1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
"""Unit tests for assembly"""
# Copyright (C) 2011-2014 Garth N. Wells
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Marie E. Rognes 2011
# Modified by Anders Logg 2011
# Modified by Martin Alnes 2014
import pytest
import os
import numpy
from dolfin import *
from dolfin_utils.test import skip_in_parallel, filedir, pushpop_parameters
def test_cell_size_assembly_1D():
mesh = UnitIntervalMesh(10)
assert round(assemble(2*Circumradius(mesh)*dx) - 0.1, 12) == 0
assert round(assemble(CellDiameter(mesh)*dx) - 0.1, 12) == 0
assert round(assemble(CellVolume(mesh)*dx) - 0.1, 12) == 0
def test_cell_assembly_1D():
mesh = UnitIntervalMesh(48)
V = FunctionSpace(mesh, "CG", 1)
v = TestFunction(V)
u = TrialFunction(V)
f = Constant(10.0)
a = inner(grad(v), grad(u))*dx
L = inner(v, f)*dx
A_frobenius_norm = 811.75365721381274397572
b_l2_norm = 1.43583841167606474087
# Assemble A and b
assert round(assemble(a).norm("frobenius") - A_frobenius_norm, 10) == 0
assert round(assemble(L).norm("l2") - b_l2_norm, 10) == 0
def test_cell_assembly():
mesh = UnitCubeMesh(4, 4, 4)
V = VectorFunctionSpace(mesh, "DG", 1)
v = TestFunction(V)
u = TrialFunction(V)
f = Constant((10, 20, 30))
def epsilon(v):
return 0.5*(grad(v) + grad(v).T)
a = inner(epsilon(v), epsilon(u))*dx
L = inner(v, f)*dx
A_frobenius_norm = 4.3969686527582512
b_l2_norm = 0.95470326978246278
# Assemble A and b
assert round(assemble(a).norm("frobenius") - A_frobenius_norm, 10) == 0
assert round(assemble(L).norm("l2") - b_l2_norm, 10) == 0
def test_facet_assembly(pushpop_parameters):
parameters["ghost_mode"] = "shared_facet"
mesh = UnitSquareMesh(24, 24)
V = FunctionSpace(mesh, "DG", 1)
# Define test and trial functions
v = TestFunction(V)
u = TrialFunction(V)
# Define normal component, mesh size and right-hand side
n = FacetNormal(mesh)
h = 2*Circumradius(mesh)
h_avg = (h('+') + h('-'))/2
f = Expression("500.0*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)", degree=1)
# Define bilinear form
a = dot(grad(v), grad(u))*dx \
- dot(avg(grad(v)), jump(u, n))*dS \
- dot(jump(v, n), avg(grad(u)))*dS \
+ 4.0/h_avg*dot(jump(v, n), jump(u, n))*dS \
- dot(grad(v), u*n)*ds \
- dot(v*n, grad(u))*ds \
+ 8.0/h*v*u*ds
# Define linear form
L = v*f*dx
# Reference values
A_frobenius_norm = 157.867392938645
b_l2_norm = 1.48087142738768
# Assemble A and b
assert round(assemble(a).norm("frobenius") - A_frobenius_norm, 10) == 0
assert round(assemble(L).norm("l2") - b_l2_norm, 10) == 0
def test_ghost_mode_handling(pushpop_parameters):
def _form():
# Return form with trivial interior facet integral
mesh = UnitSquareMesh(10, 10)
ff = MeshFunction('size_t', mesh, mesh.topology().dim()-1, 0)
AutoSubDomain(lambda x: near(x[0], 0.5)).mark(ff, 1)
return Constant(1.0)*dS(domain=mesh, subdomain_data=ff, subdomain_id=1)
# Not-ghosted mesh won't work in parallel and assembler should raise
parameters["ghost_mode"] = "none"
if MPI.size(MPI.comm_world) == 1:
