1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9313: Pros and Cons of IPv6 Transition Technologies for IPv4-as-a-Service (IPv4aaS)</title>
<meta content="Gábor Lencse" name="author">
<meta content="Jordi Palet Martinez" name="author">
<meta content="Lee Howard" name="author">
<meta content="Richard Patterson" name="author">
<meta content="Ian Farrer" name="author">
<meta content="
Several IPv6 transition technologies have been developed to
provide customers with IPv4-as-a-Service (IPv4aaS) for ISPs with an
IPv6-only access and/or core network. These technologies have their
advantages and disadvantages. Depending on existing topology, skills,
strategy, and other preferences, one of these technologies may be the
most appropriate solution for a network operator.
This document examines the five most prominent
IPv4aaS technologies and considers a number of different aspects
to provide network operators with an easy-to-use reference to assist in
selecting the technology that best suits their needs.
" name="description">
<meta content="xml2rfc 3.15.0" name="generator">
<meta content="IPv6" name="keyword">
<meta content="Transition Technologies" name="keyword">
<meta content="Comparison" name="keyword">
<meta content="IPv4aaS" name="keyword">
<meta content="IPv6-only" name="keyword">
<meta content="464XLAT" name="keyword">
<meta content="DNS64" name="keyword">
<meta content="Dual-Stack Lite" name="keyword">
<meta content="Lightweight 4over6" name="keyword">
<meta content="MAP-E" name="keyword">
<meta content="MAP-T" name="keyword">
<meta content="9313" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.15.0
Python 3.9.13
appdirs 1.4.4
ConfigArgParse 1.5.3
google-i18n-address 2.5.1
html5lib 1.1
intervaltree 3.1.0
Jinja2 3.1.2
kitchen 1.2.6
lxml 4.9.0
MarkupSafe 2.1.1
pycountry 22.3.5
PyYAML 6.0
requests 2.28.0
setuptools 44.1.1
six 1.16.0
weasyprint 56.1
-->
<link href="rfc9313.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necssary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
display: table;
border: none;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre, code {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
/* Fix PDF info block run off issue */
@media print {
#identifiers dd {
float: none;
}
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
pre.breakable {
break-inside: auto;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The follwing is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre, code {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact informatio look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background sligthtly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr {
break-inside: avoid;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: auto;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottim margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the comact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9313" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-v6ops-transition-comparison-04" rel="prev">
</head>
<body class="xml2rfc">
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9313</td>
<td class="center">Pros and Cons of IPv4aaS Technologies</td>
<td class="right">October 2022</td>
</tr></thead>
<tfoot><tr>
<td class="left">Lencse, et al.</td>
<td class="center">Informational</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9313" class="eref">9313</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Informational</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2022-10" class="published">October 2022</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">G. Lencse</div>
<div class="org">BUTE</div>
</div>
<div class="author">
<div class="author-name">J. Palet Martinez</div>
<div class="org">The IPv6 Company</div>
</div>
<div class="author">
<div class="author-name">L. Howard</div>
<div class="org">Retevia</div>
</div>
<div class="author">
<div class="author-name">R. Patterson</div>
<div class="org">Sky UK</div>
</div>
<div class="author">
<div class="author-name">I. Farrer</div>
<div class="org">Deutsche Telekom AG</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9313</h1>
<h1 id="title">Pros and Cons of IPv6 Transition Technologies for IPv4-as-a-Service (IPv4aaS)</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">Several IPv6 transition technologies have been developed to
provide customers with IPv4-as-a-Service (IPv4aaS) for ISPs with an
IPv6-only access and/or core network. These technologies have their
advantages and disadvantages. Depending on existing topology, skills,
strategy, and other preferences, one of these technologies may be the
most appropriate solution for a network operator.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
<p id="section-abstract-2">This document examines the five most prominent
IPv4aaS technologies and considers a number of different aspects
to provide network operators with an easy-to-use reference to assist in
selecting the technology that best suits their needs.<a href="#section-abstract-2" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for informational purposes.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9313">https://www.rfc-editor.org/info/rfc9313</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Revised BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Revised BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="auto internal xref">1</a>. <a href="#name-introduction" class="internal xref">Introduction</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="auto internal xref">2</a>. <a href="#name-overview-of-the-technologie" class="internal xref">Overview of the Technologies</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1" class="keepWithNext"><a href="#section-2.1" class="auto internal xref">2.1</a>. <a href="#name-464xlat" class="internal xref">464XLAT</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1" class="keepWithNext"><a href="#section-2.2" class="auto internal xref">2.2</a>. <a href="#name-dual-stack-lite" class="internal xref">Dual-Stack Lite</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.3">
<p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="auto internal xref">2.3</a>. <a href="#name-lightweight-4over6" class="internal xref">Lightweight 4over6</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.4">
<p id="section-toc.1-1.2.2.4.1"><a href="#section-2.4" class="auto internal xref">2.4</a>. <a href="#name-map-e" class="internal xref">MAP-E</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.5">
<p id="section-toc.1-1.2.2.5.1"><a href="#section-2.5" class="auto internal xref">2.5</a>. <a href="#name-map-t" class="internal xref">MAP-T</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="auto internal xref">3</a>. <a href="#name-high-level-architectures-an" class="internal xref">High-Level Architectures and Their Consequences</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="auto internal xref">3.1</a>. <a href="#name-service-provider-network-tr" class="internal xref">Service Provider Network Traversal</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="auto internal xref">3.2</a>. <a href="#name-network-address-translation" class="internal xref">Network Address Translation among the Different IPv4aaS Technologies</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3">
<p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="auto internal xref">3.3</a>. <a href="#name-ipv4-address-sharing" class="internal xref">IPv4 Address Sharing</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4">
<p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="auto internal xref">3.4</a>. <a href="#name-ipv4-pool-size-consideratio" class="internal xref">IPv4 Pool Size Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.5">
<p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="auto internal xref">3.5</a>. <a href="#name-ce-provisioning-considerati" class="internal xref">CE Provisioning Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.6">
<p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="auto internal xref">3.6</a>. <a href="#name-support-for-multicast" class="internal xref">Support for Multicast</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="auto internal xref">4</a>. <a href="#name-detailed-analysis" class="internal xref">Detailed Analysis</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="auto internal xref">4.1</a>. <a href="#name-architectural-differences" class="internal xref">Architectural Differences</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1.2.1">
<p id="section-toc.1-1.4.2.1.2.1.1"><a href="#section-4.1.1" class="auto internal xref">4.1.1</a>. <a href="#name-basic-comparison" class="internal xref">Basic Comparison</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="auto internal xref">4.2</a>. <a href="#name-trade-off-between-port-numb" class="internal xref">Trade-Off between Port Number Efficiency and Stateless Operation</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="auto internal xref">4.3</a>. <a href="#name-support-for-public-server-o" class="internal xref">Support for Public Server Operation</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4">
<p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="auto internal xref">4.4</a>. <a href="#name-support-and-implementations" class="internal xref">Support and Implementations</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4.2.1">
<p id="section-toc.1-1.4.2.4.2.1.1"><a href="#section-4.4.1" class="auto internal xref">4.4.1</a>. <a href="#name-vendor-support" class="internal xref">Vendor Support</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4.2.2">
<p id="section-toc.1-1.4.2.4.2.2.1"><a href="#section-4.4.2" class="auto internal xref">4.4.2</a>. <a href="#name-support-in-cellular-and-bro" class="internal xref">Support in Cellular and Broadband Networks</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4.2.3">
<p id="section-toc.1-1.4.2.4.2.3.1"><a href="#section-4.4.3" class="auto internal xref">4.4.3</a>. <a href="#name-implementation-code-sizes" class="internal xref">Implementation Code Sizes</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.5">
<p id="section-toc.1-1.4.2.5.1"><a href="#section-4.5" class="auto internal xref">4.5</a>. <a href="#name-typical-deployment-and-traf" class="internal xref">Typical Deployment and Traffic Volume Considerations</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.5.2.1">
<p id="section-toc.1-1.4.2.5.2.1.1"><a href="#section-4.5.1" class="auto internal xref">4.5.1</a>. <a href="#name-deployment-possibilities" class="internal xref">Deployment Possibilities</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.5.2.2">
<p id="section-toc.1-1.4.2.5.2.2.1"><a href="#section-4.5.2" class="auto internal xref">4.5.2</a>. <a href="#name-cellular-networks-with-464x" class="internal xref">Cellular Networks with 464XLAT</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.5.2.3">
<p id="section-toc.1-1.4.2.5.2.3.1"><a href="#section-4.5.3" class="auto internal xref">4.5.3</a>. <a href="#name-wireline-networks-with-464x" class="internal xref">Wireline Networks with 464XLAT</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.6">
<p id="section-toc.1-1.4.2.6.1"><a href="#section-4.6" class="auto internal xref">4.6</a>. <a href="#name-load-sharing" class="internal xref">Load Sharing</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.7">
<p id="section-toc.1-1.4.2.7.1"><a href="#section-4.7" class="auto internal xref">4.7</a>. <a href="#name-logging" class="internal xref">Logging</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.8">
<p id="section-toc.1-1.4.2.8.1"><a href="#section-4.8" class="auto internal xref">4.8</a>. <a href="#name-optimization-for-ipv4-only-" class="internal xref">Optimization for IPv4-Only Devices and Applications</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="auto internal xref">5</a>. <a href="#name-performance-comparison" class="internal xref">Performance Comparison</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="auto internal xref">6</a>. <a href="#name-iana-considerations" class="internal xref">IANA Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="auto internal xref">7</a>. <a href="#name-security-considerations" class="internal xref">Security Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="auto internal xref">8</a>. <a href="#name-references" class="internal xref">References</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8.2.1">
<p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="auto internal xref">8.1</a>. <a href="#name-normative-references" class="internal xref">Normative References</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8.2.2">
<p id="section-toc.1-1.8.2.2.1"><a href="#section-8.2" class="auto internal xref">8.2</a>. <a href="#name-informative-references" class="internal xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#appendix-A" class="auto internal xref"></a><a href="#name-acknowledgements" class="internal xref">Acknowledgements</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#appendix-B" class="auto internal xref"></a><a href="#name-authors-addresses" class="internal xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="intro">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">As the deployment of IPv6 continues to be prevalent, it becomes clearer
that network operators will move to building single-stack IPv6 core
and access networks to simplify network planning and operations.
However, providing customers with IPv4 services continues to be a
requirement for the foreseeable future. To meet this need, the IETF
has standardized a number of different IPv4aaS technologies
for this (see <span>[<a href="#LEN2019" class="cite xref">LEN2019</a>]</span>) based on differing requirements and
deployment scenarios.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">The number of technologies that have been developed makes it
time-consuming for a network operator to identify the most appropriate
mechanism for their specific deployment. This document provides a
comparative analysis of the most commonly used mechanisms to assist
operators with this problem.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">Five different IPv4aaS solutions are considered:<a href="#section-1-3" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-1-4">
<li id="section-1-4.1">464XLAT <span>[<a href="#RFC6877" class="cite xref">RFC6877</a>]</span><a href="#section-1-4.1" class="pilcrow">¶</a>
</li>
<li id="section-1-4.2">Dual-Stack Lite <span>[<a href="#RFC6333" class="cite xref">RFC6333</a>]</span><a href="#section-1-4.2" class="pilcrow">¶</a>
</li>
<li id="section-1-4.3">Lightweight 4over6 (lw4o6) <span>[<a href="#RFC7596" class="cite xref">RFC7596</a>]</span><a href="#section-1-4.3" class="pilcrow">¶</a>
</li>
<li id="section-1-4.4">Mapping of Address and Port with Encapsulation (MAP-E) <span>[<a href="#RFC7597" class="cite xref">RFC7597</a>]</span><a href="#section-1-4.4" class="pilcrow">¶</a>
</li>
<li id="section-1-4.5">Mapping of Address and Port using Translation (MAP-T) <span>[<a href="#RFC7599" class="cite xref">RFC7599</a>]</span><a href="#section-1-4.5" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-1-5">We note that <span>[<a href="#RFC6180" class="cite xref">RFC6180</a>]</span> gives
guidelines for using IPv6 transition mechanisms during IPv6 deployment;
that document addresses a much broader topic, whereas this document
focuses on a small part of it.<a href="#section-1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="overview">
<section id="section-2">
<h2 id="name-overview-of-the-technologie">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-overview-of-the-technologie" class="section-name selfRef">Overview of the Technologies</a>
</h2>
<p id="section-2-1">The following sections introduce the different technologies analyzed
in this document and describe some of their most important characteristics.<a href="#section-2-1" class="pilcrow">¶</a></p>
<div id="xlat_ov">
<section id="section-2.1">
<h3 id="name-464xlat">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-464xlat" class="section-name selfRef">464XLAT</a>
</h3>
<p id="section-2.1-1">464XLAT may use double translation (stateless NAT46 + stateful
NAT64) or single translation (stateful NAT64) depending on different
factors, such as the use of DNS by the applications and the
availability of a DNS64 function (in the host or service
provider network).<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">The customer-side translator (CLAT) is located in the customer's
device, and it performs stateless NAT46 translation <span>[<a href="#RFC7915" class="cite xref">RFC7915</a>]</span> (more precisely, a stateless
IP/ICMP translation from IPv4 to IPv6). IPv4-embedded IPv6 addresses
<span>[<a href="#RFC6052" class="cite xref">RFC6052</a>]</span> are used for both source and
destination addresses. Commonly, a /96 prefix (either the 64:ff9b::/96
Well-Known Prefix (WKP) or a Network-Specific Prefix) is used as the
IPv6 destination for the IPv4-embedded client traffic.<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<p id="section-2.1-3">In deployments where NAT64 load balancing (see <span><a href="https://www.rfc-editor.org/rfc/rfc7269#section-4.2" class="relref">Section 4.2</a> of [<a href="#RFC7269" class="cite xref">RFC7269</a>]</span>) is enabled, multiple WKPs <span>[<a href="#RFC8215" class="cite xref">RFC8215</a>]</span> may be used.<a href="#section-2.1-3" class="pilcrow">¶</a></p>
<p id="section-2.1-4">In the operator's network, the provider-side translator (PLAT)
performs stateful NAT64 <span>[<a href="#RFC6146" class="cite xref">RFC6146</a>]</span> to translate the
traffic. The destination IPv4 address is extracted from the
IPv4-embedded IPv6 packet destination address, and the source address is
from a pool of public IPv4 addresses.<a href="#section-2.1-4" class="pilcrow">¶</a></p>
<p id="section-2.1-5">Alternatively, when a dedicated /64 is not available for translation,
the CLAT device uses a stateful NAT44 translation before the stateless
NAT46 translation.<a href="#section-2.1-5" class="pilcrow">¶</a></p>
<p id="section-2.1-6">In general, keeping state in devices close to the end-user network (i.e., at the CE (Customer Edge) router) is not perceived to be as problematic as keeping state in the operator's network.<a href="#section-2.1-6" class="pilcrow">¶</a></p>
<p id="section-2.1-7">In typical deployments, 464XLAT is used together with DNS64
<span>[<a href="#RFC6147" class="cite xref">RFC6147</a>]</span>; see <span><a href="https://www.rfc-editor.org/rfc/rfc8683#section-3.1.2" class="relref">Section 3.1.2</a> of [<a href="#RFC8683" class="cite xref">RFC8683</a>]</span>.
