1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
|
<!DOCTYPE html>
<html lang="en" class="BCP RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9325: Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)</title>
<meta content="Yaron Sheffer" name="author">
<meta content="Peter Saint-Andre" name="author">
<meta content="Thomas Fossati" name="author">
<meta content="
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide range of application protocols and can also form the basis for secure transport protocols. Over the years, the industry has witnessed several serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation. This document provides the latest recommendations for ensuring the security of deployed services that use TLS and DTLS. These recommendations are applicable to the majority of use cases.
RFC 7525, an earlier version of the TLS recommendations, was published when the industry was transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely available. This document updates the guidance given the new environment and obsoletes RFC 7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks.
" name="description">
<meta content="xml2rfc 3.15.2" name="generator">
<meta content="9325" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.15.2
Python 3.9.14
appdirs 1.4.4
ConfigArgParse 1.5.3
google-i18n-address 2.5.1
html5lib 1.1
intervaltree 3.1.0
Jinja2 3.1.2
lxml 4.9.0
MarkupSafe 2.1.1
pycountry 22.3.5
PyYAML 6.0
requests 2.28.0
setuptools 44.1.1
six 1.16.0
wcwidth 0.2.5
weasyprint 56.1
-->
<link href="rfc9325.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necessary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: 'Noto Sans', Arial, Helvetica, sans-serif;
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
display: table;
border: none;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre {
background-color: #f9f9f9;
font-family: 'Roboto Mono', monospace;
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
/* Fix PDF info block run off issue */
@media print {
#identifiers dd {
float: none;
}
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: "Noto Sans",Arial,Helvetica,sans-serif;
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
pre.breakable {
break-inside: auto;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The following is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
pre.sourcecode,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact information look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.artwork > pre,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background slightly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr {
break-inside: avoid;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: auto;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottom margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the compact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div:first-child > pre.sourcecode,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9325" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-uta-rfc7525bis-11" rel="prev">
</head>
<body class="xml2rfc">
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9325</td>
<td class="center">TLS/DTLS Recommendations</td>
<td class="right">November 2022</td>
</tr></thead>
<tfoot><tr>
<td class="left">Sheffer, et al.</td>
<td class="center">Best Current Practice</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9325" class="eref">9325</a></dd>
<dt class="label-bcp">BCP:</dt>
<dd class="bcp">195</dd>
<dt class="label-obsoletes">Obsoletes:</dt>
<dd class="obsoletes">
<a href="https://www.rfc-editor.org/rfc/rfc7525" class="eref">7525</a> </dd>
<dt class="label-updates">Updates:</dt>
<dd class="updates">
<a href="https://www.rfc-editor.org/rfc/rfc5288" class="eref">5288</a>, <a href="https://www.rfc-editor.org/rfc/rfc6066" class="eref">6066</a> </dd>
<dt class="label-category">Category:</dt>
<dd class="category">Best Current Practice</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2022-11" class="published">November 2022</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">Y. Sheffer</div>
<div class="org">Intuit</div>
</div>
<div class="author">
<div class="author-name">P. Saint-Andre</div>
<div class="org">Independent</div>
</div>
<div class="author">
<div class="author-name">T. Fossati</div>
<div class="org">ARM Limited</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9325</h1>
<h1 id="title">Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide range of application protocols and can also form the basis for secure transport protocols. Over the years, the industry has witnessed several serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation. This document provides the latest recommendations for ensuring the security of deployed services that use TLS and DTLS. These recommendations are applicable to the majority of use cases.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
<p id="section-abstract-2">RFC 7525, an earlier version of the TLS recommendations, was published when the industry was transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely available. This document updates the guidance given the new environment and obsoletes RFC 7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks.<a href="#section-abstract-2" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This memo documents an Internet Best Current Practice.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further information
on BCPs is available in Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9325">https://www.rfc-editor.org/info/rfc9325</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Revised BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Revised BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1" class="keepWithNext"><a href="#section-1" class="auto internal xref">1</a>. <a href="#name-introduction" class="internal xref">Introduction</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1" class="keepWithNext"><a href="#section-2" class="auto internal xref">2</a>. <a href="#name-terminology" class="internal xref">Terminology</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="auto internal xref">3</a>. <a href="#name-general-recommendations" class="internal xref">General Recommendations</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1">
<p id="section-toc.1-1.3.2.1.1"><a href="#section-3.1" class="auto internal xref">3.1</a>. <a href="#name-protocol-versions" class="internal xref">Protocol Versions</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1.2.1">
<p id="section-toc.1-1.3.2.1.2.1.1" class="keepWithNext"><a href="#section-3.1.1" class="auto internal xref">3.1.1</a>. <a href="#name-ssl-tls-protocol-versions" class="internal xref">SSL/TLS Protocol Versions</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1.2.2">
<p id="section-toc.1-1.3.2.1.2.2.1"><a href="#section-3.1.2" class="auto internal xref">3.1.2</a>. <a href="#name-dtls-protocol-versions" class="internal xref">DTLS Protocol Versions</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.1.2.3">
<p id="section-toc.1-1.3.2.1.2.3.1"><a href="#section-3.1.3" class="auto internal xref">3.1.3</a>. <a href="#name-fallback-to-lower-versions" class="internal xref">Fallback to Lower Versions</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.2">
<p id="section-toc.1-1.3.2.2.1"><a href="#section-3.2" class="auto internal xref">3.2</a>. <a href="#name-strict-tls" class="internal xref">Strict TLS</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3">
<p id="section-toc.1-1.3.2.3.1"><a href="#section-3.3" class="auto internal xref">3.3</a>. <a href="#name-compression" class="internal xref">Compression</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.3.2.1">
<p id="section-toc.1-1.3.2.3.2.1.1"><a href="#section-3.3.1" class="auto internal xref">3.3.1</a>. <a href="#name-certificate-compression" class="internal xref">Certificate Compression</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.4">
<p id="section-toc.1-1.3.2.4.1"><a href="#section-3.4" class="auto internal xref">3.4</a>. <a href="#name-tls-session-resumption" class="internal xref">TLS Session Resumption</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.5">
<p id="section-toc.1-1.3.2.5.1"><a href="#section-3.5" class="auto internal xref">3.5</a>. <a href="#name-renegotiation-in-tls-12" class="internal xref">Renegotiation in TLS 1.2</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.6">
<p id="section-toc.1-1.3.2.6.1"><a href="#section-3.6" class="auto internal xref">3.6</a>. <a href="#name-post-handshake-authenticati" class="internal xref">Post-Handshake Authentication</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.7">
<p id="section-toc.1-1.3.2.7.1"><a href="#section-3.7" class="auto internal xref">3.7</a>. <a href="#name-server-name-indication-sni" class="internal xref">Server Name Indication (SNI)</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.8">
<p id="section-toc.1-1.3.2.8.1"><a href="#section-3.8" class="auto internal xref">3.8</a>. <a href="#name-application-layer-protocol-" class="internal xref">Application-Layer Protocol Negotiation (ALPN)</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.9">
<p id="section-toc.1-1.3.2.9.1"><a href="#section-3.9" class="auto internal xref">3.9</a>. <a href="#name-multi-server-deployment" class="internal xref">Multi-Server Deployment</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3.2.10">
<p id="section-toc.1-1.3.2.10.1"><a href="#section-3.10" class="auto internal xref">3.10</a>. <a href="#name-zero-round-trip-time-0-rtt-" class="internal xref">Zero Round-Trip Time (0-RTT) Data in TLS 1.3</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="auto internal xref">4</a>. <a href="#name-recommendations-cipher-suit" class="internal xref">Recommendations: Cipher Suites</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="auto internal xref">4.1</a>. <a href="#name-general-guidelines" class="internal xref">General Guidelines</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="auto internal xref">4.2</a>. <a href="#name-cipher-suites-for-tls-12" class="internal xref">Cipher Suites for TLS 1.2</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2.2.1">
<p id="section-toc.1-1.4.2.2.2.1.1"><a href="#section-4.2.1" class="auto internal xref">4.2.1</a>. <a href="#name-implementation-details" class="internal xref">Implementation Details</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.3">
<p id="section-toc.1-1.4.2.3.1"><a href="#section-4.3" class="auto internal xref">4.3</a>. <a href="#name-cipher-suites-for-tls-13" class="internal xref">Cipher Suites for TLS 1.3</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.4">
<p id="section-toc.1-1.4.2.4.1"><a href="#section-4.4" class="auto internal xref">4.4</a>. <a href="#name-limits-on-key-usage" class="internal xref">Limits on Key Usage</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.5">
<p id="section-toc.1-1.4.2.5.1"><a href="#section-4.5" class="auto internal xref">4.5</a>. <a href="#name-public-key-length" class="internal xref">Public Key Length</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.6">
<p id="section-toc.1-1.4.2.6.1"><a href="#section-4.6" class="auto internal xref">4.6</a>. <a href="#name-truncated-hmac" class="internal xref">Truncated HMAC</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="auto internal xref">5</a>. <a href="#name-applicability-statement" class="internal xref">Applicability Statement</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="auto internal xref">5.1</a>. <a href="#name-security-services" class="internal xref">Security Services</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="auto internal xref">5.2</a>. <a href="#name-opportunistic-security" class="internal xref">Opportunistic Security</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#section-6" class="auto internal xref">6</a>. <a href="#name-iana-considerations" class="internal xref">IANA Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#section-7" class="auto internal xref">7</a>. <a href="#name-security-considerations" class="internal xref">Security Considerations</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#section-7.1" class="auto internal xref">7.1</a>. <a href="#name-host-name-validation" class="internal xref">Host Name Validation</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#section-7.2" class="auto internal xref">7.2</a>. <a href="#name-aes-gcm" class="internal xref">AES-GCM</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.2.2.1">
<p id="section-toc.1-1.7.2.2.2.1.1"><a href="#section-7.2.1" class="auto internal xref">7.2.1</a>. <a href="#name-nonce-reuse-in-tls-12" class="internal xref">Nonce Reuse in TLS 1.2</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.3">
<p id="section-toc.1-1.7.2.3.1"><a href="#section-7.3" class="auto internal xref">7.3</a>. <a href="#name-forward-secrecy" class="internal xref">Forward Secrecy</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.4">
<p id="section-toc.1-1.7.2.4.1"><a href="#section-7.4" class="auto internal xref">7.4</a>. <a href="#name-diffie-hellman-exponent-reu" class="internal xref">Diffie-Hellman Exponent Reuse</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.5">
<p id="section-toc.1-1.7.2.5.1"><a href="#section-7.5" class="auto internal xref">7.5</a>. <a href="#name-certificate-revocation" class="internal xref">Certificate Revocation</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#section-8" class="auto internal xref">8</a>. <a href="#name-references" class="internal xref">References</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8.2.1">
<p id="section-toc.1-1.8.2.1.1"><a href="#section-8.1" class="auto internal xref">8.1</a>. <a href="#name-normative-references" class="internal xref">Normative References</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8.2.2">
<p id="section-toc.1-1.8.2.2.1"><a href="#section-8.2" class="auto internal xref">8.2</a>. <a href="#name-informative-references" class="internal xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#appendix-A" class="auto internal xref">Appendix A</a>. <a href="#name-differences-from-rfc-7525" class="internal xref">Differences from RFC 7525</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#appendix-B" class="auto internal xref"></a><a href="#name-acknowledgments" class="internal xref">Acknowledgments</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#appendix-C" class="auto internal xref"></a><a href="#name-authors-addresses" class="internal xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="introduction">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide variety of application protocols, including HTTP <span>[<a href="#RFC9112" class="cite xref">RFC9112</a>]</span> <span>[<a href="#RFC9113" class="cite xref">RFC9113</a>]</span>, IMAP <span>[<a href="#RFC9051" class="cite xref">RFC9051</a>]</span>, Post Office Protocol (POP) <span>[<a href="#STD53" class="cite xref">STD53</a>]</span>, SIP <span>[<a href="#RFC3261" class="cite xref">RFC3261</a>]</span>, SMTP <span>[<a href="#RFC5321" class="cite xref">RFC5321</a>]</span>, and the Extensible Messaging and Presence Protocol (XMPP) <span>[<a href="#RFC6120" class="cite xref">RFC6120</a>]</span>. Such protocols use both the TLS or DTLS handshake protocol and the TLS or DTLS record layer.
Although the TLS handshake protocol can also be used with different record layers to define secure transport protocols (the most prominent example is QUIC <span>[<a href="#RFC9000" class="cite xref">RFC9000</a>]</span>), such transport protocols are not directly in scope for this document; nevertheless, many of the recommendations here might apply insofar as such protocols use the TLS handshake protocol.<a href="#section-1-1" class="pilcrow">¶</a></p>
<p id="section-1-2">Over the years leading to 2015, the industry had witnessed serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation. For instance, both the AES-CBC <span>[<a href="#RFC3602" class="cite xref">RFC3602</a>]</span> and RC4 <span>[<a href="#RFC7465" class="cite xref">RFC7465</a>]</span> encryption algorithms, which together were once the most widely deployed ciphers, were attacked in the context of TLS. Detailed information about the attacks known prior to 2015 is provided in a companion document <span>[<a href="#RFC7457" class="cite xref">RFC7457</a>]</span> to the previous version of the TLS recommendations <span>[<a href="#RFC7525" class="cite xref">RFC7525</a>]</span>, which will help the reader understand the rationale behind the recommendations provided here. That document has not been updated in concert with this one; instead, newer attacks are described in this document, as are mitigations for those attacks.<a href="#section-1-2" class="pilcrow">¶</a></p>
<p id="section-1-3">The TLS community reacted to the attacks described in <span>[<a href="#RFC7457" class="cite xref">RFC7457</a>]</span> in several ways:<a href="#section-1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1-4.1">Detailed guidance was published on the use of TLS 1.2 <span>[<a href="#RFC5246" class="cite xref">RFC5246</a>]</span> and DTLS 1.2 <span>[<a href="#RFC6347" class="cite xref">RFC6347</a>]</span> along with earlier protocol versions. This guidance is included in the original <span>[<a href="#RFC7525" class="cite xref">RFC7525</a>]</span> and mostly retained in this revised version; note that this guidance was mostly adopted by the industry since the publication of RFC 7525 in 2015.<a href="#section-1-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-4.2">Versions of TLS earlier than 1.2 were deprecated <span>[<a href="#RFC8996" class="cite xref">RFC8996</a>]</span>.<a href="#section-1-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1-4.3">Version 1.3 of TLS <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span> was released, followed by version 1.3 of DTLS <span>[<a href="#RFC9147" class="cite xref">RFC9147</a>]</span>; these versions largely mitigate or resolve the described attacks.<a href="#section-1-4.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-1-5">Those who implement and deploy TLS and TLS-based protocols need guidance on how they can be used securely. This document provides guidance for deployed services as well as for software implementations, assuming the implementer expects their code to be deployed in the environments defined in <a href="#applicability" class="auto internal xref">Section 5</a>. Concerning deployment, this document targets a wide audience, namely all deployers who wish to add authentication (be it one-way only or mutual), confidentiality, and data integrity protection to their communications.<a href="#section-1-5" class="pilcrow">¶</a></p>
<p id="section-1-6">The recommendations herein take into consideration the security of various mechanisms, their technical maturity and interoperability, and their prevalence in implementations at the time of writing. Unless it is explicitly called out that a recommendation applies to TLS alone or to DTLS alone, each recommendation applies to both TLS and DTLS.<a href="#section-1-6" class="pilcrow">¶</a></p>
<p id="section-1-7">This document attempts to minimize new guidance to TLS 1.2 implementations, and the overall approach is to encourage systems to move to TLS 1.3. However, this is not always practical. Newly discovered attacks, as well as ecosystem changes, necessitated some new requirements that apply to TLS 1.2 environments. Those are summarized in <a href="#diff-rfc" class="auto internal xref">Appendix A</a>.<a href="#section-1-7" class="pilcrow">¶</a></p>
<p id="section-1-8">Naturally, future attacks are likely, and this document cannot address them. Those who implement and deploy TLS/DTLS and protocols based on TLS/DTLS are strongly advised to pay attention to future developments. In particular, although it is known that the creation of quantum computers will have a significant impact on the security of cryptographic primitives and the technologies that use them, currently post-quantum cryptography is a work in progress and it is too early to make recommendations; once the relevant specifications are standardized in the IETF or elsewhere, this document should be updated to reflect best practices at that time.<a href="#section-1-8" class="pilcrow">¶</a></p>
<p id="section-1-9">As noted, the TLS 1.3 specification resolves many of the vulnerabilities listed in this document. A system that deploys TLS 1.3 should have fewer vulnerabilities than TLS 1.2 or below. Therefore, this document replaces <span>[<a href="#RFC7525" class="cite xref">RFC7525</a>]</span>, with an explicit goal to encourage migration of most uses of TLS 1.2 to TLS 1.3.<a href="#section-1-9" class="pilcrow">¶</a></p>
<p id="section-1-10">These are minimum recommendations for the use of TLS in the vast majority of implementation and deployment scenarios, with the exception of unauthenticated TLS (see <a href="#applicability" class="auto internal xref">Section 5</a>). Other specifications that reference this document can have stricter requirements related to one or more aspects of the protocol, based on their particular circumstances (e.g., for use with a specific application protocol); when that is the case, implementers are advised to adhere to those stricter requirements. Furthermore, this document provides a floor, not a ceiling: where feasible, administrators of services are encouraged to go beyond the minimum support available in implementations to provide the strongest security possible. For example, based on knowledge about the deployed base for an existing application protocol and a cost-benefit analysis regarding security strength vs. interoperability, a given service provider might decide to disable TLS 1.2 entirely and offer only TLS 1.3.<a href="#section-1-10" class="pilcrow">¶</a></p>
<p id="section-1-11">Community knowledge about the strength of various algorithms and feasible attacks can change quickly, and experience shows that a Best Current Practice (BCP) document about security is a point-in-time statement. Readers are advised to seek out any errata or updates that apply to this document.<a href="#section-1-11" class="pilcrow">¶</a></p>
<p id="section-1-12">This document updates <span>[<a href="#RFC5288" class="cite xref">RFC5288</a>]</span> in view of the <span>[<a href="#Boeck2016" class="cite xref">Boeck2016</a>]</span> attack. See <a href="#nonce-reuse" class="auto internal xref">Section 7.2.1</a> for the details.<a href="#section-1-12" class="pilcrow">¶</a></p>
<p id="section-1-13">This document updates <span>[<a href="#RFC6066" class="cite xref">RFC6066</a>]</span> in view of the <span>[<a href="#ALPACA" class="cite xref">ALPACA</a>]</span> attack. See <a href="#sni" class="auto internal xref">Section 3.7</a> for the details.<a href="#section-1-13" class="pilcrow">¶</a></p>
</section>
</div>
<div id="terminology">
<section id="section-2">
