
weights).<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">The Map-Cache, as with any other cache, requires cache coherence
mechanisms to maintain up-to-date information. LISP defines three
main mechanisms for cache coherence:<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.1-3">
<dt id="section-4.1-3.1">Record Time To Live (TTL):</dt>
<dd style="margin-left: 1.5em" id="section-4.1-3.2">Each mapping record contains a TTL set by the ETR. Upon
expiration of the TTL, the ITR can't use the mapping until it is refreshed by
sending a new Map-Request.<a href="#section-4.1-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.1-3.3">Solicit-Map-Request (SMR):</dt>
<dd style="margin-left: 1.5em" id="section-4.1-3.4">SMR is an explicit
mechanism to update mapping information. In particular, a special
type of Map-Request can be sent on demand by ETRs to request refreshing
a mapping. Upon reception of an SMR
message, the ITR must refresh the bindings by sending a
Map-Request to the Mapping System. Further uses of SMRs are
documented in <span>[<a href="#RFC9301" class="cite xref">RFC9301</a>]</span>.<a href="#section-4.1-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.1-3.5">Map-Versioning:</dt>
<dd style="margin-left: 1.5em" id="section-4.1-3.6">This optional mechanism piggybacks, in the LISP header of data packets, the
version number of the mappings used by an xTR. This way, when an xTR receives
a LISP-encapsulated packet from a remote xTR, it can check whether its own
Map-Cache or the one of the remote xTR is outdated. If its Map-Cache is
outdated, it sends a Map-Request for the remote EID so as to obtain the newest
mappings. On the contrary, if it detects that the remote xTR Map-Cache is
outdated, it sends an SMR to notify it that a new mapping is available. Further
details are available in <span>[<a href="#RFC9302" class="cite xref">RFC9302</a>]</span>.<a href="#section-4.1-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.1-4">Finally, it is worth noting that, in some cases, an entry in the
Map-Cache can be proactively refreshed using the mechanisms described
in the section below.<a href="#section-4.1-4" class="pilcrow">¶</a></p>
</section>
</div>
<div id="reachability">
<section id="section-4.2">
<h3 id="name-rloc-reachability">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-rloc-reachability" class="section-name selfRef">RLOC Reachability</a>
</h3>
<p id="section-4.2-1">In most cases, LISP operates with a pull-based Mapping System (e.g.,
DDT). This results in an edge-to-edge pull architecture. In such a
scenario, the network state is stored in the control plane while the
data plane pulls it on demand. This has consequences concerning the
propagation of xTRs' reachability/liveness information, since pull
architectures require explicit mechanisms to propagate this
information. As a result, LISP defines a set of mechanisms to inform
ITRs and PITRs about the reachability of the cached RLOCs:<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.2-2">
<dt id="section-4.2-2.1">Locator-Status-Bits (LSBs):</dt>
<dd style="margin-left: 1.5em" id="section-4.2-2.2">Using LSBs is a passive technique. The 'LSB'
field is carried by data packets in the LISP header and can be set by
ETRs to specify which RLOCs of the ETR site are up/down. This information
can be used by the ITRs as a hint about the reachability to perform
additional checks. Also note that LSBs do not provide path
reachability status; they only provide hints about the status of RLOCs. As such, they must not be
used over the public Internet and should be coupled with Map-Versioning to prevent
race conditions where LSBs are interpreted as referring to different RLOCs than
intended.<a href="#section-4.2-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.2-2.3">Echo-Nonce:</dt>
<dd style="margin-left: 1.5em" id="section-4.2-2.4">This is also a passive technique that can only operate
effectively when data flows bidirectionally between two communicating xTRs.
Basically, an ITR piggybacks a random number (called a nonce) in LISP
data packets. If the path and the probed Locator are up, the ETR will
piggyback the same random number on the next data packet; if this is
not the case, the ITR can set the Locator as unreachable. When traffic
flow is unidirectional or when the ETR receiving the traffic is not
the same as the ITR that transmits it back, additional mechanisms are
required. The Echo-Nonce mechanism must be used in trusted environments only, not
over the public Internet.<a href="#section-4.2-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.2-2.5">RLOC-Probing:</dt>
<dd style="margin-left: 1.5em" id="section-4.2-2.6">This is an active probing algorithm where ITRs send
probes to specific Locators. This effectively probes both the Locator
and the path. In particular, this is done by sending a
Map-Request (with certain flags activated) on the data plane (RLOC
space) and then waiting for a Map-Reply (also sent on the data
plane). The active
nature of RLOC-Probing provides an effective mechanism for determining
reachability and, in case of failure, switching to a different
Locator. Furthermore, the mechanism also provides useful RTT
estimates of the delay of the path that can be used by other network
algorithms.<a href="#section-4.2-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.2-3">It is worth noting that RLOC-Probing and the Echo-Nonce can work together.
Specifically, if a nonce is not echoed, an ITR cannot determine which path direction has failed. In this scenario, an ITR can use RLOC-Probing.<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<p id="section-4.2-4">Additionally, LISP also recommends inferring the reachability of
Locators by using information provided by the underlay,
particularly:<a href="#section-4.2-4" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.2-5">
<dt id="section-4.2-5.1">ICMP signaling:</dt>
<dd style="margin-left: 1.5em" id="section-4.2-5.2">The LISP underlay -- the current Internet -- uses
ICMP to signal unreachability (among other things). LISP can
take advantage of this, and the reception of an ICMP Network Unreachable
or ICMP Host Unreachable message can be seen as a hint that a Locator
might be unreachable. This should lead to performing additional
checks.<a href="#section-4.2-5.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.2-5.3">Underlay routing:</dt>
<dd style="margin-left: 1.5em" id="section-4.2-5.4">Both BGP and IGP carry reachability information.
