File: rfc9325.html

package info (click to toggle)
doc-rfc 20230121-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, forky, sid, trixie
  • size: 1,609,944 kB
file content (2863 lines) | stat: -rw-r--r-- 215,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
<!DOCTYPE html>
<html lang="en" class="BCP RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9325: Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)</title>
<meta content="Yaron Sheffer" name="author">
<meta content="Peter Saint-Andre" name="author">
<meta content="Thomas Fossati" name="author">
<meta content="
       Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide range of application protocols and can also form the basis for secure transport protocols.  Over the years, the industry has witnessed several serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation.  This document provides the latest recommendations for ensuring the security of deployed services that use TLS and DTLS. These recommendations are applicable to the majority of use cases. 
       RFC 7525, an earlier version of the TLS recommendations, was published when the industry was transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely available. This document updates the guidance given the new environment and obsoletes RFC 7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks. 
    " name="description">
<meta content="xml2rfc 3.15.2" name="generator">
<meta content="9325" name="rfc.number">
<!-- Generator version information:
  xml2rfc 3.15.2
    Python 3.9.14
    appdirs 1.4.4
    ConfigArgParse 1.5.3
    google-i18n-address 2.5.1
    html5lib 1.1
    intervaltree 3.1.0
    Jinja2 3.1.2
    lxml 4.9.0
    MarkupSafe 2.1.1
    pycountry 22.3.5
    PyYAML 6.0
    requests 2.28.0
    setuptools 44.1.1
    six 1.16.0
    wcwidth 0.2.5
    weasyprint 56.1
-->
<link href="rfc9325.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*

  NOTE: Changes at the bottom of this file overrides some earlier settings.

  Once the style has stabilized and has been adopted as an official RFC style,
  this can be consolidated so that style settings occur only in one place, but
  for now the contents of this file consists first of the initial CSS work as
  provided to the RFC Formatter (xml2rfc) work, followed by itemized and
  commented changes found necessary during the development of the v3
  formatters.

*/

/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */

@viewport {
  zoom: 1.0;
  width: extend-to-zoom;
}
@-ms-viewport {
  width: extend-to-zoom;
  zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
  max-width: 90%;
  margin: 1.5em auto;
  color: #222;
  background-color: #fff;
  font-size: 14px;
  font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
  line-height: 1.6;
  scroll-behavior: smooth;
}
.ears {
  display: none;
}

/* headings */
#title, h1, h2, h3, h4, h5, h6 {
  margin: 1em 0 0.5em;
  font-weight: bold;
  line-height: 1.3;
}
#title {
  clear: both;
  border-bottom: 1px solid #ddd;
  margin: 0 0 0.5em 0;
  padding: 1em 0 0.5em;
}
.author {
  padding-bottom: 4px;
}
h1 {
  font-size: 26px;
  margin: 1em 0;
}
h2 {
  font-size: 22px;
  margin-top: -20px;  /* provide offset for in-page anchors */
  padding-top: 33px;
}
h3 {
  font-size: 18px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h4 {
  font-size: 16px;
  margin-top: -36px;  /* provide offset for in-page anchors */
  padding-top: 42px;
}
h5, h6 {
  font-size: 14px;
}
#n-copyright-notice {
  border-bottom: 1px solid #ddd;
  padding-bottom: 1em;
  margin-bottom: 1em;
}
/* general structure */
p {
  padding: 0;
  margin: 0 0 1em 0;
  text-align: left;
}
div, span {
  position: relative;
}
div {
  margin: 0;
}
.alignRight.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignRight.art-text pre {
  padding: 0;
}
.alignRight {
  margin: 1em 0;
}
.alignRight > *:first-child {
  border: none;
  margin: 0;
  float: right;
  clear: both;
}
.alignRight > *:nth-child(2) {
  clear: both;
  display: block;
  border: none;
}
svg {
  display: block;
}
.alignCenter.art-text {
  background-color: #f9f9f9;
  border: 1px solid #eee;
  border-radius: 3px;
  padding: 1em 1em 0;
  margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
  padding: 0;
}
.alignCenter {
  margin: 1em 0;
}
.alignCenter > *:first-child {
  display: table;
  border: none;
  margin: 0 auto;
}

/* lists */
ol, ul {
  padding: 0;
  margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
  margin-left: 1em;
}
li {
  margin: 0 0 0.25em 0;
}
.ulCompact li {
  margin: 0;
}
ul.empty, .ulEmpty {
  list-style-type: none;
}
ul.empty li, .ulEmpty li {
  margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
  margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
  line-height: 100%;
  margin: 0 0 0 2em;
}

/* definition lists */
dl {
}
dl > dt {
  float: left;
  margin-right: 1em;
}
/* 
dl.nohang > dt {
  float: none;
}
*/
dl > dd {
  margin-bottom: .8em;
  min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
  margin-bottom: 0em;
}
dl > dd > dl {
  margin-top: 0.5em;
  margin-bottom: 0em;
}

/* links */
a {
  text-decoration: none;
}
a[href] {
  color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
  background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
  color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
  background-color: transparent;
  cursor: default;
} */

/* Figures */
tt, code, pre {
  background-color: #f9f9f9;
  font-family: 'Roboto Mono', monospace;
}
pre {
  border: 1px solid #eee;
  margin: 0;
  padding: 1em;
}
img {
  max-width: 100%;
}
figure {
  margin: 0;
}
figure blockquote {
  margin: 0.8em 0.4em 0.4em;
}
figcaption {
  font-style: italic;
  margin: 0 0 1em 0;
}
@media screen {
  pre {
    overflow-x: auto;
    max-width: 100%;
    max-width: calc(100% - 22px);
  }
}

/* aside, blockquote */
aside, blockquote {
  margin-left: 0;
  padding: 1.2em 2em;
}
blockquote {
  background-color: #f9f9f9;
  color: #111; /* Arlen: WCAG 2019 */
  border: 1px solid #ddd;
  border-radius: 3px;
  margin: 1em 0;
}
cite {
  display: block;
  text-align: right;
  font-style: italic;
}

/* tables */
table {
  width: 100%;
  margin: 0 0 1em;
  border-collapse: collapse;
  border: 1px solid #eee;
}
th, td {
  text-align: left;
  vertical-align: top;
  padding: 0.5em 0.75em;
}
th {
  text-align: left;
  background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
  background-color: #f5f5f5;
}
table caption {
  font-style: italic;
  margin: 0;
  padding: 0;
  text-align: left;
}
table p {
  /* XXX to avoid bottom margin on table row signifiers. If paragraphs should
     be allowed within tables more generally, it would be far better to select on a class. */
  margin: 0;
}

/* pilcrow */
a.pilcrow {
  color: #666; /* Arlen: AHDJ 2019 */
  text-decoration: none;
  visibility: hidden;
  user-select: none;
  -ms-user-select: none;
  -o-user-select:none;
  -moz-user-select: none;
  -khtml-user-select: none;
  -webkit-user-select: none;
  -webkit-touch-callout: none;
}
@media screen {
  aside:hover > a.pilcrow,
  p:hover > a.pilcrow,
  blockquote:hover > a.pilcrow,
  div:hover > a.pilcrow,
  li:hover > a.pilcrow,
  pre:hover > a.pilcrow {
    visibility: visible;
  }
  a.pilcrow:hover {
    background-color: transparent;
  }
}

/* misc */
hr {
  border: 0;
  border-top: 1px solid #eee;
}
.bcp14 {
  font-variant: small-caps;
}

.role {
  font-variant: all-small-caps;
}

/* info block */
#identifiers {
  margin: 0;
  font-size: 0.9em;
}
#identifiers dt {
  width: 3em;
  clear: left;
}
#identifiers dd {
  float: left;
  margin-bottom: 0;
}
/* Fix PDF info block run off issue */
@media print {
  #identifiers dd {
    float: none;
  }
}
#identifiers .authors .author {
  display: inline-block;
  margin-right: 1.5em;
}
#identifiers .authors .org {
  font-style: italic;
}

/* The prepared/rendered info at the very bottom of the page */
.docInfo {
  color: #666; /* Arlen: WCAG 2019 */
  font-size: 0.9em;
  font-style: italic;
  margin-top: 2em;
}
.docInfo .prepared {
  float: left;
}
.docInfo .prepared {
  float: right;
}

/* table of contents */
#toc  {
  padding: 0.75em 0 2em 0;
  margin-bottom: 1em;
}
nav.toc ul {
  margin: 0 0.5em 0 0;
  padding: 0;
  list-style: none;
}
nav.toc li {
  line-height: 1.3em;
  margin: 0.75em 0;
  padding-left: 1.2em;
  text-indent: -1.2em;
}
/* references */
.references dt {
  text-align: right;
  font-weight: bold;
  min-width: 7em;
}
.references dd {
  margin-left: 8em;
  overflow: auto;
}

.refInstance {
  margin-bottom: 1.25em;
}

.references .ascii {
  margin-bottom: 0.25em;
}

/* index */
.index ul {
  margin: 0 0 0 1em;
  padding: 0;
  list-style: none;
}
.index ul ul {
  margin: 0;
}
.index li {
  margin: 0;
  text-indent: -2em;
  padding-left: 2em;
  padding-bottom: 5px;
}
.indexIndex {
  margin: 0.5em 0 1em;
}
.index a {
  font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
  .index ul {
    -moz-column-count: 2;
    -moz-column-gap: 20px;
  }
  .index ul ul {
    -moz-column-count: 1;
    -moz-column-gap: 0;
  }
}

/* authors */
address.vcard {
  font-style: normal;
  margin: 1em 0;
}

address.vcard .nameRole {
  font-weight: 700;
  margin-left: 0;
}
address.vcard .label {
  font-family: "Noto Sans",Arial,Helvetica,sans-serif;
  margin: 0.5em 0;
}
address.vcard .type {
  display: none;
}
.alternative-contact {
  margin: 1.5em 0 1em;
}
hr.addr {
  border-top: 1px dashed;
  margin: 0;
  color: #ddd;
  max-width: calc(100% - 16px);
}

/* temporary notes */
.rfcEditorRemove::before {
  position: absolute;
  top: 0.2em;
  right: 0.2em;
  padding: 0.2em;
  content: "The RFC Editor will remove this note";
  color: #9e2a00; /* Arlen: WCAG 2019 */
  background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
  position: relative;
  padding-top: 1.8em;
  background-color: #ffd; /* Arlen: WCAG 2019 */
  border-radius: 3px;
}
.cref {
  background-color: #ffd; /* Arlen: WCAG 2019 */
  padding: 2px 4px;
}
.crefSource {
  font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
  body {
    padding-top: 2em;
  }
  #title {
    padding: 1em 0;
  }
  h1 {
    font-size: 24px;
  }
  h2 {
    font-size: 20px;
    margin-top: -18px;  /* provide offset for in-page anchors */
    padding-top: 38px;
  }
  #identifiers dd {
    max-width: 60%;
  }
  #toc {
    position: fixed;
    z-index: 2;
    top: 0;
    right: 0;
    padding: 0;
    margin: 0;
    background-color: inherit;
    border-bottom: 1px solid #ccc;
  }
  #toc h2 {
    margin: -1px 0 0 0;
    padding: 4px 0 4px 6px;
    padding-right: 1em;
    min-width: 190px;
    font-size: 1.1em;
    text-align: right;
    background-color: #444;
    color: white;
    cursor: pointer;
  }
  #toc h2::before { /* css hamburger */
    float: right;
    position: relative;
    width: 1em;
    height: 1px;
    left: -164px;
    margin: 6px 0 0 0;
    background: white none repeat scroll 0 0;
    box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
    content: "";
  }
  #toc nav {
    display: none;
    padding: 0.5em 1em 1em;
    overflow: auto;
    height: calc(100vh - 48px);
    border-left: 1px solid #ddd;
  }
}

/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
  body {
    max-width: 724px;
    margin: 42px auto;
    padding-left: 1.5em;
    padding-right: 29em;
  }
  #toc {
    position: fixed;
    top: 42px;
    right: 42px;
    width: 25%;
    margin: 0;
    padding: 0 1em;
    z-index: 1;
  }
  #toc h2 {
    border-top: none;
    border-bottom: 1px solid #ddd;
    font-size: 1em;
    font-weight: normal;
    margin: 0;
    padding: 0.25em 1em 1em 0;
  }
  #toc nav {
    display: block;
    height: calc(90vh - 84px);
    bottom: 0;
    padding: 0.5em 0 0;
    overflow: auto;
  }
  img { /* future proofing */
    max-width: 100%;
    height: auto;
  }
}

/* pagination */
@media print {
  body {

    width: 100%;
  }
  p {
    orphans: 3;
    widows: 3;
  }
  #n-copyright-notice {
    border-bottom: none;
  }
  #toc, #n-introduction {
    page-break-before: always;
  }
  #toc {
    border-top: none;
    padding-top: 0;
  }
  figure, pre {
    page-break-inside: avoid;
  }
  figure {
    overflow: scroll;
  }
  pre.breakable {
    break-inside: auto;
  }
  h1, h2, h3, h4, h5, h6 {
    page-break-after: avoid;
  }
  h2+*, h3+*, h4+*, h5+*, h6+* {
    page-break-before: avoid;
  }
  pre {
    white-space: pre-wrap;
    word-wrap: break-word;
    font-size: 10pt;
  }
  table {
    border: 1px solid #ddd;
  }
  td {
    border-top: 1px solid #ddd;
  }
}

/* This is commented out here, as the string-set: doesn't
   pass W3C validation currently */
/*
.ears thead .left {
  string-set: ears-top-left content();
}

.ears thead .center {
  string-set: ears-top-center content();
}

.ears thead .right {
  string-set: ears-top-right content();
}

.ears tfoot .left {
  string-set: ears-bottom-left content();
}

.ears tfoot .center {
  string-set: ears-bottom-center content();
}

.ears tfoot .right {
  string-set: ears-bottom-right content();
}
*/

@page :first {
  padding-top: 0;
  @top-left {
    content: normal;
    border: none;
  }
  @top-center {
    content: normal;
    border: none;
  }
  @top-right {
    content: normal;
    border: none;
  }
}

@page {
  size: A4;
  margin-bottom: 45mm;
  padding-top: 20px;
  /* The following is commented out here, but set appropriately by in code, as
     the content depends on the document */
  /*
  @top-left {
    content: 'Internet-Draft';
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-left {
    content: string(ears-top-left);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-center {
    content: string(ears-top-center);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @top-right {
    content: string(ears-top-right);
    vertical-align: bottom;
    border-bottom: solid 1px #ccc;
  }
  @bottom-left {
    content: string(ears-bottom-left);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-center {
    content: string(ears-bottom-center);
    vertical-align: top;
    border-top: solid 1px #ccc;
  }
  @bottom-right {
      content: '[Page ' counter(page) ']';
      vertical-align: top;
      border-top: solid 1px #ccc;
  }
  */

}

/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
  z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
  clear: both;
}


/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
  vertical-align: top;
}

/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
  width: 8em;
}

/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
  margin-left: 1em;
}

/* Give floating toc a background color (needed when it's a div inside section */
#toc {
  background-color: white;
}

/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
  #toc h2 a,
  #toc h2 a:link,
  #toc h2 a:focus,
  #toc h2 a:hover,
  #toc a.toplink,
  #toc a.toplink:hover {
    color: white;
    background-color: #444;
    text-decoration: none;
  }
}

/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
  #toc {
    padding: 0 0 1em 1em;
  }
}

/* Style section numbers with more space between number and title */
.section-number {
  padding-right: 0.5em;
}

/* prevent monospace from becoming overly large */
tt, code, pre {
  font-size: 95%;
}

/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
  line-height: 1.12;
}


/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
  float: right;
  margin-right: 0.5em;
}

/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
  float: left;
  margin-right: 1em;
}
dl.dlNewline > dt {
  float: none;
}

/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
  text-align: left;
}
table td.text-center,
table th.text-center {
  text-align: center;
}
table td.text-right,
table th.text-right {
  text-align: right;
}

/* Make the alternative author contact information look less like just another
   author, and group it closer with the primary author contact information */
.alternative-contact {
  margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
  margin: 0 0 0 2em;
}

/* With it being possible to set tables with alignment
  left, center, and right, { width: 100%; } does not make sense */
table {
  width: auto;
}

/* Avoid reference text that sits in a block with very wide left margin,
   because of a long floating dt label.*/
.references dd {
  overflow: visible;
}

/* Control caption placement */
caption {
  caption-side: bottom;
}

/* Limit the width of the author address vcard, so names in right-to-left
   script don't end up on the other side of the page. */

address.vcard {
  max-width: 30em;
  margin-right: auto;
}

/* For address alignment dependent on LTR or RTL scripts */
address div.left {
  text-align: left;
}
address div.right {
  text-align: right;
}

/* Provide table alignment support.  We can't use the alignX classes above
   since they do unwanted things with caption and other styling. */
table.right {
 margin-left: auto;
 margin-right: 0;
}
table.center {
 margin-left: auto;
 margin-right: auto;
}
table.left {
 margin-left: 0;
 margin-right: auto;
}

/* Give the table caption label the same styling as the figcaption */
caption a[href] {
  color: #222;
}

@media print {
  .toplink {
    display: none;
  }

  /* avoid overwriting the top border line with the ToC header */
  #toc {
    padding-top: 1px;
  }

  /* Avoid page breaks inside dl and author address entries */
  .vcard {
    page-break-inside: avoid;
  }