When an IPv6-only client or application communicates with an IPv4-only
server, the DNS64 server returns the IPv4-embedded IPv6 address of the
IPv4-only server. In this case, the IPv6-only client sends out IPv6
packets, the CLAT functions as an IPv6 router, and the PLAT performs a
stateful NAT64 for these packets. There is a single
translation.<a href="#section-2.1-7" class="pilcrow">¶</a></p>
<p id="section-2.1-8">Similarly, when an IPv4-only client or application communicates
with an IPv4-only server, the CLAT will statelessly translate to IPv6
so it can traverse the ISP network up to the PLAT (NAT64), which in
turn will translate to IPv4.<a href="#section-2.1-8" class="pilcrow">¶</a></p>
<p id="section-2.1-9">Alternatively, one can say that DNS64 + stateful NAT64 is
used to carry the traffic of the IPv6-only client and the IPv4-only
server, and the CLAT is used only for the IPv4 traffic from applications
or devices that use literal IPv4 addresses or non-IPv6-compliant APIs.<a href="#section-2.1-9" class="pilcrow">¶</a></p>
<span id="name-overview-of-the-464xlat-arc"></span><div id="xlatarch">
<figure id="figure-1">
<div class="alignLeft art-text artwork" id="section-2.1-10.1">
<pre>
Private +----------+ Translated +----------+ _______
+------+ IPv4 | CLAT | 4-6-4 | PLAT | ( IPv4 )
| IPv4 |------->| Stateless|------------>| Stateful +--( Internet )
|Device|<-------| NAT46 |<------------| NAT64 | (________)
+------+ +----------+ ^ +----------+
|
Operator IPv6
Network</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-overview-of-the-464xlat-arc" class="selfRef">Overview of the 464XLAT Architecture</a>
</figcaption></figure>
</div>
<p id="section-2.1-11">Note: In mobile networks, the CLAT is commonly implemented in the
user equipment (UE) or smartphone; please refer to Figure 2 in <span>[<a href="#RFC6877" class="cite xref">RFC6877</a>]</span>.<a href="#section-2.1-11" class="pilcrow">¶</a></p>
<p id="section-2.1-12">Some NAT64 vendors support direct communication (that is, without translation)
between two CLATs by means of hairpinning through the NAT64.<a href="#section-2.1-12" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dslite_ov">
<section id="section-2.2">
<h3 id="name-dual-stack-lite">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-dual-stack-lite" class="section-name selfRef">Dual-Stack Lite</a>
</h3>
<p id="section-2.2-1">Dual-Stack Lite (DS-Lite) <span>[<a href="#RFC6333" class="cite xref">RFC6333</a>]</span> was the first
of the considered transition mechanisms to be developed. DS-Lite uses a
Basic Bridging BroadBand (B4) function in the customer's CE router
that encapsulates IPv4 in IPv6 traffic and sends it over the IPv6 native
service provider network to an Address Family Transition
Router (AFTR). The AFTR performs encapsulation/decapsulation of the
4in6 <span>[<a href="#RFC2473" class="cite xref">RFC2473</a>]</span> traffic and translates the IPv4 source
address in the inner IPv4 packet to a public IPv4 source address using
a stateful NAPT44 <span>[<a href="#RFC2663" class="cite xref">RFC2663</a>]</span> function.<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<span id="name-overview-of-the-ds-lite-arc"></span><div id="dslitearch">
<figure id="figure-2">
<div class="alignLeft art-text artwork" id="section-2.2-2.1">
<pre>
+-------------+
Private +----------+ IPv4-in-IPv6|Stateful AFTR|
+------+ IPv4 | B4 | Tunnel |------+------+ _______
| IPv4 |------->| Encap./ |------------>|Encap.| | ( IPv4 )
|Device|<-------| Decap. |<------------| / | NAPT +--( Internet )
+------+ +----------+ ^ |Decap.| 44 | (________)
| +------+------+
Operator IPv6
Network</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-overview-of-the-ds-lite-arc" class="selfRef">Overview of the DS-Lite Architecture</a>
</figcaption></figure>
</div>
<p id="section-2.2-3">Some AFTR vendors support direct communication
between two B4s by means of hairpinning through the AFTR.<a href="#section-2.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="lw4o6_ov">
<section id="section-2.3">
<h3 id="name-lightweight-4over6">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-lightweight-4over6" class="section-name selfRef">Lightweight 4over6</a>
</h3>
<p id="section-2.3-1">Lightweight 4over6 (lw4o6) is a variant of DS-Lite. The main
difference is that the stateful NAPT44 function is relocated from the
centralized AFTR to the customer's B4 element (called an "lwB4"). The
AFTR (called an "lwAFTR") function therefore only performs A+P
(Address plus Port) routing <span>[<a href="#RFC6346" class="cite xref">RFC6346</a>]</span> and 4in6
encapsulation/decapsulation.<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<p id="section-2.3-2">Routing to the correct client and IPv4 address sharing are achieved
using the A+P model <span>[<a href="#RFC6346" class="cite xref">RFC6346</a>]</span> of
provisioning each lwB4 with a unique tuple of IPv4 address and a unique range
of transport-layer ports. The client uses these for NAPT44.<a href="#section-2.3-2" class="pilcrow">¶</a></p>
<p id="section-2.3-3">The lwAFTR implements a binding table, which has a per-client
entry linking the customer's source IPv4 address and an allocated range of
transport-layer ports to their IPv6 tunnel endpoint address. The binding table
allows egress traffic from customers to be validated (to prevent
spoofing) and ingress traffic to be correctly encapsulated and
forwarded. As there needs to be a per-client entry, an lwAFTR
implementation needs to be optimized for performing a per-packet
lookup on the binding table.<a href="#section-2.3-3" class="pilcrow">¶</a></p>
<p id="section-2.3-4">Direct communication (that is, without translation) between two lwB4s is performed by hairpinning
traffic through the lwAFTR.<a href="#section-2.3-4" class="pilcrow">¶</a></p>
<span id="name-overview-of-the-lw4o6-archi"></span><div id="lw4o6arch">
<figure id="figure-3">
<div class="alignLeft art-text artwork" id="section-2.3-5.1">
<pre>
+-------------+ +----------+
Private | lwB4 | IPv4-in-IPv6| Stateless|
+------+ IPv4 |------+------| Tunnel | lwAFTR | _______
| IPv4 |------->| |Encap.|------------>|(encap/A+P| ( IPv4 )
|Device|<-------| NAPT | / |<------------|bind. tab +--( Internet )
+------+ | 44 |Decap.| ^ | routing) | (________)
+------+------+ | +----------+
Operator IPv6
Network</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-overview-of-the-lw4o6-archi" class="selfRef">Overview of the lw4o6 Architecture</a>
</figcaption></figure>
</div>
</section>
</div>
<div id="map_e_ov">
<section id="section-2.4">
<h3 id="name-map-e">
<a href="#section-2.4" class="section-number selfRef">2.4. </a><a href="#name-map-e" class="section-name selfRef">MAP-E</a>
</h3>
<p id="section-2.4-1">Like 464XLAT (<a href="#xlat_ov" class="auto internal xref">Section 2.1</a>), MAP-E and MAP-T use
IPv4-embedded IPv6 addresses <span>[<a href="#RFC6052" class="cite xref">RFC6052</a>]</span> to represent IPv4
hosts outside the MAP domain.<a href="#section-2.4-1" class="pilcrow">¶</a></p>
<p id="section-2.4-2">MAP-E and MAP-T use a stateless algorithm to embed portions of the customer's
allocated IPv4 address (or part of an address with A+P routing) into the
IPv6 prefix delegated to the client. This allows for large numbers of
clients to be provisioned using a single MAP rule (called a "MAP domain").
The algorithm also allows direct IPv4 peer-to-peer communication
between hosts provisioned with common MAP rules.<a href="#section-2.4-2" class="pilcrow">¶</a></p>
<p id="section-2.4-3">The CE router typically performs stateful NAPT44
<span>[<a href="#RFC2663" class="cite xref">RFC2663</a>]</span> to translate the private IPv4 source addresses
and source ports into an address and port range defined by applying
the MAP rule to the delegated IPv6 prefix. The client
address/port allocation size is a configuration parameter. The CE router then
encapsulates the IPv4 packet in an IPv6 packet <span>[<a href="#RFC2473" class="cite xref">RFC2473</a>]</span>
and sends it directly to another host in the MAP domain
(for peer-to-peer) or to a Border Router (BR) if the IPv4 destination is
not covered in one of the CE's MAP rules.<a href="#section-2.4-3" class="pilcrow">¶</a></p>
<p id="section-2.4-4">The MAP BR is provisioned with the set of MAP rules for the MAP
domains it serves. These rules determine how the MAP BR is to decapsulate
traffic that it receives from the client, validate the source IPv4
address and transport-layer ports assigned, and calculate the
destination IPv6 address for ingress IPv4 traffic.<a href="#section-2.4-4" class="pilcrow">¶</a></p>
<span id="name-overview-of-the-map-e-archi"></span><div id="map-e-arch">
<figure id="figure-4">
<div class="alignLeft art-text artwork" id="section-2.4-5.1">
<pre>
+-------------+ +----------+
Private | MAP CE | IPv4-in-IPv6| Stateless|
+------+ IPv4 |------+------| tunnel | MAP BR | _______
| IPv4 |------->| |Encap.|------------>|(encap/A+P| ( IPv4 )
|Device|<-------| NAPT | / |<------------|algorithm +--( Internet )
+------+ | 44 |Decap.| ^ | routing) | (________)
+------+------+ | +----------+
Operator IPv6
Network</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-overview-of-the-map-e-archi" class="selfRef">Overview of the MAP-E Architecture</a>
</figcaption></figure>
</div>
<p id="section-2.4-6">Some BR vendors support direct communication
between two MAP CEs by means of hairpinning through the BR.<a href="#section-2.4-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="map_t_ov">
<section id="section-2.5">
<h3 id="name-map-t">
<a href="#section-2.5" class="section-number selfRef">2.5. </a><a href="#name-map-t" class="section-name selfRef">MAP-T</a>
</h3>
<p id="section-2.5-1">MAP-T uses the same mapping algorithm as MAP-E. The major difference
is that double stateless translation (NAT46 in the CE and NAT64 in the
BR) is used to traverse the ISP's IPv6 single-stack network. MAP-T can
also be compared to 464XLAT when there is a double translation.<a href="#section-2.5-1" class="pilcrow">¶</a></p>
<p id="section-2.5-2">A MAP CE router typically performs stateful NAPT44 to translate traffic to a public
IPv4 address and port range calculated by applying the provisioned
Basic MAP Rule (BMR), which is a set of inputs to the algorithm, to the delegated
IPv6 prefix. The CE then performs stateless translation from IPv4 to
IPv6 <span>[<a href="#RFC7915" class="cite xref">RFC7915</a>]</span>.
The MAP BR is
provisioned with the same BMR as the client, enabling the received
IPv6 traffic to be translated (using stateless NAT64) back to the public
IPv4 source address used by the client.<a href="#section-2.5-2" class="pilcrow">¶</a></p>
<p id="section-2.5-3">Using translation instead of encapsulation also allows IPv4-only
nodes to correspond directly with IPv6 nodes in the MAP-T domain
that have IPv4-embedded IPv6 addresses.<a href="#section-2.5-3" class="pilcrow">¶</a></p>
<span id="name-overview-of-the-map-t-archi"></span><div id="map-t-arch">
<figure id="figure-5">
<div class="alignLeft art-text artwork" id="section-2.5-4.1">
<pre>
+-------------+ +----------+
Private | MAP CE | Translated | Stateless|
+------+ IPv4 |------+------| 4-6-4 | MAP BR | _______
| IPv4 |------->| |State-|------------>|(NAT64/A+P| ( IPv4 )
|Device|<-------| NAPT | less |<------------|algorithm +--( Internet )
+------+ | 44 |NAT46 | ^ | routing) | (________)
+------+------+ | +----------+
Operator IPv6
Network</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-overview-of-the-map-t-archi" class="selfRef">Overview of the MAP-T Architecture</a>
</figcaption></figure>
</div>
<p id="section-2.5-5">Some BR vendors support direct communication
between two MAP CEs by means of hairpinning through the BR.<a href="#section-2.5-5" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="hl_arch">
<section id="section-3">
<h2 id="name-high-level-architectures-an">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-high-level-architectures-an" class="section-name selfRef">High-Level Architectures and Their Consequences</a>
</h2>
<div id="sp_net_trav">
<section id="section-3.1">
<h3 id="name-service-provider-network-tr">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-service-provider-network-tr" class="section-name selfRef">Service Provider Network Traversal</a>
</h3>
<p id="section-3.1-1">For the data plane, there are two approaches for traversing
the IPv6 provider network:<a href="#section-3.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.1-2.1">4-6-4 translation<a href="#section-3.1-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.1-2.2">4in6 encapsulation<a href="#section-3.1-2.2" class="pilcrow">¶</a>
</li>
</ul>
<span id="name-available-traversal-mechani"></span><div id="net_trav_table">
<table class="center" id="table-1">
<caption>
<a href="#table-1" class="selfRef">Table 1</a>:
<a href="#name-available-traversal-mechani" class="selfRef">Available Traversal Mechanisms</a>
</caption>
<thead>
<tr>
<th class="text-center" rowspan="1" colspan="1"></th>
<th class="text-center" rowspan="1" colspan="1">464XLAT</th>
<th class="text-center" rowspan="1" colspan="1">DS-Lite</th>
<th class="text-center" rowspan="1" colspan="1">lw4o6</th>
<th class="text-center" rowspan="1" colspan="1">MAP-E</th>
<th class="text-center" rowspan="1" colspan="1">MAP-T</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">4-6-4 translation</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">4in6 encapsulation</td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</div>
<p id="section-3.1-4">In the scope of this document, all of the encapsulation-based
mechanisms use IP-in-IP tunneling <span>[<a href="#RFC2473" class="cite xref">RFC2473</a>]</span>.