LISP-capable routers that have access to underlay routing information
can use it to determine if a given Locator or path is reachable.<a href="#section-4.2-5.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<section id="section-4.3">
<h3 id="name-etr-synchronization">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-etr-synchronization" class="section-name selfRef">ETR Synchronization</a>
</h3>
<p id="section-4.3-1">All the ETRs that are authoritative to a particular EID-Prefix must
announce the same mapping to the requesters. This means that ETRs must be
aware of the status of the RLOCs of the remaining ETRs. This is known as
ETR synchronization.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2">At the time of this writing, LISP does not specify a mechanism to
achieve ETR synchronization. Although many well-known techniques could
be applied to solve this issue, it is still under research. As a
result, operators must rely on coherent manual configuration.<a href="#section-4.3-2" class="pilcrow">¶</a></p>
</section>
<section id="section-4.4">
<h3 id="name-mtu-handling">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-mtu-handling" class="section-name selfRef">MTU Handling</a>
</h3>
<p id="section-4.4-1">Since LISP encapsulates packets, it requires dealing with packets
that exceed the MTU of the path between the ITR and the
ETR. Specifically, LISP defines two mechanisms:<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-4.4-2">
<dt id="section-4.4-2.1">Stateless:</dt>
<dd style="margin-left: 1.5em" id="section-4.4-2.2">With this mechanism, the effective MTU is assumed from the ITR's
perspective. If a payload packet is too big for the effective MTU
and can be fragmented, the payload packet is fragmented on the ITR,
such that reassembly is performed at the destination host.<a href="#section-4.4-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.4-2.3">Stateful:</dt>
<dd style="margin-left: 1.5em" id="section-4.4-2.4">With this mechanism, ITRs keep track of the MTU of the paths
towards the destination Locators by parsing the ICMP Too Big packets
sent by intermediate routers. ITRs will send ICMP Too Big messages
to inform the sources about the effective MTU. Additionally, ITRs can
use mechanisms such as Path MTU Discovery (PMTUD) <span>[<a href="#RFC1191" class="cite xref">RFC1191</a>]</span> or Packetization Layer Path MTU Discovery (PLPMTUD) <span>[<a href="#RFC4821" class="cite xref">RFC4821</a>]</span> to keep track of the MTU towards the
Locators.<a href="#section-4.4-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.4-3">In both cases, if the packet cannot be fragmented (IPv4 with DF=1 or
IPv6), then the ITR drops it and replies with an ICMP Too Big message to
the source.<a href="#section-4.4-3" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-5">
<h2 id="name-mobility">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-mobility" class="section-name selfRef">Mobility</a>
</h2>
<p id="section-5-1">The separation between Locators and identifiers in LISP is suitable
for TE purposes where LISP sites can change their attachment
points to the Internet (i.e., RLOCs) without impacting endpoints or the
Internet core. In this context, the border routers operate the xTR
functionality, and endpoints are not aware of the existence of
LISP. This functionality is similar to Network Mobility
<span>[<a href="#RFC3963" class="cite xref">RFC3963</a>]</span>. However,
this mode of operation does not allow seamless mobility of endpoints between
different LISP sites, as the EID address might not be routable in a visited
site. Nevertheless, LISP can be used to enable seamless
IP mobility when LISP
is directly implemented in the endpoint or when the endpoint
roams to an attached xTR.
Each endpoint is then an xTR, and the EID address is the one
presented to the network stack used by applications
while the RLOC is the address gathered from the network when
it is visited. This functionality is similar to Mobile IP (<span>[<a href="#RFC5944" class="cite xref">RFC5944</a>]</span> and <span>[<a href="#RFC6275" class="cite xref">RFC6275</a>]</span>).<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2"> Whenever a device changes its RLOC, the xTR updates the RLOC of its
local mapping and registers it to its Map-Server, typically with a
low TTL value (1 min). To avoid the need for a
home gateway, the ITR also indicates the RLOC change to all remote devices
that have ongoing communications with the device that moved. The
combination of both methods ensures the scalability of the system, as
signaling is strictly limited to the Map-Server and to hosts with which
communications are ongoing. In the mobility case, the EID-Prefix can
be as small as a full /32 or /128 (IPv4 or IPv6, respectively), depending
on the specific use case (e.g., subnet mobility vs. single VM/Mobile node mobility).<a href="#section-5-2" class="pilcrow">¶</a></p>
<p id="section-5-3">The decoupled identity and location provided by LISP allow it to
operate with other Layer 2 and Layer 3 mobility solutions.<a href="#section-5-3" class="pilcrow">¶</a></p>
</section>
<section id="section-6">
<h2 id="name-multicast">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-multicast" class="section-name selfRef">Multicast</a>
</h2>
<p id="section-6-1">LISP also supports transporting IP multicast packets sent from the EID
space. The required operational changes to the multicast protocols are
documented in <span>[<a href="#RFC6831" class="cite xref">RFC6831</a>]</span>.<a href="#section-6-1" class="pilcrow">¶</a></p>
<p id="section-6-2">In such scenarios, LISP may create multicast state both at the core
and at the sites (both source and receiver). When signaling is used to
create multicast state at the sites, LISP
routers encapsulate PIM Join/Prune messages from receiver to source
sites as unicast packets. At the core,
ETRs build a new PIM Join/Prune message addressed to the RLOC of the
ITR servicing the source. A simplified sequence is shown below.<a href="#section-6-2" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-6-3">
<li id="section-6-3.1">An end host willing to join a multicast channel sends an IGMP
report. Multicast PIM routers at the LISP site propagate PIM
Join/Prune messages (S-EID, G) towards the ETR.<a href="#section-6-3.1" class="pilcrow">¶</a>
</li>
<li id="section-6-3.2">The Join message flows to the ETR. Upon reception, the ETR builds
two Join messages. The first one unicast LISP-encapsulates the
original Join message towards the RLOC of the ITR servicing the
source. This message creates (S-EID, G) multicast state at the source
site.
