1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
|
.. meta::
:description: pydoit tutorial - walkthrough doit basic and intermediate concepts with real-world example
:keywords: python, doit, tutorial, getting started, graph, graphviz, task-runner, pipeline
.. title:: pydoit tutorial - build a graph of module's imports
======================================
tutorial - python imports graph
======================================
This tutorial demonstrates how to use ``doit`` to create a simple computational pipeline.
The goal is to create a graph of python module's imports in a package.
`graphviz <http://graphviz.org/>`_'s **dot** tool will be used to generate the graph.
As an example, the `requests <https://github.com/requests/requests>`_ package will be used. The result is the image below:
.. image:: _static/requests.png
In the image an arrow represents an import from one module to another. For example in the left side of image you can see an arrow from `requests.status_codes` to `requests.structures`. This comes from the following line in `status_code.py`:
.. code-block:: python3
:caption: requests/status_codes.py
from .structures import LookupDict
Drawing an "import" dependency graph can be very useful in understanding how the code in a package is organized.
It may also help you identify potential problems like circular imports.
There are three main steps to generate this graph:
1) read each python module and list its imports
2) generate a `dot` (text format) file representing the graph
3) generate an image (PNG) from the `dot` file
setup
=====
required python packages
------------------------
.. code-block:: console
$ pip install doit pygraphviz import_deps
Note that on some linux systems it is necessary to install the system package `graphviz-dev` first.
sample project
--------------
First create a directory that will contain the projects to be analyzed.
.. code-block:: console
$ mkdir projects
Then clone the ``requests`` project
.. code-block:: console
$ cd projects
$ git clone git@github.com:requests/requests.git
$ cd ..
finding a module's import
=========================
Using `import_deps <https://github.com/schettino72/import-deps>`_ list all (intra-packages) imports from a module:
For example:
.. code-block:: console
$ python -m import_deps projects/requests/requests/models.py
requests._internal_utils
requests.auth
requests.compat
requests.cookies
requests.exceptions
requests.hooks
requests.status_codes
requests.structures
requests.utils
The output contains one imported module per line.
doit task
---------
On the next step we are going to wrap the above script in a ``doit`` *task*.
In ``doit`` tasks are defined in a plain python module, by default called ``dodo.py``.
For example, a trivial task to execute the script above and save its output into a file would be:
.. code-block:: python3
:caption: dodo.py
def task_imports():
return {
'actions': ['python -m import_deps '
'projects/requests/requests/models.py > requests.models.deps'],
}
In this module you write functions that are **task-creators**,
the role of which is not to execute tasks but to return tasks' metadata.
**task-creators** are any function whose name starts with ``task_``.
A task name is taken from the function name, so
in this case the task is called ``imports``.
The most important *Task* metadata is ``actions``, which defines what will be done when a task is executed.
Note that ``actions`` is a list where its element are strings to be interpreted as shell commands.
task execution
--------------
``doit`` comes with a command line tool to act upon the set of tasks defined in a specific file. The default file is ``dodo.py`` in the current directory. With no argument it executes all tasks found in it.
.. code-block:: console
$ doit
. imports
The output reports that the ``imports`` task was executed.
You can check that a file ``requests.models.deps`` was created with
a list of modules imported by ``requests.models``.
incremental computation
-----------------------
One of the main purposes of ``doit`` is to make use
of **up-to-date** checks to decide if tasks *need* to be executed or not.
In our case, as long as the input file is not modified we are certain
that the same output would be generated...
When dealing with files, task's metadata ``file_dep`` and ``targets`` can be used:
.. task_imports, line 11 is clean
.. literalinclude:: tutorial/tuto_1_1.py
:language: python3
:lines: 5-10,12
Note how ``actions`` can make use of variable substitution for
``%(dependencies)s`` and ``%(targets)s``.
Now let's execute it again:
.. code-block:: console
$ doit
. imports
And then, a second time:
.. code-block:: console
$ doit
-- imports
Note that the second time there is a ``--`` instead of ``.`` preceding the task name.
This means that the task was not executed, ``doit`` understood that
the task output would be the same as previously generated,
so it does not execute the task again.
.. warning::
When ``doit`` *loads* a ``dodo.py`` file it executes all *task-creator* functions in order to generate all tasks metadata.
A task's ``action`` is only executed if the task is selected to run and not **up-to-date**.
