1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
.. # -*- coding: utf-8 -*-
.. codeauthor:: Douglas N. Arnold <arnold@umn.edu>,
Patrick E. Farrell <patrick.farrell@maths.ox.ac.uk>
Stable and unstable finite elements for the Maxwell eigenvalue problem
======================================================================
The Maxwell eigenvalue problem seeks eigenvalues :math:`\lambda` and
the corresponding nonzero vector-valued eigenfunctions :math:`u`
satisfying the partial differential equation
.. math::
\operatorname{curl}\operatorname{curl} u = \lambda u \text{ in $\Omega$}
(we have simplified slightly by setting the material parameters equal
to 1). The PDE is to be supplemented with boundary conditions, which
we take here to be the essential boundary condition
.. math::
u \times n = 0 \text{ on $\partial\Omega$}.
The eigenvalues :math:`\lambda` are all real and non-negative, but
only the positive ones are of interest, since, if :math:`\lambda >0`,
then it follows from the PDE that :math:`\operatorname{div} u = 0`,
which is also a requirement of Maxwell's equations. There exist, in
addition, an infinite-dimensional family of eigenfunctions with
eigenvalue :math:`\lambda=0`, since for any smooth function
:math:`\phi` vanishing to second order on the boundary,
:math:`u=\operatorname{grad}\phi` is such an eigenfunction. But these
functions are not divergence-free and should not be considered Maxwell
eigenfunctions.
Model problem
-------------
In this demo we shall consider the Maxwell eigenvalue problem in two
dimensions with the domain :math:`\Omega` taken to be the square
:math:`(0,\pi)\times(0,\pi)`, since in that case the exact eigenpairs
have a simple analytic expression. They are
.. math::
u(x,y) = (\sin m x, \sin n y), \quad \lambda = m^2 + n^2,
for any non-negative integers :math:`m` and :math:`n,` not both zero.
Thus the eigenvalues are
.. math::
\lambda = 1, 1, 2, 4, 4, 5, 5, 8, 9, 9, 10, 10, 13, 13, \dots
In the demo program we compute the 12 eigenvalues nearest 5.5, and so
should obtain the first 12 numbers on this list, ranging from 1 to 10.
The weak formulation and the finite element method
--------------------------------------------------
A weak formulation of the eigenvalue problem seeks :math:`0\ne u\in
H_0(\operatorname{curl})` and :math:`\lambda>0` such that
.. math::
\int_{\Omega} \operatorname{curl} u\, \operatorname{curl}v\, {\rm d} x
= \lambda \int_{\Omega} u v\, {\rm d} x \quad \forall \ v\in H_0(\operatorname{curl}),
where :math:`H_0(\operatorname{curl})` is the space of
square-integrable vector fields with square-integrable curl and
satisfying the essential boundary condition. If we replace
:math:`H_0(\operatorname{curl})` in this formulation by a finite
element subspace, we obtain a finite element method.
Stable and unstable finite elements
-----------------------------------
We consider here two possible choices of finite element spaces. The
first, the Nédélec edge elements, which are obtained in FEniCS as
``FunctionSpace(mesh, 'H1curl', 1)``, are well suited to this problem
and give an accurate discretization. The second choice is simply the
vector-valued Lagrange piecewise linears: ``VectorFunctionSpace(mesh,
'Lagrange', 1)``. To the uninitiated it usually comes as a surprise
that the Lagrange elements do not provide an accurate discretization
of the Maxwell eigenvalue problem: the computed eigenvalues do not
converge to the true ones as the mesh is refined! This is a subtle
matter connected to the stability theory of mixed finite element
methods. See `this paper
<http://umn.edu/~arnold/papers/icm2002.pdf>`_ for details.