The second Join message contains, as a destination address, the RLOC
of the ITR servicing the source (S-RLOC, G) and creates multicast
state at the core.<a href="#section-6-3.2" class="pilcrow">¶</a>
</li>
<li id="section-6-3.3">Multicast data packets originated by the source (S-EID, G) flow
from the source to the ITR. The ITR LISP-encapsulates the multicast
packets. The outer header includes its own RLOC as the source
(S-RLOC) and the original multicast group address (G) as the
destination. Please note that multicast group addresses are logical and
are not resolved by the Mapping System. Then, the
multicast packets are transmitted through the core towards the
receiving ETRs, which decapsulate the packets and forward them
using the receiver site's multicast state.<a href="#section-6-3.3" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-6-4">Please note that the inner and outer multicast addresses are
generally different, except in specific cases where the underlay provider
implements tight control on the overlay. LISP specifications already
support all PIM modes <span>[<a href="#RFC6831" class="cite xref">RFC6831</a>]</span>. Additionally, LISP can also support non-PIM
mechanisms in order to maintain multicast state.<a href="#section-6-4" class="pilcrow">¶</a></p>
<p id="section-6-5">When multicast sources and receivers are active at LISP sites and the
core network between the sites does not provide multicast support, a
signal-free mechanism can be used to create an overlay that will allow
multicast traffic to flow between sites and connect the multicast trees at
the different sites <span>[<a href="#RFC8378" class="cite xref">RFC8378</a>]</span>. Registrations
from the different receiver sites will be merged in the Mapping System to
assemble a multicast replication list inclusive of all RLOCs that lead to receivers for a particular multicast group or multicast
channel. The replication list for each specific multicast entry is maintained
as a database mapping entry in the LISP Mapping System.<a href="#section-6-5" class="pilcrow">¶</a></p>
</section>
<section id="section-7">
<h2 id="name-use-cases">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-use-cases" class="section-name selfRef">Use Cases</a>
</h2>
<section id="section-7.1">
<h3 id="name-traffic-engineering">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-traffic-engineering" class="section-name selfRef">Traffic Engineering</a>
</h3>
<p id="section-7.1-1"> A LISP site can strictly impose via which ETRs the
traffic must enter the LISP site network even though the path followed to reach the
ETR is not under the control of the LISP site. This fine control is
implemented with the mappings. When a remote site is willing to send
traffic to a LISP site, it retrieves the mapping associated with the
destination EID via the Mapping System. The mapping is sent directly by an
authoritative ETR of the EID and is not altered by any intermediate network.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
<p id="section-7.1-2">A mapping associates a list of RLOCs with an EID-Prefix. Each RLOC
corresponds to an interface of an ETR (or set of ETRs) that is able to correctly forward
packets to EIDs in the prefix. Each RLOC is tagged with a priority and a
weight in the mapping. The priority is used to indicate which RLOCs
should be preferred for sending packets (the least preferred ones being
provided for backup purposes). The weight permits balancing the load
between the RLOCs with the same priority, in proportion to the weight
value.<a href="#section-7.1-2" class="pilcrow">¶</a></p>
<p id="section-7.1-3"> As mappings are directly issued by the authoritative ETR of the EID
and are not altered when transmitted to the remote site, it offers
highly flexible incoming inter-domain TE and even
makes it possible for a site to support a different mapping policy
for each remote site.<a href="#section-7.1-3" class="pilcrow">¶</a></p>
</section>
<section id="section-7.2">
<h3 id="name-lisp-for-ipv6-co-existence">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-lisp-for-ipv6-co-existence" class="section-name selfRef">LISP for IPv6 Co-existence</a>
</h3>
<p id="section-7.2-1">LISP encapsulations allow transporting packets using EIDs from a
given address family (e.g., IPv6) with packets from other address
families (e.g., IPv4). The absence of correlation between the address
families of RLOCs and EIDs makes LISP a candidate to allow, e.g., IPv6
to be deployed when all of the core network may not have IPv6 enabled.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
<p id="section-7.2-2">For example, two IPv6-only data centers could be interconnected via the
legacy IPv4 Internet. If their border routers are LISP capable, sending
packets between the data centers is done without any form of translation, as
the original IPv6 packets (in the EID space) will be LISP encapsulated and
transmitted over the IPv4 legacy Internet via IPv4 RLOCs.<a href="#section-7.2-2" class="pilcrow">¶</a></p>
</section>
<section id="section-7.3">
<h3 id="name-lisp-for-virtual-private-ne">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-lisp-for-virtual-private-ne" class="section-name selfRef">LISP for Virtual Private Networks</a>
</h3>
<p id="section-7.3-1">It is common to operate several virtual networks over the same
physical infrastructure. In such virtual private networks, determining to
which virtual network a packet belongs is essential; tags or labels are used
for that purpose. When using LISP, the distinction can be made with the
'Instance ID' field. When an
ITR encapsulates a packet from a particular virtual network (e.g., known
via Virtual Routing and Forwarding (VRF) or the VLAN), it tags the encapsulated packet with the Instance ID
corresponding to the virtual network of the packet. When an ETR receives a
packet tagged with an Instance ID, it uses the Instance ID to determine how
to treat the packet.<a href="#section-7.3-1" class="pilcrow">¶</a></p>
<p id="section-7.3-2">The main usage of LISP for virtual private networks does not introduce
additional requirements on the underlying network, as long as it runs IP.<a href="#section-7.3-2" class="pilcrow">¶</a></p>
</section>
<section id="section-7.4">
<h3 id="name-lisp-for-virtual-machine-mo">
<a href="#section-7.4" class="section-number selfRef">7.4. </a><a href="#name-lisp-for-virtual-machine-mo" class="section-name selfRef">LISP for Virtual Machine Mobility in Data Centers</a>
</h3>
<p id="section-7.4-1">A way to enable seamless virtual machine (VM) mobility in the data center is to
conceive the data center backbone as the RLOC space and the subnet
where servers are hosted as forming the EID space. A LISP router is placed
at the border between the backbone and each subnet. When a VM
is moved to another subnet, it can keep (temporarily) the address it had before the move so as to continue without a transport-layer connection reset. When an xTR detects a source address received on a subnet to be an address not assigned to the subnet, it registers the address to the Mapping System.<a href="#section-7.4-1" class="pilcrow">¶</a></p>
<p id="section-7.4-2">To inform the other LISP routers that the machine moved and where, and then
to avoid detours via the initial subnetwork, mechanisms such as the
Solicit-Map-Request messages are used.<a href="#section-7.4-2" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-8">
<h2 id="name-security-considerations">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-8-1">This section describes the security considerations associated with
LISP.<a href="#section-8-1" class="pilcrow">¶</a></p>
<p id="section-8-2">In a push Mapping System, the state necessary to forward packets is learned
independently of the traffic itself. However, with a pull architecture, the
system becomes reactive, and data plane events (e.g., the arrival of a
packet with an unknown destination address) may trigger control plane events.