This is a stateless tunneling mechanism that does not require any
additional overhead.<a href="#section-3.1-4" class="pilcrow">¶</a></p>
<p id="section-3.1-5">It should be noted that both of these approaches result in an
increase in the size of the packet that needs to be transported across
the operator's network when compared to native IPv4. 4-6-4
translation adds a 20-byte overhead (the 20-byte IPv4 header is
replaced with a 40-byte IPv6 header). Encapsulation has a 40-byte
overhead (an IPv6 header is prepended to the IPv4 header).<a href="#section-3.1-5" class="pilcrow">¶</a></p>
<p id="section-3.1-6">The increase in packet size can become a significant problem if there
is a link with a smaller MTU in the traffic path. This may result in the need for
traffic to be fragmented at the ingress point to the IPv6 only
domain (i.e., the NAT46 or 4in6 encapsulation endpoint). It may also
result in the need to implement buffering and fragment reassembly
in the PLAT/AFTR/lwAFTR/BR node.<a href="#section-3.1-6" class="pilcrow">¶</a></p>
<p id="section-3.1-7">The advice given in <span><a href="https://www.rfc-editor.org/rfc/rfc7597#section-8.3.1" class="relref">Section 8.3.1</a> of [<a href="#RFC7597" class="cite xref">RFC7597</a>]</span> is applicable to all of these mechanisms:
It is
strongly recommended that the MTU in the IPv6-only domain be well
managed (it should have sufficiently large MTU to support tunneling
and/or translation) and that the IPv6 MTU on the CE WAN-side interface
be set so that no fragmentation occurs within the boundary of the
IPv6-only domain.<a href="#section-3.1-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="nat">
<section id="section-3.2">
<h3 id="name-network-address-translation">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-network-address-translation" class="section-name selfRef">Network Address Translation among the Different IPv4aaS Technologies</a>
</h3>
<p id="section-3.2-1">
For the high-level solution of IPv6 service provider network traversal,
MAP-T uses double stateless translation. The first translation is from IPv4
to IPv6 (NAT46) at the CE, and the second translation is from IPv6 to IPv4
(NAT64) at the service provider network.<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<p id="section-3.2-2">464XLAT may use double translation (stateless NAT46 + stateful
NAT64) or single translation (stateful NAT64) depending on different
factors, such as the use of DNS by the applications and the availability
of a DNS64 function (in the host or in the service provider network).
For deployment guidelines, please refer to <span>[<a href="#RFC8683" class="cite xref">RFC8683</a>]</span>.<a href="#section-3.2-2" class="pilcrow">¶</a></p>
<p id="section-3.2-3">The first step for the double translation mechanisms is a stateless
NAT from IPv4 to IPv6 implemented as SIIT (Stateless IP/ICMP
Translation Algorithm) <span>[<a href="#RFC7915" class="cite xref">RFC7915</a>]</span>,
which does not translate IPv4 header options and/or multicast IP/ICMP
packets. With encapsulation-based technologies, the header is
transported intact, and multicast can also be carried.<a href="#section-3.2-3" class="pilcrow">¶</a></p>
<p id="section-3.2-4">Single and double translation results in native IPv6 traffic with a
transport-layer next header. The fields in these headers can be used
for functions such as hashing across equal-cost multipaths or Access
Control List (ACL) filtering. Encapsulation technologies, in contrast,
may hinder hashing algorithms or other functions relying on header
inspection.<a href="#section-3.2-4" class="pilcrow">¶</a></p>
<p id="section-3.2-5">Solutions using double translation can only carry port-aware IP
protocols (e.g., TCP and UDP) and ICMP when they are used with IPv4
address sharing (please refer to <a href="#pub_serv" class="auto internal xref">Section 4.3</a> for more details). Encapsulation-based solutions
can also carry any other protocols over IP.<a href="#section-3.2-5" class="pilcrow">¶</a></p>
<p id="section-3.2-6">An in-depth analysis of stateful NAT64 can be found in <span>[<a href="#RFC6889" class="cite xref">RFC6889</a>]</span>.<a href="#section-3.2-6" class="pilcrow">¶</a></p>
<p id="section-3.2-7">As stateful NAT interferes with the port numbers, <span>[<a href="#I-D.ietf-tsvwg-natsupp" class="cite xref">NAT-SUPP</a>]</span> explains how NATs
can handle SCTP (Stream Control Transmission Protocol).<a href="#section-3.2-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ipv4_sharing">
<section id="section-3.3">
<h3 id="name-ipv4-address-sharing">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-ipv4-address-sharing" class="section-name selfRef">IPv4 Address Sharing</a>
</h3>
<p id="section-3.3-1">As public IPv4 address exhaustion is a common motivation for
deploying IPv6, transition technologies need to provide a solution that
allows public IPv4 address sharing.<a href="#section-3.3-1" class="pilcrow">¶</a></p>
<p id="section-3.3-2">In order to fulfill this requirement, a stateful NAPT function is
a necessary function in all of the mechanisms. The major differentiator
is where in the architecture this function is located.<a href="#section-3.3-2" class="pilcrow">¶</a></p>
<p id="section-3.3-3">The solutions compared by this document fall into two categories:<a href="#section-3.3-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.3-4.1">Approaches based on Carrier-Grade NAT (CGN) (DS-Lite, 464XLAT)<a href="#section-3.3-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.3-4.2">Approaches based on A+P (lw4o6, MAP-E, MAP-T)<a href="#section-3.3-4.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.3-5">In the CGN-based model, a device such as a CGN/AFTR or NAT64 performs
the NAPT44 function and maintains per-session state for all of the
active client's traffic. The customer's device does not require
per-session state for NAPT.<a href="#section-3.3-5" class="pilcrow">¶</a></p>
<p id="section-3.3-6">In the A+P-based model, a device (usually a CE) performs stateful
NAPT44 and maintains per-session state only for co-located devices,
e.g., in the customer's home network. Here, the centralized network
function (lwAFTR or BR) only needs to perform stateless
encapsulation/decapsulation or NAT64.<a href="#section-3.3-6" class="pilcrow">¶</a></p>
<p id="section-3.3-7">Issues related to IPv4 address-sharing mechanisms are described
in <span>[<a href="#RFC6269" class="cite xref">RFC6269</a>]</span> and should also be considered.<a href="#section-3.3-7" class="pilcrow">¶</a></p>
<p id="section-3.3-8">The address-sharing efficiency of the five technologies is
significantly different and is discussed in
<a href="#port_num_eff" class="auto internal xref">Section 4.2</a>.<a href="#section-3.3-8" class="pilcrow">¶</a></p>
<p id="section-3.3-9">Lw4o6, MAP-E, and MAP-T can also be configured without IPv4 address sharing;
see the details in <a href="#pub_serv" class="auto internal xref">Section 4.3</a>. However, in that case, there is no advantage in
terms of public IPv4 address saving.
In the case of 464XLAT, one-to-one mapping can also
be achieved through EAMT (Explicit Address Mapping Table)
<span>[<a href="#RFC7757" class="cite xref">RFC7757</a>]</span>.<a href="#section-3.3-9" class="pilcrow">¶</a></p>
<p id="section-3.3-10">Conversely, both MAP-E and MAP-T may be configured to provide more
than one public IPv4 address (i.e., an address with an IPv4 prefix shorter than a /32)
to customers.<a href="#section-3.3-10" class="pilcrow">¶</a></p>
<p id="section-3.3-11">Dynamic DNS issues in address-sharing contexts and their possible
solutions using PCP (Port Control Protocol) are discussed in detail
in <span>[<a href="#RFC7393" class="cite xref">RFC7393</a>]</span>.<a href="#section-3.3-11" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ipv4_pool">
<section id="section-3.4">
<h3 id="name-ipv4-pool-size-consideratio">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-ipv4-pool-size-consideratio" class="section-name selfRef">IPv4 Pool Size Considerations</a>
</h3>
<p id="section-3.4-1">In this section, we do some simple calculations regarding port
numbers. However, technical limitations are not the only point to
consider for port sharing; there are also local regulations and
best current practices.<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<p id="section-3.4-2">Note: By "port numbers", we mean TCP/UDP port numbers or ICMP
identifiers.<a href="#section-3.4-2" class="pilcrow">¶</a></p>
<p id="section-3.4-3">In most networks, it is possible to use existing data about flows to
Content Delivery Networks (CDNs), caches, or other well-known
IPv6-enabled destinations to calculate the percentage of traffic that
would turn into IPv6 if IPv6 is enabled on that network or on part of it.<a href="#section-3.4-3" class="pilcrow">¶</a></p>
<p id="section-3.4-4">Knowing that, it is possible to calculate the IPv4 pool size
required for a given number of subscribers, depending on the IPv4aaS
technology being used.<a href="#section-3.4-4" class="pilcrow">¶</a></p>
<p id="section-3.4-5">According to <span>[<a href="#MIY2010" class="cite xref">MIY2010</a>]</span>, each
user device (computer, tablet, smartphone) behind a NAT could
simultaneously use up to 300 ports. (Table 1 of <span>[<a href="#MIY2010" class="cite xref">MIY2010</a>]</span> lists the port number usage of
various applications. According to <span>[<a href="#REP2014" class="cite xref">REP2014</a>]</span>, the downloading of some web pages may consume up to
200 port numbers.) If the extended NAPT algorithm is used, which
includes the full 5-tuple into the connection tracking table, then
the port numbers are reused when the destinations are
different. Therefore, we need to consider the number of "port-hungry"
applications that are accessing the same destination simultaneously.
We estimate that in the case of a residential subscriber, there will
be typically no more than four port-hungry applications communicating
with the same destination simultaneously, which is a total of 1,200
ports.<a href="#section-3.4-5" class="pilcrow">¶</a></p>
<p id="section-3.4-6">For example, if 80% of the traffic is expected towards IPv6
destinations, only 20% will actually be using IPv4 ports. Thus, in our
example, 240 ports are required for each subscriber.<a href="#section-3.4-6" class="pilcrow">¶</a></p>
<p id="section-3.4-7">From the 65,535 ports available per IPv4 address, we could even
consider reserving 1,024 ports for customers that need
EAMT entries for incoming connections to System ports (0-1023, also
called "well-known ports") <span>[<a href="#RFC7605" class="cite xref">RFC7605</a>]</span>.
This means that 64,511 ports are actually available for each IPv4 address.<a href="#section-3.4-7" class="pilcrow">¶</a></p>
<p id="section-3.4-8">According to this, a /22 (1.024 public IPv4 addresses) will be sufficient
for over 275,000 subscribers (1,024x64,511/240=275,246.93).<a href="#section-3.4-8" class="pilcrow">¶</a></p>
<p id="section-3.4-9">Similarly, a /18 (16,384 public IPv4 addresses) will be sufficient
for over 4,403,940 subscribers, and so on.<a href="#section-3.4-9" class="pilcrow">¶</a></p>
<p id="section-3.4-10">This is a conservative approach, which is valid in the case of
464XLAT because ports are assigned dynamically by the NAT64. Therefore, it is
not necessary to consider if one user is actually using more or fewer
ports; average values work well.<a href="#section-3.4-10" class="pilcrow">¶</a></p>
<p id="section-3.4-11">As the deployment of IPv6 progresses, the use of NAT64, and
therefore of public IPv4 addresses, decreases (more IPv6 ports, fewer
IPv4 ports). Thus, either more subscribers can be accommodated with the
same number of IPv4 addresses or some of those addressed can be
retired from the NAT64.<a href="#section-3.4-11" class="pilcrow">¶</a></p>
<p id="section-3.4-12">For comparison, if dual-stack is being used, any given number of
users will require the same number of public IPv4 addresses. For
instance, a /14 will provide 262,144 IPv4 public addresses for 262,144
subscribers, versus 275,000 subscribers being served with only a
/22.<a href="#section-3.4-12" class="pilcrow">¶</a></p>
<p id="section-3.4-13">In the other IPv4aaS technologies, this calculation will only match
if the assignment of ports per subscriber can be done dynamically,
which is not always the case (depending on the vendor
implementation).<a href="#section-3.4-13" class="pilcrow">¶</a></p>
<p id="section-3.4-14"> When dynamic assignment of addresses is not possible, an
alternative approximation for the other IPv4aaS technologies must ensure a
sufficient number of ports per subscriber.
That means 1,200 ports, and
typically, it comes to 2,000 ports in many deployments.
