1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
package overlay
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"net"
"net/netip"
"testing"
"time"
"golang.org/x/net/bpf"
"golang.org/x/net/ipv4"
"golang.org/x/sys/unix"
)
func TestVNIMatchBPF(t *testing.T) {
// The BPF filter program under test uses Linux extensions which are not
// emulated by any user-space BPF interpreters. It is also classic BPF,
// which cannot be tested in-kernel using the bpf(BPF_PROG_RUN) syscall.
// The best we can do without actually programming it into an iptables
// rule and end-to-end testing it is to attach it as a socket filter to
// a raw socket and test which loopback packets make it through.
//
// Modern kernels transpile cBPF programs into eBPF for execution, so a
// possible future direction would be to extract the transpiler and
// convert the program under test to eBPF so it could be loaded and run
// using the bpf(2) syscall.
// https://elixir.bootlin.com/linux/v6.2/source/net/core/filter.c#L559
// Though the effort would be better spent on adding nftables support to
// libnetwork so this whole BPF program could be replaced with a native
// nftables '@th' match expression.
//
// The filter could be manually e2e-tested for both IPv4 and IPv6 by
// programming ip[6]tables rules which log matching packets and sending
// test packets loopback using netcat. All the necessary information
// (bytecode and an acceptable test vector) is logged by this test.
//
// $ sudo ip6tables -A INPUT -p udp -s ::1 -d ::1 -m bpf \
// --bytecode "${bpf_program_under_test}" \
// -j LOG --log-prefix '[IPv6 VNI match]:'
// $ <<<"${udp_payload_hexdump}" xxd -r -p | nc -u -6 localhost 30000
// $ sudo dmesg
loopback := net.IPv4(127, 0, 0, 1)
// Reserve an ephemeral UDP port for loopback testing.
// Binding to a TUN device would be more hermetic, but is much more effort to set up.
reservation, err := net.ListenUDP("udp", &net.UDPAddr{IP: loopback, Port: 0})
if err != nil {
t.Fatal(err)
}
defer reservation.Close()
daddr := reservation.LocalAddr().(*net.UDPAddr).AddrPort()
sender, err := net.DialUDP("udp", nil, reservation.LocalAddr().(*net.UDPAddr))
if err != nil {
t.Fatal(err)
}
defer sender.Close()
saddr := sender.LocalAddr().(*net.UDPAddr).AddrPort()
// There doesn't seem to be a way to receive the entire Layer-3 IPv6
// packet including the fixed IP header using the portable raw sockets
// API. That can only be done from an AF_PACKET socket, and it is
// unclear whether 'ld poff' would behave the same in a BPF program
// attached to such a socket as in an xt_bpf match.
c, err := net.ListenIP("ip4:udp", &net.IPAddr{IP: loopback})
if err != nil {
if errors.Is(err, unix.EPERM) {
t.Skip("test requires CAP_NET_RAW")
}
t.Fatal(err)
}
defer c.Close()
pc := ipv4.NewPacketConn(c)
testvectors := []uint32{
0,
1,
0x08,
42,
0x80,
0xfe,
0xff,
0x100,
0xfff, // 4095
0x1000, // 4096
0x1001,
0x10000,
0xfffffe,
0xffffff, // Max VNI
}
for _, vni := range []uint32{1, 42, 0x100, 0x1000, 0xfffffe, 0xffffff} {
t.Run(fmt.Sprintf("vni=%d", vni), func(t *testing.T) {
setBPF(t, pc, vniMatchBPF(vni))
for _, v := range testvectors {
pkt := appendVXLANHeader(nil, v)
pkt = append(pkt, []byte{0xde, 0xad, 0xbe, 0xef}...)
if _, err := sender.Write(pkt); err != nil {
t.Fatal(err)
}
rpkt, ok := readUDPPacketFromRawSocket(t, pc, saddr, daddr)
// Sanity check: the only packets readUDPPacketFromRawSocket
// should return are ones we sent.