This on-demand learning of mappings provides many advantages, as
discussed above, but may also affect the way security is enforced.<a href="#section-8-2" class="pilcrow">¶</a></p>
<p id="section-8-3">Usually, the data plane is implemented in the fast path of routers to
provide high-performance forwarding capabilities, while the control plane
features are implemented in the slow path to offer high flexibility, and a
performance gap of several orders of magnitude can be observed between the
slow and fast paths.
As a consequence, the way to notify the control plane of data plane events must be considered carefully so as not to overload the
slow path, and rate limiting should be used as specified in <span>[<a href="#RFC9300" class="cite xref">RFC9300</a>]</span> and <span>[<a href="#RFC9301" class="cite xref">RFC9301</a>]</span>.<a href="#section-8-3" class="pilcrow">¶</a></p>
<p id="section-8-4">Care must also be taken not to overload the Mapping System (i.e., the
control plane infrastructure), as the operations to be performed by the
Mapping
System may be more complex than those on the data plane. For that reason,
<span>[<a href="#RFC9300" class="cite xref">RFC9300</a>]</span> and <span>[<a href="#RFC9301" class="cite xref">RFC9301</a>]</span> recommend rate limiting the
sending of messages to the Mapping System.<a href="#section-8-4" class="pilcrow">¶</a></p>
<p id="section-8-5"> To improve resiliency and reduce the overall number of messages
exchanged, LISP makes it possible to leak certain information, such
as the reachability of Locators, directly into data plane packets. In
environments that are not
fully trusted, like the open Internet, control information gleaned from
data plane packets must not be used or must be
verified before using it.<a href="#section-8-5" class="pilcrow">¶</a></p>
<p id="section-8-6">Mappings are the centerpiece of LISP, and all precautions must be taken to
prevent malicious entities from manipulating or misusing them. Using
trustable Map-Servers that strictly respect <span>[<a href="#RFC9301" class="cite xref">RFC9301</a>]</span> and the
authentication mechanism proposed by LISP-SEC <span>[<a href="#RFC9303" class="cite xref">RFC9303</a>]</span> reduces
the risk of attacks on mapping integrity. In more critical
environments, secure measures may be needed. The way security is
implemented for a given Mapping System strongly depends on the architecture
of the Mapping System itself and the threat model assumed for the
deployment. Thus, Mapping System security has to be discussed in the
relevant documents proposing the Mapping System architecture.<a href="#section-8-6" class="pilcrow">¶</a></p>
<p id="section-8-7">As with any other tunneling mechanism, middleboxes on the path
between an ITR (or PITR) and an ETR (or PETR) must implement mechanisms
to strip the LISP encapsulation to correctly inspect the content of
LISP-encapsulated packets.<a href="#section-8-7" class="pilcrow">¶</a></p>
<p id="section-8-8">Like other map-and-encap mechanisms, LISP enables triangular routing
(i.e., packets of a flow cross different border routers, depending on
their direction). This means that intermediate boxes may have an
incomplete view of the traffic they inspect or manipulate. Moreover,
LISP-encapsulated packets are routed based on the outer IP address
(i.e., the RLOC) and can be delivered to an ETR that is not responsible
for the destination EID of the packet or even delivered to a network element that
is not an ETR. Mitigation consists of applying appropriate filtering
techniques on the network elements that can potentially receive
unexpected LISP-encapsulated packets.<a href="#section-8-8" class="pilcrow">¶</a></p>
<p id="section-8-9">More details about security implications of LISP are discussed in
<span>[<a href="#RFC7835" class="cite xref">RFC7835</a>]</span>.<a href="#section-8-9" class="pilcrow">¶</a></p>
</section>
<section id="section-9">
<h2 id="name-iana-considerations">
<a href="#section-9" class="section-number selfRef">9. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-9-1">This document has no IANA actions.<a href="#section-9-1" class="pilcrow">¶</a></p>
</section>
<section id="section-10">
<h2 id="name-references">
<a href="#section-10" class="section-number selfRef">10. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-10.1">
<h3 id="name-normative-references">
<a href="#section-10.1" class="section-number selfRef">10.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC1191">[RFC1191]</dt>
<dd>
<span class="refAuthor">Mogul, J.</span> and <span class="refAuthor">S. Deering</span>, <span class="refTitle">"Path MTU discovery"</span>, <span class="seriesInfo">RFC 1191</span>, <span class="seriesInfo">DOI 10.17487/RFC1191</span>, <time datetime="1990-11" class="refDate">November 1990</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1191">https://www.rfc-editor.org/info/rfc1191</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC1918">[RFC1918]</dt>
<dd>
<span class="refAuthor">Rekhter, Y.</span>, <span class="refAuthor">Moskowitz, B.</span>, <span class="refAuthor">Karrenberg, D.</span>, <span class="refAuthor">de Groot, G. J.</span>, and <span class="refAuthor">E. Lear</span>, <span class="refTitle">"Address Allocation for Private Internets"</span>, <span class="seriesInfo">BCP 5</span>, <span class="seriesInfo">RFC 1918</span>, <span class="seriesInfo">DOI 10.17487/RFC1918</span>, <time datetime="1996-02" class="refDate">February 1996</time>, <span><<a href="https://www.rfc-editor.org/info/rfc1918">https://www.rfc-editor.org/info/rfc1918</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2992">[RFC2992]</dt>
<dd>