In that case, assuming 80% is IPv6 traffic (as above), only 30 subscribers
will be allowed per each IPv4 address; thus, the closer approximation to
275,000 subscribers per our example with 464XLAT (with a /22) will be using
a /19, which serves 245,760 subscribers (a /19 has 8,192 addresses and 30
subscribers with 2,000 ports each per address).<a href="#section-3.4-14" class="pilcrow">¶</a></p>
<p id="section-3.4-15">If the CGN (in case of DS-Lite) or the CE (in case of lw4o6, MAP-E,
and MAP-T) make use of a 5-tuple for tracking the NAT connections, the
number of ports required per subscriber can be limited as low as four
ports per subscriber. However, the practical limit depends on the
desired limit for parallel connections that any single host behind the
NAT can have to the same address and port in Internet. Note that it is
becoming more common that applications use AJAX (Asynchronous
JavaScript and XML) and similar mechanisms, so taking that extreme
limit is probably not a safe choice.<a href="#section-3.4-15" class="pilcrow">¶</a></p>
<p id="section-3.4-16">This feature of extremely reduced number of ports could also be used in
case the CLAT-enabled CE with 464XLAT makes use of tracking the 5-tuple NAT
connections and could also be further extended
if the NAT64 also uses the 5-tuple.<a href="#section-3.4-16" class="pilcrow">¶</a></p>
<p id="section-3.4-17">Please also refer to <span>[<a href="#RFC6888" class="cite xref">RFC6888</a>]</span> for in-depth information about
the requirements for sizing CGN gateways.<a href="#section-3.4-17" class="pilcrow">¶</a></p>
</section>
</div>
<div id="ce_prov">
<section id="section-3.5">
<h3 id="name-ce-provisioning-considerati">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-ce-provisioning-considerati" class="section-name selfRef">CE Provisioning Considerations</a>
</h3>
<p id="section-3.5-1">All of the technologies require some provisioning of customer
devices. The table below shows which methods currently have
extensions for provisioning the different mechanisms.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
<span id="name-available-provisioning-mech"></span><div id="prov_mech_table">
<table class="center" id="table-2">
<caption>
<a href="#table-2" class="selfRef">Table 2</a>:
<a href="#name-available-provisioning-mech" class="selfRef">Available Provisioning Mechanisms</a>
</caption>
<thead>
<tr>
<th class="text-left" rowspan="1" colspan="1">Provisioning Method</th>
<th class="text-center" rowspan="1" colspan="1">464XLAT</th>
<th class="text-center" rowspan="1" colspan="1">DS-Lite</th>
<th class="text-center" rowspan="1" colspan="1">lw4o6</th>
<th class="text-center" rowspan="1" colspan="1">MAP-E</th>
<th class="text-center" rowspan="1" colspan="1">MAP-T</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">DHCPv6 <span>[<a href="#RFC8415" class="cite xref">RFC8415</a>]</span>
</td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">RADIUS <span>[<a href="#RFC8658" class="cite xref">RFC8658</a>]</span>
</td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1">
<span>[<a href="#RFC6519" class="cite xref">RFC6519</a>]</span>
</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">TR-069 <span>[<a href="#TR-069" class="cite xref">TR-069</a>]</span>
</td>
<td class="text-center" rowspan="1" colspan="1">*</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1">*</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">DNS64 <span>[<a href="#RFC7050" class="cite xref">RFC7050</a>]</span>
</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">YANG <span>[<a href="#RFC7950" class="cite xref">RFC7950</a>]</span>
</td>
<td class="text-center" rowspan="1" colspan="1">
<span>[<a href="#RFC8512" class="cite xref">RFC8512</a>]</span>
</td>
<td class="text-center" rowspan="1" colspan="1">
<span>[<a href="#RFC8513" class="cite xref">RFC8513</a>]</span>
</td>
<td class="text-center" rowspan="1" colspan="1">
<span>[<a href="#RFC8676" class="cite xref">RFC8676</a>]</span>
</td>
<td class="text-center" rowspan="1" colspan="1">
<span>[<a href="#RFC8676" class="cite xref">RFC8676</a>]</span>
</td>
<td class="text-center" rowspan="1" colspan="1">
<span>[<a href="#RFC8676" class="cite xref">RFC8676</a>]</span>
</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1">DHCP 4o6 <span>[<a href="#RFC7341" class="cite xref">RFC7341</a>]</span>
</td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1">X</td>
<td class="text-center" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</div>
<span class="break"></span><dl class="dlParallel" id="section-3.5-3">
<dt id="section-3.5-3.1">*:</dt>
<dd style="margin-left: 1.5em" id="section-3.5-3.2">Work started at Broadband Forum (2021)<a href="#section-3.5-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-3.5-3.3">X:</dt>
<dd style="margin-left: 1.5em" id="section-3.5-3.4">Supported by the provisioning method<a href="#section-3.5-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<div id="multicast">
<section id="section-3.6">
<h3 id="name-support-for-multicast">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-support-for-multicast" class="section-name selfRef">Support for Multicast</a>
</h3>
<p id="section-3.6-1">The solutions covered in this document are all intended for
unicast traffic. <span>[<a href="#RFC8114" class="cite xref">RFC8114</a>]</span> describes a method for
carrying encapsulated IPv4 multicast traffic over an IPv6 multicast
network. This could be deployed in parallel to any of the operator's
chosen IPv4aaS mechanism.<a href="#section-3.6-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<section id="section-4">
<h2 id="name-detailed-analysis">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-detailed-analysis" class="section-name selfRef">Detailed Analysis</a>
</h2>
<section id="section-4.1">
<h3 id="name-architectural-differences">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-architectural-differences" class="section-name selfRef">Architectural Differences</a>
</h3>
<section id="section-4.1.1">
<h4 id="name-basic-comparison">
<a href="#section-4.1.1" class="section-number selfRef">4.1.1. </a><a href="#name-basic-comparison" class="section-name selfRef">Basic Comparison</a>
</h4>
<p id="section-4.1.1-1">The five IPv4aaS technologies can be classified
based on two aspects:<a href="#section-4.1.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1.1-2.1">Technology used for service provider network traversal.
It can be single/double translation or encapsulation.<a href="#section-4.1.1-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.1.1-2.2">Presence or absence of per-flow state in the
operator network.<a href="#section-4.1.1-2.2" class="pilcrow">¶</a>
</li>
</ul>
<span id="name-basic-comparison-among-the-"></span><div id="data_plane_table">
<table class="center" id="table-3">
<caption>
<a href="#table-3" class="selfRef">Table 3</a>:
<a href="#name-basic-comparison-among-the-" class="selfRef">Basic Comparison among the Analyzed Technologies</a>
</caption>
<thead>
<tr>
<th class="text-center" rowspan="1" colspan="1"></th>
<th class="text-center" rowspan="1" colspan="1">464XLAT</th>
<th class="text-center" rowspan="1" colspan="1">DS-Lite</th>
<th class="text-center" rowspan="1" colspan="1">lw4o6</th>
<th class="text-center" rowspan="1" colspan="1">MAP-E</th>
<th class="text-center" rowspan="1" colspan="1">MAP-T</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-left" rowspan="1" colspan="1">Translation (T) or Encapsulation (E) </td>
<td class="text-center" rowspan="1" colspan="1">T</td>
<td class="text-center" rowspan="1" colspan="1">E</td>
<td class="text-center" rowspan="1" colspan="1">E</td>
<td class="text-center" rowspan="1" colspan="1">E</td>
<td class="text-center" rowspan="1" colspan="1">T</td>
</tr>
<tr>
<td class="text-left" rowspan="1" colspan="1"> Presence (+) of Per-Flow State in Operator Network</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1">+</td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1"></td>
<td class="text-center" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</div>
</section>
</section>
<div id="port_num_eff">
<section id="section-4.2">
<h3 id="name-trade-off-between-port-numb">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-trade-off-between-port-numb" class="section-name selfRef">Trade-Off between Port Number Efficiency and Stateless Operation</a>
</h3>
<p id="section-4.2-1">464XLAT and DS-Lite use stateful NAPT at the PLAT and AFTR devices,
respectively. This may cause scalability issues for the number of clients
or volume of traffic, but it does not impose a limitation
on the number of ports per user, as they can be allocated dynamically
on-demand and the allocation policy can be centrally managed and adjusted.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2-2">A+P-based mechanisms (lw4o6, MAP-E, and MAP-T) avoid using NAPT in the
service provider network. However, this means that the number of ports
provided to each user (and hence the effective IPv4 address-sharing ratio)
must be pre-provisioned to the client.<a href="#section-4.2-2" class="pilcrow">¶</a></p>
<p id="section-4.2-3">Changing the allocated port ranges with A+P-based
technologies requires more planning and is likely to involve
reprovisioning both hosts and operator-side equipment. It should be
noted that due to the per-customer binding table entry used
by lw4o6, a single customer can be reprovisioned (e.g., if they
request a full IPv4 address) without needing to change parameters for a
number of customers as in a MAP domain.<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<p id="section-4.2-4">It is also worth noting that there is a direct relationship between
the efficiency of public port allocations for customers and the corresponding
logging overhead that may be necessary to meet data-retention
requirements. This is considered in <a href="#logging" class="auto internal xref">Section 4.7</a>.<a href="#section-4.2-4" class="pilcrow">¶</a></p>
<p id="section-4.2-5">Determining the optimal number of ports for a fixed port set is not
an easy task and may also be impacted by local regulatory law (and in
the Belgian case, it is not a law but more a memorandum of
understanding or best current practice), which may define a maximum
number of users per IP address and consequently a minimum number of
ports per user.<a href="#section-4.2-5" class="pilcrow">¶</a></p>
<p id="section-4.2-6">On the one hand, the "lack of ports" situation may cause serious
problems in the operation of certain applications. For example, Miyakawa
has demonstrated the consequences of the session number limitation due
to port number shortage in the example of Google Maps
<span>[<a href="#MIY2010" class="cite xref">MIY2010</a>]</span>. When the limit was 15, several blocks of the
map were missing, and the map was unusable. This study also provided
several examples for the session numbers of different applications
(the highest one was Apple's iTunes at 230-270 ports).<a href="#section-4.2-6" class="pilcrow">¶</a></p>
<p id="section-4.2-7">The port number consumption of different applications is highly
varying. In the case of web browsing, it depends on several
factors, including the choice of the web page, the web browser, and
sometimes the operating system <span>[<a href="#REP2014" class="cite xref">REP2014</a>]</span>. For example, under certain conditions, 120-160
ports were used (URL: sohu.com, browser: Firefox under Ubuntu Linux),
and in some other cases, only 3-12 ports were used (URL: twitter.com,
browser: Iceweasel under Debian Linux).<a href="#section-4.2-7" class="pilcrow">¶</a></p>
<p id="section-4.2-8">There may be several users behind a CE router, especially in the
broadband case (e.g., Internet is used by different members of a family
simultaneously), so sufficient ports must be allocated to avoid
impacting user experience.<a href="#section-4.2-8" class="pilcrow">¶</a></p>
<p id="section-4.2-9">In general, assigning too few source port numbers to an end user may
result in unexpected and hard-to-debug consequences; therefore, if the
number of ports per end user is fixed, then we recommend assigning a
conservatively large number of ports. For example, the developers of Jool used
2048 ports per user in their example for MAP-T <span>[<a href="#JOOL-MAPT" class="cite xref">JOOL-MAPT</a>]</span>.<a href="#section-4.2-9" class="pilcrow">¶</a></p>
<p id="section-4.2-10">However, assigning too many ports per CE router
will result in waste of public IPv4 addresses, which are scarce and
expensive resources. Clearly, this is a big advantage in the case of 464XLAT
where they are dynamically managed so that the number of IPv4 addresses
for the sharing pool is smaller while the availability of ports per user
doesn't need to be pre-defined and is not a limitation.<a href="#section-4.2-10" class="pilcrow">¶</a></p>
<p id="section-4.2-11">There is a direct trade-off between the optimization of client
port allocations and the associated logging overhead.
<a href="#logging" class="auto internal xref">Section 4.7</a> discusses this in more depth.<a href="#section-4.2-11" class="pilcrow">¶</a></p>
<p id="section-4.2-12"> We note that common NAT44 implementations utilizing Netfilter at the
CE router multiplex active sessions using a 3-tuple (source address,
destination address, and destination port). This means that external
source ports can be reused for unique internal source and destination
addresses and port sessions. It is also noted that Netfilter cannot
currently make use of multiple source port ranges (i.e., several blocks
of ports distributed across the total port space as is common in MAP
deployments). This may influence the design when using stateless
technologies.<a href="#section-4.2-12" class="pilcrow">¶</a></p>
<p id="section-4.2-13">Stateful technologies, 464XLAT, DS-Lite, and NAT444 can
therefore be much more efficient in terms of port allocation and thus
public IP address saving. The price is the stateful operation in the
service provider network, which allegedly does not scale up well.
It should be noted that, in many cases, all those factors may depend on
how it is actually implemented.<a href="#section-4.2-13" class="pilcrow">¶</a></p>
<p id="section-4.2-14">Measurements have been started to examine the scalability of a few
stateful solutions in two areas:<a href="#section-4.2-14" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-15.1">How their performance scales up with the number of CPU cores<a href="#section-4.2-15.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-15.2">To what extent their performance degrades with the number of
concurrent connections<a href="#section-4.2-15.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.2-16">
The details of the measurements and their results are available from
<span>[<a href="#I-D.lencse-v6ops-transition-scalability" class="cite xref">IPv4aaS-SCALE-TECH</a>]</span>.<a href="#section-4.2-16" class="pilcrow">¶</a></p>
<p id="section-4.2-17">We note that some CGN-type solutions can allocate ports dynamically
"on the fly". Depending on configuration, this can result in the same
customer being allocated ports from different source addresses. This can
cause operational issues for protocols and applications that expect
multiple flows to be sourced from the same address (e.g., ECMP hashing,
STUN, gaming, and content delivery networks). However, it should be noted
that this is the same problem when a network has a NAT44 with multiple
public IPv4 addresses, or even when applications in a dual-stack case,
behave wrongly if Happy Eyeballs is flapping the flow address between
IPv4 and IPv6.<a href="#section-4.2-17" class="pilcrow">¶</a></p>
<p id="section-4.2-18">The consequences of IPv4 address sharing <span>[<a href="#RFC6269" class="cite xref">RFC6269</a>]</span> may
impact all five technologies. However, when ports are allocated
statically, more customers may get ports from the same public IPv4
address, which may result in negative consequences with higher
probability. For example, many applications and service providers (Sony
PlayStation Network, OpenDNS, etc.) can permanently block IPv4 ranges
if they detect that they are used for address sharing.<a href="#section-4.2-18" class="pilcrow">¶</a></p>
<p id="section-4.2-19">Both cases are, again, implementation-dependent.<a href="#section-4.2-19" class="pilcrow">¶</a></p>
<p id="section-4.2-20">We note that although it is not of typical use, one can do
deterministic, stateful NAT and reserve a fixed set of ports for each
customer as well.<a href="#section-4.2-20" class="pilcrow">¶</a></p>
</section>
</div>
<div id="pub_serv">
<section id="section-4.3">
<h3 id="name-support-for-public-server-o">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-support-for-public-server-o" class="section-name selfRef">Support for Public Server Operation</a>
</h3>
<p id="section-4.3-1">Mechanisms that rely on operator-side per-flow state do not, by
themselves, offer a way for customers to present services on publicly
accessible transport-layer ports.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.3-2">The Port Control Protocol (PCP) <span>[<a href="#RFC6887" class="cite xref">RFC6887</a>]</span> provides a
mechanism for a client to request an external public port from a CGN
device. For server operation, it is required with 464XLAT/NAT64, and
it is supported in some DS-Lite AFTR implementations.<a href="#section-4.3-2" class="pilcrow">¶</a></p>
<p id="section-4.3-3">A+P-based mechanisms distribute a public IPv4 address and
restricted range of transport-layer ports to the client. In this case,
it is possible for the user to configure their device to offer a
publicly accessible server on one of their allocated ports. It should
be noted that operators commonly do not assign the well-known ports to
users (unless they are allocating a full IPv4 address), so the user
will need to run the service on an allocated port or configure port
translation.<a href="#section-4.3-3" class="pilcrow">¶</a></p>
<p id="section-4.3-4">Lw4o6, MAP-E, and MAP-T may be configured to allocated clients with
a full IPv4 address, allowing exclusive use of all ports and
non-port-based transport-layer protocols. Thus, they may also be used to support
server/services operation on their default ports. However, when public
IPv4 addresses are assigned to the CE router without address sharing,
there is obviously no advantage in terms of IPv4 public addresses saving.<a href="#section-4.3-4" class="pilcrow">¶</a></p>
<p id="section-4.3-5">It is also possible to configure specific ports mapping in
464XLAT/NAT64 using EAMT <span>[<a href="#RFC7757" class="cite xref">RFC7757</a>]</span>, which means that only
those ports are "lost" from the pool of addresses, so there is a higher
maximization of the total usage of IPv4 port resources.<a href="#section-4.3-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="supp_imp">
<section id="section-4.4">
<h3 id="name-support-and-implementations">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-support-and-implementations" class="section-name selfRef">Support and Implementations</a>
</h3>
<section id="section-4.4.1">
<h4 id="name-vendor-support">
<a href="#section-4.4.1" class="section-number selfRef">4.4.1. </a><a href="#name-vendor-support" class="section-name selfRef">Vendor Support</a>
</h4>
<p id="section-4.4.1-1">In general, router vendors support AFTR, MAP-E BR, MAP-T
BR, and NAT64. Vendors of load balancers and firewalls usually
support NAT64 as well while not all of them have support for
the other protocols.<a href="#section-4.4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.4.1-2">A 464XLAT client (CLAT) is implemented in Windows 10, Linux
(including Android), Windows Mobile, Chrome OS, and iOS, but it is
not available in macOS 12.3.1.<a href="#section-4.4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.4.1-3">The remaining four solutions are commonly deployed as functions
in the CE device only; however, the vendors' support is poor in
general (except for DS-Lite).<a href="#section-4.4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.4.1-4"> OpenWRT is a Linux-based open-source OS designed for CE devices. It
offers a number of different 'opkg' packages as part of the distribution:<a href="#section-4.4.1-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-5.1">'464xlat' enables support for 464XLAT CLAT functionality.<a href="#section-4.4.1-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-5.2">'ds-lite' enables support for DSLite B4 functionality.<a href="#section-4.4.1-5.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-5.3">'map' enables support for MAP-E and lw4o6 CE
functionality.<a href="#section-4.4.1-5.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-5.4">'map-t' enables support for MAP-T CE functionality.<a href="#section-4.4.1-5.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.4.1-6">At the time of publication, some free open-source implementations
exist for the operator-side functionality:<a href="#section-4.4.1-6" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.4.1-7.1">Jool <span>[<a href="#JOOL" class="cite xref">JOOL</a>]</span> (CLAT, NAT64, EAMT, MAP-T CE, MAP-T BR)<a href="#section-4.4.1-7.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-7.2">VPP/fd.io <span>[<a href="#VPP" class="cite xref">VPP</a>]</span> (MAP-BR, lwAFTR, CGN, CLAT, NAT64)<a href="#section-4.4.1-7.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-7.3">Snabb <span>[<a href="#SNABB" class="cite xref">SNABB</a>]</span> (lwAFTR)<a href="#section-4.4.1-7.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.4.1-7.4">AFTR <span>[<a href="#AFTR" class="cite xref">AFTR</a>]</span> (DSLite AFTR)<a href="#section-4.4.1-7.4" class="pilcrow">¶</a>
</li>
</ul>
</section>
<div id="cell_broad_supp">
<section id="section-4.4.2">
<h4 id="name-support-in-cellular-and-bro">
<a href="#section-4.4.2" class="section-number selfRef">4.4.2. </a><a href="#name-support-in-cellular-and-bro" class="section-name selfRef">Support in Cellular and Broadband Networks</a>
</h4>
<p id="section-4.4.2-1">Several cellular networks use 464XLAT, whereas there are no
deployments of the four other technologies in cellular networks, as
they are neither standardized nor implemented in UE devices.<a href="#section-4.4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.4.2-2">In broadband networks, there are some deployments of 464XLAT, MAP-E,
and MAP-T.
