1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
|
<!DOCTYPE html>
<html lang="en" class="RFC">
<head>
<meta charset="utf-8">
<meta content="Common,Latin" name="scripts">
<meta content="initial-scale=1.0" name="viewport">
<title>RFC 9332: Dual-Queue Coupled Active Queue Management (AQM) for Low Latency, Low Loss, and Scalable Throughput (L4S)</title>
<meta content="Koen De Schepper" name="author">
<meta content="Bob Briscoe" name="author">
<meta content="Greg White" name="author">
<meta content="
This specification defines a framework for coupling the Active Queue
Management (AQM) algorithms in two queues intended for flows with
different responses to congestion. This provides a way for the Internet
to transition from the scaling problems of standard TCP-Reno-friendly
('Classic') congestion controls to the family of 'Scalable' congestion
controls. These are designed for consistently very low queuing latency,
very low congestion loss, and scaling of per-flow throughput by
using Explicit Congestion Notification (ECN) in a modified way. Until
the Coupled Dual Queue (DualQ), these Scalable L4S congestion controls could only be
deployed where a clean-slate environment could be arranged, such as in
private data centres.
This specification first explains how a Coupled DualQ works. It then
gives the normative requirements that are necessary for it to work well.
All this is independent of which two AQMs are used, but pseudocode
examples of specific AQMs are given in appendices.
" name="description">
<meta content="xml2rfc 3.15.3" name="generator">
<meta content="Performance" name="keyword">
<meta content="Queuing Delay" name="keyword">
<meta content="One Way Delay" name="keyword">
<meta content="Round-Trip Time" name="keyword">
<meta content="RTT" name="keyword">
<meta content="Jitter" name="keyword">
<meta content="Congestion Control" name="keyword">
<meta content="Congestion Avoidance" name="keyword">
<meta content="Quality of Service" name="keyword">
<meta content="QoS" name="keyword">
<meta content="Quality of Experience" name="keyword">
<meta content="QoE" name="keyword">
<meta content="Active Queue Management" name="keyword">
<meta content="AQM" name="keyword">
<meta content="Explicit Congestion Notification" name="keyword">
<meta content="ECN" name="keyword">
<meta content="Pacing" name="keyword">
<meta content="Burstiness" name="keyword">
<meta content="9332" name="rfc.number">
<!-- Generator version information:
xml2rfc 3.15.3
Python 3.9.15
appdirs 1.4.4
ConfigArgParse 1.5.3
google-i18n-address 2.5.1
html5lib 1.1
intervaltree 3.1.0
Jinja2 3.1.2
lxml 4.9.0
MarkupSafe 2.1.1
pycountry 22.3.5
PyYAML 6.0
requests 2.28.0
setuptools 44.1.1
six 1.16.0
wcwidth 0.2.5
weasyprint 56.1
-->
<link href="rfc9332.xml" rel="alternate" type="application/rfc+xml">
<link href="#copyright" rel="license">
<style type="text/css">/*
NOTE: Changes at the bottom of this file overrides some earlier settings.
Once the style has stabilized and has been adopted as an official RFC style,
this can be consolidated so that style settings occur only in one place, but
for now the contents of this file consists first of the initial CSS work as
provided to the RFC Formatter (xml2rfc) work, followed by itemized and
commented changes found necessary during the development of the v3
formatters.
*/
/* fonts */
@import url('https://fonts.googleapis.com/css?family=Noto+Sans'); /* Sans-serif */
@import url('https://fonts.googleapis.com/css?family=Noto+Serif'); /* Serif (print) */
@import url('https://fonts.googleapis.com/css?family=Roboto+Mono'); /* Monospace */
:root {
--font-sans: 'Noto Sans', Arial, Helvetica, sans-serif;
--font-serif: 'Noto Serif', 'Times', 'Times New Roman', serif;
--font-mono: 'Roboto Mono', Courier, 'Courier New', monospace;
}
@viewport {
zoom: 1.0;
width: extend-to-zoom;
}
@-ms-viewport {
width: extend-to-zoom;
zoom: 1.0;
}
/* general and mobile first */
html {
}
body {
max-width: 90%;
margin: 1.5em auto;
color: #222;
background-color: #fff;
font-size: 14px;
font-family: var(--font-sans);
line-height: 1.6;
scroll-behavior: smooth;
}
.ears {
display: none;
}
/* headings */
#title, h1, h2, h3, h4, h5, h6 {
margin: 1em 0 0.5em;
font-weight: bold;
line-height: 1.3;
}
#title {
clear: both;
border-bottom: 1px solid #ddd;
margin: 0 0 0.5em 0;
padding: 1em 0 0.5em;
}
.author {
padding-bottom: 4px;
}
h1 {
font-size: 26px;
margin: 1em 0;
}
h2 {
font-size: 22px;
margin-top: -20px; /* provide offset for in-page anchors */
padding-top: 33px;
}
h3 {
font-size: 18px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h4 {
font-size: 16px;
margin-top: -36px; /* provide offset for in-page anchors */
padding-top: 42px;
}
h5, h6 {
font-size: 14px;
}
#n-copyright-notice {
border-bottom: 1px solid #ddd;
padding-bottom: 1em;
margin-bottom: 1em;
}
/* general structure */
p {
padding: 0;
margin: 0 0 1em 0;
text-align: left;
}
div, span {
position: relative;
}
div {
margin: 0;
}
.alignRight.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignRight.art-text pre {
padding: 0;
}
.alignRight {
margin: 1em 0;
}
.alignRight > *:first-child {
border: none;
margin: 0;
float: right;
clear: both;
}
.alignRight > *:nth-child(2) {
clear: both;
display: block;
border: none;
}
svg {
display: block;
}
svg[font-family~="serif" i], svg [font-family~="serif" i] {
font-family: var(--font-serif);
}
svg[font-family~="sans-serif" i], svg [font-family~="sans-serif" i] {
font-family: var(--font-sans);
}
svg[font-family~="monospace" i], svg [font-family~="monospace" i] {
font-family: var(--font-mono);
}
.alignCenter.art-text {
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 3px;
padding: 1em 1em 0;
margin-bottom: 1.5em;
}
.alignCenter.art-text pre {
padding: 0;
}
.alignCenter {
margin: 1em 0;
}
.alignCenter > *:first-child {
display: table;
border: none;
margin: 0 auto;
}
/* lists */
ol, ul {
padding: 0;
margin: 0 0 1em 2em;
}
ol ol, ul ul, ol ul, ul ol {
margin-left: 1em;
}
li {
margin: 0 0 0.25em 0;
}
.ulCompact li {
margin: 0;
}
ul.empty, .ulEmpty {
list-style-type: none;
}
ul.empty li, .ulEmpty li {
margin-top: 0.5em;
}
ul.ulBare, li.ulBare {
margin-left: 0em !important;
}
ul.compact, .ulCompact,
ol.compact, .olCompact {
line-height: 100%;
margin: 0 0 0 2em;
}
/* definition lists */
dl {
}
dl > dt {
float: left;
margin-right: 1em;
}
/*
dl.nohang > dt {
float: none;
}
*/
dl > dd {
margin-bottom: .8em;
min-height: 1.3em;
}
dl.compact > dd, .dlCompact > dd {
margin-bottom: 0em;
}
dl > dd > dl {
margin-top: 0.5em;
margin-bottom: 0em;
}
/* links */
a {
text-decoration: none;
}
a[href] {
color: #22e; /* Arlen: WCAG 2019 */
}
a[href]:hover {
background-color: #f2f2f2;
}
figcaption a[href],
a[href].selfRef {
color: #222;
}
/* XXX probably not this:
a.selfRef:hover {
background-color: transparent;
cursor: default;
} */
/* Figures */
tt, code, pre {
background-color: #f9f9f9;
font-family: var(--font-mono);
}
pre {
border: 1px solid #eee;
margin: 0;
padding: 1em;
}
img {
max-width: 100%;
}
figure {
margin: 0;
}
figure blockquote {
margin: 0.8em 0.4em 0.4em;
}
figcaption {
font-style: italic;
margin: 0 0 1em 0;
}
@media screen {
pre {
overflow-x: auto;
max-width: 100%;
max-width: calc(100% - 22px);
}
}
/* aside, blockquote */
aside, blockquote {
margin-left: 0;
padding: 1.2em 2em;
}
blockquote {
background-color: #f9f9f9;
color: #111; /* Arlen: WCAG 2019 */
border: 1px solid #ddd;
border-radius: 3px;
margin: 1em 0;
}
cite {
display: block;
text-align: right;
font-style: italic;
}
/* tables */
table {
width: 100%;
margin: 0 0 1em;
border-collapse: collapse;
border: 1px solid #eee;
}
th, td {
text-align: left;
vertical-align: top;
padding: 0.5em 0.75em;
}
th {
text-align: left;
background-color: #e9e9e9;
}
tr:nth-child(2n+1) > td {
background-color: #f5f5f5;
}
table caption {
font-style: italic;
margin: 0;
padding: 0;
text-align: left;
}
table p {
/* XXX to avoid bottom margin on table row signifiers. If paragraphs should
be allowed within tables more generally, it would be far better to select on a class. */
margin: 0;
}
/* pilcrow */
a.pilcrow {
color: #666; /* Arlen: AHDJ 2019 */
text-decoration: none;
visibility: hidden;
user-select: none;
-ms-user-select: none;
-o-user-select:none;
-moz-user-select: none;
-khtml-user-select: none;
-webkit-user-select: none;
-webkit-touch-callout: none;
}
@media screen {
aside:hover > a.pilcrow,
p:hover > a.pilcrow,
blockquote:hover > a.pilcrow,
div:hover > a.pilcrow,
li:hover > a.pilcrow,
pre:hover > a.pilcrow {
visibility: visible;
}
a.pilcrow:hover {
background-color: transparent;
}
}
/* misc */
hr {
border: 0;
border-top: 1px solid #eee;
}
.bcp14 {
font-variant: small-caps;
}
.role {
font-variant: all-small-caps;
}
/* info block */
#identifiers {
margin: 0;
font-size: 0.9em;
}
#identifiers dt {
width: 3em;
clear: left;
}
#identifiers dd {
float: left;
margin-bottom: 0;
}
/* Fix PDF info block run off issue */
@media print {
#identifiers dd {
float: none;
}
}
#identifiers .authors .author {
display: inline-block;
margin-right: 1.5em;
}
#identifiers .authors .org {
font-style: italic;
}
/* The prepared/rendered info at the very bottom of the page */
.docInfo {
color: #666; /* Arlen: WCAG 2019 */
font-size: 0.9em;
font-style: italic;
margin-top: 2em;
}
.docInfo .prepared {
float: left;
}
.docInfo .prepared {
float: right;
}
/* table of contents */
#toc {
padding: 0.75em 0 2em 0;
margin-bottom: 1em;
}
nav.toc ul {
margin: 0 0.5em 0 0;
padding: 0;
list-style: none;
}
nav.toc li {
line-height: 1.3em;
margin: 0.75em 0;
padding-left: 1.2em;
text-indent: -1.2em;
}
/* references */
.references dt {
text-align: right;
font-weight: bold;
min-width: 7em;
}
.references dd {
margin-left: 8em;
overflow: auto;
}
.refInstance {
margin-bottom: 1.25em;
}
.references .ascii {
margin-bottom: 0.25em;
}
/* index */
.index ul {
margin: 0 0 0 1em;
padding: 0;
list-style: none;
}
.index ul ul {
margin: 0;
}
.index li {
margin: 0;
text-indent: -2em;
padding-left: 2em;
padding-bottom: 5px;
}
.indexIndex {
margin: 0.5em 0 1em;
}
.index a {
font-weight: 700;
}
/* make the index two-column on all but the smallest screens */
@media (min-width: 600px) {
.index ul {
-moz-column-count: 2;
-moz-column-gap: 20px;
}
.index ul ul {
-moz-column-count: 1;
-moz-column-gap: 0;
}
}
/* authors */
address.vcard {
font-style: normal;
margin: 1em 0;
}
address.vcard .nameRole {
font-weight: 700;
margin-left: 0;
}
address.vcard .label {
font-family: var(--font-sans);
margin: 0.5em 0;
}
address.vcard .type {
display: none;
}
.alternative-contact {
margin: 1.5em 0 1em;
}
hr.addr {
border-top: 1px dashed;
margin: 0;
color: #ddd;
max-width: calc(100% - 16px);
}
/* temporary notes */
.rfcEditorRemove::before {
position: absolute;
top: 0.2em;
right: 0.2em;
padding: 0.2em;
content: "The RFC Editor will remove this note";
color: #9e2a00; /* Arlen: WCAG 2019 */
background-color: #ffd; /* Arlen: WCAG 2019 */
}
.rfcEditorRemove {
position: relative;
padding-top: 1.8em;
background-color: #ffd; /* Arlen: WCAG 2019 */
border-radius: 3px;
}
.cref {
background-color: #ffd; /* Arlen: WCAG 2019 */
padding: 2px 4px;
}
.crefSource {
font-style: italic;
}
/* alternative layout for smaller screens */
@media screen and (max-width: 1023px) {
body {
padding-top: 2em;
}
#title {
padding: 1em 0;
}
h1 {
font-size: 24px;
}
h2 {
font-size: 20px;
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 38px;
}
#identifiers dd {
max-width: 60%;
}
#toc {
position: fixed;
z-index: 2;
top: 0;
right: 0;
padding: 0;
margin: 0;
background-color: inherit;
border-bottom: 1px solid #ccc;
}
#toc h2 {
margin: -1px 0 0 0;
padding: 4px 0 4px 6px;
padding-right: 1em;
min-width: 190px;
font-size: 1.1em;
text-align: right;
background-color: #444;
color: white;
cursor: pointer;
}
#toc h2::before { /* css hamburger */
float: right;
position: relative;
width: 1em;
height: 1px;
left: -164px;
margin: 6px 0 0 0;
background: white none repeat scroll 0 0;
box-shadow: 0 4px 0 0 white, 0 8px 0 0 white;
content: "";
}
#toc nav {
display: none;
padding: 0.5em 1em 1em;
overflow: auto;
height: calc(100vh - 48px);
border-left: 1px solid #ddd;
}
}
/* alternative layout for wide screens */
@media screen and (min-width: 1024px) {
body {
max-width: 724px;
margin: 42px auto;
padding-left: 1.5em;
padding-right: 29em;
}
#toc {
position: fixed;
top: 42px;
right: 42px;
width: 25%;
margin: 0;
padding: 0 1em;
z-index: 1;
}
#toc h2 {
border-top: none;
border-bottom: 1px solid #ddd;
font-size: 1em;
font-weight: normal;
margin: 0;
padding: 0.25em 1em 1em 0;
}
#toc nav {
display: block;
height: calc(90vh - 84px);
bottom: 0;
padding: 0.5em 0 0;
overflow: auto;
}
img { /* future proofing */
max-width: 100%;
height: auto;
}
}
/* pagination */
@media print {
body {
width: 100%;
}
p {
orphans: 3;
widows: 3;
}
#n-copyright-notice {
border-bottom: none;
}
#toc, #n-introduction {
page-break-before: always;
}
#toc {
border-top: none;
padding-top: 0;
}
figure, pre {
page-break-inside: avoid;
}
figure {
overflow: scroll;
}
.breakable pre {
break-inside: auto;
}
h1, h2, h3, h4, h5, h6 {
page-break-after: avoid;
}
h2+*, h3+*, h4+*, h5+*, h6+* {
page-break-before: avoid;
}
pre {
white-space: pre-wrap;
word-wrap: break-word;
font-size: 10pt;
}
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
}
/* This is commented out here, as the string-set: doesn't
pass W3C validation currently */
/*
.ears thead .left {
string-set: ears-top-left content();
}
.ears thead .center {
string-set: ears-top-center content();
}
.ears thead .right {
string-set: ears-top-right content();
}
.ears tfoot .left {
string-set: ears-bottom-left content();
}
.ears tfoot .center {
string-set: ears-bottom-center content();
}
.ears tfoot .right {
string-set: ears-bottom-right content();
}
*/
@page :first {
padding-top: 0;
@top-left {
content: normal;
border: none;
}
@top-center {
content: normal;
border: none;
}
@top-right {
content: normal;
border: none;
}
}
@page {
size: A4;
margin-bottom: 45mm;
padding-top: 20px;
/* The following is commented out here, but set appropriately by in code, as
the content depends on the document */
/*
@top-left {
content: 'Internet-Draft';
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-left {
content: string(ears-top-left);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-center {
content: string(ears-top-center);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@top-right {
content: string(ears-top-right);
vertical-align: bottom;
border-bottom: solid 1px #ccc;
}
@bottom-left {
content: string(ears-bottom-left);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-center {
content: string(ears-bottom-center);
vertical-align: top;
border-top: solid 1px #ccc;
}
@bottom-right {
content: '[Page ' counter(page) ']';
vertical-align: top;
border-top: solid 1px #ccc;
}
*/
}
/* Changes introduced to fix issues found during implementation */
/* Make sure links are clickable even if overlapped by following H* */
a {
z-index: 2;
}
/* Separate body from document info even without intervening H1 */
section {
clear: both;
}
/* Top align author divs, to avoid names without organization dropping level with org names */
.author {
vertical-align: top;
}
/* Leave room in document info to show Internet-Draft on one line */
#identifiers dt {
width: 8em;
}
/* Don't waste quite as much whitespace between label and value in doc info */
#identifiers dd {
margin-left: 1em;
}
/* Give floating toc a background color (needed when it's a div inside section */
#toc {
background-color: white;
}
/* Make the collapsed ToC header render white on gray also when it's a link */
@media screen and (max-width: 1023px) {
#toc h2 a,
#toc h2 a:link,
#toc h2 a:focus,
#toc h2 a:hover,
#toc a.toplink,
#toc a.toplink:hover {
color: white;
background-color: #444;
text-decoration: none;
}
}
/* Give the bottom of the ToC some whitespace */
@media screen and (min-width: 1024px) {
#toc {
padding: 0 0 1em 1em;
}
}
/* Style section numbers with more space between number and title */
.section-number {
padding-right: 0.5em;
}
/* prevent monospace from becoming overly large */
tt, code, pre {
font-size: 95%;
}
/* Fix the height/width aspect for ascii art*/
.sourcecode pre,
.art-text pre {
line-height: 1.12;
}
/* Add styling for a link in the ToC that points to the top of the document */
a.toplink {
float: right;
margin-right: 0.5em;
}
/* Fix the dl styling to match the RFC 7992 attributes */
dl > dt,
dl.dlParallel > dt {
float: left;
margin-right: 1em;
}
dl.dlNewline > dt {
float: none;
}
/* Provide styling for table cell text alignment */
table td.text-left,
table th.text-left {
text-align: left;
}
table td.text-center,
table th.text-center {
text-align: center;
}
table td.text-right,
table th.text-right {
text-align: right;
}
/* Make the alternative author contact information look less like just another
author, and group it closer with the primary author contact information */
.alternative-contact {
margin: 0.5em 0 0.25em 0;
}
address .non-ascii {
margin: 0 0 0 2em;
}
/* With it being possible to set tables with alignment
left, center, and right, { width: 100%; } does not make sense */
table {
width: auto;
}
/* Avoid reference text that sits in a block with very wide left margin,
because of a long floating dt label.*/
.references dd {
overflow: visible;
}
/* Control caption placement */
caption {
caption-side: bottom;
}
/* Limit the width of the author address vcard, so names in right-to-left
script don't end up on the other side of the page. */
address.vcard {
max-width: 30em;
margin-right: auto;
}
/* For address alignment dependent on LTR or RTL scripts */
address div.left {
text-align: left;
}
address div.right {
text-align: right;
}
/* Provide table alignment support. We can't use the alignX classes above
since they do unwanted things with caption and other styling. */
table.right {
margin-left: auto;
margin-right: 0;
}
table.center {
margin-left: auto;
margin-right: auto;
}
table.left {
margin-left: 0;
margin-right: auto;
}
/* Give the table caption label the same styling as the figcaption */
caption a[href] {
color: #222;
}
@media print {
.toplink {
display: none;
}
/* avoid overwriting the top border line with the ToC header */
#toc {
padding-top: 1px;
}
/* Avoid page breaks inside dl and author address entries */
.vcard {
page-break-inside: avoid;
}
}
/* Tweak the bcp14 keyword presentation */
.bcp14 {
font-variant: small-caps;
font-weight: bold;
font-size: 0.9em;
}
/* Tweak the invisible space above H* in order not to overlay links in text above */
h2 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 31px;
}
h3 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
h4 {
margin-top: -18px; /* provide offset for in-page anchors */
padding-top: 24px;
}
/* Float artwork pilcrow to the right */
@media screen {
.artwork a.pilcrow {
display: block;
line-height: 0.7;
margin-top: 0.15em;
}
}
/* Make pilcrows on dd visible */
@media screen {
dd:hover > a.pilcrow {
visibility: visible;
}
}
/* Make the placement of figcaption match that of a table's caption
by removing the figure's added bottom margin */
.alignLeft.art-text,
.alignCenter.art-text,
.alignRight.art-text {
margin-bottom: 0;
}
.alignLeft,
.alignCenter,
.alignRight {
margin: 1em 0 0 0;
}
/* In print, the pilcrow won't show on hover, so prevent it from taking up space,
possibly even requiring a new line */
@media print {
a.pilcrow {
display: none;
}
}
/* Styling for the external metadata */
div#external-metadata {
background-color: #eee;
padding: 0.5em;
margin-bottom: 0.5em;
display: none;
}
div#internal-metadata {
padding: 0.5em; /* to match the external-metadata padding */
}
/* Styling for title RFC Number */
h1#rfcnum {
clear: both;
margin: 0 0 -1em;
padding: 1em 0 0 0;
}
/* Make .olPercent look the same as <ol><li> */
dl.olPercent > dd {
margin-bottom: 0.25em;
min-height: initial;
}
/* Give aside some styling to set it apart */
aside {
border-left: 1px solid #ddd;
margin: 1em 0 1em 2em;
padding: 0.2em 2em;
}
aside > dl,
aside > ol,
aside > ul,
aside > table,
aside > p {
margin-bottom: 0.5em;
}
/* Additional page break settings */
@media print {
figcaption, table caption {
page-break-before: avoid;
}
}
/* Font size adjustments for print */
@media print {
body { font-size: 10pt; line-height: normal; max-width: 96%; }
h1 { font-size: 1.72em; padding-top: 1.5em; } /* 1*1.2*1.2*1.2 */
h2 { font-size: 1.44em; padding-top: 1.5em; } /* 1*1.2*1.2 */
h3 { font-size: 1.2em; padding-top: 1.5em; } /* 1*1.2 */
h4 { font-size: 1em; padding-top: 1.5em; }
h5, h6 { font-size: 1em; margin: initial; padding: 0.5em 0 0.3em; }
}
/* Sourcecode margin in print, when there's no pilcrow */
@media print {
.artwork,
.artwork > pre,
.sourcecode {
margin-bottom: 1em;
}
}
/* Avoid narrow tables forcing too narrow table captions, which may render badly */
table {
min-width: 20em;
}
/* ol type a */
ol.type-a { list-style-type: lower-alpha; }
ol.type-A { list-style-type: upper-alpha; }
ol.type-i { list-style-type: lower-roman; }
ol.type-I { list-style-type: lower-roman; }
/* Apply the print table and row borders in general, on request from the RPC,
and increase the contrast between border and odd row background slightly */
table {
border: 1px solid #ddd;
}
td {
border-top: 1px solid #ddd;
}
tr {
break-inside: avoid;
}
tr:nth-child(2n+1) > td {
background-color: #f8f8f8;
}
/* Use style rules to govern display of the TOC. */
@media screen and (max-width: 1023px) {
#toc nav { display: none; }
#toc.active nav { display: block; }
}
/* Add support for keepWithNext */
.keepWithNext {
break-after: avoid-page;
break-after: avoid-page;
}
/* Add support for keepWithPrevious */
.keepWithPrevious {
break-before: avoid-page;
}
/* Change the approach to avoiding breaks inside artwork etc. */
figure, pre, table, .artwork, .sourcecode {
break-before: auto;
break-after: auto;
}
/* Avoid breaks between <dt> and <dd> */
dl {
break-before: auto;
break-inside: auto;
}
dt {
break-before: auto;
break-after: avoid-page;
}
dd {
break-before: avoid-page;
break-after: auto;
orphans: 3;
widows: 3
}
span.break, dd.break {
margin-bottom: 0;
min-height: 0;
break-before: auto;
break-inside: auto;
break-after: auto;
}
/* Undo break-before ToC */
@media print {
#toc {
break-before: auto;
}
}
/* Text in compact lists should not get extra bottom margin space,
since that would makes the list not compact */
ul.compact p, .ulCompact p,
ol.compact p, .olCompact p {
margin: 0;
}
/* But the list as a whole needs the extra space at the end */
section ul.compact,
section .ulCompact,
section ol.compact,
section .olCompact {
margin-bottom: 1em; /* same as p not within ul.compact etc. */
}
/* The tt and code background above interferes with for instance table cell
backgrounds. Changed to something a bit more selective. */
tt, code {
background-color: transparent;
}
p tt, p code, li tt, li code {
background-color: #f8f8f8;
}
/* Tweak the pre margin -- 0px doesn't come out well */
pre {
margin-top: 0.5px;
}
/* Tweak the compact list text */
ul.compact, .ulCompact,
ol.compact, .olCompact,
dl.compact, .dlCompact {
line-height: normal;
}
/* Don't add top margin for nested lists */
li > ul, li > ol, li > dl,
dd > ul, dd > ol, dd > dl,
dl > dd > dl {
margin-top: initial;
}
/* Elements that should not be rendered on the same line as a <dt> */
/* This should match the element list in writer.text.TextWriter.render_dl() */
dd > div.artwork:first-child,
dd > aside:first-child,
dd > figure:first-child,
dd > ol:first-child,
dd > div.sourcecode:first-child,
dd > table:first-child,
dd > ul:first-child {
clear: left;
}
/* fix for weird browser behaviour when <dd/> is empty */
dt+dd:empty::before{
content: "\00a0";
}
/* Make paragraph spacing inside <li> smaller than in body text, to fit better within the list */
li > p {
margin-bottom: 0.5em
}
/* Don't let p margin spill out from inside list items */
li > p:last-of-type:only-child {
margin-bottom: 0;
}
</style>
<link href="rfc-local.css" rel="stylesheet" type="text/css">
<link href="https://dx.doi.org/10.17487/rfc9332" rel="alternate">
<link href="urn:issn:2070-1721" rel="alternate">
<link href="https://datatracker.ietf.org/doc/draft-ietf-tsvwg-aqm-dualq-coupled-25" rel="prev">
</head>
<body class="xml2rfc">
<script src="https://www.rfc-editor.org/js/metadata.min.js"></script>
<table class="ears">
<thead><tr>
<td class="left">RFC 9332</td>
<td class="center">DualQ Coupled AQMs</td>
<td class="right">January 2023</td>
</tr></thead>
<tfoot><tr>
<td class="left">De Schepper, et al.</td>
<td class="center">Experimental</td>
<td class="right">[Page]</td>
</tr></tfoot>
</table>
<div id="external-metadata" class="document-information"></div>
<div id="internal-metadata" class="document-information">
<dl id="identifiers">
<dt class="label-stream">Stream:</dt>
<dd class="stream">Internet Engineering Task Force (IETF)</dd>
<dt class="label-rfc">RFC:</dt>
<dd class="rfc"><a href="https://www.rfc-editor.org/rfc/rfc9332" class="eref">9332</a></dd>
<dt class="label-category">Category:</dt>
<dd class="category">Experimental</dd>
<dt class="label-published">Published:</dt>
<dd class="published">
<time datetime="2023-01" class="published">January 2023</time>
</dd>
<dt class="label-issn">ISSN:</dt>
<dd class="issn">2070-1721</dd>
<dt class="label-authors">Authors:</dt>
<dd class="authors">
<div class="author">
<div class="author-name">K. De Schepper</div>
<div class="org">Nokia Bell Labs</div>
</div>
<div class="author">
<div class="author-name">B. Briscoe, <span class="editor">Ed.</span>
</div>
<div class="org">Independent</div>
</div>
<div class="author">
<div class="author-name">G. White</div>
<div class="org">CableLabs</div>
</div>
</dd>
</dl>
</div>
<h1 id="rfcnum">RFC 9332</h1>
<h1 id="title">Dual-Queue Coupled Active Queue Management (AQM) for Low Latency, Low Loss, and Scalable Throughput (L4S)</h1>
<section id="section-abstract">
<h2 id="abstract"><a href="#abstract" class="selfRef">Abstract</a></h2>
<p id="section-abstract-1">This specification defines a framework for coupling the Active Queue
Management (AQM) algorithms in two queues intended for flows with
different responses to congestion. This provides a way for the Internet
to transition from the scaling problems of standard TCP-Reno-friendly
('Classic') congestion controls to the family of 'Scalable' congestion
controls. These are designed for consistently very low queuing latency,
very low congestion loss, and scaling of per-flow throughput by
using Explicit Congestion Notification (ECN) in a modified way. Until
the Coupled Dual Queue (DualQ), these Scalable L4S congestion controls could only be
deployed where a clean-slate environment could be arranged, such as in
private data centres.<a href="#section-abstract-1" class="pilcrow">¶</a></p>
<p id="section-abstract-2">This specification first explains how a Coupled DualQ works. It then
gives the normative requirements that are necessary for it to work well.
All this is independent of which two AQMs are used, but pseudocode
examples of specific AQMs are given in appendices.<a href="#section-abstract-2" class="pilcrow">¶</a></p>
</section>
<div id="status-of-memo">
<section id="section-boilerplate.1">
<h2 id="name-status-of-this-memo">
<a href="#name-status-of-this-memo" class="section-name selfRef">Status of This Memo</a>
</h2>
<p id="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.<a href="#section-boilerplate.1-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-2">
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF community.