<h2 id="name-terminology">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h2>
<p id="section-2-1">A number of security-related terms in this document are used in the sense defined in <span>[<a href="#RFC4949" class="cite xref">RFC4949</a>]</span>,
including "attack", "authentication", "certificate", "cipher", "compromise", "confidentiality",
"credential", "data integrity", "encryption", "forward secrecy", "key", "key length", "self-signed certificate",
"strength", and "strong".<a href="#section-2-1" class="pilcrow">¶</a></p>
<p id="section-2-2">The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>",
"<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>",
"<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>",
"<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be
interpreted as described in BCP 14 <span>[<a href="#RFC2119" class="cite xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="cite xref">RFC8174</a>]</span> when, and only when, they appear in all capitals, as shown
here.<a href="#section-2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="rec">
<section id="section-3">
<h2 id="name-general-recommendations">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-general-recommendations" class="section-name selfRef">General Recommendations</a>
</h2>
<p id="section-3-1">This section provides general recommendations on the secure use of TLS. Recommendations related to cipher suites are discussed in the following section.<a href="#section-3-1" class="pilcrow">¶</a></p>
<div id="protocol-versions">
<section id="section-3.1">
<h3 id="name-protocol-versions">
<a href="#section-3.1" class="section-number selfRef">3.1. </a><a href="#name-protocol-versions" class="section-name selfRef">Protocol Versions</a>
</h3>
<div id="rec-versions">
<section id="section-3.1.1">
<h4 id="name-ssl-tls-protocol-versions">
<a href="#section-3.1.1" class="section-number selfRef">3.1.1. </a><a href="#name-ssl-tls-protocol-versions" class="section-name selfRef">SSL/TLS Protocol Versions</a>
</h4>
<p id="section-3.1.1-1">It is important both to stop using old, less secure versions of SSL/TLS and to start using modern, more secure versions; therefore, the following are the recommendations concerning TLS/SSL protocol versions:<a href="#section-3.1.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.1.1-2.1">
<p id="section-3.1.1-2.1.1">Implementations <span class="bcp14">MUST NOT</span> negotiate SSL version 2.<a href="#section-3.1.1-2.1.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.1.2">
Rationale: Today, SSLv2 is considered insecure <span>[<a href="#RFC6176" class="cite xref">RFC6176</a>]</span>.<a href="#section-3.1.1-2.1.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-3.1.1-2.2">
<p id="section-3.1.1-2.2.1">Implementations <span class="bcp14">MUST NOT</span> negotiate SSL version 3.<a href="#section-3.1.1-2.2.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.2.2">
Rationale: SSLv3 <span>[<a href="#RFC6101" class="cite xref">RFC6101</a>]</span> was an improvement over SSLv2 and plugged some significant security holes but did not support strong cipher suites. SSLv3 does not support TLS extensions, some of which (e.g., renegotiation_info <span>[<a href="#RFC5746" class="cite xref">RFC5746</a>]</span>) are security critical. In addition, with the emergence of the Padding Oracle On Downgraded Legacy Encryption (POODLE) attack <span>[<a href="#POODLE" class="cite xref">POODLE</a>]</span>, SSLv3 is now widely recognized as fundamentally insecure. See <span>[<a href="#RFC7568" class="cite xref">RFC7568</a>]</span> for further details.<a href="#section-3.1.1-2.2.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-3.1.1-2.3">
<p id="section-3.1.1-2.3.1">Implementations <span class="bcp14">MUST NOT</span> negotiate TLS version 1.0 <span>[<a href="#RFC2246" class="cite xref">RFC2246</a>]</span>.<a href="#section-3.1.1-2.3.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.3.2">
Rationale: TLS 1.0 (published in 1999) does not support many modern, strong cipher suites. In addition, TLS 1.0 lacks a per-record Initialization Vector (IV) for cipher suites based on cipher block chaining (CBC) and does not warn against common padding errors. This and other recommendations in this section are in line with <span>[<a href="#RFC8996" class="cite xref">RFC8996</a>]</span>.<a href="#section-3.1.1-2.3.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-3.1.1-2.4">
<p id="section-3.1.1-2.4.1">Implementations <span class="bcp14">MUST NOT</span> negotiate TLS version 1.1 <span>[<a href="#RFC4346" class="cite xref">RFC4346</a>]</span>.<a href="#section-3.1.1-2.4.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.4.2">
Rationale: TLS 1.1 (published in 2006) is a security improvement over TLS 1.0 but still does not support certain stronger cipher suites that were introduced with the standardization of TLS 1.2 in 2008, including the cipher suites recommended for TLS 1.2 by this document (see <a href="#rec-cipher" class="auto internal xref">Section 4.2</a> below).<a href="#section-3.1.1-2.4.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-3.1.1-2.5">
<p id="section-3.1.1-2.5.1">Implementations <span class="bcp14">MUST</span> support TLS 1.2 <span>[<a href="#RFC5246" class="cite xref">RFC5246</a>]</span>.<a href="#section-3.1.1-2.5.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.5.2">
Rationale: TLS 1.2 is implemented and deployed more widely than TLS 1.3 at this time, and when the recommendations in this document are followed to mitigate known attacks, the use of TLS 1.2 is as safe as the use of TLS 1.3. In most application protocols that reuse TLS and DTLS, there is no immediate need to migrate solely to TLS 1.3. Indeed, because many application clients are dependent on TLS libraries or operating systems that do not yet support TLS 1.3, proactively deprecating TLS 1.2 would introduce significant interoperability issues, thus harming security more than helping it. Nevertheless, it is expected that a future version of this BCP will deprecate the use of TLS 1.2 when it is appropriate to do so.<a href="#section-3.1.1-2.5.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-3.1.1-2.6">
<p id="section-3.1.1-2.6.1">Implementations <span class="bcp14">SHOULD</span> support TLS 1.3 <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span> and, if implemented, <span class="bcp14">MUST</span> prefer to negotiate TLS 1.3 over earlier versions of TLS.<a href="#section-3.1.1-2.6.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.6.2">
Rationale: TLS 1.3 is a major overhaul to the protocol and resolves many of the security issues with TLS 1.2. To the extent that an implementation supports TLS 1.2 (even if it defaults to TLS 1.3), it <span class="bcp14">MUST</span> follow the recommendations regarding TLS 1.2 specified in this document.<a href="#section-3.1.1-2.6.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-3.1.1-2.7">
<p id="section-3.1.1-2.7.1">New transport protocols that integrate the TLS/DTLS handshake protocol and/or record layer <span class="bcp14">MUST</span> use only TLS/DTLS 1.3 (for instance, QUIC <span>[<a href="#RFC9001" class="cite xref">RFC9001</a>]</span> took this approach). New application protocols that employ TLS/DTLS for channel or session encryption <span class="bcp14">MUST</span> integrate with both TLS/DTLS versions 1.2 and 1.3; nevertheless, in rare cases where broad interoperability is not a concern, application protocol designers <span class="bcp14">MAY</span> choose to forego TLS 1.2.<a href="#section-3.1.1-2.7.1" class="pilcrow">¶</a></p>
<p id="section-3.1.1-2.7.2">
Rationale: Secure deployment of TLS 1.3 is significantly easier and less error prone than secure deployment of TLS 1.2. When designing a new secure transport protocol such as QUIC, there is no reason to support TLS 1.2. By contrast, new application protocols that reuse TLS need to support both TLS 1.3 and TLS 1.2 in order to take advantage of underlying library or operating system support for both versions.<a href="#section-3.1.1-2.7.2" class="pilcrow">¶</a></p>
</li>
</ul>
<p id="section-3.1.1-3">This BCP applies to TLS 1.3, TLS 1.2, and earlier versions. It is not safe for readers to assume that the recommendations in this BCP apply to any future version of TLS.<a href="#section-3.1.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dtls-protocol-versions">
<section id="section-3.1.2">
<h4 id="name-dtls-protocol-versions">
<a href="#section-3.1.2" class="section-number selfRef">3.1.2. </a><a href="#name-dtls-protocol-versions" class="section-name selfRef">DTLS Protocol Versions</a>
</h4>
<p id="section-3.1.2-1">DTLS, an adaptation of TLS for UDP datagrams, was introduced when TLS 1.1 was published. The following are the recommendations with respect to DTLS:<a href="#section-3.1.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.1.2-2.1">
<p id="section-3.1.2-2.1.1">Implementations <span class="bcp14">MUST NOT</span> negotiate DTLS version 1.0 <span>[<a href="#RFC4347" class="cite xref">RFC4347</a>]</span>.<a href="#section-3.1.2-2.1.1" class="pilcrow">¶</a></p>
<p id="section-3.1.2-2.1.2">
Version 1.0 of DTLS correlates to version 1.1 of TLS (see above).<a href="#section-3.1.2-2.1.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-3.1.2-2.2">
<p id="section-3.1.2-2.2.1">Implementations <span class="bcp14">MUST</span> support DTLS 1.2 <span>[<a href="#RFC6347" class="cite xref">RFC6347</a>]</span>.<a href="#section-3.1.2-2.2.1" class="pilcrow">¶</a></p>
<p id="section-3.1.2-2.2.2">
Version 1.2 of DTLS correlates to version 1.2 of TLS (see above).
(There is no version 1.1 of DTLS.)<a href="#section-3.1.2-2.2.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-3.1.2-2.3">
<p id="section-3.1.2-2.3.1">Implementations <span class="bcp14">SHOULD</span> support DTLS 1.3 <span>[<a href="#RFC9147" class="cite xref">RFC9147</a>]</span> and, if implemented, <span class="bcp14">MUST</span> prefer to negotiate DTLS version 1.3 over earlier versions of DTLS.<a href="#section-3.1.2-2.3.1" class="pilcrow">¶</a></p>
<p id="section-3.1.2-2.3.2">
Version 1.3 of DTLS correlates to version 1.3 of TLS (see above).<a href="#section-3.1.2-2.3.2" class="pilcrow">¶</a></p>
</li>
</ul>
</section>
</div>
<div id="rec-fallback">
<section id="section-3.1.3">
<h4 id="name-fallback-to-lower-versions">
<a href="#section-3.1.3" class="section-number selfRef">3.1.3. </a><a href="#name-fallback-to-lower-versions" class="section-name selfRef">Fallback to Lower Versions</a>
</h4>
<p id="section-3.1.3-1">TLS/DTLS 1.2 clients <span class="bcp14">MUST NOT</span> fall back to earlier TLS versions, since those versions have been deprecated <span>[<a href="#RFC8996" class="cite xref">RFC8996</a>]</span>. As a result, the downgrade-protection Signaling Cipher Suite Value (SCSV) mechanism <span>[<a href="#RFC7507" class="cite xref">RFC7507</a>]</span> is no longer needed for clients. In addition, TLS 1.3 implements a new version-negotiation mechanism.<a href="#section-3.1.3-1" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="strict-tls">
<section id="section-3.2">
<h3 id="name-strict-tls">
<a href="#section-3.2" class="section-number selfRef">3.2. </a><a href="#name-strict-tls" class="section-name selfRef">Strict TLS</a>
</h3>
<p id="section-3.2-1">The following recommendations are provided to help prevent "SSL Stripping" and STARTTLS command injection (attacks that are summarized in <span>[<a href="#RFC7457" class="cite xref">RFC7457</a>]</span>):<a href="#section-3.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.2-2.1">Many existing application protocols were designed before the use of TLS became common. These protocols typically support TLS in one of two ways: either via a separate port for TLS-only communication (e.g., port 443 for HTTPS) or via a method for dynamically upgrading a channel from unencrypted to TLS protected (e.g., STARTTLS, which is used in protocols such as IMAP and XMPP). Regardless of the mechanism for protecting the communication channel (TLS-only port or dynamic upgrade), what matters is the end state of the channel. When a protocol defines both a dynamic upgrade method and a separate TLS-only method, then the separate TLS-only method <span class="bcp14">MUST</span> be supported by implementations and <span class="bcp14">MUST</span> be configured by administrators to be used in preference to the dynamic upgrade method. When a protocol supports only a dynamic upgrade method, implementations <span class="bcp14">MUST</span> provide a way for administrators to set a strict local policy that forbids use of plaintext in the absence of a negotiated TLS channel, and administrators <span class="bcp14">MUST</span> use this policy.<a href="#section-3.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.2-2.2">HTTP client and server implementations intended for use in the World Wide Web (see
<a href="#applicability" class="auto internal xref">Section 5</a>) <span class="bcp14">MUST</span> support the HTTP Strict Transport Security (HSTS) header
field <span>[<a href="#RFC6797" class="cite xref">RFC6797</a>]</span> so that web servers can advertise that they are willing to
accept TLS-only clients. Web servers <span class="bcp14">SHOULD</span> use HSTS to indicate that they are
willing to accept TLS-only clients, unless they are deployed in such a way that
using HSTS would in fact weaken overall security (e.g., it can be problematic to
use HSTS with self-signed certificates, as described in <span><a href="https://www.rfc-editor.org/rfc/rfc6797#section-11.3" class="relref">Section 11.3</a> of [<a href="#RFC6797" class="cite xref">RFC6797</a>]</span>).
Similar technologies exist for non-HTTP application protocols, such as Mail Transfer Agent Strict Transport Security (MTA-STS) for
mail transfer agents <span>[<a href="#RFC8461" class="cite xref">RFC8461</a>]</span> and methods based on DNS-Based Authentication of
Named Entities (DANE) <span>[<a href="#RFC6698" class="cite xref">RFC6698</a>]</span> for SMTP <span>[<a href="#RFC7672" class="cite xref">RFC7672</a>]</span> and XMPP <span>[<a href="#RFC7712" class="cite xref">RFC7712</a>]</span>.<a href="#section-3.2-2.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.2-3">Rationale: Combining unprotected and TLS-protected communication opens the way to SSL Stripping and similar attacks, since an initial part of the communication is not integrity protected and therefore can be manipulated by an attacker whose goal is to keep the communication in the clear.<a href="#section-3.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="compression">
<section id="section-3.3">
<h3 id="name-compression">
<a href="#section-3.3" class="section-number selfRef">3.3. </a><a href="#name-compression" class="section-name selfRef">Compression</a>
</h3>
<div id="rec-compress">
<p id="section-3.3-1">In order to help prevent compression-related attacks (summarized in <span><a href="https://www.rfc-editor.org/rfc/rfc7457#section-2.6" class="relref">Section 2.6</a> of [<a href="#RFC7457" class="cite xref">RFC7457</a>]</span>) when using TLS 1.2, implementations and deployments <span class="bcp14">SHOULD NOT</span> support
TLS-level compression (<span><a href="https://www.rfc-editor.org/rfc/rfc5246#section-6.2.2" class="relref">Section 6.2.2</a> of [<a href="#RFC5246" class="cite xref">RFC5246</a>]</span>); the only exception is when
the application protocol in question has been proven not to be open to such attacks.
However, even in this case, extreme caution is warranted because of the potential for
future attacks related to TLS compression. More specifically, the HTTP protocol is known to be vulnerable to compression-related attacks. (This recommendation applies to TLS 1.2 only, because compression has been removed from TLS 1.3.)<a href="#section-3.3-1" class="pilcrow">¶</a></p>
</div>
<p id="section-3.3-2">Rationale: TLS compression has been subject to security attacks such as the Compression Ratio Info-leak Made Easy (CRIME) attack.<a href="#section-3.3-2" class="pilcrow">¶</a></p>
<p id="section-3.3-3">Implementers should note that compression at higher protocol levels can allow an active attacker to extract cleartext information from the connection. The Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext (BREACH) attack is one such case. These issues can only be mitigated outside of TLS and are thus outside the scope of this document. See <span><a href="https://www.rfc-editor.org/rfc/rfc7457#section-2.6" class="relref">Section 2.6</a> of [<a href="#RFC7457" class="cite xref">RFC7457</a>]</span> for further details.<a href="#section-3.3-3" class="pilcrow">¶</a></p>
<div id="certificate-compression">
<section id="section-3.3.1">
<h4 id="name-certificate-compression">
<a href="#section-3.3.1" class="section-number selfRef">3.3.1. </a><a href="#name-certificate-compression" class="section-name selfRef">Certificate Compression</a>
</h4>
<p id="section-3.3.1-1">Certificate chains often take up most of the bytes transmitted during
the handshake. In order to manage their size, some or all of the following
methods can be employed (see also <span><a href="https://www.rfc-editor.org/rfc/rfc9191#section-4" class="relref">Section 4</a> of [<a href="#RFC9191" class="cite xref">RFC9191</a>]</span> for further suggestions):<a href="#section-3.3.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.3.1-2.1">Limit the number of names or extensions.<a href="#section-3.3.1-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.3.1-2.2">Use keys with small public key representations, like the Elliptic Curve Digital Signature Algorithm (ECDSA).<a href="#section-3.3.1-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.3.1-2.3">Use certificate compression.<a href="#section-3.3.1-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.3.1-3">To achieve the latter, TLS 1.3 defines the <code>compress_certificate</code> extension in
<span>[<a href="#RFC8879" class="cite xref">RFC8879</a>]</span>. See also <span><a href="https://www.rfc-editor.org/rfc/rfc8879#section-5" class="relref">Section 5</a> of [<a href="#RFC8879" class="cite xref">RFC8879</a>]</span> for security and privacy
considerations associated with its use. For the avoidance of doubt, CRIME-style attacks on TLS
compression do not apply to certificate compression.<a href="#section-3.3.1-3" class="pilcrow">¶</a></p>
<p id="section-3.3.1-4">Due to the strong likelihood of middlebox interference,
compression in the style of <span>[<a href="#RFC8879" class="cite xref">RFC8879</a>]</span> has not been made available in
TLS 1.2. In theory, the <code>cached_info</code> extension defined in <span>[<a href="#RFC7924" class="cite xref">RFC7924</a>]</span> could
be used, but it is not supported widely enough to be considered a practical
alternative.<a href="#section-3.3.1-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="rec-resume">
<section id="section-3.4">
<h3 id="name-tls-session-resumption">
<a href="#section-3.4" class="section-number selfRef">3.4. </a><a href="#name-tls-session-resumption" class="section-name selfRef">TLS Session Resumption</a>
</h3>
<p id="section-3.4-1">Session resumption drastically reduces the number of full TLS handshakes and thus is an essential
performance feature for most deployments.<a href="#section-3.4-1" class="pilcrow">¶</a></p>
<p id="section-3.4-2">Stateless session resumption with session tickets is a popular strategy. For TLS 1.2, it is specified in
<span>[<a href="#RFC5077" class="cite xref">RFC5077</a>]</span>. For TLS 1.3, a more secure mechanism based on the use of a pre-shared key (PSK) is described in
<span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-4.6.1" class="relref">Section 4.6.1</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>. See <span>[<a href="#Springall16" class="cite xref">Springall16</a>]</span> for a quantitative study of the risks induced by TLS cryptographic "shortcuts", including session resumption.<a href="#section-3.4-2" class="pilcrow">¶</a></p>
<p id="section-3.4-3">When it is used, the resumption information <span class="bcp14">MUST</span>
be authenticated and encrypted to prevent modification or eavesdropping by an attacker.
Further recommendations apply to session tickets:<a href="#section-3.4-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-3.4-4.1">A strong cipher <span class="bcp14">MUST</span> be used when encrypting the ticket (at least as strong as the main TLS cipher suite).<a href="#section-3.4-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.4-4.2">Ticket-encryption keys <span class="bcp14">MUST</span> be changed regularly, e.g., once every week, so as not to negate the benefits of forward secrecy (see <a href="#sec-pfs" class="auto internal xref">Section 7.3</a> for details on forward secrecy). Old ticket-encryption keys <span class="bcp14">MUST</span> be destroyed at the end of the validity period.<a href="#section-3.4-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.4-4.3">For similar reasons, session ticket validity <span class="bcp14">MUST</span> be limited to a reasonable duration (e.g., half as long as ticket-encryption key validity).<a href="#section-3.4-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-3.4-4.4">TLS 1.2 does not roll the session key forward within a single session. Thus, to prevent an attack where the server's ticket-encryption key is stolen and used to decrypt the entire content of a session (negating the concept of forward secrecy), a TLS 1.2 server <span class="bcp14">SHOULD NOT</span> resume sessions that are too old, e.g., sessions that have been open longer than two ticket-encryption key rotation periods.<a href="#section-3.4-4.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-3.4-5">Rationale: Session resumption is another kind of TLS handshake and therefore must be as secure as the initial handshake. This document (<a href="#detail" class="auto internal xref">Section 4</a>) recommends the use of cipher suites that provide forward secrecy, i.e., that prevent an attacker who gains momentary access to the TLS endpoint (either client or server) and its secrets from reading either past or future communication. The tickets must be managed so as not to negate this security property.<a href="#section-3.4-5" class="pilcrow">¶</a></p>
<p id="section-3.4-6">TLS 1.3 provides the powerful option of forward secrecy even within a long-lived connection
that is periodically resumed. <span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-2.2" class="relref">Section 2.2</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span> recommends that clients <span class="bcp14">SHOULD</span>
send a "key_share" when initiating session resumption.
In order to gain forward secrecy, this document recommends that server implementations <span class="bcp14">SHOULD</span>
select the "psk_dhe_ke" PSK key exchange mode and
respond with a "key_share" to complete an Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) exchange on each session resumption.