<span class="refAuthor">Hopps, C.</span>, <span class="refTitle">"Analysis of an Equal-Cost Multi-Path Algorithm"</span>, <span class="seriesInfo">RFC 2992</span>, <span class="seriesInfo">DOI 10.17487/RFC2992</span>, <time datetime="2000-11" class="refDate">November 2000</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2992">https://www.rfc-editor.org/info/rfc2992</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3963">[RFC3963]</dt>
<dd>
<span class="refAuthor">Devarapalli, V.</span>, <span class="refAuthor">Wakikawa, R.</span>, <span class="refAuthor">Petrescu, A.</span>, and <span class="refAuthor">P. Thubert</span>, <span class="refTitle">"Network Mobility (NEMO) Basic Support Protocol"</span>, <span class="seriesInfo">RFC 3963</span>, <span class="seriesInfo">DOI 10.17487/RFC3963</span>, <time datetime="2005-01" class="refDate">January 2005</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3963">https://www.rfc-editor.org/info/rfc3963</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4821">[RFC4821]</dt>
<dd>
<span class="refAuthor">Mathis, M.</span> and <span class="refAuthor">J. Heffner</span>, <span class="refTitle">"Packetization Layer Path MTU Discovery"</span>, <span class="seriesInfo">RFC 4821</span>, <span class="seriesInfo">DOI 10.17487/RFC4821</span>, <time datetime="2007-03" class="refDate">March 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4821">https://www.rfc-editor.org/info/rfc4821</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4984">[RFC4984]</dt>
<dd>
<span class="refAuthor">Meyer, D., Ed.</span>, <span class="refAuthor">Zhang, L., Ed.</span>, and <span class="refAuthor">K. Fall, Ed.</span>, <span class="refTitle">"Report from the IAB Workshop on Routing and Addressing"</span>, <span class="seriesInfo">RFC 4984</span>, <span class="seriesInfo">DOI 10.17487/RFC4984</span>, <time datetime="2007-09" class="refDate">September 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4984">https://www.rfc-editor.org/info/rfc4984</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5944">[RFC5944]</dt>
<dd>
<span class="refAuthor">Perkins, C., Ed.</span>, <span class="refTitle">"IP Mobility Support for IPv4, Revised"</span>, <span class="seriesInfo">RFC 5944</span>, <span class="seriesInfo">DOI 10.17487/RFC5944</span>, <time datetime="2010-11" class="refDate">November 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5944">https://www.rfc-editor.org/info/rfc5944</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6275">[RFC6275]</dt>
<dd>
<span class="refAuthor">Perkins, C., Ed.</span>, <span class="refAuthor">Johnson, D.</span>, and <span class="refAuthor">J. Arkko</span>, <span class="refTitle">"Mobility Support in IPv6"</span>, <span class="seriesInfo">RFC 6275</span>, <span class="seriesInfo">DOI 10.17487/RFC6275</span>, <time datetime="2011-07" class="refDate">July 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6275">https://www.rfc-editor.org/info/rfc6275</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6831">[RFC6831]</dt>
<dd>
<span class="refAuthor">Farinacci, D.</span>, <span class="refAuthor">Meyer, D.</span>, <span class="refAuthor">Zwiebel, J.</span>, and <span class="refAuthor">S. Venaas</span>, <span class="refTitle">"The Locator/ID Separation Protocol (LISP) for Multicast Environments"</span>, <span class="seriesInfo">RFC 6831</span>, <span class="seriesInfo">DOI 10.17487/RFC6831</span>, <time datetime="2013-01" class="refDate">January 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6831">https://www.rfc-editor.org/info/rfc6831</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6832">[RFC6832]</dt>
<dd>
<span class="refAuthor">Lewis, D.</span>, <span class="refAuthor">Meyer, D.</span>, <span class="refAuthor">Farinacci, D.</span>, and <span class="refAuthor">V. Fuller</span>, <span class="refTitle">"Interworking between Locator/ID Separation Protocol (LISP) and Non-LISP Sites"</span>, <span class="seriesInfo">RFC 6832</span>, <span class="seriesInfo">DOI 10.17487/RFC6832</span>, <time datetime="2013-01" class="refDate">January 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6832">https://www.rfc-editor.org/info/rfc6832</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6835">[RFC6835]</dt>
<dd>
<span class="refAuthor">Farinacci, D.</span> and <span class="refAuthor">D. Meyer</span>, <span class="refTitle">"The Locator/ID Separation Protocol Internet Groper (LIG)"</span>, <span class="seriesInfo">RFC 6835</span>, <span class="seriesInfo">DOI 10.17487/RFC6835</span>, <time datetime="2013-01" class="refDate">January 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6835">https://www.rfc-editor.org/info/rfc6835</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6836">[RFC6836]</dt>
<dd>
<span class="refAuthor">Fuller, V.</span>, <span class="refAuthor">Farinacci, D.</span>, <span class="refAuthor">Meyer, D.</span>, and <span class="refAuthor">D. Lewis</span>, <span class="refTitle">"Locator/ID Separation Protocol Alternative Logical Topology (LISP+ALT)"</span>, <span class="seriesInfo">RFC 6836</span>, <span class="seriesInfo">DOI 10.17487/RFC6836</span>, <time datetime="2013-01" class="refDate">January 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6836">https://www.rfc-editor.org/info/rfc6836</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6837">[RFC6837]</dt>
<dd>
<span class="refAuthor">Lear, E.</span>, <span class="refTitle">"NERD: A Not-so-novel Endpoint ID (EID) to Routing Locator (RLOC) Database"</span>, <span class="seriesInfo">RFC 6837</span>, <span class="seriesInfo">DOI 10.17487/RFC6837</span>, <time datetime="2013-01" class="refDate">January 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6837">https://www.rfc-editor.org/info/rfc6837</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6935">[RFC6935]</dt>
<dd>