}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
  font-variant: small-caps;
  font-weight: bold;
  font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
 h2 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 31px;
 }
 h3 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
 h4 {
  margin-top: -18px;  /* provide offset for in-page anchors */
  padding-top: 24px;
 }
/* Float artwork pilcrow to the right */
@media screen {
  .artwork a.pilcrow {
    display: block;
    line-height: 0.7;
    margin-top: 0.15em;
  }
}
/* Make pilcrows on dd visible */
@media screen {
  dd:hover > a.pilcrow {
    visibility: visible;
  }
}
/* Make the placement of figcaption match that of a table's caption
   by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
   margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
  margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
   possibly even requiring a new line */
@media print {
  a.pilcrow {
    display: none;
  }
}
/* Styling for the external metadata */
div#external-metadata {
  background-color: #eee;
  padding: 0.5em;
  margin-bottom: 0.5em;
  display: none;
}
div#internal-metadata {
  padding: 0.5em;                       /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
  clear: both;
  margin: 0 0 -1em;
  padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
  margin-bottom: 0.25em;
  min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
  border-left: 1px solid #ddd;
  margin: 1em 0 1em 2em;
  padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
  margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
  figcaption, table caption {
    page-break-before: avoid;
  }
}
/* Font size adjustments for print */
@media print {
  body  { font-size: 10pt;      line-height: normal; max-width: 96%; }
  h1    { font-size: 1.72em;    padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
  h2    { font-size: 1.44em;    padding-top: 1.5em; } /* 1*1.2*1.2 */
  h3    { font-size: 1.2em;     padding-top: 1.5em; } /* 1*1.2 */
  h4    { font-size: 1em;       padding-top: 1.5em; }
  h5, h6 { font-size: 1em;      margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
  .artwork,
  .artwork > pre,
  .sourcecode {
    margin-bottom: 1em;
  }
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
  min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background slightly */
table {
  border: 1px solid #ddd;
}
td {
  border-top: 1px solid #ddd;
}
tr {
  break-inside: avoid;
}
tr:nth-child(2n+1) > td {
  background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
  #toc nav { display: none; }
  #toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
  break-after: avoid-page;
  break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
  break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode  {
  break-before: auto;
  break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
  break-before: auto;
  break-inside: auto;
}
dt {
  break-before: auto;
  break-after: avoid-page;
}
dd {
  break-before: avoid-page;
  break-after: auto;
  orphans: 3;
  widows: 3
}
span.break, dd.break {
  margin-bottom: 0;
  min-height: 0;
  break-before: auto;
  break-inside: auto;
  break-after: auto;
}
/* Undo break-before ToC */
@media print {
  #toc {
    break-before: auto;
  }
}
/* Text in compact lists should not get extra bottom margin space,
   since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
 margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
  margin-bottom: 1em;                    /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
   backgrounds.  Changed to something a bit more selective. */
tt, code {
  background-color: transparent;
}
p tt, p code, li tt, li code {
  background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
   margin-top: 0.5px;
}
/* Tweak the compact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
  line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
  margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
  clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
  content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
  margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
  margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9325" rel="alternate">
  <link href="urn:issn:2070-1721" rel="alternate">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-uta-rfc7525bis-11" rel="prev">
  </head>
<body class="xml2rfc">
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9325</td>
<td class="center">TLS/DTLS Recommendations</td>
<td class="right">November 2022</td>
</tr></thead>
<tfoot><tr>
<td class="left">Sheffer, et al.</td>
<td class="center">Best Current Practice</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9325" class="eref">9325</a></dd>
<dt class="label-bcp">BCP:</dt>
<dd class="bcp">195</dd>
<dt class="label-obsoletes">Obsoletes:</dt>
<dd class="obsoletes">
<a href="https://www.rfc-editor.org/rfc/rfc7525" class="eref">7525</a> </dd>
<dt class="label-updates">Updates:</dt>
<dd class="updates">
<a href="https://www.rfc-editor.org/rfc/rfc5288" class="eref">5288</a>, <a href="https://www.rfc-editor.org/rfc/rfc6066" class="eref">6066</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Best Current Practice</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2022-11" class="published">November 2022</time>
    </dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
      <div class="author-name">Y. Sheffer</div>
<div class="org">Intuit</div>
</div>
<div class="author">
      <div class="author-name">P. Saint-Andre</div>
<div class="org">Independent</div>
</div>
<div class="author">
      <div class="author-name">T. Fossati</div>
<div class="org">ARM Limited</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9325</h1>
<h1 id="title">Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)</h1>
<section id="section-abstract">
      <h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide range of application protocols and can also form the basis for secure transport protocols.  Over the years, the industry has witnessed several serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation.  This document provides the latest recommendations for ensuring the security of deployed services that use TLS and DTLS. These recommendations are applicable to the majority of use cases.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
<p id="section-abstract-2">RFC 7525, an earlier version of the TLS recommendations, was published when the industry was transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely available. This document updates the guidance given the new environment and obsoletes RFC 7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks.<a href="#section-abstract-2" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
        <h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
        </h2>
<p id="section-boilerplate.1-1">
            This memo documents an Internet Best Current Practice.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further information
            on BCPs is available in Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <span><a href="https://www.rfc-editor.org/info/rfc9325">https://www.rfc-editor.org/info/rfc9325</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
        <h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
        </h2>
<p id="section-boilerplate.2-1">
            Copyright (c) 2022 IETF Trust and the persons identified as the
            document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Revised BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Revised BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
        <a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
        </h2>
<nav class="toc"><ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1">
            <p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="auto internal xref">1</a>.  <a href="#name-introduction" class="internal xref">Introduction</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2">
            <p id="section-toc.1-1.2.1" class="keepWithNext"><a href="#section-2" class="auto internal xref">2</a>.  <a href="#name-terminology" class="internal xref">Terminology</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3">
            <p id="section-toc.1-1.3.1"><a href="#section-3" class="auto internal xref">3</a>.  <a href="#name-general-recommendations" class="internal xref">General Recommendations</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1">
                <p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="auto internal xref">3.1</a>.  <a href="#name-protocol-versions" class="internal xref">Protocol Versions</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1.2.1">
                    <p id="section-toc.1-1.3.2.1.2.1.1" class="keepWithNext"><a href="#section-3.1.1" class="auto internal xref">3.1.1</a>.  <a href="#name-ssl-tls-protocol-versions" class="internal xref">SSL/TLS Protocol Versions</a></p>
</li>
                  <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1.2.2">
                    <p id="section-toc.1-1.3.2.1.2.2.1"><a href="#section-3.1.2" class="auto internal xref">3.1.2</a>.  <a href="#name-dtls-protocol-versions" class="internal xref">DTLS Protocol Versions</a></p>
</li>
                  <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1.2.3">
                    <p id="section-toc.1-1.3.2.1.2.3.1"><a href="#section-3.1.3" class="auto internal xref">3.1.3</a>.  <a href="#name-fallback-to-lower-versions" class="internal xref">Fallback to Lower Versions</a></p>
</li>
                </ul>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.2">
                <p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="auto internal xref">3.2</a>.  <a href="#name-strict-tls" class="internal xref">Strict TLS</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3">
                <p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="auto internal xref">3.3</a>.  <a href="#name-compression" class="internal xref">Compression</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3.2.1">
                    <p id="section-toc.1-1.3.2.3.2.1.1"><a href="#section-3.3.1" class="auto internal xref">3.3.1</a>.  <a href="#name-certificate-compression" class="internal xref">Certificate Compression</a></p>
</li>
                </ul>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4">
                <p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="auto internal xref">3.4</a>.  <a href="#name-tls-session-resumption" class="internal xref">TLS Session Resumption</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.5">
                <p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="auto internal xref">3.5</a>.  <a href="#name-renegotiation-in-tls-12" class="internal xref">Renegotiation in TLS 1.2</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.6">
                <p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="auto internal xref">3.6</a>.  <a href="#name-post-handshake-authenticati" class="internal xref">Post-Handshake Authentication</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.7">
                <p id="section-toc.1-1.3.2.7.1"><a href="#section-3.7" class="auto internal xref">3.7</a>.  <a href="#name-server-name-indication-sni" class="internal xref">Server Name Indication (SNI)</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.8">
                <p id="section-toc.1-1.3.2.8.1"><a href="#section-3.8" class="auto internal xref">3.8</a>.  <a href="#name-application-layer-protocol-" class="internal xref">Application-Layer Protocol Negotiation (ALPN)</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.9">
                <p id="section-toc.1-1.3.2.9.1"><a href="#section-3.9" class="auto internal xref">3.9</a>.  <a href="#name-multi-server-deployment" class="internal xref">Multi-Server Deployment</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.10">
                <p id="section-toc.1-1.3.2.10.1"><a href="#section-3.10" class="auto internal xref">3.10</a>. <a href="#name-zero-round-trip-time-0-rtt-" class="internal xref">Zero Round-Trip Time (0-RTT) Data in TLS 1.3</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4">
            <p id="section-toc.1-1.4.1"><a href="#section-4" class="auto internal xref">4</a>.  <a href="#name-recommendations-cipher-suit" class="internal xref">Recommendations: Cipher Suites</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1">
                <p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="auto internal xref">4.1</a>.  <a href="#name-general-guidelines" class="internal xref">General Guidelines</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2">
                <p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="auto internal xref">4.2</a>.  <a href="#name-cipher-suites-for-tls-12" class="internal xref">Cipher Suites for TLS 1.2</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2.2.1">
                    <p id="section-toc.1-1.4.2.2.2.1.1"><a href="#section-4.2.1" class="auto internal xref">4.2.1</a>.  <a href="#name-implementation-details" class="internal xref">Implementation Details</a></p>
</li>
                </ul>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.3">
                <p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="auto internal xref">4.3</a>.  <a href="#name-cipher-suites-for-tls-13" class="internal xref">Cipher Suites for TLS 1.3</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4">
                <p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="auto internal xref">4.4</a>.  <a href="#name-limits-on-key-usage" class="internal xref">Limits on Key Usage</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.5">
                <p id="section-toc.1-1.4.2.5.1"><a href="#section-4.5" class="auto internal xref">4.5</a>.  <a href="#name-public-key-length" class="internal xref">Public Key Length</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.6">
                <p id="section-toc.1-1.4.2.6.1"><a href="#section-4.6" class="auto internal xref">4.6</a>.  <a href="#name-truncated-hmac" class="internal xref">Truncated HMAC</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5">
            <p id="section-toc.1-1.5.1"><a href="#section-5" class="auto internal xref">5</a>.  <a href="#name-applicability-statement" class="internal xref">Applicability Statement</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5.2.1">
                <p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="auto internal xref">5.1</a>.  <a href="#name-security-services" class="internal xref">Security Services</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5.2.2">
                <p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="auto internal xref">5.2</a>.  <a href="#name-opportunistic-security" class="internal xref">Opportunistic Security</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6">
            <p id="section-toc.1-1.6.1"><a href="#section-6" class="auto internal xref">6</a>.  <a href="#name-iana-considerations" class="internal xref">IANA Considerations</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7">
            <p id="section-toc.1-1.7.1"><a href="#section-7" class="auto internal xref">7</a>.  <a href="#name-security-considerations" class="internal xref">Security Considerations</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.1">
                <p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="auto internal xref">7.1</a>.  <a href="#name-host-name-validation" class="internal xref">Host Name Validation</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.2">
                <p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="auto internal xref">7.2</a>.  <a href="#name-aes-gcm" class="internal xref">AES-GCM</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.2.2.1">
                    <p id="section-toc.1-1.7.2.2.2.1.1"><a href="#section-7.2.1" class="auto internal xref">7.2.1</a>.  <a href="#name-nonce-reuse-in-tls-12" class="internal xref">Nonce Reuse in TLS 1.2</a></p>
</li>
                </ul>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.3">
                <p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="auto internal xref">7.3</a>.  <a href="#name-forward-secrecy" class="internal xref">Forward Secrecy</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.4">
                <p id="section-toc.1-1.7.2.4.1"><a href="#section-7.4" class="auto internal xref">7.4</a>.  <a href="#name-diffie-hellman-exponent-reu" class="internal xref">Diffie-Hellman Exponent Reuse</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.5">
                <p id="section-toc.1-1.7.2.5.1"><a href="#section-7.5" class="auto internal xref">7.5</a>.  <a href="#name-certificate-revocation" class="internal xref">Certificate Revocation</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8">
            <p id="section-toc.1-1.8.1"><a href="#section-8" class="auto internal xref">8</a>.  <a href="#name-references" class="internal xref">References</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8.2.1">
                <p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="auto internal xref">8.1</a>.  <a href="#name-normative-references" class="internal xref">Normative References</a></p>
</li>
              <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8.2.2">
                <p id="section-toc.1-1.8.2.2.1"><a href="#section-8.2" class="auto internal xref">8.2</a>.  <a href="#name-informative-references" class="internal xref">Informative References</a></p>
</li>
            </ul>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9">
            <p id="section-toc.1-1.9.1"><a href="#appendix-A" class="auto internal xref">Appendix A</a>.  <a href="#name-differences-from-rfc-7525" class="internal xref">Differences from RFC 7525</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10">
            <p id="section-toc.1-1.10.1"><a href="#appendix-B" class="auto internal xref"></a><a href="#name-acknowledgments" class="internal xref">Acknowledgments</a></p>
</li>
          <li class="compact toc ulBare ulEmpty" id="section-toc.1-1.11">
            <p id="section-toc.1-1.11.1"><a href="#appendix-C" class="auto internal xref"></a><a href="#name-authors-addresses" class="internal xref">Authors' Addresses</a></p>
</li>
        </ul>
</nav>
</section>
</div>
<div id="introduction">
<section id="section-1">
      <h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
      </h2>
<p id="section-1-1">Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide variety of application protocols, including HTTP <span>[<a href="#RFC9112" class="cite xref">RFC9112</a>]</span> <span>[<a href="#RFC9113" class="cite xref">RFC9113</a>]</span>, IMAP <span>[<a href="#RFC9051" class="cite xref">RFC9051</a>]</span>, Post Office Protocol (POP) <span>[<a href="#STD53" class="cite xref">STD53</a>]</span>, SIP <span>[<a href="#RFC3261" class="cite xref">RFC3261</a>]</span>, SMTP <span>[<a href="#RFC5321" class="cite xref">RFC5321</a>]</span>, and the Extensible Messaging and Presence Protocol (XMPP) <span>[<a href="#RFC6120" class="cite xref">RFC6120</a>]</span>.  Such protocols use both the TLS or DTLS handshake protocol and the TLS or DTLS record layer.