As a more performant alternative, server implementations <span class="bcp14">MAY</span> refrain from responding with a
"key_share" until a certain amount of time (e.g., measured in hours) has passed since the last
ECDHE exchange; this implies that the "key_share" operation would not occur for the presumed
majority of session resumption requests (which would occur within a few hours) while still ensuring
forward secrecy for longer-lived sessions.<a href="#section-3.4-6" class="pilcrow">¶</a></p>
<p id="section-3.4-7">TLS session resumption introduces potential privacy issues where the server is able
to track the client, in some cases indefinitely. See <span>[<a href="#Sy2018" class="cite xref">Sy2018</a>]</span> for more details.<a href="#section-3.4-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="renegotiation-in-tls-12">
<section id="section-3.5">
<h3 id="name-renegotiation-in-tls-12">
<a href="#section-3.5" class="section-number selfRef">3.5. </a><a href="#name-renegotiation-in-tls-12" class="section-name selfRef">Renegotiation in TLS 1.2</a>
</h3>
<p id="section-3.5-1">The recommendations in this section apply to TLS 1.2 only, because renegotiation has been removed from TLS 1.3.<a href="#section-3.5-1" class="pilcrow">¶</a></p>
<p id="section-3.5-2">Renegotiation in TLS 1.2 is a handshake that establishes new cryptographic parameters for an existing session. The mechanism existed in TLS 1.2 and in earlier protocol versions and was improved following several major attacks including a plaintext injection attack, CVE-2009-3555 <span>[<a href="#CVE" class="cite xref">CVE</a>]</span>.<a href="#section-3.5-2" class="pilcrow">¶</a></p>
<p id="section-3.5-3">TLS 1.2 clients and servers <span class="bcp14">MUST</span> implement the <code>renegotiation_info</code> extension, as defined in <span>[<a href="#RFC5746" class="cite xref">RFC5746</a>]</span>.<a href="#section-3.5-3" class="pilcrow">¶</a></p>
<p id="section-3.5-4">TLS 1.2 clients <span class="bcp14">MUST</span> send <code>renegotiation_info</code> in the Client Hello. If the server does not acknowledge the extension, the client <span class="bcp14">MUST</span> generate a fatal <code>handshake_failure</code> alert prior to terminating the connection.<a href="#section-3.5-4" class="pilcrow">¶</a></p>
<p id="section-3.5-5">Rationale: It is not safe for a client to connect to a TLS 1.2 server that does not support <code>renegotiation_info</code> regardless of whether either endpoint actually implements renegotiation. See also <span><a href="https://www.rfc-editor.org/rfc/rfc5746#section-4.1" class="relref">Section 4.1</a> of [<a href="#RFC5746" class="cite xref">RFC5746</a>]</span>.<a href="#section-3.5-5" class="pilcrow">¶</a></p>
<p id="section-3.5-6">A related attack resulting from TLS session parameters not being properly authenticated is a Triple Handshake <span>[<a href="#Triple-Handshake" class="cite xref">Triple-Handshake</a>]</span>. To address this attack, TLS 1.2 implementations <span class="bcp14">MUST</span> support the <code>extended_master_secret</code> extension defined in <span>[<a href="#RFC7627" class="cite xref">RFC7627</a>]</span>.<a href="#section-3.5-6" class="pilcrow">¶</a></p>
</section>
</div>
<div id="post-handshake-authentication">
<section id="section-3.6">
<h3 id="name-post-handshake-authenticati">
<a href="#section-3.6" class="section-number selfRef">3.6. </a><a href="#name-post-handshake-authenticati" class="section-name selfRef">Post-Handshake Authentication</a>
</h3>
<p id="section-3.6-1">Renegotiation in TLS 1.2 was (partially) replaced in TLS 1.3 by separate post-handshake authentication and key update mechanisms. In the context of protocols that multiplex requests over a single connection (such as HTTP/2 <span>[<a href="#RFC9113" class="cite xref">RFC9113</a>]</span>), post-handshake authentication has the same problems as TLS 1.2 renegotiation. Multiplexed protocols <span class="bcp14">SHOULD</span> follow the advice provided for HTTP/2 in <span><a href="https://www.rfc-editor.org/rfc/rfc9113#section-9.2.3" class="relref">Section 9.2.3</a> of [<a href="#RFC9113" class="cite xref">RFC9113</a>]</span>.<a href="#section-3.6-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sni">
<section id="section-3.7">
<h3 id="name-server-name-indication-sni">
<a href="#section-3.7" class="section-number selfRef">3.7. </a><a href="#name-server-name-indication-sni" class="section-name selfRef">Server Name Indication (SNI)</a>
</h3>
<p id="section-3.7-1">TLS implementations <span class="bcp14">MUST</span> support the Server Name Indication (SNI) extension defined in <span><a href="https://www.rfc-editor.org/rfc/rfc6066#section-3" class="relref">Section 3</a> of [<a href="#RFC6066" class="cite xref">RFC6066</a>]</span> for those higher-level protocols that would benefit from it, including HTTPS. However, the actual use of SNI in particular circumstances is a matter of local policy. At the time of writing, a technology for encrypting the SNI (called Encrypted Client Hello) is being worked on in the TLS Working Group <span>[<a href="#I-D.ietf-tls-esni" class="cite xref">TLS-ECH</a>]</span>. Once that method has been standardized and widely implemented, it will likely be appropriate to recommend its usage in a future version of this BCP.<a href="#section-3.7-1" class="pilcrow">¶</a></p>
<p id="section-3.7-2">Rationale: SNI supports deployment of multiple TLS-protected virtual servers on a single
address, and therefore enables fine-grained security for these virtual servers,
by allowing each one to have its own certificate. However, SNI also leaks the
target domain for a given connection; this information leak will be closed by
use of TLS Encrypted Client Hello once that method has been standardized.<a href="#section-3.7-2" class="pilcrow">¶</a></p>
<p id="section-3.7-3">In order to prevent the attacks described in <span>[<a href="#ALPACA" class="cite xref">ALPACA</a>]</span>, a server that does not
recognize the presented server name <span class="bcp14">SHOULD NOT</span> continue the handshake and
instead <span class="bcp14">SHOULD</span> fail with a fatal-level <code>unrecognized_name(112)</code> alert. Note that this
recommendation updates <span><a href="https://www.rfc-editor.org/rfc/rfc6066#section-3" class="relref">Section 3</a> of [<a href="#RFC6066" class="cite xref">RFC6066</a>]</span>, which stated:<a href="#section-3.7-3" class="pilcrow">¶</a></p>
<blockquote id="section-3.7-4">If the server understood the
ClientHello extension but does not recognize the server name, the server <span class="bcp14">SHOULD</span>
take one of two actions: either abort the handshake by sending a fatal-level
<code>unrecognized_name(112)</code> alert or continue the handshake.<a href="#section-3.7-4" class="pilcrow">¶</a>
</blockquote>
<p id="section-3.7-5">
Clients <span class="bcp14">SHOULD</span> abort the handshake if the server acknowledges the SNI extension but presents a certificate with a different hostname than the one sent by the client.<a href="#section-3.7-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="rec-alpn">
<section id="section-3.8">
<h3 id="name-application-layer-protocol-">
<a href="#section-3.8" class="section-number selfRef">3.8. </a><a href="#name-application-layer-protocol-" class="section-name selfRef">Application-Layer Protocol Negotiation (ALPN)</a>
</h3>
<p id="section-3.8-1">TLS implementations (both client- and server-side) <span class="bcp14">MUST</span> support the
Application-Layer Protocol Negotiation (ALPN) extension <span>[<a href="#RFC7301" class="cite xref">RFC7301</a>]</span>.<a href="#section-3.8-1" class="pilcrow">¶</a></p>
<p id="section-3.8-2">In order to prevent "cross-protocol" attacks resulting from failure to ensure
that a message intended for use in one protocol cannot be mistaken for a
message for use in another protocol, servers are advised to strictly enforce the
behavior prescribed in <span><a href="https://www.rfc-editor.org/rfc/rfc7301#section-3.2" class="relref">Section 3.2</a> of [<a href="#RFC7301" class="cite xref">RFC7301</a>]</span>:<a href="#section-3.8-2" class="pilcrow">¶</a></p>
<blockquote id="section-3.8-3"> In the event that the
server supports no protocols that the client advertises, then the server <span class="bcp14">SHALL</span>
respond with a fatal '<code>no_application_protocol</code>' alert.<a href="#section-3.8-3" class="pilcrow">¶</a>
</blockquote>
<p id="section-3.8-4">
Clients <span class="bcp14">SHOULD</span>
abort the handshake if the server acknowledges the ALPN extension
but does not select a protocol from the client list. Failure to do so can
result in attacks such those described in <span>[<a href="#ALPACA" class="cite xref">ALPACA</a>]</span>.<a href="#section-3.8-4" class="pilcrow">¶</a></p>
<p id="section-3.8-5">Protocol developers are strongly encouraged to register an ALPN identifier
for their protocols. This applies both to new protocols and to well-established
protocols; however, because the latter might have a large deployed base,
strict enforcement of ALPN usage may not be feasible when an ALPN
identifier is registered for a well-established protocol.<a href="#section-3.8-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="multi-server-deployment">
<section id="section-3.9">
<h3 id="name-multi-server-deployment">
<a href="#section-3.9" class="section-number selfRef">3.9. </a><a href="#name-multi-server-deployment" class="section-name selfRef">Multi-Server Deployment</a>
</h3>
<p id="section-3.9-1">Deployments that involve multiple servers or services can increase the size of the attack surface for TLS. Two scenarios are of interest:<a href="#section-3.9-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-3.9-2">
<li id="section-3.9-2.1">Deployments in which multiple services handle the same domain name via different
protocols (e.g., HTTP and IMAP). In this case, an attacker might be able to direct
a connecting endpoint to the service offering a different protocol and mount a
cross-protocol attack. In a cross-protocol attack, the client and server believe
they are using different protocols, which the attacker might exploit if messages
sent in one protocol are interpreted as messages in the other protocol with
undesirable effects (see <span>[<a href="#ALPACA" class="cite xref">ALPACA</a>]</span> for more detailed information about this class
of attacks). To mitigate this threat, service providers <span class="bcp14">SHOULD</span> deploy ALPN (see
<a href="#rec-alpn" class="auto internal xref">Section 3.8</a>). In addition, to the extent possible, they <span class="bcp14">SHOULD</span> ensure that multiple
services handling the same domain name provide equivalent levels of security that are consistent with the recommendations in this document; such measures <span class="bcp14">SHOULD</span> include the handling of configurations across multiple TLS servers and protections against compromise of credentials held by those servers.<a href="#section-3.9-2.1" class="pilcrow">¶</a>
</li>
<li id="section-3.9-2.2">Deployments in which multiple servers providing the same service have different
TLS configurations. In this case, an attacker might be able to direct a connecting
endpoint to a server with a TLS configuration that is more easily exploitable (see
<span>[<a href="#DROWN" class="cite xref">DROWN</a>]</span> for more detailed information about this class of attacks). To mitigate
this threat, service providers <span class="bcp14">SHOULD</span> ensure that all servers providing the same
service provide equivalent levels of security that are consistent with the
recommendations in this document.<a href="#section-3.9-2.2" class="pilcrow">¶</a>
</li>
</ol>
</section>
</div>
<div id="zero-round-trip-time-0-rtt-data-in-tls-13">
<section id="section-3.10">
<h3 id="name-zero-round-trip-time-0-rtt-">
<a href="#section-3.10" class="section-number selfRef">3.10. </a><a href="#name-zero-round-trip-time-0-rtt-" class="section-name selfRef">Zero Round-Trip Time (0-RTT) Data in TLS 1.3</a>
</h3>
<p id="section-3.10-1">The 0-RTT early data feature is new in TLS 1.3. It provides reduced latency
when TLS connections are resumed, at the potential cost of certain security properties.
As a result, it requires special attention from implementers on both
the server and the client side. Typically, this extends to the
TLS library as well as protocol layers above it.<a href="#section-3.10-1" class="pilcrow">¶</a></p>
<p id="section-3.10-2">For HTTP over TLS, refer to <span>[<a href="#RFC8470" class="cite xref">RFC8470</a>]</span> for guidance.<a href="#section-3.10-2" class="pilcrow">¶</a></p>
<p id="section-3.10-3">For QUIC on TLS, refer to <span><a href="https://www.rfc-editor.org/rfc/rfc9001#section-9.2" class="relref">Section 9.2</a> of [<a href="#RFC9001" class="cite xref">RFC9001</a>]</span>.<a href="#section-3.10-3" class="pilcrow">¶</a></p>
<p id="section-3.10-4">For other protocols, generic guidance is given in Section <a href="https://www.rfc-editor.org/rfc/rfc8446#section-8" class="relref">8</a> and Appendix <a href="https://www.rfc-editor.org/rfc/rfc8446#appendix-E.5" class="relref">E.5</a> of <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>.
To paraphrase Appendix <a href="https://www.rfc-editor.org/rfc/rfc8446#appendix-E.5" class="relref">E.5</a>, applications <span class="bcp14">MUST</span> avoid this feature unless
an explicit specification exists for the application protocol in question to clarify
when 0-RTT is appropriate and secure. This can take the form of an IETF RFC,
a non-IETF standard, or documentation associated with a non-standard protocol.<a href="#section-3.10-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="detail">
<section id="section-4">
<h2 id="name-recommendations-cipher-suit">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-recommendations-cipher-suit" class="section-name selfRef">Recommendations: Cipher Suites</a>
</h2>
<p id="section-4-1">TLS 1.2 provided considerable flexibility in the selection of cipher suites. Unfortunately, the security of some of these cipher suites has degraded over time to the point where some are known to be insecure (this is one reason why TLS 1.3 restricted such flexibility). Incorrectly configuring a server leads to no or reduced security. This section includes recommendations on the selection and negotiation of cipher suites.<a href="#section-4-1" class="pilcrow">¶</a></p>
<div id="rec-cipher-guidelines">
<section id="section-4.1">
<h3 id="name-general-guidelines">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-general-guidelines" class="section-name selfRef">General Guidelines</a>
</h3>
<p id="section-4.1-1">Cryptographic algorithms weaken over time as cryptanalysis improves: algorithms that were once considered strong become weak. Consequently, cipher suites using weak algorithms need to be phased out and replaced with more secure cipher suites. This helps to ensure that the desired security properties still hold. SSL/TLS has been in existence for well over 20 years and many of the cipher suites that have been recommended in various versions of SSL/TLS are now considered weak or at least not as strong as desired. Therefore, this section modernizes the recommendations concerning cipher suite selection.<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.1-2.1">
<p id="section-4.1-2.1.1">Implementations <span class="bcp14">MUST NOT</span> negotiate the cipher suites with NULL encryption.<a href="#section-4.1-2.1.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.1.2">
Rationale: The NULL cipher suites do not encrypt traffic and
so provide no confidentiality services. Any entity in the
network with access to the connection can view the plaintext
of contents being exchanged by the client and server. Nevertheless, this document does not discourage software from
implementing NULL cipher suites, since they can be useful for
testing and debugging.<a href="#section-4.1-2.1.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-4.1-2.2">
<p id="section-4.1-2.2.1">Implementations <span class="bcp14">MUST NOT</span> negotiate RC4 cipher suites.<a href="#section-4.1-2.2.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.2.2">
Rationale: The RC4 stream cipher has a variety of cryptographic
weaknesses, as documented in <span>[<a href="#RFC7465" class="cite xref">RFC7465</a>]</span>.
Note that DTLS specifically forbids the use of RC4 already.<a href="#section-4.1-2.2.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-4.1-2.3">
<p id="section-4.1-2.3.1">Implementations <span class="bcp14">MUST NOT</span> negotiate cipher suites offering less
than 112 bits of security, including so-called "export-level"
encryption (which provides 40 or 56 bits of security).<a href="#section-4.1-2.3.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.3.2">
Rationale: Based on <span>[<a href="#RFC3766" class="cite xref">RFC3766</a>]</span>, at least 112 bits
of security is needed. 40-bit and 56-bit security (found in
so-called "export ciphers") are considered
insecure today.<a href="#section-4.1-2.3.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-4.1-2.4">
<p id="section-4.1-2.4.1">Implementations <span class="bcp14">SHOULD NOT</span> negotiate cipher suites that use
algorithms offering less than 128 bits of security.<a href="#section-4.1-2.4.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.4.2">
Rationale: Cipher suites that offer 112 or more bits but less than 128 bits
of security are not considered weak at this time; however, it is
expected that their useful lifespan is short enough to justify
supporting stronger cipher suites at this time. 128-bit ciphers
are expected to remain secure for at least several years and
256-bit ciphers until the next fundamental technology
breakthrough. Note that, because of so-called
"meet-in-the-middle" attacks <span>[<a href="#Multiple-Encryption" class="cite xref">Multiple-Encryption</a>]</span>,
some legacy cipher suites (e.g., 168-bit Triple DES (3DES)) have an effective
key length that is smaller than their nominal key length (112
bits in the case of 3DES). Such cipher suites should be
evaluated according to their effective key length.<a href="#section-4.1-2.4.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-4.1-2.5">
<p id="section-4.1-2.5.1">Implementations <span class="bcp14">SHOULD NOT</span> negotiate cipher suites based on
RSA key transport, a.k.a. "static RSA".<a href="#section-4.1-2.5.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.5.2">
Rationale: These cipher suites, which have assigned values starting
with the string "TLS_RSA_WITH_*", have several drawbacks, especially
the fact that they do not support forward secrecy.<a href="#section-4.1-2.5.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-4.1-2.6">
<p id="section-4.1-2.6.1">Implementations <span class="bcp14">SHOULD NOT</span> negotiate cipher suites based on
non-ephemeral (static) finite-field Diffie-Hellman (DH) key agreement. Similarly, implementations <span class="bcp14">SHOULD NOT</span> negotiate non-ephemeral Elliptic Curve DH key agreement.<a href="#section-4.1-2.6.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.6.2">
Rationale: The former cipher suites, which have assigned values prefixed by "TLS_DH_*", have several drawbacks, especially
the fact that they do not support forward secrecy. The latter ("TLS_ECDH_*") also lack forward secrecy and are subject to invalid curve attacks <span>[<a href="#Jager2015" class="cite xref">Jager2015</a>]</span>.<a href="#section-4.1-2.6.2" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-4.1-2.7">
<p id="section-4.1-2.7.1">Implementations <span class="bcp14">MUST</span> support and prefer to negotiate cipher suites
offering forward secrecy. However, TLS 1.2 implementations <span class="bcp14">SHOULD NOT</span> negotiate
cipher suites based on ephemeral finite-field Diffie-Hellman key
agreement (i.e., "TLS_DHE_*" suites). This is justified by the known fragility
of the construction (see <span>[<a href="#RACCOON" class="cite xref">RACCOON</a>]</span>) and the limitation around
negotiation, including using <span>[<a href="#RFC7919" class="cite xref">RFC7919</a>]</span>, which has seen very
limited uptake.<a href="#section-4.1-2.7.1" class="pilcrow">¶</a></p>
<p id="section-4.1-2.7.2">
Rationale: Forward secrecy (sometimes called "perfect forward
secrecy") prevents the recovery of information that was encrypted
with older session keys, thus limiting how far back in time data
can be decrypted when an attack is successful. See Sections <a href="#sec-pfs" class="auto internal xref">7.3</a>
and <a href="#sec-dhe" class="auto internal xref">7.4</a> for a detailed discussion.<a href="#section-4.1-2.7.2" class="pilcrow">¶</a></p>
</li>
</ul>
</section>
</div>
<div id="rec-cipher">
<section id="section-4.2">
<h3 id="name-cipher-suites-for-tls-12">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-cipher-suites-for-tls-12" class="section-name selfRef">Cipher Suites for TLS 1.2</a>
</h3>
<p id="section-4.2-1">Given the foregoing considerations, implementation and deployment of the following cipher suites is <span class="bcp14">RECOMMENDED</span>:<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-2.1">TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256<a href="#section-4.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-2.2">TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384<a href="#section-4.2-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-2.3">TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256<a href="#section-4.2-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-4.2-2.4">TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384<a href="#section-4.2-2.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-4.2-3">As these are Authenticated Encryption with Associated Data (AEAD) algorithms <span>[<a href="#RFC5116" class="cite xref">RFC5116</a>]</span>, these cipher suites are supported only in TLS 1.2 and not in earlier protocol versions.<a href="#section-4.2-3" class="pilcrow">¶</a></p>
<p id="section-4.2-4">Typically, to prefer these suites, the order of suites needs to be explicitly configured in server software. It would be ideal if server software implementations were to prefer these suites by default.<a href="#section-4.2-4" class="pilcrow">¶</a></p>
<p id="section-4.2-5">Some devices have hardware support for AES Counter Mode with CBC-MAC (AES-CCM) but not AES Galois/Counter Mode (AES-GCM), so they are unable to follow the foregoing recommendations regarding cipher suites. There are even devices that do not support public key cryptography at all, but these are out of scope entirely.<a href="#section-4.2-5" class="pilcrow">¶</a></p>
<p id="section-4.2-6">A cipher suite that operates in CBC (cipher block chaining) mode (e.g.,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256) <span class="bcp14">SHOULD NOT</span> be used unless the
<code>encrypt_then_mac</code> extension <span>[<a href="#RFC7366" class="cite xref">RFC7366</a>]</span> is also successfully negotiated.
