File: demo_multimesh-poisson.py

package info (click to toggle)
dolfin 2018.1.0.post1-16
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 28,764 kB
  • sloc: xml: 104,040; cpp: 98,856; python: 22,511; makefile: 204; sh: 182
file content (132 lines) | stat: -rw-r--r-- 3,514 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (C) 2015 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2015-11-05
# Last changed: 2015-11-17
#
# This demo program solves Poisson's equation on a domain defined by
# three overlapping and non-matching meshes. The solution is computed
# on a sequence of rotating meshes to test the multimesh
# functionality.

from dolfin import *

class DirichletBoundary(SubDomain):
    def inside(self, x, on_boundary):
        return on_boundary

def solve_poisson(t, x1, y1, x2, y2):
    "Compute solution for given mesh configuration"

    # Create meshes
    r = 0.5
    mesh_0 = RectangleMesh(Point(-r, -r), Point(r, r), 16, 16)
    mesh_1 = RectangleMesh(Point(x1 - r, y1 - r), Point(x1 + r, y1 + r), 8, 8)
    mesh_2 = RectangleMesh(Point(x2 - r, y2 - r), Point(x2 + r, y2 + r), 8, 8)
    mesh_1.rotate(70*t)
    mesh_2.rotate(-70*t)

    # Build multimesh
    multimesh = MultiMesh()
    multimesh.add(mesh_0)
    multimesh.add(mesh_1)
    multimesh.add(mesh_2)
    multimesh.build()

    # Create function space
    V = MultiMeshFunctionSpace(multimesh, "Lagrange", 1)

    # Define trial and test functions and right-hand side
    u = TrialFunction(V)
    v = TestFunction(V)
    f = Constant(1)

    # Define facet normal and mesh size
    n = FacetNormal(multimesh)
    h = 2.0*Circumradius(multimesh)
    h = (h('+') + h('-')) / 2

    # Set parameters
    alpha = 10.0
    beta = 1.0

    # Define bilinear form
    a = dot(grad(u), grad(v))*dX \
      - dot(avg(grad(u)), jump(v, n))*dI \
      - dot(avg(grad(v)), jump(u, n))*dI \
      + alpha/h * jump(u)*jump(v)*dI \
      + beta/h**2 * dot(jump(u), jump(v))*dO

    # Define linear form
    L = f*v*dX

    # Assemble linear system
    A = assemble_multimesh(a)
    b = assemble_multimesh(L)

    # Apply boundary condition
    zero = Constant(0)
    boundary = DirichletBoundary()
    bc = MultiMeshDirichletBC(V, zero, boundary)
    bc.apply(A, b)

    # Lock inactive dofs
    V.lock_inactive_dofs(A, b)

    # Compute solution
    u = MultiMeshFunction(V)
    solve(A, u.vector(), b)

    return u

if MPI.size(MPI.comm_world) > 1:
    info("Sorry, this demo does not (yet) run in parallel.")
    exit(0)

# Parameters
T = 10.0
N = 100
dt = T / N

# Create files for output
f0 = XDMFFile("output/u0.xdmf")
f1 = XDMFFile("output/u1.xdmf")
f2 = XDMFFile("output/u2.xdmf")

# Iterate over configurations
for n in range(N):
    info("Computing solution, step %d / %d." % (n + 1, N))

    # Compute coordinates for meshes
    t = dt*n
    x1 = sin(t)*cos(2*t)
    y1 = cos(t)*cos(2*t)
    x2 = cos(t)*cos(2*t)
    y2 = sin(t)*cos(2*t)

    # Compute solution
    u = solve_poisson(t, x1, y1, x2, y2)

    # Save to file
    f0.write(u.part(0, deepcopy=True), t)
    f1.write(u.part(1, deepcopy=True), t)
    f2.write(u.part(2, deepcopy=True), t)

# Close files
f0.close()
f1.close()
f2.close()