      Although the TLS handshake protocol can also be used with different record layers to define secure transport protocols (the most prominent example is QUIC <span>[<a href="#RFC9000" class="cite xref">RFC9000</a>]</span>), such transport protocols are not directly in scope for this document; nevertheless, many of the recommendations here might apply insofar as such protocols use the TLS handshake protocol.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">Over the years leading to 2015, the industry had witnessed serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation.  For instance, both the AES-CBC <span>[<a href="#RFC3602" class="cite xref">RFC3602</a>]</span> and RC4 <span>[<a href="#RFC7465" class="cite xref">RFC7465</a>]</span> encryption algorithms, which together were once the most widely deployed ciphers, were attacked in the context of TLS.  Detailed information about the attacks known prior to 2015 is provided in a companion document <span>[<a href="#RFC7457" class="cite xref">RFC7457</a>]</span> to the previous version of the TLS recommendations <span>[<a href="#RFC7525" class="cite xref">RFC7525</a>]</span>, which will help the reader understand the rationale behind the recommendations provided here. That document has not been updated in concert with this one; instead, newer attacks are described in this document, as are mitigations for those attacks.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">The TLS community reacted to the attacks described in <span>[<a href="#RFC7457" class="cite xref">RFC7457</a>]</span> in several ways:<a href="#section-1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1-4.1">Detailed guidance was published on the use of TLS 1.2 <span>[<a href="#RFC5246" class="cite xref">RFC5246</a>]</span> and DTLS 1.2 <span>[<a href="#RFC6347" class="cite xref">RFC6347</a>]</span> along with earlier protocol versions. This guidance is included in the original <span>[<a href="#RFC7525" class="cite xref">RFC7525</a>]</span> and mostly retained in this revised version; note that this guidance was mostly adopted by the industry since the publication of RFC 7525 in 2015.<a href="#section-1-4.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-1-4.2">Versions of TLS earlier than 1.2 were deprecated <span>[<a href="#RFC8996" class="cite xref">RFC8996</a>]</span>.<a href="#section-1-4.2" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-1-4.3">Version 1.3 of TLS <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span> was released, followed by version 1.3 of DTLS <span>[<a href="#RFC9147" class="cite xref">RFC9147</a>]</span>; these versions largely mitigate or resolve the described attacks.<a href="#section-1-4.3" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-1-5">Those who implement and deploy TLS and TLS-based protocols need guidance on how they can be used securely.  This document provides guidance for deployed services as well as for software implementations, assuming the implementer expects their code to be deployed in the environments defined in <a href="#applicability" class="auto internal xref">Section 5</a>. Concerning deployment, this document targets a wide audience, namely all deployers who wish to add authentication (be it one-way only or mutual), confidentiality, and data integrity protection to their communications.<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6">The recommendations herein take into consideration the security of various mechanisms, their technical maturity and interoperability, and their prevalence in implementations at the time of writing.  Unless it is explicitly called out that a recommendation applies to TLS alone or to DTLS alone, each recommendation applies to both TLS and DTLS.<a href="#section-1-6" class="pilcrow">¶</a></p>
<p id="section-1-7">This document attempts to minimize new guidance to TLS 1.2 implementations, and the overall approach is to encourage systems to move to TLS 1.3. However, this is not always practical. Newly discovered attacks, as well as ecosystem changes, necessitated some new requirements that apply to TLS 1.2 environments. Those are summarized in <a href="#diff-rfc" class="auto internal xref">Appendix A</a>.<a href="#section-1-7" class="pilcrow">¶</a></p>
<p id="section-1-8">Naturally, future attacks are likely, and this document cannot address them.  Those who implement and deploy TLS/DTLS and protocols based on TLS/DTLS are strongly advised to pay attention to future developments.  In particular, although it is known that the creation of quantum computers will have a significant impact on the security of cryptographic primitives and the technologies that use them, currently post-quantum cryptography is a work in progress and it is too early to make recommendations; once the relevant specifications are standardized in the IETF or elsewhere, this document should be updated to reflect best practices at that time.<a href="#section-1-8" class="pilcrow">¶</a></p>
<p id="section-1-9">As noted, the TLS 1.3 specification resolves many of the vulnerabilities listed in this document. A system that deploys TLS 1.3 should have fewer vulnerabilities than TLS 1.2 or below. Therefore, this document replaces <span>[<a href="#RFC7525" class="cite xref">RFC7525</a>]</span>, with an explicit goal to encourage migration of most uses of TLS 1.2 to TLS 1.3.<a href="#section-1-9" class="pilcrow">¶</a></p>
<p id="section-1-10">These are minimum recommendations for the use of TLS in the vast majority of implementation and deployment scenarios, with the exception of unauthenticated TLS (see <a href="#applicability" class="auto internal xref">Section 5</a>). Other specifications that reference this document can have stricter requirements related to one or more aspects of the protocol, based on their particular circumstances (e.g., for use with a specific application protocol); when that is the case, implementers are advised to adhere to those stricter requirements. Furthermore, this document provides a floor, not a ceiling: where feasible, administrators of services are encouraged to go beyond the minimum support available in implementations to provide the strongest security possible. For example, based on knowledge about the deployed base for an existing application protocol and a cost-benefit analysis regarding security strength vs. interoperability, a given service provider might decide to disable TLS 1.2 entirely and offer only TLS 1.3.<a href="#section-1-10" class="pilcrow">¶</a></p>
<p id="section-1-11">Community knowledge about the strength of various algorithms and feasible attacks can change quickly, and experience shows that a Best Current Practice (BCP) document about security is a point-in-time statement.  Readers are advised to seek out any errata or updates that apply to this document.<a href="#section-1-11" class="pilcrow">¶</a></p>
<p id="section-1-12">This document updates <span>[<a href="#RFC5288" class="cite xref">RFC5288</a>]</span> in view of the <span>[<a href="#Boeck2016" class="cite xref">Boeck2016</a>]</span> attack. See <a href="#nonce-reuse" class="auto internal xref">Section 7.2.1</a> for the details.<a href="#section-1-12" class="pilcrow">¶</a></p>
<p id="section-1-13">This document updates <span>[<a href="#RFC6066" class="cite xref">RFC6066</a>]</span> in view of the <span>[<a href="#ALPACA" class="cite xref">ALPACA</a>]</span> attack.  See <a href="#sni" class="auto internal xref">Section 3.7</a> for the details.<a href="#section-1-13" class="pilcrow">¶</a></p>
</section>
</div>
<div id="terminology">
<section id="section-2">
      <h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
      </h2>
<p id="section-2-1">A number of security-related terms in this document are used in the sense defined in <span>[<a href="#RFC4949" class="cite xref">RFC4949</a>]</span>,
including "attack", "authentication", "certificate", "cipher", "compromise", "confidentiality", 
"credential", "data integrity", "encryption", "forward secrecy", "key", "key length", "self-signed certificate", 
"strength", and "strong".<a href="#section-2-1" class="pilcrow">¶</a></p>
<p id="section-2-2">The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
"<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>",
"<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>",
"<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be
interpreted as described in BCP 14 <span>[<a href="#RFC2119" class="cite xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="cite xref">RFC8174</a>]</span> when, and only when, they appear in all capitals, as shown
here.<a href="#section-2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="rec">
<section id="section-3">
      <h2 id="name-general-recommendations">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-general-recommendations" class="section-name selfRef">General Recommendations</a>
      </h2>
<p id="section-3-1">This section provides general recommendations on the secure use of TLS. Recommendations related to cipher suites are discussed in the following section.<a href="#section-3-1" class="pilcrow">¶</a></p>
<div id="protocol-versions">
<section id="section-3.1">
        <h3 id="name-protocol-versions">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-protocol-versions" class="section-name selfRef">Protocol Versions</a>
        </h3>
<div id="rec-versions">
<section id="section-3.1.1">
          <h4 id="name-ssl-tls-protocol-versions">
<a href="#section-3.1.1" class="section-number selfRef">3.1.1. </a><a href="#name-ssl-tls-protocol-versions" class="section-name selfRef">SSL/TLS Protocol Versions</a>
          </h4>
<p id="section-3.1.1-1">It is important both to stop using old, less secure versions of SSL/TLS and to start using modern, more secure versions; therefore, the following are the recommendations concerning TLS/SSL protocol versions:<a href="#section-3.1.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.1.1-2.1">
              <p id="section-3.1.1-2.1.1">Implementations <span class="bcp14">MUST NOT</span> negotiate SSL version 2.<a href="#section-3.1.1-2.1.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.1.2">
Rationale: Today, SSLv2 is considered insecure <span>[<a href="#RFC6176" class="cite xref">RFC6176</a>]</span>.<a href="#section-3.1.1-2.1.2" class="pilcrow">¶</a></p>
</li>
            <li class="normal" id="section-3.1.1-2.2">
              <p id="section-3.1.1-2.2.1">Implementations <span class="bcp14">MUST NOT</span> negotiate SSL version 3.<a href="#section-3.1.1-2.2.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.2.2">
Rationale: SSLv3 <span>[<a href="#RFC6101" class="cite xref">RFC6101</a>]</span> was an improvement over SSLv2 and plugged some significant security holes but did not support strong cipher suites. SSLv3 does not support TLS extensions, some of which (e.g., renegotiation_info <span>[<a href="#RFC5746" class="cite xref">RFC5746</a>]</span>) are security critical.  In addition, with the emergence of the Padding Oracle On Downgraded Legacy Encryption (POODLE) attack <span>[<a href="#POODLE" class="cite xref">POODLE</a>]</span>, SSLv3 is now widely recognized as fundamentally insecure.  See <span>[<a href="#RFC7568" class="cite xref">RFC7568</a>]</span> for further details.<a href="#section-3.1.1-2.2.2" class="pilcrow">¶</a></p>
</li>
            <li class="normal" id="section-3.1.1-2.3">
              <p id="section-3.1.1-2.3.1">Implementations <span class="bcp14">MUST NOT</span> negotiate TLS version 1.0 <span>[<a href="#RFC2246" class="cite xref">RFC2246</a>]</span>.<a href="#section-3.1.1-2.3.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.3.2">
Rationale: TLS 1.0 (published in 1999) does not support many modern, strong cipher suites. In addition, TLS 1.0 lacks a per-record Initialization Vector (IV) for cipher suites based on cipher block chaining (CBC) and does not warn against common padding errors. This and other recommendations in this section are in line with <span>[<a href="#RFC8996" class="cite xref">RFC8996</a>]</span>.<a href="#section-3.1.1-2.3.2" class="pilcrow">¶</a></p>
</li>
            <li class="normal" id="section-3.1.1-2.4">
              <p id="section-3.1.1-2.4.1">Implementations <span class="bcp14">MUST NOT</span> negotiate TLS version 1.1 <span>[<a href="#RFC4346" class="cite xref">RFC4346</a>]</span>.<a href="#section-3.1.1-2.4.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.4.2">
Rationale: TLS 1.1 (published in 2006) is a security improvement over TLS 1.0 but still does not support certain stronger cipher suites that were introduced with the standardization of TLS 1.2 in 2008, including the cipher suites recommended for TLS 1.2 by this document (see <a href="#rec-cipher" class="auto internal xref">Section 4.2</a> below).<a href="#section-3.1.1-2.4.2" class="pilcrow">¶</a></p>
</li>
            <li class="normal" id="section-3.1.1-2.5">
              <p id="section-3.1.1-2.5.1">Implementations <span class="bcp14">MUST</span> support TLS 1.2 <span>[<a href="#RFC5246" class="cite xref">RFC5246</a>]</span>.<a href="#section-3.1.1-2.5.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.5.2">
Rationale: TLS 1.2 is implemented and deployed more widely than TLS 1.3 at this time, and when the recommendations in this document are followed to mitigate known attacks, the use of TLS 1.2 is as safe as the use of TLS 1.3.  In most application protocols that reuse TLS and DTLS, there is no immediate need to migrate solely to TLS 1.3. Indeed, because many application clients are dependent on TLS libraries or operating systems that do not yet support TLS 1.3, proactively deprecating TLS 1.2 would introduce significant interoperability issues, thus harming security more than helping it.  Nevertheless, it is expected that a future version of this BCP will deprecate the use of TLS 1.2 when it is appropriate to do so.<a href="#section-3.1.1-2.5.2" class="pilcrow">¶</a></p>
</li>
            <li class="normal" id="section-3.1.1-2.6">
              <p id="section-3.1.1-2.6.1">Implementations <span class="bcp14">SHOULD</span> support TLS 1.3 <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span> and, if implemented, <span class="bcp14">MUST</span> prefer to negotiate TLS 1.3 over earlier versions of TLS.<a href="#section-3.1.1-2.6.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.6.2">
Rationale: TLS 1.3 is a major overhaul to the protocol and resolves many of the security issues with TLS 1.2. To the extent that an implementation supports TLS 1.2 (even if it defaults to TLS 1.3), it <span class="bcp14">MUST</span> follow the recommendations regarding TLS 1.2 specified in this document.<a href="#section-3.1.1-2.6.2" class="pilcrow">¶</a></p>
</li>
            <li class="normal" id="section-3.1.1-2.7">
              <p id="section-3.1.1-2.7.1">New transport protocols that integrate the TLS/DTLS handshake protocol and/or record layer <span class="bcp14">MUST</span> use only TLS/DTLS 1.3 (for instance, QUIC <span>[<a href="#RFC9001" class="cite xref">RFC9001</a>]</span> took this approach). New application protocols that employ TLS/DTLS for channel or session encryption <span class="bcp14">MUST</span> integrate with both TLS/DTLS versions 1.2 and 1.3; nevertheless, in rare cases where broad interoperability is not a concern, application protocol designers <span class="bcp14">MAY</span> choose to forego TLS 1.2.<a href="#section-3.1.1-2.7.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.7.2">
Rationale: Secure deployment of TLS 1.3 is significantly easier and less error prone than secure deployment of TLS 1.2. When designing a new secure transport protocol such as QUIC, there is no reason to support TLS 1.2. By contrast, new application protocols that reuse TLS need to support both TLS 1.3 and TLS 1.2 in order to take advantage of underlying library or operating system support for both versions.<a href="#section-3.1.1-2.7.2" class="pilcrow">¶</a></p>
</li>
          </ul>
<p id="section-3.1.1-3">This BCP applies to TLS 1.3, TLS 1.2, and earlier versions. It is not safe for readers to assume that the recommendations in this BCP apply to any future version of TLS.<a href="#section-3.1.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dtls-protocol-versions">
<section id="section-3.1.2">
          <h4 id="name-dtls-protocol-versions">
<a href="#section-3.1.2" class="section-number selfRef">3.1.2. </a><a href="#name-dtls-protocol-versions" class="section-name selfRef">DTLS Protocol Versions</a>
          </h4>
<p id="section-3.1.2-1">DTLS, an adaptation of TLS for UDP datagrams, was introduced when TLS 1.1 was published.  The following are the recommendations with respect to DTLS:<a href="#section-3.1.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.1.2-2.1">
              <p id="section-3.1.2-2.1.1">Implementations <span class="bcp14">MUST NOT</span> negotiate DTLS version 1.0 <span>[<a href="#RFC4347" class="cite xref">RFC4347</a>]</span>.<a href="#section-3.1.2-2.1.1" class="pilcrow">¶</a></p>
<p id="section-3.1.2-2.1.2">
Version 1.0 of DTLS correlates to version 1.1 of TLS (see above).<a href="#section-3.1.2-2.1.2" class="pilcrow">¶</a></p>
</li>
            <li class="normal" id="section-3.1.2-2.2">
              <p id="section-3.1.2-2.2.1">Implementations <span class="bcp14">MUST</span> support DTLS 1.2 <span>[<a href="#RFC6347" class="cite xref">RFC6347</a>]</span>.<a href="#section-3.1.2-2.2.1" class="pilcrow">¶</a></p>
<p id="section-3.1.2-2.2.2">
Version 1.2 of DTLS correlates to version 1.2 of TLS (see above).
(There is no version 1.1 of DTLS.)<a href="#section-3.1.2-2.2.2" class="pilcrow">¶</a></p>
</li>
            <li class="normal" id="section-3.1.2-2.3">
              <p id="section-3.1.2-2.3.1">Implementations <span class="bcp14">SHOULD</span> support DTLS 1.3 <span>[<a href="#RFC9147" class="cite xref">RFC9147</a>]</span> and, if implemented, <span class="bcp14">MUST</span> prefer to negotiate DTLS version 1.3 over earlier versions of DTLS.<a href="#section-3.1.2-2.3.1" class="pilcrow">¶</a></p>
<p id="section-3.1.2-2.3.2">
Version 1.3 of DTLS correlates to version 1.3 of TLS (see above).<a href="#section-3.1.2-2.3.2" class="pilcrow">¶</a></p>
</li>
          </ul>
</section>
</div>
<div id="rec-fallback">
<section id="section-3.1.3">
          <h4 id="name-fallback-to-lower-versions">
<a href="#section-3.1.3" class="section-number selfRef">3.1.3. </a><a href="#name-fallback-to-lower-versions" class="section-name selfRef">Fallback to Lower Versions</a>
          </h4>
<p id="section-3.1.3-1">TLS/DTLS 1.2 clients <span class="bcp14">MUST NOT</span> fall back to earlier TLS versions, since those versions have been deprecated <span>[<a href="#RFC8996" class="cite xref">RFC8996</a>]</span>. As a result, the downgrade-protection Signaling Cipher Suite Value (SCSV) mechanism <span>[<a href="#RFC7507" class="cite xref">RFC7507</a>]</span> is no longer needed for clients. In addition, TLS 1.3 implements a new version-negotiation mechanism.<a href="#section-3.1.3-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="strict-tls">
<section id="section-3.2">
        <h3 id="name-strict-tls">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-strict-tls" class="section-name selfRef">Strict TLS</a>
        </h3>
<p id="section-3.2-1">The following recommendations are provided to help prevent "SSL Stripping" and STARTTLS command injection (attacks that are summarized in <span>[<a href="#RFC7457" class="cite xref">RFC7457</a>]</span>):<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2-2.1">Many existing application protocols were designed before the use of TLS became common. These protocols typically support TLS in one of two ways: either via a separate port for TLS-only communication (e.g., port 443 for HTTPS) or via a method for dynamically upgrading a channel from unencrypted to TLS protected (e.g., STARTTLS, which is used in protocols such as IMAP and XMPP). Regardless of the mechanism for protecting the communication channel (TLS-only port or dynamic upgrade), what matters is the end state of the channel. When a protocol defines both a dynamic upgrade method and a separate TLS-only method, then the separate TLS-only method <span class="bcp14">MUST</span> be supported by implementations and <span class="bcp14">MUST</span> be configured by administrators to be used in preference to the dynamic upgrade method.  When a protocol supports only a dynamic upgrade method, implementations <span class="bcp14">MUST</span> provide a way for administrators to set a strict local policy that forbids use of plaintext in the absence of a negotiated TLS channel, and administrators <span class="bcp14">MUST</span> use this policy.<a href="#section-3.2-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.2-2.2">HTTP client and server implementations intended for use in the World Wide Web (see 
<a href="#applicability" class="auto internal xref">Section 5</a>) <span class="bcp14">MUST</span> support the HTTP Strict Transport Security (HSTS) header 
field <span>[<a href="#RFC6797" class="cite xref">RFC6797</a>]</span> so that web servers can advertise that they are willing to 
accept TLS-only clients. Web servers <span class="bcp14">SHOULD</span> use HSTS to indicate that they are 
willing to accept TLS-only clients, unless they are deployed in such a way that 
using HSTS would in fact weaken overall security (e.g., it can be problematic to 
use HSTS with self-signed certificates, as described in <span><a href="https://www.rfc-editor.org/rfc/rfc6797#section-11.3" class="relref">Section 11.3</a> of [<a href="#RFC6797" class="cite xref">RFC6797</a>]</span>).
Similar technologies exist for non-HTTP application protocols, such as Mail Transfer Agent Strict Transport Security (MTA-STS) for 
mail transfer agents <span>[<a href="#RFC8461" class="cite xref">RFC8461</a>]</span> and methods based on DNS-Based Authentication of 
Named Entities (DANE) <span>[<a href="#RFC6698" class="cite xref">RFC6698</a>]</span> for SMTP <span>[<a href="#RFC7672" class="cite xref">RFC7672</a>]</span> and XMPP <span>[<a href="#RFC7712" class="cite xref">RFC7712</a>]</span>.<a href="#section-3.2-2.2" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.2-3">Rationale: Combining unprotected and TLS-protected communication opens the way to SSL Stripping and similar attacks, since an initial part of the communication is not integrity protected and therefore can be manipulated by an attacker whose goal is to keep the communication in the clear.<a href="#section-3.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="compression">
<section id="section-3.3">
        <h3 id="name-compression">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-compression" class="section-name selfRef">Compression</a>
        </h3>
<div id="rec-compress">
<p id="section-3.3-1">In order to help prevent compression-related attacks (summarized in <span><a href="https://www.rfc-editor.org/rfc/rfc7457#section-2.6" class="relref">Section 2.6</a> of [<a href="#RFC7457" class="cite xref">RFC7457</a>]</span>) when using TLS 1.2, implementations and deployments <span class="bcp14">SHOULD NOT</span> support
TLS-level compression (<span><a href="https://www.rfc-editor.org/rfc/rfc5246#section-6.2.2" class="relref">Section 6.2.2</a> of [<a href="#RFC5246" class="cite xref">RFC5246</a>]</span>); the only exception is when
the application protocol in question has been proven not to be open to such attacks.
However, even in this case, extreme caution is warranted because of the potential for
 future attacks related to TLS compression. More specifically, the HTTP protocol is known to be vulnerable to compression-related attacks. (This recommendation applies to TLS 1.2 only, because compression has been removed from TLS 1.3.)<a href="#section-3.3-1" class="pilcrow">¶</a></p>
</div>
<p id="section-3.3-2">Rationale: TLS compression has been subject to security attacks such as the Compression Ratio Info-leak Made Easy (CRIME) attack.<a href="#section-3.3-2" class="pilcrow">¶</a></p>
<p id="section-3.3-3">Implementers should note that compression at higher protocol levels can allow an active attacker to extract cleartext information from the connection. The Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext (BREACH) attack is one such case. These issues can only be mitigated outside of TLS and are thus outside the scope of this document. See <span><a href="https://www.rfc-editor.org/rfc/rfc7457#section-2.6" class="relref">Section 2.6</a> of [<a href="#RFC7457" class="cite xref">RFC7457</a>]</span> for further details.<a href="#section-3.3-3" class="pilcrow">¶</a></p>
<div id="certificate-compression">
<section id="section-3.3.1">
          <h4 id="name-certificate-compression">
<a href="#section-3.3.1" class="section-number selfRef">3.3.1. </a><a href="#name-certificate-compression" class="section-name selfRef">Certificate Compression</a>
          </h4>
<p id="section-3.3.1-1">Certificate chains often take up most of the bytes transmitted during
the handshake.  In order to manage their size, some or all of the following
methods can be employed (see also <span><a href="https://www.rfc-editor.org/rfc/rfc9191#section-4" class="relref">Section 4</a> of [<a href="#RFC9191" class="cite xref">RFC9191</a>]</span> for further suggestions):<a href="#section-3.3.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.3.1-2.1">Limit the number of names or extensions.<a href="#section-3.3.1-2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.3.1-2.2">Use keys with small public key representations, like the Elliptic Curve Digital Signature Algorithm (ECDSA).<a href="#section-3.3.1-2.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="section-3.3.1-2.3">Use certificate compression.<a href="#section-3.3.1-2.3" class="pilcrow">¶</a>
</li>
          </ul>
<p id="section-3.3.1-3">To achieve the latter, TLS 1.3 defines the <code>compress_certificate</code> extension in
<span>[<a href="#RFC8879" class="cite xref">RFC8879</a>]</span>.  See also <span><a href="https://www.rfc-editor.org/rfc/rfc8879#section-5" class="relref">Section 5</a> of [<a href="#RFC8879" class="cite xref">RFC8879</a>]</span> for security and privacy
considerations associated with its use.  For the avoidance of doubt, CRIME-style attacks on TLS