<span class="refAuthor">Eubanks, M.</span>, <span class="refAuthor">Chimento, P.</span>, and <span class="refAuthor">M. Westerlund</span>, <span class="refTitle">"IPv6 and UDP Checksums for Tunneled Packets"</span>, <span class="seriesInfo">RFC 6935</span>, <span class="seriesInfo">DOI 10.17487/RFC6935</span>, <time datetime="2013-04" class="refDate">April 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6935">https://www.rfc-editor.org/info/rfc6935</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6936">[RFC6936]</dt>
<dd>
<span class="refAuthor">Fairhurst, G.</span> and <span class="refAuthor">M. Westerlund</span>, <span class="refTitle">"Applicability Statement for the Use of IPv6 UDP Datagrams with Zero Checksums"</span>, <span class="seriesInfo">RFC 6936</span>, <span class="seriesInfo">DOI 10.17487/RFC6936</span>, <time datetime="2013-04" class="refDate">April 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6936">https://www.rfc-editor.org/info/rfc6936</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7052">[RFC7052]</dt>
<dd>
<span class="refAuthor">Schudel, G.</span>, <span class="refAuthor">Jain, A.</span>, and <span class="refAuthor">V. Moreno</span>, <span class="refTitle">"Locator/ID Separation Protocol (LISP) MIB"</span>, <span class="seriesInfo">RFC 7052</span>, <span class="seriesInfo">DOI 10.17487/RFC7052</span>, <time datetime="2013-10" class="refDate">October 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7052">https://www.rfc-editor.org/info/rfc7052</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7215">[RFC7215]</dt>
<dd>
<span class="refAuthor">Jakab, L.</span>, <span class="refAuthor">Cabellos-Aparicio, A.</span>, <span class="refAuthor">Coras, F.</span>, <span class="refAuthor">Domingo-Pascual, J.</span>, and <span class="refAuthor">D. Lewis</span>, <span class="refTitle">"Locator/Identifier Separation Protocol (LISP) Network Element Deployment Considerations"</span>, <span class="seriesInfo">RFC 7215</span>, <span class="seriesInfo">DOI 10.17487/RFC7215</span>, <time datetime="2014-04" class="refDate">April 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7215">https://www.rfc-editor.org/info/rfc7215</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7835">[RFC7835]</dt>
<dd>
<span class="refAuthor">Saucez, D.</span>, <span class="refAuthor">Iannone, L.</span>, and <span class="refAuthor">O. Bonaventure</span>, <span class="refTitle">"Locator/ID Separation Protocol (LISP) Threat Analysis"</span>, <span class="seriesInfo">RFC 7835</span>, <span class="seriesInfo">DOI 10.17487/RFC7835</span>, <time datetime="2016-04" class="refDate">April 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7835">https://www.rfc-editor.org/info/rfc7835</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8060">[RFC8060]</dt>
<dd>
<span class="refAuthor">Farinacci, D.</span>, <span class="refAuthor">Meyer, D.</span>, and <span class="refAuthor">J. Snijders</span>, <span class="refTitle">"LISP Canonical Address Format (LCAF)"</span>, <span class="seriesInfo">RFC 8060</span>, <span class="seriesInfo">DOI 10.17487/RFC8060</span>, <time datetime="2017-02" class="refDate">February 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8060">https://www.rfc-editor.org/info/rfc8060</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8111">[RFC8111]</dt>
<dd>
<span class="refAuthor">Fuller, V.</span>, <span class="refAuthor">Lewis, D.</span>, <span class="refAuthor">Ermagan, V.</span>, <span class="refAuthor">Jain, A.</span>, and <span class="refAuthor">A. Smirnov</span>, <span class="refTitle">"Locator/ID Separation Protocol Delegated Database Tree (LISP-DDT)"</span>, <span class="seriesInfo">RFC 8111</span>, <span class="seriesInfo">DOI 10.17487/RFC8111</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8111">https://www.rfc-editor.org/info/rfc8111</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8378">[RFC8378]</dt>
<dd>
<span class="refAuthor">Moreno, V.</span> and <span class="refAuthor">D. Farinacci</span>, <span class="refTitle">"Signal-Free Locator/ID Separation Protocol (LISP) Multicast"</span>, <span class="seriesInfo">RFC 8378</span>, <span class="seriesInfo">DOI 10.17487/RFC8378</span>, <time datetime="2018-05" class="refDate">May 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8378">https://www.rfc-editor.org/info/rfc8378</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9300">[RFC9300]</dt>
<dd>
<span class="refAuthor">Farinacci, D.</span>, <span class="refAuthor">Fuller, V.</span>, <span class="refAuthor">Meyer, D.</span>, <span class="refAuthor">Lewis, D.</span>, and <span class="refAuthor">A. Cabellos, Ed.</span>, <span class="refTitle">"The Locator/ID Separation Protocol (LISP)"</span>, <span class="seriesInfo">RFC 9300</span>, <span class="seriesInfo">DOI 10.17487/RFC9300</span>, <time datetime="2022-10" class="refDate">October 2022</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9300">https://www.rfc-editor.org/info/rfc9300</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9301">[RFC9301]</dt>
<dd>
<span class="refAuthor">Farinacci, D.</span>, <span class="refAuthor">Maino, F.</span>, <span class="refAuthor">Fuller, V.</span>, and <span class="refAuthor">A. Cabellos, Ed.</span>, <span class="refTitle">"Locator/ID Separation Protocol (LISP) Control Plane"</span>, <span class="seriesInfo">RFC 9301</span>, <span class="seriesInfo">DOI 10.17487/RFC9301</span>, <time datetime="2022-10" class="refDate">October 2022</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9301">https://www.rfc-editor.org/info/rfc9301</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9302">[RFC9302]</dt>
<dd>