While the Nédélec elements behave stably for any mesh, the failure of
the Lagrange elements differs on different sorts of meshes. Here we
compute with two structured meshes, the first obtained from a
:math:`40\times 40` grid of squares by dividing each with its
positively-sloped diagonal, and the second the crossed mesh obtained
by dividing each subsquare into four using both diagonals. The output
from the first case is:
.. code-block:: none
diagonal mesh
Nédélec: [ 1.00 1.00 2.00 4.00 4.00 5.00 5.00 8.01 8.98 8.99 9.99 9.99]
Lagrange: [ 5.16 5.26 5.26 5.30 5.39 5.45 5.53 5.61 5.61 5.62 5.71 5.73]
Exact: [ 1.00 1.00 2.00 4.00 4.00 5.00 5.00 8.00 9.00 9.00 10.00 10.00]
Note that the eigenvalues calculated using the Nédélec elements are
all correct to within a fraction of a percent. But the 12 eigenvalues
computed by the Lagrange elements are certainly all *wrong*, since
they are far from being integers!
On the crossed mesh, we obtain a different mode of failure:
.. code-block:: none
crossed mesh
Nédélec: [ 1.00 1.00 2.00 4.00 4.00 5.00 5.00 7.99 9.00 9.00 10.00 10.00]
Lagrange: [ 1.00 1.00 2.00 4.00 4.00 5.00 5.00 6.00 8.01 9.01 9.01 10.02]
Exact: [ 1.00 1.00 2.00 4.00 4.00 5.00 5.00 8.00 9.00 9.00 10.00 10.00]
Again the Nédélec elements are accurate. The Lagrange elements also
approximate most of the eigenvalues well, but they return a *totally
spurious* value of 6.00 as well. If we were to compute more
eigenvalues, more spurious ones would be returned. This mode of
failure might be considered more dangerous, since it is harder to
spot.
The implementation
------------------
**Preamble.** First we import ``dolfin`` and ``numpy`` and make sure
that dolfin has been configured with PETSc and SLEPc (since we depend
on the SLEPc eigenvalue solver). ::
from dolfin import *
import numpy as np
if not has_linear_algebra_backend("PETSc"):
print("DOLFIN has not been configured with PETSc. Exiting.")
exit()
if not has_slepc():
print("DOLFIN has not been configured with SLEPc. Exiting.")
exit()
**Function eigenvalues.**
The function ``eigenvalues`` takes the finite element space ``V`` and the
essential boundary conditions ``bcs`` for it, and returns a requested
set of Maxwell eigenvalues (specified in the code below)
as a sorted numpy array::
def eigenvalues(V, bcs):
We start by defining the bilinear forms on the right- and left-hand
sides of the weak formulation::
#
# Define the bilinear forms on the right- and left-hand sides
u = TrialFunction(V)
v = TestFunction(V)
a = inner(curl(u), curl(v))*dx
b = inner(u, v)*dx
Next we assemble the bilinear forms ``a`` and ``b`` into PETSc
matrices ``A`` and ``B``, so the eigenvalue problem is converted into
a generalized matrix eigenvalue problem :math:`Ax=\lambda B x`.