It has received public review and has been approved for publication
by the Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.<a href="#section-boilerplate.1-2" class="pilcrow">¶</a></p>
<p id="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<span><a href="https://www.rfc-editor.org/info/rfc9332">https://www.rfc-editor.org/info/rfc9332</a></span>.<a href="#section-boilerplate.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="copyright">
<section id="section-boilerplate.2">
<h2 id="name-copyright-notice">
<a href="#name-copyright-notice" class="section-name selfRef">Copyright Notice</a>
</h2>
<p id="section-boilerplate.2-1">
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.<a href="#section-boilerplate.2-1" class="pilcrow">¶</a></p>
<p id="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<span><a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a></span>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Revised BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Revised BSD License.<a href="#section-boilerplate.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="toc">
<section id="section-toc.1">
<a href="#" onclick="scroll(0,0)" class="toplink">▲</a><h2 id="name-table-of-contents">
<a href="#name-table-of-contents" class="section-name selfRef">Table of Contents</a>
</h2>
<nav class="toc"><ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1">
<p id="section-toc.1-1.1.1"><a href="#section-1" class="auto internal xref">1</a>. <a href="#name-introduction" class="internal xref">Introduction</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1.2.1">
<p id="section-toc.1-1.1.2.1.1" class="keepWithNext"><a href="#section-1.1" class="auto internal xref">1.1</a>. <a href="#name-outline-of-the-problem" class="internal xref">Outline of the Problem</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1.2.2">
<p id="section-toc.1-1.1.2.2.1" class="keepWithNext"><a href="#section-1.2" class="auto internal xref">1.2</a>. <a href="#name-context-scope-and-applicabi" class="internal xref">Context, Scope, and Applicability</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1.2.3">
<p id="section-toc.1-1.1.2.3.1" class="keepWithNext"><a href="#section-1.3" class="auto internal xref">1.3</a>. <a href="#name-terminology" class="internal xref">Terminology</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.1.2.4">
<p id="section-toc.1-1.1.2.4.1"><a href="#section-1.4" class="auto internal xref">1.4</a>. <a href="#name-features" class="internal xref">Features</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2">
<p id="section-toc.1-1.2.1"><a href="#section-2" class="auto internal xref">2</a>. <a href="#name-dualq-coupled-aqm" class="internal xref">DualQ Coupled AQM</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.1">
<p id="section-toc.1-1.2.2.1.1"><a href="#section-2.1" class="auto internal xref">2.1</a>. <a href="#name-coupled-aqm" class="internal xref">Coupled AQM</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.2">
<p id="section-toc.1-1.2.2.2.1"><a href="#section-2.2" class="auto internal xref">2.2</a>. <a href="#name-dual-queue" class="internal xref">Dual Queue</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.3">
<p id="section-toc.1-1.2.2.3.1"><a href="#section-2.3" class="auto internal xref">2.3</a>. <a href="#name-traffic-classification" class="internal xref">Traffic Classification</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.4">
<p id="section-toc.1-1.2.2.4.1"><a href="#section-2.4" class="auto internal xref">2.4</a>. <a href="#name-overall-dualq-coupled-aqm-s" class="internal xref">Overall DualQ Coupled AQM Structure</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.5">
<p id="section-toc.1-1.2.2.5.1"><a href="#section-2.5" class="auto internal xref">2.5</a>. <a href="#name-normative-requirements-for-" class="internal xref">Normative Requirements for a DualQ Coupled AQM</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.5.2.1">
<p id="section-toc.1-1.2.2.5.2.1.1"><a href="#section-2.5.1" class="auto internal xref">2.5.1</a>. <a href="#name-functional-requirements" class="internal xref">Functional Requirements</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.5.2.1.2.1">
<p id="section-toc.1-1.2.2.5.2.1.2.1.1"><a href="#section-2.5.1.1" class="auto internal xref">2.5.1.1</a>. <a href="#name-requirements-in-unexpected-" class="internal xref">Requirements in Unexpected Cases</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.5.2.2">
<p id="section-toc.1-1.2.2.5.2.2.1"><a href="#section-2.5.2" class="auto internal xref">2.5.2</a>. <a href="#name-management-requirements" class="internal xref">Management Requirements</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.5.2.2.2.1">
<p id="section-toc.1-1.2.2.5.2.2.2.1.1"><a href="#section-2.5.2.1" class="auto internal xref">2.5.2.1</a>. <a href="#name-configuration" class="internal xref">Configuration</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.5.2.2.2.2">
<p id="section-toc.1-1.2.2.5.2.2.2.2.1"><a href="#section-2.5.2.2" class="auto internal xref">2.5.2.2</a>. <a href="#name-monitoring" class="internal xref">Monitoring</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.5.2.2.2.3">
<p id="section-toc.1-1.2.2.5.2.2.2.3.1"><a href="#section-2.5.2.3" class="auto internal xref">2.5.2.3</a>. <a href="#name-anomaly-detection" class="internal xref">Anomaly Detection</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.2.2.5.2.2.2.4">
<p id="section-toc.1-1.2.2.5.2.2.2.4.1"><a href="#section-2.5.2.4" class="auto internal xref">2.5.2.4</a>. <a href="#name-deployment-coexistence-and-" class="internal xref">Deployment, Coexistence, and Scaling</a></p>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.3">
<p id="section-toc.1-1.3.1"><a href="#section-3" class="auto internal xref">3</a>. <a href="#name-iana-considerations" class="internal xref">IANA Considerations</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4">
<p id="section-toc.1-1.4.1"><a href="#section-4" class="auto internal xref">4</a>. <a href="#name-security-considerations" class="internal xref">Security Considerations</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.1">
<p id="section-toc.1-1.4.2.1.1"><a href="#section-4.1" class="auto internal xref">4.1</a>. <a href="#name-low-delay-without-requiring" class="internal xref">Low Delay without Requiring Per-flow Processing</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2">
<p id="section-toc.1-1.4.2.2.1"><a href="#section-4.2" class="auto internal xref">4.2</a>. <a href="#name-handling-unresponsive-flows" class="internal xref">Handling Unresponsive Flows and Overload</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2.2.1">
<p id="section-toc.1-1.4.2.2.2.1.1"><a href="#section-4.2.1" class="auto internal xref">4.2.1</a>. <a href="#name-unresponsive-traffic-withou" class="internal xref">Unresponsive Traffic without Overload</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2.2.2">
<p id="section-toc.1-1.4.2.2.2.2.1"><a href="#section-4.2.2" class="auto internal xref">4.2.2</a>. <a href="#name-avoiding-short-term-classic" class="internal xref">Avoiding Short-Term Classic Starvation: Sacrifice L4S Throughput or Delay?</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2.2.3">
<p id="section-toc.1-1.4.2.2.2.3.1"><a href="#section-4.2.3" class="auto internal xref">4.2.3</a>. <a href="#name-l4s-ecn-saturation-introduc" class="internal xref">L4S ECN Saturation: Introduce Drop or Delay?</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.4.2.2.2.3.2.1">
<p id="section-toc.1-1.4.2.2.2.3.2.1.1"><a href="#section-4.2.3.1" class="auto internal xref">4.2.3.1</a>. <a href="#name-protecting-against-overload" class="internal xref">Protecting against Overload by Unresponsive ECN-Capable Traffic</a></p>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5">
<p id="section-toc.1-1.5.1"><a href="#section-5" class="auto internal xref">5</a>. <a href="#name-references" class="internal xref">References</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5.2.1">
<p id="section-toc.1-1.5.2.1.1"><a href="#section-5.1" class="auto internal xref">5.1</a>. <a href="#name-normative-references" class="internal xref">Normative References</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.5.2.2">
<p id="section-toc.1-1.5.2.2.1"><a href="#section-5.2" class="auto internal xref">5.2</a>. <a href="#name-informative-references" class="internal xref">Informative References</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6">
<p id="section-toc.1-1.6.1"><a href="#appendix-A" class="auto internal xref">Appendix A</a>. <a href="#name-example-dualq-coupled-pi2-a" class="internal xref">Example DualQ Coupled PI2 Algorithm</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6.2.1">
<p id="section-toc.1-1.6.2.1.1"><a href="#appendix-A.1" class="auto internal xref">A.1</a>. <a href="#name-pass-1-core-concepts" class="internal xref">Pass #1: Core Concepts</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.6.2.2">
<p id="section-toc.1-1.6.2.2.1"><a href="#appendix-A.2" class="auto internal xref">A.2</a>. <a href="#name-pass-2-edge-case-details" class="internal xref">Pass #2: Edge-Case Details</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7">
<p id="section-toc.1-1.7.1"><a href="#appendix-B" class="auto internal xref">Appendix B</a>. <a href="#name-example-dualq-coupled-curvy" class="internal xref">Example DualQ Coupled Curvy RED Algorithm</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.1">
<p id="section-toc.1-1.7.2.1.1"><a href="#appendix-B.1" class="auto internal xref">B.1</a>. <a href="#name-curvy-red-in-pseudocode" class="internal xref">Curvy RED in Pseudocode</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.7.2.2">
<p id="section-toc.1-1.7.2.2.1"><a href="#appendix-B.2" class="auto internal xref">B.2</a>. <a href="#name-efficient-implementation-of" class="internal xref">Efficient Implementation of Curvy RED</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8">
<p id="section-toc.1-1.8.1"><a href="#appendix-C" class="auto internal xref">Appendix C</a>. <a href="#name-choice-of-coupling-factor-k" class="internal xref">Choice of Coupling Factor, k</a></p>
<ul class="compact toc ulBare ulEmpty">
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8.2.1">
<p id="section-toc.1-1.8.2.1.1"><a href="#appendix-C.1" class="auto internal xref">C.1</a>. <a href="#name-rtt-dependence" class="internal xref">RTT-Dependence</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.8.2.2">
<p id="section-toc.1-1.8.2.2.1"><a href="#appendix-C.2" class="auto internal xref">C.2</a>. <a href="#name-guidance-on-controlling-thr" class="internal xref">Guidance on Controlling Throughput Equivalence</a></p>
</li>
</ul>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.9">
<p id="section-toc.1-1.9.1"><a href="#appendix-D" class="auto internal xref"></a><a href="#name-acknowledgements" class="internal xref">Acknowledgements</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.10">
<p id="section-toc.1-1.10.1"><a href="#appendix-E" class="auto internal xref"></a><a href="#name-contributors" class="internal xref">Contributors</a></p>
</li>
<li class="compact toc ulBare ulEmpty" id="section-toc.1-1.11">
<p id="section-toc.1-1.11.1"><a href="#appendix-F" class="auto internal xref"></a><a href="#name-authors-addresses" class="internal xref">Authors' Addresses</a></p>
</li>
</ul>
</nav>
</section>
</div>
<div id="dualq_intro">
<section id="section-1">
<h2 id="name-introduction">
<a href="#section-1" class="section-number selfRef">1. </a><a href="#name-introduction" class="section-name selfRef">Introduction</a>
</h2>
<p id="section-1-1">This document specifies a framework for DualQ Coupled AQMs, which can
serve as the network part of the L4S architecture <span>[<a href="#RFC9330" class="cite xref">RFC9330</a>]</span>. A DualQ Coupled AQM consists of two
queues: L4S and Classic. The L4S queue is intended for Scalable
congestion controls that can maintain very low queuing latency
(sub-millisecond on average) and high throughput at the same time. The
Coupled DualQ acts like a semi-permeable membrane: the L4S queue
isolates the sub-millisecond average queuing delay of L4S from Classic
latency, while the coupling between the queues pools the capacity
between both queues so that ad hoc numbers of capacity-seeking
applications all sharing the same capacity can have roughly equivalent
throughput per flow, whichever queue they use. The DualQ achieves this
indirectly, without having to inspect transport-layer flow identifiers
and without compromising the performance of the Classic traffic,
relative to a single queue. The DualQ design has low complexity and
requires no configuration for the public Internet.<a href="#section-1-1" class="pilcrow">¶</a></p>
<div id="dualq_problem">
<section id="section-1.1">
<h3 id="name-outline-of-the-problem">
<a href="#section-1.1" class="section-number selfRef">1.1. </a><a href="#name-outline-of-the-problem" class="section-name selfRef">Outline of the Problem</a>
</h3>
<p id="section-1.1-1">Latency is becoming the critical performance factor for many
(perhaps most) applications on the public Internet, e.g., interactive
web, web services, voice, conversational video, interactive video,
interactive remote presence, instant messaging, online gaming, remote
desktop, cloud-based applications, and video-assisted remote control
of machinery and industrial processes. Once access network bitrates
reach levels now common in the developed world, further increases
offer diminishing returns unless latency is also addressed <span>[<a href="#Dukkipati06" class="cite xref">Dukkipati06</a>]</span>. In the last decade or so, much has been done
to reduce propagation time by placing caches or servers closer to
users. However, queuing remains a major intermittent component of
latency.<a href="#section-1.1-1" class="pilcrow">¶</a></p>
<p id="section-1.1-2">Previously, very low latency has only been available for a few
selected low-rate applications, that confine their sending rate within
a specially carved-off portion of capacity, which is prioritized over
other traffic, e.g., Diffserv Expedited Forwarding (EF) <span>[<a href="#RFC3246" class="cite xref">RFC3246</a>]</span>. Up
to now, it has not been possible to allow any number of low-latency,
high throughput applications to seek to fully utilize available
capacity, because the capacity-seeking process itself causes too much
queuing delay.<a href="#section-1.1-2" class="pilcrow">¶</a></p>
<p id="section-1.1-3">To reduce this queuing delay caused by the capacity-seeking
process, changes either to the network alone or to end systems alone
are in progress. L4S involves a recognition that both approaches are
yielding diminishing returns:<a href="#section-1.1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1.1-4.1">Recent state-of-the-art AQM in the
network, e.g., Flow Queue CoDel <span>[<a href="#RFC8290" class="cite xref">RFC8290</a>]</span>,
Proportional Integral controller Enhanced (PIE) <span>[<a href="#RFC8033" class="cite xref">RFC8033</a>]</span>, and Adaptive Random Early Detection (ARED) <span>[<a href="#ARED01" class="cite xref">ARED01</a>]</span>), has reduced queuing delay for all traffic, not
just a select few applications. However, no matter how good the
AQM, the capacity-seeking (sawtoothing) rate of TCP-like
congestion controls represents a lower limit that will cause either
the queuing delay to vary or the link to be
underutilized.
These AQMs are tuned to allow a typical
capacity-seeking TCP-Reno-friendly flow to induce an average queue
that roughly doubles the base round-trip time (RTT), adding 5-15 ms of queuing on
average for a mix of long-running flows and web traffic (cf. 500 microseconds with L4S for the same traffic mix <span>[<a href="#L4Seval22" class="cite xref">L4Seval22</a>]</span>). However, for many applications, low
delay is not useful unless it is consistently low. With these
AQMs, 99th percentile queuing delay is 20-30 ms (cf. 2 ms with the
same traffic over L4S).<a href="#section-1.1-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.1-4.2">Similarly, recent research into using end-to-end congestion control
without needing an AQM in the network (e.g., Bottleneck Bandwidth and Round-trip propagation time (BBR) <span>[<a href="#I-D.cardwell-iccrg-bbr-congestion-control" class="cite xref">BBR-CC</a>]</span>) seems to
have hit a similar queuing delay floor of about 20 ms on
average, but there are also regular 25 ms delay spikes due to
bandwidth probes and 60 ms spikes due to flow-starts.<a href="#section-1.1-4.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-1.1-5">L4S learns from the experience of Data Center TCP (DCTCP) <span>[<a href="#RFC8257" class="cite xref">RFC8257</a>]</span>, which shows the power of complementary changes
both in the network and on end systems. DCTCP teaches us that two
small but radical changes to congestion control are needed to cut the
two major outstanding causes of queuing delay variability:<a href="#section-1.1-5" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-1.1-6">
<li id="section-1.1-6.1">Far smaller rate variations (sawteeth) than Reno-friendly
congestion controls.<a href="#section-1.1-6.1" class="pilcrow">¶</a>
</li>
<li id="section-1.1-6.2">A shift of smoothing and hence smoothing delay from network to
sender.<a href="#section-1.1-6.2" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-1.1-7">Without the former, a 'Classic' (e.g., Reno-friendly)
flow's RTT varies between roughly 1 and 2 times the
base RTT between the machines in question. Without the latter, a
'Classic' flow's response to changing events is delayed by a
worst-case (transcontinental) RTT, which could be hundreds of times
the actual smoothing delay needed for the RTT of typical traffic from
localized Content Delivery Networks (CDNs).<a href="#section-1.1-7" class="pilcrow">¶</a></p>
<p id="section-1.1-8">These changes are the two main features of the family of so-called
'Scalable' congestion controls (which include DCTCP, Prague, and
Self-Clocked Rate Adaptation for Multimedia (SCReAM)). Both of these changes only reduce delay in combination with a
complementary change in the network, and they are both only feasible
with ECN, not drop, for the signalling:<a href="#section-1.1-8" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-1.1-9">
<li id="section-1.1-9.1">The smaller sawteeth allow an extremely shallow ECN
packet-marking threshold in the queue.<a href="#section-1.1-9.1" class="pilcrow">¶</a>
</li>
<li id="section-1.1-9.2">No smoothing in the network means that every fluctuation of
the queue is signalled immediately.<a href="#section-1.1-9.2" class="pilcrow">¶</a>
</li>
</ol>
<p id="section-1.1-10">Without ECN, either of these would lead to very high loss
levels. In contrast, with ECN, the resulting high marking levels are just
signals, not impairments.
(Note that BBRv2 <span>[<a href="#BBRv2" class="cite xref">BBRv2</a>]</span>
combines the best of both worlds -- it works as a Scalable congestion
control when ECN is available, but it also aims to minimize delay when ECN
is absent.)<a href="#section-1.1-10" class="pilcrow">¶</a></p>
<p id="section-1.1-11">However, until now, Scalable congestion controls (like DCTCP) did
not coexist well in a shared ECN-capable queue with existing Classic
(e.g., Reno <span>[<a href="#RFC5681" class="cite xref">RFC5681</a>]</span> or CUBIC <span>[<a href="#RFC8312" class="cite xref">RFC8312</a>]</span>) congestion controls -- Scalable controls are
so aggressive that these 'Classic' algorithms would drive themselves
to a small capacity share. Therefore, until now, L4S controls could
only be deployed where a clean-slate environment could be arranged,
such as in private data centres (hence the name DCTCP).<a href="#section-1.1-11" class="pilcrow">¶</a></p>
<p id="section-1.1-12">One way to solve the problem of coexistence between Scalable and
Classic flows is to use a per-flow-queuing (FQ) approach such as
FQ-CoDel <span>[<a href="#RFC8290" class="cite xref">RFC8290</a>]</span>. It classifies packets by flow
identifier into separate queues in order to isolate sparse flows from
the higher latency in the queues assigned to heavier flows. However,
if a Classic flow needs both low delay and high throughput, having a
queue to itself does not isolate it from the harm it causes to itself.
Also FQ approaches need to inspect flow identifiers, which is not
always practical.<a href="#section-1.1-12" class="pilcrow">¶</a></p>
<p id="section-1.1-13">In summary, Scalable congestion controls address the root cause of
the latency, loss and scaling problems with Classic congestion
controls. Both FQ and DualQ AQMs can be enablers for this smooth low-latency
scalable behaviour. The DualQ approach is particularly useful
because identifying flows is sometimes not practical or desirable.<a href="#section-1.1-13" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dualq_scope">
<section id="section-1.2">
<h3 id="name-context-scope-and-applicabi">
<a href="#section-1.2" class="section-number selfRef">1.2. </a><a href="#name-context-scope-and-applicabi" class="section-name selfRef">Context, Scope, and Applicability</a>
</h3>
<p id="section-1.2-1">L4S involves complementary changes in the network and on
end systems:<a href="#section-1.2-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="section-1.2-2">
<dt id="section-1.2-2.1">Network:</dt>
<dd style="margin-left: 1.5em" id="section-1.2-2.2">A DualQ Coupled AQM (defined in the present
document) or a modification to flow queue AQMs (described in paragraph "b" in
Section <a href="https://www.rfc-editor.org/rfc/rfc9330#section-4.2" class="relref">4.2</a> of the L4S architecture <span>[<a href="#RFC9330" class="cite xref">RFC9330</a>]</span>).<a href="#section-1.2-2.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.2-2.3">End system:</dt>
<dd style="margin-left: 1.5em" id="section-1.2-2.4">A Scalable congestion control (defined in Section <a href="https://www.rfc-editor.org/rfc/rfc9331#section-4" class="relref">4</a> of the L4S ECN protocol spec <span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span>).<a href="#section-1.2-2.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.2-2.5">Packet identifier:</dt>
<dd style="margin-left: 1.5em" id="section-1.2-2.6">The network and end-system parts
of L4S can be deployed incrementally, because they both identify
L4S packets using the experimentally assigned ECN codepoints in the IP header: ECT(1) and
CE <span>[<a href="#RFC8311" class="cite xref">RFC8311</a>]</span> <span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span>.<a href="#section-1.2-2.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-1.2-3">DCTCP <span>[<a href="#RFC8257" class="cite xref">RFC8257</a>]</span> is an example
of a Scalable congestion control for controlled environments that has
been deployed for some time in Linux, Windows, and FreeBSD operating
systems. During the progress of this document through the IETF, a
number of other Scalable congestion controls were implemented,
e.g., Prague over TCP and QUIC <span>[<a href="#I-D.briscoe-iccrg-prague-congestion-control" class="cite xref">PRAGUE-CC</a>]</span> <span>[<a href="#PragueLinux" class="cite xref">PragueLinux</a>]</span>, BBRv2 <span>[<a href="#BBRv2" class="cite xref">BBRv2</a>]</span> <span>[<a href="#I-D.cardwell-iccrg-bbr-congestion-control" class="cite xref">BBR-CC</a>]</span>, and
the L4S variant of SCReAM for real-time media <span>[<a href="#SCReAM-L4S" class="cite xref">SCReAM-L4S</a>]</span> <span>[<a href="#RFC8298" class="cite xref">RFC8298</a>]</span>.<a href="#section-1.2-3" class="pilcrow">¶</a></p>
<p id="section-1.2-4">The focus of this specification is to enable deployment of the
network part of the L4S service. Then, without any management
intervention, applications can exploit this new network capability as
the applications or their operating systems migrate to Scalable congestion controls, which
can then evolve <em>while</em> their benefits are
being enjoyed by everyone on the Internet.<a href="#section-1.2-4" class="pilcrow">¶</a></p>
<p id="section-1.2-5">The DualQ Coupled AQM framework can incorporate any AQM designed
for a single queue that generates a statistical or deterministic
mark/drop probability driven by the queue dynamics. Pseudocode
examples of two different DualQ Coupled AQMs are given in the
appendices.
In many cases the framework simplifies the basic control
algorithm and requires little extra processing.
Therefore, it is
believed the Coupled AQM would be applicable and easy to deploy in all
types of buffers such as buffers in cost-reduced mass-market residential
equipment; buffers in end-system stacks; buffers in carrier-scale
equipment including remote access servers, routers, firewalls, and
Ethernet switches; buffers in network interface cards; buffers in
virtualized network appliances, hypervisors; and so on.<a href="#section-1.2-5" class="pilcrow">¶</a></p>
<p id="section-1.2-6">For the public Internet, nearly all the benefit will typically be
achieved by deploying the Coupled AQM into either end of the access
link between a 'site' and the Internet, which is invariably the
bottleneck (see <span><a href="https://www.rfc-editor.org/rfc/rfc9330#section-6.4" class="relref">Section 6.4</a> of [<a href="#RFC9330" class="cite xref">RFC9330</a>]</span>
about deployment, which also defines the term 'site' to mean a home,
an office, a campus, or mobile user equipment).<a href="#section-1.2-6" class="pilcrow">¶</a></p>
<p id="section-1.2-7">Latency is not the only concern of L4S:<a href="#section-1.2-7" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1.2-8.1">The 'Low Loss' part of the name denotes that L4S generally
achieves zero congestion loss (which would otherwise cause
retransmission delays), due to its use of ECN.<a href="#section-1.2-8.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.2-8.2">The 'Scalable throughput' part of the name denotes that the
per-flow throughput of Scalable congestion controls should scale
indefinitely, avoiding the imminent scaling problems with
'TCP-Friendly' congestion control algorithms <span>[<a href="#RFC3649" class="cite xref">RFC3649</a>]</span>.<a href="#section-1.2-8.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-1.2-9">The former is clearly in scope of this AQM document. However,
the latter is an outcome of the end-system behaviour and is therefore
outside the scope of this AQM document, even though the AQM is an
enabler.<a href="#section-1.2-9" class="pilcrow">¶</a></p>
<p id="section-1.2-10">The overall L4S architecture <span>[<a href="#RFC9330" class="cite xref">RFC9330</a>]</span> gives more detail, including on
wider deployment aspects such as backwards compatibility of Scalable
congestion controls in bottlenecks where a DualQ Coupled AQM has not
been deployed. The supporting papers <span>[<a href="#L4Seval22" class="cite xref">L4Seval22</a>]</span>, <span>[<a href="#DualPI2Linux" class="cite xref">DualPI2Linux</a>]</span>,
<span>[<a href="#PI2" class="cite xref">PI2</a>]</span>, and <span>[<a href="#PI2param" class="cite xref">PI2param</a>]</span> give the full rationale for the AQM design, both
discursively and in more precise mathematical form, as well as the
results of performance evaluations. The main results have been
validated independently when using the Prague congestion control <span>[<a href="#Boru20" class="cite xref">Boru20</a>]</span> (experiments are run using Prague and DCTCP, but
only the former is relevant for validation, because Prague fixes a
number of problems with the Linux DCTCP code that make it unsuitable
for the public Internet).<a href="#section-1.2-10" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dualq_Terminology">
<section id="section-1.3">
<h3 id="name-terminology">
<a href="#section-1.3" class="section-number selfRef">1.3. </a><a href="#name-terminology" class="section-name selfRef">Terminology</a>
</h3>
<p id="section-1.3-1">
The key words "<span class="bcp14">MUST</span>", "<span class="bcp14">MUST NOT</span>", "<span class="bcp14">REQUIRED</span>", "<span class="bcp14">SHALL</span>", "<span class="bcp14">SHALL NOT</span>", "<span class="bcp14">SHOULD</span>", "<span class="bcp14">SHOULD NOT</span>", "<span class="bcp14">RECOMMENDED</span>", "<span class="bcp14">NOT RECOMMENDED</span>",
"<span class="bcp14">MAY</span>", and "<span class="bcp14">OPTIONAL</span>" in this document are to be interpreted as
described in BCP 14 <span>[<a href="#RFC2119" class="cite xref">RFC2119</a>]</span> <span>[<a href="#RFC8174" class="cite xref">RFC8174</a>]</span>
when, and only when, they appear in all capitals, as shown here.<a href="#section-1.3-1" class="pilcrow">¶</a></p>
<p id="section-1.3-2">The DualQ Coupled AQM uses two queues for two services:<a href="#section-1.3-2" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="section-1.3-3">
<dt id="section-1.3-3.1">Classic Service/Queue:</dt>
<dd style="margin-left: 1.5em" id="section-1.3-3.2">The Classic service is
intended for all the congestion control behaviours that coexist
with Reno <span>[<a href="#RFC5681" class="cite xref">RFC5681</a>]</span> (e.g., Reno itself,
CUBIC <span>[<a href="#RFC8312" class="cite xref">RFC8312</a>]</span>, and TFRC <span>[<a href="#RFC5348" class="cite xref">RFC5348</a>]</span>). The term 'Classic queue' means a queue providing the Classic service.<a href="#section-1.3-3.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.3-3.3">Low Latency, Low Loss, and Scalable throughput (L4S) Service/Queue:</dt>
<dd style="margin-left: 1.5em" id="section-1.3-3.4">The
'L4S' service is intended for traffic from Scalable congestion
control algorithms, such as the Prague congestion control <span>[<a href="#I-D.briscoe-iccrg-prague-congestion-control" class="cite xref">PRAGUE-CC</a>]</span>, which was
derived from Data Center TCP <span>[<a href="#RFC8257" class="cite xref">RFC8257</a>]</span>. The
L4S service is for more general traffic than just Prague
-- it allows the set of congestion controls with similar
scaling properties to Prague to evolve, such as the examples listed below (Relentless, SCReAM, etc.). The term 'L4S queue' means a queue providing the L4S service.<a href="#section-1.3-3.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.3-3.5">Classic Congestion Control:</dt>
<dd style="margin-left: 1.5em" id="section-1.3-3.6">A congestion control
behaviour that can coexist with standard Reno <span>[<a href="#RFC5681" class="cite xref">RFC5681</a>]</span> without causing significantly negative impact
on its flow rate <span>[<a href="#RFC5033" class="cite xref">RFC5033</a>]</span>. With Classic
congestion controls, such as Reno or CUBIC, because flow rate has
scaled since TCP congestion control was first designed in 1988, it
now takes hundreds of round trips (and growing) to recover after a
congestion signal (whether a loss or an ECN mark) as shown in the
examples in Section <a href="https://www.rfc-editor.org/rfc/rfc9330#section-5.1" class="relref">5.1</a> of the L4S architecture <span>[<a href="#RFC9330" class="cite xref">RFC9330</a>]</span> and in <span>[<a href="#RFC3649" class="cite xref">RFC3649</a>]</span>. Therefore, control of queuing and utilization
becomes very slack, and the slightest disturbances (e.g., from
new flows starting) prevent a high rate from being attained.<a href="#section-1.3-3.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.3-3.7">Scalable Congestion Control:</dt>
<dd style="margin-left: 1.5em" id="section-1.3-3.8">A congestion control
where the average time from one congestion signal to the next (the
recovery time) remains invariant as flow rate scales, all
other factors being equal. This maintains the same degree of
control over queuing and utilization whatever the flow rate, as
well as ensuring that high throughput is robust to disturbances.
For instance, DCTCP averages 2 congestion signals per round trip,
whatever the flow rate, as do other recently developed Scalable
congestion controls, e.g., Relentless TCP <span>[<a href="#I-D.mathis-iccrg-relentless-tcp" class="cite xref">RELENTLESS</a>]</span>, Prague <span>[<a href="#I-D.briscoe-iccrg-prague-congestion-control" class="cite xref">PRAGUE-CC</a>]</span> <span>[<a href="#PragueLinux" class="cite xref">PragueLinux</a>]</span>, BBRv2 <span>[<a href="#BBRv2" class="cite xref">BBRv2</a>]</span> <span>[<a href="#I-D.cardwell-iccrg-bbr-congestion-control" class="cite xref">BBR-CC</a>]</span>, and the L4S
variant of SCReAM for real-time media <span>[<a href="#SCReAM-L4S" class="cite xref">SCReAM-L4S</a>]</span> <span>[<a href="#RFC8298" class="cite xref">RFC8298</a>]</span>. For the public
Internet, a Scalable transport has to comply with the requirements
in <span><a href="https://www.rfc-editor.org/rfc/rfc9331#section-4" class="relref">Section 4</a> of [<a href="#RFC9331" class="cite xref">RFC9331</a>]</span> (a.k.a. the 'Prague L4S requirements').<a href="#section-1.3-3.8" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.3-3.9">C:</dt>
<dd style="margin-left: 1.5em" id="section-1.3-3.10">Abbreviation for Classic, e.g., when used as
a subscript.<a href="#section-1.3-3.10" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.3-3.11">L:</dt>
<dd style="margin-left: 1.5em" id="section-1.3-3.12">
<p id="section-1.3-3.12.1">Abbreviation for L4S, e.g., when used as a
subscript.<a href="#section-1.3-3.12.1" class="pilcrow">¶</a></p>
<p id="section-1.3-3.12.2">The terms Classic or L4S can
also qualify other nouns, such as 'codepoint', 'identifier',
'classification', 'packet', and 'flow'. For example, an L4S packet
means a packet with an L4S identifier sent from an L4S congestion
control.<a href="#section-1.3-3.12.2" class="pilcrow">¶</a></p>
<p id="section-1.3-3.12.3">Both Classic and L4S services can
cope with a proportion of unresponsive or less-responsive traffic
as well but, in the L4S case, its rate has to be smooth enough or
low enough to not build a queue (e.g., DNS, Voice over IP (VoIP), game sync
datagrams, etc.). The DualQ Coupled AQM behaviour is defined to be
similar to a single First-In, First-Out (FIFO) queue with respect to unresponsive and
overload traffic.<a href="#section-1.3-3.12.3" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="section-1.3-3.13">Reno-friendly:</dt>
<dd style="margin-left: 1.5em" id="section-1.3-3.14">The subset of Classic traffic that is
friendly to the standard Reno congestion control defined for TCP
in <span>[<a href="#RFC5681" class="cite xref">RFC5681</a>]</span>.
The TFRC spec <span>[<a href="#RFC5348" class="cite xref">RFC5348</a>]</span> indirectly implies that 'friendly' is
defined as "generally within a factor of two of the sending rate
of a TCP flow under the same conditions". 'Reno-friendly' is used here in place of
'TCP-friendly', given the latter has become imprecise, because the
TCP protocol is now used with so many different congestion control
behaviours, and Reno is used in non-TCP transports, such as
QUIC <span>[<a href="#RFC9000" class="cite xref">RFC9000</a>]</span>.<a href="#section-1.3-3.14" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.3-3.15">DualQ or DualQ AQM:</dt>
<dd style="margin-left: 1.5em" id="section-1.3-3.16">Used loosely as shorthand for a Dual-Queue Coupled AQM, where the context
makes 'Coupled AQM' obvious.<a href="#section-1.3-3.16" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-1.3-3.17">Classic ECN:</dt>
<dd style="margin-left: 1.5em" id="section-1.3-3.18">
<p id="section-1.3-3.18.1">The original Explicit Congestion
Notification (ECN) protocol <span>[<a href="#RFC3168" class="cite xref">RFC3168</a>]</span> that
requires ECN signals to be treated as equivalent to drops, both when
generated in the network and when responded to by the
sender.<a href="#section-1.3-3.18.1" class="pilcrow">¶</a></p>
<p id="section-1.3-3.18.2">For L4S, the names used for the four codepoints of the 2-bit IP-ECN field are unchanged from those
defined in the ECN spec <span>[<a href="#RFC3168" class="cite xref">RFC3168</a>]</span>, i.e., Not-ECT, ECT(0), ECT(1), and
CE, where ECT stands for ECN-Capable Transport and CE stands for
Congestion Experienced. A packet marked with the CE codepoint is
termed 'ECN-marked' or sometimes just 'marked' where the context
makes ECN obvious.<a href="#section-1.3-3.18.2" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
</dl>
</section>
</div>
<section id="section-1.4">
<h3 id="name-features">
<a href="#section-1.4" class="section-number selfRef">1.4. </a><a href="#name-features" class="section-name selfRef">Features</a>
</h3>
<p id="section-1.4-1">The AQM couples marking and/or dropping from the Classic queue to
the L4S queue in such a way that a flow will get roughly the same
throughput whichever it uses. Therefore, both queues can feed into the
full capacity of a link, and no rates need to be configured for the
queues.