Lw4o6 and DS-Lite have more deployments, with DS-Lite
being the most common, but deployments of lw4o6 have been rapidly
increasing in the last few years.<a href="#section-4.4.2-2" class="pilcrow">¶</a></p>
<p id="section-4.4.2-3">Please refer to Tables 2 and 3 of <span>[<a href="#LEN2019" class="cite xref">LEN2019</a>]</span>
for a limited set of deployment information.<a href="#section-4.4.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="code_size">
<section id="section-4.4.3">
<h4 id="name-implementation-code-sizes">
<a href="#section-4.4.3" class="section-number selfRef">4.4.3. </a><a href="#name-implementation-code-sizes" class="section-name selfRef">Implementation Code Sizes</a>
</h4>
<p id="section-4.4.3-1">As a hint to the relative complexity of the mechanisms, the
code sizes reported from the OpenWRT
implementations of each technology are 17 kB, 35 kB, 15 kB, 35 kB, and
48 kB for 464XLAT, lw4o6,
DS-Lite, MAP-E, and MAP-T, respectively
(see <span><<a href="https://openwrt.org/packages/start">https://openwrt.org/packages/start</a>></span>).<a href="#section-4.4.3-1" class="pilcrow">¶</a></p>
<p id="section-4.4.3-2">We note that the support for all five technologies requires a much
smaller code size than the total sum of the above quantities, because
they contain a lot of common functions (e.g., data plane is shared among
several of them).<a href="#section-4.4.3-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<section id="section-4.5">
<h3 id="name-typical-deployment-and-traf">
<a href="#section-4.5" class="section-number selfRef">4.5. </a><a href="#name-typical-deployment-and-traf" class="section-name selfRef">Typical Deployment and Traffic Volume Considerations</a>
</h3>
<section id="section-4.5.1">
<h4 id="name-deployment-possibilities">
<a href="#section-4.5.1" class="section-number selfRef">4.5.1. </a><a href="#name-deployment-possibilities" class="section-name selfRef">Deployment Possibilities</a>
</h4>
<p id="section-4.5.1-1">Theoretically, all five IPv4aaS technologies could be
used together with DNS64 + stateful NAT64, as is done in 464XLAT.
In this case, the CE router would treat the traffic between an
IPv6-only client and IPv4-only server as normal IPv6 traffic, and
the stateful NAT64 gateway would do a single translation, thus
offloading this kind of traffic from the IPv4aaS technology. The
cost of this solution would be the need to also deploy DNS64 +
stateful NAT64.<a href="#section-4.5.1-1" class="pilcrow">¶</a></p>
<p id="section-4.5.1-2">However, this has not been implemented in clients or actual
deployments, so only 464XLAT always uses this optimization, and the
other four solutions do not use it at all.<a href="#section-4.5.1-2" class="pilcrow">¶</a></p>
</section>
<section id="section-4.5.2">
<h4 id="name-cellular-networks-with-464x">
<a href="#section-4.5.2" class="section-number selfRef">4.5.2. </a><a href="#name-cellular-networks-with-464x" class="section-name selfRef">Cellular Networks with 464XLAT</a>
</h4>
<p id="section-4.5.2-1">Figures from existing deployments (through the end of 2018) show
the typical traffic volumes in an IPv6-only cellular network when
464XLAT technology is used together with DNS64:<a href="#section-4.5.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.5.2-2.1">75% of traffic is IPv6 end-to-end (no translation).<a href="#section-4.5.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.5.2-2.2">24% of traffic uses DNS64 + NAT64 (one translation).<a href="#section-4.5.2-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.5.2-2.3">Less than 1% of traffic uses the CLAT in addition to NAT64
(two translations), due to an IPv4 socket and/or IPv4 literal.<a href="#section-4.5.2-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.5.2-3">Without using DNS64, 25% of the traffic would undergo double
translation.<a href="#section-4.5.2-3" class="pilcrow">¶</a></p>
</section>
<section id="section-4.5.3">
<h4 id="name-wireline-networks-with-464x">
<a href="#section-4.5.3" class="section-number selfRef">4.5.3. </a><a href="#name-wireline-networks-with-464x" class="section-name selfRef">Wireline Networks with 464XLAT</a>
</h4>
<p id="section-4.5.3-1"> Figures from several existing deployments (through the end of
2020), mainly with residential customers, show the ranges of typical
traffic volumes in an IPv6-only network, when 464XLAT is used with
DNS64:<a href="#section-4.5.3-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.5.3-2.1">65%-85% of traffic is IPv6 end-to-end (no translation).<a href="#section-4.5.3-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.5.3-2.2">14%-34% of traffic uses DNS64 + NAT64 (one translation).<a href="#section-4.5.3-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.5.3-2.3">Less than 1-2% of traffic uses the CLAT in addition to NAT64
(two translations), due to an IPv4 socket and/or IPv4 literal.<a href="#section-4.5.3-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.5.3-3">Without using DNS64, 16%-35% of the traffic would undergo double
translation.<a href="#section-4.5.3-3" class="pilcrow">¶</a></p>
<p id="section-4.5.3-4">
This data is consistent with non-public information of actual deployments,
which can be easily explained. When a wireline ISP has mainly residential
customers, content providers and CDNs that are already IPv6 enabled
(Google/YouTube, Netflix, Facebook, Akamai, etc.) typically account for 65-85%
of the traffic in the network. Thus, when the subscribers are IPv6 enabled,
about the same percentage of traffic will become IPv6.<a href="#section-4.5.3-4" class="pilcrow">¶</a></p>
</section>
</section>
<section id="section-4.6">
<h3 id="name-load-sharing">
<a href="#section-4.6" class="section-number selfRef">4.6. </a><a href="#name-load-sharing" class="section-name selfRef">Load Sharing</a>
</h3>
<p id="section-4.6-1">If multiple network-side devices are needed as PLAT/AFTR/BR for
capacity, then there is a need for a load-sharing mechanism. ECMP
(Equal-Cost Multipath) load sharing can be used for all
technologies; however, stateful technologies will be impacted by
changes in network topology or device failure.<a href="#section-4.6-1" class="pilcrow">¶</a></p>
<p id="section-4.6-2">Technologies utilizing DNS64 can also distribute load across
PLAT/AFTR devices, evenly or unevenly, by using different prefixes.
Different network-specific prefixes can be distributed for
subscribers in appropriately sized segments (like split-horizon DNS,
also called "DNS views").<a href="#section-4.6-2" class="pilcrow">¶</a></p>
<p id="section-4.6-3">Stateless technologies, due to the lack of per-flow state, can
make use of anycast routing for load sharing and resiliency across
network devices, both ingress and egress; flows can take asymmetric
paths through the network, i.e., in through one lwAFTR/BR and out
via another.<a href="#section-4.6-3" class="pilcrow">¶</a></p>
<p id="section-4.6-4">Mechanisms with centralized NAPT44 state have a number of challenges
specifically related to scaling and resilience. As the total amount of
client traffic exceeds the capacity of a single CGN instance, additional
nodes are required to handle the load. Each CGN maintains a
stateful table of active client sessions, and this table may need to be
synchronized between CGN instances. This is necessary for two reasons:<a href="#section-4.6-4" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.6-5.1">To prevent all active customer sessions from being dropped in the event
of a CGN node failure.<a href="#section-4.6-5.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.6-5.2">To ensure a matching state table entry for an active session in
the event of asymmetric routing through different egress and ingress
CGN nodes.<a href="#section-4.6-5.2" class="pilcrow">¶</a>
</li>
</ul>
</section>
<div id="logging">
<section id="section-4.7">
<h3 id="name-logging">
<a href="#section-4.7" class="section-number selfRef">4.7. </a><a href="#name-logging" class="section-name selfRef">Logging</a>
</h3>
<p id="section-4.7-1">In the case of 464XLAT and DS-Lite, the user of any given public
IPv4 address and port combination will vary over time; therefore,
logging is necessary to meet data-retention laws. Each entry in the
PLAT/AFTR generates a logging entry. As discussed in
<a href="#port_num_eff" class="auto internal xref">Section 4.2</a>, a client may open hundreds of sessions
during common tasks such as web browsing, each of which needs to be
logged so the overall logging burden on the network operator is
significant. In some countries, this level of logging is required to comply
with data-retention legislation.<a href="#section-4.7-1" class="pilcrow">¶</a></p>
<p id="section-4.7-2">One common optimization available to reduce the logging overhead
is the allocation of a block of ports to a client for the duration
of their session. This means that a logging entry only needs to be
made when the client's port block is released, which dramatically
reduces the logging overhead. This comes as the cost of less
efficient public address sharing as clients need to be allocated a
port block of a fixed size regardless of the actual number of ports
that they are using.<a href="#section-4.7-2" class="pilcrow">¶</a></p>
<p id="section-4.7-3">Stateless technologies that pre-allocate the IPv4 addresses and
ports only require that copies of the active MAP rules (for MAP-E and
MAP-T) or binding table (for lw4o6) are retained along with timestamp
information of when they have been active. Support tools (e.g., those
used to serve data-retention requests) may need to be updated to be
aware of the mechanism in use (e.g., implementing the MAP algorithm so
that IPv4 information can be linked to the IPv6 prefix delegated to a
client). Stateless technologies do not have a centralized stateful
element that customer traffic needs to pass through, so if
data-retention laws mandate per-session logging, there is no simple
way of meeting this requirement with a stateless technology alone.