During the assembly step the essential boundary conditions are
incorporated by modifying the rows and columns of the matrices corresponding to
constrained boundary degrees of freedom. We use ``assemble_system``
rather than ``assemble`` to do the assembly, since it maintains the
symmetry of the matrices. ``assemble_system`` is designed for source
problems, rather than eigenvalue problems, and requires a right-hand
side linear form, so we define a dummy form to feed it. ::
#
# Assemble into PETSc matrices
dummy = v[0]*dx
A = PETScMatrix()
assemble_system(a, dummy, bcs, A_tensor=A)
B = PETScMatrix()
assemble_system(b, dummy, bcs, A_tensor=B)
We zero out the rows of :math:`B` corresponding to constrained
boundary degrees of freedom, so as not to introduce spurious
eigenpairs with nonzero boundary DOFs. ::
#
[bc.zero(B) for bc in bcs]
Now we solve the generalized matrix eigenvalue problem using the SLEPc
package. The behavior of the ``SLEPcEigenSolver`` is controlled by a
parameter set (use ``info(solver, True)`` to see all possible
parameters). We use parameters to set the eigensolution method to
Krylov-Schur, which is good for computing a subset of the eigenvalues
of a sparse matrix, and to tell SLEPc that the matrices ``A`` and
``B`` in the generalized eigenvalue problem are symmetric
(Hermitian). ::
#
solver = SLEPcEigenSolver(A, B)
solver.parameters["solver"] = "krylov-schur"
solver.parameters["problem_type"] = "gen_hermitian"
We specify that we want 12 eigenvalues nearest in magnitude to a
target value of 5.5. Note that when the ``spectrum`` parameter is set
to ``target magnitude``, the ``spectral_transform`` parameter should
be set to ``shift-and-invert`` and the ``spectral_shift`` parameter
should be set equal to the target. ::
#
solver.parameters["spectrum"] = "target magnitude"
solver.parameters["spectral_transform"] = "shift-and-invert"
solver.parameters["spectral_shift"] = 5.5
neigs = 12
solver.solve(neigs)
Finally we collect the computed eigenvalues in list which we convert
to a numpy array and sort before returning. Note that we are not
guaranteed to get the number of eigenvalues requested. The function
``solver.get_number_converged()`` reports the actual number of
eigenvalues computed, which may be more or less than the number
requested. ::
#
# Return the computed eigenvalues in a sorted array
computed_eigenvalues = []
for i in range(min(neigs, solver.get_number_converged())):
r, _ = solver.get_eigenvalue(i) # ignore the imaginary part
computed_eigenvalues.append(r)
return np.sort(np.array(computed_eigenvalues))
**Function print_eigenvalues.** Given just a mesh, the function
``print_eigenvalues`` calls the preceding function ``eigenvalues`` to
solve the Maxwell eigenvalue problem for each of the two finite
element spaces, Nédélec and Lagrange, and prints the results, together
with the known exact eigenvalues::
def print_eigenvalues(mesh):
First we define the Nédélec edge element space and the essential
boundary conditions for it, and call ``eigenvalues`` to compute the
eigenvalues. Since the degrees of freedom for the Nédélec space are
tangential components on element edges, we simply need to constrain
all the DOFs associated to boundary points to zero. ::
#
nedelec_V = FunctionSpace(mesh, "N1curl", 1)
nedelec_bcs = [DirichletBC(nedelec_V, Constant((0.0, 0.0)), DomainBoundary())]
nedelec_eig = eigenvalues(nedelec_V, nedelec_bcs)
Then we do the same for the vector Lagrange elements. Since the
Lagrange DOFs are both components of the vector, we must specify which
component must vanish on which edges (the x-component on horizontal
edges and the y-component on vertical edges). ::
#
lagrange_V = VectorFunctionSpace(mesh, "Lagrange", 1)
lagrange_bcs = [DirichletBC(lagrange_V.sub(1), 0, "near(x[0], 0) || near(x[0], pi)"),
DirichletBC(lagrange_V.sub(0), 0, "near(x[1], 0) || near(x[1], pi)")]
lagrange_eig = eigenvalues(lagrange_V, lagrange_bcs)
The true eigenvalues are just the 12 smallest numbers of the form
:math:`m^2 + n^2`, :math:`m,n\ge0`, not counting 0. ::
#
true_eig = np.sort(np.array([float(m**2 + n**2) for m in range(6) for n in range(6)]))[1:13]
Finally we print the results::
#
np.set_printoptions(formatter={'float': '{:5.2f}'.format})
print("Nedelec: {}".format(nedelec_eig))
print("Lagrange: {}".format(lagrange_eig))
print("Exact: {}".format(true_eig))
**Calling the functions.** To complete the program, we call
``print_eigenvalues`` for each of two different meshes ::
mesh = RectangleMesh(Point(0, 0), Point(pi, pi), 40, 40)
print("\ndiagonal mesh")
print_eigenvalues(mesh)
mesh = RectangleMesh(Point(0, 0), Point(pi, pi), 40, 40, "crossed")
print("\ncrossed mesh")
print_eigenvalues(mesh)
|