The L4S queue enables Scalable congestion controls like DCTCP
or Prague to give very low and consistently low latency, without
compromising the performance of competing 'Classic' Internet
traffic.<a href="#section-1.4-1" class="pilcrow">¶</a></p>
<p id="section-1.4-2">Thousands of tests have been conducted in a typical fixed
residential broadband setting. Experiments used a range of base round-trip
delays up to 100 ms and link rates up to 200 Mb/s between the data
centre and home network, with varying amounts of background traffic in
both queues. For every L4S packet, the AQM kept the average queuing
delay below 1 ms (or 2 packets where serialization delay exceeded 1 ms
on slower links), with the 99th percentile being no worse than 2 ms. No losses at
all were introduced by the L4S AQM. Details of the extensive
experiments are available in <span>[<a href="#L4Seval22" class="cite xref">L4Seval22</a>]</span> and <span>[<a href="#DualPI2Linux" class="cite xref">DualPI2Linux</a>]</span>.
Subjective testing using
very demanding high-bandwidth low-latency applications over a single
shared access link is also described in <span>[<a href="#L4Sdemo16" class="cite xref">L4Sdemo16</a>]</span> and summarized in Section <a href="https://www.rfc-editor.org/rfc/rfc9330#section-6.1" class="relref">6.1</a> of the L4S architecture <span>[<a href="#RFC9330" class="cite xref">RFC9330</a>]</span>.<a href="#section-1.4-2" class="pilcrow">¶</a></p>
<p id="section-1.4-3">In all these experiments, the host was connected to the home
network by fixed Ethernet, in order to quantify the queuing delay that
can be achieved by a user who cares about delay. It should be
emphasized that L4S support at the bottleneck link cannot 'undelay'
bursts introduced by another link on the path, for instance by legacy
Wi-Fi equipment. However, if L4S support is added to the queue feeding
the <em>outgoing</em> WAN link of a home gateway,
it would be counterproductive not to also reduce the burstiness of the
<em>incoming</em> Wi-Fi. Also, trials of Wi-Fi
equipment with an L4S DualQ Coupled AQM on the <em>outgoing</em>
Wi-Fi interface are in progress, and early results of an L4S DualQ
Coupled AQM in a 5G radio access network testbed with emulated outdoor
cell edge radio fading are given in <span>[<a href="#L4S_5G" class="cite xref">L4S_5G</a>]</span>.<a href="#section-1.4-3" class="pilcrow">¶</a></p>
<p id="section-1.4-4">Unlike Diffserv EF, the L4S queue does not have
to be limited to a small proportion of the link capacity in order to
achieve low delay. The L4S queue can be filled with a heavy load of
capacity-seeking flows (Prague, BBRv2, etc.) and still achieve low delay.
The L4S queue does not rely on the presence of other traffic in the
Classic queue that can be 'overtaken'.
It gives low latency to L4S
traffic whether or not there is Classic traffic. The tail latency of
traffic served by the Classic AQM is sometimes a little better,
sometimes a little worse, when a proportion of the traffic is L4S.<a href="#section-1.4-4" class="pilcrow">¶</a></p>
<p id="section-1.4-5">The two queues are only necessary because:<a href="#section-1.4-5" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-1.4-6.1">The large variations (sawteeth) of Classic flows need roughly a
base RTT of queuing delay to ensure full utilization.<a href="#section-1.4-6.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-1.4-6.2">Scalable flows do not need a queue to keep utilization high,
but they cannot keep latency consistently low if they are mixed
with Classic traffic.<a href="#section-1.4-6.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-1.4-7">The L4S queue has latency priority within sub-round-trip
timescales, but over longer periods the coupling from the Classic to
the L4S AQM (explained below) ensures that it does not have bandwidth
priority over the Classic queue.<a href="#section-1.4-7" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<div id="dualq_algo">
<section id="section-2">
<h2 id="name-dualq-coupled-aqm">
<a href="#section-2" class="section-number selfRef">2. </a><a href="#name-dualq-coupled-aqm" class="section-name selfRef">DualQ Coupled AQM</a>
</h2>
<p id="section-2-1">There are two main aspects to the DualQ Coupled AQM approach:<a href="#section-2-1" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="section-2-2">
<li id="section-2-2.1">The Coupled AQM that addresses throughput equivalence between
Classic (e.g., Reno or CUBIC) flows and L4S flows (that satisfy
the Prague L4S requirements).<a href="#section-2-2.1" class="pilcrow">¶</a>
</li>
<li id="section-2-2.2">The Dual-Queue structure that provides latency separation for L4S
flows to isolate them from the typically large Classic queue.<a href="#section-2-2.2" class="pilcrow">¶</a>
</li>
</ol>
<div id="dualq_coupled">
<section id="section-2.1">
<h3 id="name-coupled-aqm">
<a href="#section-2.1" class="section-number selfRef">2.1. </a><a href="#name-coupled-aqm" class="section-name selfRef">Coupled AQM</a>
</h3>
<p id="section-2.1-1">In the 1990s, the 'TCP formula' was derived for the relationship
between the steady-state congestion window, cwnd, and the drop
probability, p of standard Reno congestion control <span>[<a href="#RFC5681" class="cite xref">RFC5681</a>]</span>. To a first-order approximation, the steady-state
cwnd of Reno is inversely proportional to the square root of p.<a href="#section-2.1-1" class="pilcrow">¶</a></p>
<p id="section-2.1-2">The design focuses on Reno as the worst case, because if it does no
harm to Reno, it will not harm CUBIC or any traffic designed to be
friendly to Reno. TCP CUBIC implements a Reno-friendly mode,
which is relevant for typical RTTs under 20 ms as long as the
throughput of a single flow is less than about 350 Mb/s. In such cases,
it can be assumed that CUBIC traffic behaves similarly to Reno. The
term 'Classic' will be used for the collection of Reno-friendly
traffic including CUBIC and potentially other experimental congestion
controls intended not to significantly impact the flow rate of
Reno.<a href="#section-2.1-2" class="pilcrow">¶</a></p>
<p id="section-2.1-3">A supporting paper <span>[<a href="#PI2" class="cite xref">PI2</a>]</span> includes the
derivation of the equivalent rate equation for DCTCP, for which cwnd
is inversely proportional to p (not the square root), where in this
case p is the ECN-marking probability. DCTCP is not the only
congestion control that behaves like this, so the term 'Scalable' will
be used for all similar congestion control behaviours (see examples in
<a href="#dualq_scope" class="auto internal xref">Section 1.2</a>). The term 'L4S' is used for traffic
driven by a Scalable congestion control that also complies with the
additional 'Prague L4S requirements' <span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span>.<a href="#section-2.1-3" class="pilcrow">¶</a></p>
<p id="section-2.1-4">For safe coexistence, under stationary conditions, a Scalable flow
has to run at roughly the same rate as a Reno TCP flow (all other
factors being equal). So the drop or marking probability for Classic
traffic, p_C, has to be distinct from the marking probability for L4S
traffic, p_L. The original ECN spec <span>[<a href="#RFC3168" class="cite xref">RFC3168</a>]</span> required these probabilities to be the same, but
<span>[<a href="#RFC8311" class="cite xref">RFC8311</a>]</span> updates <span>[<a href="#RFC3168" class="cite xref">RFC3168</a>]</span> to enable experiments in
which these probabilities are different.<a href="#section-2.1-4" class="pilcrow">¶</a></p>
<p id="section-2.1-5">Also, to remain stable, Classic sources need the network to smooth
p_C so it changes relatively slowly. It is hard for a network node to
know the RTTs of all the flows, so a Classic AQM adds a <em>worst-case</em> RTT of smoothing delay (about 100-200
ms). In contrast, L4S shifts responsibility for smoothing ECN feedback
to the sender, which only delays its response by its <em>own</em> RTT, as well as allowing a more immediate
response if necessary.<a href="#section-2.1-5" class="pilcrow">¶</a></p>
<p id="section-2.1-6">The Coupled AQM achieves safe coexistence by making the Classic
drop probability p_C proportional to the square of the coupled L4S
probability p_CL. p_CL is an input to the instantaneous L4S marking
probability p_L, but it changes as slowly as p_C. This makes the Reno
flow rate roughly equal the DCTCP flow rate, because the squaring of
p_CL counterbalances the square root of p_C in the 'TCP formula' of
Classic Reno congestion control.<a href="#section-2.1-6" class="pilcrow">¶</a></p>
<p id="section-2.1-7">Stating this as a formula, the relation between Classic drop
probability, p_C, and the coupled L4S probability p_CL needs to take
the following form:<a href="#section-2.1-7" class="pilcrow">¶</a></p>
<div class="sourcecode" id="section-2.1-8">
<pre>
p_C = ( p_CL / k )^2, (1)</pre><a href="#section-2.1-8" class="pilcrow">¶</a>
</div>
<p id="section-2.1-9">where k is the constant of proportionality, which is termed the
'coupling factor'.<a href="#section-2.1-9" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dualq">
<section id="section-2.2">
<h3 id="name-dual-queue">
<a href="#section-2.2" class="section-number selfRef">2.2. </a><a href="#name-dual-queue" class="section-name selfRef">Dual Queue</a>
</h3>
<p id="section-2.2-1">Classic traffic needs to build a large queue to prevent
underutilization. Therefore, a separate queue is provided for L4S
traffic, and it is scheduled with priority over the Classic queue.
Priority is conditional to prevent starvation of Classic traffic in
certain conditions (see <a href="#dualq_coupled_structure" class="auto internal xref">Section 2.4</a>).<a href="#section-2.2-1" class="pilcrow">¶</a></p>
<p id="section-2.2-2">Nonetheless, coupled marking ensures that giving priority to L4S
traffic still leaves the right amount of spare scheduling time for
Classic flows to each get equivalent throughput to DCTCP flows (all
other factors, such as RTT, being equal).<a href="#section-2.2-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dualq_classification">
<section id="section-2.3">
<h3 id="name-traffic-classification">
<a href="#section-2.3" class="section-number selfRef">2.3. </a><a href="#name-traffic-classification" class="section-name selfRef">Traffic Classification</a>
</h3>
<p id="section-2.3-1">Both the Coupled AQM and DualQ mechanisms need an identifier to
distinguish L4S (L) and Classic (C) packets.
Then the coupling
algorithm can achieve coexistence without having to inspect flow
identifiers, because it can apply the appropriate marking or dropping
probability to all flows of each type. A separate
specification <span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span> requires
the network to treat the ECT(1) and CE codepoints of the ECN field as
this identifier. An additional process document has proved necessary
to make the ECT(1) codepoint available for experimentation <span>[<a href="#RFC8311" class="cite xref">RFC8311</a>]</span>.<a href="#section-2.3-1" class="pilcrow">¶</a></p>
<p id="section-2.3-2">For policy reasons, an operator might choose to steer certain
packets (e.g., from certain flows or with certain addresses) out
of the L queue, even though they identify themselves as L4S by their
ECN codepoints. In such cases, the L4S ECN protocol <span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span> states that the device "<span class="bcp14">MUST NOT</span>
alter the end-to-end L4S ECN identifier" so that it is preserved
end to end. The aim is that each operator can choose how it treats L4S
traffic locally, but an individual operator does not alter the
identification of L4S packets, which would prevent other operators
downstream from making their own choices on how to treat L4S
traffic.<a href="#section-2.3-2" class="pilcrow">¶</a></p>
<p id="section-2.3-3">In addition, an operator could use other identifiers to classify
certain additional packet types into the L queue that it deems will
not risk harm to the L4S service, for instance, addresses of specific
applications or hosts; specific Diffserv codepoints such as EF, Voice-Admit, or the Non-Queue-Building (NQB)
per-hop behaviour; or certain protocols (e.g., ARP and DNS) (see <span><a href="https://www.rfc-editor.org/rfc/rfc9331#section-5.4.1" class="relref">Section 5.4.1</a> of [<a href="#RFC9331" class="cite xref">RFC9331</a>]</span>. Note
that
<span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span> states that "a network node <span class="bcp14">MUST NOT</span>
change Not-ECT or ECT(0) in the IP-ECN field into an L4S identifier."
Thus, the L queue is not solely an L4S queue; it
can be considered more generally as a low-latency queue.<a href="#section-2.3-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dualq_coupled_structure">
<section id="section-2.4">
<h3 id="name-overall-dualq-coupled-aqm-s">
<a href="#section-2.4" class="section-number selfRef">2.4. </a><a href="#name-overall-dualq-coupled-aqm-s" class="section-name selfRef">Overall DualQ Coupled AQM Structure</a>
</h3>
<p id="section-2.4-1"><a href="#dualq_fig_structure" class="auto internal xref">Figure 1</a> shows the overall structure
that any DualQ Coupled AQM is likely to have. This schematic is
intended to aid understanding of the current designs of DualQ Coupled
AQMs. However, it is not intended to preclude other innovative ways of
satisfying the normative requirements in <a href="#dualq_norm_reqs" class="auto internal xref">Section 2.5</a> that minimally define a DualQ Coupled AQM.
Also, the schematic only illustrates operation under normally expected
circumstances; behaviour under overload or with operator-specific
classifiers is deferred to <a href="#dualq_unexpected" class="auto internal xref">Section 2.5.1.1</a>.<a href="#section-2.4-1" class="pilcrow">¶</a></p>
<p id="section-2.4-2">The classifier on the left separates incoming traffic between the
two queues (L and C). Each queue has its own AQM that determines the
likelihood of marking or dropping (p_L and p_C).
In <span>[<a href="#PI2" class="cite xref">PI2</a>]</span>, it has been
proved that it is preferable to control load
with a linear controller, then square the output before applying it as
a drop probability to Reno-friendly traffic (because Reno congestion
control decreases its load proportional to the square root of the
increase in drop). So, the AQM for Classic traffic needs to be
implemented in two stages: i) a base stage that outputs an internal
probability p' (pronounced 'p-prime') and ii) a squaring stage that
outputs p_C, where<a href="#section-2.4-2" class="pilcrow">¶</a></p>
<div class="sourcecode" id="section-2.4-3">
<pre>
p_C = (p')^2. (2)</pre><a href="#section-2.4-3" class="pilcrow">¶</a>
</div>
<p id="section-2.4-4">Substituting for p_C in equation (1) gives<a href="#section-2.4-4" class="pilcrow">¶</a></p>
<div class="sourcecode" id="section-2.4-5">
<pre>
p' = p_CL / k.</pre><a href="#section-2.4-5" class="pilcrow">¶</a>
</div>
<p id="section-2.4-6">So the slow-moving input to ECN marking in the L queue (the
coupled L4S probability) is<a href="#section-2.4-6" class="pilcrow">¶</a></p>
<div class="sourcecode" id="section-2.4-7">
<pre>
p_CL = k*p'. (3)</pre><a href="#section-2.4-7" class="pilcrow">¶</a>
</div>
<p id="section-2.4-8">The actual ECN-marking probability p_L that is applied to the L
queue needs to track the immediate L queue delay under L-only
congestion conditions, as well as track p_CL under coupled congestion
conditions. So the L queue uses a 'Native AQM' that calculates a
probability p'_L as a function of the instantaneous L queue delay.
And given the L queue has conditional priority over the C queue,
whenever the L queue grows, the AQM ought to apply marking probability
p'_L, but p_L ought to not fall below p_CL. This suggests<a href="#section-2.4-8" class="pilcrow">¶</a></p>
<div class="sourcecode" id="section-2.4-9">
<pre>
p_L = max(p'_L, p_CL), (4)</pre><a href="#section-2.4-9" class="pilcrow">¶</a>
</div>
<p id="section-2.4-10">which has also been found to work very well in
practice.<a href="#section-2.4-10" class="pilcrow">¶</a></p>
<p id="section-2.4-11">The two transformations of p' in equations (2) and (3) implement
the required coupling given in equation (1) earlier.<a href="#section-2.4-11" class="pilcrow">¶</a></p>
<p id="section-2.4-12">The constant of proportionality or coupling factor, k, in equation
(1) determines the ratio between the congestion probabilities (loss or
marking) experienced by L4S and Classic traffic. Thus, k indirectly
determines the ratio between L4S and Classic flow rates, because flows
(assuming they are responsive) adjust their rate in response to
congestion probability. <a href="#dualq_Choosing_k" class="auto internal xref">Appendix C.2</a> gives
guidance on the choice of k and its effect on relative flow rates.<a href="#section-2.4-12" class="pilcrow">¶</a></p>
<span id="name-dualq-coupled-aqm-schematic"></span><div id="dualq_fig_structure">
<figure id="figure-1">
<div class="alignLeft art-text artwork" id="section-2.4-13.1">
<pre>
_________
| | ,------.
L4S (L) queue | |===>| ECN |
,'| _______|_| |marker|\
<' | | `------'\\
//`' v ^ p_L \\
// ,-------. | \\
// |Native |p'_L | \\,.
// | L4S |--->(MAX) < | ___
,----------.// | AQM | ^ p_CL `\|.'Cond-`.
| IP-ECN |/ `-------' | / itional \
==>|Classifier| ,-------. (k*p') [ priority]==>
| |\ | Base | | \scheduler/
`----------'\\ | AQM |---->: ,'|`-.___.-'
\\ | |p' | <' |
\\ `-------' (p'^2) //`'
\\ ^ | //
\\,. | v p_C //
< | _________ .------.//
`\| | | | Drop |/
Classic (C) |queue |===>|/mark |
__|______| `------'
Legend: ===> traffic flow
---> control dependency
</pre>
</div>
<figcaption><a href="#figure-1" class="selfRef">Figure 1</a>:
<a href="#name-dualq-coupled-aqm-schematic" class="selfRef">DualQ Coupled AQM Schematic</a>
</figcaption></figure>
</div>
<p id="section-2.4-14">After the AQMs have applied their dropping or marking, the
scheduler forwards their packets to the link. Even though the
scheduler gives priority to the L queue, it is not as strong as the
coupling from the C queue. This is because, as the C queue grows, the
'Base AQM' applies more congestion signals to L traffic (as well as to C).
As L flows reduce their rate in response, they use less than the
scheduling share for L traffic. So, because the scheduler is work
preserving, it schedules any C traffic in the gaps.<a href="#section-2.4-14" class="pilcrow">¶</a></p>
<p id="section-2.4-15">Giving priority to the L queue has the benefit of very low L queue
delay, because the L queue is kept empty whenever L traffic is
controlled by the coupling. Also, there only has to be a coupling in
one direction -- from Classic to L4S. Priority has to be conditional in
some way to prevent the C queue from being starved in the short term (see
<a href="#dualq_Overload_Starvation" class="auto internal xref">Section 4.2.2</a>) to give C traffic a means
to push in, as explained next. With normal responsive L traffic, the
coupled ECN marking gives C traffic the ability to push back against
even strict priority, by congestion marking the L traffic to make it
yield some space. However, if there is just a small finite set of C
packets (e.g., a DNS request or an initial window of data), some
Classic AQMs will not induce enough ECN marking in the L queue, no
matter how long the small set of C packets waits. Then, if the L queue
happens to remain busy, the C traffic would never get a scheduling
opportunity from a strict priority scheduler. Ideally, the Classic AQM
would be designed to increase the coupled marking the longer that C
packets have been waiting, but this is not always practical -- hence
the need for L priority to be conditional. Giving a small weight or
limited waiting time for C traffic improves response times for short
Classic messages, such as DNS requests, and improves Classic flow
startup because immediate capacity is available.<a href="#section-2.4-15" class="pilcrow">¶</a></p>
<p id="section-2.4-16">Example DualQ Coupled AQM algorithms called 'DualPI2' and 'Curvy RED'
are given in Appendices <a href="#dualq_Ex_algo_pi2" class="auto internal xref">A</a> and <a href="#dualq_Ex_algo" class="auto internal xref">B</a>. Either example AQM can be used to couple
packet marking and dropping across a DualQ:<a href="#section-2.4-16" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.4-17.1">
<p id="section-2.4-17.1.1">DualPI2 uses a Proportional Integral (PI) controller as the Base
AQM. Indeed, this Base AQM with just the squared output and no L4S
queue can be used as a drop-in replacement for PIE <span>[<a href="#RFC8033" class="cite xref">RFC8033</a>]</span>, in which case it is just called PI2 <span>[<a href="#PI2" class="cite xref">PI2</a>]</span>.
PI2 is a principled simplification of PIE that is both
more responsive and more stable in the face of dynamically varying
load.<a href="#section-2.4-17.1.1" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-2.4-17.2">
<p id="section-2.4-17.2.1">Curvy RED is derived from RED <span>[<a href="#RED" class="cite xref">RED</a>]</span>, except
its configuration parameters are delay-based to make them insensitive
to link rate, and it requires fewer operations per packet than RED.
However, DualPI2 is more responsive and stable over a wider range of
RTTs than Curvy RED. As a consequence, at the time of writing, DualPI2
has attracted more development and evaluation attention than Curvy
RED, leaving the Curvy RED design not so fully evaluated.<a href="#section-2.4-17.2.1" class="pilcrow">¶</a></p>
</li>
</ul>
<p id="section-2.4-18">Both AQMs regulate their queue against targets configured in units
of time rather than bytes. As already explained, this ensures
configuration can be invariant for different drain rates. With AQMs in
a DualQ structure this is particularly important because the drain
rate of each queue can vary rapidly as flows for the two queues arrive
and depart, even if the combined link rate is constant.<a href="#section-2.4-18" class="pilcrow">¶</a></p>
<p id="section-2.4-19">It would be possible to control the queues with other alternative
AQMs, as long as the normative requirements (those expressed in
capitals) in <a href="#dualq_norm_reqs" class="auto internal xref">Section 2.5</a> are observed.<a href="#section-2.4-19" class="pilcrow">¶</a></p>
<p id="section-2.4-20">The two queues could optionally be part of a larger queuing
hierarchy, such as the initial example ideas in <span>[<a href="#I-D.briscoe-tsvwg-l4s-diffserv" class="cite xref">L4S-DIFFSERV</a>]</span>.<a href="#section-2.4-20" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dualq_norm_reqs">
<section id="section-2.5">
<h3 id="name-normative-requirements-for-">
<a href="#section-2.5" class="section-number selfRef">2.5. </a><a href="#name-normative-requirements-for-" class="section-name selfRef">Normative Requirements for a DualQ Coupled AQM</a>
</h3>
<p id="section-2.5-1">The following requirements are intended to capture only the
essential aspects of a DualQ Coupled AQM. They are intended to be
independent of the particular AQMs implemented for each queue but to
still define the DualQ framework built around those AQMs.<a href="#section-2.5-1" class="pilcrow">¶</a></p>
<div id="dualq_functional_reqs">
<section id="section-2.5.1">
<h4 id="name-functional-requirements">
<a href="#section-2.5.1" class="section-number selfRef">2.5.1. </a><a href="#name-functional-requirements" class="section-name selfRef">Functional Requirements</a>
</h4>
<p id="section-2.5.1-1">A DualQ Coupled AQM implementation <span class="bcp14">MUST</span> comply with the
prerequisite L4S behaviours for any L4S network node (not just a
DualQ) as specified in <span><a href="https://www.rfc-editor.org/rfc/rfc9331#section-5" class="relref">Section 5</a> of [<a href="#RFC9331" class="cite xref">RFC9331</a>]</span>. These primarily concern
classification and re-marking as briefly summarized earlier in <a href="#dualq_classification" class="auto internal xref">Section 2.3</a>. But
<span><a href="https://www.rfc-editor.org/rfc/rfc9331#section-5.5" class="relref">Section 5.5</a> of [<a href="#RFC9331" class="cite xref">RFC9331</a>]</span> also gives guidance on reducing the burstiness of the
link technology underlying any L4S AQM.<a href="#section-2.5.1-1" class="pilcrow">¶</a></p>
<p id="section-2.5.1-2">A DualQ Coupled AQM implementation <span class="bcp14">MUST</span> utilize two queues,
each with an AQM algorithm.<a href="#section-2.5.1-2" class="pilcrow">¶</a></p>
<p id="section-2.5.1-3">The AQM algorithm for the low-latency (L) queue <span class="bcp14">MUST</span> be able to
apply ECN marking to ECN-capable packets.<a href="#section-2.5.1-3" class="pilcrow">¶</a></p>
<p id="section-2.5.1-4">The scheduler draining the two queues <span class="bcp14">MUST</span> give L4S packets
priority over Classic, although priority <span class="bcp14">MUST</span> be bounded in order
not to starve Classic traffic (see <a href="#dualq_Overload_Starvation" class="auto internal xref">Section 4.2.2</a>). The scheduler <span class="bcp14">SHOULD</span> be
work-conserving, or otherwise close to work-conserving. This is
because Classic traffic needs to be able to efficiently fill any
space left by L4S traffic even though the scheduler would otherwise
allocate it to L4S.<a href="#section-2.5.1-4" class="pilcrow">¶</a></p>
<p id="section-2.5.1-5"><span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span> defines the meaning of
an ECN marking on L4S traffic, relative to drop of Classic traffic.
In order to ensure coexistence of Classic and Scalable L4S traffic,
it says,
"the likelihood that the AQM drops a Not-ECT Classic packet
(p_C) <span class="bcp14">MUST</span> be roughly proportional to the square of the likelihood
that it would have marked it if it had been an L4S packet (p_L)."
The term 'likelihood' is used to allow for marking and dropping to
be either probabilistic or deterministic.<a href="#section-2.5.1-5" class="pilcrow">¶</a></p>
<p id="section-2.5.1-6">For the current specification, this translates into the following
requirement. A DualQ Coupled AQM <span class="bcp14">MUST</span> apply ECN marking to traffic
in the L queue that is no lower than that derived from the
likelihood of drop (or ECN marking) in the Classic queue using equation
(1).<a href="#section-2.5.1-6" class="pilcrow">¶</a></p>
<p id="section-2.5.1-7">The constant of proportionality, k, in equation (1) determines the
relative flow rates of Classic and L4S flows when the AQM concerned
is the bottleneck (all other factors being equal). The L4S ECN
protocol <span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span> says,
"The
constant of proportionality (k) does not have to be standardised for
interoperability, but a value of 2 is <span class="bcp14">RECOMMENDED</span>."<a href="#section-2.5.1-7" class="pilcrow">¶</a></p>
<p id="section-2.5.1-8">Assuming Scalable congestion controls for the Internet will be as
aggressive as DCTCP, this will ensure their congestion window will
be roughly the same as that of a Standards Track TCP Reno congestion
control (Reno) <span>[<a href="#RFC5681" class="cite xref">RFC5681</a>]</span> and other Reno-friendly
controls, such as TCP CUBIC in its Reno-friendly mode.<a href="#section-2.5.1-8" class="pilcrow">¶</a></p>
<p id="section-2.5.1-9">The choice of k is a matter of operator policy, and operators <span class="bcp14">MAY</span>
choose a different value using the guidelines in <a href="#dualq_Choosing_k" class="auto internal xref">Appendix C.2</a>.<a href="#section-2.5.1-9" class="pilcrow">¶</a></p>
<p id="section-2.5.1-10">If multiple customers or users share capacity at a bottleneck
(e.g., in the Internet access link of a campus network), the
operator's choice of k will determine capacity sharing between the
flows of different customers. However, on the public Internet,
access network operators typically isolate customers from each other
with some form of Layer 2 multiplexing
(OFDM(A) in DOCSIS 3.1,
CDMA in 3G, and SC-FDMA in LTE) or Layer 3 scheduling (Weighted Round Robin (WRR) for DSL) rather than
relying on host congestion controls to share capacity between
customers <span>[<a href="#RFC0970" class="cite xref">RFC0970</a>]</span>. In such cases, the choice
of k will solely affect relative flow rates within each customer's
access capacity, not between customers. Also, k will not affect
relative flow rates at any times when all flows are Classic or all
flows are L4S, and it will not affect the relative throughput of
small flows.<a href="#section-2.5.1-10" class="pilcrow">¶</a></p>
<p id="section-2.5.1-11"></p>
<div id="dualq_unexpected">
<section id="section-2.5.1.1">
<h5 id="name-requirements-in-unexpected-">
<a href="#section-2.5.1.1" class="section-number selfRef">2.5.1.1. </a><a href="#name-requirements-in-unexpected-" class="section-name selfRef">Requirements in Unexpected Cases</a>
</h5>
<p id="section-2.5.1.1-1">The flexibility to allow operator-specific classifiers (<a href="#dualq_classification" class="auto internal xref">Section 2.3</a>) leads to the need to specify what
the AQM in each queue ought to do with packets that do not carry
the ECN field expected for that queue. It is expected that the AQM
in each queue will inspect the ECN field to determine what sort of
congestion notification to signal, then it will decide whether to
apply congestion notification to this particular packet, as
follows:<a href="#section-2.5.1.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.5.1.1-2.1">
<p id="section-2.5.1.1-2.1.1">If a packet that does not carry an ECT(1) or a CE codepoint
is classified into the L queue, then:<a href="#section-2.5.1.1-2.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.5.1.1-2.1.2.1">if the packet is ECT(0), the L AQM <span class="bcp14">SHOULD</span> apply
CE marking using a probability appropriate to Classic
congestion control and appropriate to the target delay in
the L queue<a href="#section-2.5.1.1-2.1.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.5.1.1-2.1.2.2">
<p id="section-2.5.1.1-2.1.2.2.1">if the packet is Not-ECT, the appropriate action
depends on whether some other function is protecting the L
queue from misbehaving flows (e.g., per-flow queue
protection <span>[<a href="#I-D.briscoe-docsis-q-protection" class="cite xref">DOCSIS-Q-PROT</a>]</span> or latency
policing):<a href="#section-2.5.1.1-2.1.2.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.5.1.1-2.1.2.2.2.1">if separate queue protection is provided, the L AQM
<span class="bcp14">SHOULD</span> ignore the packet and forward it unchanged,
meaning it should not calculate whether to apply
congestion notification, and it should neither drop nor
CE mark the packet (for instance, the operator might
classify EF traffic that is unresponsive to drop into
the L queue, alongside responsive L4S-ECN traffic)<a href="#section-2.5.1.1-2.1.2.2.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.5.1.1-2.1.2.2.2.2">if separate queue protection is not provided, the L
AQM <span class="bcp14">SHOULD</span> apply drop using a drop probability
appropriate to Classic congestion control and
to the target delay in the L queue<a href="#section-2.5.1.1-2.1.2.2.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
</li>
<li class="normal" id="section-2.5.1.1-2.2">
<p id="section-2.5.1.1-2.2.1">If a packet that carries an ECT(1) codepoint is classified
into the C queue:<a href="#section-2.5.1.1-2.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.5.1.1-2.2.2.1">the C AQM <span class="bcp14">SHOULD</span> apply CE marking using the Coupled AQM
probability p_CL (= k*p').<a href="#section-2.5.1.1-2.2.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<p id="section-2.5.1.1-3">The above requirements are worded as "<span class="bcp14">SHOULD</span>"s, because
operator-specific classifiers are for flexibility, by definition.