This requirement applies to both client and server implementations.<a href="#section-4.2-6" class="pilcrow">¶</a></p>
<p id="section-4.2-7">When using ECDSA signatures for authentication of TLS peers, it is <span class="bcp14">RECOMMENDED</span> that implementations use the NIST curve P-256. In addition, to avoid predictable or repeated nonces (which could reveal the long-term signing key), it is <span class="bcp14">RECOMMENDED</span> that implementations implement "deterministic ECDSA" as specified in <span>[<a href="#RFC6979" class="cite xref">RFC6979</a>]</span> and in line with the recommendations in <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>.<a href="#section-4.2-7" class="pilcrow">¶</a></p>
<p id="section-4.2-8">Note that implementations of "deterministic ECDSA" may be vulnerable to certain
side-channel and fault injection attacks precisely because of their
determinism. While most fault injection attacks described in the literature assume
physical access to the device (and therefore are more relevant in Internet of Things (IoT)
deployments with poor or non-existent physical security), some can be carried
out remotely <span>[<a href="#Poddebniak2017" class="cite xref">Poddebniak2017</a>]</span>, e.g., as Rowhammer <span>[<a href="#Kim2014" class="cite xref">Kim2014</a>]</span> variants. In
deployments where side-channel attacks and fault injection attacks are a
concern, implementation strategies combining both randomness and determinism
(for example, as described in <span>[<a href="#I-D.mattsson-cfrg-det-sigs-with-noise" class="cite xref">CFRG-DET-SIGS</a>]</span>) can
be used to avoid the risk of successful extraction of the signing key.<a href="#section-4.2-8" class="pilcrow">¶</a></p>
<div id="detail-neg">
<section id="section-4.2.1">
<h4 id="name-implementation-details">
<a href="#section-4.2.1" class="section-number selfRef">4.2.1. </a><a href="#name-implementation-details" class="section-name selfRef">Implementation Details</a>
</h4>
<p id="section-4.2.1-1">Clients <span class="bcp14">SHOULD</span> include TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as the first proposal to any server. Servers <span class="bcp14">MUST</span> prefer this cipher suite over weaker cipher suites whenever it is proposed, even if it is not the first proposal. Clients are of course free to offer stronger cipher suites, e.g., using AES-256; when they do, the server <span class="bcp14">SHOULD</span> prefer the stronger cipher suite unless there are compelling reasons (e.g., seriously degraded performance) to choose otherwise.<a href="#section-4.2.1-1" class="pilcrow">¶</a></p>
<p id="section-4.2.1-2">The previous version of the TLS recommendations <span>[<a href="#RFC7525" class="cite xref">RFC7525</a>]</span> implicitly allowed the old RFC 5246 mandatory-to-implement cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA. At the time of writing, this cipher suite does not provide additional interoperability, except with very old clients. As with other cipher suites that do not provide forward secrecy, implementations <span class="bcp14">SHOULD NOT</span> support this cipher suite. Other application protocols specify other cipher suites as mandatory to implement (MTI).<a href="#section-4.2.1-2" class="pilcrow">¶</a></p>
<p id="section-4.2.1-3"><span>[<a href="#RFC8422" class="cite xref">RFC8422</a>]</span> allows clients and servers to negotiate ECDH parameters (curves). Both clients and servers <span class="bcp14">SHOULD</span> include the "Supported Elliptic Curves Extension" <span>[<a href="#RFC8422" class="cite xref">RFC8422</a>]</span>. Clients and servers <span class="bcp14">SHOULD</span> support the NIST P‑256 (secp256r1) <span>[<a href="#RFC8422" class="cite xref">RFC8422</a>]</span> and X25519 (x25519) <span>[<a href="#RFC7748" class="cite xref">RFC7748</a>]</span> curves. Note that <span>[<a href="#RFC8422" class="cite xref">RFC8422</a>]</span> deprecates all but the uncompressed point format. Therefore, if the client sends an <code>ec_point_formats</code> extension, the ECPointFormatList <span class="bcp14">MUST</span> contain a single element, "uncompressed".<a href="#section-4.2.1-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="cipher-suites-for-tls-13">
<section id="section-4.3">
<h3 id="name-cipher-suites-for-tls-13">
<a href="#section-4.3" class="section-number selfRef">4.3. </a><a href="#name-cipher-suites-for-tls-13" class="section-name selfRef">Cipher Suites for TLS 1.3</a>
</h3>
<p id="section-4.3-1">This document does not specify any cipher suites for TLS 1.3. Readers
are referred to <span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-9.1" class="relref">Section 9.1</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span> for cipher suite recommendations.<a href="#section-4.3-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="limits-on-key-usage">
<section id="section-4.4">
<h3 id="name-limits-on-key-usage">
<a href="#section-4.4" class="section-number selfRef">4.4. </a><a href="#name-limits-on-key-usage" class="section-name selfRef">Limits on Key Usage</a>
</h3>
<p id="section-4.4-1">All ciphers have an upper limit on the amount of traffic that can be securely
protected with any given key. In the case of AEAD cipher suites, two separate
limits are maintained for each key:<a href="#section-4.4-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-4.4-2">
<li id="section-4.4-2.1">Confidentiality limit (CL), i.e., the number of records that can be
encrypted.<a href="#section-4.4-2.1" class="pilcrow">¶</a>
</li>
<li id="section-4.4-2.2">Integrity limit (IL), i.e., the number of records that are allowed to fail
authentication.<a href="#section-4.4-2.2" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-4.4-3">The latter applies to DTLS (and also to QUIC) but not to TLS itself, since TLS connections are torn down on the
first decryption failure.<a href="#section-4.4-3" class="pilcrow">¶</a></p>
<p id="section-4.4-4">When a sender is approaching CL, the implementation <span class="bcp14">SHOULD</span> initiate a new handshake (in TLS 1.3, this can be achieved by sending a KeyUpdate message on the established session) to rotate the session key. When a receiver has reached IL, the implementation <span class="bcp14">SHOULD</span> close the connection. Although these recommendations are a best practice, implementers need to be aware that it is not always easy to accomplish them in protocols that are built on top of TLS/DTLS without introducing coordination across layer boundaries. See <span><a href="https://www.rfc-editor.org/rfc/rfc9001#section-6" class="relref">Section 6</a> of [<a href="#RFC9001" class="cite xref">RFC9001</a>]</span> for an example of the cooperation that was necessary in QUIC between the crypto and transport layers to support key updates. Note that in general, application protocols might not be able to emulate that method given their more constrained interaction with TLS/DTLS. As a result of these complexities, these recommendations are not mandatory.<a href="#section-4.4-4" class="pilcrow">¶</a></p>
<p id="section-4.4-5">For all TLS 1.3 cipher suites, readers are referred to <span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-5.5" class="relref">Section 5.5</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span> for the values of CL and IL. For all DTLS 1.3 cipher suites, readers are referred to <span><a href="https://www.rfc-editor.org/rfc/rfc9147#section-4.5.3" class="relref">Section 4.5.3</a> of [<a href="#RFC9147" class="cite xref">RFC9147</a>]</span>.<a href="#section-4.4-5" class="pilcrow">¶</a></p>
<p id="section-4.4-6">For all AES-GCM cipher suites recommended for TLS 1.2 and DTLS 1.2 in this
document, CL can be derived by plugging the corresponding parameters into the
inequalities in <span><a href="https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-05#section-6.1" class="relref">Section 6.1</a> of [<a href="#I-D.irtf-cfrg-aead-limits" class="cite xref">AEAD-LIMITS</a>]</span> that apply to
random, partially implicit nonces, i.e., the nonce construction used in TLS
1.2. Although the obtained figures are slightly higher than those for TLS 1.3,
it is <span class="bcp14">RECOMMENDED</span> that the same limit of 2<sup>24.5</sup> records is used for
both versions.<a href="#section-4.4-6" class="pilcrow">¶</a></p>
<p id="section-4.4-7">For all AES-GCM cipher suites recommended for DTLS 1.2, IL (obtained from the
same inequalities referenced above) is 2<sup>28</sup>.<a href="#section-4.4-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="rec-keylength">
<section id="section-4.5">
<h3 id="name-public-key-length">
<a href="#section-4.5" class="section-number selfRef">4.5. </a><a href="#name-public-key-length" class="section-name selfRef">Public Key Length</a>
</h3>
<p id="section-4.5-1">When using the cipher suites recommended in this document, two public keys are
normally used in the TLS handshake: one for the Diffie-Hellman key agreement
and one for server authentication. Where a client certificate is used, a third
public key is added.<a href="#section-4.5-1" class="pilcrow">¶</a></p>
<p id="section-4.5-2">With a key exchange based on modular exponential (MODP) Diffie-Hellman groups ("DHE" cipher suites), DH key lengths of at least 2048 bits are <span class="bcp14">REQUIRED</span>.<a href="#section-4.5-2" class="pilcrow">¶</a></p>
<p id="section-4.5-3">Rationale: For various reasons, in practice, DH keys are typically generated in lengths
that are powers of two (e.g., 2<sup>10</sup> = 1024 bits, 2<sup>11</sup> = 2048 bits, 2<sup>12</sup> = 4096 bits).
Because a DH key of 1228 bits would be roughly equivalent to only an 80-bit symmetric key
<span>[<a href="#RFC3766" class="cite xref">RFC3766</a>]</span>, it is better to use keys longer than that for the "DHE" family of cipher suites.
A DH key of 1926 bits would be roughly equivalent to a 100-bit symmetric key <span>[<a href="#RFC3766" class="cite xref">RFC3766</a>]</span>.
A DH key of 2048 bits (equivalent to a 112-bit symmetric key)
is the minimum allowed by the latest revision of <span>[<a href="#NIST.SP.800-56A" class="cite xref">NIST.SP.800-56A</a>]</span> as of this writing
(see in particular Appendix D of that document).<a href="#section-4.5-3" class="pilcrow">¶</a></p>
<p id="section-4.5-4">As noted in <span>[<a href="#RFC3766" class="cite xref">RFC3766</a>]</span>, correcting for the emergence of The Weizmann Institute Relation Locator (TWIRL) machine <span>[<a href="#TWIRL" class="cite xref">TWIRL</a>]</span> would imply that 1024-bit DH keys yield about 61 bits of equivalent strength and that a 2048-bit DH key would yield about 92 bits of equivalent strength.
The Logjam attack <span>[<a href="#Logjam" class="cite xref">Logjam</a>]</span> further demonstrates that 1024-bit Diffie-Hellman parameters
should be avoided.<a href="#section-4.5-4" class="pilcrow">¶</a></p>
<p id="section-4.5-5">With regard to ECDH keys, implementers are referred to the IANA "TLS Supported Groups" registry (formerly known as the "EC Named Curve
Registry") within the
"Transport Layer Security (TLS) Parameters" registry <span>[<a href="#IANA_TLS" class="cite xref">IANA_TLS</a>]</span> and in particular to the "recommended"
groups. Curves of less than 224 bits <span class="bcp14">MUST NOT</span> be used. This recommendation is in line with the latest
revision of <span>[<a href="#NIST.SP.800-56A" class="cite xref">NIST.SP.800-56A</a>]</span>.<a href="#section-4.5-5" class="pilcrow">¶</a></p>
<p id="section-4.5-6">When using RSA, servers <span class="bcp14">MUST</span> authenticate using certificates with at least a 2048-bit modulus for the public key. In addition, the use of the SHA-256 hash algorithm is <span class="bcp14">RECOMMENDED</span> and SHA-1 or MD5 <span class="bcp14">MUST NOT</span> be used <span>[<a href="#RFC9155" class="cite xref">RFC9155</a>]</span> (for more details, see also <span>[<a href="#CAB-Baseline" class="cite xref">CAB-Baseline</a>]</span>, for which the current version at the time of writing is 1.8.4). Clients <span class="bcp14">MUST</span> indicate to servers that they request SHA-256 by using the "Signature Algorithms" extension defined in TLS 1.2. For TLS 1.3, the same requirement is already specified by <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>.<a href="#section-4.5-6" class="pilcrow">¶</a></p>
<p id="section-4.5-7"></p>
</section>
</div>
<div id="truncated-hmac">
<section id="section-4.6">
<h3 id="name-truncated-hmac">
<a href="#section-4.6" class="section-number selfRef">4.6. </a><a href="#name-truncated-hmac" class="section-name selfRef">Truncated HMAC</a>
</h3>
<p id="section-4.6-1">Implementations <span class="bcp14">MUST NOT</span> use the Truncated HMAC Extension, defined in <span><a href="https://www.rfc-editor.org/rfc/rfc6066#section-7" class="relref">Section 7</a> of [<a href="#RFC6066" class="cite xref">RFC6066</a>]</span>.<a href="#section-4.6-1" class="pilcrow">¶</a></p>
<p id="section-4.6-2">Rationale: The extension does not apply to the AEAD
cipher suites recommended above. However, it does apply to most other TLS cipher suites. Its use
has been shown to be insecure in <span>[<a href="#PatersonRS11" class="cite xref">PatersonRS11</a>]</span>.<a href="#section-4.6-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="applicability">
<section id="section-5">
<h2 id="name-applicability-statement">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-applicability-statement" class="section-name selfRef">Applicability Statement</a>
</h2>
<p id="section-5-1">The recommendations of this document primarily apply to the implementation and deployment of application protocols that are most commonly used with TLS and DTLS on the Internet today. Examples include, but are not limited to:<a href="#section-5-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-5-2.1">Web software and services that wish to protect HTTP traffic with TLS.<a href="#section-5-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5-2.2">Email software and services that wish to protect IMAP, Post Office Protocol version 3 (POP3), or SMTP traffic with TLS.<a href="#section-5-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5-2.3">Instant-messaging software and services that wish to protect Extensible Messaging and Presence Protocol (XMPP) or Internet Relay Chat (IRC) traffic with TLS.<a href="#section-5-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-5-2.4">Realtime media software and services that wish to protect Secure Realtime Transport Protocol (SRTP) traffic with DTLS.<a href="#section-5-2.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-5-3">This document does not modify the implementation and deployment recommendations (e.g., mandatory-to-implement cipher suites) prescribed by existing application protocols that employ TLS or DTLS. If the community that uses such an application protocol wishes to modernize its usage of TLS or DTLS to be consistent with the best practices recommended here, it needs to explicitly update the existing application protocol definition (one example is <span>[<a href="#RFC7590" class="cite xref">RFC7590</a>]</span>, which updates <span>[<a href="#RFC6120" class="cite xref">RFC6120</a>]</span>).<a href="#section-5-3" class="pilcrow">¶</a></p>
<p id="section-5-4">Designers of new application protocols developed through the Internet
Standards Process <span>[<a href="#RFC2026" class="cite xref">RFC2026</a>]</span> are expected at minimum to conform to the best
practices recommended here, unless they provide documentation of
compelling reasons that would prevent such conformance (e.g.,
widespread deployment on constrained devices that lack support for
the necessary algorithms).<a href="#section-5-4" class="pilcrow">¶</a></p>
<p id="section-5-5">Although many of the recommendations provided here might also apply to QUIC insofar
that it uses the TLS 1.3 handshake protocol, QUIC and other such secure transport protocols
are out of scope of this document. For QUIC specifically, readers are
referred to <span><a href="https://www.rfc-editor.org/rfc/rfc9001#section-9.2" class="relref">Section 9.2</a> of [<a href="#RFC9001" class="cite xref">RFC9001</a>]</span>.<a href="#section-5-5" class="pilcrow">¶</a></p>
<p id="section-5-6">This document does not address the use of TLS in constrained-node networks
<span>[<a href="#RFC7228" class="cite xref">RFC7228</a>]</span>. For recommendations regarding the profiling of TLS and DTLS for
small devices with severe constraints on power, memory, and processing
resources, the reader is referred to <span>[<a href="#RFC7925" class="cite xref">RFC7925</a>]</span> and
<span>[<a href="#I-D.ietf-uta-tls13-iot-profile" class="cite xref">IOT-PROFILE</a>]</span>.<a href="#section-5-6" class="pilcrow">¶</a></p>
<div id="security-services">
<section id="section-5.1">
<h3 id="name-security-services">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-security-services" class="section-name selfRef">Security Services</a>
</h3>
<p id="section-5.1-1">This document provides recommendations for an audience that wishes to secure their communication with TLS to achieve the following:<a href="#section-5.1-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-5.1-2">
<dt id="section-5.1-2.1">Confidentiality:
</dt>
<dd style="margin-left: 1.5em" id="section-5.1-2.2">all application-layer communication is encrypted with the goal
that no party should be able to decrypt it except the intended receiver.<a href="#section-5.1-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.1-2.3">Data integrity:
</dt>
<dd style="margin-left: 1.5em" id="section-5.1-2.4">any changes made to the communication in transit are detectable
by the receiver.<a href="#section-5.1-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-5.1-2.5">Authentication:
</dt>
<dd style="margin-left: 1.5em" id="section-5.1-2.6">an endpoint of the TLS communication is authenticated as the
intended entity to communicate with.<a href="#section-5.1-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-5.1-3">With regard to authentication, TLS enables authentication of one or both endpoints in the communication. In the context of opportunistic security <span>[<a href="#RFC7435" class="cite xref">RFC7435</a>]</span>, TLS is sometimes used without authentication. As discussed in <a href="#oppsec" class="auto internal xref">Section 5.2</a>, considerations for opportunistic security are not in scope for this document.<a href="#section-5.1-3" class="pilcrow">¶</a></p>
<p id="section-5.1-4">If deployers deviate from the recommendations given in this document, they need to be aware that they might lose access to one of the foregoing security services.<a href="#section-5.1-4" class="pilcrow">¶</a></p>
<p id="section-5.1-5">This document applies only to environments where confidentiality is required. It requires algorithms and configuration options that enforce secrecy of the data in transit.<a href="#section-5.1-5" class="pilcrow">¶</a></p>
<p id="section-5.1-6">This document also assumes that data integrity protection is always one of the goals of a deployment. In cases where integrity is not required, it does not make sense to employ TLS in the first place. There are attacks against confidentiality-only protection that utilize the lack of integrity to also break confidentiality (see, for instance, <span>[<a href="#DegabrieleP07" class="cite xref">DegabrieleP07</a>]</span> in the context of IPsec).<a href="#section-5.1-6" class="pilcrow">¶</a></p>
<p id="section-5.1-7">This document addresses itself to application protocols that are most commonly used on the Internet with TLS and DTLS. Typically, all communication between TLS clients and TLS servers requires all three of the above security services. This is particularly true where TLS clients are user agents like web browsers or email clients.<a href="#section-5.1-7" class="pilcrow">¶</a></p>
<p id="section-5.1-8">This document does not address the rarer deployment scenarios where one of the above three properties is not desired, such as the use case described in <a href="#oppsec" class="auto internal xref">Section 5.2</a>. As another scenario where confidentiality is not needed, consider a monitored network where the authorities in charge of the respective traffic domain require full access to unencrypted (plaintext) traffic and where users collaborate and send their traffic in the clear.<a href="#section-5.1-8" class="pilcrow">¶</a></p>
</section>
</div>
<div id="oppsec">
<section id="section-5.2">
<h3 id="name-opportunistic-security">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-opportunistic-security" class="section-name selfRef">Opportunistic Security</a>
</h3>
<p id="section-5.2-1">There are several important scenarios in which the use of TLS is optional, i.e., the client decides dynamically ("opportunistically") whether to use TLS with a particular server or to connect in the clear. This practice, often called "opportunistic security", is described at length in <span>[<a href="#RFC7435" class="cite xref">RFC7435</a>]</span> and is often motivated by a desire for backward compatibility with legacy deployments.<a href="#section-5.2-1" class="pilcrow">¶</a></p>
<p id="section-5.2-2">In these scenarios, some of the recommendations in this document might be too strict, since adhering to them could cause fallback to cleartext, a worse outcome than using TLS with an outdated protocol version or cipher suite.<a href="#section-5.2-2" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="iana-considerations">
<section id="section-6">
<h2 id="name-iana-considerations">
<a href="#section-6" class="section-number selfRef">6. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-6-1">This document has no IANA actions.<a href="#section-6-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec">
<section id="section-7">
<h2 id="name-security-considerations">
<a href="#section-7" class="section-number selfRef">7. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-7-1">This entire document discusses the security practices directly affecting applications
using the TLS protocol. This section contains broader security considerations related
to technologies used in conjunction with or by TLS.
