1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
package allocator
import (
"context"
"sync"
"github.com/docker/docker/pkg/plugingetter"
"github.com/docker/go-events"
"github.com/docker/swarmkit/api"
"github.com/docker/swarmkit/manager/allocator/cnmallocator"
"github.com/docker/swarmkit/manager/state"
"github.com/docker/swarmkit/manager/state/store"
)
// Allocator controls how the allocation stage in the manager is handled.
type Allocator struct {
// The manager store.
store *store.MemoryStore
// the ballot used to synchronize across all allocators to ensure
// all of them have completed their respective allocations so that the
// task can be moved to ALLOCATED state.
taskBallot *taskBallot
// context for the network allocator that will be needed by
// network allocator.
netCtx *networkContext
// stopChan signals to the allocator to stop running.
stopChan chan struct{}
// doneChan is closed when the allocator is finished running.
doneChan chan struct{}
// pluginGetter provides access to docker's plugin inventory.
pluginGetter plugingetter.PluginGetter
// networkConfig stores network related config for the cluster
networkConfig *cnmallocator.NetworkConfig
}
// taskBallot controls how the voting for task allocation is
// coordinated b/w different allocators. This the only structure that
// will be written by all allocator goroutines concurrently. Hence the
// mutex.
type taskBallot struct {
sync.Mutex
// List of registered voters who have to cast their vote to
// indicate their allocation complete
voters []string
// List of votes collected for every task so far from different voters.
votes map[string][]string
}
// allocActor controls the various phases in the lifecycle of one kind of allocator.
type allocActor struct {
// Task voter identity of the allocator.
taskVoter string
// Action routine which is called for every event that the
// allocator received.
action func(context.Context, events.Event)
// Init routine which is called during the initialization of
// the allocator.
init func(ctx context.Context) error
}
// New returns a new instance of Allocator for use during allocation
// stage of the manager.
func New(store *store.MemoryStore, pg plugingetter.PluginGetter, netConfig *cnmallocator.NetworkConfig) (*Allocator, error) {
a := &Allocator{
store: store,
taskBallot: &taskBallot{
votes: make(map[string][]string),
},
stopChan: make(chan struct{}),
doneChan: make(chan struct{}),
pluginGetter: pg,
networkConfig: netConfig,
}
return a, nil
}
// Run starts all allocator go-routines and waits for Stop to be called.
func (a *Allocator) Run(ctx context.Context) error {
// Setup cancel context for all goroutines to use.
ctx, cancel := context.WithCancel(ctx)
var (
wg sync.WaitGroup
actors []func() error
)
defer func() {
cancel()
wg.Wait()
close(a.doneChan)
}()
for _, aa := range []allocActor{
{
taskVoter: networkVoter,
init: a.doNetworkInit,
action: a.doNetworkAlloc,
},
} {
if aa.taskVoter != "" {
a.registerToVote(aa.taskVoter)
}
// Assign a pointer for variable capture
aaPtr := &aa
actor := func() error {
wg.Add(1)
defer wg.Done()
// init might return an allocator specific context
// which is a child of the passed in context to hold
// allocator specific state
watch, watchCancel, err := a.init(ctx, aaPtr)
if err != nil {
return err
}
wg.Add(1)
go func(watch <-chan events.Event, watchCancel func()) {
defer func() {
wg.Done()
watchCancel()
}()
a.run(ctx, *aaPtr, watch)
}(watch, watchCancel)
return nil
}
actors = append(actors, actor)
}
for _, actor := range actors {
if err := actor(); err != nil {
return err
}
}
<-a.stopChan
return nil
}
// Stop stops the allocator
func (a *Allocator) Stop() {
close(a.stopChan)
// Wait for all allocator goroutines to truly exit
<-a.doneChan
}
func (a *Allocator) init(ctx context.Context, aa *allocActor) (<-chan events.Event, func(), error) {
watch, watchCancel := state.Watch(a.store.WatchQueue(),
api.EventCreateNetwork{},
api.EventDeleteNetwork{},
api.EventCreateService{},
api.EventUpdateService{},
api.EventDeleteService{},
api.EventCreateTask{},
api.EventUpdateTask{},
api.EventDeleteTask{},
api.EventCreateNode{},
api.EventUpdateNode{},
api.EventDeleteNode{},
state.EventCommit{},
)
if err := aa.init(ctx); err != nil {
watchCancel()
return nil, nil, err
}
return watch, watchCancel, nil
}
func (a *Allocator) run(ctx context.Context, aa allocActor, watch <-chan events.Event) {
for {
select {
case ev, ok := <-watch:
if !ok {
return
}
aa.action(ctx, ev)
case <-ctx.Done():
return
}
}
}
func (a *Allocator) registerToVote(name string) {
a.taskBallot.Lock()
defer a.taskBallot.Unlock()
a.taskBallot.voters = append(a.taskBallot.voters, name)
}
func (a *Allocator) taskAllocateVote(voter string, id string) bool {
a.taskBallot.Lock()
defer a.taskBallot.Unlock()
// If voter has already voted, return false
for _, v := range a.taskBallot.votes[id] {
// check if voter is in x
if v == voter {
return false
}
}
a.taskBallot.votes[id] = append(a.taskBallot.votes[id], voter)
// We haven't gotten enough votes yet
if len(a.taskBallot.voters) > len(a.taskBallot.votes[id]) {
return false
}
nextVoter:
for _, voter := range a.taskBallot.voters {
for _, vote := range a.taskBallot.votes[id] {
if voter == vote {
continue nextVoter
}
}
// Not every registered voter has registered a vote.
return false
}
return true
}
|