Thus, a centralized NAPT44 model may be the only way to meet this
requirement.<a href="#section-4.7-3" class="pilcrow">¶</a></p>
<p id="section-4.7-4">Deterministic CGN <span>[<a href="#RFC7422" class="cite xref">RFC7422</a>]</span> was proposed as a solution to
reduce the resource consumption of logging.<a href="#section-4.7-4" class="pilcrow">¶</a></p>
<p id="section-4.7-5">Please also refer to <span><a href="https://www.rfc-editor.org/rfc/rfc6888#section-4" class="relref">Section 4</a> of [<a href="#RFC6888" class="cite xref">RFC6888</a>]</span> for more information about
requirements for logging CGN gateways.<a href="#section-4.7-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="optimization">
<section id="section-4.8">
<h3 id="name-optimization-for-ipv4-only-">
<a href="#section-4.8" class="section-number selfRef">4.8. </a><a href="#name-optimization-for-ipv4-only-" class="section-name selfRef">Optimization for IPv4-Only Devices and Applications</a>
</h3>
<p id="section-4.8-1">When IPv4-only devices or applications are behind a CE connected with
IPv6-only and IPv4aaS, the IPv4-only traffic flows will necessarily be
encapsulated/decapsulated (in the case of DS-Lite, lw4o6, and MAP-E)
and will reach the IPv4 address of the destination, even if that
service supports dual-stack. This means that the traffic flow will
cross through the AFTR, lwAFTR, or BR, depending on the specific
transition mechanism being used.<a href="#section-4.8-1" class="pilcrow">¶</a></p>
<p id="section-4.8-2">Even if those services are directly connected to the operator network
(e.g., CDNs and caches) or located internally (such as VoIP, etc.),
it is not possible to avoid that overhead.<a href="#section-4.8-2" class="pilcrow">¶</a></p>
<p id="section-4.8-3">However, in the case of those mechanisms that use a NAT46 function, in the CE (464XLAT and MAP-T), it is possible to take
advantage of optimization functionalities, such as the ones described
in <span>[<a href="#I-D.ietf-v6ops-464xlat-optimization" class="cite xref">OP-464XLAT/MAP-T</a>]</span>.<a href="#section-4.8-3" class="pilcrow">¶</a></p>
<p id="section-4.8-4">
Because the NAT46 has already translated
the IPv4-only flow to IPv6 and the services are dual-stack, using these
optimizations allows the services to
be reached without the need to translate the flow back to IPv4.<a href="#section-4.8-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<div id="performance">
<section id="section-5">
<h2 id="name-performance-comparison">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-performance-comparison" class="section-name selfRef">Performance Comparison</a>
</h2>
<p id="section-5-1">We plan to compare the performances of the most prominent free software
implementations of the five IPv6 transition technologies using the
methodology described in "Benchmarking Methodology for IPv6 Transition
Technologies" <span>[<a href="#RFC8219" class="cite xref">RFC8219</a>]</span>.<a href="#section-5-1" class="pilcrow">¶</a></p>
<p id="section-5-2">The dual Device Under Test (DUT) setup of <span>[<a href="#RFC8219" class="cite xref">RFC8219</a>]</span> makes it possible to use the existing measurement devices compliant with
"Benchmarking Methodology for Network Interconnect Devices"
<span>[<a href="#RFC2544" class="cite xref">RFC2544</a>]</span>; however,
this solution has two kinds of limitations:<a href="#section-5-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5-3.1">Dual DUT setup has the drawback that the performances of the CE
and the ISP-side device (e.g., the CLAT and PLAT of 464XLAT)
are measured together. In order to measure the performance of
only one of them, we need to ensure that the desired one is the
bottleneck.<a href="#section-5-3.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5-3.2">Measurement procedures for Packet Delay Variation (PDV)
and Inter-Packet Delay Variation (IPDV) measurements are
missing from the legacy devices, and the old measurement
procedure for latency has been redefined in <span>[<a href="#RFC8219" class="cite xref">RFC8219</a>]</span>.<a href="#section-5-3.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5-4">The single DUT setup of <span>[<a href="#RFC8219" class="cite xref">RFC8219</a>]</span>
makes it possible to benchmark the selected device separately, but
either special Tester is required or some trick is needed if we want to
use legacy Testers. An example for the latter is our stateless NAT64
measurements testing Throughput and Frame Loss Rate using a legacy
commercial Tester <span>[<a href="#LEN2020a" class="cite xref">LEN2020a</a>]</span> that is
compliant with <span>[<a href="#RFC5180" class="cite xref">RFC5180</a>]</span>.<a href="#section-5-4" class="pilcrow">¶</a></p>
<p id="section-5-5">Siitperf, a DPDK-based
software Tester that is compliant with <span>[<a href="#RFC8219" class="cite xref">RFC8219</a>]</span> and used for benchmarking stateless NAT64 gateways, has been
developed recently. Siitperf is available from GitHub
<span>[<a href="#SIITPERF" class="cite xref">SIITPERF</a>]</span> as free software and is documented in
<span>[<a href="#LEN2021" class="cite xref">LEN2021</a>]</span>. Originally, it literally followed the test
frame format of <span>[<a href="#RFC2544" class="cite xref">RFC2544</a>]</span>, including "hard-wired" source and
destination port numbers, and then it was complemented with the
pseudorandom port feature required by <span>[<a href="#RFC4814" class="cite xref">RFC4814</a>]</span>. The new
version is documented in <span>[<a href="#LEN2020b" class="cite xref">LEN2020b</a>]</span>.<a href="#section-5-5" class="pilcrow">¶</a></p>
<p id="section-5-6">Further DPDK-based software Testers that are compliant with <span>[<a href="#RFC8219" class="cite xref">RFC8219</a>]</span>
are being developed at the Budapest University of Technology and
Economics as student projects. They are planned to be released as free
software, too.<a href="#section-5-6" class="pilcrow">¶</a></p>
<p id="section-5-7">Information about the benchmarking tools, measurements, and results will
be made available in <span>[<a href="#I-D.lencse-v6ops-transition-benchmarking" class="cite xref">IPv4aaS-BENCHMARK-TECH</a>]</span>.<a href="#section-5-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="IANA">
<section id="section-6">
<h2 id="name-iana-considerations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-6-1">This document has no IANA actions.<a href="#section-6-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="Security">
<section id="section-7">
<h2 id="name-security-considerations">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-7-1">As discussed in <a href="#logging" class="auto internal xref">Section 4.7</a>, the different technologies have varying
logging capabilities and limitations. Care should be taken when storing,
transmitting, and providing access to log entries that may be considered
personally identifiable information. However, it should be noted that
those issues are not specific to the IPv4aaS IPv6 transition technologies
but apply to logging functionalities in general.<a href="#section-7-1" class="pilcrow">¶</a></p>
<p id="section-7-2">For all five technologies, the CE device typically contains a DNS proxy.
However, the user may change DNS settings. If this happens and lw4o6, MAP-E,
and MAP-T are used with a significantly restricted port set (which is
required for efficient public IPv4 address sharing), the entropy of the
source ports is significantly lowered (e.g., from 16 bits to 10 bits when
1024 port numbers are assigned to each subscriber), and these
technologies are thus theoretically less resilient against cache poisoning (see
<span>[<a href="#RFC5452" class="cite xref">RFC5452</a>]</span>). However, an efficient cache poisoning attack
requires that the subscriber operates its own caching DNS server and the
attack is performed in the service provider network. Thus, we consider the
chance of the successful exploitation of this vulnerability to be low.<a href="#section-7-2" class="pilcrow">¶</a></p>
<p id="section-7-3">IPv4aaS technologies based on encapsulation have no DNSSEC
implications. However, those based on translation may have implications
as discussed in <span><a href="https://www.rfc-editor.org/rfc/rfc8683#section-4.1" class="relref">Section 4.1</a> of [<a href="#RFC8683" class="cite xref">RFC8683</a>]</span>.<a href="#section-7-3" class="pilcrow">¶</a></p>
<p id="section-7-4">An in-depth security analysis of all five IPv6 transition technologies
and their most prominent free software implementations according to the
methodology defined in <span>[<a href="#LEN2018" class="cite xref">LEN2018</a>]</span> is planned.<a href="#section-7-4" class="pilcrow">¶</a></p>
<p id="section-7-5">As the first step, an initial security analysis of 464XLAT was
done in <span>[<a href="#AZZ2021" class="cite xref">AZZ2021</a>]</span>.<a href="#section-7-5" class="pilcrow">¶</a></p>
<p id="section-7-6">The implementers of any of the five IPv4aaS solutions should consult the
Security Considerations of the respective RFCs documenting them.<a href="#section-7-6" class="pilcrow">¶</a></p>
</section>
</div>
<section id="section-8">
<h2 id="name-references">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-8.1">
<h3 id="name-normative-references">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC2473">[RFC2473]</dt>
<dd>
<span class="refAuthor">Conta, A.</span> and <span class="refAuthor">S. Deering</span>, <span class="refTitle">"Generic Packet Tunneling in IPv6 Specification"</span>, <span class="seriesInfo">RFC 2473</span>, <span class="seriesInfo">DOI 10.17487/RFC2473</span>, <time datetime="1998-12" class="refDate">December 1998</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2473">https://www.rfc-editor.org/info/rfc2473</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2544">[RFC2544]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span> and <span class="refAuthor">J. McQuaid</span>, <span class="refTitle">"Benchmarking Methodology for Network Interconnect Devices"</span>, <span class="seriesInfo">RFC 2544</span>, <span class="seriesInfo">DOI 10.17487/RFC2544</span>, <time datetime="1999-03" class="refDate">March 1999</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2544">https://www.rfc-editor.org/info/rfc2544</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2663">[RFC2663]</dt>
<dd>
<span class="refAuthor">Srisuresh, P.</span> and <span class="refAuthor">M. Holdrege</span>, <span class="refTitle">"IP Network Address Translator (NAT) Terminology and Considerations"</span>, <span class="seriesInfo">RFC 2663</span>, <span class="seriesInfo">DOI 10.17487/RFC2663</span>, <time datetime="1999-08" class="refDate">August 1999</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2663">https://www.rfc-editor.org/info/rfc2663</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4814">[RFC4814]</dt>
<dd>
<span class="refAuthor">Newman, D.</span> and <span class="refAuthor">T. Player</span>, <span class="refTitle">"Hash and Stuffing: Overlooked Factors in Network Device Benchmarking"</span>, <span class="seriesInfo">RFC 4814</span>, <span class="seriesInfo">DOI 10.17487/RFC4814</span>, <time datetime="2007-03" class="refDate">March 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4814">https://www.rfc-editor.org/info/rfc4814</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5180">[RFC5180]</dt>
<dd>
<span class="refAuthor">Popoviciu, C.</span>, <span class="refAuthor">Hamza, A.</span>, <span class="refAuthor">Van de Velde, G.</span>, and <span class="refAuthor">D. Dugatkin</span>, <span class="refTitle">"IPv6 Benchmarking Methodology for Network Interconnect Devices"</span>, <span class="seriesInfo">RFC 5180</span>, <span class="seriesInfo">DOI 10.17487/RFC5180</span>, <time datetime="2008-05" class="refDate">May 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5180">https://www.rfc-editor.org/info/rfc5180</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5452">[RFC5452]</dt>
<dd>
<span class="refAuthor">Hubert, A.</span> and <span class="refAuthor">R. van Mook</span>, <span class="refTitle">"Measures for Making DNS More Resilient against Forged Answers"</span>, <span class="seriesInfo">RFC 5452</span>, <span class="seriesInfo">DOI 10.17487/RFC5452</span>, <time datetime="2009-01" class="refDate">January 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5452">https://www.rfc-editor.org/info/rfc5452</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6052">[RFC6052]</dt>
<dd>
<span class="refAuthor">Bao, C.</span>, <span class="refAuthor">Huitema, C.</span>, <span class="refAuthor">Bagnulo, M.</span>, <span class="refAuthor">Boucadair, M.</span>, and <span class="refAuthor">X. Li</span>, <span class="refTitle">"IPv6 Addressing of IPv4/IPv6 Translators"</span>, <span class="seriesInfo">RFC 6052</span>, <span class="seriesInfo">DOI 10.17487/RFC6052</span>, <time datetime="2010-10" class="refDate">October 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6052">https://www.rfc-editor.org/info/rfc6052</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6146">[RFC6146]</dt>
<dd>
<span class="refAuthor">Bagnulo, M.</span>, <span class="refAuthor">Matthews, P.</span>, and <span class="refAuthor">I. van Beijnum</span>, <span class="refTitle">"Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers"</span>, <span class="seriesInfo">RFC 6146</span>, <span class="seriesInfo">DOI 10.17487/RFC6146</span>, <time datetime="2011-04" class="refDate">April 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6146">https://www.rfc-editor.org/info/rfc6146</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6147">[RFC6147]</dt>
<dd>
<span class="refAuthor">Bagnulo, M.</span>, <span class="refAuthor">Sullivan, A.</span>, <span class="refAuthor">Matthews, P.</span>, and <span class="refAuthor">I. van Beijnum</span>, <span class="refTitle">"DNS64: DNS Extensions for Network Address Translation from IPv6 Clients to IPv4 Servers"</span>, <span class="seriesInfo">RFC 6147</span>, <span class="seriesInfo">DOI 10.17487/RFC6147</span>, <time datetime="2011-04" class="refDate">April 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6147">https://www.rfc-editor.org/info/rfc6147</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6180">[RFC6180]</dt>
<dd>
<span class="refAuthor">Arkko, J.</span> and <span class="refAuthor">F. Baker</span>, <span class="refTitle">"Guidelines for Using IPv6 Transition Mechanisms during IPv6 Deployment"</span>, <span class="seriesInfo">RFC 6180</span>, <span class="seriesInfo">DOI 10.17487/RFC6180</span>, <time datetime="2011-05" class="refDate">May 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6180">https://www.rfc-editor.org/info/rfc6180</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6269">[RFC6269]</dt>
<dd>
<span class="refAuthor">Ford, M., Ed.</span>, <span class="refAuthor">Boucadair, M.</span>, <span class="refAuthor">Durand, A.</span>, <span class="refAuthor">Levis, P.</span>, and <span class="refAuthor">P. Roberts</span>, <span class="refTitle">"Issues with IP Address Sharing"</span>, <span class="seriesInfo">RFC 6269</span>, <span class="seriesInfo">DOI 10.17487/RFC6269</span>, <time datetime="2011-06" class="refDate">June 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6269">https://www.rfc-editor.org/info/rfc6269</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6333">[RFC6333]</dt>
<dd>