The reader is referred to the Security Considerations sections of TLS 1.3
<span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>, DTLS 1.3 <span>[<a href="#RFC9147" class="cite xref">RFC9147</a>]</span>, TLS 1.2 <span>[<a href="#RFC5246" class="cite xref">RFC5246</a>]</span>, and DTLS 1.2 <span>[<a href="#RFC6347" class="cite xref">RFC6347</a>]</span>
for further context.<a href="#section-7-1" class="pilcrow">¶</a></p>
<div id="host-name-validation">
<section id="section-7.1">
<h3 id="name-host-name-validation">
<a href="#section-7.1" class="section-number selfRef">7.1. </a><a href="#name-host-name-validation" class="section-name selfRef">Host Name Validation</a>
</h3>
<p id="section-7.1-1">Application authors should take note that some TLS implementations
do not validate host names. If the TLS implementation they are
using does not validate host names, authors might need to write their
own validation code or consider using a different TLS implementation.<a href="#section-7.1-1" class="pilcrow">¶</a></p>
<p id="section-7.1-2">It is noted that the requirements regarding host name validation (and, in general, binding between the TLS layer and the protocol that runs above it) vary between different protocols. For HTTPS, these requirements are defined by Sections
<a href="https://www.rfc-editor.org/rfc/rfc9110#section-4.3.3" class="relref">4.3.3</a>, <a href="https://www.rfc-editor.org/rfc/rfc9110#section-4.3.4" class="relref">4.3.4</a>, and <a href="https://www.rfc-editor.org/rfc/rfc9110#section-4.3.5" class="relref">4.3.5</a> of <span>[<a href="#RFC9110" class="cite xref">RFC9110</a>]</span>.<a href="#section-7.1-2" class="pilcrow">¶</a></p>
<p id="section-7.1-3">Host name validation is security-critical for all common TLS use cases. Without it, TLS ensures that the certificate is valid and guarantees possession of the private key but does not ensure that the connection terminates at the desired endpoint. Readers are referred to <span>[<a href="#RFC6125" class="cite xref">RFC6125</a>]</span> for further details regarding generic host name validation in the TLS context. In addition, that RFC contains a long list of application protocols, some of which implement a policy very different from HTTPS.<a href="#section-7.1-3" class="pilcrow">¶</a></p>
<p id="section-7.1-4">If the host name is discovered indirectly and insecurely (e.g., by a cleartext DNS query for an SRV or Mail Exchange (MX) record), it <span class="bcp14">SHOULD NOT</span> be used as a reference identifier <span>[<a href="#RFC6125" class="cite xref">RFC6125</a>]</span> even when it matches the presented certificate. This proviso does not apply if the host name is discovered securely (for further discussion, see <span>[<a href="#RFC7673" class="cite xref">RFC7673</a>]</span> and <span>[<a href="#RFC7672" class="cite xref">RFC7672</a>]</span>).<a href="#section-7.1-4" class="pilcrow">¶</a></p>
<p id="section-7.1-5">Host name validation typically applies only to the leaf "end entity" certificate. Naturally, in order to ensure proper authentication in the context of the PKI, application clients need to verify the entire certification path in accordance with <span>[<a href="#RFC5280" class="cite xref">RFC5280</a>]</span>.<a href="#section-7.1-5" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-aes">
<section id="section-7.2">
<h3 id="name-aes-gcm">
<a href="#section-7.2" class="section-number selfRef">7.2. </a><a href="#name-aes-gcm" class="section-name selfRef">AES-GCM</a>
</h3>
<p id="section-7.2-1"><a href="#rec-cipher" class="auto internal xref">Section 4.2</a> recommends the use of the AES-GCM authenticated encryption algorithm. Please refer to <span><a href="https://www.rfc-editor.org/rfc/rfc5288#section-6" class="relref">Section 6</a> of [<a href="#RFC5288" class="cite xref">RFC5288</a>]</span> for security considerations that apply specifically to AES-GCM when used with TLS.<a href="#section-7.2-1" class="pilcrow">¶</a></p>
<div id="nonce-reuse">
<section id="section-7.2.1">
<h4 id="name-nonce-reuse-in-tls-12">
<a href="#section-7.2.1" class="section-number selfRef">7.2.1. </a><a href="#name-nonce-reuse-in-tls-12" class="section-name selfRef">Nonce Reuse in TLS 1.2</a>
</h4>
<p id="section-7.2.1-1">The existence of deployed TLS stacks that mistakenly reuse the AES-GCM nonce is
documented in <span>[<a href="#Boeck2016" class="cite xref">Boeck2016</a>]</span>, showing there is an actual risk of AES-GCM getting
implemented insecurely and thus making TLS sessions that use an
AES-GCM cipher suite vulnerable to attacks such as <span>[<a href="#Joux2006" class="cite xref">Joux2006</a>]</span>. (See <span>[<a href="#CVE" class="cite xref">CVE</a>]</span>
records: CVE-2016-0270, CVE-2016-10213, CVE-2016-10212, and CVE-2017-5933.)<a href="#section-7.2.1-1" class="pilcrow">¶</a></p>
<p id="section-7.2.1-2">While this problem has been fixed in TLS 1.3, which enforces a deterministic
method to generate nonces from record sequence numbers and shared secrets for
all its AEAD cipher suites (including AES-GCM), TLS 1.2 implementations
could still choose their own (potentially insecure) nonce generation methods.<a href="#section-7.2.1-2" class="pilcrow">¶</a></p>
<p id="section-7.2.1-3">It is therefore <span class="bcp14">RECOMMENDED</span> that TLS 1.2 implementations use the 64-bit
sequence number to populate the <code>nonce_explicit</code> part of the GCM nonce, as
described in the first two paragraphs of <span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-5.3" class="relref">Section 5.3</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>. This stronger recommendation updates <span><a href="https://www.rfc-editor.org/rfc/rfc5288#section-3" class="relref">Section 3</a> of [<a href="#RFC5288" class="cite xref">RFC5288</a>]</span>, which specifies that the use of 64-bit sequence numbers to populate the <code>nonce_explicit</code> field is optional.<a href="#section-7.2.1-3" class="pilcrow">¶</a></p>
<p id="section-7.2.1-4">We note that at the time of writing, there are no cipher suites defined for nonce-reuse-resistant algorithms such as AES-GCM-SIV <span>[<a href="#RFC8452" class="cite xref">RFC8452</a>]</span>.<a href="#section-7.2.1-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<div id="sec-pfs">
<section id="section-7.3">
<h3 id="name-forward-secrecy">
<a href="#section-7.3" class="section-number selfRef">7.3. </a><a href="#name-forward-secrecy" class="section-name selfRef">Forward Secrecy</a>
</h3>
<p id="section-7.3-1">Forward secrecy (also called "perfect forward secrecy" or "PFS" and defined in <span>[<a href="#RFC4949" class="cite xref">RFC4949</a>]</span>) is a defense against an attacker who records encrypted conversations where the session keys are only encrypted with the communicating parties' long-term keys.<a href="#section-7.3-1" class="pilcrow">¶</a></p>
<p id="section-7.3-2">Should the attacker be able to obtain these long-term keys at some point later in time, the session keys and thus the entire conversation could be decrypted.<a href="#section-7.3-2" class="pilcrow">¶</a></p>
<p id="section-7.3-3">In the context of TLS and DTLS, such compromise of long-term keys is not entirely implausible. It can happen, for example, due to:<a href="#section-7.3-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.3-4.1">A client or server being attacked by some other attack vector, and the private key retrieved.<a href="#section-7.3-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.3-4.2">A long-term key retrieved from a device that has been sold or otherwise decommissioned without prior wiping.<a href="#section-7.3-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.3-4.3">A long-term key used on a device as a default key <span>[<a href="#Heninger2012" class="cite xref">Heninger2012</a>]</span>.<a href="#section-7.3-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.3-4.4">A key generated by a trusted third party like a CA and later retrieved from it by either extortion or compromise <span>[<a href="#Soghoian2011" class="cite xref">Soghoian2011</a>]</span>.<a href="#section-7.3-4.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.3-4.5">A cryptographic breakthrough or the use of asymmetric keys with insufficient length <span>[<a href="#Kleinjung2010" class="cite xref">Kleinjung2010</a>]</span>.<a href="#section-7.3-4.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.3-4.6">Social engineering attacks against system administrators.<a href="#section-7.3-4.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.3-4.7">Collection of private keys from inadequately protected backups.<a href="#section-7.3-4.7" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-7.3-5">Forward secrecy ensures in such cases that it is not feasible for an attacker to determine the session keys even if the attacker has obtained the long-term keys some time after the conversation. It also protects against an attacker who is in possession of the long-term keys but remains passive during the conversation.<a href="#section-7.3-5" class="pilcrow">¶</a></p>
<p id="section-7.3-6">Forward secrecy is generally achieved by using the Diffie-Hellman scheme to derive session keys. The Diffie-Hellman scheme has both parties maintain private secrets and send parameters over the network as modular powers over certain cyclic groups. The properties of the so-called Discrete Logarithm Problem (DLP) allow the parties to derive the session keys without an eavesdropper being able to do so. There is currently no known attack against DLP if sufficiently large parameters are chosen. A variant of the Diffie-Hellman scheme uses elliptic curves instead of the originally proposed modular arithmetic. Given the current state of the art, Elliptic Curve Diffie-Hellman appears to be more efficient, permits shorter key lengths, and allows less freedom for implementation errors than finite-field Diffie-Hellman.<a href="#section-7.3-6" class="pilcrow">¶</a></p>
<p id="section-7.3-7">Unfortunately, many TLS/DTLS cipher suites were defined that do not feature forward secrecy, e.g., TLS_RSA_WITH_AES_256_CBC_SHA256. This document therefore advocates strict use of forward-secrecy-only ciphers.<a href="#section-7.3-7" class="pilcrow">¶</a></p>
</section>
</div>
<div id="sec-dhe">
<section id="section-7.4">
<h3 id="name-diffie-hellman-exponent-reu">
<a href="#section-7.4" class="section-number selfRef">7.4. </a><a href="#name-diffie-hellman-exponent-reu" class="section-name selfRef">Diffie-Hellman Exponent Reuse</a>
</h3>
<p id="section-7.4-1">For performance reasons, it is not uncommon for TLS implementations to reuse Diffie-Hellman and Elliptic Curve Diffie-Hellman exponents across multiple connections. Such reuse can result in major security issues:<a href="#section-7.4-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.4-2.1">If exponents are reused for too long (in some cases, even as little as a few hours), an attacker who gains access to the host can decrypt previous connections. In other words, exponent reuse negates the effects of forward secrecy.<a href="#section-7.4-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.4-2.2">TLS implementations that reuse exponents should test the DH public key they receive for group membership, in order to avoid some known attacks. These tests are not standardized in TLS at the time of writing, although general guidance in this area is provided by <span>[<a href="#NIST.SP.800-56A" class="cite xref">NIST.SP.800-56A</a>]</span> and available in many protocol implementations.<a href="#section-7.4-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.4-2.3">Under certain conditions, the use of static finite-field DH keys, or of ephemeral finite-field DH keys that are reused across multiple connections, can lead to timing attacks (such as those described in <span>[<a href="#RACCOON" class="cite xref">RACCOON</a>]</span>) on the shared secrets used in Diffie-Hellman key exchange.<a href="#section-7.4-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.4-2.4">An "invalid curve" attack can be mounted against Elliptic Curve DH if the victim does not verify that the received point lies on the correct curve. If the victim is reusing the DH secrets, the attacker can repeat the probe varying the points to recover the full secret (see <span>[<a href="#Antipa2003" class="cite xref">Antipa2003</a>]</span> and <span>[<a href="#Jager2015" class="cite xref">Jager2015</a>]</span>).<a href="#section-7.4-2.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-7.4-3">To address these concerns:<a href="#section-7.4-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.4-4.1">TLS implementations <span class="bcp14">SHOULD NOT</span> use static finite-field DH keys and <span class="bcp14">SHOULD NOT</span> reuse ephemeral finite-field DH keys across multiple connections.<a href="#section-7.4-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.4-4.2">Server implementations that want to reuse Elliptic Curve DH keys <span class="bcp14">SHOULD</span> either use a "safe curve" <span>[<a href="#SAFECURVES" class="cite xref">SAFECURVES</a>]</span> (e.g., X25519) or perform the checks described in <span>[<a href="#NIST.SP.800-56A" class="cite xref">NIST.SP.800-56A</a>]</span> on the received points.<a href="#section-7.4-4.2" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<div id="certificate-revocation">
<section id="section-7.5">
<h3 id="name-certificate-revocation">
<a href="#section-7.5" class="section-number selfRef">7.5. </a><a href="#name-certificate-revocation" class="section-name selfRef">Certificate Revocation</a>
</h3>
<p id="section-7.5-1">The following considerations and recommendations represent the current state of the art regarding certificate revocation, even though no complete and efficient solution exists for the problem of checking the revocation status of common public key certificates <span>[<a href="#RFC5280" class="cite xref">RFC5280</a>]</span>:<a href="#section-7.5-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-7.5-2.1">Certificate revocation is an important tool when recovering from attacks on the TLS implementation as well as cases of misissued certificates. TLS implementations <span class="bcp14">MUST</span> implement a strategy to distrust revoked certificates.<a href="#section-7.5-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.5-2.2">Although Certificate Revocation Lists (CRLs) are the most widely supported mechanism for distributing revocation information, they have known scaling challenges that limit their usefulness, despite workarounds such as partitioned CRLs and delta CRLs. The more modern <span>[<a href="#CRLite" class="cite xref">CRLite</a>]</span> and the follow-on Let's Revoke <span>[<a href="#LetsRevoke" class="cite xref">LetsRevoke</a>]</span> build on the availability of Certificate Transparency <span>[<a href="#RFC9162" class="cite xref">RFC9162</a>]</span> logs and aggressive compression to allow practical use of the CRL infrastructure, but at the time of writing, neither solution is deployed for client-side revocation processing at scale.<a href="#section-7.5-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.5-2.3">Proprietary mechanisms that embed revocation lists in the web browser's configuration database cannot scale beyond the few most heavily used web servers.<a href="#section-7.5-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.5-2.4">The Online Certification Status Protocol (OCSP) <span>[<a href="#RFC6960" class="cite xref">RFC6960</a>]</span> in its basic form presents both scaling and privacy issues. In addition, clients typically "soft-fail", meaning that they do not abort the TLS connection if the OCSP server does not respond. (However, this might be a workaround to avoid denial-of-service attacks if an OCSP responder is taken offline.) For a recent survey of the status of OCSP deployment in the web PKI, see <span>[<a href="#Chung18" class="cite xref">Chung18</a>]</span>.<a href="#section-7.5-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.5-2.5">The TLS Certificate Status Request extension (<span><a href="https://www.rfc-editor.org/rfc/rfc6066#section-8" class="relref">Section 8</a> of [<a href="#RFC6066" class="cite xref">RFC6066</a>]</span>), commonly called "OCSP stapling", resolves the operational issues with OCSP. However, it is still ineffective in the presence of an active on-path attacker because the attacker can simply ignore the client's request for a stapled OCSP response.<a href="#section-7.5-2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.5-2.6">
<span>[<a href="#RFC7633" class="cite xref">RFC7633</a>]</span> defines a certificate extension that indicates that clients must expect stapled OCSP responses for the certificate and must abort the handshake ("hard-fail") if such a response is not available.<a href="#section-7.5-2.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.5-2.7">OCSP stapling as used in TLS 1.2 does not extend to intermediate certificates within a certificate chain. The Multiple Certificate Status extension <span>[<a href="#RFC6961" class="cite xref">RFC6961</a>]</span> addresses this shortcoming, but it has seen little deployment and had been deprecated by <span>[<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>. As a result, although this extension was recommended for TLS 1.2 in <span>[<a href="#RFC7525" class="cite xref">RFC7525</a>]</span>, it is no longer recommended by this document.<a href="#section-7.5-2.7" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.5-2.8">TLS 1.3 (<span><a href="https://www.rfc-editor.org/rfc/rfc8446#section-4.4.2.1" class="relref">Section 4.4.2.1</a> of [<a href="#RFC8446" class="cite xref">RFC8446</a>]</span>) allows the association of OCSP information with intermediate certificates by using an extension to the CertificateEntry structure. However, using this facility remains impractical because many certification authorities (CAs) either do not publish OCSP for CA certificates or publish OCSP reports with a lifetime that is too long to be useful.<a href="#section-7.5-2.8" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-7.5-2.9">Both CRLs and OCSP depend on relatively reliable connectivity to the Internet, which might not be available to certain kinds of nodes. A common example is newly provisioned devices that need to establish a secure connection in order to boot up for the first time.<a href="#section-7.5-2.9" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-7.5-3">For the common use cases of public key certificates in TLS, servers <span class="bcp14">SHOULD</span> support the following as a best practice given the current state of the art and as a foundation for a possible future solution: OCSP <span>[<a href="#RFC6960" class="cite xref">RFC6960</a>]</span> and OCSP stapling using the <code>status_request</code> extension defined in <span>[<a href="#RFC6066" class="cite xref">RFC6066</a>]</span>. Note that the exact mechanism for embedding the <code>status_request</code> extension differs between TLS 1.2 and 1.3. As a matter of local policy, server operators <span class="bcp14">MAY</span> request that CAs issue must-staple <span>[<a href="#RFC7633" class="cite xref">RFC7633</a>]</span> certificates for the server and/or for client authentication, but we recommend reviewing the operational conditions before deciding on this approach.<a href="#section-7.5-3" class="pilcrow">¶</a></p>
<p id="section-7.5-4">The considerations in this section do not apply to scenarios where the DNS-Based
Authentication of Named Entities (DANE) TLSA resource record <span>[<a href="#RFC6698" class="cite xref">RFC6698</a>]</span> is used to signal to a client which certificate a server considers valid and good to use for TLS connections.<a href="#section-7.5-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<section id="section-8">
<h2 id="name-references">
<a href="#section-8" class="section-number selfRef">8. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-8.1">
<h3 id="name-normative-references">
<a href="#section-8.1" class="section-number selfRef">8.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3766">[RFC3766]</dt>
<dd>
<span class="refAuthor">Orman, H.</span> and <span class="refAuthor">P. Hoffman</span>, <span class="refTitle">"Determining Strengths For Public Keys Used For Exchanging Symmetric Keys"</span>, <span class="seriesInfo">BCP 86</span>, <span class="seriesInfo">RFC 3766</span>, <span class="seriesInfo">DOI 10.17487/RFC3766</span>, <time datetime="2004-04" class="refDate">April 2004</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3766">https://www.rfc-editor.org/info/rfc3766</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5246">[RFC5246]</dt>
<dd>