compression do not apply to certificate compression.<a href="#section-3.3.1-3" class="pilcrow">¶</a></p>
<p id="section-3.3.1-4">Due to the strong likelihood of middlebox interference,
compression in the style of <span>[<a href="#RFC8879" class="cite xref">RFC8879</a>]</span> has not been made available in
TLS 1.2.  In theory, the <code>cached_info</code> extension defined in <span>[<a href="#RFC7924" class="cite xref">RFC7924</a>]</span> could
be used, but it is not supported widely enough to be considered a practical
alternative.<a href="#section-3.3.1-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="rec-resume">
<section id="section-3.4">
        <h3 id="name-tls-session-resumption">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-tls-session-resumption" class="section-name selfRef">TLS Session Resumption</a>
        </h3>
<p id="section-3.4-1">Session resumption drastically reduces the number of full TLS handshakes and thus is an essential
performance feature for most deployments.<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<p id="section-3.4-2">Stateless session resumption with session tickets is a popular strategy. For TLS 1.2, it is specified in
<span>[<a href="#RFC5077" class="cite xref">RFC5077</a>]</span>.  For TLS 1.3, a more secure mechanism based on the use of a pre-shared key (PSK) is described in
<span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-4.6.1" class="relref">Section 4.6.1</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>. See <span>[<a href="#Springall16" class="cite xref">Springall16</a>]</span> for a quantitative study of the risks induced by TLS cryptographic "shortcuts", including session resumption.<a href="#section-3.4-2" class="pilcrow">¶</a></p>
<p id="section-3.4-3">When it is used, the resumption information <span class="bcp14">MUST</span>
be authenticated and encrypted to prevent modification or eavesdropping by an attacker.
Further recommendations apply to session tickets:<a href="#section-3.4-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.4-4.1">A strong cipher <span class="bcp14">MUST</span> be used when encrypting the ticket (at least as strong as the main TLS cipher suite).<a href="#section-3.4-4.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.4-4.2">Ticket-encryption keys <span class="bcp14">MUST</span> be changed regularly, e.g., once every week, so as not to negate the benefits of forward secrecy (see <a href="#sec-pfs" class="auto internal xref">Section 7.3</a> for details on forward secrecy). Old ticket-encryption keys <span class="bcp14">MUST</span> be destroyed at the end of the validity period.<a href="#section-3.4-4.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.4-4.3">For similar reasons, session ticket validity <span class="bcp14">MUST</span> be limited to a reasonable duration (e.g., half as long as ticket-encryption key validity).<a href="#section-3.4-4.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-3.4-4.4">TLS 1.2 does not roll the session key forward within a single session. Thus, to prevent an attack where the server's ticket-encryption key is stolen and used to decrypt the entire content of a session (negating the concept of forward secrecy), a TLS 1.2 server <span class="bcp14">SHOULD NOT</span> resume sessions that are too old, e.g., sessions that have been open longer than two ticket-encryption key rotation periods.<a href="#section-3.4-4.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-3.4-5">Rationale: Session resumption is another kind of TLS handshake and therefore must be as secure as the initial handshake. This document (<a href="#detail" class="auto internal xref">Section 4</a>) recommends the use of cipher suites that provide forward secrecy, i.e., that prevent an attacker who gains momentary access to the TLS endpoint (either client or server) and its secrets from reading either past or future communication. The tickets must be managed so as not to negate this security property.<a href="#section-3.4-5" class="pilcrow">¶</a></p>
<p id="section-3.4-6">TLS 1.3 provides the powerful option of forward secrecy even within a long-lived connection
that is periodically resumed. <span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-2.2" class="relref">Section 2.2</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span> recommends that clients <span class="bcp14">SHOULD</span>
send a "key_share" when initiating session resumption.
In order to gain forward secrecy, this document recommends that server implementations <span class="bcp14">SHOULD</span>
select the "psk_dhe_ke" PSK key exchange mode and 
respond with a "key_share" to complete an Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) exchange on each session resumption.
As a more performant alternative, server implementations <span class="bcp14">MAY</span> refrain from responding with a 
"key_share" until a certain amount of time (e.g., measured in hours) has passed since the last 
ECDHE exchange; this implies that the "key_share" operation would not occur for the presumed
majority of session resumption requests (which would occur within a few hours) while still ensuring 
forward secrecy for longer-lived sessions.<a href="#section-3.4-6" class="pilcrow">¶</a></p>
<p id="section-3.4-7">TLS session resumption introduces potential privacy issues where the server is able
to track the client, in some cases indefinitely. See <span>[<a href="#Sy2018" class="cite xref">Sy2018</a>]</span> for more details.<a href="#section-3.4-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="renegotiation-in-tls-12">
<section id="section-3.5">
        <h3 id="name-renegotiation-in-tls-12">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-renegotiation-in-tls-12" class="section-name selfRef">Renegotiation in TLS 1.2</a>
        </h3>
<p id="section-3.5-1">The recommendations in this section apply to TLS 1.2 only, because renegotiation has been removed from TLS 1.3.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
<p id="section-3.5-2">Renegotiation in TLS 1.2 is a handshake that establishes new cryptographic parameters for an existing session. The mechanism existed in TLS 1.2 and in earlier protocol versions and was improved following several major attacks including a plaintext injection attack, CVE-2009-3555 <span>[<a href="#CVE" class="cite xref">CVE</a>]</span>.<a href="#section-3.5-2" class="pilcrow">¶</a></p>
<p id="section-3.5-3">TLS 1.2 clients and servers <span class="bcp14">MUST</span> implement the <code>renegotiation_info</code> extension, as defined in <span>[<a href="#RFC5746" class="cite xref">RFC5746</a>]</span>.<a href="#section-3.5-3" class="pilcrow">¶</a></p>
<p id="section-3.5-4">TLS 1.2 clients <span class="bcp14">MUST</span> send <code>renegotiation_info</code> in the Client Hello.  If the server does not acknowledge the extension, the client <span class="bcp14">MUST</span> generate a fatal <code>handshake_failure</code> alert prior to terminating the connection.<a href="#section-3.5-4" class="pilcrow">¶</a></p>
<p id="section-3.5-5">Rationale: It is not safe for a client to connect to a TLS 1.2 server that does not support <code>renegotiation_info</code> regardless of whether either endpoint actually implements renegotiation.  See also <span><a href="https://www.rfc-editor.org/rfc/rfc5746#section-4.1" class="relref">Section 4.1</a> of [<a href="#RFC5746" class="cite xref">RFC5746</a>]</span>.<a href="#section-3.5-5" class="pilcrow">¶</a></p>
<p id="section-3.5-6">A related attack resulting from TLS session parameters not being properly authenticated is a Triple Handshake <span>[<a href="#Triple-Handshake" class="cite xref">Triple-Handshake</a>]</span>. To address this attack, TLS 1.2 implementations <span class="bcp14">MUST</span> support the <code>extended_master_secret</code> extension defined in <span>[<a href="#RFC7627" class="cite xref">RFC7627</a>]</span>.<a href="#section-3.5-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="post-handshake-authentication">
<section id="section-3.6">
        <h3 id="name-post-handshake-authenticati">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-post-handshake-authenticati" class="section-name selfRef">Post-Handshake Authentication</a>
        </h3>
<p id="section-3.6-1">Renegotiation in TLS 1.2 was (partially) replaced in TLS 1.3 by separate post-handshake authentication and key update mechanisms.  In the context of protocols that multiplex requests over a single connection (such as HTTP/2 <span>[<a href="#RFC9113" class="cite xref">RFC9113</a>]</span>), post-handshake authentication has the same problems as TLS 1.2 renegotiation. Multiplexed protocols <span class="bcp14">SHOULD</span> follow the advice provided for HTTP/2 in <span><a href="https://www.rfc-editor.org/rfc/rfc9113#section-9.2.3" class="relref">Section 9.2.3</a> of [<a href="#RFC9113" class="cite xref">RFC9113</a>]</span>.<a href="#section-3.6-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sni">
<section id="section-3.7">
        <h3 id="name-server-name-indication-sni">
<a href="#section-3.7" class="section-number selfRef">3.7. </a><a href="#name-server-name-indication-sni" class="section-name selfRef">Server Name Indication (SNI)</a>
        </h3>
<p id="section-3.7-1">TLS implementations <span class="bcp14">MUST</span> support the Server Name Indication (SNI) extension defined in <span><a href="https://www.rfc-editor.org/rfc/rfc6066#section-3" class="relref">Section 3</a> of [<a href="#RFC6066" class="cite xref">RFC6066</a>]</span> for those higher-level protocols that would benefit from it, including HTTPS. However, the actual use of SNI in particular circumstances is a matter of local policy.  At the time of writing, a technology for encrypting the SNI (called Encrypted Client Hello) is being worked on in the TLS Working Group <span>[<a href="#I-D.ietf-tls-esni" class="cite xref">TLS-ECH</a>]</span>.  Once that method has been standardized and widely implemented, it will likely be appropriate to recommend its usage in a future version of this BCP.<a href="#section-3.7-1" class="pilcrow">¶</a></p>
<p id="section-3.7-2">Rationale: SNI supports deployment of multiple TLS-protected virtual servers on a single
      address, and therefore enables fine-grained security for these virtual servers,
      by allowing each one to have its own certificate. However, SNI also leaks the 
      target domain for a given connection; this information leak will be closed by 
      use of TLS Encrypted Client Hello once that method has been standardized.<a href="#section-3.7-2" class="pilcrow">¶</a></p>
<p id="section-3.7-3">In order to prevent the attacks described in <span>[<a href="#ALPACA" class="cite xref">ALPACA</a>]</span>, a server that does not
recognize the presented server name <span class="bcp14">SHOULD NOT</span> continue the handshake and
instead <span class="bcp14">SHOULD</span> fail with a fatal-level <code>unrecognized_name(112)</code> alert.  Note that this
recommendation updates <span><a href="https://www.rfc-editor.org/rfc/rfc6066#section-3" class="relref">Section 3</a> of [<a href="#RFC6066" class="cite xref">RFC6066</a>]</span>, which stated:<a href="#section-3.7-3" class="pilcrow">¶</a></p>
<blockquote id="section-3.7-4">If the server understood the
ClientHello extension but does not recognize the server name, the server <span class="bcp14">SHOULD</span>
take one of two actions: either abort the handshake by sending a fatal-level
<code>unrecognized_name(112)</code> alert or continue the handshake.<a href="#section-3.7-4" class="pilcrow">¶</a>
</blockquote>
<p id="section-3.7-5"> 
Clients <span class="bcp14">SHOULD</span> abort the handshake if the server acknowledges the SNI extension but presents a certificate with a different hostname than the one sent by the client.<a href="#section-3.7-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="rec-alpn">
<section id="section-3.8">
        <h3 id="name-application-layer-protocol-">
<a href="#section-3.8" class="section-number selfRef">3.8. </a><a href="#name-application-layer-protocol-" class="section-name selfRef">Application-Layer Protocol Negotiation (ALPN)</a>
        </h3>
<p id="section-3.8-1">TLS implementations (both client- and server-side) <span class="bcp14">MUST</span> support the
Application-Layer Protocol Negotiation (ALPN) extension <span>[<a href="#RFC7301" class="cite xref">RFC7301</a>]</span>.<a href="#section-3.8-1" class="pilcrow">¶</a></p>
<p id="section-3.8-2">In order to prevent "cross-protocol" attacks resulting from failure to ensure
that a message intended for use in one protocol cannot be mistaken for a
message for use in another protocol, servers are advised to strictly enforce the
behavior prescribed in <span><a href="https://www.rfc-editor.org/rfc/rfc7301#section-3.2" class="relref">Section 3.2</a> of [<a href="#RFC7301" class="cite xref">RFC7301</a>]</span>:<a href="#section-3.8-2" class="pilcrow">¶</a></p>
<blockquote id="section-3.8-3"> In the event that the
server supports no protocols that the client advertises, then the server <span class="bcp14">SHALL</span>
respond with a fatal '<code>no_application_protocol</code>' alert.<a href="#section-3.8-3" class="pilcrow">¶</a>
</blockquote>
<p id="section-3.8-4">
Clients <span class="bcp14">SHOULD</span>
abort the handshake if the server acknowledges the ALPN extension
but does not select a protocol from the client list.  Failure to do so can
result in attacks such those described in <span>[<a href="#ALPACA" class="cite xref">ALPACA</a>]</span>.<a href="#section-3.8-4" class="pilcrow">¶</a></p>
<p id="section-3.8-5">Protocol developers are strongly encouraged to register an ALPN identifier 
for their protocols. This applies both to new protocols and to well-established 
protocols; however, because the latter might have a large deployed base,
strict enforcement of ALPN usage may not be feasible when an ALPN 
identifier is registered for a well-established protocol.<a href="#section-3.8-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="multi-server-deployment">
<section id="section-3.9">
        <h3 id="name-multi-server-deployment">
<a href="#section-3.9" class="section-number selfRef">3.9. </a><a href="#name-multi-server-deployment" class="section-name selfRef">Multi-Server Deployment</a>
        </h3>
<p id="section-3.9-1">Deployments that involve multiple servers or services can increase the size of the attack surface for TLS. Two scenarios are of interest:<a href="#section-3.9-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-3.9-2">
<li id="section-3.9-2.1">Deployments in which multiple services handle the same domain name via different 
protocols (e.g., HTTP and IMAP). In this case, an attacker might be able to direct 
a connecting endpoint to the service offering a different protocol and mount a 
cross-protocol attack. In a cross-protocol attack, the client and server believe 
they are using different protocols, which the attacker might exploit if messages 
sent in one protocol are interpreted as messages in the other protocol with 
undesirable effects (see <span>[<a href="#ALPACA" class="cite xref">ALPACA</a>]</span> for more detailed information about this class 
of attacks). To mitigate this threat, service providers <span class="bcp14">SHOULD</span> deploy ALPN (see
<a href="#rec-alpn" class="auto internal xref">Section 3.8</a>). In addition, to the extent possible, they <span class="bcp14">SHOULD</span> ensure that multiple 
services handling the same domain name provide equivalent levels of security that are consistent with the recommendations in this document; such measures <span class="bcp14">SHOULD</span> include the handling of configurations across multiple TLS servers and protections against compromise of credentials held by those servers.<a href="#section-3.9-2.1" class="pilcrow">¶</a>
</li>
          <li id="section-3.9-2.2">Deployments in which multiple servers providing the same service have different
TLS configurations. In this case, an attacker might be able to direct a connecting 
endpoint to a server with a TLS configuration that is more easily exploitable (see 
<span>[<a href="#DROWN" class="cite xref">DROWN</a>]</span> for more detailed information about this class of attacks). To mitigate 
this threat, service providers <span class="bcp14">SHOULD</span> ensure that all servers providing the same 
service provide equivalent levels of security that are consistent with the 
recommendations in this document.<a href="#section-3.9-2.2" class="pilcrow">¶</a>
</li>
        </ol>
</section>
</div>
<div id="zero-round-trip-time-0-rtt-data-in-tls-13">
<section id="section-3.10">
        <h3 id="name-zero-round-trip-time-0-rtt-">
<a href="#section-3.10" class="section-number selfRef">3.10. </a><a href="#name-zero-round-trip-time-0-rtt-" class="section-name selfRef">Zero Round-Trip Time (0-RTT) Data in TLS 1.3</a>
        </h3>
<p id="section-3.10-1">The 0-RTT early data feature is new in TLS 1.3. It provides reduced latency
when TLS connections are resumed, at the potential cost of certain security properties.
As a result, it requires special attention from implementers on both
the server and the client side. Typically, this extends to the
TLS library as well as protocol layers above it.<a href="#section-3.10-1" class="pilcrow">¶</a></p>
<p id="section-3.10-2">For HTTP over TLS, refer to <span>[<a href="#RFC8470" class="cite xref">RFC8470</a>]</span> for guidance.<a href="#section-3.10-2" class="pilcrow">¶</a></p>
<p id="section-3.10-3">For QUIC on TLS, refer to <span><a href="https://www.rfc-editor.org/rfc/rfc9001#section-9.2" class="relref">Section 9.2</a> of [<a href="#RFC9001" class="cite xref">RFC9001</a>]</span>.<a href="#section-3.10-3" class="pilcrow">¶</a></p>
<p id="section-3.10-4">For other protocols, generic guidance is given in Section <a href="https://www.rfc-editor.org/rfc/rfc8446#section-8" class="relref">8</a> and Appendix <a href="https://www.rfc-editor.org/rfc/rfc8446#appendix-E.5" class="relref">E.5</a> of <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>.
To paraphrase Appendix <a href="https://www.rfc-editor.org/rfc/rfc8446#appendix-E.5" class="relref">E.5</a>, applications <span class="bcp14">MUST</span> avoid this feature unless
an explicit specification exists for the application protocol in question to clarify
when 0-RTT is appropriate and secure. This can take the form of an IETF RFC,
a non-IETF standard, or documentation associated with a non-standard protocol.<a href="#section-3.10-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="detail">
<section id="section-4">
      <h2 id="name-recommendations-cipher-suit">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-recommendations-cipher-suit" class="section-name selfRef">Recommendations: Cipher Suites</a>
      </h2>
<p id="section-4-1">TLS 1.2 provided considerable flexibility in the selection of cipher suites. Unfortunately, the security of some of these cipher suites has degraded over time to the point where some are known to be insecure (this is one reason why TLS 1.3 restricted such flexibility). Incorrectly configuring a server leads to no or reduced security.  This section includes recommendations on the selection and negotiation of cipher suites.<a href="#section-4-1" class="pilcrow">¶</a></p>
<div id="rec-cipher-guidelines">
<section id="section-4.1">
        <h3 id="name-general-guidelines">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-general-guidelines" class="section-name selfRef">General Guidelines</a>
        </h3>
<p id="section-4.1-1">Cryptographic algorithms weaken over time as cryptanalysis improves: algorithms that were once considered strong become weak. Consequently, cipher suites using weak algorithms need to be phased out and replaced with more secure cipher suites. This helps to ensure that the desired security properties still hold. SSL/TLS has been in existence for well over 20 years and many of the cipher suites that have been recommended in various versions of SSL/TLS are now considered weak or at least not as strong as desired. Therefore, this section modernizes the recommendations concerning cipher suite selection.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-2.1">
            <p id="section-4.1-2.1.1">Implementations <span class="bcp14">MUST NOT</span> negotiate the cipher suites with NULL encryption.<a href="#section-4.1-2.1.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.1.2">
Rationale: The NULL cipher suites do not encrypt traffic and 
             so provide no confidentiality services. Any entity in the 
             network with access to the connection can view the plaintext 
             of contents being exchanged by the client and server. Nevertheless, this document does not discourage software from
             implementing NULL cipher suites, since they can be useful for 
             testing and debugging.<a href="#section-4.1-2.1.2" class="pilcrow">¶</a></p>
</li>
          <li class="normal" id="section-4.1-2.2">
            <p id="section-4.1-2.2.1">Implementations <span class="bcp14">MUST NOT</span> negotiate RC4 cipher suites.<a href="#section-4.1-2.2.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.2.2">
Rationale: The RC4 stream cipher has a variety of cryptographic 
             weaknesses, as documented in <span>[<a href="#RFC7465" class="cite xref">RFC7465</a>]</span>.
     Note that DTLS specifically forbids the use of RC4 already.<a href="#section-4.1-2.2.2" class="pilcrow">¶</a></p>
</li>
          <li class="normal" id="section-4.1-2.3">
            <p id="section-4.1-2.3.1">Implementations <span class="bcp14">MUST NOT</span> negotiate cipher suites offering less 
             than 112 bits of security, including so-called "export-level" 
             encryption (which provides 40 or 56 bits of security).<a href="#section-4.1-2.3.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.3.2">
Rationale: Based on <span>[<a href="#RFC3766" class="cite xref">RFC3766</a>]</span>, at least 112 bits 
             of security is needed.  40-bit and 56-bit security (found in 
             so-called "export ciphers") are considered 
             insecure today.<a href="#section-4.1-2.3.2" class="pilcrow">¶</a></p>
</li>
          <li class="normal" id="section-4.1-2.4">
            <p id="section-4.1-2.4.1">Implementations <span class="bcp14">SHOULD NOT</span> negotiate cipher suites that use 
             algorithms offering less than 128 bits of security.<a href="#section-4.1-2.4.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.4.2">
Rationale: Cipher suites that offer 112 or more bits but less than 128 bits
             of security are not considered weak at this time; however, it is 
             expected that their useful lifespan is short enough to justify 
             supporting stronger cipher suites at this time.  128-bit ciphers 
             are expected to remain secure for at least several years and 
             256-bit ciphers until the next fundamental technology 
             breakthrough.  Note that, because of so-called 
             "meet-in-the-middle" attacks <span>[<a href="#Multiple-Encryption" class="cite xref">Multiple-Encryption</a>]</span>,
             some legacy cipher suites (e.g., 168-bit Triple DES (3DES)) have an effective 
             key length that is smaller than their nominal key length (112 
             bits in the case of 3DES).  Such cipher suites should be 
             evaluated according to their effective key length.<a href="#section-4.1-2.4.2" class="pilcrow">¶</a></p>
</li>
          <li class="normal" id="section-4.1-2.5">
            <p id="section-4.1-2.5.1">Implementations <span class="bcp14">SHOULD NOT</span> negotiate cipher suites based on 
             RSA key transport, a.k.a. "static RSA".<a href="#section-4.1-2.5.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.5.2">
Rationale: These cipher suites, which have assigned values starting 
             with the string "TLS_RSA_WITH_*", have several drawbacks, especially
             the fact that they do not support forward secrecy.<a href="#section-4.1-2.5.2" class="pilcrow">¶</a></p>
</li>
          <li class="normal" id="section-4.1-2.6">
            <p id="section-4.1-2.6.1">Implementations <span class="bcp14">SHOULD NOT</span> negotiate cipher suites based on
             non-ephemeral (static) finite-field Diffie-Hellman (DH) key agreement. Similarly, implementations <span class="bcp14">SHOULD NOT</span> negotiate non-ephemeral Elliptic Curve DH key agreement.<a href="#section-4.1-2.6.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.6.2">
Rationale: The former cipher suites, which have assigned values prefixed by "TLS_DH_*", have several drawbacks, especially
             the fact that they do not support forward secrecy. The latter ("TLS_ECDH_*") also lack forward secrecy and are subject to invalid curve attacks <span>[<a href="#Jager2015" class="cite xref">Jager2015</a>]</span>.<a href="#section-4.1-2.6.2" class="pilcrow">¶</a></p>
</li>
          <li class="normal" id="section-4.1-2.7">
            <p id="section-4.1-2.7.1">Implementations <span class="bcp14">MUST</span> support and prefer to negotiate cipher suites 
             offering forward secrecy.  However, TLS 1.2 implementations <span class="bcp14">SHOULD NOT</span> negotiate
             cipher suites based on ephemeral finite-field Diffie-Hellman key
             agreement (i.e., "TLS_DHE_*" suites).  This is justified by the known fragility
             of the construction (see <span>[<a href="#RACCOON" class="cite xref">RACCOON</a>]</span>) and the limitation around
             negotiation, including using <span>[<a href="#RFC7919" class="cite xref">RFC7919</a>]</span>, which has seen very
             limited uptake.<a href="#section-4.1-2.7.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.7.2">
Rationale: Forward secrecy (sometimes called "perfect forward 
             secrecy") prevents the recovery of information that was encrypted 
             with older session keys, thus limiting how far back in time data
             can be decrypted when an attack is successful.  See Sections <a href="#sec-pfs" class="auto internal xref">7.3</a>