<span class="refAuthor">Durand, A.</span>, <span class="refAuthor">Droms, R.</span>, <span class="refAuthor">Woodyatt, J.</span>, and <span class="refAuthor">Y. Lee</span>, <span class="refTitle">"Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion"</span>, <span class="seriesInfo">RFC 6333</span>, <span class="seriesInfo">DOI 10.17487/RFC6333</span>, <time datetime="2011-08" class="refDate">August 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6333">https://www.rfc-editor.org/info/rfc6333</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6346">[RFC6346]</dt>
<dd>
<span class="refAuthor">Bush, R., Ed.</span>, <span class="refTitle">"The Address plus Port (A+P) Approach to the IPv4 Address Shortage"</span>, <span class="seriesInfo">RFC 6346</span>, <span class="seriesInfo">DOI 10.17487/RFC6346</span>, <time datetime="2011-08" class="refDate">August 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6346">https://www.rfc-editor.org/info/rfc6346</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6519">[RFC6519]</dt>
<dd>
<span class="refAuthor">Maglione, R.</span> and <span class="refAuthor">A. Durand</span>, <span class="refTitle">"RADIUS Extensions for Dual-Stack Lite"</span>, <span class="seriesInfo">RFC 6519</span>, <span class="seriesInfo">DOI 10.17487/RFC6519</span>, <time datetime="2012-02" class="refDate">February 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6519">https://www.rfc-editor.org/info/rfc6519</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6877">[RFC6877]</dt>
<dd>
<span class="refAuthor">Mawatari, M.</span>, <span class="refAuthor">Kawashima, M.</span>, and <span class="refAuthor">C. Byrne</span>, <span class="refTitle">"464XLAT: Combination of Stateful and Stateless Translation"</span>, <span class="seriesInfo">RFC 6877</span>, <span class="seriesInfo">DOI 10.17487/RFC6877</span>, <time datetime="2013-04" class="refDate">April 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6877">https://www.rfc-editor.org/info/rfc6877</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6887">[RFC6887]</dt>
<dd>
<span class="refAuthor">Wing, D., Ed.</span>, <span class="refAuthor">Cheshire, S.</span>, <span class="refAuthor">Boucadair, M.</span>, <span class="refAuthor">Penno, R.</span>, and <span class="refAuthor">P. Selkirk</span>, <span class="refTitle">"Port Control Protocol (PCP)"</span>, <span class="seriesInfo">RFC 6887</span>, <span class="seriesInfo">DOI 10.17487/RFC6887</span>, <time datetime="2013-04" class="refDate">April 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6887">https://www.rfc-editor.org/info/rfc6887</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6888">[RFC6888]</dt>
<dd>
<span class="refAuthor">Perreault, S., Ed.</span>, <span class="refAuthor">Yamagata, I.</span>, <span class="refAuthor">Miyakawa, S.</span>, <span class="refAuthor">Nakagawa, A.</span>, and <span class="refAuthor">H. Ashida</span>, <span class="refTitle">"Common Requirements for Carrier-Grade NATs (CGNs)"</span>, <span class="seriesInfo">BCP 127</span>, <span class="seriesInfo">RFC 6888</span>, <span class="seriesInfo">DOI 10.17487/RFC6888</span>, <time datetime="2013-04" class="refDate">April 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6888">https://www.rfc-editor.org/info/rfc6888</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6889">[RFC6889]</dt>
<dd>
<span class="refAuthor">Penno, R.</span>, <span class="refAuthor">Saxena, T.</span>, <span class="refAuthor">Boucadair, M.</span>, and <span class="refAuthor">S. Sivakumar</span>, <span class="refTitle">"Analysis of Stateful 64 Translation"</span>, <span class="seriesInfo">RFC 6889</span>, <span class="seriesInfo">DOI 10.17487/RFC6889</span>, <time datetime="2013-04" class="refDate">April 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6889">https://www.rfc-editor.org/info/rfc6889</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7050">[RFC7050]</dt>
<dd>
<span class="refAuthor">Savolainen, T.</span>, <span class="refAuthor">Korhonen, J.</span>, and <span class="refAuthor">D. Wing</span>, <span class="refTitle">"Discovery of the IPv6 Prefix Used for IPv6 Address Synthesis"</span>, <span class="seriesInfo">RFC 7050</span>, <span class="seriesInfo">DOI 10.17487/RFC7050</span>, <time datetime="2013-11" class="refDate">November 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7050">https://www.rfc-editor.org/info/rfc7050</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7269">[RFC7269]</dt>
<dd>
<span class="refAuthor">Chen, G.</span>, <span class="refAuthor">Cao, Z.</span>, <span class="refAuthor">Xie, C.</span>, and <span class="refAuthor">D. Binet</span>, <span class="refTitle">"NAT64 Deployment Options and Experience"</span>, <span class="seriesInfo">RFC 7269</span>, <span class="seriesInfo">DOI 10.17487/RFC7269</span>, <time datetime="2014-06" class="refDate">June 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7269">https://www.rfc-editor.org/info/rfc7269</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7341">[RFC7341]</dt>
<dd>
<span class="refAuthor">Sun, Q.</span>, <span class="refAuthor">Cui, Y.</span>, <span class="refAuthor">Siodelski, M.</span>, <span class="refAuthor">Krishnan, S.</span>, and <span class="refAuthor">I. Farrer</span>, <span class="refTitle">"DHCPv4-over-DHCPv6 (DHCP 4o6) Transport"</span>, <span class="seriesInfo">RFC 7341</span>, <span class="seriesInfo">DOI 10.17487/RFC7341</span>, <time datetime="2014-08" class="refDate">August 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7341">https://www.rfc-editor.org/info/rfc7341</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7393">[RFC7393]</dt>
<dd>
<span class="refAuthor">Deng, X.</span>, <span class="refAuthor">Boucadair, M.</span>, <span class="refAuthor">Zhao, Q.</span>, <span class="refAuthor">Huang, J.</span>, and <span class="refAuthor">C. Zhou</span>, <span class="refTitle">"Using the Port Control Protocol (PCP) to Update Dynamic DNS"</span>, <span class="seriesInfo">RFC 7393</span>, <span class="seriesInfo">DOI 10.17487/RFC7393</span>, <time datetime="2014-11" class="refDate">November 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7393">https://www.rfc-editor.org/info/rfc7393</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7422">[RFC7422]</dt>
<dd>
<span class="refAuthor">Donley, C.</span>, <span class="refAuthor">Grundemann, C.</span>, <span class="refAuthor">Sarawat, V.</span>, <span class="refAuthor">Sundaresan, K.</span>, and <span class="refAuthor">O. Vautrin</span>, <span class="refTitle">"Deterministic Address Mapping to Reduce Logging in Carrier-Grade NAT Deployments"</span>, <span class="seriesInfo">RFC 7422</span>, <span class="seriesInfo">DOI 10.17487/RFC7422</span>, <time datetime="2014-12" class="refDate">December 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7422">https://www.rfc-editor.org/info/rfc7422</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7596">[RFC7596]</dt>
<dd>
<span class="refAuthor">Cui, Y.</span>, <span class="refAuthor">Sun, Q.</span>, <span class="refAuthor">Boucadair, M.</span>, <span class="refAuthor">Tsou, T.</span>, <span class="refAuthor">Lee, Y.</span>, and <span class="refAuthor">I. Farrer</span>, <span class="refTitle">"Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture"</span>, <span class="seriesInfo">RFC 7596</span>, <span class="seriesInfo">DOI 10.17487/RFC7596</span>, <time datetime="2015-07" class="refDate">July 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7596">https://www.rfc-editor.org/info/rfc7596</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7597">[RFC7597]</dt>
<dd>
<span class="refAuthor">Troan, O., Ed.</span>, <span class="refAuthor">Dec, W.</span>, <span class="refAuthor">Li, X.</span>, <span class="refAuthor">Bao, C.</span>, <span class="refAuthor">Matsushima, S.</span>, <span class="refAuthor">Murakami, T.</span>, and <span class="refAuthor">T. Taylor, Ed.</span>, <span class="refTitle">"Mapping of Address and Port with Encapsulation (MAP-E)"</span>, <span class="seriesInfo">RFC 7597</span>, <span class="seriesInfo">DOI 10.17487/RFC7597</span>, <time datetime="2015-07" class="refDate">July 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7597">https://www.rfc-editor.org/info/rfc7597</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7599">[RFC7599]</dt>
<dd>
<span class="refAuthor">Li, X.</span>, <span class="refAuthor">Bao, C.</span>, <span class="refAuthor">Dec, W., Ed.</span>, <span class="refAuthor">Troan, O.</span>, <span class="refAuthor">Matsushima, S.</span>, and <span class="refAuthor">T. Murakami</span>, <span class="refTitle">"Mapping of Address and Port using Translation (MAP-T)"</span>, <span class="seriesInfo">RFC 7599</span>, <span class="seriesInfo">DOI 10.17487/RFC7599</span>, <time datetime="2015-07" class="refDate">July 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7599">https://www.rfc-editor.org/info/rfc7599</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7605">[RFC7605]</dt>
<dd>
<span class="refAuthor">Touch, J.</span>, <span class="refTitle">"Recommendations on Using Assigned Transport Port Numbers"</span>, <span class="seriesInfo">BCP 165</span>, <span class="seriesInfo">RFC 7605</span>, <span class="seriesInfo">DOI 10.17487/RFC7605</span>, <time datetime="2015-08" class="refDate">August 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7605">https://www.rfc-editor.org/info/rfc7605</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7757">[RFC7757]</dt>
<dd>
<span class="refAuthor">Anderson, T.</span> and <span class="refAuthor">A. Leiva Popper</span>, <span class="refTitle">"Explicit Address Mappings for Stateless IP/ICMP Translation"</span>, <span class="seriesInfo">RFC 7757</span>, <span class="seriesInfo">DOI 10.17487/RFC7757</span>, <time datetime="2016-02" class="refDate">February 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7757">https://www.rfc-editor.org/info/rfc7757</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7915">[RFC7915]</dt>
<dd>
<span class="refAuthor">Bao, C.</span>, <span class="refAuthor">Li, X.</span>, <span class="refAuthor">Baker, F.</span>, <span class="refAuthor">Anderson, T.</span>, and <span class="refAuthor">F. Gont</span>, <span class="refTitle">"IP/ICMP Translation Algorithm"</span>, <span class="seriesInfo">RFC 7915</span>, <span class="seriesInfo">DOI 10.17487/RFC7915</span>, <time datetime="2016-06" class="refDate">June 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7915">https://www.rfc-editor.org/info/rfc7915</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7950">[RFC7950]</dt>
<dd>
<span class="refAuthor">Bjorklund, M., Ed.</span>, <span class="refTitle">"The YANG 1.1 Data Modeling Language"</span>, <span class="seriesInfo">RFC 7950</span>, <span class="seriesInfo">DOI 10.17487/RFC7950</span>, <time datetime="2016-08" class="refDate">August 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7950">https://www.rfc-editor.org/info/rfc7950</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8114">[RFC8114]</dt>
<dd>
<span class="refAuthor">Boucadair, M.</span>, <span class="refAuthor">Qin, C.</span>, <span class="refAuthor">Jacquenet, C.</span>, <span class="refAuthor">Lee, Y.</span>, and <span class="refAuthor">Q. Wang</span>, <span class="refTitle">"Delivery of IPv4 Multicast Services to IPv4 Clients over an IPv6 Multicast Network"</span>, <span class="seriesInfo">RFC 8114</span>, <span class="seriesInfo">DOI 10.17487/RFC8114</span>, <time datetime="2017-03" class="refDate">March 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8114">https://www.rfc-editor.org/info/rfc8114</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8215">[RFC8215]</dt>
<dd>
<span class="refAuthor">Anderson, T.</span>, <span class="refTitle">"Local-Use IPv4/IPv6 Translation Prefix"</span>, <span class="seriesInfo">RFC 8215</span>, <span class="seriesInfo">DOI 10.17487/RFC8215</span>, <time datetime="2017-08" class="refDate">August 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8215">https://www.rfc-editor.org/info/rfc8215</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8219">[RFC8219]</dt>
<dd>
<span class="refAuthor">Georgescu, M.</span>, <span class="refAuthor">Pislaru, L.</span>, and <span class="refAuthor">G. Lencse</span>, <span class="refTitle">"Benchmarking Methodology for IPv6 Transition Technologies"</span>, <span class="seriesInfo">RFC 8219</span>, <span class="seriesInfo">DOI 10.17487/RFC8219</span>, <time datetime="2017-08" class="refDate">August 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8219">https://www.rfc-editor.org/info/rfc8219</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8415">[RFC8415]</dt>
<dd>
<span class="refAuthor">Mrugalski, T.</span>, <span class="refAuthor">Siodelski, M.</span>, <span class="refAuthor">Volz, B.</span>, <span class="refAuthor">Yourtchenko, A.</span>, <span class="refAuthor">Richardson, M.</span>, <span class="refAuthor">Jiang, S.</span>, <span class="refAuthor">Lemon, T.</span>, and <span class="refAuthor">T. Winters</span>, <span class="refTitle">"Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"</span>, <span class="seriesInfo">RFC 8415</span>, <span class="seriesInfo">DOI 10.17487/RFC8415</span>, <time datetime="2018-11" class="refDate">November 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8415">https://www.rfc-editor.org/info/rfc8415</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8512">[RFC8512]</dt>
<dd>
<span class="refAuthor">Boucadair, M., Ed.</span>, <span class="refAuthor">Sivakumar, S.</span>, <span class="refAuthor">Jacquenet, C.</span>, <span class="refAuthor">Vinapamula, S.</span>, and <span class="refAuthor">Q. Wu</span>, <span class="refTitle">"A YANG Module for Network Address Translation (NAT) and Network Prefix Translation (NPT)"</span>, <span class="seriesInfo">RFC 8512</span>, <span class="seriesInfo">DOI 10.17487/RFC8512</span>, <time datetime="2019-01" class="refDate">January 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8512">https://www.rfc-editor.org/info/rfc8512</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8513">[RFC8513]</dt>
<dd>
<span class="refAuthor">Boucadair, M.</span>, <span class="refAuthor">Jacquenet, C.</span>, and <span class="refAuthor">S. Sivakumar</span>, <span class="refTitle">"A YANG Data Model for Dual-Stack Lite (DS-Lite)"</span>, <span class="seriesInfo">RFC 8513</span>, <span class="seriesInfo">DOI 10.17487/RFC8513</span>, <time datetime="2019-01" class="refDate">January 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8513">https://www.rfc-editor.org/info/rfc8513</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8658">[RFC8658]</dt>
<dd>
<span class="refAuthor">Jiang, S., Ed.</span>, <span class="refAuthor">Fu, Y., Ed.</span>, <span class="refAuthor">Xie, C.</span>, <span class="refAuthor">Li, T.</span>, and <span class="refAuthor">M. Boucadair, Ed.</span>, <span class="refTitle">"RADIUS Attributes for Softwire Mechanisms Based on Address plus Port (A+P)"</span>, <span class="seriesInfo">RFC 8658</span>, <span class="seriesInfo">DOI 10.17487/RFC8658</span>, <time datetime="2019-11" class="refDate">November 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8658">https://www.rfc-editor.org/info/rfc8658</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8676">[RFC8676]</dt>
<dd>
<span class="refAuthor">Farrer, I., Ed.</span> and <span class="refAuthor">M. Boucadair, Ed.</span>, <span class="refTitle">"YANG Modules for IPv4-in-IPv6 Address plus Port (A+P) Softwires"</span>, <span class="seriesInfo">RFC 8676</span>, <span class="seriesInfo">DOI 10.17487/RFC8676</span>, <time datetime="2019-11" class="refDate">November 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8676">https://www.rfc-editor.org/info/rfc8676</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8683">[RFC8683]</dt>