<span class="refAuthor">Dierks, T.</span> and <span class="refAuthor">E. Rescorla</span>, <span class="refTitle">"The Transport Layer Security (TLS) Protocol Version 1.2"</span>, <span class="seriesInfo">RFC 5246</span>, <span class="seriesInfo">DOI 10.17487/RFC5246</span>, <time datetime="2008-08" class="refDate">August 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5246">https://www.rfc-editor.org/info/rfc5246</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5288">[RFC5288]</dt>
<dd>
<span class="refAuthor">Salowey, J.</span>, <span class="refAuthor">Choudhury, A.</span>, and <span class="refAuthor">D. McGrew</span>, <span class="refTitle">"AES Galois Counter Mode (GCM) Cipher Suites for TLS"</span>, <span class="seriesInfo">RFC 5288</span>, <span class="seriesInfo">DOI 10.17487/RFC5288</span>, <time datetime="2008-08" class="refDate">August 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5288">https://www.rfc-editor.org/info/rfc5288</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5746">[RFC5746]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refAuthor">Ray, M.</span>, <span class="refAuthor">Dispensa, S.</span>, and <span class="refAuthor">N. Oskov</span>, <span class="refTitle">"Transport Layer Security (TLS) Renegotiation Indication Extension"</span>, <span class="seriesInfo">RFC 5746</span>, <span class="seriesInfo">DOI 10.17487/RFC5746</span>, <time datetime="2010-02" class="refDate">February 2010</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5746">https://www.rfc-editor.org/info/rfc5746</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6066">[RFC6066]</dt>
<dd>
<span class="refAuthor">Eastlake 3rd, D.</span>, <span class="refTitle">"Transport Layer Security (TLS) Extensions: Extension Definitions"</span>, <span class="seriesInfo">RFC 6066</span>, <span class="seriesInfo">DOI 10.17487/RFC6066</span>, <time datetime="2011-01" class="refDate">January 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6066">https://www.rfc-editor.org/info/rfc6066</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6125">[RFC6125]</dt>
<dd>
<span class="refAuthor">Saint-Andre, P.</span> and <span class="refAuthor">J. Hodges</span>, <span class="refTitle">"Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)"</span>, <span class="seriesInfo">RFC 6125</span>, <span class="seriesInfo">DOI 10.17487/RFC6125</span>, <time datetime="2011-03" class="refDate">March 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6125">https://www.rfc-editor.org/info/rfc6125</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6176">[RFC6176]</dt>
<dd>
<span class="refAuthor">Turner, S.</span> and <span class="refAuthor">T. Polk</span>, <span class="refTitle">"Prohibiting Secure Sockets Layer (SSL) Version 2.0"</span>, <span class="seriesInfo">RFC 6176</span>, <span class="seriesInfo">DOI 10.17487/RFC6176</span>, <time datetime="2011-03" class="refDate">March 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6176">https://www.rfc-editor.org/info/rfc6176</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6347">[RFC6347]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span> and <span class="refAuthor">N. Modadugu</span>, <span class="refTitle">"Datagram Transport Layer Security Version 1.2"</span>, <span class="seriesInfo">RFC 6347</span>, <span class="seriesInfo">DOI 10.17487/RFC6347</span>, <time datetime="2012-01" class="refDate">January 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6347">https://www.rfc-editor.org/info/rfc6347</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6979">[RFC6979]</dt>
<dd>
<span class="refAuthor">Pornin, T.</span>, <span class="refTitle">"Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)"</span>, <span class="seriesInfo">RFC 6979</span>, <span class="seriesInfo">DOI 10.17487/RFC6979</span>, <time datetime="2013-08" class="refDate">August 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6979">https://www.rfc-editor.org/info/rfc6979</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7301">[RFC7301]</dt>
<dd>
<span class="refAuthor">Friedl, S.</span>, <span class="refAuthor">Popov, A.</span>, <span class="refAuthor">Langley, A.</span>, and <span class="refAuthor">E. Stephan</span>, <span class="refTitle">"Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension"</span>, <span class="seriesInfo">RFC 7301</span>, <span class="seriesInfo">DOI 10.17487/RFC7301</span>, <time datetime="2014-07" class="refDate">July 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7301">https://www.rfc-editor.org/info/rfc7301</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7366">[RFC7366]</dt>
<dd>
<span class="refAuthor">Gutmann, P.</span>, <span class="refTitle">"Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"</span>, <span class="seriesInfo">RFC 7366</span>, <span class="seriesInfo">DOI 10.17487/RFC7366</span>, <time datetime="2014-09" class="refDate">September 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7366">https://www.rfc-editor.org/info/rfc7366</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7465">[RFC7465]</dt>
<dd>
<span class="refAuthor">Popov, A.</span>, <span class="refTitle">"Prohibiting RC4 Cipher Suites"</span>, <span class="seriesInfo">RFC 7465</span>, <span class="seriesInfo">DOI 10.17487/RFC7465</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7465">https://www.rfc-editor.org/info/rfc7465</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7627">[RFC7627]</dt>
<dd>
<span class="refAuthor">Bhargavan, K., Ed.</span>, <span class="refAuthor">Delignat-Lavaud, A.</span>, <span class="refAuthor">Pironti, A.</span>, <span class="refAuthor">Langley, A.</span>, and <span class="refAuthor">M. Ray</span>, <span class="refTitle">"Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension"</span>, <span class="seriesInfo">RFC 7627</span>, <span class="seriesInfo">DOI 10.17487/RFC7627</span>, <time datetime="2015-09" class="refDate">September 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7627">https://www.rfc-editor.org/info/rfc7627</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7748">[RFC7748]</dt>
<dd>
<span class="refAuthor">Langley, A.</span>, <span class="refAuthor">Hamburg, M.</span>, and <span class="refAuthor">S. Turner</span>, <span class="refTitle">"Elliptic Curves for Security"</span>, <span class="seriesInfo">RFC 7748</span>, <span class="seriesInfo">DOI 10.17487/RFC7748</span>, <time datetime="2016-01" class="refDate">January 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7748">https://www.rfc-editor.org/info/rfc7748</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8422">[RFC8422]</dt>
<dd>
<span class="refAuthor">Nir, Y.</span>, <span class="refAuthor">Josefsson, S.</span>, and <span class="refAuthor">M. Pegourie-Gonnard</span>, <span class="refTitle">"Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier"</span>, <span class="seriesInfo">RFC 8422</span>, <span class="seriesInfo">DOI 10.17487/RFC8422</span>, <time datetime="2018-08" class="refDate">August 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8422">https://www.rfc-editor.org/info/rfc8422</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8446">[RFC8446]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refTitle">"The Transport Layer Security (TLS) Protocol Version 1.3"</span>, <span class="seriesInfo">RFC 8446</span>, <span class="seriesInfo">DOI 10.17487/RFC8446</span>, <time datetime="2018-08" class="refDate">August 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8446">https://www.rfc-editor.org/info/rfc8446</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8996">[RFC8996]</dt>
<dd>
<span class="refAuthor">Moriarty, K.</span> and <span class="refAuthor">S. Farrell</span>, <span class="refTitle">"Deprecating TLS 1.0 and TLS 1.1"</span>, <span class="seriesInfo">BCP 195</span>, <span class="seriesInfo">RFC 8996</span>, <span class="seriesInfo">DOI 10.17487/RFC8996</span>, <time datetime="2021-03" class="refDate">March 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8996">https://www.rfc-editor.org/info/rfc8996</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9147">[RFC9147]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refAuthor">Tschofenig, H.</span>, and <span class="refAuthor">N. Modadugu</span>, <span class="refTitle">"The Datagram Transport Layer Security (DTLS) Protocol Version 1.3"</span>, <span class="seriesInfo">RFC 9147</span>, <span class="seriesInfo">DOI 10.17487/RFC9147</span>, <time datetime="2022-04" class="refDate">April 2022</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9147">https://www.rfc-editor.org/info/rfc9147</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9155">[RFC9155]</dt>
<dd>
<span class="refAuthor">Velvindron, L.</span>, <span class="refAuthor">Moriarty, K.</span>, and <span class="refAuthor">A. Ghedini</span>, <span class="refTitle">"Deprecating MD5 and SHA-1 Signature Hashes in TLS 1.2 and DTLS 1.2"</span>, <span class="seriesInfo">RFC 9155</span>, <span class="seriesInfo">DOI 10.17487/RFC9155</span>, <time datetime="2021-12" class="refDate">December 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9155">https://www.rfc-editor.org/info/rfc9155</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-8.2">
<h3 id="name-informative-references">
<a href="#section-8.2" class="section-number selfRef">8.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="I-D.irtf-cfrg-aead-limits">[AEAD-LIMITS]</dt>
<dd>
<span class="refAuthor">Günther, F.</span>, <span class="refAuthor">Thomson, M.</span>, and <span class="refAuthor">C. A. Wood</span>, <span class="refTitle">"Usage Limits on AEAD Algorithms"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-irtf-cfrg-aead-limits-05</span>, <time datetime="2022-07-11" class="refDate">11 July 2022</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-05">https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-05</a>></span>. </dd>
<dd class="break"></dd>
<dt id="ALPACA">[ALPACA]</dt>
<dd>
<span class="refAuthor">Brinkmann, M.</span>, <span class="refAuthor">Dresen, C.</span>, <span class="refAuthor">Merget, R.</span>, <span class="refAuthor">Poddebniak, D.</span>, <span class="refAuthor">Müller, J.</span>, <span class="refAuthor">Somorovsky, J.</span>, <span class="refAuthor">Schwenk, J.</span>, and <span class="refAuthor">S. Schinzel</span>, <span class="refTitle">"ALPACA: Application Layer Protocol Confusion - Analyzing and Mitigating Cracks in TLS Authentication"</span>, <span class="refContent">30th USENIX Security Symposium (USENIX Security 21)</span>, <time datetime="2021-08" class="refDate">August 2021</time>, <span><<a href="https://www.usenix.org/conference/usenixsecurity21/presentation/brinkmann">https://www.usenix.org/conference/usenixsecurity21/presentation/brinkmann</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Antipa2003">[Antipa2003]</dt>
<dd>
<span class="refAuthor">Antipa, A.</span>, <span class="refAuthor">Brown, D. R. L.</span>, <span class="refAuthor">Menezes, A.</span>, <span class="refAuthor">Struik, R.</span>, and <span class="refAuthor">S. Vanstone</span>, <span class="refTitle">"Validation of Elliptic Curve Public Keys"</span>, <span class="refContent">Public Key Cryptography - PKC 2003</span>, <time datetime="2003-12" class="refDate">December 2003</time>, <span><<a href="https://doi.org/10.1007/3-540-36288-6_16">https://doi.org/10.1007/3-540-36288-6_16</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Boeck2016">[Boeck2016]</dt>
<dd>
<span class="refAuthor">Böck, H.</span>, <span class="refAuthor">Zauner, A.</span>, <span class="refAuthor">Devlin, S.</span>, <span class="refAuthor">Somorovsky, J.</span>, and <span class="refAuthor">P. Jovanovic</span>, <span class="refTitle">"Nonce-Disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS"</span>, <time datetime="2016-05" class="refDate">May 2016</time>, <span><<a href="https://eprint.iacr.org/2016/475.pdf">https://eprint.iacr.org/2016/475.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="CAB-Baseline">[CAB-Baseline]</dt>
<dd>
<span class="refAuthor">CA/Browser Forum</span>, <span class="refTitle">"Baseline Requirements for the Issuance and Management of Publicly-Trusted Certificates"</span>, <span class="seriesInfo">Version 1.8.4</span>, <time datetime="2022-04" class="refDate">April 2022</time>, <span><<a href="https://cabforum.org/documents/">https://cabforum.org/documents/</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.mattsson-cfrg-det-sigs-with-noise">[CFRG-DET-SIGS]</dt>
<dd>
<span class="refAuthor">Preuß Mattsson, J.</span>, <span class="refAuthor">Thormarker, E.</span>, and <span class="refAuthor">S. Ruohomaa</span>, <span class="refTitle">"Deterministic ECDSA and EdDSA Signatures with Additional Randomness"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-irtf-cfrg-det-sigs-with-noise-00</span>, <time datetime="2022-08-08" class="refDate">8 August 2022</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-det-sigs-with-noise-00">https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-det-sigs-with-noise-00</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Chung18">[Chung18]</dt>
<dd>
<span class="refAuthor">Chung, T.</span>, <span class="refAuthor">Lok, J.</span>, <span class="refAuthor">Chandrasekaran, B.</span>, <span class="refAuthor">Choffnes, D.</span>, <span class="refAuthor">Levin, D.</span>, <span class="refAuthor">Maggs, B.</span>, <span class="refAuthor">Mislove, A.</span>, <span class="refAuthor">Rula, J.</span>, <span class="refAuthor">Sullivan, N.</span>, and <span class="refAuthor">C. Wilson</span>, <span class="refTitle">"Is the Web Ready for OCSP Must-Staple?"</span>, <span class="refContent">Proceedings of the Internet Measurement Conference 2018</span>, <span class="seriesInfo">DOI 10.1145/3278532.3278543</span>, <time datetime="2018-10" class="refDate">October 2018</time>, <span><<a href="https://doi.org/10.1145/3278532.3278543">https://doi.org/10.1145/3278532.3278543</a>></span>. </dd>
<dd class="break"></dd>
<dt id="CRLite">[CRLite]</dt>
<dd>
<span class="refAuthor">Larisch, J.</span>, <span class="refAuthor">Choffnes, D.</span>, <span class="refAuthor">Levin, D.</span>, <span class="refAuthor">Maggs, B.</span>, <span class="refAuthor">Mislove, A.</span>, and <span class="refAuthor">C. Wilson</span>, <span class="refTitle">"CRLite: A Scalable System for Pushing All TLS Revocations to All Browsers"</span>, <span class="refContent">2017 IEEE Symposium on Security and Privacy (SP)</span>, <span class="seriesInfo">DOI 10.1109/sp.2017.17</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://doi.org/10.1109/sp.2017.17">https://doi.org/10.1109/sp.2017.17</a>></span>. </dd>
<dd class="break"></dd>
<dt id="CVE">[CVE]</dt>
<dd>
<span class="refAuthor">MITRE</span>, <span class="refTitle">"Common Vulnerabilities and Exposures"</span>, <span><<a href="https://cve.mitre.org">https://cve.mitre.org</a>></span>. </dd>
<dd class="break"></dd>
<dt id="DegabrieleP07">[DegabrieleP07]</dt>
<dd>
<span class="refAuthor">Degabriele, J.</span> and <span class="refAuthor">K. Paterson</span>, <span class="refTitle">"Attacking the IPsec Standards in Encryption-only Configurations"</span>, <span class="refContent">2007 IEEE Symposium on Security and Privacy (SP '07)</span>, <span class="seriesInfo">DOI 10.1109/sp.2007.8</span>, <time datetime="2007-05" class="refDate">May 2007</time>, <span><<a href="https://doi.org/10.1109/sp.2007.8">https://doi.org/10.1109/sp.2007.8</a>></span>. </dd>
<dd class="break"></dd>
<dt id="DROWN">[DROWN]</dt>
<dd>
<span class="refAuthor">Aviram, N.</span>, <span class="refAuthor">Schinzel, S.</span>, <span class="refAuthor">Somorovsky, J.</span>, <span class="refAuthor">Heninger, N.</span>, <span class="refAuthor">Dankel, M.</span>, <span class="refAuthor">Steube, J.</span>, <span class="refAuthor">Valenta, L.</span>, <span class="refAuthor">Adrian, D.</span>, <span class="refAuthor">Halderman, J.</span>, <span class="refAuthor">Dukhovni, V.</span>, <span class="refAuthor">Käsper, E.</span>, <span class="refAuthor">Cohney, S.</span>, <span class="refAuthor">Engels, S.</span>, <span class="refAuthor">Paar, C.</span>, and <span class="refAuthor">Y. Shavitt</span>, <span class="refTitle">"DROWN: Breaking TLS using SSLv2"</span>, <span class="refContent">25th USENIX Security Symposium (USENIX Security 16)</span>, <time datetime="2016-08" class="refDate">August 2016</time>, <span><<a href="https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram">https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Heninger2012">[Heninger2012]</dt>
<dd>
<span class="refAuthor">Heninger, N.</span>, <span class="refAuthor">Durumeric, Z.</span>, <span class="refAuthor">Wustrow, E.</span>, and <span class="refAuthor">J. A. Halderman</span>, <span class="refTitle">"Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices"</span>, <span class="refContent">21st Usenix Security Symposium</span>, <time datetime="2012-08" class="refDate">August 2012</time>. </dd>
<dd class="break"></dd>
<dt id="IANA_TLS">[IANA_TLS]</dt>
<dd>
<span class="refAuthor">IANA</span>, <span class="refTitle">"Transport Layer Security (TLS) Parameters"</span>, <span><<a href="https://www.iana.org/assignments/tls-parameters">https://www.iana.org/assignments/tls-parameters</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-uta-tls13-iot-profile">[IOT-PROFILE]</dt>
<dd>
<span class="refAuthor">Tschofenig, H.</span> and <span class="refAuthor">T. Fossati</span>, <span class="refTitle">"TLS/DTLS 1.3 Profiles for the Internet of Things"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-uta-tls13-iot-profile-05</span>, <time datetime="2022-07-06" class="refDate">6 July 2022</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-05">https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-05</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Jager2015">[Jager2015]</dt>
<dd>
<span class="refAuthor">Jager, T.</span>, <span class="refAuthor">Schwenk, J.</span>, and <span class="refAuthor">J. Somorovsky</span>, <span class="refTitle">"Practical Invalid Curve Attacks on TLS-ECDH"</span>, <span class="refContent">Computer Security -- ESORICS 2015, pp. 407-425</span>, <span class="seriesInfo">DOI 10.1007/978-3-319-24174-6_21</span>, <time datetime="2015" class="refDate">2015</time>, <span><<a href="https://doi.org/10.1007/978-3-319-24174-6_21">https://doi.org/10.1007/978-3-319-24174-6_21</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Joux2006">[Joux2006]</dt>
<dd>
<span class="refAuthor">Joux, A.</span>, <span class="refTitle">"Authentication Failures in NIST version of GCM"</span>, <time datetime="2006" class="refDate">2006</time>, <span><<a href="https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf">https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Kim2014">[Kim2014]</dt>
<dd>
<span class="refAuthor">Kim, Y.</span>, <span class="refAuthor">Daly, R.</span>, <span class="refAuthor">Kim, J.</span>, <span class="refAuthor">Fallin, C.</span>, <span class="refAuthor">Lee, J. H.</span>, <span class="refAuthor">Lee, D.</span>, <span class="refAuthor">Wilkerson, C.</span>, <span class="refAuthor">Lai, K.</span>, and <span class="refAuthor">O. Mutlu</span>, <span class="refTitle">"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"</span>, <span class="seriesInfo">DOI 10.1109/ISCA.2014.6853210</span>, <time datetime="2014-07" class="refDate">July 2014</time>, <span><<a href="https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf">https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Kleinjung2010">[Kleinjung2010]</dt>
<dd>
<span class="refAuthor">Kleinjung, T.</span>, <span class="refAuthor">Aoki, K.</span>, <span class="refAuthor">Franke, J.</span>, <span class="refAuthor">Lenstra, A.</span>, <span class="refAuthor">Thomé, E.</span>, <span class="refAuthor">Bos, J.</span>, <span class="refAuthor">Gaudry, P.</span>, <span class="refAuthor">Kruppa, A.</span>, <span class="refAuthor">Montgomery, P.</span>, <span class="refAuthor">Osvik, D.</span>, <span class="refAuthor">te Riele, H.</span>, <span class="refAuthor">Timofeev, A.</span>, and <span class="refAuthor">P. Zimmermann</span>, <span class="refTitle">"Factorization of a 768-Bit RSA Modulus"</span>, <span class="refContent">Advances in Cryptology - CRYPTO 2010, pp. 333-350</span>, <span class="seriesInfo">DOI 10.1007/978-3-642-14623-7_18</span>, <time datetime="2010" class="refDate">2010</time>, <span><<a href="https://doi.org/10.1007/978-3-642-14623-7_18">https://doi.org/10.1007/978-3-642-14623-7_18</a>></span>. </dd>
<dd class="break"></dd>
<dt id="LetsRevoke">[LetsRevoke]</dt>
<dd>
<span class="refAuthor">Smith, T.</span>, <span class="refAuthor">Dickinson, L.</span>, and <span class="refAuthor">K. Seamons</span>, <span class="refTitle">"Let's Revoke: Scalable Global Certificate Revocation"</span>, <span class="refContent">Proceedings 2020 Network and Distributed System Security Symposium</span>, <span class="seriesInfo">DOI 10.14722/ndss.2020.24084</span>, <time datetime="2020-02" class="refDate">February 2020</time>, <span><<a href="https://doi.org/10.14722/ndss.2020.24084">https://doi.org/10.14722/ndss.2020.24084</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Logjam">[Logjam]</dt>