Therefore, alternative actions might be appropriate in the
operator's specific circumstances.
An example would be where the
operator knows that certain legacy traffic set to one
codepoint actually has a congestion response associated with
another codepoint.<a href="#section-2.5.1.1-3" class="pilcrow">¶</a></p>
<p id="section-2.5.1.1-4">If the DualQ Coupled AQM has detected overload, it <span class="bcp14">MUST</span>
introduce Classic drop to both types of ECN-capable traffic until
the overload episode has subsided. Introducing drop if ECN marking
is persistently high is recommended in
Section <a href="https://www.rfc-editor.org/rfc/rfc3168#section-7" class="relref">7</a> of the ECN spec <span>[<a href="#RFC3168" class="cite xref">RFC3168</a>]</span>
and in Section <a href="https://www.rfc-editor.org/rfc/rfc7567#section-4.2.1" class="relref">4.2.1</a> of
the AQM Recommendations <span>[<a href="#RFC7567" class="cite xref">RFC7567</a>]</span>.<a href="#section-2.5.1.1-4" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
<section id="section-2.5.2">
<h4 id="name-management-requirements">
<a href="#section-2.5.2" class="section-number selfRef">2.5.2. </a><a href="#name-management-requirements" class="section-name selfRef">Management Requirements</a>
</h4>
<p id="section-2.5.2-1"></p>
<div id="dualq_config">
<section id="section-2.5.2.1">
<h5 id="name-configuration">
<a href="#section-2.5.2.1" class="section-number selfRef">2.5.2.1. </a><a href="#name-configuration" class="section-name selfRef">Configuration</a>
</h5>
<p id="section-2.5.2.1-1">By default, a DualQ Coupled AQM <span class="bcp14">SHOULD NOT</span> need any
configuration for use at a bottleneck on the public
Internet <span>[<a href="#RFC7567" class="cite xref">RFC7567</a>]</span>. The following parameters
<span class="bcp14">MAY</span> be operator-configurable, e.g., to tune for non-Internet
settings:<a href="#section-2.5.2.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.5.2.1-2.1">Optional packet classifier(s) to use in addition to the ECN
field (see <a href="#dualq_classification" class="auto internal xref">Section 2.3</a>).<a href="#section-2.5.2.1-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.5.2.1-2.2">
<p id="section-2.5.2.1-2.2.1">Expected typical RTT, which can be used to determine the
queuing delay of the Classic AQM at its operating point, in
order to prevent typical lone flows from underutilizing
capacity. For example:<a href="#section-2.5.2.1-2.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.5.2.1-2.2.2.1">for the PI2 algorithm (<a href="#dualq_Ex_algo_pi2" class="auto internal xref">Appendix A</a>), the queuing delay target is
dependent on the typical RTT.<a href="#section-2.5.2.1-2.2.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.5.2.1-2.2.2.2">for the Curvy RED algorithm (<a href="#dualq_Ex_algo" class="auto internal xref">Appendix B</a>), the queuing delay at the desired
operating point of the curvy ramp is configured to
encompass a typical RTT.<a href="#section-2.5.2.1-2.2.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.5.2.1-2.2.2.3">if another Classic AQM was used, it would be likely to
need an operating point for the queue based on the typical
RTT, and if so, it <span class="bcp14">SHOULD</span> be expressed in units of
time.<a href="#section-2.5.2.1-2.2.2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.5.2.1-2.2.3">An operating point that is manually calculated might
be directly configurable instead, e.g., for links with
large numbers of flows where underutilization by a single
flow would be unlikely.<a href="#section-2.5.2.1-2.2.3" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-2.5.2.1-2.3">
<p id="section-2.5.2.1-2.3.1">Expected maximum RTT, which can be used to set the
stability parameter(s) of the Classic AQM. For example:<a href="#section-2.5.2.1-2.3.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.5.2.1-2.3.2.1">for the PI2 algorithm (<a href="#dualq_Ex_algo_pi2" class="auto internal xref">Appendix A</a>), the gain parameters of the
PI algorithm depend on the maximum RTT.<a href="#section-2.5.2.1-2.3.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.5.2.1-2.3.2.2">for the Curvy RED algorithm (<a href="#dualq_Ex_algo" class="auto internal xref">Appendix B</a>), the smoothing parameter is
chosen to filter out transients in the queue within a
maximum RTT.<a href="#section-2.5.2.1-2.3.2.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="section-2.5.2.1-2.3.3">Any stability parameter that is manually calculated
assuming a maximum RTT might be directly configurable
instead.<a href="#section-2.5.2.1-2.3.3" class="pilcrow">¶</a></p>
</li>
<li class="normal" id="section-2.5.2.1-2.4">Coupling factor, k (see <a href="#dualq_Choosing_k" class="auto internal xref">Appendix C.2</a>).<a href="#section-2.5.2.1-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.5.2.1-2.5">
<p id="section-2.5.2.1-2.5.1">A limit to the conditional priority of L4S. This is
scheduler-dependent, but it <span class="bcp14">SHOULD</span> be expressed as a relation
between the max delay of a C packet and an L packet. For
example:<a href="#section-2.5.2.1-2.5.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.5.2.1-2.5.2.1">for a WRR scheduler, a weight ratio between L and C of
w:1 means that the maximum delay of a C packet is w times
that of an L packet.<a href="#section-2.5.2.1-2.5.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.5.2.1-2.5.2.2">for a time-shifted FIFO (TS-FIFO) scheduler (see <a href="#dualq_Overload_Starvation" class="auto internal xref">Section 4.2.2</a>), a time-shift of
tshift means that the maximum delay to a C packet is
tshift greater than that of an L packet. tshift could be
expressed as a multiple of the typical RTT rather than as
an absolute delay.<a href="#section-2.5.2.1-2.5.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="normal" id="section-2.5.2.1-2.6">The maximum Classic ECN-marking probability, p_Cmax, before
introducing drop.<a href="#section-2.5.2.1-2.6" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
<section id="section-2.5.2.2">
<h5 id="name-monitoring">
<a href="#section-2.5.2.2" class="section-number selfRef">2.5.2.2. </a><a href="#name-monitoring" class="section-name selfRef">Monitoring</a>
</h5>
<p id="section-2.5.2.2-1">An experimental DualQ Coupled AQM <span class="bcp14">SHOULD</span> allow the operator to
monitor each of the following operational statistics on demand,
per queue and per configurable sample interval, for performance
monitoring and perhaps also for accounting in some cases:<a href="#section-2.5.2.2-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.5.2.2-2.1">bits forwarded, from which utilization can be
calculated;<a href="#section-2.5.2.2-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.5.2.2-2.2">total packets in the three categories: arrived, presented
to the AQM, and forwarded. The difference between the first
two will measure any non-AQM tail discard. The difference
between the last two will measure proactive AQM discard;<a href="#section-2.5.2.2-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.5.2.2-2.3">ECN packets marked, non-ECN packets dropped, and ECN packets
dropped, which can be combined with the three total packet
counts above to calculate marking and dropping
probabilities; and<a href="#section-2.5.2.2-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="section-2.5.2.2-2.4">
<p id="section-2.5.2.2-2.4.1">queue delay (not including serialization delay of the head
packet or medium acquisition delay) -- see further notes
below.<a href="#section-2.5.2.2-2.4.1" class="pilcrow">¶</a></p>
<p id="section-2.5.2.2-2.4.2">Unlike the other statistics,
queue delay cannot be captured in a simple accumulating
counter. Therefore, the type of queue delay statistics
produced (mean, percentiles, etc.) will depend on
implementation constraints. To facilitate comparative
evaluation of different implementations and approaches, an
implementation <span class="bcp14">SHOULD</span> allow mean and 99th percentile queue
delay to be derived (per queue per sample interval). A
relatively simple way to do this would be to store a
coarse-grained histogram of queue delay. This could be done
with a small number of bins with configurable edges that
represent contiguous ranges of queue delay. Then, over a
sample interval, each bin would accumulate a count of the
number of packets that had fallen within each range. The
maximum queue delay per queue per interval <span class="bcp14">MAY</span> also be
recorded, to aid diagnosis of faults and anomalous events.<a href="#section-2.5.2.2-2.4.2" class="pilcrow">¶</a></p>
</li>
</ul>
</section>
<section id="section-2.5.2.3">
<h5 id="name-anomaly-detection">
<a href="#section-2.5.2.3" class="section-number selfRef">2.5.2.3. </a><a href="#name-anomaly-detection" class="section-name selfRef">Anomaly Detection</a>
</h5>
<p id="section-2.5.2.3-1">An experimental DualQ Coupled AQM <span class="bcp14">SHOULD</span> asynchronously report
the following data about anomalous conditions:<a href="#section-2.5.2.3-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-2.5.2.3-2.1">
<p id="section-2.5.2.3-2.1.1">Start time and duration of overload state.<a href="#section-2.5.2.3-2.1.1" class="pilcrow">¶</a></p>
<p id="section-2.5.2.3-2.1.2">A hysteresis mechanism <span class="bcp14">SHOULD</span> be used to
prevent flapping in and out of overload causing an event
storm. For instance, exiting from overload state could trigger
one report but also latch a timer. Then, during that time, if
the AQM enters and exits overload state any number of times,
the duration in overload state is accumulated, but no new
report is generated until the first time the AQM is out of
overload once the timer has expired.<a href="#section-2.5.2.3-2.1.2" class="pilcrow">¶</a></p>
</li>
</ul>
</section>
<section id="section-2.5.2.4">
<h5 id="name-deployment-coexistence-and-">
<a href="#section-2.5.2.4" class="section-number selfRef">2.5.2.4. </a><a href="#name-deployment-coexistence-and-" class="section-name selfRef">Deployment, Coexistence, and Scaling</a>
</h5>
<p id="section-2.5.2.4-1"><span>[<a href="#RFC5706" class="cite xref">RFC5706</a>]</span> suggests that deployment, coexistence,
and scaling should also be covered as management requirements. The
raison d'etre of the DualQ Coupled AQM is to enable
deployment and coexistence of Scalable congestion controls (as
incremental replacements for today's Reno-friendly controls that
do not scale with bandwidth-delay product). Therefore, there is no
need to repeat these motivating issues here given they are already
explained in the Introduction and detailed in the L4S
architecture <span>[<a href="#RFC9330" class="cite xref">RFC9330</a>]</span>.<a href="#section-2.5.2.4-1" class="pilcrow">¶</a></p>
<p id="section-2.5.2.4-2">The descriptions of specific DualQ Coupled AQM algorithms in
the appendices cover scaling of their configuration parameters,
e.g., with respect to RTT and sampling frequency.<a href="#section-2.5.2.4-2" class="pilcrow">¶</a></p>
</section>
</section>
</section>
</div>
</section>
</div>
<div id="dualq_IANA">
<section id="section-3">
<h2 id="name-iana-considerations">
<a href="#section-3" class="section-number selfRef">3. </a><a href="#name-iana-considerations" class="section-name selfRef">IANA Considerations</a>
</h2>
<p id="section-3-1">This document has no IANA actions.<a href="#section-3-1" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dualq_Security_Considerations">
<section id="section-4">
<h2 id="name-security-considerations">
<a href="#section-4" class="section-number selfRef">4. </a><a href="#name-security-considerations" class="section-name selfRef">Security Considerations</a>
</h2>
<p id="section-4-1"></p>
<section id="section-4.1">
<h3 id="name-low-delay-without-requiring">
<a href="#section-4.1" class="section-number selfRef">4.1. </a><a href="#name-low-delay-without-requiring" class="section-name selfRef">Low Delay without Requiring Per-flow Processing</a>
</h3>
<p id="section-4.1-1">The L4S architecture <span>[<a href="#RFC9330" class="cite xref">RFC9330</a>]</span>
compares the DualQ and FQ approaches to L4S. The
privacy considerations section in that document motivates the DualQ on
the grounds that users who want to encrypt application flow
identifiers, e.g., in IPsec or other encrypted VPN tunnels, don't
have to sacrifice low delay (<span>[<a href="#RFC8404" class="cite xref">RFC8404</a>]</span> encourages
avoidance of such privacy compromises).<a href="#section-4.1-1" class="pilcrow">¶</a></p>
<p id="section-4.1-2">The security considerations section of the L4S architecture <span>[<a href="#RFC9330" class="cite xref">RFC9330</a>]</span> also
includes subsections on policing of relative flow rates (Section <a href="https://www.rfc-editor.org/rfc/rfc9330#section-8.1" class="relref">8.1</a>) and on
policing of flows that cause excessive queuing delay (Section <a href="https://www.rfc-editor.org/rfc/rfc9330#section-8.2" class="relref">8.2</a>). It explains
that the interests of users do not collide in the same way for delay
as they do for bandwidth. For someone to get more of the bandwidth of
a shared link, someone else necessarily gets less (a 'zero-sum game'),
whereas queuing delay can be reduced for everyone, without any need
for someone else to lose out. It also explains that, on the current
Internet, scheduling usually enforces separation of bandwidth between
'sites' (e.g., households, businesses, or mobile users), but it is not
common to need to schedule or police the bandwidth used by individual
application flows.<a href="#section-4.1-2" class="pilcrow">¶</a></p>
<p id="section-4.1-3">By the above arguments, per-flow rate policing might not be
necessary, and in trusted environments (e.g., private data centres),
it is certainly unlikely to be needed. Therefore, because it is hard
to avoid complexity and unintended side effects with per-flow rate
policing, it needs to be separable from a basic AQM, as an option,
under policy control. On this basis, the DualQ Coupled AQM provides
low delay without prejudging the question of per-flow rate
policing.<a href="#section-4.1-3" class="pilcrow">¶</a></p>
<p id="section-4.1-4">Nonetheless, the interests of users or flows might conflict,
e.g., in case of accident or malice. Then per-flow rate control
could be necessary. If per-flow rate control is needed, it can be provided
as a modular addition to a DualQ. And similarly, if protection against
excessive queue delay is needed, a per-flow queue protection option
can be added to a DualQ (e.g., <span>[<a href="#I-D.briscoe-docsis-q-protection" class="cite xref">DOCSIS-Q-PROT</a>]</span>).<a href="#section-4.1-4" class="pilcrow">¶</a></p>
</section>
<div id="dualq_Overload">
<section id="section-4.2">
<h3 id="name-handling-unresponsive-flows">
<a href="#section-4.2" class="section-number selfRef">4.2. </a><a href="#name-handling-unresponsive-flows" class="section-name selfRef">Handling Unresponsive Flows and Overload</a>
</h3>
<p id="section-4.2-1">In the absence of any per-flow control, it is important that the
basic DualQ Coupled AQM gives unresponsive flows no more throughput
advantage than a single-queue AQM would, and that it at least handles
overload situations. Overload means that incoming load significantly
or persistently exceeds output capacity, but it is not intended to be
a precise term -- significant and persistent are matters of
degree.<a href="#section-4.2-1" class="pilcrow">¶</a></p>
<p id="section-4.2-2">A trade-off needs to be made between complexity and the risk of
either traffic class harming the other. In overloaded conditions, the
higher priority L4S service will have to sacrifice some aspect of its
performance. Depending on the degree of overload, alternative
solutions may relax a different factor: for example, throughput, delay,
or drop. These choices need to be made either by the developer or by
operator policy, rather than by the IETF.
Subsequent subsections
discuss handling different degrees of overload:<a href="#section-4.2-2" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="section-4.2-3.1">
<p id="section-4.2-3.1.1">Unresponsive flows (L and/or C) but not overloaded,
i.e., the sum of unresponsive load before adding any
responsive traffic is below capacity.<a href="#section-4.2-3.1.1" class="pilcrow">¶</a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-4.2-3.1.2.1">This case is handled by the regular Coupled DualQ (<a href="#dualq_coupled" class="auto internal xref">Section 2.1</a>) but not discussed there. So below,
<a href="#dualq_unresponsive_wo_overload" class="auto internal xref">Section 4.2.1</a> explains the
design goal and how it is achieved in practice.<a href="#section-4.2-3.1.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="normal" id="section-4.2-3.2">
<p id="section-4.2-3.2.1">Unresponsive flows (L and/or C) causing persistent overload,
i.e., the sum of unresponsive load even before adding any
responsive traffic persistently exceeds capacity.<a href="#section-4.2-3.2.1" class="pilcrow">¶</a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-4.2-3.2.2.1">This case is not covered by the regular Coupled DualQ
mechanism (<a href="#dualq_coupled" class="auto internal xref">Section 2.1</a>), but the last paragraph
in <a href="#dualq_unexpected" class="auto internal xref">Section 2.5.1.1</a> sets out a requirement to
handle the case where ECN-capable traffic could starve
non-ECN-capable traffic. <a href="#dualq_Overload_Saturation" class="auto internal xref">Section 4.2.3</a> below discusses the
general options and gives specific examples.<a href="#section-4.2-3.2.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="normal" id="section-4.2-3.3">
<p id="section-4.2-3.3.1">Short-term overload that lies between the 'not overloaded' and
'persistently overloaded' cases.<a href="#section-4.2-3.3.1" class="pilcrow">¶</a></p>
<ul class="normal ulEmpty">
<li class="normal ulEmpty" id="section-4.2-3.3.2.1">For the period before overload is deemed persistent, <a href="#dualq_Overload_Starvation" class="auto internal xref">Section 4.2.2</a> discusses options for
more immediate mechanisms at the scheduler timescale. These
prevent short-term starvation of the C queue by making the
priority of the L queue conditional, as required in <a href="#dualq_functional_reqs" class="auto internal xref">Section 2.5.1</a>.<a href="#section-4.2-3.3.2.1" class="pilcrow">¶</a>
</li>
</ul>
</li>
</ul>
<div id="dualq_unresponsive_wo_overload">
<section id="section-4.2.1">
<h4 id="name-unresponsive-traffic-withou">
<a href="#section-4.2.1" class="section-number selfRef">4.2.1. </a><a href="#name-unresponsive-traffic-withou" class="section-name selfRef">Unresponsive Traffic without Overload</a>
</h4>
<p id="section-4.2.1-1">When one or more L flows and/or C flows are unresponsive, but
their total load is within the link capacity so that they do not
saturate the coupled marking (below 100%), the goal of a DualQ AQM
is to behave no worse than a single-queue AQM.<a href="#section-4.2.1-1" class="pilcrow">¶</a></p>
<p id="section-4.2.1-2">Tests have shown that this is indeed the case with no additional
mechanism beyond the regular Coupled DualQ of <a href="#dualq_coupled" class="auto internal xref">Section 2.1</a> (see the results of 'overload experiments'
in <span>[<a href="#L4Seval22" class="cite xref">L4Seval22</a>]</span>). Perhaps counterintuitively, whether
the unresponsive flow classifies itself into the L or the C queue,
the DualQ system behaves as if it has subtracted from the overall
link capacity. Then, the coupling shares out the remaining capacity
between any competing responsive flows (in either queue). See also
<a href="#dualq_Overload_Starvation" class="auto internal xref">Section 4.2.2</a>, which discusses
scheduler-specific details.<a href="#section-4.2.1-2" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dualq_Overload_Starvation">
<section id="section-4.2.2">
<h4 id="name-avoiding-short-term-classic">
<a href="#section-4.2.2" class="section-number selfRef">4.2.2. </a><a href="#name-avoiding-short-term-classic" class="section-name selfRef">Avoiding Short-Term Classic Starvation: Sacrifice L4S Throughput or Delay?</a>
</h4>
<p id="section-4.2.2-1">Priority of L4S is required to be conditional (see Sections <a href="#dualq_coupled_structure" class="auto internal xref">2.4</a> and <a href="#dualq_functional_reqs" class="auto internal xref">2.5.1</a>) to avoid short-term starvation of
Classic. Otherwise, as explained in <a href="#dualq_coupled_structure" class="auto internal xref">Section 2.4</a>, even a lone responsive L4S flow
could temporarily block a small finite set of C packets
(e.g., an initial window or DNS request). The blockage would
only be brief, but it could be longer for certain AQM
implementations that can only increase the congestion signal coupled
from the C queue when C packets are actually being dequeued. There
is then the question of whether to sacrifice L4S throughput or L4S
delay (or some other policy) to make the priority conditional:<a href="#section-4.2.2-1" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="section-4.2.2-2">
<dt id="section-4.2.2-2.1">Sacrifice L4S throughput: </dt>
<dd id="section-4.2.2-2.2" style="margin-left: 1.5em">
<div id="dualq_Minimum_Service">
<p id="section-4.2.2-2.2.1">By using WRR as the conditional priority scheduler, the L4S
service can sacrifice some throughput during overload. This can
be thought of as guaranteeing either a minimum throughput
service for Classic traffic or a maximum delay
for a packet at the head of the Classic queue.<a href="#section-4.2.2-2.2.1" class="pilcrow">¶</a></p>
<aside id="section-4.2.2-2.2.2">
<p id="section-4.2.2-2.2.2.1">Cautionary note: a WRR scheduler can only
guarantee Classic throughput if Classic sources are sending
enough to use it -- congestion signals can undermine
scheduling because they determine how much responsive traffic of
each class arrives for scheduling in the first place. This is
why scheduling is only relied on to handle short-term
starvation, until congestion signals build up and the sources
react. Even during long-term overload (discussed more fully in
<a href="#dualq_Overload_Saturation" class="auto internal xref">Section 4.2.3</a>), it's pragmatic to
discard packets from both queues, which again thins the traffic
before it reaches the scheduler. This is because a scheduler
cannot be relied on to handle long-term overload since the right
scheduler weight cannot be known for every scenario.<a href="#section-4.2.2-2.2.2.1" class="pilcrow">¶</a></p>
</aside>
<p id="section-4.2.2-2.2.3">The scheduling weight of the Classic queue
should be small (e.g., 1/16). In most traffic scenarios, the
scheduler will not interfere and it will not need to, because
the coupling mechanism and the end systems will determine the
share of capacity across both queues as if it were a single
pool. However, if L4S traffic is over-aggressive or
unresponsive, the scheduler weight for Classic traffic will at
least be large enough to ensure it does not starve in the
short term.<a href="#section-4.2.2-2.2.3" class="pilcrow">¶</a></p>
<p id="section-4.2.2-2.2.4">Although WRR scheduling is
only expected to address short-term overload, there are
(somewhat rare) cases when WRR has an effect on capacity shares
over longer timescales. But its effect is minor, and it
certainly does no harm. Specifically, in cases where the ratio
of L4S to Classic flows (e.g., 19:1) is greater than the
ratio of their scheduler weights (e.g., 15:1), the L4S flows
will get less than an equal share of the capacity, but only
slightly. For instance, with the example numbers given, each L4S
flow will get (15/16)/19 = 4.9% when ideally each would get
1/20 = 5%. In the rather specific case of an unresponsive flow
taking up just less than the capacity set aside for L4S
(e.g., 14/16 in the above example), using WRR could
significantly reduce the capacity left for any responsive L4S
flows.<a href="#section-4.2.2-2.2.4" class="pilcrow">¶</a></p>
<p id="section-4.2.2-2.2.5">The scheduling weight of the
Classic queue should not be too small, otherwise a C packet at
the head of the queue could be excessively delayed by a
continually busy L queue. For instance, if the Classic weight is
1/16, the maximum that a Classic packet at the head of the queue
can be delayed by L traffic is the serialization delay of 15
MTU-sized packets.<a href="#section-4.2.2-2.2.5" class="pilcrow">¶</a></p>
</div>
</dd>
<dd class="break"></dd>
<dt id="section-4.2.2-2.3">Sacrifice L4S delay:</dt>
<dd id="section-4.2.2-2.4" style="margin-left: 1.5em">
<div id="dualq_Delay_Overload">
<p id="section-4.2.2-2.4.1">The operator could choose to
control overload of the Classic queue by allowing some delay to
'leak' across to the L4S queue. The scheduler can be made to
behave like a single FIFO queue with
different service times by implementing a very simple
conditional priority scheduler that could be called a
"time-shifted FIFO" (TS-FIFO) (see the Modifier Earliest Deadline First
(MEDF) scheduler <span>[<a href="#MEDF" class="cite xref">MEDF</a>]</span>). This scheduler
adds tshift to the queue delay of the next L4S packet, before
comparing it with the queue delay of the next Classic packet,
then it selects the packet with the greater adjusted queue
delay.<a href="#section-4.2.2-2.4.1" class="pilcrow">¶</a></p>
<p id="section-4.2.2-2.4.2">Under regular conditions, the
TS-FIFO scheduler behaves just like a strict priority
scheduler. But under moderate or high overload, it prevents
starvation of the Classic queue, because the time-shift (tshift)
defines the maximum extra queuing delay of Classic packets
relative to L4S.
This would control milder overload of
responsive traffic by introducing delay to defer invoking the
overload mechanisms in <a href="#dualq_Overload_Saturation" class="auto internal xref">Section 4.2.3</a>, particularly when close to
the maximum congestion signal.<a href="#section-4.2.2-2.4.2" class="pilcrow">¶</a></p>
</div>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.2.2-3">The example implementations in Appendices <a href="#dualq_Ex_algo_pi2" class="auto internal xref">A</a>
and <a href="#dualq_Ex_algo" class="auto internal xref">B</a> could both be implemented with
either policy.<a href="#section-4.2.2-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dualq_Overload_Saturation">
<section id="section-4.2.3">
<h4 id="name-l4s-ecn-saturation-introduc">
<a href="#section-4.2.3" class="section-number selfRef">4.2.3. </a><a href="#name-l4s-ecn-saturation-introduc" class="section-name selfRef">L4S ECN Saturation: Introduce Drop or Delay?</a>
</h4>
<p id="section-4.2.3-1">This section concerns persistent overload caused by unresponsive
L and/or C flows. To keep the throughput of both L4S and Classic
flows roughly equal over the full load range, a different control
strategy needs to be defined above the point where the L4S AQM
persistently saturates to an ECN marking probability of 100%, leaving
no room to push back the load any harder. L4S ECN marking will
saturate first (assuming the coupling factor k>1), even though
saturation could be caused by the sum of unresponsive traffic in
either or both queues exceeding the link capacity.<a href="#section-4.2.3-1" class="pilcrow">¶</a></p>
<p id="section-4.2.3-2">The term 'unresponsive' includes cases where a flow becomes
temporarily unresponsive, for instance, a real-time flow that takes
a while to adapt its rate in response to congestion, or a standard
Reno flow that is normally responsive, but above a certain
congestion level it will not be able to reduce its congestion window
below the allowed minimum of 2 segments <span>[<a href="#RFC5681" class="cite xref">RFC5681</a>]</span>, effectively becoming unresponsive. (Note that
L4S traffic ought to remain responsive below a window of 2 segments.
See the L4S requirements <span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span>.)<a href="#section-4.2.3-2" class="pilcrow">¶</a></p>
<p id="section-4.2.3-3">Saturation raises the question of whether to relieve congestion
by introducing some drop into the L4S queue or by allowing delay to
grow in both queues (which could eventually lead to drop due to
buffer exhaustion anyway):<a href="#section-4.2.3-3" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="section-4.2.3-4">
<dt id="section-4.2.3-4.1">Drop on Saturation:</dt>
<dd style="margin-left: 1.5em" id="section-4.2.3-4.2">Persistent saturation can be
defined by a maximum threshold for coupled L4S ECN marking
(assuming k>1) before saturation starts to make the flow
rates of the different traffic types diverge. Above that, the
drop probability of Classic traffic is applied to all packets of
all traffic types. Then experiments have shown that queuing
delay can be kept at the target in any overload situation,
including with unresponsive traffic, and no further measures are
required (<a href="#dualq_overload_unresp_ect" class="auto internal xref">Section 4.2.3.1</a>).<a href="#section-4.2.3-4.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="section-4.2.3-4.3">Delay on Saturation:</dt>
<dd style="margin-left: 1.5em" id="section-4.2.3-4.4">When L4S marking saturates,
instead of introducing L4S drop, the drop and marking
probabilities of both queues could be capped. Beyond that, delay
will grow either solely in the queue with unresponsive traffic
(if WRR is used) or in both queues (if TS-FIFO is
used). In either case, the higher delay ought to control
temporary high congestion. If the overload is more persistent,
eventually the combined DualQ will overflow and tail drop will
control congestion.<a href="#section-4.2.3-4.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="section-4.2.3-5">The example implementation in <a href="#dualq_Ex_algo_pi2" class="auto internal xref">Appendix A</a>
solely applies the "drop on saturation" policy. The DOCSIS
specification of a DualQ Coupled AQM <span>[<a href="#DOCSIS3.1" class="cite xref">DOCSIS3.1</a>]</span>
also implements the 'drop on saturation' policy with a very shallow
L buffer. However, the addition of DOCSIS per-flow Queue Protection
<span>[<a href="#I-D.briscoe-docsis-q-protection" class="cite xref">DOCSIS-Q-PROT</a>]</span> turns this into
'delay on saturation' by redirecting some packets of the flow or flows
that are most responsible for L queue overload into the C queue, which has a
higher delay target. If overload continues, this again becomes 'drop
on saturation' as the level of drop in the C queue rises to maintain
the target delay of the C queue.<a href="#section-4.2.3-5" class="pilcrow">¶</a></p>
<div id="dualq_overload_unresp_ect">
<section id="section-4.2.3.1">
<h5 id="name-protecting-against-overload">
<a href="#section-4.2.3.1" class="section-number selfRef">4.2.3.1. </a><a href="#name-protecting-against-overload" class="section-name selfRef">Protecting against Overload by Unresponsive ECN-Capable Traffic</a>
</h5>
<p id="section-4.2.3.1-1">Without a specific overload mechanism, unresponsive traffic
would have a greater advantage if it were also ECN-capable. The
advantage is undetectable at normal low levels of marking.
However, it would become significant with the higher levels of
marking typical during overload, when it could evade a significant
degree of drop. This is an issue whether the ECN-capable traffic
is L4S or Classic.<a href="#section-4.2.3.1-1" class="pilcrow">¶</a></p>
<p id="section-4.2.3.1-2">This raises the question of whether and when to introduce drop
of ECN-capable traffic, as required by both Section <a href="https://www.rfc-editor.org/rfc/rfc3168#section-7" class="relref">7</a> of the ECN spec <span>[<a href="#RFC3168" class="cite xref">RFC3168</a>]</span> and Section <a href="https://www.rfc-editor.org/rfc/rfc7567#section-4.2.1" class="relref">4.2.1</a> of the AQM
recommendations <span>[<a href="#RFC7567" class="cite xref">RFC7567</a>]</span>.<a href="#section-4.2.3.1-2" class="pilcrow">¶</a></p>
<p id="section-4.2.3.1-3">As an example, experiments with the DualPI2 AQM (<a href="#dualq_Ex_algo_pi2" class="auto internal xref">Appendix A</a>) have shown that introducing 'drop on
saturation' at 100% coupled L4S marking addresses this problem
with unresponsive ECN, and it also addresses the saturation
problem. At saturation, DualPI2 switches into overload mode, where
the Base AQM is driven by the max delay of both queues, and it
introduces probabilistic drop to both queues equally.