             and <a href="#sec-dhe" class="auto internal xref">7.4</a> for a detailed discussion.<a href="#section-4.1-2.7.2" class="pilcrow">¶</a></p>
</li>
        </ul>
</section>
</div>
<div id="rec-cipher">
<section id="section-4.2">
        <h3 id="name-cipher-suites-for-tls-12">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-cipher-suites-for-tls-12" class="section-name selfRef">Cipher Suites for TLS 1.2</a>
        </h3>
<p id="section-4.2-1">Given the foregoing considerations, implementation and deployment of the following cipher suites is <span class="bcp14">RECOMMENDED</span>:<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-2.1">TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256<a href="#section-4.2-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.2-2.2">TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384<a href="#section-4.2-2.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.2-2.3">TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256<a href="#section-4.2-2.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-4.2-2.4">TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384<a href="#section-4.2-2.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-4.2-3">As these are Authenticated Encryption with Associated Data (AEAD) algorithms <span>[<a href="#RFC5116" class="cite xref">RFC5116</a>]</span>, these cipher suites are supported only in TLS 1.2 and not in earlier protocol versions.<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<p id="section-4.2-4">Typically, to prefer these suites, the order of suites needs to be explicitly configured in server software.  It would be ideal if server software implementations were to prefer these suites by default.<a href="#section-4.2-4" class="pilcrow">¶</a></p>
<p id="section-4.2-5">Some devices have hardware support for AES Counter Mode with CBC-MAC (AES-CCM) but not AES Galois/Counter Mode (AES-GCM), so they are unable to follow the foregoing recommendations regarding cipher suites.  There are even devices that do not support public key cryptography at all, but these are out of scope entirely.<a href="#section-4.2-5" class="pilcrow">¶</a></p>
<p id="section-4.2-6">A cipher suite that operates in CBC (cipher block chaining) mode (e.g.,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256) <span class="bcp14">SHOULD NOT</span> be used unless the
<code>encrypt_then_mac</code> extension <span>[<a href="#RFC7366" class="cite xref">RFC7366</a>]</span> is also successfully negotiated.
This requirement applies to both client and server implementations.<a href="#section-4.2-6" class="pilcrow">¶</a></p>
<p id="section-4.2-7">When using ECDSA signatures for authentication of TLS peers, it is <span class="bcp14">RECOMMENDED</span> that implementations use the NIST curve P-256. In addition, to avoid predictable or repeated nonces (which could reveal the long-term signing key), it is <span class="bcp14">RECOMMENDED</span> that implementations implement "deterministic ECDSA" as specified in <span>[<a href="#RFC6979" class="cite xref">RFC6979</a>]</span> and in line with the recommendations in <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>.<a href="#section-4.2-7" class="pilcrow">¶</a></p>
<p id="section-4.2-8">Note that implementations of "deterministic ECDSA" may be vulnerable to certain
side-channel and fault injection attacks precisely because of their
determinism.  While most fault injection attacks described in the literature assume
physical access to the device (and therefore are more relevant in Internet of Things (IoT)
deployments with poor or non-existent physical security), some can be carried
out remotely <span>[<a href="#Poddebniak2017" class="cite xref">Poddebniak2017</a>]</span>, e.g., as Rowhammer <span>[<a href="#Kim2014" class="cite xref">Kim2014</a>]</span> variants.  In
deployments where side-channel attacks and fault injection attacks are a
concern, implementation strategies combining both randomness and determinism
(for example, as described in <span>[<a href="#I-D.mattsson-cfrg-det-sigs-with-noise" class="cite xref">CFRG-DET-SIGS</a>]</span>) can
be used to avoid the risk of successful extraction of the signing key.<a href="#section-4.2-8" class="pilcrow">¶</a></p>
<div id="detail-neg">
<section id="section-4.2.1">
          <h4 id="name-implementation-details">
<a href="#section-4.2.1" class="section-number selfRef">4.2.1. </a><a href="#name-implementation-details" class="section-name selfRef">Implementation Details</a>
          </h4>
<p id="section-4.2.1-1">Clients <span class="bcp14">SHOULD</span> include TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as the first proposal to any server.  Servers <span class="bcp14">MUST</span> prefer this cipher suite over weaker cipher suites whenever it is proposed, even if it is not the first proposal.  Clients are of course free to offer stronger cipher suites, e.g., using AES-256; when they do, the server <span class="bcp14">SHOULD</span> prefer the stronger cipher suite unless there are compelling reasons (e.g., seriously degraded performance) to choose otherwise.<a href="#section-4.2.1-1" class="pilcrow">¶</a></p>
<p id="section-4.2.1-2">The previous version of the TLS recommendations <span>[<a href="#RFC7525" class="cite xref">RFC7525</a>]</span> implicitly allowed the old RFC 5246 mandatory-to-implement cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA. At the time of writing, this cipher suite does not provide additional interoperability, except with very old clients. As with other cipher suites that do not provide forward secrecy, implementations <span class="bcp14">SHOULD NOT</span> support this cipher suite. Other application protocols specify other cipher suites as mandatory to implement (MTI).<a href="#section-4.2.1-2" class="pilcrow">¶</a></p>
<p id="section-4.2.1-3"><span>[<a href="#RFC8422" class="cite xref">RFC8422</a>]</span> allows clients and servers to negotiate ECDH parameters (curves). Both clients and servers <span class="bcp14">SHOULD</span> include the "Supported Elliptic Curves Extension" <span>[<a href="#RFC8422" class="cite xref">RFC8422</a>]</span>.  Clients and servers <span class="bcp14">SHOULD</span> support the NIST P‑256 (secp256r1) <span>[<a href="#RFC8422" class="cite xref">RFC8422</a>]</span> and X25519 (x25519) <span>[<a href="#RFC7748" class="cite xref">RFC7748</a>]</span> curves.  Note that <span>[<a href="#RFC8422" class="cite xref">RFC8422</a>]</span> deprecates all but the uncompressed point format.  Therefore, if the client sends an <code>ec_point_formats</code> extension, the ECPointFormatList <span class="bcp14">MUST</span> contain a single element, "uncompressed".<a href="#section-4.2.1-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="cipher-suites-for-tls-13">
<section id="section-4.3">
        <h3 id="name-cipher-suites-for-tls-13">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-cipher-suites-for-tls-13" class="section-name selfRef">Cipher Suites for TLS 1.3</a>
        </h3>
<p id="section-4.3-1">This document does not specify any cipher suites for TLS 1.3. Readers
are referred to <span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-9.1" class="relref">Section 9.1</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span> for cipher suite recommendations.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="limits-on-key-usage">
<section id="section-4.4">
        <h3 id="name-limits-on-key-usage">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-limits-on-key-usage" class="section-name selfRef">Limits on Key Usage</a>
        </h3>
<p id="section-4.4-1">All ciphers have an upper limit on the amount of traffic that can be securely
protected with any given key. In the case of AEAD cipher suites, two separate
limits are maintained for each key:<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.4-2">
<li id="section-4.4-2.1">Confidentiality limit (CL), i.e., the number of records that can be
encrypted.<a href="#section-4.4-2.1" class="pilcrow">¶</a>
</li>
          <li id="section-4.4-2.2">Integrity limit (IL), i.e., the number of records that are allowed to fail
authentication.<a href="#section-4.4-2.2" class="pilcrow">¶</a>
</li>
        </ol>
<p id="section-4.4-3">The latter applies to DTLS (and also to QUIC) but not to TLS itself, since TLS connections are torn down on the
first decryption failure.<a href="#section-4.4-3" class="pilcrow">¶</a></p>
<p id="section-4.4-4">When a sender is approaching CL, the implementation <span class="bcp14">SHOULD</span> initiate a new handshake (in TLS 1.3, this can be achieved by sending a KeyUpdate message on the established session) to rotate the session key. When a receiver has reached IL, the implementation <span class="bcp14">SHOULD</span> close the connection. Although these recommendations are a best practice, implementers need to be aware that it is not always easy to accomplish them in protocols that are built on top of TLS/DTLS without introducing coordination across layer boundaries.  See <span><a href="https://www.rfc-editor.org/rfc/rfc9001#section-6" class="relref">Section 6</a> of [<a href="#RFC9001" class="cite xref">RFC9001</a>]</span> for an example of the cooperation that was necessary in QUIC between the crypto and transport layers to support key updates.  Note that in general, application protocols might not be able to emulate that method given their more constrained interaction with TLS/DTLS. As a result of these complexities, these recommendations are not mandatory.<a href="#section-4.4-4" class="pilcrow">¶</a></p>
<p id="section-4.4-5">For all TLS 1.3 cipher suites, readers are referred to <span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-5.5" class="relref">Section 5.5</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span> for the values of CL and IL. For all DTLS 1.3 cipher suites, readers are referred to <span><a href="https://www.rfc-editor.org/rfc/rfc9147#section-4.5.3" class="relref">Section 4.5.3</a> of [<a href="#RFC9147" class="cite xref">RFC9147</a>]</span>.<a href="#section-4.4-5" class="pilcrow">¶</a></p>
<p id="section-4.4-6">For all AES-GCM cipher suites recommended for TLS 1.2 and DTLS 1.2 in this
document, CL can be derived by plugging the corresponding parameters into the
inequalities in <span><a href="https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-05#section-6.1" class="relref">Section 6.1</a> of [<a href="#I-D.irtf-cfrg-aead-limits" class="cite xref">AEAD-LIMITS</a>]</span> that apply to
random, partially implicit nonces, i.e., the nonce construction used in TLS
1.2.  Although the obtained figures are slightly higher than those for TLS 1.3,
it is <span class="bcp14">RECOMMENDED</span> that the same limit of 2<sup>24.5</sup> records is used for
both versions.<a href="#section-4.4-6" class="pilcrow">¶</a></p>
<p id="section-4.4-7">For all AES-GCM cipher suites recommended for DTLS 1.2, IL (obtained from the
same inequalities referenced above) is 2<sup>28</sup>.<a href="#section-4.4-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="rec-keylength">
<section id="section-4.5">
        <h3 id="name-public-key-length">
<a href="#section-4.5" class="section-number selfRef">4.5. </a><a href="#name-public-key-length" class="section-name selfRef">Public Key Length</a>
        </h3>
<p id="section-4.5-1">When using the cipher suites recommended in this document, two public keys are 
      normally used in the TLS handshake: one for the Diffie-Hellman key agreement
      and one for server authentication. Where a client certificate is used, a third 
      public key is added.<a href="#section-4.5-1" class="pilcrow">¶</a></p>
<p id="section-4.5-2">With a key exchange based on modular exponential (MODP) Diffie-Hellman groups ("DHE" cipher suites), DH key lengths of at least 2048 bits are <span class="bcp14">REQUIRED</span>.<a href="#section-4.5-2" class="pilcrow">¶</a></p>
<p id="section-4.5-3">Rationale: For various reasons, in practice, DH keys are typically generated in lengths
 that are powers of two (e.g., 2<sup>10</sup> = 1024 bits, 2<sup>11</sup> = 2048 bits, 2<sup>12</sup> = 4096 bits).
 Because a DH key of 1228 bits would be roughly equivalent to only an 80-bit symmetric key
<span>[<a href="#RFC3766" class="cite xref">RFC3766</a>]</span>, it is better to use keys longer than that for the "DHE" family of cipher suites.
A DH key of 1926 bits would be roughly equivalent to a 100-bit symmetric key <span>[<a href="#RFC3766" class="cite xref">RFC3766</a>]</span>.
A DH key of 2048 bits (equivalent to a 112-bit symmetric key) 
is the minimum allowed by the latest revision of <span>[<a href="#NIST.SP.800-56A" class="cite xref">NIST.SP.800-56A</a>]</span> as of this writing
(see in particular  Appendix D of that document).<a href="#section-4.5-3" class="pilcrow">¶</a></p>
<p id="section-4.5-4">As noted in <span>[<a href="#RFC3766" class="cite xref">RFC3766</a>]</span>, correcting for the emergence of The Weizmann Institute Relation Locator (TWIRL) machine <span>[<a href="#TWIRL" class="cite xref">TWIRL</a>]</span> would imply that 1024-bit DH keys yield about 61 bits of equivalent strength and that a 2048-bit DH key would yield about 92 bits of equivalent strength.
The Logjam attack <span>[<a href="#Logjam" class="cite xref">Logjam</a>]</span> further demonstrates that 1024-bit Diffie-Hellman parameters
should be avoided.<a href="#section-4.5-4" class="pilcrow">¶</a></p>
<p id="section-4.5-5">With regard to ECDH keys, implementers are referred to the IANA "TLS Supported Groups" registry (formerly known as the "EC Named Curve
Registry") within the
   "Transport Layer Security (TLS) Parameters" registry <span>[<a href="#IANA_TLS" class="cite xref">IANA_TLS</a>]</span> and in particular to the "recommended"
   groups.  Curves of less than 224 bits <span class="bcp14">MUST NOT</span> be used. This recommendation is in line with the latest
revision of <span>[<a href="#NIST.SP.800-56A" class="cite xref">NIST.SP.800-56A</a>]</span>.<a href="#section-4.5-5" class="pilcrow">¶</a></p>
<p id="section-4.5-6">When using RSA, servers <span class="bcp14">MUST</span> authenticate using certificates with at least a 2048-bit modulus for the public key. In addition, the use of the SHA-256 hash algorithm is <span class="bcp14">RECOMMENDED</span> and SHA-1 or MD5 <span class="bcp14">MUST NOT</span> be used <span>[<a href="#RFC9155" class="cite xref">RFC9155</a>]</span> (for more details, see also <span>[<a href="#CAB-Baseline" class="cite xref">CAB-Baseline</a>]</span>, for which the current version at the time of writing is 1.8.4). Clients <span class="bcp14">MUST</span> indicate to servers that they request SHA-256 by using the "Signature Algorithms" extension defined in TLS 1.2. For TLS 1.3, the same requirement is already specified by <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>.<a href="#section-4.5-6" class="pilcrow">¶</a></p>
<p id="section-4.5-7"></p>
</section>
</div>
<div id="truncated-hmac">
<section id="section-4.6">
        <h3 id="name-truncated-hmac">
<a href="#section-4.6" class="section-number selfRef">4.6. </a><a href="#name-truncated-hmac" class="section-name selfRef">Truncated HMAC</a>
        </h3>
<p id="section-4.6-1">Implementations <span class="bcp14">MUST NOT</span> use the Truncated HMAC Extension, defined in <span><a href="https://www.rfc-editor.org/rfc/rfc6066#section-7" class="relref">Section 7</a> of [<a href="#RFC6066" class="cite xref">RFC6066</a>]</span>.<a href="#section-4.6-1" class="pilcrow">¶</a></p>
<p id="section-4.6-2">Rationale: The extension does not apply to the AEAD
      cipher suites recommended above. However, it does apply to most other TLS cipher suites. Its use
      has been shown to be insecure in <span>[<a href="#PatersonRS11" class="cite xref">PatersonRS11</a>]</span>.<a href="#section-4.6-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="applicability">
<section id="section-5">
      <h2 id="name-applicability-statement">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-applicability-statement" class="section-name selfRef">Applicability Statement</a>
      </h2>
<p id="section-5-1">The recommendations of this document primarily apply to the implementation and deployment of application protocols that are most commonly used with TLS and DTLS on the Internet today.  Examples include, but are not limited to:<a href="#section-5-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5-2.1">Web software and services that wish to protect HTTP traffic with TLS.<a href="#section-5-2.1" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-5-2.2">Email software and services that wish to protect IMAP, Post Office Protocol version 3 (POP3), or SMTP traffic with TLS.<a href="#section-5-2.2" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-5-2.3">Instant-messaging software and services that wish to protect Extensible Messaging and Presence Protocol (XMPP) or Internet Relay Chat (IRC) traffic with TLS.<a href="#section-5-2.3" class="pilcrow">¶</a>
</li>
        <li class="normal" id="section-5-2.4">Realtime media software and services that wish to protect Secure Realtime Transport Protocol (SRTP) traffic with DTLS.<a href="#section-5-2.4" class="pilcrow">¶</a>
</li>
      </ul>
<p id="section-5-3">This document does not modify the implementation and deployment recommendations (e.g., mandatory-to-implement cipher suites) prescribed by existing application protocols that employ TLS or DTLS. If the community that uses such an application protocol wishes to modernize its usage of TLS or DTLS to be consistent with the best practices recommended here, it needs to explicitly update the existing application protocol definition (one example is <span>[<a href="#RFC7590" class="cite xref">RFC7590</a>]</span>, which updates <span>[<a href="#RFC6120" class="cite xref">RFC6120</a>]</span>).<a href="#section-5-3" class="pilcrow">¶</a></p>
<p id="section-5-4">Designers of new application protocols developed through the Internet
  Standards Process <span>[<a href="#RFC2026" class="cite xref">RFC2026</a>]</span> are expected at minimum to conform to the best
  practices recommended here, unless they provide documentation of
  compelling reasons that would prevent such conformance (e.g.,
  widespread deployment on constrained devices that lack support for
  the necessary algorithms).<a href="#section-5-4" class="pilcrow">¶</a></p>
<p id="section-5-5">Although many of the recommendations provided here might also apply to QUIC insofar 
that it uses the TLS 1.3 handshake protocol, QUIC and other such secure transport protocols 
are out of scope of this document. For QUIC specifically, readers are 
referred to <span><a href="https://www.rfc-editor.org/rfc/rfc9001#section-9.2" class="relref">Section 9.2</a> of [<a href="#RFC9001" class="cite xref">RFC9001</a>]</span>.<a href="#section-5-5" class="pilcrow">¶</a></p>
<p id="section-5-6">This document does not address the use of TLS in constrained-node networks
<span>[<a href="#RFC7228" class="cite xref">RFC7228</a>]</span>.  For recommendations regarding the profiling of TLS and DTLS for
small devices with severe constraints on power, memory, and processing
resources, the reader is referred to <span>[<a href="#RFC7925" class="cite xref">RFC7925</a>]</span> and
<span>[<a href="#I-D.ietf-uta-tls13-iot-profile" class="cite xref">IOT-PROFILE</a>]</span>.<a href="#section-5-6" class="pilcrow">¶</a></p>
<div id="security-services">
<section id="section-5.1">
        <h3 id="name-security-services">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-security-services" class="section-name selfRef">Security Services</a>
        </h3>
<p id="section-5.1-1">This document provides recommendations for an audience that wishes to secure their communication with TLS to achieve the following:<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-5.1-2">
          <dt id="section-5.1-2.1">Confidentiality:
</dt>
          <dd style="margin-left: 1.5em" id="section-5.1-2.2">all application-layer communication is encrypted with the goal   
that no party should be able to decrypt it except the intended receiver.<a href="#section-5.1-2.2" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-5.1-2.3">Data integrity:
</dt>
          <dd style="margin-left: 1.5em" id="section-5.1-2.4">any changes made to the communication in transit are detectable   
by the receiver.<a href="#section-5.1-2.4" class="pilcrow">¶</a>
</dd>
          <dd class="break"></dd>
<dt id="section-5.1-2.5">Authentication:
</dt>
          <dd style="margin-left: 1.5em" id="section-5.1-2.6">an endpoint of the TLS communication is authenticated as the      
intended entity to communicate with.<a href="#section-5.1-2.6" class="pilcrow">¶</a>
</dd>
        <dd class="break"></dd>
</dl>
<p id="section-5.1-3">With regard to authentication, TLS enables authentication of one or both endpoints in the communication.  In the context of opportunistic security <span>[<a href="#RFC7435" class="cite xref">RFC7435</a>]</span>, TLS is sometimes used without authentication. As discussed in <a href="#oppsec" class="auto internal xref">Section 5.2</a>, considerations for opportunistic security are not in scope for this document.<a href="#section-5.1-3" class="pilcrow">¶</a></p>
<p id="section-5.1-4">If deployers deviate from the recommendations given in this document, they need to be aware that they might lose access to one of the foregoing security services.<a href="#section-5.1-4" class="pilcrow">¶</a></p>
<p id="section-5.1-5">This document applies only to environments where confidentiality is required. It requires algorithms and configuration options that enforce secrecy of the data in transit.<a href="#section-5.1-5" class="pilcrow">¶</a></p>
<p id="section-5.1-6">This document also assumes that data integrity protection is always one of the goals of a deployment. In cases where integrity is not required, it does not make sense to employ TLS in the first place. There are attacks against confidentiality-only protection that utilize the lack of integrity to also break confidentiality (see, for instance, <span>[<a href="#DegabrieleP07" class="cite xref">DegabrieleP07</a>]</span> in the context of IPsec).<a href="#section-5.1-6" class="pilcrow">¶</a></p>
<p id="section-5.1-7">This document addresses itself to application protocols that are most commonly used on the Internet with TLS and DTLS. Typically, all communication between TLS clients and TLS servers requires all three of the above security services. This is particularly true where TLS clients are user agents like web browsers or email clients.<a href="#section-5.1-7" class="pilcrow">¶</a></p>
<p id="section-5.1-8">This document does not address the rarer deployment scenarios where one of the above three properties is not desired, such as the use case described in <a href="#oppsec" class="auto internal xref">Section 5.2</a>.  As another scenario where confidentiality is not needed, consider a monitored network where the authorities in charge of the respective traffic domain require full access to unencrypted (plaintext) traffic and where users collaborate and send their traffic in the clear.<a href="#section-5.1-8" class="pilcrow">¶</a></p>
</section>
</div>
<div id="oppsec">
<section id="section-5.2">
        <h3 id="name-opportunistic-security">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-opportunistic-security" class="section-name selfRef">Opportunistic Security</a>
        </h3>
<p id="section-5.2-1">There are several important scenarios in which the use of TLS is optional, i.e., the client decides dynamically ("opportunistically") whether to use TLS with a particular server or to connect in the clear.  This practice, often called "opportunistic security", is described at length in <span>[<a href="#RFC7435" class="cite xref">RFC7435</a>]</span> and is often motivated by a desire for backward compatibility with legacy deployments.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
<p id="section-5.2-2">In these scenarios, some of the recommendations in this document might be too strict, since adhering to them could cause fallback to cleartext, a worse outcome than using TLS with an outdated protocol version or cipher suite.<a href="#section-5.2-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="iana-considerations">
<section id="section-6">
      <h2 id="name-iana-considerations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
      </h2>
<p id="section-6-1">This document has no IANA actions.<a href="#section-6-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec">
<section id="section-7">
      <h2 id="name-security-considerations">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
      </h2>
<p id="section-7-1">This entire document discusses the security practices directly affecting applications
    using the TLS protocol. This section contains broader security considerations related
    to technologies used in conjunction with or by TLS.
    The reader is referred to the Security Considerations sections of TLS 1.3
    <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>, DTLS 1.3 <span>[<a href="#RFC9147" class="cite xref">RFC9147</a>]</span>, TLS 1.2 <span>[<a href="#RFC5246" class="cite xref">RFC5246</a>]</span>, and DTLS 1.2 <span>[<a href="#RFC6347" class="cite xref">RFC6347</a>]</span>
    for further context.<a href="#section-7-1" class="pilcrow">¶</a></p>
<div id="host-name-validation">
<section id="section-7.1">
        <h3 id="name-host-name-validation">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-host-name-validation" class="section-name selfRef">Host Name Validation</a>
        </h3>
<p id="section-7.1-1">Application authors should take note that some TLS implementations
  do not validate host names.  If the TLS implementation they are
  using does not validate host names, authors might need to write their
  own validation code or consider using a different TLS implementation.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
<p id="section-7.1-2">It is noted that the requirements regarding host name validation (and, in general, binding between the TLS layer and the protocol that runs above it) vary between different protocols. For HTTPS, these requirements are defined by Sections