<dd>
<span class="refAuthor">Adrian, D.</span>, <span class="refAuthor">Bhargavan, K.</span>, <span class="refAuthor">Durumeric, Z.</span>, <span class="refAuthor">Gaudry, P.</span>, <span class="refAuthor">Green, M.</span>, <span class="refAuthor">Halderman, J.</span>, <span class="refAuthor">Heninger, N.</span>, <span class="refAuthor">Springall, D.</span>, <span class="refAuthor">Thomé, E.</span>, <span class="refAuthor">Valenta, L.</span>, <span class="refAuthor">VanderSloot, B.</span>, <span class="refAuthor">Wustrow, E.</span>, <span class="refAuthor">Zanella-Béguelin, S.</span>, and <span class="refAuthor">P. Zimmermann</span>, <span class="refTitle">"Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice"</span>, <span class="refContent">Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 5-17</span>, <span class="seriesInfo">DOI 10.1145/2810103.2813707</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span><<a href="https://doi.org/10.1145/2810103.2813707">https://doi.org/10.1145/2810103.2813707</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Multiple-Encryption">[Multiple-Encryption]</dt>
<dd>
<span class="refAuthor">Merkle, R.</span> and <span class="refAuthor">M. Hellman</span>, <span class="refTitle">"On the security of multiple encryption"</span>, <span class="refContent">Communications of the ACM, Vol. 24, Issue 7, pp. 465-467</span>, <span class="seriesInfo">DOI 10.1145/358699.358718</span>, <time datetime="1981-07" class="refDate">July 1981</time>, <span><<a href="https://doi.org/10.1145/358699.358718">https://doi.org/10.1145/358699.358718</a>></span>. </dd>
<dd class="break"></dd>
<dt id="NIST.SP.800-56A">[NIST.SP.800-56A]</dt>
<dd>
<span class="refAuthor">National Institute of Standards and Technology</span>, <span class="refTitle">"Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography"</span>, <span class="refContent">Revision 3</span>, <span class="seriesInfo">NIST Special Publication 800-56A</span>, <span class="seriesInfo">DOI 10.6028/NIST.SP.800-56Ar3</span>, <time datetime="2018-04" class="refDate">April 2018</time>, <span><<a href="https://doi.org/10.6028/NIST.SP.800-56Ar3">https://doi.org/10.6028/NIST.SP.800-56Ar3</a>></span>. </dd>
<dd class="break"></dd>
<dt id="PatersonRS11">[PatersonRS11]</dt>
<dd>
<span class="refAuthor">Paterson, K.</span>, <span class="refAuthor">Ristenpart, T.</span>, and <span class="refAuthor">T. Shrimpton</span>, <span class="refTitle">"Tag Size Does Matter: Attacks and Proofs for the TLS Record Protocol"</span>, <span class="refContent">Proceedings of the 17th International conference on The Theory and Application of Cryptology and Information Security, pp. 372-389</span>, <span class="seriesInfo">DOI 10.1007/978-3-642-25385-0_20</span>, <time datetime="2011-12" class="refDate">December 2011</time>, <span><<a href="https://doi.org/10.1007/978-3-642-25385-0_20">https://doi.org/10.1007/978-3-642-25385-0_20</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Poddebniak2017">[Poddebniak2017]</dt>
<dd>
<span class="refAuthor">Poddebniak, D.</span>, <span class="refAuthor">Somorovsky, J.</span>, <span class="refAuthor">Schinzel, S.</span>, <span class="refAuthor">Lochter, M.</span>, and <span class="refAuthor">P. Rösler</span>, <span class="refTitle">"Attacking Deterministic Signature Schemes using Fault Attacks"</span>, <span class="refContent">Conference: 2018 IEEE European Symposium on Security and Privacy</span>, <span class="seriesInfo">DOI 10.1109/EuroSP.2018.00031</span>, <time datetime="2018-04" class="refDate">April 2018</time>, <span><<a href="https://eprint.iacr.org/2017/1014.pdf">https://eprint.iacr.org/2017/1014.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="POODLE">[POODLE]</dt>
<dd>
<span class="refAuthor">US-CERT</span>, <span class="refTitle">"SSL 3.0 Protocol Vulnerability and POODLE Attack"</span>, <time datetime="2014-10" class="refDate">October 2014</time>, <span><<a href="https://www.us-cert.gov/ncas/alerts/TA14-290A">https://www.us-cert.gov/ncas/alerts/TA14-290A</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RACCOON">[RACCOON]</dt>
<dd>
<span class="refAuthor">Merget, R.</span>, <span class="refAuthor">Brinkmann, M.</span>, <span class="refAuthor">Aviram, N.</span>, <span class="refAuthor">Somorovsky, J.</span>, <span class="refAuthor">Mittmann, J.</span>, and <span class="refAuthor">J. Schwenk</span>, <span class="refTitle">"Raccoon Attack: Finding and Exploiting Most-Significant-Bit-Oracles in TLS-DH(E)"</span>, <span class="refContent">30th USENIX Security Symposium (USENIX Security 21)</span>, <time datetime="2021" class="refDate">2021</time>, <span><<a href="https://www.usenix.org/conference/usenixsecurity21/presentation/merget">https://www.usenix.org/conference/usenixsecurity21/presentation/merget</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2026">[RFC2026]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"The Internet Standards Process -- Revision 3"</span>, <span class="seriesInfo">BCP 9</span>, <span class="seriesInfo">RFC 2026</span>, <span class="seriesInfo">DOI 10.17487/RFC2026</span>, <time datetime="1996-10" class="refDate">October 1996</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2026">https://www.rfc-editor.org/info/rfc2026</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2246">[RFC2246]</dt>
<dd>
<span class="refAuthor">Dierks, T.</span> and <span class="refAuthor">C. Allen</span>, <span class="refTitle">"The TLS Protocol Version 1.0"</span>, <span class="seriesInfo">RFC 2246</span>, <span class="seriesInfo">DOI 10.17487/RFC2246</span>, <time datetime="1999-01" class="refDate">January 1999</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2246">https://www.rfc-editor.org/info/rfc2246</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3261">[RFC3261]</dt>
<dd>
<span class="refAuthor">Rosenberg, J.</span>, <span class="refAuthor">Schulzrinne, H.</span>, <span class="refAuthor">Camarillo, G.</span>, <span class="refAuthor">Johnston, A.</span>, <span class="refAuthor">Peterson, J.</span>, <span class="refAuthor">Sparks, R.</span>, <span class="refAuthor">Handley, M.</span>, and <span class="refAuthor">E. Schooler</span>, <span class="refTitle">"SIP: Session Initiation Protocol"</span>, <span class="seriesInfo">RFC 3261</span>, <span class="seriesInfo">DOI 10.17487/RFC3261</span>, <time datetime="2002-06" class="refDate">June 2002</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3261">https://www.rfc-editor.org/info/rfc3261</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3602">[RFC3602]</dt>
<dd>
<span class="refAuthor">Frankel, S.</span>, <span class="refAuthor">Glenn, R.</span>, and <span class="refAuthor">S. Kelly</span>, <span class="refTitle">"The AES-CBC Cipher Algorithm and Its Use with IPsec"</span>, <span class="seriesInfo">RFC 3602</span>, <span class="seriesInfo">DOI 10.17487/RFC3602</span>, <time datetime="2003-09" class="refDate">September 2003</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3602">https://www.rfc-editor.org/info/rfc3602</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4346">[RFC4346]</dt>
<dd>
<span class="refAuthor">Dierks, T.</span> and <span class="refAuthor">E. Rescorla</span>, <span class="refTitle">"The Transport Layer Security (TLS) Protocol Version 1.1"</span>, <span class="seriesInfo">RFC 4346</span>, <span class="seriesInfo">DOI 10.17487/RFC4346</span>, <time datetime="2006-04" class="refDate">April 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4346">https://www.rfc-editor.org/info/rfc4346</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4347">[RFC4347]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span> and <span class="refAuthor">N. Modadugu</span>, <span class="refTitle">"Datagram Transport Layer Security"</span>, <span class="seriesInfo">RFC 4347</span>, <span class="seriesInfo">DOI 10.17487/RFC4347</span>, <time datetime="2006-04" class="refDate">April 2006</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4347">https://www.rfc-editor.org/info/rfc4347</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC4949">[RFC4949]</dt>
<dd>
<span class="refAuthor">Shirey, R.</span>, <span class="refTitle">"Internet Security Glossary, Version 2"</span>, <span class="seriesInfo">FYI 36</span>, <span class="seriesInfo">RFC 4949</span>, <span class="seriesInfo">DOI 10.17487/RFC4949</span>, <time datetime="2007-08" class="refDate">August 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc4949">https://www.rfc-editor.org/info/rfc4949</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5077">[RFC5077]</dt>
<dd>
<span class="refAuthor">Salowey, J.</span>, <span class="refAuthor">Zhou, H.</span>, <span class="refAuthor">Eronen, P.</span>, and <span class="refAuthor">H. Tschofenig</span>, <span class="refTitle">"Transport Layer Security (TLS) Session Resumption without Server-Side State"</span>, <span class="seriesInfo">RFC 5077</span>, <span class="seriesInfo">DOI 10.17487/RFC5077</span>, <time datetime="2008-01" class="refDate">January 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5077">https://www.rfc-editor.org/info/rfc5077</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5116">[RFC5116]</dt>
<dd>
<span class="refAuthor">McGrew, D.</span>, <span class="refTitle">"An Interface and Algorithms for Authenticated Encryption"</span>, <span class="seriesInfo">RFC 5116</span>, <span class="seriesInfo">DOI 10.17487/RFC5116</span>, <time datetime="2008-01" class="refDate">January 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5116">https://www.rfc-editor.org/info/rfc5116</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5280">[RFC5280]</dt>
<dd>
<span class="refAuthor">Cooper, D.</span>, <span class="refAuthor">Santesson, S.</span>, <span class="refAuthor">Farrell, S.</span>, <span class="refAuthor">Boeyen, S.</span>, <span class="refAuthor">Housley, R.</span>, and <span class="refAuthor">W. Polk</span>, <span class="refTitle">"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"</span>, <span class="seriesInfo">RFC 5280</span>, <span class="seriesInfo">DOI 10.17487/RFC5280</span>, <time datetime="2008-05" class="refDate">May 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5280">https://www.rfc-editor.org/info/rfc5280</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5321">[RFC5321]</dt>
<dd>
<span class="refAuthor">Klensin, J.</span>, <span class="refTitle">"Simple Mail Transfer Protocol"</span>, <span class="seriesInfo">RFC 5321</span>, <span class="seriesInfo">DOI 10.17487/RFC5321</span>, <time datetime="2008-10" class="refDate">October 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5321">https://www.rfc-editor.org/info/rfc5321</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6101">[RFC6101]</dt>
<dd>
<span class="refAuthor">Freier, A.</span>, <span class="refAuthor">Karlton, P.</span>, and <span class="refAuthor">P. Kocher</span>, <span class="refTitle">"The Secure Sockets Layer (SSL) Protocol Version 3.0"</span>, <span class="seriesInfo">RFC 6101</span>, <span class="seriesInfo">DOI 10.17487/RFC6101</span>, <time datetime="2011-08" class="refDate">August 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6101">https://www.rfc-editor.org/info/rfc6101</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6120">[RFC6120]</dt>
<dd>
<span class="refAuthor">Saint-Andre, P.</span>, <span class="refTitle">"Extensible Messaging and Presence Protocol (XMPP): Core"</span>, <span class="seriesInfo">RFC 6120</span>, <span class="seriesInfo">DOI 10.17487/RFC6120</span>, <time datetime="2011-03" class="refDate">March 2011</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6120">https://www.rfc-editor.org/info/rfc6120</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6698">[RFC6698]</dt>
<dd>
<span class="refAuthor">Hoffman, P.</span> and <span class="refAuthor">J. Schlyter</span>, <span class="refTitle">"The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA"</span>, <span class="seriesInfo">RFC 6698</span>, <span class="seriesInfo">DOI 10.17487/RFC6698</span>, <time datetime="2012-08" class="refDate">August 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6698">https://www.rfc-editor.org/info/rfc6698</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6797">[RFC6797]</dt>
<dd>
<span class="refAuthor">Hodges, J.</span>, <span class="refAuthor">Jackson, C.</span>, and <span class="refAuthor">A. Barth</span>, <span class="refTitle">"HTTP Strict Transport Security (HSTS)"</span>, <span class="seriesInfo">RFC 6797</span>, <span class="seriesInfo">DOI 10.17487/RFC6797</span>, <time datetime="2012-11" class="refDate">November 2012</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6797">https://www.rfc-editor.org/info/rfc6797</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6960">[RFC6960]</dt>
<dd>
<span class="refAuthor">Santesson, S.</span>, <span class="refAuthor">Myers, M.</span>, <span class="refAuthor">Ankney, R.</span>, <span class="refAuthor">Malpani, A.</span>, <span class="refAuthor">Galperin, S.</span>, and <span class="refAuthor">C. Adams</span>, <span class="refTitle">"X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP"</span>, <span class="seriesInfo">RFC 6960</span>, <span class="seriesInfo">DOI 10.17487/RFC6960</span>, <time datetime="2013-06" class="refDate">June 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6960">https://www.rfc-editor.org/info/rfc6960</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC6961">[RFC6961]</dt>
<dd>
<span class="refAuthor">Pettersen, Y.</span>, <span class="refTitle">"The Transport Layer Security (TLS) Multiple Certificate Status Request Extension"</span>, <span class="seriesInfo">RFC 6961</span>, <span class="seriesInfo">DOI 10.17487/RFC6961</span>, <time datetime="2013-06" class="refDate">June 2013</time>, <span><<a href="https://www.rfc-editor.org/info/rfc6961">https://www.rfc-editor.org/info/rfc6961</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7228">[RFC7228]</dt>
<dd>
<span class="refAuthor">Bormann, C.</span>, <span class="refAuthor">Ersue, M.</span>, and <span class="refAuthor">A. Keranen</span>, <span class="refTitle">"Terminology for Constrained-Node Networks"</span>, <span class="seriesInfo">RFC 7228</span>, <span class="seriesInfo">DOI 10.17487/RFC7228</span>, <time datetime="2014-05" class="refDate">May 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7228">https://www.rfc-editor.org/info/rfc7228</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7435">[RFC7435]</dt>
<dd>
<span class="refAuthor">Dukhovni, V.</span>, <span class="refTitle">"Opportunistic Security: Some Protection Most of the Time"</span>, <span class="seriesInfo">RFC 7435</span>, <span class="seriesInfo">DOI 10.17487/RFC7435</span>, <time datetime="2014-12" class="refDate">December 2014</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7435">https://www.rfc-editor.org/info/rfc7435</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7457">[RFC7457]</dt>
<dd>
<span class="refAuthor">Sheffer, Y.</span>, <span class="refAuthor">Holz, R.</span>, and <span class="refAuthor">P. Saint-Andre</span>, <span class="refTitle">"Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS)"</span>, <span class="seriesInfo">RFC 7457</span>, <span class="seriesInfo">DOI 10.17487/RFC7457</span>, <time datetime="2015-02" class="refDate">February 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7457">https://www.rfc-editor.org/info/rfc7457</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7507">[RFC7507]</dt>
<dd>
<span class="refAuthor">Moeller, B.</span> and <span class="refAuthor">A. Langley</span>, <span class="refTitle">"TLS Fallback Signaling Cipher Suite Value (SCSV) for Preventing Protocol Downgrade Attacks"</span>, <span class="seriesInfo">RFC 7507</span>, <span class="seriesInfo">DOI 10.17487/RFC7507</span>, <time datetime="2015-04" class="refDate">April 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7507">https://www.rfc-editor.org/info/rfc7507</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7525">[RFC7525]</dt>
<dd>
<span class="refAuthor">Sheffer, Y.</span>, <span class="refAuthor">Holz, R.</span>, and <span class="refAuthor">P. Saint-Andre</span>, <span class="refTitle">"Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"</span>, <span class="seriesInfo">BCP 195</span>, <span class="seriesInfo">RFC 7525</span>, <span class="seriesInfo">DOI 10.17487/RFC7525</span>, <time datetime="2015-05" class="refDate">May 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7525">https://www.rfc-editor.org/info/rfc7525</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7568">[RFC7568]</dt>
<dd>
<span class="refAuthor">Barnes, R.</span>, <span class="refAuthor">Thomson, M.</span>, <span class="refAuthor">Pironti, A.</span>, and <span class="refAuthor">A. Langley</span>, <span class="refTitle">"Deprecating Secure Sockets Layer Version 3.0"</span>, <span class="seriesInfo">RFC 7568</span>, <span class="seriesInfo">DOI 10.17487/RFC7568</span>, <time datetime="2015-06" class="refDate">June 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7568">https://www.rfc-editor.org/info/rfc7568</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7590">[RFC7590]</dt>
<dd>
<span class="refAuthor">Saint-Andre, P.</span> and <span class="refAuthor">T. Alkemade</span>, <span class="refTitle">"Use of Transport Layer Security (TLS) in the Extensible Messaging and Presence Protocol (XMPP)"</span>, <span class="seriesInfo">RFC 7590</span>, <span class="seriesInfo">DOI 10.17487/RFC7590</span>, <time datetime="2015-06" class="refDate">June 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7590">https://www.rfc-editor.org/info/rfc7590</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7633">[RFC7633]</dt>
<dd>
<span class="refAuthor">Hallam-Baker, P.</span>, <span class="refTitle">"X.509v3 Transport Layer Security (TLS) Feature Extension"</span>, <span class="seriesInfo">RFC 7633</span>, <span class="seriesInfo">DOI 10.17487/RFC7633</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7633">https://www.rfc-editor.org/info/rfc7633</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7672">[RFC7672]</dt>
<dd>
<span class="refAuthor">Dukhovni, V.</span> and <span class="refAuthor">W. Hardaker</span>, <span class="refTitle">"SMTP Security via Opportunistic DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS)"</span>, <span class="seriesInfo">RFC 7672</span>, <span class="seriesInfo">DOI 10.17487/RFC7672</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7672">https://www.rfc-editor.org/info/rfc7672</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7673">[RFC7673]</dt>
<dd>
<span class="refAuthor">Finch, T.</span>, <span class="refAuthor">Miller, M.</span>, and <span class="refAuthor">P. Saint-Andre</span>, <span class="refTitle">"Using DNS-Based Authentication of Named Entities (DANE) TLSA Records with SRV Records"</span>, <span class="seriesInfo">RFC 7673</span>, <span class="seriesInfo">DOI 10.17487/RFC7673</span>, <time datetime="2015-10" class="refDate">October 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7673">https://www.rfc-editor.org/info/rfc7673</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7712">[RFC7712]</dt>
<dd>
<span class="refAuthor">Saint-Andre, P.</span>, <span class="refAuthor">Miller, M.</span>, and <span class="refAuthor">P. Hancke</span>, <span class="refTitle">"Domain Name Associations (DNA) in the Extensible Messaging and Presence Protocol (XMPP)"</span>, <span class="seriesInfo">RFC 7712</span>, <span class="seriesInfo">DOI 10.17487/RFC7712</span>, <time datetime="2015-11" class="refDate">November 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7712">https://www.rfc-editor.org/info/rfc7712</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7919">[RFC7919]</dt>
<dd>
<span class="refAuthor">Gillmor, D.</span>, <span class="refTitle">"Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS)"</span>, <span class="seriesInfo">RFC 7919</span>, <span class="seriesInfo">DOI 10.17487/RFC7919</span>, <time datetime="2016-08" class="refDate">August 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7919">https://www.rfc-editor.org/info/rfc7919</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7924">[RFC7924]</dt>
<dd>
<span class="refAuthor">Santesson, S.</span> and <span class="refAuthor">H. Tschofenig</span>, <span class="refTitle">"Transport Layer Security (TLS) Cached Information Extension"</span>, <span class="seriesInfo">RFC 7924</span>, <span class="seriesInfo">DOI 10.17487/RFC7924</span>, <time datetime="2016-07" class="refDate">July 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7924">https://www.rfc-editor.org/info/rfc7924</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7925">[RFC7925]</dt>
<dd>