It leaves
only a small range of congestion levels just below saturation
where unresponsive traffic gains any advantage from using the ECN
capability (relative to being unresponsive without ECN), and the
advantage is hardly detectable (see <span>[<a href="#DualQ-Test" class="cite xref">DualQ-Test</a>]</span>
and section IV-G of <span>[<a href="#L4Seval22" class="cite xref">L4Seval22</a>]</span>). Also, overload with
an unresponsive ECT(1) flow gets no more bandwidth advantage than
with ECT(0).<a href="#section-4.2.3.1-3" class="pilcrow">¶</a></p>
</section>
</div>
</section>
</div>
</section>
</div>
</section>
</div>
<section id="section-5">
<h2 id="name-references">
<a href="#section-5" class="section-number selfRef">5. </a><a href="#name-references" class="section-name selfRef">References</a>
</h2>
<section id="section-5.1">
<h3 id="name-normative-references">
<a href="#section-5.1" class="section-number selfRef">5.1. </a><a href="#name-normative-references" class="section-name selfRef">Normative References</a>
</h3>
<dl class="references">
<dt id="RFC2119">[RFC2119]</dt>
<dd>
<span class="refAuthor">Bradner, S.</span>, <span class="refTitle">"Key words for use in RFCs to Indicate Requirement Levels"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 2119</span>, <span class="seriesInfo">DOI 10.17487/RFC2119</span>, <time datetime="1997-03" class="refDate">March 1997</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3168">[RFC3168]</dt>
<dd>
<span class="refAuthor">Ramakrishnan, K.</span>, <span class="refAuthor">Floyd, S.</span>, and <span class="refAuthor">D. Black</span>, <span class="refTitle">"The Addition of Explicit Congestion Notification (ECN) to IP"</span>, <span class="seriesInfo">RFC 3168</span>, <span class="seriesInfo">DOI 10.17487/RFC3168</span>, <time datetime="2001-09" class="refDate">September 2001</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3168">https://www.rfc-editor.org/info/rfc3168</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8311">[RFC8311]</dt>
<dd>
<span class="refAuthor">Black, D.</span>, <span class="refTitle">"Relaxing Restrictions on Explicit Congestion Notification (ECN) Experimentation"</span>, <span class="seriesInfo">RFC 8311</span>, <span class="seriesInfo">DOI 10.17487/RFC8311</span>, <time datetime="2018-01" class="refDate">January 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8311">https://www.rfc-editor.org/info/rfc8311</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9331">[RFC9331]</dt>
<dd>
<span class="refAuthor">De Schepper, K.</span> and <span class="refAuthor">B. Briscoe, Ed.</span>, <span class="refTitle">"The Explicit Congestion Notification (ECN) Protocol for Low Latency, Low Loss, and Scalable Throughput (L4S)"</span>, <span class="seriesInfo">RFC 9331</span>, <span class="seriesInfo">DOI 10.17487/RFC9331</span>, <time datetime="2023-01" class="refDate">January 2023</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9331">https://www.rfc-editor.org/info/rfc9331</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
<section id="section-5.2">
<h3 id="name-informative-references">
<a href="#section-5.2" class="section-number selfRef">5.2. </a><a href="#name-informative-references" class="section-name selfRef">Informative References</a>
</h3>
<dl class="references">
<dt id="Alizadeh-stability">[Alizadeh-stability]</dt>
<dd>
<span class="refAuthor">Alizadeh, M.</span>, <span class="refAuthor">Javanmard, A.</span>, and <span class="refAuthor">B. Prabhakar</span>, <span class="refTitle">"Analysis of DCTCP: Stability, Convergence, and Fairness"</span>, <span class="refContent">SIGMETRICS '11: Proceedings of the ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems, pp. 73-84</span>, <span class="seriesInfo">DOI 10.1145/1993744.1993753</span>, <time datetime="2011-06" class="refDate">June 2011</time>, <span><<a href="https://dl.acm.org/citation.cfm?id=1993753">https://dl.acm.org/citation.cfm?id=1993753</a>></span>. </dd>
<dd class="break"></dd>
<dt id="AQMmetrics">[AQMmetrics]</dt>
<dd>
<span class="refAuthor">Kwon, M.</span> and <span class="refAuthor">S. Fahmy</span>, <span class="refTitle">"A Comparison of Load-based and Queue-based Active Queue Management Algorithms"</span>, <span class="refContent">Proc. Int'l Soc. for Optical Engineering (SPIE), Vol. 4866, pp. 35-46</span>, <span class="seriesInfo">DOI 10.1117/12.473021</span>, <time datetime="2002" class="refDate">2002</time>, <span><<a href="https://www.cs.purdue.edu/homes/fahmy/papers/ldc.pdf">https://www.cs.purdue.edu/homes/fahmy/papers/ldc.pdf</a>></span>. </dd>
<dd class="break"></dd>
<dt id="ARED01">[ARED01]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span>, <span class="refAuthor">Gummadi, R.</span>, and <span class="refAuthor">S. Shenker</span>, <span class="refTitle">"Adaptive RED: An Algorithm for Increasing the Robustness of RED's Active Queue Management"</span>, <span class="refContent">ACIRI Technical Report 301</span>, <time datetime="2001-08" class="refDate">August 2001</time>, <span><<a href="https://www.icsi.berkeley.edu/icsi/node/2032">https://www.icsi.berkeley.edu/icsi/node/2032</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.cardwell-iccrg-bbr-congestion-control">[BBR-CC]</dt>
<dd>
<span class="refAuthor">Cardwell, N.</span>, <span class="refAuthor">Cheng, Y.</span>, <span class="refAuthor">Hassas Yeganeh, S.</span>, <span class="refAuthor">Swett, I.</span>, and <span class="refAuthor">V. Jacobson</span>, <span class="refTitle">"BBR Congestion Control"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-cardwell-iccrg-bbr-congestion-control-02</span>, <time datetime="2022-03-07" class="refDate">7 March 2022</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02">https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02</a>></span>. </dd>
<dd class="break"></dd>
<dt id="BBRv2">[BBRv2]</dt>
<dd>
<span class="refTitle">"TCP BBR v2 Alpha/Preview Release"</span>, <span class="refContent">commit 17700ca</span>, <time datetime="2022-06" class="refDate">June 2022</time>, <span><<a href="https://github.com/google/bbr">https://github.com/google/bbr</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Boru20">[Boru20]</dt>
<dd>
<span class="refAuthor">Boru Oljira, D.</span>, <span class="refAuthor">Grinnemo, K-J.</span>, <span class="refAuthor">Brunstrom, A.</span>, and <span class="refAuthor">J. Taheri</span>, <span class="refTitle">"Validating the Sharing Behavior and Latency Characteristics of the L4S Architecture"</span>, <span class="refContent">ACM SIGCOMM Computer Communication Review, Vol. 50, Issue 2, pp. 37-44</span>, <span class="seriesInfo">DOI 10.1145/3402413.3402419</span>, <time datetime="2020-05" class="refDate">May 2020</time>, <span><<a href="https://dl.acm.org/doi/abs/10.1145/3402413.3402419">https://dl.acm.org/doi/abs/10.1145/3402413.3402419</a>></span>. </dd>
<dd class="break"></dd>
<dt id="CCcensus19">[CCcensus19]</dt>
<dd>
<span class="refAuthor">Mishra, A.</span>, <span class="refAuthor">Sun, X.</span>, <span class="refAuthor">Jain, A.</span>, <span class="refAuthor">Pande, S.</span>, <span class="refAuthor">Joshi, R.</span>, and <span class="refAuthor">B. Leong</span>, <span class="refTitle">"The Great Internet TCP Congestion Control Census"</span>, <span class="refContent">Proceedings of the ACM on Measurement and Analysis of Computing Systems, Vol. 3, Issue 3, Article No. 45, pp. 1-24</span>, <span class="seriesInfo">DOI 10.1145/3366693</span>, <time datetime="2019-12" class="refDate">December 2019</time>, <span><<a href="https://doi.org/10.1145/3366693">https://doi.org/10.1145/3366693</a>></span>. </dd>
<dd class="break"></dd>
<dt id="CoDel">[CoDel]</dt>
<dd>
<span class="refAuthor">Nichols, K.</span> and <span class="refAuthor">V. Jacobson</span>, <span class="refTitle">"Controlling Queue Delay"</span>, <span class="refContent">ACM Queue, Vol. 10, Issue 5</span>, <time datetime="2012-05" class="refDate">May 2012</time>, <span><<a href="https://queue.acm.org/issuedetail.cfm?issue=2208917">https://queue.acm.org/issuedetail.cfm?issue=2208917</a>></span>. </dd>
<dd class="break"></dd>
<dt id="CRED_Insights">[CRED_Insights]</dt>
<dd>
<span class="refAuthor">Briscoe, B.</span> and <span class="refAuthor">K. De Schepper</span>, <span class="refTitle">"Insights from Curvy RED (Random Early Detection)"</span>, <span class="refContent">BT Technical Report, TR-TUB8-2015-003</span>, <span class="seriesInfo">DOI 10.48550/arXiv.1904.07339</span>, <time datetime="2015-08" class="refDate">August 2015</time>, <span><<a href="https://arxiv.org/abs/1904.07339">https://arxiv.org/abs/1904.07339</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.briscoe-docsis-q-protection">[DOCSIS-Q-PROT]</dt>
<dd>
<span class="refAuthor">Briscoe, B., Ed.</span> and <span class="refAuthor">G. White</span>, <span class="refTitle">"The DOCSIS® Queue Protection to Preserve Low Latency"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-briscoe-docsis-q-protection-06</span>, <time datetime="2022-05-13" class="refDate">13 May 2022</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-briscoe-docsis-q-protection-06">https://datatracker.ietf.org/doc/html/draft-briscoe-docsis-q-protection-06</a>></span>. </dd>
<dd class="break"></dd>
<dt id="DOCSIS3.1">[DOCSIS3.1]</dt>
<dd>
<span class="refAuthor">CableLabs</span>, <span class="refTitle">"DOCSIS 3.1 MAC and Upper Layer Protocols Interface Specification"</span>, <span class="refContent">CM-SP-MULPIv3.1, Data-Over-Cable Service Interface Specifications DOCSIS 3.1 Version I17 or later</span>, <time datetime="2019-01" class="refDate">January 2019</time>, <span><<a href="https://specification-search.cablelabs.com/CM-SP-MULPIv3">https://specification-search.cablelabs.com/CM-SP-MULPIv3</a>></span>. </dd>
<dd class="break"></dd>
<dt id="DualPI2Linux">[DualPI2Linux]</dt>
<dd>
<span class="refAuthor">Albisser, O.</span>, <span class="refAuthor">De Schepper, K.</span>, <span class="refAuthor">Briscoe, B.</span>, <span class="refAuthor">Tilmans, O.</span>, and <span class="refAuthor">H. Steen</span>, <span class="refTitle">"DUALPI2 - Low Latency, Low Loss and Scalable (L4S) AQM"</span>, <span class="seriesInfo">Proceedings of Linux Netdev 0x13 </span>, <time datetime="2019-03" class="refDate">March 2019</time>, <span><<a href="https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM">https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM</a>></span>. </dd>
<dd class="break"></dd>
<dt id="DualQ-Test">[DualQ-Test]</dt>
<dd>
<span class="refAuthor">Steen, H.</span>, <span class="refTitle">"Destruction Testing: Ultra-Low Delay using Dual Queue Coupled Active Queue Management"</span>, <span class="refContent">Master's Thesis, Department of Informatics, University of Oslo</span>, <time datetime="2017-05" class="refDate">May 2017</time>. </dd>
<dd class="break"></dd>
<dt id="Dukkipati06">[Dukkipati06]</dt>
<dd>
<span class="refAuthor">Dukkipati, N.</span> and <span class="refAuthor">N. McKeown</span>, <span class="refTitle">"Why Flow-Completion Time is the Right Metric for Congestion Control"</span>, <span class="refContent">ACM SIGCOMM Computer Communication Review, Vol. 36, Issue 1, pp. 59-62</span>, <span class="seriesInfo">DOI 10.1145/1111322.1111336</span>, <time datetime="2006-01" class="refDate">January 2006</time>, <span><<a href="https://dl.acm.org/doi/10.1145/1111322.1111336">https://dl.acm.org/doi/10.1145/1111322.1111336</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Heist21">[Heist21]</dt>
<dd>
<span class="refTitle">"L4S Tests"</span>, <span class="refContent">commit e21cd91</span>, <time datetime="2021-08" class="refDate">August 2021</time>, <span><<a href="https://github.com/heistp/l4s-tests">https://github.com/heistp/l4s-tests</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.briscoe-tsvwg-l4s-diffserv">[L4S-DIFFSERV]</dt>
<dd>
<span class="refAuthor">Briscoe, B.</span>, <span class="refTitle">"Interactions between Low Latency, Low Loss, Scalable Throughput (L4S) and Differentiated Services"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-briscoe-tsvwg-l4s-diffserv-02</span>, <time datetime="2018-11-04" class="refDate">4 November 2018</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-l4s-diffserv-02">https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-l4s-diffserv-02</a>></span>. </dd>
<dd class="break"></dd>
<dt id="L4Sdemo16">[L4Sdemo16]</dt>
<dd>
<span class="refAuthor">Bondarenko, O.</span>, <span class="refAuthor">De Schepper, K.</span>, <span class="refAuthor">Tsang, I.</span>, <span class="refAuthor">Briscoe, B.</span>, <span class="refAuthor">Petlund, A.</span>, and <span class="refAuthor">C. Griwodz</span>, <span class="refTitle">"Ultra-Low Delay for All: Live Experience, Live Analysis"</span>, <span class="refContent">Proceedings of the 7th International Conference on Multimedia Systems, Article No. 33, pp. 1-4</span>, <span class="seriesInfo">DOI 10.1145/2910017.2910633</span>, <time datetime="2016-05" class="refDate">May 2016</time>, <span><<a href="https://dl.acm.org/citation.cfm?doid=2910017.2910633">https://dl.acm.org/citation.cfm?doid=2910017.2910633</a>></span>. </dd>
<dd class="break"></dd>
<dt id="L4Seval22">[L4Seval22]</dt>
<dd>
<span class="refAuthor">De Schepper, K.</span>, <span class="refAuthor">Albisser, O.</span>, <span class="refAuthor">Tilmans, O.</span>, and <span class="refAuthor">B. Briscoe</span>, <span class="refTitle">"Dual Queue Coupled AQM: Deployable Very Low Queuing Delay for All"</span>, <span class="refContent">Preprint submitted to IEEE/ACM Transactions on Networking</span>, <span class="seriesInfo">DOI 10.48550/arXiv.2209.01078</span>, <time datetime="2022-09" class="refDate">September 2022</time>, <span><<a href="https://arxiv.org/abs/2209.01078">https://arxiv.org/abs/2209.01078</a>></span>. </dd>
<dd class="break"></dd>
<dt id="L4S_5G">[L4S_5G]</dt>
<dd>
<span class="refAuthor">Willars, P.</span>, <span class="refAuthor">Wittenmark, E.</span>, <span class="refAuthor">Ronkainen, H.</span>, <span class="refAuthor">Östberg, C.</span>, <span class="refAuthor">Johansson, I.</span>, <span class="refAuthor">Strand, J.</span>, <span class="refAuthor">Lédl, P.</span>, and <span class="refAuthor">D. Schnieders</span>, <span class="refTitle">"Enabling time-critical applications over 5G with rate adaptation"</span>, <span class="refContent">Ericsson - Deutsche Telekom White Paper, BNEW-21:025455</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span><<a href="https://www.ericsson.com/en/reports-and-papers/white-papers/enabling-time-critical-applications-over-5g-with-rate-adaptation">https://www.ericsson.com/en/reports-and-papers/white-papers/enabling-time-critical-applications-over-5g-with-rate-adaptation</a>></span>. </dd>
<dd class="break"></dd>
<dt id="Labovitz10">[Labovitz10]</dt>
<dd>
<span class="refAuthor">Labovitz, C.</span>, <span class="refAuthor">Iekel-Johnson, S.</span>, <span class="refAuthor">McPherson, D.</span>, <span class="refAuthor">Oberheide, J.</span>, and <span class="refAuthor">F. Jahanian</span>, <span class="refTitle">"Internet Inter-Domain Traffic"</span>, <span class="refContent">ACM SIGCOMM Computer Communication Review, Vol. 40, Issue 4, pp. 75-86</span>, <span class="seriesInfo">DOI 10.1145/1851275.1851194</span>, <time datetime="2010-08" class="refDate">August 2010</time>, <span><<a href="https://doi.org/10.1145/1851275.1851194">https://doi.org/10.1145/1851275.1851194</a>></span>. </dd>
<dd class="break"></dd>
<dt id="LLD">[LLD]</dt>
<dd>
<span class="refAuthor">White, G.</span>, <span class="refAuthor">Sundaresan, K.</span>, and <span class="refAuthor">B. Briscoe</span>, <span class="refTitle">"Low Latency DOCSIS: Technology Overview"</span>, <span class="refContent">CableLabs White Paper</span>, <time datetime="2019-02" class="refDate">February 2019</time>, <span><<a href="https://cablela.bs/low-latency-docsis-technology-overview-february-2019">https://cablela.bs/low-latency-docsis-technology-overview-february-2019</a>></span>. </dd>
<dd class="break"></dd>
<dt id="MEDF">[MEDF]</dt>
<dd>
<span class="refAuthor">Menth, M.</span>, <span class="refAuthor">Schmid, M.</span>, <span class="refAuthor">Heiss, H.</span>, and <span class="refAuthor">T. Reim</span>, <span class="refTitle">"MEDF - A Simple Scheduling Algorithm for Two Real-Time Transport Service Classes with Application in the UTRAN"</span>, <span class="refContent">Proc. IEEE Conference on Computer Communications (INFOCOM'03), Vol. 2, pp. 1116-1122</span>, <span class="seriesInfo">DOI 10.1109/INFCOM.2003.1208948</span>, <time datetime="2003-03" class="refDate">March 2003</time>, <span><<a href="https://doi.org/10.1109/INFCOM.2003.1208948">https://doi.org/10.1109/INFCOM.2003.1208948</a>></span>. </dd>
<dd class="break"></dd>
<dt id="PI2">[PI2]</dt>
<dd>
<span class="refAuthor">De Schepper, K.</span>, <span class="refAuthor">Bondarenko, O.</span>, <span class="refAuthor">Briscoe, B.</span>, and <span class="refAuthor">I. Tsang</span>, <span class="refTitle">"PI2: A Linearized AQM for both Classic and Scalable TCP"</span>, <span class="refContent">ACM CoNEXT'16</span>, <span class="seriesInfo">DOI 10.1145/2999572.2999578</span>, <time datetime="2016-12" class="refDate">December 2016</time>, <span><<a href="https://dl.acm.org/doi/10.1145/2999572.2999578">https://dl.acm.org/doi/10.1145/2999572.2999578</a>></span>. </dd>
<dd class="break"></dd>
<dt id="PI2param">[PI2param]</dt>
<dd>
<span class="refAuthor">Briscoe, B.</span>, <span class="refTitle">"PI2 Parameters"</span>, <span class="refContent">Technical Report, TR-BB-2021-001, arXiv:2107.01003 [cs.NI]</span>, <span class="seriesInfo">DOI 10.48550/arXiv.2107.01003</span>, <time datetime="2021-07" class="refDate">July 2021</time>, <span><<a href="https://arxiv.org/abs/2107.01003">https://arxiv.org/abs/2107.01003</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.briscoe-iccrg-prague-congestion-control">[PRAGUE-CC]</dt>
<dd>
<span class="refAuthor">De Schepper, K.</span>, <span class="refAuthor">Tilmans, O.</span>, and <span class="refAuthor">B. Briscoe</span>, <span class="refTitle">"Prague Congestion Control"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-briscoe-iccrg-prague-congestion-control-01</span>, <time datetime="2022-07-11" class="refDate">11 July 2022</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-prague-congestion-control-01">https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-prague-congestion-control-01</a>></span>. </dd>
<dd class="break"></dd>
<dt id="PragueLinux">[PragueLinux]</dt>
<dd>
<span class="refAuthor">Briscoe, B.</span>, <span class="refAuthor">De Schepper, K.</span>, <span class="refAuthor">Albisser, O.</span>, <span class="refAuthor">Misund, J.</span>, <span class="refAuthor">Tilmans, O.</span>, <span class="refAuthor">Kuehlewind, M.</span>, and <span class="refAuthor">A. Ahmed</span>, <span class="refTitle">"Implementing the 'TCP Prague' Requirements for L4S"</span>, <span class="refContent">Proceedings of Linux Netdev 0x13</span>, <time datetime="2019-03" class="refDate">March 2019</time>, <span><<a href="https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s">https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RED">[RED]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span> and <span class="refAuthor">V. Jacobson</span>, <span class="refTitle">"Random Early Detection Gateways for Congestion Avoidance"</span>, <span class="refContent">IEEE/ACM Transactions on Networking, Volume 1, Issue 4, pp. 397-413</span>, <span class="seriesInfo">DOI 10.1109/90.251892</span>, <time datetime="1993-08" class="refDate">August 1993</time>, <span><<a href="https://dl.acm.org/doi/10.1109/90.251892">https://dl.acm.org/doi/10.1109/90.251892</a>></span>. </dd>
<dd class="break"></dd>
<dt id="I-D.mathis-iccrg-relentless-tcp">[RELENTLESS]</dt>
<dd>
<span class="refAuthor">Mathis, M.</span>, <span class="refTitle">"Relentless Congestion Control"</span>, <span class="refContent">Work in Progress</span>, <span class="seriesInfo">Internet-Draft, draft-mathis-iccrg-relentless-tcp-00</span>, <time datetime="2009-03-04" class="refDate">4 March 2009</time>, <span><<a href="https://datatracker.ietf.org/doc/html/draft-mathis-iccrg-relentless-tcp-00">https://datatracker.ietf.org/doc/html/draft-mathis-iccrg-relentless-tcp-00</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC0970">[RFC0970]</dt>
<dd>
<span class="refAuthor">Nagle, J.</span>, <span class="refTitle">"On Packet Switches With Infinite Storage"</span>, <span class="seriesInfo">RFC 970</span>, <span class="seriesInfo">DOI 10.17487/RFC0970</span>, <time datetime="1985-12" class="refDate">December 1985</time>, <span><<a href="https://www.rfc-editor.org/info/rfc970">https://www.rfc-editor.org/info/rfc970</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC2914">[RFC2914]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span>, <span class="refTitle">"Congestion Control Principles"</span>, <span class="seriesInfo">BCP 41</span>, <span class="seriesInfo">RFC 2914</span>, <span class="seriesInfo">DOI 10.17487/RFC2914</span>, <time datetime="2000-09" class="refDate">September 2000</time>, <span><<a href="https://www.rfc-editor.org/info/rfc2914">https://www.rfc-editor.org/info/rfc2914</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3246">[RFC3246]</dt>
<dd>
<span class="refAuthor">Davie, B.</span>, <span class="refAuthor">Charny, A.</span>, <span class="refAuthor">Bennet, J.C.R.</span>, <span class="refAuthor">Benson, K.</span>, <span class="refAuthor">Le Boudec, J.Y.</span>, <span class="refAuthor">Courtney, W.</span>, <span class="refAuthor">Davari, S.</span>, <span class="refAuthor">Firoiu, V.</span>, and <span class="refAuthor">D. Stiliadis</span>, <span class="refTitle">"An Expedited Forwarding PHB (Per-Hop Behavior)"</span>, <span class="seriesInfo">RFC 3246</span>, <span class="seriesInfo">DOI 10.17487/RFC3246</span>, <time datetime="2002-03" class="refDate">March 2002</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3246">https://www.rfc-editor.org/info/rfc3246</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC3649">[RFC3649]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span>, <span class="refTitle">"HighSpeed TCP for Large Congestion Windows"</span>, <span class="seriesInfo">RFC 3649</span>, <span class="seriesInfo">DOI 10.17487/RFC3649</span>, <time datetime="2003-12" class="refDate">December 2003</time>, <span><<a href="https://www.rfc-editor.org/info/rfc3649">https://www.rfc-editor.org/info/rfc3649</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5033">[RFC5033]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span> and <span class="refAuthor">M. Allman</span>, <span class="refTitle">"Specifying New Congestion Control Algorithms"</span>, <span class="seriesInfo">BCP 133</span>, <span class="seriesInfo">RFC 5033</span>, <span class="seriesInfo">DOI 10.17487/RFC5033</span>, <time datetime="2007-08" class="refDate">August 2007</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5033">https://www.rfc-editor.org/info/rfc5033</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5348">[RFC5348]</dt>
<dd>
<span class="refAuthor">Floyd, S.</span>, <span class="refAuthor">Handley, M.</span>, <span class="refAuthor">Padhye, J.</span>, and <span class="refAuthor">J. Widmer</span>, <span class="refTitle">"TCP Friendly Rate Control (TFRC): Protocol Specification"</span>, <span class="seriesInfo">RFC 5348</span>, <span class="seriesInfo">DOI 10.17487/RFC5348</span>, <time datetime="2008-09" class="refDate">September 2008</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5348">https://www.rfc-editor.org/info/rfc5348</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5681">[RFC5681]</dt>
<dd>
<span class="refAuthor">Allman, M.</span>, <span class="refAuthor">Paxson, V.</span>, and <span class="refAuthor">E. Blanton</span>, <span class="refTitle">"TCP Congestion Control"</span>, <span class="seriesInfo">RFC 5681</span>, <span class="seriesInfo">DOI 10.17487/RFC5681</span>, <time datetime="2009-09" class="refDate">September 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5681">https://www.rfc-editor.org/info/rfc5681</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC5706">[RFC5706]</dt>
<dd>
<span class="refAuthor">Harrington, D.</span>, <span class="refTitle">"Guidelines for Considering Operations and Management of New Protocols and Protocol Extensions"</span>, <span class="seriesInfo">RFC 5706</span>, <span class="seriesInfo">DOI 10.17487/RFC5706</span>, <time datetime="2009-11" class="refDate">November 2009</time>, <span><<a href="https://www.rfc-editor.org/info/rfc5706">https://www.rfc-editor.org/info/rfc5706</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC7567">[RFC7567]</dt>
<dd>
<span class="refAuthor">Baker, F., Ed.</span> and <span class="refAuthor">G. Fairhurst, Ed.</span>, <span class="refTitle">"IETF Recommendations Regarding Active Queue Management"</span>, <span class="seriesInfo">BCP 197</span>, <span class="seriesInfo">RFC 7567</span>, <span class="seriesInfo">DOI 10.17487/RFC7567</span>, <time datetime="2015-07" class="refDate">July 2015</time>, <span><<a href="https://www.rfc-editor.org/info/rfc7567">https://www.rfc-editor.org/info/rfc7567</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8033">[RFC8033]</dt>
<dd>
<span class="refAuthor">Pan, R.</span>, <span class="refAuthor">Natarajan, P.</span>, <span class="refAuthor">Baker, F.</span>, and <span class="refAuthor">G. White</span>, <span class="refTitle">"Proportional Integral Controller Enhanced (PIE): A Lightweight Control Scheme to Address the Bufferbloat Problem"</span>, <span class="seriesInfo">RFC 8033</span>, <span class="seriesInfo">DOI 10.17487/RFC8033</span>, <time datetime="2017-02" class="refDate">February 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8033">https://www.rfc-editor.org/info/rfc8033</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8034">[RFC8034]</dt>
<dd>
<span class="refAuthor">White, G.</span> and <span class="refAuthor">R. Pan</span>, <span class="refTitle">"Active Queue Management (AQM) Based on Proportional Integral Controller Enhanced (PIE) for Data-Over-Cable Service Interface Specifications (DOCSIS) Cable Modems"</span>, <span class="seriesInfo">RFC 8034</span>, <span class="seriesInfo">DOI 10.17487/RFC8034</span>, <time datetime="2017-02" class="refDate">February 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8034">https://www.rfc-editor.org/info/rfc8034</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8174">[RFC8174]</dt>
<dd>
<span class="refAuthor">Leiba, B.</span>, <span class="refTitle">"Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"</span>, <span class="seriesInfo">BCP 14</span>, <span class="seriesInfo">RFC 8174</span>, <span class="seriesInfo">DOI 10.17487/RFC8174</span>, <time datetime="2017-05" class="refDate">May 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8257">[RFC8257]</dt>
<dd>
<span class="refAuthor">Bensley, S.</span>, <span class="refAuthor">Thaler, D.</span>, <span class="refAuthor">Balasubramanian, P.</span>, <span class="refAuthor">Eggert, L.</span>, and <span class="refAuthor">G. Judd</span>, <span class="refTitle">"Data Center TCP (DCTCP): TCP Congestion Control for Data Centers"</span>, <span class="seriesInfo">RFC 8257</span>, <span class="seriesInfo">DOI 10.17487/RFC8257</span>, <time datetime="2017-10" class="refDate">October 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8257">https://www.rfc-editor.org/info/rfc8257</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8290">[RFC8290]</dt>
<dd>
<span class="refAuthor">Hoeiland-Joergensen, T.</span>, <span class="refAuthor">McKenney, P.</span>, <span class="refAuthor">Taht, D.</span>, <span class="refAuthor">Gettys, J.</span>, and <span class="refAuthor">E. Dumazet</span>, <span class="refTitle">"The Flow Queue CoDel Packet Scheduler and Active Queue Management Algorithm"</span>, <span class="seriesInfo">RFC 8290</span>, <span class="seriesInfo">DOI 10.17487/RFC8290</span>, <time datetime="2018-01" class="refDate">January 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8290">https://www.rfc-editor.org/info/rfc8290</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8298">[RFC8298]</dt>
<dd>
<span class="refAuthor">Johansson, I.</span> and <span class="refAuthor">Z. Sarker</span>, <span class="refTitle">"Self-Clocked Rate Adaptation for Multimedia"</span>, <span class="seriesInfo">RFC 8298</span>, <span class="seriesInfo">DOI 10.17487/RFC8298</span>, <time datetime="2017-12" class="refDate">December 2017</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8298">https://www.rfc-editor.org/info/rfc8298</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8312">[RFC8312]</dt>
<dd>
<span class="refAuthor">Rhee, I.</span>, <span class="refAuthor">Xu, L.</span>, <span class="refAuthor">Ha, S.</span>, <span class="refAuthor">Zimmermann, A.</span>, <span class="refAuthor">Eggert, L.</span>, and <span class="refAuthor">R. Scheffenegger</span>, <span class="refTitle">"CUBIC for Fast Long-Distance Networks"</span>, <span class="seriesInfo">RFC 8312</span>, <span class="seriesInfo">DOI 10.17487/RFC8312</span>, <time datetime="2018-02" class="refDate">February 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8312">https://www.rfc-editor.org/info/rfc8312</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC8404">[RFC8404]</dt>
<dd>
<span class="refAuthor">Moriarty, K., Ed.</span> and <span class="refAuthor">A. Morton, Ed.</span>, <span class="refTitle">"Effects of Pervasive Encryption on Operators"</span>, <span class="seriesInfo">RFC 8404</span>, <span class="seriesInfo">DOI 10.17487/RFC8404</span>, <time datetime="2018-07" class="refDate">July 2018</time>, <span><<a href="https://www.rfc-editor.org/info/rfc8404">https://www.rfc-editor.org/info/rfc8404</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9000">[RFC9000]</dt>
<dd>
<span class="refAuthor">Iyengar, J., Ed.</span> and <span class="refAuthor">M. Thomson, Ed.</span>, <span class="refTitle">"QUIC: A UDP-Based Multiplexed and Secure Transport"</span>, <span class="seriesInfo">RFC 9000</span>, <span class="seriesInfo">DOI 10.17487/RFC9000</span>, <time datetime="2021-05" class="refDate">May 2021</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9000">https://www.rfc-editor.org/info/rfc9000</a>></span>. </dd>
<dd class="break"></dd>
<dt id="RFC9330">[RFC9330]</dt>
<dd>
<span class="refAuthor">Briscoe, B., Ed.</span>, <span class="refAuthor">De Schepper, K.</span>, <span class="refAuthor">Bagnulo, M.</span>, and <span class="refAuthor">G. White</span>, <span class="refTitle">"Low Latency, Low Loss, and Scalable Throughput (L4S) Internet Service: Architecture"</span>, <span class="seriesInfo">RFC 9330</span>, <span class="seriesInfo">DOI 10.17487/RFC9330</span>, <time datetime="2023-01" class="refDate">January 2023</time>, <span><<a href="https://www.rfc-editor.org/info/rfc9330">https://www.rfc-editor.org/info/rfc9330</a>></span>. </dd>
<dd class="break"></dd>
<dt id="SCReAM-L4S">[SCReAM-L4S]</dt>
<dd>
<span class="refTitle">"SCReAM"</span>, <span class="refContent">commit fda6c53</span>, <time datetime="2022-06" class="refDate">June 2022</time>, <span><<a href="https://github.com/EricssonResearch/scream">https://github.com/EricssonResearch/scream</a>></span>. </dd>
<dd class="break"></dd>
<dt id="SigQ-Dyn">[SigQ-Dyn]</dt>
<dd>
<span class="refAuthor">Briscoe, B.</span>, <span class="refTitle">"Rapid Signalling of Queue Dynamics"</span>, <span class="refContent">Technical Report, TR-BB-2017-001</span>, <span class="seriesInfo">DOI 10.48550/arXiv.1904.07044</span>, <time datetime="2017-09" class="refDate">September 2017</time>, <span><<a href="https://arxiv.org/abs/1904.07044">https://arxiv.org/abs/1904.07044</a>></span>. </dd>
<dd class="break"></dd>
</dl>
</section>
</section>
<div id="dualq_Ex_algo_pi2">
<section id="appendix-A">
<h2 id="name-example-dualq-coupled-pi2-a">
<a href="#appendix-A" class="section-number selfRef">Appendix A. </a><a href="#name-example-dualq-coupled-pi2-a" class="section-name selfRef">Example DualQ Coupled PI2 Algorithm</a>
</h2>
<p id="appendix-A-1">As a first concrete example, the pseudocode below gives the DualPI2