  <a href="https://www.rfc-editor.org/rfc/rfc9110#section-4.3.3" class="relref">4.3.3</a>, <a href="https://www.rfc-editor.org/rfc/rfc9110#section-4.3.4" class="relref">4.3.4</a>, and <a href="https://www.rfc-editor.org/rfc/rfc9110#section-4.3.5" class="relref">4.3.5</a> of <span>[<a href="#RFC9110" class="cite xref">RFC9110</a>]</span>.<a href="#section-7.1-2" class="pilcrow">¶</a></p>
<p id="section-7.1-3">Host name validation is security-critical for all common TLS use cases. Without it, TLS ensures that the certificate is valid and guarantees possession of the private key but does not ensure that the connection terminates at the desired endpoint. Readers are referred to <span>[<a href="#RFC6125" class="cite xref">RFC6125</a>]</span> for further details regarding generic host name validation in the TLS context. In addition, that RFC contains a long list of application protocols, some of which implement a policy very different from HTTPS.<a href="#section-7.1-3" class="pilcrow">¶</a></p>
<p id="section-7.1-4">If the host name is discovered indirectly and insecurely (e.g., by a cleartext DNS query for an SRV or Mail Exchange (MX) record), it <span class="bcp14">SHOULD NOT</span> be used as a reference identifier <span>[<a href="#RFC6125" class="cite xref">RFC6125</a>]</span> even when it matches the presented certificate.  This proviso does not apply if the host name is discovered securely (for further discussion, see <span>[<a href="#RFC7673" class="cite xref">RFC7673</a>]</span> and <span>[<a href="#RFC7672" class="cite xref">RFC7672</a>]</span>).<a href="#section-7.1-4" class="pilcrow">¶</a></p>
<p id="section-7.1-5">Host name validation typically applies only to the leaf "end entity" certificate. Naturally, in order to ensure proper authentication in the context of the PKI, application clients need to verify the entire certification path in accordance with <span>[<a href="#RFC5280" class="cite xref">RFC5280</a>]</span>.<a href="#section-7.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-aes">
<section id="section-7.2">
        <h3 id="name-aes-gcm">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-aes-gcm" class="section-name selfRef">AES-GCM</a>
        </h3>
<p id="section-7.2-1"><a href="#rec-cipher" class="auto internal xref">Section 4.2</a> recommends the use of the AES-GCM authenticated encryption algorithm. Please refer to <span><a href="https://www.rfc-editor.org/rfc/rfc5288#section-6" class="relref">Section 6</a> of [<a href="#RFC5288" class="cite xref">RFC5288</a>]</span> for security considerations that apply specifically to AES-GCM when used with TLS.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
<div id="nonce-reuse">
<section id="section-7.2.1">
          <h4 id="name-nonce-reuse-in-tls-12">
<a href="#section-7.2.1" class="section-number selfRef">7.2.1. </a><a href="#name-nonce-reuse-in-tls-12" class="section-name selfRef">Nonce Reuse in TLS 1.2</a>
          </h4>
<p id="section-7.2.1-1">The existence of deployed TLS stacks that mistakenly reuse the AES-GCM nonce is
documented in <span>[<a href="#Boeck2016" class="cite xref">Boeck2016</a>]</span>, showing there is an actual risk of AES-GCM getting
implemented insecurely and thus making TLS sessions that use an
AES-GCM cipher suite vulnerable to attacks such as <span>[<a href="#Joux2006" class="cite xref">Joux2006</a>]</span>.  (See <span>[<a href="#CVE" class="cite xref">CVE</a>]</span>
records: CVE-2016-0270, CVE-2016-10213, CVE-2016-10212, and CVE-2017-5933.)<a href="#section-7.2.1-1" class="pilcrow">¶</a></p>
<p id="section-7.2.1-2">While this problem has been fixed in TLS 1.3, which enforces a deterministic
method to generate nonces from record sequence numbers and shared secrets for
all its AEAD cipher suites (including AES-GCM), TLS 1.2 implementations
could still choose their own (potentially insecure) nonce generation methods.<a href="#section-7.2.1-2" class="pilcrow">¶</a></p>
<p id="section-7.2.1-3">It is therefore <span class="bcp14">RECOMMENDED</span> that TLS 1.2 implementations use the 64-bit
sequence number to populate the <code>nonce_explicit</code> part of the GCM nonce, as
described in the first two paragraphs of <span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-5.3" class="relref">Section 5.3</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>. This stronger recommendation updates <span><a href="https://www.rfc-editor.org/rfc/rfc5288#section-3" class="relref">Section 3</a> of [<a href="#RFC5288" class="cite xref">RFC5288</a>]</span>, which specifies that the use of 64-bit sequence numbers to populate the <code>nonce_explicit</code> field is optional.<a href="#section-7.2.1-3" class="pilcrow">¶</a></p>
<p id="section-7.2.1-4">We note that at the time of writing, there are no cipher suites defined for nonce-reuse-resistant algorithms such as AES-GCM-SIV <span>[<a href="#RFC8452" class="cite xref">RFC8452</a>]</span>.<a href="#section-7.2.1-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-pfs">
<section id="section-7.3">
        <h3 id="name-forward-secrecy">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-forward-secrecy" class="section-name selfRef">Forward Secrecy</a>
        </h3>
<p id="section-7.3-1">Forward secrecy (also called "perfect forward secrecy" or "PFS" and defined in <span>[<a href="#RFC4949" class="cite xref">RFC4949</a>]</span>) is a defense against an attacker who records encrypted conversations where the session keys are only encrypted with the communicating parties' long-term keys.<a href="#section-7.3-1" class="pilcrow">¶</a></p>
<p id="section-7.3-2">Should the attacker be able to obtain these long-term keys at some point later in time, the session keys and thus the entire conversation could be decrypted.<a href="#section-7.3-2" class="pilcrow">¶</a></p>
<p id="section-7.3-3">In the context of TLS and DTLS, such compromise of long-term keys is not entirely implausible. It can happen, for example, due to:<a href="#section-7.3-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.3-4.1">A client or server being attacked by some other attack vector, and the private key retrieved.<a href="#section-7.3-4.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-4.2">A long-term key retrieved from a device that has been sold or otherwise decommissioned without prior wiping.<a href="#section-7.3-4.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-4.3">A long-term key used on a device as a default key <span>[<a href="#Heninger2012" class="cite xref">Heninger2012</a>]</span>.<a href="#section-7.3-4.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-4.4">A key generated by a trusted third party like a CA and later retrieved from it by either extortion or compromise <span>[<a href="#Soghoian2011" class="cite xref">Soghoian2011</a>]</span>.<a href="#section-7.3-4.4" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-4.5">A cryptographic breakthrough or the use of asymmetric keys with insufficient length <span>[<a href="#Kleinjung2010" class="cite xref">Kleinjung2010</a>]</span>.<a href="#section-7.3-4.5" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-4.6">Social engineering attacks against system administrators.<a href="#section-7.3-4.6" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.3-4.7">Collection of private keys from inadequately protected backups.<a href="#section-7.3-4.7" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-7.3-5">Forward secrecy ensures in such cases that it is not feasible for an attacker to determine the session keys even if the attacker has obtained the long-term keys some time after the conversation. It also protects against an attacker who is in possession of the long-term keys but remains passive during the conversation.<a href="#section-7.3-5" class="pilcrow">¶</a></p>
<p id="section-7.3-6">Forward secrecy is generally achieved by using the Diffie-Hellman scheme to derive session keys. The Diffie-Hellman scheme has both parties maintain private secrets and send parameters over the network as modular powers over certain cyclic groups. The properties of the so-called Discrete Logarithm Problem (DLP) allow the parties to derive the session keys without an eavesdropper being able to do so. There is currently no known attack against DLP if sufficiently large parameters are chosen. A variant of the Diffie-Hellman scheme uses elliptic curves instead of the originally proposed modular arithmetic. Given the current state of the art, Elliptic Curve Diffie-Hellman appears to be more efficient, permits shorter key lengths, and allows less freedom for implementation errors than finite-field Diffie-Hellman.<a href="#section-7.3-6" class="pilcrow">¶</a></p>
<p id="section-7.3-7">Unfortunately, many TLS/DTLS cipher suites were defined that do not feature forward secrecy, e.g., TLS_RSA_WITH_AES_256_CBC_SHA256.  This document therefore advocates strict use of forward-secrecy-only ciphers.<a href="#section-7.3-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-dhe">
<section id="section-7.4">
        <h3 id="name-diffie-hellman-exponent-reu">
<a href="#section-7.4" class="section-number selfRef">7.4. </a><a href="#name-diffie-hellman-exponent-reu" class="section-name selfRef">Diffie-Hellman Exponent Reuse</a>
        </h3>
<p id="section-7.4-1">For performance reasons, it is not uncommon for TLS implementations to reuse Diffie-Hellman and Elliptic Curve Diffie-Hellman exponents across multiple connections. Such reuse can result in major security issues:<a href="#section-7.4-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.4-2.1">If exponents are reused for too long (in some cases, even as little as a few hours), an attacker who gains access to the host can decrypt previous connections. In other words, exponent reuse negates the effects of forward secrecy.<a href="#section-7.4-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.4-2.2">TLS implementations that reuse exponents should test the DH public key they receive for group membership, in order to avoid some known attacks. These tests are not standardized in TLS at the time of writing, although general guidance in this area is provided by <span>[<a href="#NIST.SP.800-56A" class="cite xref">NIST.SP.800-56A</a>]</span> and available in many protocol implementations.<a href="#section-7.4-2.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.4-2.3">Under certain conditions, the use of static finite-field DH keys, or of ephemeral finite-field DH keys that are reused across multiple connections, can lead to timing attacks (such as those described in <span>[<a href="#RACCOON" class="cite xref">RACCOON</a>]</span>) on the shared secrets used in Diffie-Hellman key exchange.<a href="#section-7.4-2.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.4-2.4">An "invalid curve" attack can be mounted against Elliptic Curve DH if the victim does not verify that the received point lies on the correct curve.  If the victim is reusing the DH secrets, the attacker can repeat the probe varying the points to recover the full secret (see <span>[<a href="#Antipa2003" class="cite xref">Antipa2003</a>]</span> and <span>[<a href="#Jager2015" class="cite xref">Jager2015</a>]</span>).<a href="#section-7.4-2.4" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-7.4-3">To address these concerns:<a href="#section-7.4-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.4-4.1">TLS implementations <span class="bcp14">SHOULD NOT</span> use static finite-field DH keys and <span class="bcp14">SHOULD NOT</span> reuse ephemeral finite-field DH keys across multiple connections.<a href="#section-7.4-4.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.4-4.2">Server implementations that want to reuse Elliptic Curve DH keys <span class="bcp14">SHOULD</span> either use a "safe curve" <span>[<a href="#SAFECURVES" class="cite xref">SAFECURVES</a>]</span> (e.g., X25519) or perform the checks described in <span>[<a href="#NIST.SP.800-56A" class="cite xref">NIST.SP.800-56A</a>]</span> on the received points.<a href="#section-7.4-4.2" class="pilcrow">¶</a>
</li>
        </ul>
</section>
</div>
<div id="certificate-revocation">
<section id="section-7.5">
        <h3 id="name-certificate-revocation">
<a href="#section-7.5" class="section-number selfRef">7.5. </a><a href="#name-certificate-revocation" class="section-name selfRef">Certificate Revocation</a>
        </h3>
<p id="section-7.5-1">The following considerations and recommendations represent the current state of the art regarding certificate revocation, even though no complete and efficient solution exists for the problem of checking the revocation status of common public key certificates <span>[<a href="#RFC5280" class="cite xref">RFC5280</a>]</span>:<a href="#section-7.5-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.5-2.1">Certificate revocation is an important tool when recovering from attacks on the TLS implementation as well as cases of misissued certificates. TLS implementations <span class="bcp14">MUST</span> implement a strategy to distrust revoked certificates.<a href="#section-7.5-2.1" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.5-2.2">Although Certificate Revocation Lists (CRLs) are the most widely supported mechanism for distributing revocation information, they have known scaling challenges that limit their usefulness, despite workarounds such as partitioned CRLs and delta CRLs. The more modern <span>[<a href="#CRLite" class="cite xref">CRLite</a>]</span> and the follow-on Let's Revoke <span>[<a href="#LetsRevoke" class="cite xref">LetsRevoke</a>]</span> build on the availability of Certificate Transparency <span>[<a href="#RFC9162" class="cite xref">RFC9162</a>]</span> logs and aggressive compression to allow practical use of the CRL infrastructure, but at the time of writing, neither solution is deployed for client-side revocation processing at scale.<a href="#section-7.5-2.2" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.5-2.3">Proprietary mechanisms that embed revocation lists in the web browser's configuration database cannot scale beyond the few most heavily used web servers.<a href="#section-7.5-2.3" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.5-2.4">The Online Certification Status Protocol (OCSP) <span>[<a href="#RFC6960" class="cite xref">RFC6960</a>]</span> in its basic form presents both scaling and privacy issues. In addition, clients typically "soft-fail", meaning that they do not abort the TLS connection if the OCSP server does not respond. (However, this might be a workaround to avoid denial-of-service attacks if an OCSP responder is taken offline.) For a recent survey of the status of OCSP deployment in the web PKI, see <span>[<a href="#Chung18" class="cite xref">Chung18</a>]</span>.<a href="#section-7.5-2.4" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.5-2.5">The TLS Certificate Status Request extension (<span><a href="https://www.rfc-editor.org/rfc/rfc6066#section-8" class="relref">Section 8</a> of [<a href="#RFC6066" class="cite xref">RFC6066</a>]</span>), commonly called "OCSP stapling", resolves the operational issues with OCSP. However, it is still ineffective in the presence of an active on-path attacker because the attacker can simply ignore the client's request for a stapled OCSP response.<a href="#section-7.5-2.5" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.5-2.6">
            <span>[<a href="#RFC7633" class="cite xref">RFC7633</a>]</span> defines a certificate extension that indicates that clients must expect stapled OCSP responses for the certificate and must abort the handshake ("hard-fail") if such a response is not available.<a href="#section-7.5-2.6" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.5-2.7">OCSP stapling as used in TLS 1.2 does not extend to intermediate certificates within a certificate chain. The Multiple Certificate Status extension <span>[<a href="#RFC6961" class="cite xref">RFC6961</a>]</span> addresses this shortcoming, but it has seen little deployment and had been deprecated by <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>. As a result, although this extension was recommended for TLS 1.2 in <span>[<a href="#RFC7525" class="cite xref">RFC7525</a>]</span>, it is no longer recommended by this document.<a href="#section-7.5-2.7" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.5-2.8">TLS 1.3 (<span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-4.4.2.1" class="relref">Section 4.4.2.1</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>) allows the association of OCSP information with intermediate certificates by using an extension to the CertificateEntry structure. However, using this facility remains impractical because many certification authorities (CAs) either do not publish OCSP for CA certificates or publish OCSP reports with a lifetime that is too long to be useful.<a href="#section-7.5-2.8" class="pilcrow">¶</a>
</li>
          <li class="normal" id="section-7.5-2.9">Both CRLs and OCSP depend on relatively reliable connectivity to the Internet, which might not be available to certain kinds of nodes. A common example is newly provisioned devices that need to establish a secure connection in order to boot up for the first time.<a href="#section-7.5-2.9" class="pilcrow">¶</a>
</li>
        </ul>
<p id="section-7.5-3">For the common use cases of public key certificates in TLS, servers <span class="bcp14">SHOULD</span> support the following as a best practice given the current state of the art and as a foundation for a possible future solution: OCSP <span>[<a href="#RFC6960" class="cite xref">RFC6960</a>]</span> and OCSP stapling using the <code>status_request</code> extension defined in <span>[<a href="#RFC6066" class="cite xref">RFC6066</a>]</span>. Note that the exact mechanism for embedding the <code>status_request</code> extension differs between TLS 1.2 and 1.3. As a matter of local policy, server operators <span class="bcp14">MAY</span> request that CAs issue must-staple <span>[<a href="#RFC7633" class="cite xref">RFC7633</a>]</span> certificates for the server and/or for client authentication, but we recommend reviewing the operational conditions before deciding on this approach.<a href="#section-7.5-3" class="pilcrow">¶</a></p>
<p id="section-7.5-4">The considerations in this section do not apply to scenarios where the DNS-Based
              Authentication of Named Entities (DANE) TLSA resource record <span>[<a href="#RFC6698" class="cite xref">RFC6698</a>]</span> is used to signal to a client which certificate a server considers valid and good to use for TLS connections.<a href="#section-7.5-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<section id="section-8">
      <h2 id="name-references">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-references" class="section-name selfRef">References</a>
      </h2>
<section id="section-8.1">
        <h3 id="name-normative-references">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
        </h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
        <dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3766">[RFC3766]</dt>
        <dd>
<span class="refAuthor">Orman, H.</span> and <span class="refAuthor">P. Hoffman</span>, <span class="refTitle">"Determining Strengths For Public Keys Used For Exchanging Symmetric Keys"</span>, <span class="seriesInfo">BCP 86</span>, <span class="seriesInfo">RFC 3766</span>, <span class="seriesInfo">DOI 10.17487/RFC3766</span>, <time datetime="2004-04" class="refDate">April 2004</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3766">https://www.rfc-editor.org/info/rfc3766</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5246">[RFC5246]</dt>
        <dd>
<span class="refAuthor">Dierks, T.</span> and <span class="refAuthor">E. Rescorla</span>, <span class="refTitle">"The Transport Layer Security (TLS) Protocol Version 1.2"</span>, <span class="seriesInfo">RFC 5246</span>, <span class="seriesInfo">DOI 10.17487/RFC5246</span>, <time datetime="2008-08" class="refDate">August 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5246">https://www.rfc-editor.org/info/rfc5246</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5288">[RFC5288]</dt>
        <dd>
<span class="refAuthor">Salowey, J.</span>, <span class="refAuthor">Choudhury, A.</span>, and <span class="refAuthor">D. McGrew</span>, <span class="refTitle">"AES Galois Counter Mode (GCM) Cipher Suites for TLS"</span>, <span class="seriesInfo">RFC 5288</span>, <span class="seriesInfo">DOI 10.17487/RFC5288</span>, <time datetime="2008-08" class="refDate">August 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5288">https://www.rfc-editor.org/info/rfc5288</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5746">[RFC5746]</dt>
        <dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refAuthor">Ray, M.</span>, <span class="refAuthor">Dispensa, S.</span>, and <span class="refAuthor">N. Oskov</span>, <span class="refTitle">"Transport Layer Security (TLS) Renegotiation Indication Extension"</span>, <span class="seriesInfo">RFC 5746</span>, <span class="seriesInfo">DOI 10.17487/RFC5746</span>, <time datetime="2010-02" class="refDate">February 2010</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5746">https://www.rfc-editor.org/info/rfc5746</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6066">[RFC6066]</dt>
        <dd>
<span class="refAuthor">Eastlake 3rd, D.</span>, <span class="refTitle">"Transport Layer Security (TLS) Extensions: Extension Definitions"</span>, <span class="seriesInfo">RFC 6066</span>, <span class="seriesInfo">DOI 10.17487/RFC6066</span>, <time datetime="2011-01" class="refDate">January 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6066">https://www.rfc-editor.org/info/rfc6066</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6125">[RFC6125]</dt>
        <dd>
<span class="refAuthor">Saint-Andre, P.</span> and <span class="refAuthor">J. Hodges</span>, <span class="refTitle">"Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)"</span>, <span class="seriesInfo">RFC 6125</span>, <span class="seriesInfo">DOI 10.17487/RFC6125</span>, <time datetime="2011-03" class="refDate">March 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6125">https://www.rfc-editor.org/info/rfc6125</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6176">[RFC6176]</dt>
        <dd>
<span class="refAuthor">Turner, S.</span> and <span class="refAuthor">T. Polk</span>, <span class="refTitle">"Prohibiting Secure Sockets Layer (SSL) Version 2.0"</span>, <span class="seriesInfo">RFC 6176</span>, <span class="seriesInfo">DOI 10.17487/RFC6176</span>, <time datetime="2011-03" class="refDate">March 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6176">https://www.rfc-editor.org/info/rfc6176</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6347">[RFC6347]</dt>
        <dd>
<span class="refAuthor">Rescorla, E.</span> and <span class="refAuthor">N. Modadugu</span>, <span class="refTitle">"Datagram Transport Layer Security Version 1.2"</span>, <span class="seriesInfo">RFC 6347</span>, <span class="seriesInfo">DOI 10.17487/RFC6347</span>, <time datetime="2012-01" class="refDate">January 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6347">https://www.rfc-editor.org/info/rfc6347</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6979">[RFC6979]</dt>
        <dd>
<span class="refAuthor">Pornin, T.</span>, <span class="refTitle">"Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)"</span>, <span class="seriesInfo">RFC 6979</span>, <span class="seriesInfo">DOI 10.17487/RFC6979</span>, <time datetime="2013-08" class="refDate">August 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6979">https://www.rfc-editor.org/info/rfc6979</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7301">[RFC7301]</dt>
        <dd>
<span class="refAuthor">Friedl, S.</span>, <span class="refAuthor">Popov, A.</span>, <span class="refAuthor">Langley, A.</span>, and <span class="refAuthor">E. Stephan</span>, <span class="refTitle">"Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension"</span>, <span class="seriesInfo">RFC 7301</span>, <span class="seriesInfo">DOI 10.17487/RFC7301</span>, <time datetime="2014-07" class="refDate">July 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7301">https://www.rfc-editor.org/info/rfc7301</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7366">[RFC7366]</dt>
        <dd>
<span class="refAuthor">Gutmann, P.</span>, <span class="refTitle">"Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"</span>, <span class="seriesInfo">RFC 7366</span>, <span class="seriesInfo">DOI 10.17487/RFC7366</span>, <time datetime="2014-09" class="refDate">September 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7366">https://www.rfc-editor.org/info/rfc7366</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7465">[RFC7465]</dt>
        <dd>
<span class="refAuthor">Popov, A.</span>, <span class="refTitle">"Prohibiting RC4 Cipher Suites"</span>, <span class="seriesInfo">RFC 7465</span>, <span class="seriesInfo">DOI 10.17487/RFC7465</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7465">https://www.rfc-editor.org/info/rfc7465</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7627">[RFC7627]</dt>
        <dd>
<span class="refAuthor">Bhargavan, K., Ed.</span>, <span class="refAuthor">Delignat-Lavaud, A.</span>, <span class="refAuthor">Pironti, A.</span>, <span class="refAuthor">Langley, A.</span>, and <span class="refAuthor">M. Ray</span>, <span class="refTitle">"Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension"</span>, <span class="seriesInfo">RFC 7627</span>, <span class="seriesInfo">DOI 10.17487/RFC7627</span>, <time datetime="2015-09" class="refDate">September 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7627">https://www.rfc-editor.org/info/rfc7627</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7748">[RFC7748]</dt>
        <dd>
<span class="refAuthor">Langley, A.</span>, <span class="refAuthor">Hamburg, M.</span>, and <span class="refAuthor">S. Turner</span>, <span class="refTitle">"Elliptic Curves for Security"</span>, <span class="seriesInfo">RFC 7748</span>, <span class="seriesInfo">DOI 10.17487/RFC7748</span>, <time datetime="2016-01" class="refDate">January 2016</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7748">https://www.rfc-editor.org/info/rfc7748</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
        <dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8422">[RFC8422]</dt>
        <dd>
<span class="refAuthor">Nir, Y.</span>, <span class="refAuthor">Josefsson, S.</span>, and <span class="refAuthor">M. Pegourie-Gonnard</span>, <span class="refTitle">"Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier"</span>, <span class="seriesInfo">RFC 8422</span>, <span class="seriesInfo">DOI 10.17487/RFC8422</span>, <time datetime="2018-08" class="refDate">August 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8422">https://www.rfc-editor.org/info/rfc8422</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8446">[RFC8446]</dt>
        <dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refTitle">"The Transport Layer Security (TLS) Protocol Version 1.3"</span>, <span class="seriesInfo">RFC 8446</span>, <span class="seriesInfo">DOI 10.17487/RFC8446</span>, <time datetime="2018-08" class="refDate">August 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8446">https://www.rfc-editor.org/info/rfc8446</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8996">[RFC8996]</dt>
        <dd>
<span class="refAuthor">Moriarty, K.</span> and <span class="refAuthor">S. Farrell</span>, <span class="refTitle">"Deprecating TLS 1.0 and TLS 1.1"</span>, <span class="seriesInfo">BCP 195</span>, <span class="seriesInfo">RFC 8996</span>, <span class="seriesInfo">DOI 10.17487/RFC8996</span>, <time datetime="2021-03" class="refDate">March 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8996">https://www.rfc-editor.org/info/rfc8996</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9147">[RFC9147]</dt>