Expensive computation should always be done on task's ``action``
and never on the body of a **task-creator** function.
rules for up-to-date checks on files
------------------------------------
file_dep
^^^^^^^^
``doit`` uses the *md5* of ``file_dep`` to determine if a dependency has changed.
.. code-block:: console
$ touch projects/requests/requests/models.py
$ doit
-- imports
$ echo "# comment" >> projects/requests/requests/models.py
$ doit
. imports
Note that simply changing a file timestamp does not trigger a new execution.
targets
^^^^^^^
For ``targets``, the only verification that is made is whether the file exists or not.
So if a target is removed it will be re-created even if the dependencies remain unmodified.
.. code-block:: console
$ rm requests.models.deps
$ doit
. imports
graphviz dot
============
On the next step we will create a `graphviz <http://graphviz.org/>`_'s ``dot`` file.
``dot`` is a language to describe graphs.
The code below defines a python function to read a file containing
import dependencies (as generated by our previously defined ``imports`` task).
.. module_to_dot()
.. literalinclude:: tutorial/tuto_1_1.py
:language: python3
:lines: 1-3,14-15,18-27
Task with python action
-----------------------
Next we define the ``dot`` task, which is similar to previous tasks...
except for the fact that instead of passing a string with a shell command
we directly pass the previously created python function ``module_to_dot``.
.. task_dot()
.. literalinclude:: tutorial/tuto_1_1.py
:language: python3
:lines: 28-33,35
Also note that the function takes the special parameters ``dependencies`` and ``targets``, whose values will be injected by ``doit`` in the function call.
.. code-block:: console
$ doit
-- imports
. dot
To indicate a failure, a python-action should return the value ``False`` or raise an exception.
graph image
-----------
Finally lets add another task to generate an image from the `dot` file using the graphviz command line tool.
.. task_draw()
.. literalinclude:: tutorial/tuto_1_1.py
:language: python3
:lines: 38-43,45
.. code-block:: console
$ doit
-- imports
-- dot
. draw
Opening the file ``requests.models.png`` you should get the image below:
.. image:: _static/requests.models.png
doit command line
=================
``doit`` has a rich (and extensible) command line tool to manipulate your tasks. So far we have only executed ``doit`` without any parameters...
``doit`` command line takes the form of ``doit <sub-command> <options> <arguments>``,
where ``options`` and ``arguments`` are specific to the ``sub-command``.
If no sub-command is specified the default command ``run`` is used.
``run`` executes tasks...
doit help
---------
``doit help`` will list all available sub-commands.
You can get help for a specific sub-command with ``doit help <sub-command>``, i.e. ``doit help run``.
You can also get help for the task metadata fields with ``doit help task``.
doit list
---------
The command ``list`` displays the list of known tasks:
.. code-block:: console
$ doit list
dot generate a graphviz's dot graph from module imports
draw generate image from a dot file
imports find imports from a python module
Note how the docstring from *task-creators* functions were used as tasks' description.
info
----
The ``info`` command can be used to get more information about a specific task's
metadata and state (whether it is up-to-date or not).
.. code-block:: console
$ doit info imports
imports
find imports from a python module
status : up-to-date
file_dep :
- projects/requests/requests/models.py
targets :
- requests.models.deps
run
---
``run`` is the default command, and usually not explicitly typed.
So ``$ doit`` and ``$ doit run`` do exactly the same thing.
Without any parameters ``run`` will execute all of your tasks.
You can also select which tasks to be executed by passing a sequence of tasks' names.
For example if you want to execute only the ``imports`` task you would type:
.. code-block:: console
$ doit imports
-- imports
Note that even if you explicitly pass the name of the task to be executed,
``doit`` will actually execute the task only if it is not **up-to-date**.
You can also pass more than one task:
.. code-block:: console
$ doit imports dot
-- imports
-- dot
Another important point to take notice of is that even
if you specify only one task, ``doit`` will run all of the dependencies of the specified task.
.. code-block:: console
$ doit dot
-- imports
-- dot
Note how the ``imports`` task was run because task ``dot`` has ``file_dep`` that is a target of ``imports`` task.
clean
-----
A common use-case is to be able to "revert" the operations done by a task.
``doit`` provides the ``clean`` command for that.
By default it does nothing... You need to add the parameter ``clean`` to the task's metadata. For the most common case where you just want to remove the created targets, just pass the value ``True``.
You can also write custom ``actions`` (shell or python) to specify what should be done as a value to ``clean`` field.