<dd>
<span class="refAuthor">Palet Martinez, J.</span>, <span class="refTitle">"Additional Deployment Guidelines for NAT64/464XLAT in Operator and Enterprise Networks"</span>, <span class="seriesInfo">RFC 8683</span>, <span class="seriesInfo">DOI 10.17487/RFC8683</span>, <time datetime="2019-11" class="refDate">November 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8683">https://www.rfc-editor.org/info/rfc8683</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-8.2">
<h3 id="name-informative-references">
<a href="#section-8.2" class="section-number selfRef">8.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="AFTR">[AFTR]</dt>
<dd>
<span class="refAuthor">ISC</span>, <span class="refTitle">"ISC Implementation of AFTR"</span>, <span><<a href="https://downloads.isc.org/isc/aftr/">https://downloads.isc.org/isc/aftr/</a>></span>. </dd>
<dd class="break"></dd>
<dt id="AZZ2021">[AZZ2021]</dt>
<dd>
<span class="refAuthor">Al-Azzawi, A.</span> and <span class="refAuthor">G. Lencse</span>, <span class="refTitle">"Identification of the Possible Security Issues of the 464XLAT IPv6 Transition Technology"</span>, <span class="refContent">Infocommunications Journal, Vol. 13, No. 4, pp. 10-18</span>, <span class="seriesInfo">DOI 10.36244/ICJ.2021.4.2</span>, <time datetime="2021-12" class="refDate">December 2021</time>, <span><<a href="https://www.infocommunications.hu/2021_4_2">https://www.infocommunications.hu/2021_4_2</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.lencse-v6ops-transition-benchmarking">[IPv4aaS-BENCHMARK-TECH]</dt>
<dd>
<span class="refAuthor">Lencse, G.</span>, <span class="refTitle">"Performance Analysis of IPv6 Transition Technologies for IPv4aaS"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-lencse-v6ops-transition-benchmarking-01</span>, <time datetime="2022-05-02" class="refDate">2 May 2022</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-benchmarking-01">https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-benchmarking-01</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.lencse-v6ops-transition-scalability">[IPv4aaS-SCALE-TECH]</dt>
<dd>
<span class="refAuthor">Lencse, G.</span>, <span class="refTitle">"Scalability of IPv6 Transition Technologies for IPv4aaS"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-lencse-v6ops-transition-scalability-03</span>, <time datetime="2022-06-30" class="refDate">30 June 2022</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scalability-03">https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scalability-03</a>></span>. </dd>
<dd class="break"></dd>
<dt id="JOOL">[JOOL]</dt>
<dd>
<span class="refTitle">"Jool: SIIT & NAT64"</span>, <span><<a href="http://www.jool.mx">http://www.jool.mx</a>></span>. </dd>
<dd class="break"></dd>
<dt id="JOOL-MAPT">[JOOL-MAPT]</dt>
<dd>
<span class="refTitle">"MAP-T Run"</span>, <span><<a href="https://www.jool.mx/en/run-mapt.html">https://www.jool.mx/en/run-mapt.html</a>></span>. </dd>
<dd class="break"></dd>
<dt id="LEN2018">[LEN2018]</dt>
<dd>
<span class="refAuthor">Lencse, G.</span> and <span class="refAuthor">Y. Kadobayashi</span>, <span class="refTitle">"Methodology for the identification of potential security issues of different IPv6 transition technologies: Threat analysis of DNS64 and stateful NAT64"</span>, <span class="refContent">Computers & Security, Vol. 77, No. 1, pp. 397-411</span>, <span class="seriesInfo">DOI 10.1016/j.cose.2018.04.012</span>, <time datetime="2018-08" class="refDate">August 2018</time>, <span><<a href="http://www.hit.bme.hu/~lencse/publications/ECS-2018-Methodology-revised.pdf">http://www.hit.bme.hu/~lencse/publications/ECS-2018-Methodology-revised.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="LEN2019">[LEN2019]</dt>
<dd>
<span class="refAuthor">Lencse, G.</span> and <span class="refAuthor">Y. Kadobayashi</span>, <span class="refTitle">"Comprehensive Survey of IPv6 Transition Technologies: A Subjective Classification for Security Analysis"</span>, <span class="refContent">IEICE Transactions on Communications, Vol. E102-B, No. 10, pp. 2021-2035</span>, <span class="seriesInfo">DOI 10.1587/transcom.2018EBR0002</span>, <time datetime="2019-10" class="refDate">October 2019</time>, <span><<a href="http://www.hit.bme.hu/~lencse/publications/e102-b_10_2021.pdf">http://www.hit.bme.hu/~lencse/publications/e102-b_10_2021.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="LEN2020a">[LEN2020a]</dt>
<dd>
<span class="refAuthor">Lencse, G.</span>, <span class="refTitle">"Benchmarking stateless NAT64 implementations with a standard tester"</span>, <span class="refContent">Telecommunication Systems, Vol. 75, pp. 245-257</span>, <span class="seriesInfo">DOI 10.1007/s11235-020-00681-x</span>, <time datetime="2020-06" class="refDate">June 2020</time>, <span><<a href="https://link.springer.com/article/10.1007/s11235-020-00681-x">https://link.springer.com/article/10.1007/s11235-020-00681-x</a>></span>. </dd>
<dd class="break"></dd>
<dt id="LEN2020b">[LEN2020b]</dt>
<dd>
<span class="refAuthor">Lencse, G.</span>, <span class="refTitle">"Adding RFC 4814 Random Port Feature to Siitperf: Design, Implementation and Performance Estimation"</span>, <span class="refContent">International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems, Vol. 9, No. 3, pp. 18-26</span>, <span class="seriesInfo">DOI 10.11601/ijates.v9i3.291</span>, <time datetime="2020" class="refDate">2020</time>, <span><<a href="https://ijates.org/index.php/ijates/article/view/291">https://ijates.org/index.php/ijates/article/view/291</a>></span>. </dd>
<dd class="break"></dd>
<dt id="LEN2021">[LEN2021]</dt>
<dd>
<span class="refAuthor">Lencse, G.</span>, <span class="refTitle">"Design and Implementation of a Software Tester for Benchmarking Stateless NAT64 Gateways"</span>, <span class="refContent">IEICE Transactions on Communications, Vol. E104.B, Issue 2, pp. 128-140</span>, <span class="seriesInfo">DOI 10.1587/transcom.2019EBN0010</span>, <time datetime="2021" class="refDate">2021</time>, <span><<a href="https://doi.org/10.1587/transcom.2019EBN0010">https://doi.org/10.1587/transcom.2019EBN0010</a>></span>. </dd>
<dd class="break"></dd>
<dt id="MIY2010">[MIY2010]</dt>
<dd>
<span class="refAuthor">Miyakawa, S.</span>, <span class="refTitle">"IPv4 to IPv6 Transformation Schemes"</span>, <span class="refContent">IEICE Transactions on Communications, Vol. E93-B, Issue 5, pp. 1078-1084</span>, <span class="seriesInfo">DOI 10.1587/transcom.E93.B.1078</span>, <time datetime="2010" class="refDate">2010</time>, <span><<a href="https://www.jstage.jst.go.jp/article/transcom/E93.B/5/E93.B_5_1078/_article">https://www.jstage.jst.go.jp/article/transcom/E93.B/5/E93.B_5_1078/_article</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-tsvwg-natsupp">[NAT-SUPP]</dt>
<dd>
<span class="refAuthor">Stewart, R. R.</span>, <span class="refAuthor">Tüxen, M.</span>, and <span class="refAuthor">I. Ruengeler</span>, <span class="refTitle">"Stream Control Transmission Protocol (SCTP) Network Address Translation Support"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-tsvwg-natsupp-23</span>, <time datetime="2021-10-25" class="refDate">25 October 2021</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-natsupp-23">https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-natsupp-23</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-v6ops-464xlat-optimization">[OP-464XLAT/MAP-T]</dt>
<dd>
<span class="refAuthor">Palet Martinez, J.</span> and <span class="refAuthor">A. D'Egidio</span>, <span class="refTitle">"464XLAT/MAT-T Optimization"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-v6ops-464xlat-optimization-03</span>, <time datetime="2020-07-28" class="refDate">28 July 2020</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-464xlat-optimization-03">https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-464xlat-optimization-03</a>></span>. </dd>
<dd class="break"></dd>
<dt id="REP2014">[REP2014]</dt>
<dd>
<span class="refAuthor">Répás, S.</span>, <span class="refAuthor">Hajas, T.</span>, and <span class="refAuthor">G. Lencse</span>, <span class="refTitle">"Port Number Consumption of the NAT64 IPv6 Transition Technology"</span>, <span class="refContent">37th International Conference on Telecommunications and Signal Processing</span>, <span class="seriesInfo">DOI 10.1109/TSP.2015.7296411</span>, <time datetime="2014" class="refDate">2014</time>, <span><<a href="http://www.hit.bme.hu/~lencse/publications/TSP-2014-PC.pdf">http://www.hit.bme.hu/~lencse/publications/TSP-2014-PC.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="SIITPERF">[SIITPERF]</dt>
<dd>
<span class="refTitle">"Siitperf: an RFC 8219 compliant SIIT (stateless NAT64) tester"</span>, <span class="refContent">commit bdce0f</span>, <time datetime="2021-02" class="refDate">February 2021</time>, <span><<a href="https://github.com/lencsegabor/siitperf">https://github.com/lencsegabor/siitperf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="SNABB">[SNABB]</dt>
<dd>
<span class="refTitle">"Snabb implementation of lwAFTR"</span>, <span class="refContent">commit 1ef72ce</span>, <time datetime="2022-01" class="refDate">January 2022</time>, <span><<a href="https://github.com/Igalia/snabb">https://github.com/Igalia/snabb</a>></span>. </dd>
<dd class="break"></dd>
<dt id="TR-069">[TR-069]</dt>
<dd>
<span class="refAuthor">Broadband Forum</span>, <span class="refTitle">"CPE WAN Management Protocol"</span>, <span class="seriesInfo">Technical Report TR-069</span>, <time datetime="2020-06" class="refDate">June 2020</time>, <span><<a href="https://www.broadband-forum.org/technical/download/TR-069.pdf">https://www.broadband-forum.org/technical/download/TR-069.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="VPP">[VPP]</dt>
<dd>
<span class="refTitle">"VPP"</span>, <time datetime="2022-07" class="refDate">July 2022</time>, <span><<a href="https://wiki.fd.io/index.php?title=VPP&oldid=11809">https://wiki.fd.io/index.php?title=VPP&oldid=11809</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="Acknowledgements">
<section id="appendix-A">
<h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
</h2>
<p id="appendix-A-1">The authors would like to thank <span class="contact-name">Ole Troan</span>,
<span class="contact-name">Warren Kumari</span>, <span class="contact-name">Dan Romascanu</span>, <span class="contact-name">Brian Trammell</span>, <span class="contact-name">Joseph Salowey</span>, <span class="contact-name">Roman Danyliw</span>,
<span class="contact-name">Erik Kline</span>, <span class="contact-name">Lars Eggert</span>,
<span class="contact-name">Zaheduzzaman Sarker</span>, <span class="contact-name">Robert Wilton</span>, <span class="contact-name">Éric Vyncke</span> and <span class="contact-name">Martin Duke</span> for their review of this document and acknowledge
the inputs of <span class="contact-name">Mark Andrews</span>, <span class="contact-name">Edwin Cordeiro</span>, <span class="contact-name">Fred Baker</span>, <span class="contact-name">Alexandre Petrescu</span>, <span class="contact-name">Cameron Byrne</span>,
<span class="contact-name">Tore Anderson</span>, <span class="contact-name">Mikael Abrahamsson</span>, <span class="contact-name">Gert Doering</span>, <span class="contact-name">Satoru Matsushima</span>, <span class="contact-name">Yutianpeng (Tim)</span>,
<span class="contact-name">Mohamed Boucadair</span>, <span class="contact-name">Nick Hilliard</span>, <span class="contact-name">Joel Jaeggli</span>, <span class="contact-name">Kristian McColm</span>,
<span class="contact-name">Tom Petch</span>, <span class="contact-name">Yannis Nikolopoulos</span>, <span class="contact-name">Havard Eidnes</span>, <span class="contact-name">Yann-Ju Chu</span>, <span class="contact-name">Barbara Stark</span>, <span class="contact-name">Vasilenko Eduard</span>, <span class="contact-name">Chongfeng Xie</span>,
<span class="contact-name">Henri Alves de Godoy</span>, <span class="contact-name">Magnus Westerlund</span>, <span class="contact-name">Michael Tüxen</span>, <span class="contact-name">Philipp S. Tiesel</span>, <span class="contact-name">Brian E. Carpenter</span>,
and <span class="contact-name">Joe Touch</span>.<a href="#appendix-A-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="appendix-B">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Gábor Lencse</span></div>
<div dir="auto" class="left"><span class="org">Budapest University of Technology and Economics</span></div>
<div dir="auto" class="left"><span class="locality">Budapest</span></div>
<div dir="auto" class="left"><span class="street-address">Magyar tudósok körútja 2</span></div>
<div dir="auto" class="left"><span class="postal-code">H-1117</span></div>
<div dir="auto" class="left"><span class="country-name">Hungary</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:lencse@hit.bme.hu" class="email">lencse@hit.bme.hu</a>
</div>
<div class="url">
<span>URI:</span>
<a href="http://www.hit.bme.hu/~lencse/index_en.htm" class="url">http://www.hit.bme.hu/~lencse/index_en.htm</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Jordi Palet Martinez</span></div>
<div dir="auto" class="left"><span class="org">The IPv6 Company</span></div>
<div dir="auto" class="left"><span class="street-address">Molino de la Navata, 75</span></div>
<div dir="auto" class="left">
<span class="postal-code">28420</span> <span class="locality">La Navata - Galapagar</span> <span class="region">Madrid</span>
</div>
<div dir="auto" class="left"><span class="country-name">Spain</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:jordi.palet@theipv6company.com" class="email">jordi.palet@theipv6company.com</a>
</div>
<div class="url">
<span>URI:</span>
<a href="http://www.theipv6company.com/" class="url">http://www.theipv6company.com/</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Lee Howard</span></div>
<div dir="auto" class="left"><span class="org">Retevia</span></div>
<div dir="auto" class="left"><span class="street-address">9940 Main St., Suite 200</span></div>
<div dir="auto" class="left">
<span class="locality">Fairfax</span>, <span class="region">Virginia</span> <span class="postal-code">22031</span>
</div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:lee@asgard.org" class="email">lee@asgard.org</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Richard Patterson</span></div>
<div dir="auto" class="left"><span class="org">Sky UK</span></div>
<div dir="auto" class="left"><span class="street-address">1 Brick Lane</span></div>
<div dir="auto" class="left"><span class="locality">London</span></div>
<div dir="auto" class="left"><span class="postal-code">EQ 6PU</span></div>
<div dir="auto" class="left"><span class="country-name">United Kingdom</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:richard.patterson@sky.uk" class="email">richard.patterson@sky.uk</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Ian Farrer</span></div>
<div dir="auto" class="left"><span class="org">Deutsche Telekom AG</span></div>
<div dir="auto" class="left"><span class="street-address">Landgrabenweg 151</span></div>
<div dir="auto" class="left">
<span class="postal-code">53227</span> <span class="locality">Bonn</span>
</div>
<div dir="auto" class="left"><span class="country-name">Germany</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ian.farrer@telekom.de" class="email">ian.farrer@telekom.de</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|