        <dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refAuthor">Tschofenig, H.</span>, and <span class="refAuthor">N. Modadugu</span>, <span class="refTitle">"The Datagram Transport Layer Security (DTLS) Protocol Version 1.3"</span>, <span class="seriesInfo">RFC 9147</span>, <span class="seriesInfo">DOI 10.17487/RFC9147</span>, <time datetime="2022-04" class="refDate">April 2022</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9147">https://www.rfc-editor.org/info/rfc9147</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9155">[RFC9155]</dt>
      <dd>
<span class="refAuthor">Velvindron, L.</span>, <span class="refAuthor">Moriarty, K.</span>, and <span class="refAuthor">A. Ghedini</span>, <span class="refTitle">"Deprecating MD5 and SHA-1 Signature Hashes in TLS 1.2 and DTLS 1.2"</span>, <span class="seriesInfo">RFC 9155</span>, <span class="seriesInfo">DOI 10.17487/RFC9155</span>, <time datetime="2021-12" class="refDate">December 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9155">https://www.rfc-editor.org/info/rfc9155</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-8.2">
        <h3 id="name-informative-references">
<a href="#section-8.2" class="section-number selfRef">8.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
        </h3>
<dl class="references">
<dt id="I-D.irtf-cfrg-aead-limits">[AEAD-LIMITS]</dt>
        <dd>
<span class="refAuthor">Günther, F.</span>, <span class="refAuthor">Thomson, M.</span>, and <span class="refAuthor">C. A. Wood</span>, <span class="refTitle">"Usage Limits on AEAD Algorithms"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-irtf-cfrg-aead-limits-05</span>, <time datetime="2022-07-11" class="refDate">11 July 2022</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-05">https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-05</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="ALPACA">[ALPACA]</dt>
        <dd>
<span class="refAuthor">Brinkmann, M.</span>, <span class="refAuthor">Dresen, C.</span>, <span class="refAuthor">Merget, R.</span>, <span class="refAuthor">Poddebniak, D.</span>, <span class="refAuthor">Müller, J.</span>, <span class="refAuthor">Somorovsky, J.</span>, <span class="refAuthor">Schwenk, J.</span>, and <span class="refAuthor">S. Schinzel</span>, <span class="refTitle">"ALPACA: Application Layer Protocol Confusion - Analyzing and Mitigating Cracks in TLS Authentication"</span>, <span class="refContent">30th USENIX Security Symposium (USENIX Security 21)</span>, <time datetime="2021-08" class="refDate">August 2021</time>, <span>&lt;<a href="https://www.usenix.org/conference/usenixsecurity21/presentation/brinkmann">https://www.usenix.org/conference/usenixsecurity21/presentation/brinkmann</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Antipa2003">[Antipa2003]</dt>
        <dd>
<span class="refAuthor">Antipa, A.</span>, <span class="refAuthor">Brown, D. R. L.</span>, <span class="refAuthor">Menezes, A.</span>, <span class="refAuthor">Struik, R.</span>, and <span class="refAuthor">S. Vanstone</span>, <span class="refTitle">"Validation of Elliptic Curve Public Keys"</span>, <span class="refContent">Public Key Cryptography - PKC 2003</span>, <time datetime="2003-12" class="refDate">December 2003</time>, <span>&lt;<a href="https://doi.org/10.1007/3-540-36288-6_16">https://doi.org/10.1007/3-540-36288-6_16</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Boeck2016">[Boeck2016]</dt>
        <dd>
<span class="refAuthor">Böck, H.</span>, <span class="refAuthor">Zauner, A.</span>, <span class="refAuthor">Devlin, S.</span>, <span class="refAuthor">Somorovsky, J.</span>, and <span class="refAuthor">P. Jovanovic</span>, <span class="refTitle">"Nonce-Disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS"</span>, <time datetime="2016-05" class="refDate">May 2016</time>, <span>&lt;<a href="https://eprint.iacr.org/2016/475.pdf">https://eprint.iacr.org/2016/475.pdf</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="CAB-Baseline">[CAB-Baseline]</dt>
        <dd>
<span class="refAuthor">CA/Browser Forum</span>, <span class="refTitle">"Baseline Requirements for the Issuance and Management of Publicly-Trusted Certificates"</span>, <span class="seriesInfo">Version 1.8.4</span>, <time datetime="2022-04" class="refDate">April 2022</time>, <span>&lt;<a href="https://cabforum.org/documents/">https://cabforum.org/documents/</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.mattsson-cfrg-det-sigs-with-noise">[CFRG-DET-SIGS]</dt>
        <dd>
<span class="refAuthor">Preuß Mattsson, J.</span>, <span class="refAuthor">Thormarker, E.</span>, and <span class="refAuthor">S. Ruohomaa</span>, <span class="refTitle">"Deterministic ECDSA and EdDSA Signatures with Additional Randomness"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-irtf-cfrg-det-sigs-with-noise-00</span>, <time datetime="2022-08-08" class="refDate">8 August 2022</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-det-sigs-with-noise-00">https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-det-sigs-with-noise-00</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Chung18">[Chung18]</dt>
        <dd>
<span class="refAuthor">Chung, T.</span>, <span class="refAuthor">Lok, J.</span>, <span class="refAuthor">Chandrasekaran, B.</span>, <span class="refAuthor">Choffnes, D.</span>, <span class="refAuthor">Levin, D.</span>, <span class="refAuthor">Maggs, B.</span>, <span class="refAuthor">Mislove, A.</span>, <span class="refAuthor">Rula, J.</span>, <span class="refAuthor">Sullivan, N.</span>, and <span class="refAuthor">C. Wilson</span>, <span class="refTitle">"Is the Web Ready for OCSP Must-Staple?"</span>, <span class="refContent">Proceedings of the Internet Measurement Conference 2018</span>, <span class="seriesInfo">DOI 10.1145/3278532.3278543</span>, <time datetime="2018-10" class="refDate">October 2018</time>, <span>&lt;<a href="https://doi.org/10.1145/3278532.3278543">https://doi.org/10.1145/3278532.3278543</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="CRLite">[CRLite]</dt>
        <dd>
<span class="refAuthor">Larisch, J.</span>, <span class="refAuthor">Choffnes, D.</span>, <span class="refAuthor">Levin, D.</span>, <span class="refAuthor">Maggs, B.</span>, <span class="refAuthor">Mislove, A.</span>, and <span class="refAuthor">C. Wilson</span>, <span class="refTitle">"CRLite: A Scalable System for Pushing All TLS Revocations to All Browsers"</span>, <span class="refContent">2017 IEEE Symposium on Security and Privacy (SP)</span>, <span class="seriesInfo">DOI 10.1109/sp.2017.17</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span>&lt;<a href="https://doi.org/10.1109/sp.2017.17">https://doi.org/10.1109/sp.2017.17</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="CVE">[CVE]</dt>
        <dd>
<span class="refAuthor">MITRE</span>, <span class="refTitle">"Common Vulnerabilities and Exposures"</span>, <span>&lt;<a href="https://cve.mitre.org">https://cve.mitre.org</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="DegabrieleP07">[DegabrieleP07]</dt>
        <dd>
<span class="refAuthor">Degabriele, J.</span> and <span class="refAuthor">K. Paterson</span>, <span class="refTitle">"Attacking the IPsec Standards in Encryption-only Configurations"</span>, <span class="refContent">2007 IEEE Symposium on Security and Privacy (SP '07)</span>, <span class="seriesInfo">DOI 10.1109/sp.2007.8</span>, <time datetime="2007-05" class="refDate">May 2007</time>, <span>&lt;<a href="https://doi.org/10.1109/sp.2007.8">https://doi.org/10.1109/sp.2007.8</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="DROWN">[DROWN]</dt>
        <dd>
<span class="refAuthor">Aviram, N.</span>, <span class="refAuthor">Schinzel, S.</span>, <span class="refAuthor">Somorovsky, J.</span>, <span class="refAuthor">Heninger, N.</span>, <span class="refAuthor">Dankel, M.</span>, <span class="refAuthor">Steube, J.</span>, <span class="refAuthor">Valenta, L.</span>, <span class="refAuthor">Adrian, D.</span>, <span class="refAuthor">Halderman, J.</span>, <span class="refAuthor">Dukhovni, V.</span>, <span class="refAuthor">Käsper, E.</span>, <span class="refAuthor">Cohney, S.</span>, <span class="refAuthor">Engels, S.</span>, <span class="refAuthor">Paar, C.</span>, and <span class="refAuthor">Y. Shavitt</span>, <span class="refTitle">"DROWN: Breaking TLS using SSLv2"</span>, <span class="refContent">25th USENIX Security Symposium (USENIX Security 16)</span>, <time datetime="2016-08" class="refDate">August 2016</time>, <span>&lt;<a href="https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram">https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Heninger2012">[Heninger2012]</dt>
        <dd>
<span class="refAuthor">Heninger, N.</span>, <span class="refAuthor">Durumeric, Z.</span>, <span class="refAuthor">Wustrow, E.</span>, and <span class="refAuthor">J. A. Halderman</span>, <span class="refTitle">"Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices"</span>, <span class="refContent">21st Usenix Security Symposium</span>, <time datetime="2012-08" class="refDate">August 2012</time>. </dd>
<dd class="break"></dd>
<dt id="IANA_TLS">[IANA_TLS]</dt>
        <dd>
<span class="refAuthor">IANA</span>, <span class="refTitle">"Transport Layer Security (TLS) Parameters"</span>, <span>&lt;<a href="https://www.iana.org/assignments/tls-parameters">https://www.iana.org/assignments/tls-parameters</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-uta-tls13-iot-profile">[IOT-PROFILE]</dt>
        <dd>
<span class="refAuthor">Tschofenig, H.</span> and <span class="refAuthor">T. Fossati</span>, <span class="refTitle">"TLS/DTLS 1.3 Profiles for the Internet of Things"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-uta-tls13-iot-profile-05</span>, <time datetime="2022-07-06" class="refDate">6 July 2022</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-05">https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-05</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Jager2015">[Jager2015]</dt>
        <dd>
<span class="refAuthor">Jager, T.</span>, <span class="refAuthor">Schwenk, J.</span>, and <span class="refAuthor">J. Somorovsky</span>, <span class="refTitle">"Practical Invalid Curve Attacks on TLS-ECDH"</span>, <span class="refContent">Computer Security -- ESORICS 2015, pp. 407-425</span>, <span class="seriesInfo">DOI 10.1007/978-3-319-24174-6_21</span>, <time datetime="2015" class="refDate">2015</time>, <span>&lt;<a href="https://doi.org/10.1007/978-3-319-24174-6_21">https://doi.org/10.1007/978-3-319-24174-6_21</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Joux2006">[Joux2006]</dt>
        <dd>
<span class="refAuthor">Joux, A.</span>, <span class="refTitle">"Authentication Failures in NIST version of GCM"</span>, <time datetime="2006" class="refDate">2006</time>, <span>&lt;<a href="https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf">https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Kim2014">[Kim2014]</dt>
        <dd>
<span class="refAuthor">Kim, Y.</span>, <span class="refAuthor">Daly, R.</span>, <span class="refAuthor">Kim, J.</span>, <span class="refAuthor">Fallin, C.</span>, <span class="refAuthor">Lee, J. H.</span>, <span class="refAuthor">Lee, D.</span>, <span class="refAuthor">Wilkerson, C.</span>, <span class="refAuthor">Lai, K.</span>, and <span class="refAuthor">O. Mutlu</span>, <span class="refTitle">"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"</span>, <span class="seriesInfo">DOI 10.1109/ISCA.2014.6853210</span>, <time datetime="2014-07" class="refDate">July 2014</time>, <span>&lt;<a href="https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf">https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Kleinjung2010">[Kleinjung2010]</dt>
        <dd>
<span class="refAuthor">Kleinjung, T.</span>, <span class="refAuthor">Aoki, K.</span>, <span class="refAuthor">Franke, J.</span>, <span class="refAuthor">Lenstra, A.</span>, <span class="refAuthor">Thomé, E.</span>, <span class="refAuthor">Bos, J.</span>, <span class="refAuthor">Gaudry, P.</span>, <span class="refAuthor">Kruppa, A.</span>, <span class="refAuthor">Montgomery, P.</span>, <span class="refAuthor">Osvik, D.</span>, <span class="refAuthor">te Riele, H.</span>, <span class="refAuthor">Timofeev, A.</span>, and <span class="refAuthor">P. Zimmermann</span>, <span class="refTitle">"Factorization of a 768-Bit RSA Modulus"</span>, <span class="refContent">Advances in Cryptology - CRYPTO 2010, pp. 333-350</span>, <span class="seriesInfo">DOI 10.1007/978-3-642-14623-7_18</span>, <time datetime="2010" class="refDate">2010</time>, <span>&lt;<a href="https://doi.org/10.1007/978-3-642-14623-7_18">https://doi.org/10.1007/978-3-642-14623-7_18</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="LetsRevoke">[LetsRevoke]</dt>
        <dd>
<span class="refAuthor">Smith, T.</span>, <span class="refAuthor">Dickinson, L.</span>, and <span class="refAuthor">K. Seamons</span>, <span class="refTitle">"Let's Revoke: Scalable Global Certificate Revocation"</span>, <span class="refContent">Proceedings 2020 Network and Distributed System Security Symposium</span>, <span class="seriesInfo">DOI 10.14722/ndss.2020.24084</span>, <time datetime="2020-02" class="refDate">February 2020</time>, <span>&lt;<a href="https://doi.org/10.14722/ndss.2020.24084">https://doi.org/10.14722/ndss.2020.24084</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Logjam">[Logjam]</dt>
        <dd>
<span class="refAuthor">Adrian, D.</span>, <span class="refAuthor">Bhargavan, K.</span>, <span class="refAuthor">Durumeric, Z.</span>, <span class="refAuthor">Gaudry, P.</span>, <span class="refAuthor">Green, M.</span>, <span class="refAuthor">Halderman, J.</span>, <span class="refAuthor">Heninger, N.</span>, <span class="refAuthor">Springall, D.</span>, <span class="refAuthor">Thomé, E.</span>, <span class="refAuthor">Valenta, L.</span>, <span class="refAuthor">VanderSloot, B.</span>, <span class="refAuthor">Wustrow, E.</span>, <span class="refAuthor">Zanella-Béguelin, S.</span>, and <span class="refAuthor">P. Zimmermann</span>, <span class="refTitle">"Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice"</span>, <span class="refContent">Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 5-17</span>, <span class="seriesInfo">DOI 10.1145/2810103.2813707</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span>&lt;<a href="https://doi.org/10.1145/2810103.2813707">https://doi.org/10.1145/2810103.2813707</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Multiple-Encryption">[Multiple-Encryption]</dt>
        <dd>
<span class="refAuthor">Merkle, R.</span> and <span class="refAuthor">M. Hellman</span>, <span class="refTitle">"On the security of multiple encryption"</span>, <span class="refContent">Communications of the ACM, Vol. 24, Issue 7, pp. 465-467</span>, <span class="seriesInfo">DOI 10.1145/358699.358718</span>, <time datetime="1981-07" class="refDate">July 1981</time>, <span>&lt;<a href="https://doi.org/10.1145/358699.358718">https://doi.org/10.1145/358699.358718</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="NIST.SP.800-56A">[NIST.SP.800-56A]</dt>
        <dd>
<span class="refAuthor">National Institute of Standards and Technology</span>, <span class="refTitle">"Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography"</span>, <span class="refContent">Revision 3</span>, <span class="seriesInfo">NIST Special Publication 800-56A</span>, <span class="seriesInfo">DOI 10.6028/NIST.SP.800-56Ar3</span>, <time datetime="2018-04" class="refDate">April 2018</time>, <span>&lt;<a href="https://doi.org/10.6028/NIST.SP.800-56Ar3">https://doi.org/10.6028/NIST.SP.800-56Ar3</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="PatersonRS11">[PatersonRS11]</dt>
        <dd>
<span class="refAuthor">Paterson, K.</span>, <span class="refAuthor">Ristenpart, T.</span>, and <span class="refAuthor">T. Shrimpton</span>, <span class="refTitle">"Tag Size Does Matter: Attacks and Proofs for the TLS Record Protocol"</span>, <span class="refContent">Proceedings of the 17th International conference on The Theory and Application of Cryptology and Information Security, pp. 372-389</span>, <span class="seriesInfo">DOI 10.1007/978-3-642-25385-0_20</span>, <time datetime="2011-12" class="refDate">December 2011</time>, <span>&lt;<a href="https://doi.org/10.1007/978-3-642-25385-0_20">https://doi.org/10.1007/978-3-642-25385-0_20</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Poddebniak2017">[Poddebniak2017]</dt>
        <dd>
<span class="refAuthor">Poddebniak, D.</span>, <span class="refAuthor">Somorovsky, J.</span>, <span class="refAuthor">Schinzel, S.</span>, <span class="refAuthor">Lochter, M.</span>, and <span class="refAuthor">P. Rösler</span>, <span class="refTitle">"Attacking Deterministic Signature Schemes using Fault Attacks"</span>, <span class="refContent">Conference: 2018 IEEE European Symposium on Security and Privacy</span>, <span class="seriesInfo">DOI 10.1109/EuroSP.2018.00031</span>, <time datetime="2018-04" class="refDate">April 2018</time>, <span>&lt;<a href="https://eprint.iacr.org/2017/1014.pdf">https://eprint.iacr.org/2017/1014.pdf</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="POODLE">[POODLE]</dt>
        <dd>
<span class="refAuthor">US-CERT</span>, <span class="refTitle">"SSL 3.0 Protocol Vulnerability and POODLE Attack"</span>, <time datetime="2014-10" class="refDate">October 2014</time>, <span>&lt;<a href="https://www.us-cert.gov/ncas/alerts/TA14-290A">https://www.us-cert.gov/ncas/alerts/TA14-290A</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RACCOON">[RACCOON]</dt>
        <dd>
<span class="refAuthor">Merget, R.</span>, <span class="refAuthor">Brinkmann, M.</span>, <span class="refAuthor">Aviram, N.</span>, <span class="refAuthor">Somorovsky, J.</span>, <span class="refAuthor">Mittmann, J.</span>, and <span class="refAuthor">J. Schwenk</span>, <span class="refTitle">"Raccoon Attack: Finding and Exploiting Most-Significant-Bit-Oracles in TLS-DH(E)"</span>, <span class="refContent">30th USENIX Security Symposium (USENIX Security 21)</span>, <time datetime="2021" class="refDate">2021</time>, <span>&lt;<a href="https://www.usenix.org/conference/usenixsecurity21/presentation/merget">https://www.usenix.org/conference/usenixsecurity21/presentation/merget</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2026">[RFC2026]</dt>
        <dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"The Internet Standards Process -- Revision 3"</span>, <span class="seriesInfo">BCP 9</span>, <span class="seriesInfo">RFC 2026</span>, <span class="seriesInfo">DOI 10.17487/RFC2026</span>, <time datetime="1996-10" class="refDate">October 1996</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2026">https://www.rfc-editor.org/info/rfc2026</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC2246">[RFC2246]</dt>
        <dd>
<span class="refAuthor">Dierks, T.</span> and <span class="refAuthor">C. Allen</span>, <span class="refTitle">"The TLS Protocol Version 1.0"</span>, <span class="seriesInfo">RFC 2246</span>, <span class="seriesInfo">DOI 10.17487/RFC2246</span>, <time datetime="1999-01" class="refDate">January 1999</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc2246">https://www.rfc-editor.org/info/rfc2246</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3261">[RFC3261]</dt>
        <dd>
<span class="refAuthor">Rosenberg, J.</span>, <span class="refAuthor">Schulzrinne, H.</span>, <span class="refAuthor">Camarillo, G.</span>, <span class="refAuthor">Johnston, A.</span>, <span class="refAuthor">Peterson, J.</span>, <span class="refAuthor">Sparks, R.</span>, <span class="refAuthor">Handley, M.</span>, and <span class="refAuthor">E. Schooler</span>, <span class="refTitle">"SIP: Session Initiation Protocol"</span>, <span class="seriesInfo">RFC 3261</span>, <span class="seriesInfo">DOI 10.17487/RFC3261</span>, <time datetime="2002-06" class="refDate">June 2002</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3261">https://www.rfc-editor.org/info/rfc3261</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC3602">[RFC3602]</dt>
        <dd>
<span class="refAuthor">Frankel, S.</span>, <span class="refAuthor">Glenn, R.</span>, and <span class="refAuthor">S. Kelly</span>, <span class="refTitle">"The AES-CBC Cipher Algorithm and Its Use with IPsec"</span>, <span class="seriesInfo">RFC 3602</span>, <span class="seriesInfo">DOI 10.17487/RFC3602</span>, <time datetime="2003-09" class="refDate">September 2003</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc3602">https://www.rfc-editor.org/info/rfc3602</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4346">[RFC4346]</dt>
        <dd>
<span class="refAuthor">Dierks, T.</span> and <span class="refAuthor">E. Rescorla</span>, <span class="refTitle">"The Transport Layer Security (TLS) Protocol Version 1.1"</span>, <span class="seriesInfo">RFC 4346</span>, <span class="seriesInfo">DOI 10.17487/RFC4346</span>, <time datetime="2006-04" class="refDate">April 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4346">https://www.rfc-editor.org/info/rfc4346</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4347">[RFC4347]</dt>
        <dd>
<span class="refAuthor">Rescorla, E.</span> and <span class="refAuthor">N. Modadugu</span>, <span class="refTitle">"Datagram Transport Layer Security"</span>, <span class="seriesInfo">RFC 4347</span>, <span class="seriesInfo">DOI 10.17487/RFC4347</span>, <time datetime="2006-04" class="refDate">April 2006</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4347">https://www.rfc-editor.org/info/rfc4347</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC4949">[RFC4949]</dt>
        <dd>
<span class="refAuthor">Shirey, R.</span>, <span class="refTitle">"Internet Security Glossary, Version 2"</span>, <span class="seriesInfo">FYI 36</span>, <span class="seriesInfo">RFC 4949</span>, <span class="seriesInfo">DOI 10.17487/RFC4949</span>, <time datetime="2007-08" class="refDate">August 2007</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc4949">https://www.rfc-editor.org/info/rfc4949</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5077">[RFC5077]</dt>
        <dd>
<span class="refAuthor">Salowey, J.</span>, <span class="refAuthor">Zhou, H.</span>, <span class="refAuthor">Eronen, P.</span>, and <span class="refAuthor">H. Tschofenig</span>, <span class="refTitle">"Transport Layer Security (TLS) Session Resumption without Server-Side State"</span>, <span class="seriesInfo">RFC 5077</span>, <span class="seriesInfo">DOI 10.17487/RFC5077</span>, <time datetime="2008-01" class="refDate">January 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5077">https://www.rfc-editor.org/info/rfc5077</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5116">[RFC5116]</dt>
        <dd>
<span class="refAuthor">McGrew, D.</span>, <span class="refTitle">"An Interface and Algorithms for Authenticated Encryption"</span>, <span class="seriesInfo">RFC 5116</span>, <span class="seriesInfo">DOI 10.17487/RFC5116</span>, <time datetime="2008-01" class="refDate">January 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5116">https://www.rfc-editor.org/info/rfc5116</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5280">[RFC5280]</dt>
        <dd>
<span class="refAuthor">Cooper, D.</span>, <span class="refAuthor">Santesson, S.</span>, <span class="refAuthor">Farrell, S.</span>, <span class="refAuthor">Boeyen, S.</span>, <span class="refAuthor">Housley, R.</span>, and <span class="refAuthor">W. Polk</span>, <span class="refTitle">"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"</span>, <span class="seriesInfo">RFC 5280</span>, <span class="seriesInfo">DOI 10.17487/RFC5280</span>, <time datetime="2008-05" class="refDate">May 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5280">https://www.rfc-editor.org/info/rfc5280</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC5321">[RFC5321]</dt>
        <dd>
<span class="refAuthor">Klensin, J.</span>, <span class="refTitle">"Simple Mail Transfer Protocol"</span>, <span class="seriesInfo">RFC 5321</span>, <span class="seriesInfo">DOI 10.17487/RFC5321</span>, <time datetime="2008-10" class="refDate">October 2008</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc5321">https://www.rfc-editor.org/info/rfc5321</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6101">[RFC6101]</dt>
        <dd>
<span class="refAuthor">Freier, A.</span>, <span class="refAuthor">Karlton, P.</span>, and <span class="refAuthor">P. Kocher</span>, <span class="refTitle">"The Secure Sockets Layer (SSL) Protocol Version 3.0"</span>, <span class="seriesInfo">RFC 6101</span>, <span class="seriesInfo">DOI 10.17487/RFC6101</span>, <time datetime="2011-08" class="refDate">August 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6101">https://www.rfc-editor.org/info/rfc6101</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6120">[RFC6120]</dt>
        <dd>
<span class="refAuthor">Saint-Andre, P.</span>, <span class="refTitle">"Extensible Messaging and Presence Protocol (XMPP): Core"</span>, <span class="seriesInfo">RFC 6120</span>, <span class="seriesInfo">DOI 10.17487/RFC6120</span>, <time datetime="2011-03" class="refDate">March 2011</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6120">https://www.rfc-editor.org/info/rfc6120</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6698">[RFC6698]</dt>
        <dd>
<span class="refAuthor">Hoffman, P.</span> and <span class="refAuthor">J. Schlyter</span>, <span class="refTitle">"The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA"</span>, <span class="seriesInfo">RFC 6698</span>, <span class="seriesInfo">DOI 10.17487/RFC6698</span>, <time datetime="2012-08" class="refDate">August 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6698">https://www.rfc-editor.org/info/rfc6698</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6797">[RFC6797]</dt>
        <dd>
<span class="refAuthor">Hodges, J.</span>, <span class="refAuthor">Jackson, C.</span>, and <span class="refAuthor">A. Barth</span>, <span class="refTitle">"HTTP Strict Transport Security (HSTS)"</span>, <span class="seriesInfo">RFC 6797</span>, <span class="seriesInfo">DOI 10.17487/RFC6797</span>, <time datetime="2012-11" class="refDate">November 2012</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6797">https://www.rfc-editor.org/info/rfc6797</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6960">[RFC6960]</dt>
        <dd>
<span class="refAuthor">Santesson, S.</span>, <span class="refAuthor">Myers, M.</span>, <span class="refAuthor">Ankney, R.</span>, <span class="refAuthor">Malpani, A.</span>, <span class="refAuthor">Galperin, S.</span>, and <span class="refAuthor">C. Adams</span>, <span class="refTitle">"X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP"</span>, <span class="seriesInfo">RFC 6960</span>, <span class="seriesInfo">DOI 10.17487/RFC6960</span>, <time datetime="2013-06" class="refDate">June 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6960">https://www.rfc-editor.org/info/rfc6960</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC6961">[RFC6961]</dt>
        <dd>
<span class="refAuthor">Pettersen, Y.</span>, <span class="refTitle">"The Transport Layer Security (TLS) Multiple Certificate Status Request Extension"</span>, <span class="seriesInfo">RFC 6961</span>, <span class="seriesInfo">DOI 10.17487/RFC6961</span>, <time datetime="2013-06" class="refDate">June 2013</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc6961">https://www.rfc-editor.org/info/rfc6961</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7228">[RFC7228]</dt>
        <dd>
<span class="refAuthor">Bormann, C.</span>, <span class="refAuthor">Ersue, M.</span>, and <span class="refAuthor">A. Keranen</span>, <span class="refTitle">"Terminology for Constrained-Node Networks"</span>, <span class="seriesInfo">RFC 7228</span>, <span class="seriesInfo">DOI 10.17487/RFC7228</span>, <time datetime="2014-05" class="refDate">May 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7228">https://www.rfc-editor.org/info/rfc7228</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7435">[RFC7435]</dt>
        <dd>