Add ``clean`` to all defined tasks, like:
.. task_draw()
.. literalinclude:: tutorial/tuto_1_1.py
:language: python3
:lines: 38-45
:emphasize-lines: 7
Executing ``clean``:
.. code-block:: console
$ doit clean
draw - removing file 'requests.models.png'
dot - removing file 'requests.models.dot'
imports - removing file 'requests.models.deps'
Since targets were removed this will force the tasks to be executed on next ``run``.
.. code-block:: console
$ doit
. imports
. dot
. draw
forget
------
``doit`` will look for changes in the dependencies, but not for changes in the code that defines the tasks...
While developing a task, it is common to want to force its execution after making changes to it.
For example, let's change the colors of the nodes in the graph:
.. module_to_dot()
.. literalinclude:: tutorial/tuto_1_1.py
:language: python3
:lines: 14-21
:emphasize-lines: 3-4
To force its execution we need ``doit`` to ``forget`` its state thus so:
.. code-block:: console
$ doit forget dot
forgetting dot
.. code-block:: console
$ doit
-- imports
. dot
. draw
.. image:: _static/requests.models-blue.png
.. note::
Another option to force the execution of a task after code changes is to use `run``'s command option ``-a/--always-execute``. That will ignore the **up-to-date** check and always execute tasks.
Code :download:`dodo.py <tutorial/tuto_1_1.py>`.
Pipelines
=========
So far we have built a traditional "file" based pipeline where one task's target is used as a dependency for another task.
While ``doit`` provides first-class support for file based pipelines, they are not required.
get module imports - python
---------------------------
Let's rewrite the ``imports`` task to use a python action instead of a shell command:
.. task_imports()
.. literalinclude:: tutorial/tuto_1_2.py
:language: python3
:lines: 4-19
:emphasize-lines: 8,15
The function ``get_imports`` is used as the task's action.
It returns a dictionary, which will be saved by ``doit`` in its internal database. The returned dictionary must contain only values that can be encoded as JSON.
``get_imports`` takes the path's module as a parameter (``module_path``). The value that will be used for this parameter upon task execution is specified in the ``actions`` of the task definition. Generally speaking, each element of the ``actions`` array is a tuple *(callable, args, kwargs)*.
.. note::
Note in this example for simplicity we are using ``doit`` internal database, but it is also possible to use any other external database or data source.
getargs
-------
The task's parameter ``getargs`` can be used to extract values from another task's result and pass it as a parameter to the current task's action.
It's a dictionary of the form
.. code-block:: python
{target_key: (task_name, source_key)}
and what it does is to execute the task ``task_name``, get the value of ``source_key`` from its resulting dict, and passing that as the argument named ``target_key`` of the current task's action.
.. task_dot()
.. literalinclude:: tutorial/tuto_1_2.py
:language: python3
:lines: 22-38
:emphasize-lines: 1,14,15
Note how ``module_to_dot`` takes 3 parameters:
- ``source``: value is passed directly when the task's actions is defined
- ``sinks``: value is taken from ``imports`` task's result
- ``targets``: values is taken from Task metadata
Everything should work as before, but without the creation of intermediate files.
``doit`` can determine if the task ``imports`` is **up-to-date** even without a target file (it will just look at the ``file_dep``).
``doit`` can also determine if ``dot`` is **up-to-date** by comparing the value returned by ``imports`` (its dependency through the ``getargs`` parameter), with the value stored in its database.
Code :download:`dodo.py <tutorial/tuto_1_2.py>`.
package imports
===============
So far we have been creating a graph of a single module.
Let's process all modules in the package.
``doit`` has the concept of a **task-group**.
A task group performs the same operation over a set of instances.
To create a task group the task-creator function should ``yield`` one or more task dictionaries with task metadata.
Note that each task is still independent.
Since each task needs to be independently identified an extra parameter ``name`` must be provided.
.. task_imports()
.. literalinclude:: tutorial/tuto_1_3.py
:language: python3
:lines: 8-22
:emphasize-lines: 4,11,12
Sub-tasks (items of task group) by default are not reported by the ``list`` command. They can be displayed, though, using the ``--all`` flag.