<span class="refAuthor">Tschofenig, H., Ed.</span> and <span class="refAuthor">T. Fossati</span>, <span class="refTitle">"Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things"</span>, <span class="seriesInfo">RFC 7925</span>, <span class="seriesInfo">DOI 10.17487/RFC7925</span>, <time datetime="2016-07" class="refDate">July 2016</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7925">https://www.rfc-editor.org/info/rfc7925</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8452">[RFC8452]</dt>
<dd>
<span class="refAuthor">Gueron, S.</span>, <span class="refAuthor">Langley, A.</span>, and <span class="refAuthor">Y. Lindell</span>, <span class="refTitle">"AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption"</span>, <span class="seriesInfo">RFC 8452</span>, <span class="seriesInfo">DOI 10.17487/RFC8452</span>, <time datetime="2019-04" class="refDate">April 2019</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8452">https://www.rfc-editor.org/info/rfc8452</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8461">[RFC8461]</dt>
<dd>
<span class="refAuthor">Margolis, D.</span>, <span class="refAuthor">Risher, M.</span>, <span class="refAuthor">Ramakrishnan, B.</span>, <span class="refAuthor">Brotman, A.</span>, and <span class="refAuthor">J. Jones</span>, <span class="refTitle">"SMTP MTA Strict Transport Security (MTA-STS)"</span>, <span class="seriesInfo">RFC 8461</span>, <span class="seriesInfo">DOI 10.17487/RFC8461</span>, <time datetime="2018-09" class="refDate">September 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8461">https://www.rfc-editor.org/info/rfc8461</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8470">[RFC8470]</dt>
<dd>
<span class="refAuthor">Thomson, M.</span>, <span class="refAuthor">Nottingham, M.</span>, and <span class="refAuthor">W. Tarreau</span>, <span class="refTitle">"Using Early Data in HTTP"</span>, <span class="seriesInfo">RFC 8470</span>, <span class="seriesInfo">DOI 10.17487/RFC8470</span>, <time datetime="2018-09" class="refDate">September 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8470">https://www.rfc-editor.org/info/rfc8470</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8879">[RFC8879]</dt>
<dd>
<span class="refAuthor">Ghedini, A.</span> and <span class="refAuthor">V. Vasiliev</span>, <span class="refTitle">"TLS Certificate Compression"</span>, <span class="seriesInfo">RFC 8879</span>, <span class="seriesInfo">DOI 10.17487/RFC8879</span>, <time datetime="2020-12" class="refDate">December 2020</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8879">https://www.rfc-editor.org/info/rfc8879</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9000">[RFC9000]</dt>
<dd>
<span class="refAuthor">Iyengar, J., Ed.</span> and <span class="refAuthor">M. Thomson, Ed.</span>, <span class="refTitle">"QUIC: A UDP-Based Multiplexed and Secure Transport"</span>, <span class="seriesInfo">RFC 9000</span>, <span class="seriesInfo">DOI 10.17487/RFC9000</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9000">https://www.rfc-editor.org/info/rfc9000</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9001">[RFC9001]</dt>
<dd>
<span class="refAuthor">Thomson, M., Ed.</span> and <span class="refAuthor">S. Turner, Ed.</span>, <span class="refTitle">"Using TLS to Secure QUIC"</span>, <span class="seriesInfo">RFC 9001</span>, <span class="seriesInfo">DOI 10.17487/RFC9001</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9001">https://www.rfc-editor.org/info/rfc9001</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9051">[RFC9051]</dt>
<dd>
<span class="refAuthor">Melnikov, A., Ed.</span> and <span class="refAuthor">B. Leiba, Ed.</span>, <span class="refTitle">"Internet Message Access Protocol (IMAP) - Version 4rev2"</span>, <span class="seriesInfo">RFC 9051</span>, <span class="seriesInfo">DOI 10.17487/RFC9051</span>, <time datetime="2021-08" class="refDate">August 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9051">https://www.rfc-editor.org/info/rfc9051</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9110">[RFC9110]</dt>
<dd>
<span class="refAuthor">Fielding, R., Ed.</span>, <span class="refAuthor">Nottingham, M., Ed.</span>, and <span class="refAuthor">J. Reschke, Ed.</span>, <span class="refTitle">"HTTP Semantics"</span>, <span class="seriesInfo">STD 97</span>, <span class="seriesInfo">RFC 9110</span>, <span class="seriesInfo">DOI 10.17487/RFC9110</span>, <time datetime="2022-06" class="refDate">June 2022</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9110">https://www.rfc-editor.org/info/rfc9110</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9112">[RFC9112]</dt>
<dd>
<span class="refAuthor">Fielding, R., Ed.</span>, <span class="refAuthor">Nottingham, M., Ed.</span>, and <span class="refAuthor">J. Reschke, Ed.</span>, <span class="refTitle">"HTTP/1.1"</span>, <span class="seriesInfo">STD 99</span>, <span class="seriesInfo">RFC 9112</span>, <span class="seriesInfo">DOI 10.17487/RFC9112</span>, <time datetime="2022-06" class="refDate">June 2022</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9112">https://www.rfc-editor.org/info/rfc9112</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9113">[RFC9113]</dt>
<dd>
<span class="refAuthor">Thomson, M., Ed.</span> and <span class="refAuthor">C. Benfield, Ed.</span>, <span class="refTitle">"HTTP/2"</span>, <span class="seriesInfo">RFC 9113</span>, <span class="seriesInfo">DOI 10.17487/RFC9113</span>, <time datetime="2022-06" class="refDate">June 2022</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9113">https://www.rfc-editor.org/info/rfc9113</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9162">[RFC9162]</dt>
<dd>
<span class="refAuthor">Laurie, B.</span>, <span class="refAuthor">Messeri, E.</span>, and <span class="refAuthor">R. Stradling</span>, <span class="refTitle">"Certificate Transparency Version 2.0"</span>, <span class="seriesInfo">RFC 9162</span>, <span class="seriesInfo">DOI 10.17487/RFC9162</span>, <time datetime="2021-12" class="refDate">December 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9162">https://www.rfc-editor.org/info/rfc9162</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9191">[RFC9191]</dt>
<dd>
<span class="refAuthor">Sethi, M.</span>, <span class="refAuthor">Preuß Mattsson, J.</span>, and <span class="refAuthor">S. Turner</span>, <span class="refTitle">"Handling Large Certificates and Long Certificate Chains in TLS-Based EAP Methods"</span>, <span class="seriesInfo">RFC 9191</span>, <span class="seriesInfo">DOI 10.17487/RFC9191</span>, <time datetime="2022-02" class="refDate">February 2022</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9191">https://www.rfc-editor.org/info/rfc9191</a>></span>. </dd>
<dd class="break"></dd>
<dt id="SAFECURVES">[SAFECURVES]</dt>
<dd>
<span class="refAuthor">Bernstein, D. J.</span> and <span class="refAuthor">T. Lange</span>, <span class="refTitle">"SafeCurves: choosing safe curves for elliptic-curve cryptography"</span>, <time datetime="2014-12" class="refDate">December 2014</time>, <span><<a href="https://safecurves.cr.yp.to">https://safecurves.cr.yp.to</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Soghoian2011">[Soghoian2011]</dt>
<dd>
<span class="refAuthor">Soghoian, C.</span> and <span class="refAuthor">S. Stamm</span>, <span class="refTitle">"Certified Lies: Detecting and Defeating Government Interception Attacks Against SSL"</span>, <span class="refContent">SSRN Electronic Journal</span>, <span class="seriesInfo">DOI 10.2139/ssrn.1591033</span>, <time datetime="2010-04" class="refDate">April 2010</time>, <span><<a href="https://doi.org/10.2139/ssrn.1591033">https://doi.org/10.2139/ssrn.1591033</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Springall16">[Springall16]</dt>
<dd>
<span class="refAuthor">Springall, D.</span>, <span class="refAuthor">Durumeric, Z.</span>, and <span class="refAuthor">J. Halderman</span>, <span class="refTitle">"Measuring the Security Harm of TLS Crypto Shortcuts"</span>, <span class="refContent">Proceedings of the 2016 Internet Measurement Conference, pp. 33-47</span>, <span class="seriesInfo">DOI 10.1145/2987443.2987480</span>, <time datetime="2016-11" class="refDate">November 2016</time>, <span><<a href="https://doi.org/10.1145/2987443.2987480">https://doi.org/10.1145/2987443.2987480</a>></span>. </dd>
<dd class="break"></dd>
<dt id="STD53">[STD53]</dt>
<dd>
<div class="refInstance" id="RFC1939">
<span class="refAuthor">Myers, J.</span> and <span class="refAuthor">M. Rose</span>, <span class="refTitle">"Post Office Protocol - Version 3"</span>, <span class="seriesInfo">STD 53</span>, <span class="seriesInfo">RFC 1939</span>, <time datetime="1996-05" class="refDate">May 1996</time>. </div>
<span><<a href="https://www.rfc-editor.org/info/std53">https://www.rfc-editor.org/info/std53</a>></span>
</dd>
<dd class="break"></dd>
<dt id="Sy2018">[Sy2018]</dt>
<dd>
<span class="refAuthor">Sy, E.</span>, <span class="refAuthor">Burkert, C.</span>, <span class="refAuthor">Federrath, H.</span>, and <span class="refAuthor">M. Fischer</span>, <span class="refTitle">"Tracking Users across the Web via TLS Session Resumption"</span>, <span class="refContent">Proceedings of the 34th Annual Computer Security Applications Conference, pp. 289-299</span>, <span class="seriesInfo">DOI 10.1145/3274694.3274708</span>, <time datetime="2018-12" class="refDate">December 2018</time>, <span><<a href="https://doi.org/10.1145/3274694.3274708">https://doi.org/10.1145/3274694.3274708</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.ietf-tls-esni">[TLS-ECH]</dt>
<dd>
<span class="refAuthor">Rescorla, E.</span>, <span class="refAuthor">Oku, K.</span>, <span class="refAuthor">Sullivan, N.</span>, and <span class="refAuthor">C. A. Wood</span>, <span class="refTitle">"TLS Encrypted Client Hello"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-ietf-tls-esni-15</span>, <time datetime="2022-10-03" class="refDate">3 October 2022</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15">https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Triple-Handshake">[Triple-Handshake]</dt>
<dd>
<span class="refAuthor">Bhargavan, K.</span>, <span class="refAuthor">Lavaud, A.</span>, <span class="refAuthor">Fournet, C.</span>, <span class="refAuthor">Pironti, A.</span>, and <span class="refAuthor">P. Strub</span>, <span class="refTitle">"Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS"</span>, <span class="refContent">2014 IEEE Symposium on Security and Privacy</span>, <span class="seriesInfo">DOI 10.1109/sp.2014.14</span>, <time datetime="2014-05" class="refDate">May 2014</time>, <span><<a href="https://doi.org/10.1109/sp.2014.14">https://doi.org/10.1109/sp.2014.14</a>></span>. </dd>
<dd class="break"></dd>
<dt id="TWIRL">[TWIRL]</dt>
<dd>
<span class="refAuthor">Shamir, A.</span> and <span class="refAuthor">E. Tromer</span>, <span class="refTitle">"Factoring Large Numbers with the TWIRL Device"</span>, <span class="refContent">2014 IEEE Symposium on Security and Privacy</span>, <span class="seriesInfo">DOI 10.1007/978-3-540-45146-4_1</span>, <time datetime="2004" class="refDate">2004</time>, <span><<a href="https://cs.tau.ac.il/~tromer/papers/twirl.pdf">https://cs.tau.ac.il/~tromer/papers/twirl.pdf</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="diff-rfc">
<section id="appendix-A">
<h2 id="name-differences-from-rfc-7525">
<a href="#appendix-A" class="section-number selfRef">Appendix A. </a><a href="#name-differences-from-rfc-7525" class="section-name selfRef">Differences from RFC 7525</a>
</h2>
<p id="appendix-A-1">This revision of the Best Current Practices contains numerous changes, and this section is focused
on the normative changes.<a href="#appendix-A-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A-2.1">
<p id="appendix-A-2.1.1">High-level differences:<a href="#appendix-A-2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A-2.1.2.1">Described the expectations from new TLS-incorporating transport protocols and from new application protocols layered on TLS.<a href="#appendix-A-2.1.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.1.2.2">Clarified items (e.g., renegotiation) that only apply to TLS 1.2.<a href="#appendix-A-2.1.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.1.2.3">Changed the status of TLS 1.0 and 1.1 from "<span class="bcp14">SHOULD NOT</span>" to "<span class="bcp14">MUST NOT</span>".<a href="#appendix-A-2.1.2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.1.2.4">Added TLS 1.3 at a "<span class="bcp14">SHOULD</span>" level.<a href="#appendix-A-2.1.2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.1.2.5">Made similar changes to DTLS.<a href="#appendix-A-2.1.2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.1.2.6">Included specific guidance for multiplexed protocols.<a href="#appendix-A-2.1.2.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.1.2.7">
<span class="bcp14">MUST</span>-level implementation requirement for ALPN and more specific <span class="bcp14">SHOULD</span>-level guidance for ALPN and SNI.<a href="#appendix-A-2.1.2.7" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.1.2.8">Clarified discussion of strict TLS policies, including <span class="bcp14">MUST</span>-level recommendations.<a href="#appendix-A-2.1.2.8" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.1.2.9">Limits on key usage.<a href="#appendix-A-2.1.2.9" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.1.2.10">New attacks since <span>[<a href="#RFC7457" class="cite xref">RFC7457</a>]</span>: ALPACA, Raccoon, Logjam, and "Nonce-Disrespecting Adversaries".<a href="#appendix-A-2.1.2.10" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.1.2.11">RFC 6961 (OCSP status_request_v2) has been deprecated.<a href="#appendix-A-2.1.2.11" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.1.2.12">
<span class="bcp14">MUST</span>-level requirement for server-side RSA certificates to have a 2048-bit modulus at a minimum, replacing a "<span class="bcp14">SHOULD</span>".<a href="#appendix-A-2.1.2.12" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="normal" id="appendix-A-2.2">
<p id="appendix-A-2.2.1">Differences specific to TLS 1.2:<a href="#appendix-A-2.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A-2.2.2.1">
<span class="bcp14">SHOULD</span>-level guidance on AES-GCM nonce generation.<a href="#appendix-A-2.2.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.2.2.2">
<span class="bcp14">SHOULD NOT</span> use (static or ephemeral) finite-field DH key agreement.<a href="#appendix-A-2.2.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.2.2.3">
<span class="bcp14">SHOULD NOT</span> reuse ephemeral finite-field DH keys across multiple connections.<a href="#appendix-A-2.2.2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.2.2.4">
<span class="bcp14">SHOULD NOT</span> use static Elliptic Curve DH key exchange.<a href="#appendix-A-2.2.2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.2.2.5">2048-bit DH is now a "<span class="bcp14">MUST</span>" and ECDH minimal curve size is 224 (vs. 192 previously).<a href="#appendix-A-2.2.2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.2.2.6">Support for <code>extended_master_secret</code> is now a "<span class="bcp14">MUST</span>" (previously it was a soft recommendation, as the RFC had not been published at the time). Also removed other, more complicated, related mitigations.<a href="#appendix-A-2.2.2.6" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.2.2.7">
<span class="bcp14">MUST</span>-level restriction on session ticket validity, replacing a "<span class="bcp14">SHOULD</span>".<a href="#appendix-A-2.2.2.7" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.2.2.8">
<span class="bcp14">SHOULD</span>-level restriction on the TLS session duration, depending on the rotation period of an <span>[<a href="#RFC5077" class="cite xref">RFC5077</a>]</span> ticket key.<a href="#appendix-A-2.2.2.8" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.2.2.9">Dropped TLS_DHE_RSA_WITH_AES from the recommended ciphers.<a href="#appendix-A-2.2.2.9" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.2.2.10">Added TLS_ECDHE_ECDSA_WITH_AES to the recommended ciphers.<a href="#appendix-A-2.2.2.10" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.2.2.11">
<span class="bcp14">SHOULD NOT</span> use the old MTI cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA.<a href="#appendix-A-2.2.2.11" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.2.2.12">Recommended curve X25519 alongside NIST P-256.<a href="#appendix-A-2.2.2.12" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="normal" id="appendix-A-2.3">
<p id="appendix-A-2.3.1">Differences specific to TLS 1.3:<a href="#appendix-A-2.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A-2.3.2.1">New TLS 1.3 capabilities: 0-RTT.<a href="#appendix-A-2.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.3.2.2">Removed capabilities: renegotiation and compression.<a href="#appendix-A-2.3.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.3.2.3">Added mention of TLS Encrypted Client Hello, but no recommendation for use until it is finalized.<a href="#appendix-A-2.3.2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.3.2.4">
<span class="bcp14">SHOULD</span>-level requirement for forward secrecy in TLS 1.3 session resumption.<a href="#appendix-A-2.3.2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A-2.3.2.5">Generic <span class="bcp14">MUST</span>-level guidance to avoid 0-RTT unless it is documented for the particular protocol.<a href="#appendix-A-2.3.2.5" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</section>
</div>
<div id="acknowledgments">
<section id="appendix-B">
<h2 id="name-acknowledgments">
<a href="#name-acknowledgments" class="section-name selfRef">Acknowledgments</a>
</h2>
<p id="appendix-B-1">Thanks to
<span class="contact-name">Alexey Melnikov</span>,
<span class="contact-name">Alvaro Retana</span>,
<span class="contact-name">Andrei Popov</span>,
<span class="contact-name">Ben Kaduk</span>,
<span class="contact-name">Christian Huitema</span>,
<span class="contact-name">Corey Bonnell</span>,
<span class="contact-name">Cullen Jennings</span>,
<span class="contact-name">Daniel Kahn Gillmor</span>,
<span class="contact-name">David Benjamin</span>,
<span class="contact-name">Eric Rescorla</span>,
<span class="contact-name">Éric Vyncke</span>,
<span class="contact-name">Francesca Palombini</span>,
<span class="contact-name">Hannes Tschofenig</span>,
<span class="contact-name">Hubert Kario</span>,
<span class="contact-name">Ilari Liusvaara</span>,
<span class="contact-name">John Preuß Mattsson</span>,
<span class="contact-name">John R. Levine</span>,
<span class="contact-name">Julien Élie</span>,
<span class="contact-name">Lars Eggert</span>,
<span class="contact-name">Leif Johansson</span>,
<span class="contact-name">Magnus Westerlund</span>,
<span class="contact-name">Martin Duke</span>,
<span class="contact-name">Martin Thomson</span>,
<span class="contact-name">Mohit Sahni</span>,
<span class="contact-name">Nick Sullivan</span>,
<span class="contact-name">Nimrod Aviram</span>,
<span class="contact-name">Paul Wouters</span>,
<span class="contact-name">Peter Gutmann</span>,
<span class="contact-name">Rich Salz</span>,
<span class="contact-name">Robert Sayre</span>,
<span class="contact-name">Robert Wilton</span>,
<span class="contact-name">Roman Danyliw</span>,
<span class="contact-name">Ryan Sleevi</span>,
<span class="contact-name">Sean Turner</span>,
<span class="contact-name">Stephen Farrell</span>,
<span class="contact-name">Tim Evans</span>,
<span class="contact-name">Valery Smyslov</span>,
<span class="contact-name">Viktor Dukhovni</span>,
and <span class="contact-name">Warren Kumari</span>
for helpful comments and discussions that have shaped this document.<a href="#appendix-B-1" class="pilcrow">¶</a></p>
<p id="appendix-B-2">The authors gratefully acknowledge the contribution of <span class="contact-name">Ralph Holz</span>, who was a coauthor of RFC 7525, the previous version of the TLS recommendations.<a href="#appendix-B-2" class="pilcrow">¶</a></p>
<p id="appendix-B-3">See RFC 7525 for additional acknowledgments specific to the previous version of the TLS recommendations.<a href="#appendix-B-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="authors-addresses">
<section id="appendix-C">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Yaron Sheffer</span></div>
<div dir="auto" class="left"><span class="org">Intuit</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:yaronf.ietf@gmail.com" class="email">yaronf.ietf@gmail.com</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Peter Saint-Andre</span></div>
<div dir="auto" class="left"><span class="org">Independent</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:stpeter@stpeter.im" class="email">stpeter@stpeter.im</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Thomas Fossati</span></div>
<div dir="auto" class="left"><span class="org">ARM Limited</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:thomas.fossati@arm.com" class="email">thomas.fossati@arm.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|