<span class="refAuthor">Iannone, L.</span>, <span class="refAuthor">Saucez, D.</span>, and <span class="refAuthor">O. Bonaventure</span>, <span class="refTitle">"Locator/ID Separation Protocol (LISP) Map-Versioning"</span>, <span class="seriesInfo">RFC 9302</span>, <span class="seriesInfo">DOI 10.17487/RFC9302</span>, <time datetime="2022-10" class="refDate">October 2022</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9302">https://www.rfc-editor.org/info/rfc9302</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9303">[RFC9303]</dt>
<dd>
<span class="refAuthor">Maino, F.</span>, <span class="refAuthor">Ermagan, V.</span>, <span class="refAuthor">Cabellos, A.</span>, and <span class="refAuthor">D. Saucez</span>, <span class="refTitle">"Locator/ID Separation Protocol Security (LISP-SEC)"</span>, <span class="seriesInfo">RFC 9303</span>, <span class="seriesInfo">DOI 10.17487/RFC9303</span>, <time datetime="2022-10" class="refDate">October 2022</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9303">https://www.rfc-editor.org/info/rfc9303</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-10.2">
<h3 id="name-informative-references">
<a href="#section-10.2" class="section-number selfRef">10.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="Jakab">[Jakab]</dt>
<dd>
<span class="refAuthor">Jakab, L.</span>, <span class="refAuthor">Cabellos-Aparicio, A.</span>, <span class="refAuthor">Coras, F.</span>, <span class="refAuthor">Saucez, D.</span>, and <span class="refAuthor">O. Bonaventure</span>, <span class="refTitle">"LISP-TREE: A DNS Hierarchy to Support the LISP Mapping System"</span>, <span class="refContent">IEEE Journal on Selected Areas in Communications, vol. 28,
no. 8, pp. 1332-1343</span>, <span class="seriesInfo">DOI 10.1109/JSAC.2010.101011</span>, <time datetime="2010-10" class="refDate">October 2010</time>, <span><<a href="https://ieeexplore.ieee.org/document/5586446">https://ieeexplore.ieee.org/document/5586446</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.curran-lisp-emacs">[LISP-EMACS]</dt>
<dd>
<span class="refAuthor">Brim, S.</span>, <span class="refAuthor">Farinacci, D.</span>, <span class="refAuthor">Meyer, D.</span>, and <span class="refAuthor">J. Curran</span>, <span class="refTitle">"EID Mappings Multicast Across Cooperating Systems for LISP"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-curran-lisp-emacs-00</span>, <time datetime="2007-11-09" class="refDate">9 November 2007</time>, <span><<a href="https://www.ietf.org/archive/id/draft-curran-lisp-emacs-00.txt">https://www.ietf.org/archive/id/draft-curran-lisp-emacs-00.txt</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.cheng-lisp-shdht">[LISP-SHDHT]</dt>
<dd>
<span class="refAuthor">Cheng, L.</span> and <span class="refAuthor">M. Sun</span>, <span class="refTitle">"LISP Single-Hop DHT Mapping Overlay"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-cheng-lisp-shdht-04</span>, <time datetime="2013-07-15" class="refDate">15 July 2013</time>, <span><<a href="https://www.ietf.org/archive/id/draft-cheng-lisp-shdht-04.txt">https://www.ietf.org/archive/id/draft-cheng-lisp-shdht-04.txt</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Mathy">[Mathy]</dt>
<dd>
<span class="refAuthor">Mathy, L.</span> and <span class="refAuthor">L. Iannone</span>, <span class="refTitle">"LISP-DHT: Towards a DHT to map identifiers onto locators"</span>, <span class="refContent">CoNEXT '08: Proceedings of the 2008 ACM CoNEXT Conference, ReArch '08 - Re-Architecting the Internet</span>, <span class="seriesInfo">DOI 10.1145/1544012.1544073</span>, <time datetime="2008-12" class="refDate">December 2008</time>, <span><<a href="https://dl.acm.org/doi/10.1145/1544012.1544073">https://dl.acm.org/doi/10.1145/1544012.1544073</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Quoitin">[Quoitin]</dt>
<dd>
<span class="refAuthor">Quoitin, B.</span>, <span class="refAuthor">Iannone, L.</span>, <span class="refAuthor">de Launois, C.</span>, and <span class="refAuthor">O. Bonaventure</span>, <span class="refTitle">"Evaluating the Benefits of the Locator/Identifier Separation"</span>, <span class="refContent">Proceedings of 2nd ACM/IEEE International Workshop
on Mobility in the Evolving Internet Architecture</span>, <span class="seriesInfo">DOI 10.1145/1366919.1366926</span>, <time datetime="2007-08" class="refDate">August 2007</time>, <span><<a href="https://dl.acm.org/doi/10.1145/1366919.1366926">https://dl.acm.org/doi/10.1145/1366919.1366926</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<section id="appendix-A">
<h2 id="name-a-brief-history-of-location">
<a href="#appendix-A" class="section-number selfRef">Appendix A. </a><a href="#name-a-brief-history-of-location" class="section-name selfRef">A Brief History of Location/Identity Separation</a>
</h2>
<p id="appendix-A-1">The LISP architecture for separation of location and identity resulted from
the discussions of this topic at the Amsterdam IAB Routing and
Addressing Workshop, which took place in October 2006 <span>[<a href="#RFC4984" class="cite xref">RFC4984</a>]</span>.<a href="#appendix-A-1" class="pilcrow">¶</a></p>
<p id="appendix-A-2">A small group of like-minded personnel spontaneously formed immediately after that
workshop to work on an idea that came out of informal discussions at
the workshop and on various mailing lists. The first
Internet-Draft on LISP appeared in January 2007.<a href="#appendix-A-2" class="pilcrow">¶</a></p>
<p id="appendix-A-3">Trial implementations started at that time, with initial trial
deployments underway since June 2007; the results of early experience
have been fed back into the design in a continuous, ongoing process
over several years. At this point, LISP represents a moderately
mature system, having undergone a long, organic series of changes and
updates.<a href="#appendix-A-3" class="pilcrow">¶</a></p>
<p id="appendix-A-4">LISP transitioned from an IRTF activity to an IETF WG in March 2009.