.. code-block:: console
$ doit list
dot generate a graphviz's dot graph from module imports
draw generate image from a dot file
imports find imports from a python module
.. code-block:: console
$ doit list --all imports
imports find imports from a python module
imports:requests.__init__
imports:requests.__version__
imports:requests._internal_utils
imports:requests.adapters
imports:requests.api
imports:requests.auth
imports:requests.certs
imports:requests.compat
imports:requests.cookies
imports:requests.exceptions
imports:requests.help
imports:requests.hooks
imports:requests.models
imports:requests.packages
imports:requests.sessions
imports:requests.status_codes
imports:requests.structures
imports:requests.utils
Note the task's name is composed of the task's group name (aka ``basename``)
followed by a colon `:` and the ``name`` specified as a parameter when ``yield``.
From the command line, a single task can be executed like this::
$ doit imports:requests.models
. imports:requests.models
getargs from group-task
-----------------------
``getargs`` can also be used to get values from a *group-task*.
The difference is that its value will be a dictionary where the
key is the sub-task name:
.. task_dot()
.. literalinclude:: tutorial/tuto_1_3.py
:language: python3
:lines: 25-41
:emphasize-lines: 5,13-15
Finally, adjust task ``draw``.
.. task_draw()
.. literalinclude:: tutorial/tuto_1_3.py
:language: python3
:lines: 44-51
:emphasize-lines: 4-5
Running ``doit`` you should get the file ``requests.png`` with the image below:
.. image:: _static/requests.png
Code :download:`dodo.py <tutorial/tuto_1_3.py>`.
printing imports
================
Getting rid of intermediate computation files (like ``requests.models.deps``) was nice...
but sometimes it is useful to be able to quickly list the direct imports from a module.
Let's create another task that just prints its output in the terminal.
.. task_print()
.. literalinclude:: tutorial/tuto_1_4.py
:language: python3
:lines: 12-14, 32-44
:emphasize-lines: 14-15
Here again we used a **task-group** to create one task per python module and ``getargs`` to extract the list of modules' imports from ``imports``'s result.
Also note the usage of two metadata fields not seen before: ``uptodate`` and ``verbosity``.
custom `uptodate`
-----------------
So far we have seen how ``doit`` can determine if a task is **up-to-date** by taking into consideration changes to ``file_dep``, if ``targets`` exist and results from ``getargs`` have changed.
While those cover a wide range of use cases, ``doit`` also provides a way to specify completely custom checks for **up-to-date**, using the ``uptodate`` field.
In this case the ``print`` task actually does not perform any computation, it is being used to display some info to the user.
So this task should be **always** executed.
``uptodate`` will be explained in detail in part 2 of this tutorial.
For now it suffices to add the value ``False`` to indicate this task will never be considered **up-do-date**.
.. code-block:: python
'uptodate': [False],
verbosity
---------
``doit`` output (for command ``run``) consists of:
- one line with task name (preceded by `.` or `--`)
- task's output
The actual task's output displayed can be controlled by ``verbosity``.
There are 3 levels of verbosity.
- 0: both stdout and stderr from the task are **NOT** displayed
- 1: only stderr is displayed
- 2: both stdout and stderr are displayed
The default verbosity is `1`.
If the ``print`` task would be executed with the default verbosity we would actually not see any output, so we must force its ``verbosity`` value to ``2``.
.. code-block:: python3
'verbosity': 2,
.. code-block:: console
$ doit print:requests.models
-- imports:requests.models
. print:requests.models
requests._internal_utils
requests.auth
requests.compat
requests.cookies
requests.exceptions
requests.hooks
requests.status_codes
requests.structures
requests.utils
Note ``verbosity`` can be overwritten from command-line with option ``-v/--verbosity``.
DOIT_CONFIG
-----------
There is one last problem to be solved.
Since ``print`` is used only to display some information, it should not be executed by default. It should be executed only when explicitly asked.
i.e. when you just run ``doit`` without any parameters it should create the graph image but not print out the information from ``print`` task.
Before I said that by default ``doit run`` would execute all tasks.
That is not exactly true... it will execute all *default tasks*.
The default tasks can be controlled by adding a configuration dictionary with the name ``DOIT_CONFIG`` in the `dodo.py`.
.. DOIT_CONFIG
.. literalinclude:: tutorial/tuto_1_4.py
:language: python3
:lines: 7-9
Apart from ``default_tasks``, ``DOIT_CONFIG`` can change the default of any command line option. For example you can globally change every task's ``verbosity`` level:
.. code-block:: python3
DOIT_CONFIG = {
'default_tasks': ['imports', 'dot', 'draw'],
'verbosity': 2,
}
Code :download:`dodo.py <tutorial/tuto_1_4.py>`.
And that's all for part 1 of tutorial :)
|