if ok && !bytes.Equal(pkt, rpkt) {
t.Fatalf("received unexpected packet: % x", rpkt)
}
if ok != (v == vni) {
t.Errorf("unexpected packet tagged with vni=%d (got %v, want %v)", v, ok, v == vni)
}
}
})
}
}
func appendVXLANHeader(b []byte, vni uint32) []byte {
// https://tools.ietf.org/html/rfc7348#section-5
b = append(b, []byte{0x08, 0x00, 0x00, 0x00}...)
return binary.BigEndian.AppendUint32(b, vni<<8)
}
func setBPF(t *testing.T, c *ipv4.PacketConn, fprog []bpf.RawInstruction) {
// https://natanyellin.com/posts/ebpf-filtering-done-right/
blockall, _ := bpf.Assemble([]bpf.Instruction{bpf.RetConstant{Val: 0}})
if err := c.SetBPF(blockall); err != nil {
t.Fatal(err)
}
ms := make([]ipv4.Message, 100)
for {
n, err := c.ReadBatch(ms, unix.MSG_DONTWAIT)
if err != nil {
if errors.Is(err, unix.EAGAIN) {
break
}
t.Fatal(err)
}
if n == 0 {
break
}
}
t.Logf("setting socket filter: %v", marshalXTBPF(fprog))
if err := c.SetBPF(fprog); err != nil {
t.Fatal(err)
}
}
// readUDPPacketFromRawSocket reads raw IP packets from pc until a UDP packet
// which matches the (src, dst) 4-tuple is found or the receive buffer is empty,
// and returns the payload of the UDP packet.
func readUDPPacketFromRawSocket(t *testing.T, pc *ipv4.PacketConn, src, dst netip.AddrPort) ([]byte, bool) {
t.Helper()
ms := []ipv4.Message{
{Buffers: [][]byte{make([]byte, 1500)}},
}
// Set a time limit to prevent an infinite loop if there is a lot of
// loopback traffic being captured which prevents the buffer from
// emptying.
deadline := time.Now().Add(1 * time.Second)
for time.Now().Before(deadline) {
n, err := pc.ReadBatch(ms, unix.MSG_DONTWAIT)
if err != nil {
if !errors.Is(err, unix.EAGAIN) {
t.Fatal(err)
}
break
}
if n == 0 {
break
}
pkt := ms[0].Buffers[0][:ms[0].N]
psrc, pdst, payload, ok := parseUDP(pkt)
// Discard captured packets which belong to other unrelated flows.
if !ok || psrc != src || pdst != dst {
t.Logf("discarding packet:\n% x", pkt)
continue
}
t.Logf("received packet (%v -> %v):\n% x", psrc, pdst, payload)
// While not strictly required, copy payload into a new
// slice which does not share a backing array with pkt
// so the IP and UDP headers can be garbage collected.
return append([]byte(nil), payload...), true
}
return nil, false
}
func parseIPv4(b []byte) (src, dst netip.Addr, protocol byte, payload []byte, ok bool) {
if len(b) < 20 {
return netip.Addr{}, netip.Addr{}, 0, nil, false
}
hlen := int(b[0]&0x0f) * 4
if hlen < 20 {
return netip.Addr{}, netip.Addr{}, 0, nil, false
}
src, _ = netip.AddrFromSlice(b[12:16])
dst, _ = netip.AddrFromSlice(b[16:20])
protocol = b[9]
payload = b[hlen:]
return src, dst, protocol, payload, true
}
// parseUDP parses the IP and UDP headers from the raw Layer-3 packet data in b.
func parseUDP(b []byte) (src, dst netip.AddrPort, payload []byte, ok bool) {
srcip, dstip, protocol, ippayload, ok := parseIPv4(b)
if !ok {
return netip.AddrPort{}, netip.AddrPort{}, nil, false
}
if protocol != 17 {
return netip.AddrPort{}, netip.AddrPort{}, nil, false
}
if len(ippayload) < 8 {
return netip.AddrPort{}, netip.AddrPort{}, nil, false
}
sport := binary.BigEndian.Uint16(ippayload[0:2])
dport := binary.BigEndian.Uint16(ippayload[2:4])
src = netip.AddrPortFrom(srcip, sport)
dst = netip.AddrPortFrom(dstip, dport)
payload = ippayload[8:]
return src, dst, payload, true
}
|