algorithm. DualPI2 follows the structure of the DualQ Coupled AQM
framework in <a href="#dualq_fig_structure" class="auto internal xref">Figure 1</a>. A simple ramp
function (configured in units of queuing time) with unsmoothed ECN
marking is used for the Native L4S AQM. The ramp can also be configured
as a step function. The PI2 algorithm <span>[<a href="#PI2" class="cite xref">PI2</a>]</span> is used
for the Classic AQM. PI2 is an improved variant of the PIE
AQM <span>[<a href="#RFC8033" class="cite xref">RFC8033</a>]</span>.<a href="#appendix-A-1" class="pilcrow">¶</a></p>
<p id="appendix-A-2">The pseudocode will be introduced in two passes. The first pass
explains the core concepts, deferring handling of edge-cases like
overload to the second pass. To aid comparison, line numbers are kept in
step between the two passes by using letter suffixes where the longer
code needs extra lines.<a href="#appendix-A-2" class="pilcrow">¶</a></p>
<p id="appendix-A-3">All variables are assumed to be floating point in their basic units
(size in bytes, time in seconds, rates in bytes/second, alpha and beta
in Hz, and probabilities from 0 to 1). Constants expressed in k (kilo), M
(mega), G (giga), u (micro), m (milli), %, and so forth, are assumed to be
converted to their appropriate multiple or fraction to represent the
basic units. A real implementation that wants to use integer values
needs to handle appropriate scaling factors and allow
appropriate resolution of its integer types (including temporary
internal values during calculations).<a href="#appendix-A-3" class="pilcrow">¶</a></p>
<p id="appendix-A-4">A full open source implementation for Linux is available at
<span><<a href="https://github.com/L4STeam/sch_dualpi2_upstream">https://github.com/L4STeam/sch_dualpi2_upstream</a>></span> and explained in <span>[<a href="#DualPI2Linux" class="cite xref">DualPI2Linux</a>]</span>. The specification of the DualQ Coupled AQM for
DOCSIS cable modems and cable modem termination systems (CMTSs) is available in <span>[<a href="#DOCSIS3.1" class="cite xref">DOCSIS3.1</a>]</span>
and explained in <span>[<a href="#LLD" class="cite xref">LLD</a>]</span>.<a href="#appendix-A-4" class="pilcrow">¶</a></p>
<div id="dualq_Ex_algo_pi2-1">
<section id="appendix-A.1">
<h3 id="name-pass-1-core-concepts">
<a href="#appendix-A.1" class="section-number selfRef">A.1. </a><a href="#name-pass-1-core-concepts" class="section-name selfRef">Pass #1: Core Concepts</a>
</h3>
<p id="appendix-A.1-1">The pseudocode manipulates three main structures of variables: the
packet (pkt), the L4S queue (lq), and the Classic queue (cq). The
pseudocode consists of the following six functions:<a href="#appendix-A.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.1-2.1">The initialization function dualpi2_params_init(...) (<a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a>) that sets parameter
defaults (the API for setting non-default values is omitted for
brevity).<a href="#appendix-A.1-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-2.2">The enqueue function dualpi2_enqueue(lq, cq, pkt) (<a href="#dualq_fig_Algo_pi2_enqueue" class="auto internal xref">Figure 3</a>).<a href="#appendix-A.1-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-2.3">The dequeue function dualpi2_dequeue(lq, cq, pkt) (<a href="#dualq_fig_Algo_pi2_dequeue" class="auto internal xref">Figure 4</a>).<a href="#appendix-A.1-2.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-2.4">The recurrence function recur(q, likelihood) for de-randomized
ECN marking (shown at the end of <a href="#dualq_fig_Algo_pi2_dequeue" class="auto internal xref">Figure 4</a>).<a href="#appendix-A.1-2.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-2.5">The L4S AQM function laqm(qdelay) (<a href="#dualq_fig_Algo_laqm_core" class="auto internal xref">Figure 5</a>) used to calculate the
ECN-marking probability for the L4S queue.<a href="#appendix-A.1-2.5" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-2.6">The Base AQM function that implements the PI algorithm
dualpi2_update(lq, cq) (<a href="#dualq_fig_Algo_pi2_core" class="auto internal xref">Figure 6</a>)
used to regularly update the base probability (p'), which is
squared for the Classic AQM as well as being coupled across to the
L4S queue.<a href="#appendix-A.1-2.6" class="pilcrow">¶</a>
</li>
</ul>
<p id="appendix-A.1-3">It also uses the following functions that are not shown in
full here:<a href="#appendix-A.1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.1-4.1">scheduler(), which selects between the head packets of the two
queues. The choice of scheduler technology is discussed later.<a href="#appendix-A.1-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-4.2">cq.byt() or lq.byt() returns the current length
(a.k.a. backlog) of the relevant queue in bytes.<a href="#appendix-A.1-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-4.3">cq.len() or lq.len() returns the current length of the relevant
queue in packets.<a href="#appendix-A.1-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-4.4">cq.time() or lq.time() returns the current queuing delay of the
relevant queue in units of time (see <a href="#note_qdelay" class="internal xref">Note a</a> below).<a href="#appendix-A.1-4.4" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-4.5">mark(pkt) and drop(pkt) for ECN marking and dropping a
packet.<a href="#appendix-A.1-4.5" class="pilcrow">¶</a>
</li>
</ul>
<p id="appendix-A.1-5">In experiments so far (building on experiments with PIE) on
broadband access links ranging from 4 Mb/s to 200 Mb/s with base RTTs
from 5 ms to 100 ms, DualPI2 achieves good results with the default
parameters in <a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a>. The
parameters are categorised by whether they relate to the PI2 AQM,
the L4S AQM, or the framework coupling them together. Constants and
variables derived from these parameters are also included at the end
of each category. Each parameter is explained as it is encountered in
the walk-through of the pseudocode below, and the rationale for the
chosen defaults are given so that sensible values can be used in
scenarios other than the regular public Internet.<a href="#appendix-A.1-5" class="pilcrow">¶</a></p>
<span id="name-example-header-pseudocode-f"></span><div id="dualq_fig_Algo_pi2_core_header">
<figure id="figure-2">
<div class="sourcecode" id="appendix-A.1-6.1">
<pre>
1: dualpi2_params_init(...) { % Set input parameter defaults
2: % DualQ Coupled framework parameters
5: limit = MAX_LINK_RATE * 250 ms % Dual buffer size
3: k = 2 % Coupling factor
4: % NOT SHOWN % scheduler-dependent weight or equival't parameter
6:
7: % PI2 Classic AQM parameters
8: target = 15 ms % Queue delay target
9: RTT_max = 100 ms % Worst case RTT expected
10: % PI2 constants derived from above PI2 parameters
11: p_Cmax = min(1/k^2, 1) % Max Classic drop/mark prob
12: Tupdate = min(target, RTT_max/3) % PI sampling interval
13: alpha = 0.1 * Tupdate / RTT_max^2 % PI integral gain in Hz
14: beta = 0.3 / RTT_max % PI proportional gain in Hz
15:
16: % L4S ramp AQM parameters
17: minTh = 800 us % L4S min marking threshold in time units
18: range = 400 us % Range of L4S ramp in time units
19: Th_len = 1 pkt % Min L4S marking threshold in packets
20: % L4S constants
21: p_Lmax = 1 % Max L4S marking prob
22: }</pre>
</div>
<figcaption><a href="#figure-2" class="selfRef">Figure 2</a>:
<a href="#name-example-header-pseudocode-f" class="selfRef">Example Header Pseudocode for DualQ Coupled PI2 AQM</a>
</figcaption></figure>
</div>
<p id="appendix-A.1-7">The overall goal of the code is to apply the marking and dropping
probabilities for L4S and Classic traffic (p_L and p_C). These are
derived from the underlying base probabilities p'_L and p' driven,
respectively, by the traffic in the L and C queues. The marking
probability for the L queue (p_L) depends on both the base probability
in its own queue (p'_L) and a probability called p_CL, which is
coupled across from p' in the C queue (see <a href="#dualq_coupled_structure" class="auto internal xref">Section 2.4</a> for the derivation of the specific
equations and dependencies).<a href="#appendix-A.1-7" class="pilcrow">¶</a></p>
<p id="appendix-A.1-8">The probabilities p_CL and p_C are derived in lines 4 and 5 of the
dualpi2_update() function (<a href="#dualq_fig_Algo_pi2_core" class="auto internal xref">Figure 6</a>)
then used in the dualpi2_dequeue() function where p_L is also derived
from p_CL at line 6 (<a href="#dualq_fig_Algo_pi2_dequeue" class="auto internal xref">Figure 4</a>). The
code walk-through below builds up to explaining that part of the code
eventually, but it starts from packet arrival.<a href="#appendix-A.1-8" class="pilcrow">¶</a></p>
<span id="name-example-enqueue-pseudocode-"></span><div id="dualq_fig_Algo_pi2_enqueue">
<figure id="figure-3">
<div class="sourcecode" id="appendix-A.1-9.1">
<pre>
1: dualpi2_enqueue(lq, cq, pkt) { % Test limit and classify lq or cq
2: if ( lq.byt() + cq.byt() + MTU > limit)
3: drop(pkt) % drop packet if buffer is full
4: timestamp(pkt) % only needed if using the sojourn technique
5: % Packet classifier
6: if ( ecn(pkt) modulo 2 == 1 ) % ECN bits = ECT(1) or CE
7: lq.enqueue(pkt)
8: else % ECN bits = not-ECT or ECT(0)
9: cq.enqueue(pkt)
10: }</pre>
</div>
<figcaption><a href="#figure-3" class="selfRef">Figure 3</a>:
<a href="#name-example-enqueue-pseudocode-" class="selfRef">Example Enqueue Pseudocode for DualQ Coupled PI2 AQM</a>
</figcaption></figure>
</div>
<span id="name-example-dequeue-pseudocode-"></span><div id="dualq_fig_Algo_pi2_dequeue">
<figure id="figure-4">
<div class="sourcecode" id="appendix-A.1-10.1">
<pre>
1: dualpi2_dequeue(lq, cq, pkt) { % Couples L4S & Classic queues
2: while ( lq.byt() + cq.byt() > 0 ) {
3: if ( scheduler() == lq ) {
4: lq.dequeue(pkt) % Scheduler chooses lq
5: p'_L = laqm(lq.time()) % Native LAQM
6: p_L = max(p'_L, p_CL) % Combining function
7: if ( recur(lq, p_L) ) % Linear marking
8: mark(pkt)
9: } else {
10: cq.dequeue(pkt) % Scheduler chooses cq
11: if ( recur(cq, p_C) ) { % probability p_C = p'^2
12: if ( ecn(pkt) == 0 ) { % if ECN field = not-ECT
13: drop(pkt) % squared drop
14: continue % continue to the top of the while loop
15: }
16: mark(pkt) % squared mark
17: }
18: }
19: return(pkt) % return the packet and stop
20: }
21: return(NULL) % no packet to dequeue
22: }
23: recur(q, likelihood) { % Returns TRUE with a certain likelihood
24: q.count += likelihood
25: if (q.count > 1) {
26: q.count -= 1
27: return TRUE
28: }
29: return FALSE
30: }</pre>
</div>
<figcaption><a href="#figure-4" class="selfRef">Figure 4</a>:
<a href="#name-example-dequeue-pseudocode-" class="selfRef">Example Dequeue Pseudocode for DualQ Coupled PI2 AQM</a>
</figcaption></figure>
</div>
<p id="appendix-A.1-11">When packets arrive, a common queue limit is checked first as shown
in line 2 of the enqueuing pseudocode in <a href="#dualq_fig_Algo_pi2_enqueue" class="auto internal xref">Figure 3</a>. This assumes a shared buffer
for the two queues (<a href="#note_separate_buffers" class="internal xref">Note b</a> discusses the merits of separate buffers).
In order to avoid any bias against larger packets, 1 MTU of space is
always allowed, and the limit is deliberately tested before
enqueue.<a href="#appendix-A.1-11" class="pilcrow">¶</a></p>
<p id="appendix-A.1-12">If limit is not exceeded, the packet is timestamped in line 4 (only
if the sojourn time technique is being used to measure queue delay;
see <a href="#note_qdelay" class="internal xref">Note a</a> below for alternatives).<a href="#appendix-A.1-12" class="pilcrow">¶</a></p>
<p id="appendix-A.1-13">At lines 5-9, the packet is classified and enqueued to the Classic
or L4S queue dependent on the least significant bit (LSB) of the ECN field
in the IP header (line 6). Packets with a codepoint having an LSB of 0
(Not-ECT and ECT(0)) will be enqueued in the Classic queue. Otherwise,
ECT(1) and CE packets will be enqueued in the L4S queue. Optional
additional packet classification flexibility is omitted for brevity
(see the L4S ECN protocol <span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span>).<a href="#appendix-A.1-13" class="pilcrow">¶</a></p>
<p id="appendix-A.1-14">The dequeue pseudocode (<a href="#dualq_fig_Algo_pi2_dequeue" class="auto internal xref">Figure 4</a>) is repeatedly called whenever
the lower layer is ready to forward a packet. It schedules one packet
for dequeuing (or zero if the queue is empty) then returns control to
the caller so that it does not block while that packet is being
forwarded. While making this dequeue decision, it also makes the
necessary AQM decisions on dropping or marking. The alternative of
applying the AQMs at enqueue would shift some processing from the
critical time when each packet is dequeued. However, it would also add
a whole queue of delay to the control signals, making the control loop
sloppier (for a typical RTT, it would double the Classic queue's
feedback delay).<a href="#appendix-A.1-14" class="pilcrow">¶</a></p>
<p id="appendix-A.1-15">All the dequeue code is contained within a large while loop so that
if it decides to drop a packet, it will continue until it selects a
packet to schedule. Line 3 of the dequeue pseudocode is where the
scheduler chooses between the L4S queue (lq) and the Classic queue
(cq). Detailed implementation of the scheduler is not shown (see
discussion later).<a href="#appendix-A.1-15" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.1-16.1">
<p id="appendix-A.1-16.1.1">If an L4S packet is scheduled, in lines 7 and 8 the packet is
ECN-marked with likelihood p_L. The recur() function at the end of
<a href="#dualq_fig_Algo_pi2_dequeue" class="auto internal xref">Figure 4</a> is used, which is
preferred over random marking because it avoids delay due to
randomization when interpreting congestion signals, but it still
desynchronizes the sawteeth of the flows. Line 6 calculates p_L
as the maximum of the coupled L4S probability p_CL and the
probability from the Native L4S AQM p'_L. This implements the
max() function shown in <a href="#dualq_fig_structure" class="auto internal xref">Figure 1</a> to
couple the outputs of the two AQMs together. Of the two
probabilities input to p_L in line 6:<a href="#appendix-A.1-16.1.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.1-16.1.2.1">p'_L is calculated per packet in line 5 by the laqm()
function (see <a href="#dualq_fig_Algo_laqm_core" class="auto internal xref">Figure 5</a>), whereas<a href="#appendix-A.1-16.1.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-16.1.2.2">p_CL is maintained by the dualpi2_update() function,
which runs every Tupdate (Tupdate is set in line 12 of <a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a>).<a href="#appendix-A.1-16.1.2.2" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="normal" id="appendix-A.1-16.2">If a Classic packet is scheduled, lines 10 to 17 drop or mark
the packet with probability p_C.<a href="#appendix-A.1-16.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="appendix-A.1-17">The Native L4S AQM algorithm (<a href="#dualq_fig_Algo_laqm_core" class="auto internal xref">Figure 5</a>) is a ramp function, similar to
the RED algorithm, but simplified as follows:<a href="#appendix-A.1-17" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.1-18.1">The extent of the ramp is defined in units of queuing delay,
not bytes, so that configuration remains invariant as the queue
departure rate varies.<a href="#appendix-A.1-18.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-18.2">It uses instantaneous queuing delay, which avoids the
complexity of smoothing, but also avoids embedding a worst-case
RTT of smoothing delay in the network (see <a href="#dualq_coupled" class="auto internal xref">Section 2.1</a>).<a href="#appendix-A.1-18.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-18.3">The ramp rises linearly directly from 0 to 1, not to an
intermediate value of p'_L as RED would, because there is no need
to keep ECN-marking probability low.<a href="#appendix-A.1-18.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-18.4">Marking does not have to be randomized. Determinism is used
instead of randomness to reduce the delay necessary to smooth out
the noise of randomness from the signal.<a href="#appendix-A.1-18.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="appendix-A.1-19">The ramp function requires two configuration parameters, the
minimum threshold (minTh) and the width of the ramp (range), both in
units of queuing time, as shown in lines 17 and 18 of the
initialization function in <a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a>. The ramp function can be
configured as a step (see <a href="#note_ramp" class="internal xref">Note c</a>).<a href="#appendix-A.1-19" class="pilcrow">¶</a></p>
<p id="appendix-A.1-20">Although the DCTCP paper <span>[<a href="#Alizadeh-stability" class="cite xref">Alizadeh-stability</a>]</span>
recommends an ECN-marking threshold of 0.17*RTT_typ, it also shows
that the threshold can be much shallower with hardly any worse
underutilization of the link (because the amplitude of DCTCP's
sawteeth is so small). Based on extensive experiments, for the public
Internet the default minimum ECN-marking threshold (target) in <a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a> is considered a good
compromise, even though it is a significantly smaller fraction of
RTT_typ.<a href="#appendix-A.1-20" class="pilcrow">¶</a></p>
<span id="name-example-pseudocode-for-the-"></span><div id="dualq_fig_Algo_laqm_core">
<figure id="figure-5">
<div class="sourcecode" id="appendix-A.1-21.1">
<pre>
1: laqm(qdelay) { % Returns Native L4S AQM probability
2: if (qdelay >= maxTh)
3: return 1
4: else if (qdelay > minTh)
5: return (qdelay - minTh)/range % Divide could use a bit-shift
6: else
7: return 0
8: }</pre>
</div>
<figcaption><a href="#figure-5" class="selfRef">Figure 5</a>:
<a href="#name-example-pseudocode-for-the-" class="selfRef">Example Pseudocode for the Native L4S AQM</a>
</figcaption></figure>
</div>
<p id="appendix-A.1-22"></p>
<span id="name-example-pi-update-pseudocod"></span><div id="dualq_fig_Algo_pi2_core">
<figure id="figure-6">
<div class="sourcecode" id="appendix-A.1-23.1">
<pre>
1: dualpi2_update(lq, cq) { % Update p' every Tupdate
2: curq = cq.time() % use queuing time of first-in Classic packet
3: p' = p' + alpha * (curq - target) + beta * (curq - prevq)
4: p_CL = k * p' % Coupled L4S prob = base prob * coupling factor
5: p_C = p'^2 % Classic prob = (base prob)^2
6: prevq = curq
7: }</pre>
</div>
<figcaption><a href="#figure-6" class="selfRef">Figure 6</a>:
<a href="#name-example-pi-update-pseudocod" class="selfRef">Example PI-update Pseudocode for DualQ Coupled PI2 AQM</a>
</figcaption></figure>
</div>
<p style="margin-left: 1.5em" id="appendix-A.1-24" class="keepWithPrevious">(Note: Clamping p' within the range [0,1] omitted for clarity -- see below.)<a href="#appendix-A.1-24" class="pilcrow">¶</a></p>
<p id="appendix-A.1-25">The coupled marking probability p_CL depends on the base
probability (p'), which is kept up to date by executing the core PI algorithm in
<a href="#dualq_fig_Algo_pi2_core" class="auto internal xref">Figure 6</a> every Tupdate.<a href="#appendix-A.1-25" class="pilcrow">¶</a></p>
<p id="appendix-A.1-26">Note that p' solely depends on the queuing time in the Classic
queue. In line 2, the current queuing delay (curq) is evaluated from
how long the head packet was in the Classic queue (cq). The function
cq.time() (not shown) subtracts the time stamped at enqueue from the
current time (see <a href="#note_qdelay" class="internal xref">Note a</a> below) and implicitly takes the current queuing
delay as 0 if the queue is empty.<a href="#appendix-A.1-26" class="pilcrow">¶</a></p>
<p id="appendix-A.1-27">The algorithm centres on line 3, which is a classical
PI controller that alters p' dependent on: a)
the error between the current queuing delay (curq) and the target
queuing delay (target) and b) the change in queuing delay since the
last sample. The name 'PI' represents the fact that the second factor
(how fast the queue is growing) is Proportional
to load while the first is the Integral of
the load (so it removes any standing queue in excess of the
target).<a href="#appendix-A.1-27" class="pilcrow">¶</a></p>
<p id="appendix-A.1-28">The target parameter can be set based on local knowledge, but the
aim is for the default to be a good compromise for anywhere in the
intended deployment environment -- the public Internet. According
to <span>[<a href="#PI2param" class="cite xref">PI2param</a>]</span>, the target queuing delay on line 8 of
<a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a> is related to the
typical base RTT worldwide, RTT_typ, by two factors: target = RTT_typ
* g * f. Below, we summarize the rationale behind these factors and
introduce a further adjustment. The two factors ensure that, in a
large proportion of cases (say 90%), the sawtooth variations in RTT of
a single flow will fit within the buffer without underutilizing the
link. Frankly, these factors are educated guesses, but with the
emphasis closer to 'educated' than to 'guess' (see <span>[<a href="#PI2param" class="cite xref">PI2param</a>]</span> for the full background):<a href="#appendix-A.1-28" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.1-29.1">RTT_typ is taken as 25 ms. This is based on an average CDN
latency measured in each country weighted by the number of
Internet users in that country to produce an overall weighted
average for the Internet <span>[<a href="#PI2param" class="cite xref">PI2param</a>]</span>. Countries
were ranked by number of Internet users, and once 90% of Internet
users were covered, smaller countries were excluded to avoid
small sample sizes that would be less representative. Also, importantly, the data
for the average CDN latency in China (with the largest number of
Internet users) has been removed, because the CDN latency was a
significant outlier and, on reflection, the experimental technique
seemed inappropriate to the CDN market in China.<a href="#appendix-A.1-29.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-29.2">g is taken as 0.38. The factor g is a geometry factor that
characterizes the shape of the sawteeth of prevalent Classic
congestion controllers. The geometry factor is the fraction of the
amplitude of the sawtooth variability in queue delay that lies
below the AQM's target.
For instance, at low bitrates, the
geometry factor of standard Reno is 0.5, but at higher rates, it
tends towards just under 1. According to the census of congestion
controllers conducted by Mishra et al. in Jul-Oct
2019 <span>[<a href="#CCcensus19" class="cite xref">CCcensus19</a>]</span>, most Classic TCP traffic
uses CUBIC. And, according to the analysis in <span>[<a href="#PI2param" class="cite xref">PI2param</a>]</span>, if running over a PI2 AQM, a large proportion
of this CUBIC traffic would be in its Reno-friendly mode, which
has a geometry factor of ~0.39 (for all known implementations). The
rest of the CUBIC traffic would be in true CUBIC mode, which has a
geometry factor of ~0.36. Without modelling the sawtooth profiles
from all the other less prevalent congestion controllers, we
estimate a 7:3 weighted average of these two, resulting in an
average geometry factor of 0.38.<a href="#appendix-A.1-29.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-29.3">f is taken as 2. The factor f is a safety factor that increases
the target queue to allow for the distribution of RTT_typ around
its mean. Otherwise, the target queue would only avoid
underutilization for those users below the mean. It also provides
a safety margin for the proportion of paths in use that span
beyond the distance between a user and their local CDN. Currently,
no data is available on the variance of queue delay around the
mean in each region, so there is plenty of room for this guess to
become more educated.<a href="#appendix-A.1-29.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-29.4">
<span>[<a href="#PI2param" class="cite xref">PI2param</a>]</span> recommends target = RTT_typ * g * f =
25 ms * 0.38 * 2 = 19 ms. However, a further adjustment is
warranted, because target is moving year-on-year.
The paper is
based on data collected in 2019, and it mentions evidence from the Speedtest Global Index
that suggests RTT_typ reduced by 17% (fixed) or 12%
(mobile) between 2020 and 2021. Therefore, we recommend a default
of target = 15 ms at the time of writing (2021).<a href="#appendix-A.1-29.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="appendix-A.1-30">Operators can always use the data and discussion in <span>[<a href="#PI2param" class="cite xref">PI2param</a>]</span> to configure a more appropriate target for their
environment. For instance, an operator might wish to question the
assumptions called out in that paper, such as the goal of no
underutilization for a large majority of single flow transfers (given
many large transfers use multiple flows to avoid the scaling
limitations of Classic flows).<a href="#appendix-A.1-30" class="pilcrow">¶</a></p>
<p id="appendix-A.1-31">The two 'gain factors' in line 3 of <a href="#dualq_fig_Algo_pi2_core" class="auto internal xref">Figure 6</a>, alpha and beta, respectively
weight how strongly each of the two elements (Integral and
Proportional) alters p'. They are in units of 'per second of delay' or
Hz, because they transform differences in queuing delay into changes
in probability (assuming probability has a value from 0 to 1).<a href="#appendix-A.1-31" class="pilcrow">¶</a></p>
<p id="appendix-A.1-32">Alpha and beta determine how much p' ought to change after each
update interval (Tupdate). For a smaller Tupdate, p' should change by
the same amount per second but in finer more frequent steps. So alpha
depends on Tupdate (see line 13 of the initialization function in
<a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a>). It is best to update
p' as frequently as possible, but Tupdate will probably be constrained
by hardware performance. As shown in line 12, the update interval
should be frequent enough to update at least once in the time taken
for the target queue to drain ('target') as long as it updates at
least three times per maximum RTT. Tupdate defaults to 16 ms in the
reference Linux implementation because it has to be rounded to a
multiple of 4 ms. For link rates from 4 to 200 Mb/s and a maximum RTT
of 100 ms, it has been verified through extensive testing that
Tupdate = 16 ms (as also recommended in the PIE spec <span>[<a href="#RFC8033" class="cite xref">RFC8033</a>]</span>) is sufficient.<a href="#appendix-A.1-32" class="pilcrow">¶</a></p>
<p id="appendix-A.1-33">The choice of alpha and beta also determines the AQM's stable
operating range. The AQM ought to change p' as fast as possible in
response to changes in load without overcompensating and therefore
causing oscillations in the queue. Therefore, the values of alpha and
beta also depend on the RTT of the expected worst-case flow
(RTT_max).<a href="#appendix-A.1-33" class="pilcrow">¶</a></p>
<p id="appendix-A.1-34">The maximum RTT of a PI controller (RTT_max in line 9 of <a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a>) is not an absolute maximum,
but more instability (more queue variability) sets in for long-running
flows with an RTT above this value. The propagation delay halfway
round the planet and back in glass fibre is 200 ms. However, hardly
any traffic traverses such extreme paths and, since the significant
consolidation of Internet traffic between 2007 and 2009 <span>[<a href="#Labovitz10" class="cite xref">Labovitz10</a>]</span>, a high and growing proportion of all Internet
traffic (roughly two-thirds at the time of writing) has been served
from CDNs or 'cloud' services
distributed close to end users. The Internet might change again, but
for now, designing for a maximum RTT of 100 ms is a good compromise
between faster queue control at low RTT and some instability on the
occasions when a longer path is necessary.<a href="#appendix-A.1-34" class="pilcrow">¶</a></p>
<p id="appendix-A.1-35">Recommended derivations of the gain constants alpha and beta can be
approximated for Reno over a PI2 AQM as:
alpha = 0.1 * Tupdate / RTT_max^2;
beta = 0.3 / RTT_max,
as shown in lines 13 and 14 of
<a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a>. These are derived
from the stability analysis in <span>[<a href="#PI2" class="cite xref">PI2</a>]</span>. For the default
values of Tupdate = 16 ms and RTT_max = 100 ms, they result in alpha =
0.16; beta = 3.2 (discrepancies are due to rounding). These defaults
have been verified with a wide range of link rates, target delays, and
traffic models with mixed and similar RTTs, short and long
flows, etc.<a href="#appendix-A.1-35" class="pilcrow">¶</a></p>
<p id="appendix-A.1-36">In corner cases, p' can overflow the range [0,1] so the resulting
value of p' has to be bounded (omitted from the pseudocode). Then, as
already explained, the coupled and Classic probabilities are derived
from the new p' in lines 4 and 5 of <a href="#dualq_fig_Algo_pi2_core" class="auto internal xref">Figure 6</a> as p_CL = k*p' and p_C = p'^2.<a href="#appendix-A.1-36" class="pilcrow">¶</a></p>
<p id="appendix-A.1-37">Because the coupled L4S marking probability (p_CL) is factored up
by k, the dynamic gain parameters alpha and beta are also inherently
factored up by k for the L4S queue. So, the effective gain factor for
the L4S queue is k*alpha (with defaults alpha = 0.16 Hz and k = 2,
effective L4S alpha = 0.32 Hz).<a href="#appendix-A.1-37" class="pilcrow">¶</a></p>
<p id="appendix-A.1-38">Unlike in PIE <span>[<a href="#RFC8033" class="cite xref">RFC8033</a>]</span>, alpha and beta do not
need to be tuned every Tupdate dependent on p'. Instead, in PI2, alpha
and beta are independent of p' because the squaring applied to Classic
traffic tunes them inherently. This is explained in <span>[<a href="#PI2" class="cite xref">PI2</a>]</span>, which also explains why this more principled approach
removes the need for most of the heuristics that had to be added to
PIE.<a href="#appendix-A.1-38" class="pilcrow">¶</a></p>
<p id="appendix-A.1-39">Nonetheless, an implementer might wish to add selected details to
either AQM. For instance, the Linux reference DualPI2 implementation
includes the following (not shown in the pseudocode above):<a href="#appendix-A.1-39" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.1-40.1">Classic and coupled marking or dropping (i.e., based on p_C
and p_CL from the PI controller) is not applied to a packet if the
aggregate queue length in bytes is < 2 MTU (prior to enqueuing
the packet or dequeuing it, depending on whether the AQM is
configured to be applied at enqueue or dequeue); and<a href="#appendix-A.1-40.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.1-40.2">in the WRR scheduler, the 'credit' indicating which queue
should transmit is only changed if there are packets in both
queues (i.e., if there is actual resource contention). This
means that a properly paced L flow might never be delayed by the
WRR. The WRR credit is reset in favour of the L queue when the
link is idle.<a href="#appendix-A.1-40.2" class="pilcrow">¶</a>
</li>
</ul>
<p id="appendix-A.1-41">An implementer might also wish to add other heuristics,
e.g., burst protection <span>[<a href="#RFC8033" class="cite xref">RFC8033</a>]</span> or enhanced
burst protection <span>[<a href="#RFC8034" class="cite xref">RFC8034</a>]</span>.<a href="#appendix-A.1-41" class="pilcrow">¶</a></p>
<p id="appendix-A.1-42">Notes:<a href="#appendix-A.1-42" class="pilcrow">¶</a></p>
<ol start="1" type="a" class="normal type-a" id="appendix-A.1-43">
<li id="appendix-A.1-43.1">
<div id="note_qdelay">
<p id="appendix-A.1-43.1.1">The drain rate of the queue can vary
if it is scheduled relative to other queues or if it accommodates
fluctuations in a wireless medium. To auto-adjust to changes in
drain rate, the queue needs to be measured in time, not bytes or
packets <span>[<a href="#AQMmetrics" class="cite xref">AQMmetrics</a>]</span> <span>[<a href="#CoDel" class="cite xref">CoDel</a>]</span>.