After numerous revisions, the basic specifications moved to
becoming RFCs at the start of 2013; work to expand,
improve, and find new uses for it continues (and undoubtedly will
for a long time to come). The LISP WG was rechartered in 2018 to continue work on the LISP base protocol and produce Standards Track documents.<a href="#appendix-A-4" class="pilcrow">¶</a></p>
<section id="appendix-A.1">
<h3 id="name-old-lisp-models">
<a href="#appendix-A.1" class="section-number selfRef">A.1. </a><a href="#name-old-lisp-models" class="section-name selfRef">Old LISP Models</a>
</h3>
<p id="appendix-A.1-1">LISP, as initially conceived, had a number of potential operating
modes, named 'models'. Although they are not used anymore, one
occasionally sees mention of them, so they are briefly described
here.<a href="#appendix-A.1-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="appendix-A.1-2">
<dt id="appendix-A.1-2.1">LISP 1:</dt>
<dd style="margin-left: 1.5em" id="appendix-A.1-2.2">EIDs all appear in the normal routing and forwarding
tables of the network (i.e., they are 'routable'). This property is used
to load EID-to-RLOC mappings via bootstrapping operations. Packets are
sent with the EID as the destination in
the outer wrapper; when an ETR sees such a packet, it sends a
Map-Reply to the source ITR, giving the full mapping.<a href="#appendix-A.1-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-A.1-2.3">LISP 1.5:</dt>
<dd style="margin-left: 1.5em" id="appendix-A.1-2.4">LISP 1.5 is similar to LISP 1, but the routability of EIDs happens
on a separate network.<a href="#appendix-A.1-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-A.1-2.5">LISP 2:</dt>
<dd style="margin-left: 1.5em" id="appendix-A.1-2.6">EIDs are not routable; EID-to-RLOC mappings are available
from the DNS.<a href="#appendix-A.1-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-A.1-2.7">LISP 3:</dt>
<dd style="margin-left: 1.5em" id="appendix-A.1-2.8">EIDs are not routable and have to be looked up in a
new EID-to-RLOC mapping database (in the initial concept, a system
using Distributed Hash Tables). Two variants were possible: a
'push' system in which all mappings were distributed to all ITRs
and a 'pull' system in which ITRs load the mappings when they need them.<a href="#appendix-A.1-2.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="Acknowledgments">
<section id="appendix-B">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<p id="appendix-B-1">This document was initiated by <span class="contact-name">Noel Chiappa</span>,
and much of the core philosophy came from him. The authors acknowledge
the important contributions he has made to this work and thank him for
his past efforts.<a href="#appendix-B-1" class="pilcrow">¶</a></p>
<p id="appendix-B-2">The authors would also like to thank <span class="contact-name">Dino Farinacci</span>, <span class="contact-name">Fabio Maino</span>, <span class="contact-name">Luigi Iannone</span>, <span class="contact-name">Sharon Barkai</span>,
<span class="contact-name">Isidoros Kouvelas</span>, <span class="contact-name">Christian Cassar</span>, <span class="contact-name">Florin Coras</span>, <span class="contact-name">Marc Binderberger</span>, <span class="contact-name">Alberto Rodriguez-Natal</span>,
<span class="contact-name">Ronald Bonica</span>, <span class="contact-name">Chad Hintz</span>,
<span class="contact-name">Robert Raszuk</span>, <span class="contact-name">Joel M. Halpern</span>, <span class="contact-name">Darrel Lewis</span>, and <span class="contact-name">David Black</span>.<a href="#appendix-B-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="appendix-C">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Albert Cabellos</span></div>
<div dir="auto" class="left"><span class="org">Universitat Politecnica de Catalunya</span></div>
<div dir="auto" class="left"><span class="street-address">c/ Jordi Girona s/n</span></div>
<div dir="auto" class="left">
<span class="postal-code">08034</span> <span class="locality">Barcelona</span> </div>
<div dir="auto" class="left"><span class="country-name">Spain</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:acabello@ac.upc.edu" class="email">acabello@ac.upc.edu</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Damien Saucez (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Inria</span></div>
<div dir="auto" class="left"><span class="street-address">2004 route des Lucioles - BP 93</span></div>
<div dir="auto" class="left"><span class="locality">Sophia Antipolis</span></div>
<div dir="auto" class="left"><span class="country-name">France</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:damien.saucez@inria.fr" class="email">damien.saucez@inria.fr</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|