<span class="refAuthor">Dukhovni, V.</span>, <span class="refTitle">"Opportunistic Security: Some Protection Most of the Time"</span>, <span class="seriesInfo">RFC 7435</span>, <span class="seriesInfo">DOI 10.17487/RFC7435</span>, <time datetime="2014-12" class="refDate">December 2014</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7435">https://www.rfc-editor.org/info/rfc7435</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7457">[RFC7457]</dt>
        <dd>
<span class="refAuthor">Sheffer, Y.</span>, <span class="refAuthor">Holz, R.</span>, and <span class="refAuthor">P. Saint-Andre</span>, <span class="refTitle">"Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS)"</span>, <span class="seriesInfo">RFC 7457</span>, <span class="seriesInfo">DOI 10.17487/RFC7457</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7457">https://www.rfc-editor.org/info/rfc7457</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7507">[RFC7507]</dt>
        <dd>
<span class="refAuthor">Moeller, B.</span> and <span class="refAuthor">A. Langley</span>, <span class="refTitle">"TLS Fallback Signaling Cipher Suite Value (SCSV) for Preventing Protocol Downgrade Attacks"</span>, <span class="seriesInfo">RFC 7507</span>, <span class="seriesInfo">DOI 10.17487/RFC7507</span>, <time datetime="2015-04" class="refDate">April 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7507">https://www.rfc-editor.org/info/rfc7507</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7525">[RFC7525]</dt>
        <dd>
<span class="refAuthor">Sheffer, Y.</span>, <span class="refAuthor">Holz, R.</span>, and <span class="refAuthor">P. Saint-Andre</span>, <span class="refTitle">"Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"</span>, <span class="seriesInfo">BCP 195</span>, <span class="seriesInfo">RFC 7525</span>, <span class="seriesInfo">DOI 10.17487/RFC7525</span>, <time datetime="2015-05" class="refDate">May 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7525">https://www.rfc-editor.org/info/rfc7525</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7568">[RFC7568]</dt>
        <dd>
<span class="refAuthor">Barnes, R.</span>, <span class="refAuthor">Thomson, M.</span>, <span class="refAuthor">Pironti, A.</span>, and <span class="refAuthor">A. Langley</span>, <span class="refTitle">"Deprecating Secure Sockets Layer Version 3.0"</span>, <span class="seriesInfo">RFC 7568</span>, <span class="seriesInfo">DOI 10.17487/RFC7568</span>, <time datetime="2015-06" class="refDate">June 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7568">https://www.rfc-editor.org/info/rfc7568</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7590">[RFC7590]</dt>
        <dd>
<span class="refAuthor">Saint-Andre, P.</span> and <span class="refAuthor">T. Alkemade</span>, <span class="refTitle">"Use of Transport Layer Security (TLS) in the Extensible Messaging and Presence Protocol (XMPP)"</span>, <span class="seriesInfo">RFC 7590</span>, <span class="seriesInfo">DOI 10.17487/RFC7590</span>, <time datetime="2015-06" class="refDate">June 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7590">https://www.rfc-editor.org/info/rfc7590</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7633">[RFC7633]</dt>
        <dd>
<span class="refAuthor">Hallam-Baker, P.</span>, <span class="refTitle">"X.509v3 Transport Layer Security (TLS) Feature Extension"</span>, <span class="seriesInfo">RFC 7633</span>, <span class="seriesInfo">DOI 10.17487/RFC7633</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7633">https://www.rfc-editor.org/info/rfc7633</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7672">[RFC7672]</dt>
        <dd>
<span class="refAuthor">Dukhovni, V.</span> and <span class="refAuthor">W. Hardaker</span>, <span class="refTitle">"SMTP Security via Opportunistic DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS)"</span>, <span class="seriesInfo">RFC 7672</span>, <span class="seriesInfo">DOI 10.17487/RFC7672</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7672">https://www.rfc-editor.org/info/rfc7672</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7673">[RFC7673]</dt>
        <dd>
<span class="refAuthor">Finch, T.</span>, <span class="refAuthor">Miller, M.</span>, and <span class="refAuthor">P. Saint-Andre</span>, <span class="refTitle">"Using DNS-Based Authentication of Named Entities (DANE) TLSA Records with SRV Records"</span>, <span class="seriesInfo">RFC 7673</span>, <span class="seriesInfo">DOI 10.17487/RFC7673</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7673">https://www.rfc-editor.org/info/rfc7673</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7712">[RFC7712]</dt>
        <dd>
<span class="refAuthor">Saint-Andre, P.</span>, <span class="refAuthor">Miller, M.</span>, and <span class="refAuthor">P. Hancke</span>, <span class="refTitle">"Domain Name Associations (DNA) in the Extensible Messaging and Presence Protocol (XMPP)"</span>, <span class="seriesInfo">RFC 7712</span>, <span class="seriesInfo">DOI 10.17487/RFC7712</span>, <time datetime="2015-11" class="refDate">November 2015</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7712">https://www.rfc-editor.org/info/rfc7712</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7919">[RFC7919]</dt>
        <dd>
<span class="refAuthor">Gillmor, D.</span>, <span class="refTitle">"Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS)"</span>, <span class="seriesInfo">RFC 7919</span>, <span class="seriesInfo">DOI 10.17487/RFC7919</span>, <time datetime="2016-08" class="refDate">August 2016</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7919">https://www.rfc-editor.org/info/rfc7919</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7924">[RFC7924]</dt>
        <dd>
<span class="refAuthor">Santesson, S.</span> and <span class="refAuthor">H. Tschofenig</span>, <span class="refTitle">"Transport Layer Security (TLS) Cached Information Extension"</span>, <span class="seriesInfo">RFC 7924</span>, <span class="seriesInfo">DOI 10.17487/RFC7924</span>, <time datetime="2016-07" class="refDate">July 2016</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7924">https://www.rfc-editor.org/info/rfc7924</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC7925">[RFC7925]</dt>
        <dd>
<span class="refAuthor">Tschofenig, H., Ed.</span> and <span class="refAuthor">T. Fossati</span>, <span class="refTitle">"Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things"</span>, <span class="seriesInfo">RFC 7925</span>, <span class="seriesInfo">DOI 10.17487/RFC7925</span>, <time datetime="2016-07" class="refDate">July 2016</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc7925">https://www.rfc-editor.org/info/rfc7925</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8452">[RFC8452]</dt>
        <dd>
<span class="refAuthor">Gueron, S.</span>, <span class="refAuthor">Langley, A.</span>, and <span class="refAuthor">Y. Lindell</span>, <span class="refTitle">"AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption"</span>, <span class="seriesInfo">RFC 8452</span>, <span class="seriesInfo">DOI 10.17487/RFC8452</span>, <time datetime="2019-04" class="refDate">April 2019</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8452">https://www.rfc-editor.org/info/rfc8452</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8461">[RFC8461]</dt>
        <dd>
<span class="refAuthor">Margolis, D.</span>, <span class="refAuthor">Risher, M.</span>, <span class="refAuthor">Ramakrishnan, B.</span>, <span class="refAuthor">Brotman, A.</span>, and <span class="refAuthor">J. Jones</span>, <span class="refTitle">"SMTP MTA Strict Transport Security (MTA-STS)"</span>, <span class="seriesInfo">RFC 8461</span>, <span class="seriesInfo">DOI 10.17487/RFC8461</span>, <time datetime="2018-09" class="refDate">September 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8461">https://www.rfc-editor.org/info/rfc8461</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8470">[RFC8470]</dt>
        <dd>
<span class="refAuthor">Thomson, M.</span>, <span class="refAuthor">Nottingham, M.</span>, and <span class="refAuthor">W. Tarreau</span>, <span class="refTitle">"Using Early Data in HTTP"</span>, <span class="seriesInfo">RFC 8470</span>, <span class="seriesInfo">DOI 10.17487/RFC8470</span>, <time datetime="2018-09" class="refDate">September 2018</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8470">https://www.rfc-editor.org/info/rfc8470</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC8879">[RFC8879]</dt>
        <dd>
<span class="refAuthor">Ghedini, A.</span> and <span class="refAuthor">V. Vasiliev</span>, <span class="refTitle">"TLS Certificate Compression"</span>, <span class="seriesInfo">RFC 8879</span>, <span class="seriesInfo">DOI 10.17487/RFC8879</span>, <time datetime="2020-12" class="refDate">December 2020</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc8879">https://www.rfc-editor.org/info/rfc8879</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9000">[RFC9000]</dt>
        <dd>
<span class="refAuthor">Iyengar, J., Ed.</span> and <span class="refAuthor">M. Thomson, Ed.</span>, <span class="refTitle">"QUIC: A UDP-Based Multiplexed and Secure Transport"</span>, <span class="seriesInfo">RFC 9000</span>, <span class="seriesInfo">DOI 10.17487/RFC9000</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9000">https://www.rfc-editor.org/info/rfc9000</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9001">[RFC9001]</dt>
        <dd>
<span class="refAuthor">Thomson, M., Ed.</span> and <span class="refAuthor">S. Turner, Ed.</span>, <span class="refTitle">"Using TLS to Secure QUIC"</span>, <span class="seriesInfo">RFC 9001</span>, <span class="seriesInfo">DOI 10.17487/RFC9001</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9001">https://www.rfc-editor.org/info/rfc9001</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9051">[RFC9051]</dt>
        <dd>
<span class="refAuthor">Melnikov, A., Ed.</span> and <span class="refAuthor">B. Leiba, Ed.</span>, <span class="refTitle">"Internet Message Access Protocol (IMAP) - Version 4rev2"</span>, <span class="seriesInfo">RFC 9051</span>, <span class="seriesInfo">DOI 10.17487/RFC9051</span>, <time datetime="2021-08" class="refDate">August 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9051">https://www.rfc-editor.org/info/rfc9051</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9110">[RFC9110]</dt>
        <dd>
<span class="refAuthor">Fielding, R., Ed.</span>, <span class="refAuthor">Nottingham, M., Ed.</span>, and <span class="refAuthor">J. Reschke, Ed.</span>, <span class="refTitle">"HTTP Semantics"</span>, <span class="seriesInfo">STD 97</span>, <span class="seriesInfo">RFC 9110</span>, <span class="seriesInfo">DOI 10.17487/RFC9110</span>, <time datetime="2022-06" class="refDate">June 2022</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9110">https://www.rfc-editor.org/info/rfc9110</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9112">[RFC9112]</dt>
        <dd>
<span class="refAuthor">Fielding, R., Ed.</span>, <span class="refAuthor">Nottingham, M., Ed.</span>, and <span class="refAuthor">J. Reschke, Ed.</span>, <span class="refTitle">"HTTP/1.1"</span>, <span class="seriesInfo">STD 99</span>, <span class="seriesInfo">RFC 9112</span>, <span class="seriesInfo">DOI 10.17487/RFC9112</span>, <time datetime="2022-06" class="refDate">June 2022</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9112">https://www.rfc-editor.org/info/rfc9112</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9113">[RFC9113]</dt>
        <dd>
<span class="refAuthor">Thomson, M., Ed.</span> and <span class="refAuthor">C. Benfield, Ed.</span>, <span class="refTitle">"HTTP/2"</span>, <span class="seriesInfo">RFC 9113</span>, <span class="seriesInfo">DOI 10.17487/RFC9113</span>, <time datetime="2022-06" class="refDate">June 2022</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9113">https://www.rfc-editor.org/info/rfc9113</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9162">[RFC9162]</dt>
        <dd>
<span class="refAuthor">Laurie, B.</span>, <span class="refAuthor">Messeri, E.</span>, and <span class="refAuthor">R. Stradling</span>, <span class="refTitle">"Certificate Transparency Version 2.0"</span>, <span class="seriesInfo">RFC 9162</span>, <span class="seriesInfo">DOI 10.17487/RFC9162</span>, <time datetime="2021-12" class="refDate">December 2021</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9162">https://www.rfc-editor.org/info/rfc9162</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="RFC9191">[RFC9191]</dt>
        <dd>
<span class="refAuthor">Sethi, M.</span>, <span class="refAuthor">Preuß Mattsson, J.</span>, and <span class="refAuthor">S. Turner</span>, <span class="refTitle">"Handling Large Certificates and Long Certificate Chains in TLS-Based EAP Methods"</span>, <span class="seriesInfo">RFC 9191</span>, <span class="seriesInfo">DOI 10.17487/RFC9191</span>, <time datetime="2022-02" class="refDate">February 2022</time>, <span>&lt;<a href="https://www.rfc-editor.org/info/rfc9191">https://www.rfc-editor.org/info/rfc9191</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="SAFECURVES">[SAFECURVES]</dt>
        <dd>
<span class="refAuthor">Bernstein, D. J.</span> and <span class="refAuthor">T. Lange</span>, <span class="refTitle">"SafeCurves: choosing safe curves for elliptic-curve cryptography"</span>, <time datetime="2014-12" class="refDate">December 2014</time>, <span>&lt;<a href="https://safecurves.cr.yp.to">https://safecurves.cr.yp.to</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Soghoian2011">[Soghoian2011]</dt>
        <dd>
<span class="refAuthor">Soghoian, C.</span> and <span class="refAuthor">S. Stamm</span>, <span class="refTitle">"Certified Lies: Detecting and Defeating Government Interception Attacks Against SSL"</span>, <span class="refContent">SSRN Electronic Journal</span>, <span class="seriesInfo">DOI 10.2139/ssrn.1591033</span>, <time datetime="2010-04" class="refDate">April 2010</time>, <span>&lt;<a href="https://doi.org/10.2139/ssrn.1591033">https://doi.org/10.2139/ssrn.1591033</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Springall16">[Springall16]</dt>
        <dd>
<span class="refAuthor">Springall, D.</span>, <span class="refAuthor">Durumeric, Z.</span>, and <span class="refAuthor">J. Halderman</span>, <span class="refTitle">"Measuring the Security Harm of TLS Crypto Shortcuts"</span>, <span class="refContent">Proceedings of the 2016 Internet Measurement Conference, pp. 33-47</span>, <span class="seriesInfo">DOI 10.1145/2987443.2987480</span>, <time datetime="2016-11" class="refDate">November 2016</time>, <span>&lt;<a href="https://doi.org/10.1145/2987443.2987480">https://doi.org/10.1145/2987443.2987480</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="STD53">[STD53]</dt>
        <dd>
<div class="refInstance" id="RFC1939">
            <span class="refAuthor">Myers, J.</span> and <span class="refAuthor">M. Rose</span>, <span class="refTitle">"Post Office Protocol - Version 3"</span>, <span class="seriesInfo">STD 53</span>, <span class="seriesInfo">RFC 1939</span>, <time datetime="1996-05" class="refDate">May 1996</time>. </div>
<span>&lt;<a href="https://www.rfc-editor.org/info/std53">https://www.rfc-editor.org/info/std53</a>&gt;</span>
</dd>
<dd class="break"></dd>
<dt id="Sy2018">[Sy2018]</dt>
        <dd>
<span class="refAuthor">Sy, E.</span>, <span class="refAuthor">Burkert, C.</span>, <span class="refAuthor">Federrath, H.</span>, and <span class="refAuthor">M. Fischer</span>, <span class="refTitle">"Tracking Users across the Web via TLS Session Resumption"</span>, <span class="refContent">Proceedings of the 34th Annual Computer Security Applications Conference, pp. 289-299</span>, <span class="seriesInfo">DOI 10.1145/3274694.3274708</span>, <time datetime="2018-12" class="refDate">December 2018</time>, <span>&lt;<a href="https://doi.org/10.1145/3274694.3274708">https://doi.org/10.1145/3274694.3274708</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-tls-esni">[TLS-ECH]</dt>
        <dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refAuthor">Oku, K.</span>, <span class="refAuthor">Sullivan, N.</span>, and <span class="refAuthor">C. A. Wood</span>, <span class="refTitle">"TLS Encrypted Client Hello"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-tls-esni-15</span>, <time datetime="2022-10-03" class="refDate">3 October 2022</time>, <span>&lt;<a href="https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15">https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="Triple-Handshake">[Triple-Handshake]</dt>
        <dd>
<span class="refAuthor">Bhargavan, K.</span>, <span class="refAuthor">Lavaud, A.</span>, <span class="refAuthor">Fournet, C.</span>, <span class="refAuthor">Pironti, A.</span>, and <span class="refAuthor">P. Strub</span>, <span class="refTitle">"Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS"</span>, <span class="refContent">2014 IEEE Symposium on Security and Privacy</span>, <span class="seriesInfo">DOI 10.1109/sp.2014.14</span>, <time datetime="2014-05" class="refDate">May 2014</time>, <span>&lt;<a href="https://doi.org/10.1109/sp.2014.14">https://doi.org/10.1109/sp.2014.14</a>&gt;</span>. </dd>
<dd class="break"></dd>
<dt id="TWIRL">[TWIRL]</dt>
      <dd>
<span class="refAuthor">Shamir, A.</span> and <span class="refAuthor">E. Tromer</span>, <span class="refTitle">"Factoring Large Numbers with the TWIRL Device"</span>, <span class="refContent">2014 IEEE Symposium on Security and Privacy</span>, <span class="seriesInfo">DOI 10.1007/978-3-540-45146-4_1</span>, <time datetime="2004" class="refDate">2004</time>, <span>&lt;<a href="https://cs.tau.ac.il/~tromer/papers/twirl.pdf">https://cs.tau.ac.il/~tromer/papers/twirl.pdf</a>&gt;</span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="diff-rfc">
<section id="appendix-A">
      <h2 id="name-differences-from-rfc-7525">
<a href="#appendix-A" class="section-number selfRef">Appendix A. </a><a href="#name-differences-from-rfc-7525" class="section-name selfRef">Differences from RFC 7525</a>
      </h2>
<p id="appendix-A-1">This revision of the Best Current Practices contains numerous changes, and this section is focused
on the normative changes.<a href="#appendix-A-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A-2.1">
          <p id="appendix-A-2.1.1">High-level differences:<a href="#appendix-A-2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A-2.1.2.1">Described the expectations from new TLS-incorporating transport protocols and from new application protocols layered on TLS.<a href="#appendix-A-2.1.2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.1.2.2">Clarified items (e.g., renegotiation) that only apply to TLS 1.2.<a href="#appendix-A-2.1.2.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.1.2.3">Changed the status of TLS 1.0 and 1.1 from "<span class="bcp14">SHOULD NOT</span>" to "<span class="bcp14">MUST NOT</span>".<a href="#appendix-A-2.1.2.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.1.2.4">Added TLS 1.3 at a "<span class="bcp14">SHOULD</span>" level.<a href="#appendix-A-2.1.2.4" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.1.2.5">Made similar changes to DTLS.<a href="#appendix-A-2.1.2.5" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.1.2.6">Included specific guidance for multiplexed protocols.<a href="#appendix-A-2.1.2.6" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.1.2.7">
              <span class="bcp14">MUST</span>-level implementation requirement for ALPN and more specific <span class="bcp14">SHOULD</span>-level guidance for ALPN and SNI.<a href="#appendix-A-2.1.2.7" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.1.2.8">Clarified discussion of strict TLS policies, including <span class="bcp14">MUST</span>-level recommendations.<a href="#appendix-A-2.1.2.8" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.1.2.9">Limits on key usage.<a href="#appendix-A-2.1.2.9" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.1.2.10">New attacks since <span>[<a href="#RFC7457" class="cite xref">RFC7457</a>]</span>: ALPACA, Raccoon, Logjam, and "Nonce-Disrespecting Adversaries".<a href="#appendix-A-2.1.2.10" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.1.2.11">RFC 6961 (OCSP status_request_v2) has been deprecated.<a href="#appendix-A-2.1.2.11" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.1.2.12">
              <span class="bcp14">MUST</span>-level requirement for server-side RSA certificates to have a 2048-bit modulus at a minimum, replacing a "<span class="bcp14">SHOULD</span>".<a href="#appendix-A-2.1.2.12" class="pilcrow">¶</a>
</li>
          </ul>
</li>
        <li class="normal" id="appendix-A-2.2">
          <p id="appendix-A-2.2.1">Differences specific to TLS 1.2:<a href="#appendix-A-2.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A-2.2.2.1">
              <span class="bcp14">SHOULD</span>-level guidance on AES-GCM nonce generation.<a href="#appendix-A-2.2.2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.2.2.2">
              <span class="bcp14">SHOULD NOT</span> use (static or ephemeral) finite-field DH key agreement.<a href="#appendix-A-2.2.2.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.2.2.3">
              <span class="bcp14">SHOULD NOT</span> reuse ephemeral finite-field DH keys across multiple connections.<a href="#appendix-A-2.2.2.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.2.2.4">
              <span class="bcp14">SHOULD NOT</span> use static Elliptic Curve DH key exchange.<a href="#appendix-A-2.2.2.4" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.2.2.5">2048-bit DH is now a "<span class="bcp14">MUST</span>" and ECDH minimal curve size is 224 (vs. 192 previously).<a href="#appendix-A-2.2.2.5" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.2.2.6">Support for <code>extended_master_secret</code> is now a "<span class="bcp14">MUST</span>" (previously it was a soft recommendation, as the RFC had not been published at the time). Also removed other, more complicated, related mitigations.<a href="#appendix-A-2.2.2.6" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.2.2.7">
              <span class="bcp14">MUST</span>-level restriction on session ticket validity, replacing a "<span class="bcp14">SHOULD</span>".<a href="#appendix-A-2.2.2.7" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.2.2.8">
              <span class="bcp14">SHOULD</span>-level restriction on the TLS session duration, depending on the rotation period of an <span>[<a href="#RFC5077" class="cite xref">RFC5077</a>]</span> ticket key.<a href="#appendix-A-2.2.2.8" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.2.2.9">Dropped TLS_DHE_RSA_WITH_AES from the recommended ciphers.<a href="#appendix-A-2.2.2.9" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.2.2.10">Added TLS_ECDHE_ECDSA_WITH_AES to the recommended ciphers.<a href="#appendix-A-2.2.2.10" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.2.2.11">
              <span class="bcp14">SHOULD NOT</span> use the old MTI cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA.<a href="#appendix-A-2.2.2.11" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.2.2.12">Recommended curve X25519 alongside NIST P-256.<a href="#appendix-A-2.2.2.12" class="pilcrow">¶</a>
</li>
          </ul>
</li>
        <li class="normal" id="appendix-A-2.3">
          <p id="appendix-A-2.3.1">Differences specific to TLS 1.3:<a href="#appendix-A-2.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A-2.3.2.1">New TLS 1.3 capabilities: 0-RTT.<a href="#appendix-A-2.3.2.1" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.3.2.2">Removed capabilities: renegotiation and compression.<a href="#appendix-A-2.3.2.2" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.3.2.3">Added mention of TLS Encrypted Client Hello, but no recommendation for use until it is finalized.<a href="#appendix-A-2.3.2.3" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.3.2.4">
              <span class="bcp14">SHOULD</span>-level requirement for forward secrecy in TLS 1.3 session resumption.<a href="#appendix-A-2.3.2.4" class="pilcrow">¶</a>
</li>
            <li class="normal" id="appendix-A-2.3.2.5">Generic <span class="bcp14">MUST</span>-level guidance to avoid 0-RTT unless it is documented for the particular protocol.<a href="#appendix-A-2.3.2.5" class="pilcrow">¶</a>
</li>
          </ul>
</li>
      </ul>
</section>
</div>
<div id="acknowledgments">
<section id="appendix-B">
      <h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
      </h2>
<p id="appendix-B-1">Thanks to
<span class="contact-name">Alexey Melnikov</span>,
<span class="contact-name">Alvaro Retana</span>,
<span class="contact-name">Andrei Popov</span>,
<span class="contact-name">Ben Kaduk</span>,
<span class="contact-name">Christian Huitema</span>,
<span class="contact-name">Corey Bonnell</span>,
<span class="contact-name">Cullen Jennings</span>,
<span class="contact-name">Daniel Kahn Gillmor</span>,
<span class="contact-name">David Benjamin</span>,
<span class="contact-name">Eric Rescorla</span>,
<span class="contact-name">Éric Vyncke</span>,
<span class="contact-name">Francesca Palombini</span>,
<span class="contact-name">Hannes Tschofenig</span>,
<span class="contact-name">Hubert Kario</span>,
<span class="contact-name">Ilari Liusvaara</span>,
<span class="contact-name">John Preuß Mattsson</span>,
<span class="contact-name">John R. Levine</span>,
<span class="contact-name">Julien Élie</span>,
<span class="contact-name">Lars Eggert</span>,
<span class="contact-name">Leif Johansson</span>,
<span class="contact-name">Magnus Westerlund</span>,
<span class="contact-name">Martin Duke</span>,
<span class="contact-name">Martin Thomson</span>,
<span class="contact-name">Mohit Sahni</span>,
<span class="contact-name">Nick Sullivan</span>,
<span class="contact-name">Nimrod Aviram</span>,
<span class="contact-name">Paul Wouters</span>,
<span class="contact-name">Peter Gutmann</span>,
<span class="contact-name">Rich Salz</span>,
<span class="contact-name">Robert Sayre</span>,
<span class="contact-name">Robert Wilton</span>,
<span class="contact-name">Roman Danyliw</span>,
<span class="contact-name">Ryan Sleevi</span>,
<span class="contact-name">Sean Turner</span>,
<span class="contact-name">Stephen Farrell</span>,
<span class="contact-name">Tim Evans</span>,
<span class="contact-name">Valery Smyslov</span>,
<span class="contact-name">Viktor Dukhovni</span>,
and <span class="contact-name">Warren Kumari</span>
for helpful comments and discussions that have shaped this document.<a href="#appendix-B-1" class="pilcrow">¶</a></p>
<p id="appendix-B-2">The authors gratefully acknowledge the contribution of <span class="contact-name">Ralph Holz</span>, who was a coauthor of RFC 7525, the previous version of the TLS recommendations.<a href="#appendix-B-2" class="pilcrow">¶</a></p>
<p id="appendix-B-3">See RFC 7525 for additional acknowledgments specific to the previous version of the TLS recommendations.<a href="#appendix-B-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="appendix-C">
      <h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
      </h2>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Yaron Sheffer</span></div>
<div dir="auto" class="left"><span class="org">Intuit</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:yaronf.ietf@gmail.com" class="email">yaronf.ietf@gmail.com</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Peter Saint-Andre</span></div>
<div dir="auto" class="left"><span class="org">Independent</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:stpeter@stpeter.im" class="email">stpeter@stpeter.im</a>
</div>
</address>
<address class="vcard">
        <div dir="auto" class="left"><span class="fn nameRole">Thomas Fossati</span></div>
<div dir="auto" class="left"><span class="org">ARM Limited</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:thomas.fossati@arm.com" class="email">thomas.fossati@arm.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
  toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
  toc.classList.remove("active");
});
</script>
</body>
</html>