Queuing delay could be measured directly as the sojourn time (a.k.a.
service time) of the queue by storing a per-packet timestamp as
each packet is enqueued and subtracting it from the system time
when the packet is dequeued. If timestamping is not easy to
introduce with certain hardware, queuing delay could be predicted
indirectly by dividing the size of the queue by the predicted
departure rate, which might be known precisely for some link
technologies (see, for example, DOCSIS PIE <span>[<a href="#RFC8034" class="cite xref">RFC8034</a>]</span>).<a href="#appendix-A.1-43.1.1" class="pilcrow">¶</a></p>
<p id="appendix-A.1-43.1.2">However, sojourn time is slow to detect bursts.
For instance, if a burst arrives at an empty queue, the sojourn
time only fully measures the burst's delay when its last packet is
dequeued, even though the queue has known the size of the burst
since its last packet was enqueued -- so it could have signalled
congestion earlier. To remedy this, each head packet can be marked
when it is dequeued based on the expected delay of the tail packet
behind it, as explained below, rather than based on the head
packet's own delay due to the packets in front of it. "Underutilization with Bursty Traffic" in <span>[<a href="#Heist21" class="cite xref">Heist21</a>]</span> identifies a specific scenario where bursty
traffic significantly hits utilization of the L queue. If this
effect proves to be more widely applicable, using the delay behind
the head could improve performance.<a href="#appendix-A.1-43.1.2" class="pilcrow">¶</a></p>
<p id="appendix-A.1-43.1.3">The
delay behind the head can be implemented by dividing the backlog
at dequeue by the link rate or equivalently multiplying the
backlog by the delay per unit of backlog. The implementation
details will depend on whether the link rate is known; if it is
not, a moving average of the delay per unit backlog can be
maintained. This delay consists of serialization as well as media
acquisition for shared media. So the details will depend strongly
on the specific link technology. This approach should be less
sensitive to timing errors and cost less in operations and memory
than the otherwise equivalent 'scaled sojourn time' metric, which
is the sojourn time of a packet scaled by the ratio of the queue
sizes when the packet departed and arrived <span>[<a href="#SigQ-Dyn" class="cite xref">SigQ-Dyn</a>]</span>.<a href="#appendix-A.1-43.1.3" class="pilcrow">¶</a></p>
</div>
</li>
<li id="appendix-A.1-43.2">
<div id="note_separate_buffers">Line 2 of the dualpi2_enqueue() function (<a href="#dualq_fig_Algo_pi2_enqueue" class="auto internal xref">Figure 3</a>) assumes an implementation
where lq and cq share common buffer memory. An alternative
implementation could use separate buffers for each queue, in which
case the arriving packet would have to be classified first to
determine which buffer to check for available space. The choice is
a trade-off; a shared buffer can use less memory whereas separate
buffers isolate the L4S queue from tail drop due to large bursts
of Classic traffic (e.g., a Classic Reno TCP during slow-start
over a long RTT).<a href="#note_separate_buffers" class="pilcrow">¶</a>
</div>
</li>
<li id="appendix-A.1-43.3">
<div id="note_ramp">
<p id="appendix-A.1-43.3.1">There has been some concern that using the step function of
DCTCP for the Native L4S AQM requires end systems to smooth the
signal for an unnecessarily large number of round trips to ensure
sufficient fidelity. A ramp is no worse than a step in initial
experiments with existing DCTCP. Therefore, it is recommended that
a ramp is configured in place of a step, which will allow
congestion control algorithms to investigate faster smoothing
algorithms.<a href="#appendix-A.1-43.3.1" class="pilcrow">¶</a></p>
<p id="appendix-A.1-43.3.2">A ramp is more general than a
step, because an operator can effectively turn the ramp into a
step function, as used by DCTCP, by setting the range to zero.
There will not be a divide by zero problem at line 5 of <a href="#dualq_fig_Algo_laqm_core" class="auto internal xref">Figure 5</a> because, if minTh is equal to
maxTh, the condition for this ramp calculation cannot arise.<a href="#appendix-A.1-43.3.2" class="pilcrow">¶</a></p>
</div>
</li>
</ol>
</section>
</div>
<div id="dualq_Ex_algo_pi2-2">
<section id="appendix-A.2">
<h3 id="name-pass-2-edge-case-details">
<a href="#appendix-A.2" class="section-number selfRef">A.2. </a><a href="#name-pass-2-edge-case-details" class="section-name selfRef">Pass #2: Edge-Case Details</a>
</h3>
<p id="appendix-A.2-1">This section takes a second pass through the pseudocode to add
details of two edge-cases: low link rate and overload. <a href="#dualq_fig_Algo_pi2_full_dequeue" class="auto internal xref">Figure 7</a> repeats the dequeue
function of <a href="#dualq_fig_Algo_pi2_dequeue" class="auto internal xref">Figure 4</a>, but with
details of both edge-cases added. Similarly, <a href="#dualq_fig_Algo_pi2_full_core" class="auto internal xref">Figure 8</a> repeats the core PI algorithm
of <a href="#dualq_fig_Algo_pi2_core" class="auto internal xref">Figure 6</a>, but with overload details
added. The initialization, enqueue, L4S AQM, and recur functions are
unchanged.<a href="#appendix-A.2-1" class="pilcrow">¶</a></p>
<p id="appendix-A.2-2">The link rate can be so low that it takes a single packet queue
longer to serialize than the threshold delay at which ECN marking
starts to be applied in the L queue. Therefore, a minimum marking
threshold parameter in units of packets rather than time is necessary
(Th_len, default 1 packet in line 19 of <a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a>) to ensure that the ramp
does not trigger excessive marking on slow links. Where an
implementation knows the link rate, it can set up this minimum at the
time it is configured.
For instance, it would divide 1 MTU by the link
rate to convert it into a serialization time, then if the lower
threshold of the Native L AQM ramp was lower than this serialization
time, it could increase the thresholds to shift the bottom of the ramp
to 2 MTU. This is the approach used in DOCSIS <span>[<a href="#DOCSIS3.1" class="cite xref">DOCSIS3.1</a>]</span>, because the configured link rate is dedicated to
the DualQ.<a href="#appendix-A.2-2" class="pilcrow">¶</a></p>
<p id="appendix-A.2-3">The pseudocode given here applies where the link rate is unknown,
which is more common for software implementations that might be
deployed in scenarios where the link is shared with other queues. In
lines 5a to 5d in <a href="#dualq_fig_Algo_pi2_full_dequeue" class="auto internal xref">Figure 7</a>, the
native L4S marking probability, p'_L, is zeroed if the queue is only 1
packet (in the default configuration).<a href="#appendix-A.2-3" class="pilcrow">¶</a></p>
<aside id="appendix-A.2-4">
<p id="appendix-A.2-4.1">Linux implementation note: In Linux, the check that the
queue exceeds Th_len before marking with the Native L4S AQM is
actually at enqueue, not dequeue; otherwise, it would exempt the last
packet of a burst from being marked. The result of the check is
conveyed from enqueue to the dequeue function via a boolean in the
packet metadata.<a href="#appendix-A.2-4.1" class="pilcrow">¶</a></p>
</aside>
<p id="appendix-A.2-5">Persistent overload is deemed to have occurred when Classic
drop/marking probability reaches p_Cmax. Above this point, the Classic
drop probability is applied to both the L and C queues, irrespective of
whether any packet is ECN-capable. ECT packets that are not dropped
can still be ECN-marked.<a href="#appendix-A.2-5" class="pilcrow">¶</a></p>
<p id="appendix-A.2-6">In line 11 of the initialization function (<a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a>), the maximum Classic drop
probability p_Cmax = min(1/k^2, 1) or 1/4 for the default coupling
factor k = 2. In practice, 25% has been found to be a good threshold to
preserve fairness between ECN-capable and non-ECN-capable traffic.
This protects the queues against both temporary overload from
responsive flows and more persistent overload from any unresponsive
traffic that falsely claims to be responsive to ECN.<a href="#appendix-A.2-6" class="pilcrow">¶</a></p>
<p id="appendix-A.2-7">When the Classic ECN-marking probability reaches the p_Cmax
threshold (1/k^2), the marking probability that is coupled to the L4S queue,
p_CL, will always be 100% for any k (by equation (1) in <a href="#dualq_coupled" class="auto internal xref">Section 2.1</a>). So, for readability, the constant p_Lmax is
defined as 1 in line 21 of the initialization function (<a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a>). This is intended to ensure
that the L4S queue starts to introduce dropping once ECN marking
saturates at 100% and can rise no further. The 'Prague L4S
requirements' <span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span> state
that when an L4S congestion control detects a drop, it falls back to
a response that coexists with 'Classic' Reno congestion control. So, it
is correct that when the L4S queue drops packets, it drops them
proportional to p'^2, as if they are Classic packets.<a href="#appendix-A.2-7" class="pilcrow">¶</a></p>
<p id="appendix-A.2-8">The two queues each test for overload in lines 4b and 12b of the
dequeue function (<a href="#dualq_fig_Algo_pi2_full_dequeue" class="auto internal xref">Figure 7</a>).
Lines 8c to 8g drop L4S packets with probability p'^2. Lines 8h to 8i
mark the remaining packets with probability p_CL. Given p_Lmax = 1,
all remaining packets will be marked because, to have reached the else
block at line 8b, p_CL >= 1.<a href="#appendix-A.2-8" class="pilcrow">¶</a></p>
<p id="appendix-A.2-9">Line 2a in the core PI algorithm (<a href="#dualq_fig_Algo_pi2_full_core" class="auto internal xref">Figure 8</a>) deals with overload of the
L4S queue when there is little or no Classic traffic. This is
necessary, because the core PI algorithm maintains the appropriate
drop probability to regulate overload, but it depends on the length of
the Classic queue. If there is little or no Classic queue, the naive PI-update function
(<a href="#dualq_fig_Algo_pi2_core" class="auto internal xref">Figure 6</a>) would drop
nothing, even if the L4S queue were overloaded -- so tail drop would
have to take over (lines 2 and 3 of <a href="#dualq_fig_Algo_pi2_enqueue" class="auto internal xref">Figure 3</a>).<a href="#appendix-A.2-9" class="pilcrow">¶</a></p>
<p id="appendix-A.2-10">Instead, line 2a of the full PI-update function (<a href="#dualq_fig_Algo_pi2_full_core" class="auto internal xref">Figure 8</a>) ensures that the Base PI AQM
in line 3 is driven by whichever of the two queue delays is greater,
but line 3 still always uses the same Classic target (default 15 ms).
If L queue delay is greater just because there is little or no Classic
traffic, normally it will still be well below the Base AQM target.
This is because L4S traffic is also governed by the shallow threshold
of its own Native AQM (lines 5a to 6 of the dequeue algorithm in <a href="#dualq_fig_Algo_pi2_full_dequeue" class="auto internal xref">Figure 7</a>). So the Base AQM will be
driven to zero and not contribute.
However, if the L queue is
overloaded by traffic that is unresponsive to its marking, the max()
in line 2a of <a href="#dualq_fig_Algo_pi2_full_core" class="auto internal xref">Figure 8</a> enables the L queue to smoothly take over driving the Base
AQM into overload mode even if there is little or no Classic traffic.
Then the Base AQM will keep the L queue to the Classic target (default
15 ms) by shedding L packets.<a href="#appendix-A.2-10" class="pilcrow">¶</a></p>
<span id="name-example-dequeue-pseudocode-f"></span><div id="dualq_fig_Algo_pi2_full_dequeue">
<figure id="figure-7">
<div class="sourcecode" id="appendix-A.2-11.1">
<pre>
1: dualpi2_dequeue(lq, cq, pkt) { % Couples L4S & Classic queues
2: while ( lq.byt() + cq.byt() > 0 ) {
3: if ( scheduler() == lq ) {
4a: lq.dequeue(pkt) % L4S scheduled
4b: if ( p_CL < p_Lmax ) { % Check for overload saturation
5a: if (lq.len()>Th_len) % >1 packet queued
5b: p'_L = laqm(lq.time()) % Native LAQM
5c: else
5d: p'_L = 0 % Suppress marking 1 pkt queue
6: p_L = max(p'_L, p_CL) % Combining function
7: if ( recur(lq, p_L) %Linear marking
8a: mark(pkt)
8b: } else { % overload saturation
8c: if ( recur(lq, p_C) ) { % probability p_C = p'^2
8e: drop(pkt) % revert to Classic drop due to overload
8f: continue % continue to the top of the while loop
8g: }
8h: if ( recur(lq, p_CL) ) % probability p_CL = k * p'
8i: mark(pkt) % linear marking of remaining packets
8j: }
9: } else {
10: cq.dequeue(pkt) % Classic scheduled
11: if ( recur(cq, p_C) ) { % probability p_C = p'^2
12a: if ( (ecn(pkt) == 0) % ECN field = not-ECT
12b: OR (p_C >= p_Cmax) ) { % Overload disables ECN
13: drop(pkt) % squared drop, redo loop
14: continue % continue to the top of the while loop
15: }
16: mark(pkt) % squared mark
17: }
18: }
19: return(pkt) % return the packet and stop
20: }
21: return(NULL) % no packet to dequeue
22: }
</pre>
</div>
<figcaption><a href="#figure-7" class="selfRef">Figure 7</a>:
<a href="#name-example-dequeue-pseudocode-f" class="selfRef">Example Dequeue Pseudocode for DualQ Coupled PI2 AQM (Including Code for Edge-Cases)</a>
</figcaption></figure>
</div>
<span id="name-example-pi-update-pseudocode"></span><div id="dualq_fig_Algo_pi2_full_core">
<figure id="figure-8">
<div class="sourcecode" id="appendix-A.2-12.1">
<pre>
1: dualpi2_update(lq, cq) { % Update p' every Tupdate
2a: curq = max(cq.time(), lq.time()) % use greatest queuing time
3: p' = p' + alpha * (curq - target) + beta * (curq - prevq)
4: p_CL = p' * k % Coupled L4S prob = base prob * coupling factor
5: p_C = p'^2 % Classic prob = (base prob)^2
6: prevq = curq
7: }
</pre>
</div>
<figcaption><a href="#figure-8" class="selfRef">Figure 8</a>:
<a href="#name-example-pi-update-pseudocode" class="selfRef">Example PI-update Pseudocode for DualQ Coupled PI2 AQM (Including Overload Code)</a>
</figcaption></figure>
</div>
<p id="appendix-A.2-13"></p>
<p id="appendix-A.2-14">The choice of scheduler technology is critical to overload
protection (see <a href="#dualq_Overload_Starvation" class="auto internal xref">Section 4.2.2</a>).<a href="#appendix-A.2-14" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.2-15.1">A well-understood weighted scheduler such as WRR is recommended. As long as the scheduler weight
for Classic is small (e.g., 1/16), its exact value is
unimportant, because it does not normally determine capacity
shares. The weight is only important to prevent unresponsive L4S
traffic starving Classic traffic in the short term (see <a href="#dualq_Overload_Starvation" class="auto internal xref">Section 4.2.2</a>). This is because capacity
sharing between the queues is normally determined by the coupled
congestion signal, which overrides the scheduler, by making L4S
sources leave roughly equal per-flow capacity available for
Classic flows.<a href="#appendix-A.2-15.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.2-15.2">
<p id="appendix-A.2-15.2.1">Alternatively, a time-shifted FIFO (TS-FIFO) could be used. It
works by selecting the head packet that has waited the longest,
biased against the Classic traffic by a time-shift of tshift. To
implement TS-FIFO, the scheduler() function in line 3 of
the dequeue code would simply be implemented as the scheduler()
function at the bottom of <a href="#dualq_fig_Algo_Real" class="auto internal xref">Figure 10</a> in
<a href="#dualq_Ex_algo" class="auto internal xref">Appendix B</a>. For the public Internet, a good
value for tshift is 50 ms. For private networks with smaller
diameter, about 4*target would be reasonable. TS-FIFO is a very
simple scheduler, but complexity might need to be added to address
some deficiencies (which is why it is not recommended over
WRR):<a href="#appendix-A.2-15.2.1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-A.2-15.2.2.1">TS-FIFO does not fully isolate latency in the L4S queue
from uncontrolled bursts in the Classic queue;<a href="#appendix-A.2-15.2.2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.2-15.2.2.2">using sojourn time for TS-FIFO is only appropriate if
timestamping of packets is feasible; and<a href="#appendix-A.2-15.2.2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-A.2-15.2.2.3">even if timestamping is supported, the sojourn time of the
head packet is always stale, so a more instantaneous measure
of queue delay could be used (see <a href="#note_qdelay" class="internal xref">Note a</a> in <a href="#dualq_Ex_algo_pi2-1" class="auto internal xref">Appendix A.1</a>).<a href="#appendix-A.2-15.2.2.3" class="pilcrow">¶</a>
</li>
</ul>
</li>
<li class="normal" id="appendix-A.2-15.3">A strict priority scheduler would be inappropriate as discussed
in <a href="#dualq_Overload_Starvation" class="auto internal xref">Section 4.2.2</a>.<a href="#appendix-A.2-15.3" class="pilcrow">¶</a>
</li>
</ul>
</section>
</div>
</section>
</div>
<div id="dualq_Ex_algo">
<section id="appendix-B">
<h2 id="name-example-dualq-coupled-curvy">
<a href="#appendix-B" class="section-number selfRef">Appendix B. </a><a href="#name-example-dualq-coupled-curvy" class="section-name selfRef">Example DualQ Coupled Curvy RED Algorithm</a>
</h2>
<p id="appendix-B-1">As another example of a DualQ Coupled AQM algorithm, the pseudocode
below gives the Curvy-RED-based algorithm. Although the AQM was designed
to be efficient in integer arithmetic, to aid understanding it is first
given using floating point arithmetic (<a href="#dualq_fig_Algo_Real" class="auto internal xref">Figure 10</a>). Then, one possible optimization for
integer arithmetic is given, also in pseudocode (<a href="#dualq_fig_Algo_Int" class="auto internal xref">Figure 11</a>). To aid comparison, the line numbers are
kept in step between the two by using letter suffixes where the longer
code needs extra lines.<a href="#appendix-B-1" class="pilcrow">¶</a></p>
<div id="dualq_Ex_algo_float">
<section id="appendix-B.1">
<h3 id="name-curvy-red-in-pseudocode">
<a href="#appendix-B.1" class="section-number selfRef">B.1. </a><a href="#name-curvy-red-in-pseudocode" class="section-name selfRef">Curvy RED in Pseudocode</a>
</h3>
<p id="appendix-B.1-1">The pseudocode manipulates three main structures of variables: the
packet (pkt), the L4S queue (lq), and the Classic queue (cq). It is defined
and described below in the following three functions:<a href="#appendix-B.1-1" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-B.1-2.1">the initialization function cred_params_init(...) (<a href="#dualq_fig_Algo_pi2_core_header" class="auto internal xref">Figure 2</a>) that sets parameter
defaults (the API for setting non-default values is omitted for
brevity);<a href="#appendix-B.1-2.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B.1-2.2">the dequeue function cred_dequeue(lq, cq, pkt) (<a href="#dualq_fig_Algo_pi2_dequeue" class="auto internal xref">Figure 4</a>); and<a href="#appendix-B.1-2.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B.1-2.3">the scheduling function scheduler(), which selects between the
head packets of the two queues.<a href="#appendix-B.1-2.3" class="pilcrow">¶</a>
</li>
</ul>
<p id="appendix-B.1-3">It also uses the following functions that are either shown
elsewhere or not shown in full here:<a href="#appendix-B.1-3" class="pilcrow">¶</a></p>
<ul class="normal">
<li class="normal" id="appendix-B.1-4.1">the enqueue function, which is identical to that used for
DualPI2, dualpi2_enqueue(lq, cq, pkt) in <a href="#dualq_fig_Algo_pi2_enqueue" class="auto internal xref">Figure 3</a>;<a href="#appendix-B.1-4.1" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B.1-4.2">mark(pkt) and drop(pkt) for ECN marking and dropping a
packet;<a href="#appendix-B.1-4.2" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B.1-4.3">cq.byt() or lq.byt() returns the current length
(a.k.a. backlog) of the relevant queue in bytes; and<a href="#appendix-B.1-4.3" class="pilcrow">¶</a>
</li>
<li class="normal" id="appendix-B.1-4.4">cq.time() or lq.time() returns the current queuing delay of the
relevant queue in units of time (see <a href="#note_qdelay" class="internal xref">Note a</a> in <a href="#dualq_Ex_algo_pi2-1" class="auto internal xref">Appendix A.1</a>).<a href="#appendix-B.1-4.4" class="pilcrow">¶</a>
</li>
</ul>
<p id="appendix-B.1-5">Because Curvy RED was evaluated before DualPI2, certain
improvements introduced for DualPI2 were not evaluated for Curvy RED.
In the pseudocode below, the straightforward improvements have been
added on the assumption they will provide similar benefits, but that
has not been proven experimentally. They are: i) a conditional
priority scheduler instead of strict priority; ii) a time-based
threshold for the Native L4S AQM; and iii) ECN support for the Classic
AQM. A recent evaluation has proved that a minimum ECN-marking
threshold (minTh) greatly improves performance, so this is also
included in the pseudocode.<a href="#appendix-B.1-5" class="pilcrow">¶</a></p>
<p id="appendix-B.1-6">Overload protection has not been added to the Curvy RED pseudocode
below so as not to detract from the main features. It would be added
in exactly the same way as in <a href="#dualq_Ex_algo_pi2-2" class="auto internal xref">Appendix A.2</a> for
the DualPI2 pseudocode. The Native L4S AQM uses a step threshold, but
a ramp like that described for DualPI2 could be used instead. The
scheduler uses the simple TS-FIFO algorithm, but it could be replaced
with WRR.<a href="#appendix-B.1-6" class="pilcrow">¶</a></p>
<p id="appendix-B.1-7">The Curvy RED algorithm has not been maintained or evaluated to the
same degree as the DualPI2 algorithm. In initial experiments on
broadband access links ranging from 4 Mb/s to 200 Mb/s with base RTTs
from 5 ms to 100 ms, Curvy RED achieved good results with the default
parameters in <a href="#dualq_fig_Algo_cred_core_header" class="auto internal xref">Figure 9</a>.<a href="#appendix-B.1-7" class="pilcrow">¶</a></p>
<p id="appendix-B.1-8">The parameters are categorized by whether they relate to the
Classic AQM, the L4S AQM, or the framework coupling them together.
Constants and variables derived from these parameters are also
included at the end of each category. These are the raw input
parameters for the algorithm. A configuration front-end could accept
more meaningful parameters (e.g., RTT_max and RTT_typ) and convert
them into these raw parameters, as has been done for DualPI2 in <a href="#dualq_Ex_algo_pi2" class="auto internal xref">Appendix A</a>. Where necessary, parameters are
explained further in the walk-through of the pseudocode below.<a href="#appendix-B.1-8" class="pilcrow">¶</a></p>
<span id="name-example-header-pseudocode-fo"></span><div id="dualq_fig_Algo_cred_core_header">
<figure id="figure-9">
<div class="sourcecode" id="appendix-B.1-9.1">
<pre>
1: cred_params_init(...) { % Set input parameter defaults
2: % DualQ Coupled framework parameters
3: limit = MAX_LINK_RATE * 250 ms % Dual buffer size
4: k' = 1 % Coupling factor as a power of 2
5: tshift = 50 ms % Time-shift of TS-FIFO scheduler
6: % Constants derived from Classic AQM parameters
7: k = 2^k' % Coupling factor from equation (1)
6:
7: % Classic AQM parameters
8: g_C = 5 % EWMA smoothing parameter as a power of 1/2
9: S_C = -1 % Classic ramp scaling factor as a power of 2
10: minTh = 500 ms % No Classic drop/mark below this queue delay
11: % Constants derived from Classic AQM parameters
12: gamma = 2^(-g_C) % EWMA smoothing parameter
13: range_C = 2^S_C % Range of Classic ramp
14:
15: % L4S AQM parameters
16: T = 1 ms % Queue delay threshold for Native L4S AQM
17: % Constants derived from above parameters
18: S_L = S_C - k' % L4S ramp scaling factor as a power of 2
19: range_L = 2^S_L % Range of L4S ramp
20: }
</pre>
</div>
<figcaption><a href="#figure-9" class="selfRef">Figure 9</a>:
<a href="#name-example-header-pseudocode-fo" class="selfRef">Example Header Pseudocode for DualQ Coupled Curvy RED AQM</a>
</figcaption></figure>
</div>
<span id="name-example-dequeue-pseudocode-fo"></span><div id="dualq_fig_Algo_Real">
<figure id="figure-10">
<div class="sourcecode" id="appendix-B.1-10.1">
<pre>
1: cred_dequeue(lq, cq, pkt) { % Couples L4S & Classic queues
2: while ( lq.byt() + cq.byt() > 0 ) {
3: if ( scheduler() == lq ) {
4: lq.dequeue(pkt) % L4S scheduled
5a: p_CL = (Q_C - minTh) / range_L
5b: if ( ( lq.time() > T )
5c: OR ( p_CL > maxrand(U) ) )
6: mark(pkt)
7: } else {
8: cq.dequeue(pkt) % Classic scheduled
9a: Q_C = gamma * cq.time() + (1-gamma) * Q_C % Classic Q EWMA
10a: sqrt_p_C = (Q_C - minTh) / range_C
10b: if ( sqrt_p_C > maxrand(2*U) ) {
11: if ( (ecn(pkt) == 0) { % ECN field = not-ECT
12: drop(pkt) % Squared drop, redo loop
13: continue % continue to the top of the while loop
14: }
15: mark(pkt)
16: }
17: }
18: return(pkt) % return the packet and stop here
19: }
20: return(NULL) % no packet to dequeue
21: }
22: maxrand(u) { % return the max of u random numbers
23: maxr=0
24: while (u-- > 0)
25: maxr = max(maxr, rand()) % 0 <= rand() < 1
26: return(maxr)
27: }
28: scheduler() {
29: if ( lq.time() + tshift >= cq.time() )
30: return lq;
31: else
32: return cq;
33: }
</pre>
</div>
<figcaption><a href="#figure-10" class="selfRef">Figure 10</a>:
<a href="#name-example-dequeue-pseudocode-fo" class="selfRef">Example Dequeue Pseudocode for DualQ Coupled Curvy RED AQM</a>
</figcaption></figure>
</div>
<p id="appendix-B.1-11">The dequeue pseudocode (<a href="#dualq_fig_Algo_Real" class="auto internal xref">Figure 10</a>) is
repeatedly called whenever the lower layer is ready to forward a
packet. It schedules one packet for dequeuing (or zero if the queue is
empty) then returns control to the caller so that it does not block
while that packet is being forwarded. While making this dequeue
decision, it also makes the necessary AQM decisions on dropping or
marking. The alternative of applying the AQMs at enqueue would shift
some processing from the critical time when each packet is dequeued.
However, it would also add a whole queue of delay to the control
signals, making the control loop very sloppy.<a href="#appendix-B.1-11" class="pilcrow">¶</a></p>
<p id="appendix-B.1-12">The code is written assuming the AQMs are applied on dequeue
(<a href="#dualq_note_dequeue" class="internal xref">Note 1</a>). All the dequeue
code is contained within a large while loop so that if it decides to
drop a packet, it will continue until it selects a packet to schedule.
If both queues are empty, the routine returns NULL at line 20. Line 3
of the dequeue pseudocode is where the conditional priority scheduler
chooses between the L4S queue (lq) and the Classic queue (cq). The
TS-FIFO scheduler is shown at lines 28-33, which would be
suitable if simplicity is paramount (see <a href="#dualq_note_conditional_priority" class="internal xref">Note 2</a>).<a href="#appendix-B.1-12" class="pilcrow">¶</a></p>
<p id="appendix-B.1-13">Within each queue, the decision whether to forward, drop, or mark is
taken as follows (to simplify the explanation, it is assumed that
U = 1):<a href="#appendix-B.1-13" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlNewline" id="appendix-B.1-14">
<dt id="appendix-B.1-14.1">L4S:</dt>
<dd style="margin-left: 1.5em" id="appendix-B.1-14.2">
<p id="appendix-B.1-14.2.1">If the test at line 3 determines there is an
L4S packet to dequeue, the tests at lines 5b and 5c determine
whether to mark it. The first is a simple test of whether the L4S
queue delay (lq.time()) is greater than a step threshold T
(<a href="#dualq_note_step" class="internal xref">Note 3</a>). The second
test is similar to the random ECN marking in RED but with the
following differences: i) marking depends on queuing time, not
bytes, in order to scale for any link rate without being
reconfigured; ii) marking of the L4S queue depends on a logical OR
of two tests: one against its own queuing time and one against the
queuing time of the <em>other</em> (Classic)
queue; iii) the tests are against the instantaneous queuing time
of the L4S queue but against a smoothed average of the other (Classic)
queue; and iv) the queue is compared with the maximum of U random
numbers (but if U = 1, this is the same as the single random number
used in RED).<a href="#appendix-B.1-14.2.1" class="pilcrow">¶</a></p>
<p id="appendix-B.1-14.2.2">Specifically, in line 5a, the
coupled marking probability p_CL is set to the amount by which the
averaged Classic queuing delay Q_C exceeds the minimum queuing
delay threshold (minTh), all divided by the L4S scaling parameter
range_L. range_L represents the queuing delay (in seconds) added
to minTh at which marking probability would hit 100%. Then, in line
5c (if U = 1), the result is compared with a uniformly distributed
random number between 0 and 1, which ensures that, over range_L,
marking probability will linearly increase with queuing time.<a href="#appendix-B.1-14.2.2" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
<dt id="appendix-B.1-14.3">Classic:</dt>
<dd style="margin-left: 1.5em" id="appendix-B.1-14.4">
<p id="appendix-B.1-14.4.1">If the scheduler at line 3 chooses to
dequeue a Classic packet and jumps to line 7, the test at line 10b
determines whether to drop or mark it. But before that, line 9a
updates Q_C, which is an exponentially weighted moving average
(Note <a href="#dualq_note_non-EWMA" class="auto internal xref">4</a>) of
the queuing time of the Classic queue, where cq.time() is the
current instantaneous queuing time of the packet at the head of
the Classic queue (zero if empty), and gamma is the exponentially weighted moving average (EWMA) constant
(default 1/32; see line 12 of the initialization function).<a href="#appendix-B.1-14.4.1" class="pilcrow">¶</a></p>
<p id="appendix-B.1-14.4.2">Lines 10a and 10b implement the Classic
AQM. In line 10a, the averaged queuing time Q_C is divided by the
Classic scaling parameter range_C, in the same way that queuing
time was scaled for L4S marking. This scaled queuing time will be
squared to compute Classic drop probability. So, before it is
squared, it is effectively the square root of the drop
probability; hence, it is given the variable name sqrt_p_C. The
squaring is done by comparing it with the maximum out of two
random numbers (assuming U = 1). Comparing it with the maximum out
of two is the same as the logical 'AND' of two tests, which
ensures drop probability rises with the square of queuing
time.<a href="#appendix-B.1-14.4.2" class="pilcrow">¶</a></p>
</dd>
<dd class="break"></dd>
</dl>
<p id="appendix-B.1-15">The AQM functions in each queue (lines 5c and 10b) are two cases
of a new generalization of RED called 'Curvy RED', motivated as follows.
