1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
package remotes
import (
"fmt"
"math"
"math/rand"
"sort"
"sync"
"github.com/moby/swarmkit/v2/api"
)
var errRemotesUnavailable = fmt.Errorf("no remote hosts provided")
// DefaultObservationWeight provides a weight to use for positive observations
// that will balance well under repeated observations.
const DefaultObservationWeight = 10
// Remotes keeps track of remote addresses by weight, informed by
// observations.
type Remotes interface {
// Weight returns the remotes with their current weights.
Weights() map[api.Peer]int
// Select a remote from the set of available remotes with optionally
// excluding ID or address.
Select(...string) (api.Peer, error)
// Observe records an experience with a particular remote. A positive weight
// indicates a good experience and a negative weight a bad experience.
//
// The observation will be used to calculate a moving weight, which is
// implementation dependent. This method will be called such that repeated
// observations of the same master in each session request are favored.
Observe(peer api.Peer, weight int)
// ObserveIfExists records an experience with a particular remote if when a
// remote exists.
ObserveIfExists(peer api.Peer, weight int)
// Remove the remote from the list completely.
Remove(addrs ...api.Peer)
}
// NewRemotes returns a Remotes instance with the provided set of addresses.
// Entries provided are heavily weighted initially.
func NewRemotes(peers ...api.Peer) Remotes {
mwr := &remotesWeightedRandom{
remotes: make(map[api.Peer]int),
}
for _, peer := range peers {
mwr.Observe(peer, DefaultObservationWeight)
}
return mwr
}
type remotesWeightedRandom struct {
remotes map[api.Peer]int
mu sync.Mutex
// workspace to avoid reallocation. these get lazily allocated when
// selecting values.
cdf []float64
peers []api.Peer
}
func (mwr *remotesWeightedRandom) Weights() map[api.Peer]int {
mwr.mu.Lock()
defer mwr.mu.Unlock()
ms := make(map[api.Peer]int, len(mwr.remotes))
for addr, weight := range mwr.remotes {
ms[addr] = weight
}
return ms
}
func (mwr *remotesWeightedRandom) Select(excludes ...string) (api.Peer, error) {
mwr.mu.Lock()
defer mwr.mu.Unlock()
// NOTE(stevvooe): We then use a weighted random selection algorithm
// (http://stackoverflow.com/questions/4463561/weighted-random-selection-from-array)
// to choose the master to connect to.
//
// It is possible that this is insufficient. The following may inform a
// better solution:
// https://github.com/LK4D4/sample
//
// The first link applies exponential distribution weight choice reservoir
// sampling. This may be relevant if we view the master selection as a
// distributed reservoir sampling problem.
// bias to zero-weighted remotes have same probability. otherwise, we
// always select first entry when all are zero.
const bias = 0.001
// clear out workspace
mwr.cdf = mwr.cdf[:0]
mwr.peers = mwr.peers[:0]
cum := 0.0
// calculate CDF over weights
Loop:
for peer, weight := range mwr.remotes {
for _, exclude := range excludes {
if peer.NodeID == exclude || peer.Addr == exclude {
// if this peer is excluded, ignore it by continuing the loop to label Loop
continue Loop
}
}
if weight < 0 {
// treat these as zero, to keep there selection unlikely.
weight = 0
}
cum += float64(weight) + bias
mwr.cdf = append(mwr.cdf, cum)
mwr.peers = append(mwr.peers, peer)
}
if len(mwr.peers) == 0 {
return api.Peer{}, errRemotesUnavailable
}
r := mwr.cdf[len(mwr.cdf)-1] * rand.Float64()
i := sort.SearchFloat64s(mwr.cdf, r)
return mwr.peers[i], nil
}
func (mwr *remotesWeightedRandom) Observe(peer api.Peer, weight int) {
mwr.mu.Lock()
defer mwr.mu.Unlock()
mwr.observe(peer, float64(weight))
}
func (mwr *remotesWeightedRandom) ObserveIfExists(peer api.Peer, weight int) {
mwr.mu.Lock()
defer mwr.mu.Unlock()
if _, ok := mwr.remotes[peer]; !ok {
return
}
mwr.observe(peer, float64(weight))
}
func (mwr *remotesWeightedRandom) Remove(addrs ...api.Peer) {
mwr.mu.Lock()
defer mwr.mu.Unlock()
for _, addr := range addrs {
delete(mwr.remotes, addr)
}
}
const (
// remoteWeightSmoothingFactor for exponential smoothing. This adjusts how
// much of the // observation and old value we are using to calculate the new value.
// See
// https://en.wikipedia.org/wiki/Exponential_smoothing#Basic_exponential_smoothing
// for details.
remoteWeightSmoothingFactor = 0.5
remoteWeightMax = 1 << 8
)
func clip(x float64) float64 {
if math.IsNaN(x) {
// treat garbage as such
// acts like a no-op for us.
return 0
}
return math.Max(math.Min(remoteWeightMax, x), -remoteWeightMax)
}
func (mwr *remotesWeightedRandom) observe(peer api.Peer, weight float64) {
// While we have a decent, ad-hoc approach here to weight subsequent
// observations, we may want to look into applying forward decay:
//
// http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf
//
// We need to get better data from behavior in a cluster.
// makes the math easier to read below
var (
w0 = float64(mwr.remotes[peer])
w1 = clip(weight)
)
const α = remoteWeightSmoothingFactor
// Multiply the new value to current value, and appy smoothing against the old
// value.
wn := clip(α*w1 + (1-α)*w0)
mwr.remotes[peer] = int(math.Ceil(wn))
}
|