When the performance of this AQM was compared with FQ-CoDel and PIE,
their goal of holding queuing delay to a fixed target seemed
misguided <span>[<a href="#CRED_Insights" class="cite xref">CRED_Insights</a>]</span>. As the number of flows
increases, if the AQM does not allow host congestion controllers to
increase queuing delay, it has to introduce abnormally high levels of
loss. Then loss rather than queuing becomes the dominant cause of
delay for short flows, due to timeouts and tail losses.<a href="#appendix-B.1-15" class="pilcrow">¶</a></p>
<p id="appendix-B.1-16">Curvy RED constrains delay with a softened target that allows some
increase in delay as load increases. This is achieved by increasing
drop probability on a convex curve relative to queue growth (the
square curve in the Classic queue, if U = 1). Like RED, the curve hugs
the zero axis while the queue is shallow. Then, as load increases, it
introduces a growing barrier to higher delay. But, unlike RED, it
requires only two parameters, not three. The disadvantage of Curvy RED
(compared to a PI controller, for example) is that it is not adapted to
a wide range of RTTs. Curvy RED can be used as is when the RTT range
to be supported is limited; otherwise, an adaptation mechanism is
needed.<a href="#appendix-B.1-16" class="pilcrow">¶</a></p>
<p id="appendix-B.1-17">From our limited experiments with Curvy RED so far, recommended
values of these parameters are: S_C = -1; g_C = 5; T = 5 * MTU at the
link rate (about 1 ms at 60 Mb/s) for the range of base RTTs typical on
the public Internet. <span>[<a href="#CRED_Insights" class="cite xref">CRED_Insights</a>]</span> explains why these
parameters are applicable whatever rate link this AQM implementation
is deployed on and how the parameters would need to be adjusted for a
scenario with a different range of RTTs (e.g., a data centre). The
setting of k depends on policy (see <a href="#dualq_norm_reqs" class="auto internal xref">Section 2.5</a>
and <a href="#dualq_Choosing_k" class="auto internal xref">Appendix C.2</a>, respectively, for its recommended
setting and guidance on alternatives).<a href="#appendix-B.1-17" class="pilcrow">¶</a></p>
<p id="appendix-B.1-18">There is also a cUrviness parameter, U, which is a small positive
integer. It is likely to take the same hard-coded value for all
implementations, once experiments have determined a good value. Only
U = 1 has been used in experiments so far, but results might be even
better with U = 2 or higher.<a href="#appendix-B.1-18" class="pilcrow">¶</a></p>
<p id="appendix-B.1-19">Notes:<a href="#appendix-B.1-19" class="pilcrow">¶</a></p>
<ol start="1" type="1" class="normal type-1" id="appendix-B.1-20">
<li id="appendix-B.1-20.1">
<div id="dualq_note_dequeue">The alternative of applying the
AQMs at enqueue would shift some processing from the critical time
when each packet is dequeued. However, it would also add a whole
queue of delay to the control signals, making the control loop
sloppier (for a typical RTT, it would double the Classic queue's
feedback delay). On a platform where packet timestamping is
feasible, e.g., Linux, it is also easiest to apply the AQMs at
dequeue, because that is where queuing time is also measured.<a href="#dualq_note_dequeue" class="pilcrow">¶</a>
</div>
</li>
<li id="appendix-B.1-20.2">
<div id="dualq_note_conditional_priority">WRR better isolates
the L4S queue from large delay bursts in the Classic queue, but it
is slightly less simple than TS-FIFO. If WRR were used, a low
default Classic weight (e.g., 1/16) would need to be
configured in place of the time-shift in line 5 of the
initialization function (<a href="#dualq_fig_Algo_cred_core_header" class="auto internal xref">Figure 9</a>).<a href="#dualq_note_conditional_priority" class="pilcrow">¶</a>
</div>
</li>
<li id="appendix-B.1-20.3">
<div id="dualq_note_step">A step function is shown for
simplicity. A ramp function (see <a href="#dualq_fig_Algo_laqm_core" class="auto internal xref">Figure 5</a> and the discussion around it
in <a href="#dualq_Ex_algo_pi2-1" class="auto internal xref">Appendix A.1</a>) is recommended, because
it is more general than a step and has the potential to enable L4S
congestion controls to converge more rapidly.<a href="#dualq_note_step" class="pilcrow">¶</a>
</div>
</li>
<li id="appendix-B.1-20.4">
<div id="dualq_note_non-EWMA">An EWMA is only one possible way
to filter bursts; other more adaptive smoothing methods could be
valid, and it might be appropriate to decrease the EWMA faster than
it increases, e.g., by using the minimum of the smoothed and
instantaneous queue delays, min(Q_C, qc.time()).<a href="#dualq_note_non-EWMA" class="pilcrow">¶</a>
</div>
</li>
</ol>
</section>
</div>
<section id="appendix-B.2">
<h3 id="name-efficient-implementation-of">
<a href="#appendix-B.2" class="section-number selfRef">B.2. </a><a href="#name-efficient-implementation-of" class="section-name selfRef">Efficient Implementation of Curvy RED</a>
</h3>
<p id="appendix-B.2-1">Although code optimization depends on the platform, the following
notes explain where the design of Curvy RED was particularly motivated
by efficient implementation.<a href="#appendix-B.2-1" class="pilcrow">¶</a></p>
<p id="appendix-B.2-2">The Classic AQM at line 10b in <a href="#dualq_fig_Algo_Real" class="auto internal xref">Figure 10</a> calls maxrand(2*U), which gives twice
as much curviness as the call to maxrand(U) in the marking function at
line 5c. This is the trick that implements the square rule in equation
(1) (<a href="#dualq_coupled" class="auto internal xref">Section 2.1</a>). This is based on the fact that,
given a number X from 1 to 6, the probability that two dice throws
will both be less than X is the square of the probability that one
throw will be less than X.
So, when U = 1, the L4S marking function is
linear and the Classic dropping function is squared. If U = 2, L4S would
be a square function and Classic would be quartic. And so on.<a href="#appendix-B.2-2" class="pilcrow">¶</a></p>
<p id="appendix-B.2-3">The maxrand(u) function in lines 22-27 simply generates u random
numbers and returns the maximum. Typically, maxrand(u) could be run in
parallel out of band. For instance, if U = 1, the Classic queue would
require the maximum of two random numbers. So, instead of calling
maxrand(2*U) in-band, the maximum of every pair of values from a
pseudorandom number generator could be generated out of band and held
in a buffer ready for the Classic queue to consume.<a href="#appendix-B.2-3" class="pilcrow">¶</a></p>
<span id="name-optimised-example-dequeue-p"></span><div id="dualq_fig_Algo_Int">
<figure id="figure-11">
<div class="sourcecode" id="appendix-B.2-4.1">
<pre>
1: cred_dequeue(lq, cq, pkt) { % Couples L4S & Classic queues
2: while ( lq.byt() + cq.byt() > 0 ) {
3: if ( scheduler() == lq ) {
4: lq.dequeue(pkt) % L4S scheduled
5: if ((lq.time() > T) OR (Q_C >> (S_L-2) > maxrand(U)))
6: mark(pkt)
7: } else {
8: cq.dequeue(pkt) % Classic scheduled
9: Q_C += (qc.ns() - Q_C) >> g_C % Classic Q EWMA
10: if ( (Q_C >> (S_C-2) ) > maxrand(2*U) ) {
11: if ( (ecn(pkt) == 0) { % ECN field = not-ECT
12: drop(pkt) % Squared drop, redo loop
13: continue % continue to the top of the while loop
14: }
15: mark(pkt)
16: }
17: }
18: return(pkt) % return the packet and stop here
19: }
20: return(NULL) % no packet to dequeue
21: }
</pre>
</div>
<figcaption><a href="#figure-11" class="selfRef">Figure 11</a>:
<a href="#name-optimised-example-dequeue-p" class="selfRef">Optimised Example Dequeue Pseudocode for DualQ Coupled AQM using Integer Arithmetic</a>
</figcaption></figure>
</div>
<p id="appendix-B.2-5">The two ranges, range_L and range_C, are expressed as powers of 2 so
that division can be implemented as a right bit-shift (>>) in
lines 5 and 10 of the integer variant of the pseudocode (<a href="#dualq_fig_Algo_Int" class="auto internal xref">Figure 11</a>).<a href="#appendix-B.2-5" class="pilcrow">¶</a></p>
<p id="appendix-B.2-6">For the integer variant of the pseudocode, an integer version of
the rand() function used at line 25 of the maxrand() function in <a href="#dualq_fig_Algo_Real" class="auto internal xref">Figure 10</a> would be arranged to return an integer
in the range 0 <= maxrand() < 2^32 (not shown). This would scale
up all the floating point probabilities in the range [0,1] by
2^32.<a href="#appendix-B.2-6" class="pilcrow">¶</a></p>
<p id="appendix-B.2-7">Queuing delays are also scaled up by 2^32, but in two stages: i) in
line 9, queuing time qc.ns() is returned in integer nanoseconds, making
the value about 2^30 times larger than when the units were seconds, and then
ii) in lines 5 and 10, an adjustment of -2 to the right bit-shift
multiplies the result by 2^2, to complete the scaling by 2^32.<a href="#appendix-B.2-7" class="pilcrow">¶</a></p>
<p id="appendix-B.2-8">In line 8 of the initialization function, the EWMA constant gamma
is represented as an integer power of 2, g_C, so that in line 9 of the
integer code (<a href="#dualq_fig_Algo_Int" class="auto internal xref">Figure 11</a>), the division needed to weight the moving average can be
implemented by a right bit-shift (>> g_C).<a href="#appendix-B.2-8" class="pilcrow">¶</a></p>
</section>
</section>
</div>
<section id="appendix-C">
<h2 id="name-choice-of-coupling-factor-k">
<a href="#appendix-C" class="section-number selfRef">Appendix C. </a><a href="#name-choice-of-coupling-factor-k" class="section-name selfRef">Choice of Coupling Factor, k</a>
</h2>
<p id="appendix-C-1"></p>
<div id="dualq_rtt-dependence">
<section id="appendix-C.1">
<h3 id="name-rtt-dependence">
<a href="#appendix-C.1" class="section-number selfRef">C.1. </a><a href="#name-rtt-dependence" class="section-name selfRef">RTT-Dependence</a>
</h3>
<p id="appendix-C.1-1">Where Classic flows compete for the same capacity, their relative
flow rates depend not only on the congestion probability but also on
their end-to-end RTT (= base RTT + queue delay). The rates of
Reno <span>[<a href="#RFC5681" class="cite xref">RFC5681</a>]</span> flows competing over an AQM are
roughly inversely proportional to their RTTs. CUBIC exhibits similar
RTT-dependence when in Reno-friendly mode, but it is less
RTT-dependent otherwise.<a href="#appendix-C.1-1" class="pilcrow">¶</a></p>
<p id="appendix-C.1-2">Until the early experiments with the DualQ Coupled AQM, the
importance of the reasonably large Classic queue in mitigating
RTT-dependence when the base RTT is low had not been appreciated.
Appendix <a href="https://www.rfc-editor.org/rfc/rfc9331#appendix-A.1.6" class="relref">A.1.6</a>
of the L4S ECN Protocol <span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span> uses numerical examples to
explain why bloated buffers had concealed the RTT-dependence of
Classic congestion controls before that time.
Then, it explains why,
the more that queuing delays have reduced, the more that
RTT-dependence has surfaced as a potential starvation problem for long
RTT flows, when competing against very short RTT flows.<a href="#appendix-C.1-2" class="pilcrow">¶</a></p>
<p id="appendix-C.1-3">Given that congestion control on end systems is voluntary, there is
no reason why it has to be voluntarily RTT-dependent. The
RTT-dependence of existing Classic traffic cannot be 'undeployed'.
Therefore, <span>[<a href="#RFC9331" class="cite xref">RFC9331</a>]</span> requires L4S
congestion controls to be significantly less RTT-dependent than the
standard Reno congestion control <span>[<a href="#RFC5681" class="cite xref">RFC5681</a>]</span>, at
least at low RTT. Then RTT-dependence ought to be no worse than it is
with appropriately sized Classic buffers. Following this approach
means there is no need for network devices to address RTT-dependence,
although there would be no harm if they did, which per-flow queuing
inherently does.<a href="#appendix-C.1-3" class="pilcrow">¶</a></p>
</section>
</div>
<div id="dualq_Choosing_k">
<section id="appendix-C.2">
<h3 id="name-guidance-on-controlling-thr">
<a href="#appendix-C.2" class="section-number selfRef">C.2. </a><a href="#name-guidance-on-controlling-thr" class="section-name selfRef">Guidance on Controlling Throughput Equivalence</a>
</h3>
<p id="appendix-C.2-1">The coupling factor, k, determines the balance between L4S and
Classic flow rates (see <a href="#dualq_config" class="auto internal xref">Section 2.5.2.1</a> and equation
(1) in <a href="#dualq_coupled" class="auto internal xref">Section 2.1</a>).<a href="#appendix-C.2-1" class="pilcrow">¶</a></p>
<p id="appendix-C.2-2">For the public Internet, a coupling factor of k = 2 is recommended
and justified below. For scenarios other than the public Internet, a
good coupling factor can be derived by plugging the appropriate
numbers into the same working.<a href="#appendix-C.2-2" class="pilcrow">¶</a></p>
<p id="appendix-C.2-3">To summarize the maths below, from equation (7) it can be seen that
choosing k = 1.64 would theoretically make L4S throughput roughly the
same as Classic, <em>if their actual end-to-end RTTs were the same</em>.
However, even if the base RTTs are the same, the actual RTTs are
unlikely to be the same, because Classic traffic needs a fairly large
queue to avoid underutilization and excess drop, whereas L4S does
not.<a href="#appendix-C.2-3" class="pilcrow">¶</a></p>
<p id="appendix-C.2-4">Therefore, to determine the appropriate coupling factor policy, the
operator needs to decide at what base RTT it wants L4S and Classic
flows to have roughly equal throughput, once the effect of the
additional Classic queue on Classic throughput has been taken into
account. With this approach, a network operator can determine a good
coupling factor without knowing the precise L4S algorithm for reducing
RTT-dependence -- or even in the absence of any algorithm.<a href="#appendix-C.2-4" class="pilcrow">¶</a></p>
<p id="appendix-C.2-5">The following additional terminology will be used, with appropriate
subscripts:<a href="#appendix-C.2-5" class="pilcrow">¶</a></p>
<span class="break"></span><dl class="dlParallel" id="appendix-C.2-6">
<dt id="appendix-C.2-6.1">r:</dt>
<dd style="margin-left: 1.5em" id="appendix-C.2-6.2">Packet rate [pkt/s]<a href="#appendix-C.2-6.2" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-C.2-6.3">R:</dt>
<dd style="margin-left: 1.5em" id="appendix-C.2-6.4">RTT [s/round]<a href="#appendix-C.2-6.4" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
<dt id="appendix-C.2-6.5">p:</dt>
<dd style="margin-left: 1.5em" id="appendix-C.2-6.6">ECN-marking probability []<a href="#appendix-C.2-6.6" class="pilcrow">¶</a>
</dd>
<dd class="break"></dd>
</dl>
<p id="appendix-C.2-7">On the Classic side, we consider Reno as the most sensitive and
therefore worst-case Classic congestion control. We will also consider
CUBIC in its Reno-friendly mode ('CReno') as the most prevalent
congestion control, according to the references and analysis in <span>[<a href="#PI2param" class="cite xref">PI2param</a>]</span>. In either case, the Classic packet rate in steady
state is given by the well-known square root formula for Reno
congestion control:<a href="#appendix-C.2-7" class="pilcrow">¶</a></p>
<div class="sourcecode" id="appendix-C.2-8">
<pre>
r_C = 1.22 / (R_C * p_C^0.5) (5)</pre><a href="#appendix-C.2-8" class="pilcrow">¶</a>
</div>
<p id="appendix-C.2-9">On the L4S side, we consider the Prague congestion
control <span>[<a href="#I-D.briscoe-iccrg-prague-congestion-control" class="cite xref">PRAGUE-CC</a>]</span> as the
reference for steady-state dependence on congestion. Prague conforms
to the same equation as DCTCP, but we do not use the equation derived
in the DCTCP paper, which is only appropriate for step marking. The
coupled marking, p_CL, is the appropriate one when considering
throughput equivalence with Classic flows. Unlike step marking,
coupled markings are inherently spaced out, so we use the formula for
DCTCP packet rate with probabilistic marking derived in Appendix A of
<span>[<a href="#PI2" class="cite xref">PI2</a>]</span>. We use the equation without RTT-independence
enabled, which will be explained later.<a href="#appendix-C.2-9" class="pilcrow">¶</a></p>
<div class="sourcecode" id="appendix-C.2-10">
<pre>
r_L = 2 / (R_L * p_CL) (6)</pre><a href="#appendix-C.2-10" class="pilcrow">¶</a>
</div>
<p id="appendix-C.2-11">For packet rate equivalence, we equate the two packet rates and
rearrange the equation into the same form as equation (1) (copied from <a href="#dualq_coupled" class="auto internal xref">Section 2.1</a>) so the two can be
equated and simplified to produce a formula for a theoretical coupling
factor, which we shall call k*:<a href="#appendix-C.2-11" class="pilcrow">¶</a></p>
<div class="sourcecode" id="appendix-C.2-12">
<pre>
r_c = r_L
=> p_C = (p_CL/1.64 * R_L/R_C)^2.
p_C = ( p_CL / k )^2. (1)
k* = 1.64 * (R_C / R_L). (7)
</pre><a href="#appendix-C.2-12" class="pilcrow">¶</a>
</div>
<p id="appendix-C.2-13">We say that this coupling factor is theoretical, because it is in
terms of two RTTs, which raises two practical questions: i) for
multiple flows with different RTTs, the RTT for each traffic class
would have to be derived from the RTTs of all the flows in that class
(actually the harmonic mean would be needed) and ii) a network node
cannot easily know the RTT of the flows anyway.<a href="#appendix-C.2-13" class="pilcrow">¶</a></p>
<p id="appendix-C.2-14">RTT-dependence is caused by window-based congestion control, so it
ought to be reversed there, not in the network. Therefore, we use a
fixed coupling factor in the network and reduce RTT-dependence in L4S
senders. We cannot expect Classic senders to all be updated to reduce
their RTT-dependence. But solely addressing the problem in L4S senders
at least makes RTT-dependence no worse -- not just between L4S senders,
but also between L4S and Classic senders.<a href="#appendix-C.2-14" class="pilcrow">¶</a></p>
<p id="appendix-C.2-15">Throughput equivalence is defined for flows
under comparable conditions, including with the same base
RTT <span>[<a href="#RFC2914" class="cite xref">RFC2914</a>]</span>. So if we assume the same base RTT,
R_b, for comparable flows, we can put both R_C and R_L in terms of
R_b.<a href="#appendix-C.2-15" class="pilcrow">¶</a></p>
<p id="appendix-C.2-16">We can approximate the L4S RTT to be hardly greater than the base
RTT, i.e., R_L ~= R_b. And we can replace R_C with (R_b + q_C),
where the Classic queue, q_C, depends on the target queue delay that
the operator has configured for the Classic AQM.<a href="#appendix-C.2-16" class="pilcrow">¶</a></p>
<p id="appendix-C.2-17">Taking PI2 as an example Classic AQM, it seems that we could just
take R_C = R_b + target (recommended 15 ms by default in <a href="#dualq_Ex_algo_pi2-1" class="auto internal xref">Appendix A.1</a>). However, target is roughly the queue
depth reached by the tips of the sawteeth of a congestion control, not
the average <span>[<a href="#PI2param" class="cite xref">PI2param</a>]</span>. That is R_max = R_b +
target.<a href="#appendix-C.2-17" class="pilcrow">¶</a></p>
<p id="appendix-C.2-18">The position of the average in relation to the max depends on the
amplitude and geometry of the sawteeth. We consider two examples:
Reno <span>[<a href="#RFC5681" class="cite xref">RFC5681</a>]</span>, as the most sensitive worst case,
and CUBIC <span>[<a href="#RFC8312" class="cite xref">RFC8312</a>]</span> in its Reno-friendly mode
('CReno') as the most prevalent congestion control algorithm on the
Internet according to the references in <span>[<a href="#PI2param" class="cite xref">PI2param</a>]</span>.
Both are Additive Increase Multiplicative Decrease (AIMD), so we will generalize using b as the multiplicative
decrease factor (b_r = 0.5 for Reno, b_c = 0.7 for CReno). Then<a href="#appendix-C.2-18" class="pilcrow">¶</a></p>
<div class="sourcecode" id="appendix-C.2-19">
<pre>
R_C = (R_max + b*R_max) / 2
= R_max * (1+b)/2.
R_reno = 0.75 * (R_b + target); R_creno = 0.85 * (R_b + target).
(8)
</pre><a href="#appendix-C.2-19" class="pilcrow">¶</a>
</div>
<p id="appendix-C.2-20">Plugging all this into equation (7), at any particular base RTT, R_b, we get a fixed coupling factor
for each:<a href="#appendix-C.2-20" class="pilcrow">¶</a></p>
<div class="sourcecode" id="appendix-C.2-21">
<pre>
k_reno = 1.64*0.75*(R_b+target)/R_b
= 1.23*(1 + target/R_b); k_creno = 1.39 * (1 + target/R_b).
</pre><a href="#appendix-C.2-21" class="pilcrow">¶</a>
</div>
<p id="appendix-C.2-22">An operator can then choose the base RTT at which it wants
throughput to be equivalent. For instance, if we recommend that the
operator chooses R_b = 25 ms, as a typical base RTT between Internet
users and CDNs <span>[<a href="#PI2param" class="cite xref">PI2param</a>]</span>, then these coupling
factors become:<a href="#appendix-C.2-22" class="pilcrow">¶</a></p>
<div class="sourcecode" id="appendix-C.2-23">
<pre>
k_reno = 1.23 * (1 + 15/25) k_creno = 1.39 * (1 + 15/25)
= 1.97 = 2.22
~= 2. ~= 2. (9)
</pre><a href="#appendix-C.2-23" class="pilcrow">¶</a>
</div>
<p id="appendix-C.2-24">The approximation is relevant to any of the above example DualQ
Coupled algorithms, which use a coupling factor that is an integer
power of 2 to aid efficient implementation. It also fits best for the
worst case (Reno).<a href="#appendix-C.2-24" class="pilcrow">¶</a></p>
<p id="appendix-C.2-25">To check the outcome of this coupling factor, we can express the
ratio of L4S to Classic throughput by substituting from their rate
equations (5) and (6), then also substituting for p_C in terms of
p_CL using equation (1) with k = 2 as just determined for the
Internet:<a href="#appendix-C.2-25" class="pilcrow">¶</a></p>
<div class="sourcecode" id="appendix-C.2-26">
<pre>
r_L / r_C = 2 (R_C * p_C^0.5) / 1.22 (R_L * p_CL)
= (R_C * p_CL) / (1.22 * R_L * p_CL)
= R_C / (1.22 * R_L). (10)
</pre><a href="#appendix-C.2-26" class="pilcrow">¶</a>
</div>
<p id="appendix-C.2-27">As an example, we can then consider single competing CReno and
Prague flows, by expressing both their RTTs in (10) in terms of their
base RTTs, R_bC and R_bL. So R_C is replaced by equation (8) for
CReno. And R_L is replaced by the max() function below, which
represents the effective RTT of the current Prague congestion
control <span>[<a href="#I-D.briscoe-iccrg-prague-congestion-control" class="cite xref">PRAGUE-CC</a>]</span> in its
(default) RTT-independent mode, because it sets a floor to the
effective RTT that it uses for additive increase:<a href="#appendix-C.2-27" class="pilcrow">¶</a></p>
<div class="sourcecode" id="appendix-C.2-28">
<pre>
r_L / r_C ~= 0.85 * (R_bC + target) / (1.22 * max(R_bL, R_typ))
~= (R_bC + target) / (1.4 * max(R_bL, R_typ)).
</pre><a href="#appendix-C.2-28" class="pilcrow">¶</a>
</div>
<p id="appendix-C.2-29">It can be seen that, for base RTTs below target (15 ms), both the
numerator and the denominator plateau, which has the desired effect of
limiting RTT-dependence.<a href="#appendix-C.2-29" class="pilcrow">¶</a></p>
<p id="appendix-C.2-30">At the start of the above derivations, an explanation was promised
for why the L4S throughput equation in equation (6) did not need to
model RTT-independence. This is because we only use one point -- at the
typical base RTT where the operator chooses to calculate the coupling
factor. Then throughput equivalence will at least hold at that chosen
point. Nonetheless, assuming Prague senders implement RTT-independence
over a range of RTTs below this, the throughput equivalence will then
extend over that range as well.<a href="#appendix-C.2-30" class="pilcrow">¶</a></p>
<p id="appendix-C.2-31">Congestion control designers can choose different ways to reduce
RTT-dependence. And each operator can make a policy choice to decide
on a different base RTT, and therefore a different k, at which it
wants throughput equivalence. Nonetheless, for the Internet, it makes
sense to choose what is believed to be the typical RTT most users
experience, because a Classic AQM's target queuing delay is also
derived from a typical RTT for the Internet.<a href="#appendix-C.2-31" class="pilcrow">¶</a></p>
<p id="appendix-C.2-32">As a non-Internet example, for localized traffic from a particular
ISP's data centre, using the measured RTTs, it was calculated that a
value of k = 8 would achieve throughput equivalence, and experiments
verified the formula very closely.<a href="#appendix-C.2-32" class="pilcrow">¶</a></p>
<p id="appendix-C.2-33">But, for a typical mix of RTTs across the general Internet, a value
of k = 2 is recommended as a good workable compromise.<a href="#appendix-C.2-33" class="pilcrow">¶</a></p>
</section>
</div>
</section>
<section id="appendix-D">
<h2 id="name-acknowledgements">
<a href="#name-acknowledgements" class="section-name selfRef">Acknowledgements</a>
</h2>
<p id="appendix-D-1">Thanks to <span class="contact-name">Anil Agarwal</span>, <span class="contact-name">Sowmini Varadhan</span>, <span class="contact-name">Gabi Bracha</span>,
<span class="contact-name">Nicolas Kuhn</span>, <span class="contact-name">Greg Skinner</span>,
<span class="contact-name">Tom Henderson</span>, <span class="contact-name">David Pullen</span>,
<span class="contact-name">Mirja Kühlewind</span>, <span class="contact-name">Gorry Fairhurst</span>, <span class="contact-name">Pete Heist</span>, <span class="contact-name">Ermin Sakic</span>, and <span class="contact-name">Martin Duke</span> for detailed review
comments, particularly of the appendices, and suggestions on how to make
the explanations clearer. Thanks also to <span class="contact-name">Tom Henderson</span> for insight on the choice of schedulers and queue delay
measurement techniques. And thanks to the area reviewers <span class="contact-name">Christer Holmberg</span>, <span class="contact-name">Lars Eggert</span>, and
<span class="contact-name">Roman Danyliw</span>.<a href="#appendix-D-1" class="pilcrow">¶</a></p>
<p id="appendix-D-2">The early contributions of <span class="contact-name">Koen De Schepper</span>, <span class="contact-name">Bob Briscoe</span>, <span class="contact-name">Olga Bondarenko</span>, and <span class="contact-name">Inton Tsang</span> were partly funded by the European Community
under its Seventh Framework Programme through the Reducing Internet
Transport Latency (RITE) project (ICT-317700). Contributions of <span class="contact-name">Koen De Schepper</span> and <span class="contact-name">Olivier Tilmans</span> were also partly funded by the 5Growth and
DAEMON EU H2020 projects. <span class="contact-name">Bob Briscoe</span>'s contribution was also
partly funded by the Comcast Innovation Fund and the Research Council of
Norway through the TimeIn project. The views expressed here are solely
those of the authors.<a href="#appendix-D-2" class="pilcrow">¶</a></p>
</section>
<section id="appendix-E">
<h2 id="name-contributors">
<a href="#name-contributors" class="section-name selfRef">Contributors</a>
</h2>
<p id="appendix-E-1">The following contributed implementations and evaluations that
validated and helped to improve this specification:<a href="#appendix-E-1" class="pilcrow">¶</a></p>
<p id="appendix-E-2"><span class="contact-name">Olga Albisser</span> <olga@albisser.org> of Simula Research Lab,
Norway (Olga Bondarenko during early draft versions) implemented the
prototype DualPI2 AQM for Linux with Koen De Schepper and conducted
extensive evaluations as well as implementing the live performance
visualization GUI <span>[<a href="#L4Sdemo16" class="cite xref">L4Sdemo16</a>]</span>.<a href="#appendix-E-2" class="pilcrow">¶</a></p>
<p id="appendix-E-3"><span class="contact-name">Olivier Tilmans</span> <olivier.tilmans@nokia-bell-labs.com> of
Nokia Bell Labs, Belgium prepared and maintains the Linux
implementation of DualPI2 for upstreaming.<a href="#appendix-E-3" class="pilcrow">¶</a></p>
<p id="appendix-E-4"><span class="contact-name">Shravya K.S.</span> wrote a model for the ns-3 simulator based on draft-ietf-tsvwg-aqm-dualq-coupled-01 (a draft version of this document). Based on this initial work, <span class="contact-name">Tom Henderson</span> <tomh@tomh.org> updated that earlier model and
created a model for the DualQ variant specified as part of the Low Latency
DOCSIS specification, as well as conducting extensive
evaluations.<a href="#appendix-E-4" class="pilcrow">¶</a></p>
<p id="appendix-E-5"><span class="contact-name">Ing Jyh (Inton) Tsang</span> of Nokia, Belgium built the End-to-End Data
Centre to the Home broadband testbed on which DualQ Coupled AQM
implementations were tested.<a href="#appendix-E-5" class="pilcrow">¶</a></p>
</section>
<div id="authors-addresses">
<section id="appendix-F">
<h2 id="name-authors-addresses">
<a href="#name-authors-addresses" class="section-name selfRef">Authors' Addresses</a>
</h2>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Koen De Schepper</span></div>
<div dir="auto" class="left"><span class="org">Nokia Bell Labs</span></div>
<div dir="auto" class="left"><span class="locality">Antwerp</span></div>
<div dir="auto" class="left"><span class="country-name">Belgium</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:koen.de_schepper@nokia.com" class="email">koen.de_schepper@nokia.com</a>
</div>
<div class="url">
<span>URI:</span>
<a href="https://www.bell-labs.com/about/researcher-profiles/koende_schepper/" class="url">https://www.bell-labs.com/about/researcher-profiles/koende_schepper/</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Bob Briscoe (<span class="role">editor</span>)</span></div>
<div dir="auto" class="left"><span class="org">Independent</span></div>
<div dir="auto" class="left"><span class="country-name">United Kingdom</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:ietf@bobbriscoe.net" class="email">ietf@bobbriscoe.net</a>
</div>
<div class="url">
<span>URI:</span>
<a href="https://bobbriscoe.net/" class="url">https://bobbriscoe.net/</a>
</div>
</address>
<address class="vcard">
<div dir="auto" class="left"><span class="fn nameRole">Greg White</span></div>
<div dir="auto" class="left"><span class="org">CableLabs</span></div>
<div dir="auto" class="left">
<span class="locality">Louisville</span>, <span class="region">CO</span> </div>
<div dir="auto" class="left"><span class="country-name">United States of America</span></div>
<div class="email">
<span>Email:</span>
<a href="mailto:G.White@CableLabs.com" class="email">G.White@CableLabs.com</a>
</div>
</address>
</section>
</div>
<script>const toc = document.getElementById("toc");
toc.querySelector("h2").addEventListener("click", e => {
toc.classList.toggle("active");
});
toc.querySelector("nav").addEventListener("click", e => {
toc.classList.remove("active");
});
</script>
</body>
</html>
|