assert numpy.isclose(assemble(_form()), 1.0)
else:
form = _form()
with pytest.raises(RuntimeError) as excinfo:
assemble(form)
assert "Incorrect mesh ghost mode" in repr(excinfo.value)
# Ghosted meshes work everytime
parameters["ghost_mode"] = "shared_vertex"
assert numpy.isclose(assemble(_form()), 1.0)
parameters["ghost_mode"] = "shared_facet"
assert numpy.isclose(assemble(_form()), 1.0)
@pytest.mark.parametrize('mesh_factory, facet_area', [((UnitSquareMesh, (4, 4)), 4.0),
((UnitCubeMesh, (2, 2, 2)), 6.0),
((UnitSquareMesh.create, (4, 4, CellType.Type.quadrilateral)), 4.0),
((UnitCubeMesh.create, (2, 2, 2, CellType.Type.hexahedron)), 6.0)])
def test_functional_assembly(mesh_factory, facet_area):
func, args = mesh_factory
mesh = func(*args)
f = Constant(1.0)
M0 = f*dx(mesh)
assert round(assemble(M0) - 1.0, 7) == 0
M1 = f*ds(mesh)
assert round(assemble(M1) - facet_area, 7) == 0
@pytest.mark.parametrize('mesh_factory', [(UnitCubeMesh, (4, 4, 4)), (UnitCubeMesh.create, (4, 4, 4, CellType.Type.hexahedron))])
def test_subdomain_and_fulldomain_assembly_meshdomains(mesh_factory):
"""Test assembly over subdomains AND the full domain with markers
stored as part of the mesh.
"""
# Create a mesh of the unit cube
func, args = mesh_factory
mesh = func(*args)
# Define subdomains for 3 faces of the unit cube
class F0(SubDomain):
def inside(self, x, inside):
return near(x[0], 0.0)
class F1(SubDomain):
def inside(self, x, inside):
return near(x[1], 0.0)
class F2(SubDomain):
def inside(self, x, inside):
return near(x[2], 0.0)
# Define subdomains for 3 parts of the unit cube
class S0(SubDomain):
def inside(self, x, inside):
return x[0] > 0.25
class S1(SubDomain):
def inside(self, x, inside):
return x[0] > 0.5
class S2(SubDomain):
def inside(self, x, inside):
return x[0] > 0.75
# Mark mesh
f0 = F0()
f1 = F1()
f2 = F2()
f0.mark_facets(mesh, 0)
f1.mark_facets(mesh, 1)
f2.mark_facets(mesh, 3) # NB! 3, to leave a gap
s0 = S0()
s1 = S1()
s2 = S2()
s0.mark_cells(mesh, 0)
s1.mark_cells(mesh, 1)
s2.mark_cells(mesh, 3) # NB! 3, to leave a gap
# Assemble forms on subdomains and full domain and compare
krange = list(range(5))
for dmu in (dx, ds):
full = assemble(Constant(3.0)*dmu(mesh))
subplusfull = [assemble(Constant(3.0)*dmu(mesh) +
Constant(1.0)*dmu(k, domain=mesh))
for k in krange]
sub = [assemble(Constant(1.0)*dmu(k, domain=mesh)) for k in krange]
for k in krange:
# print sub[k] + full, subplusfull[k]
assert round(sub[k] + full - subplusfull[k], 7) == 0
@skip_in_parallel
def test_subdomain_assembly_form_1():
"Test assembly over subdomains with markers stored as part of form"
mesh = UnitSquareMesh(4, 4)
# Define cell/facet function
class Left(SubDomain):
def inside(self, x, on_boundary):
return x[0] < 0.49
subdomains = MeshFunction("size_t", mesh, mesh.topology().dim())
subdomains.set_all(0)
left = Left()
left.mark(subdomains, 1)
class RightBoundary(SubDomain):
def inside(self, x, on_boundary):
return x[0] > 0.95
boundaries = MeshFunction("size_t", mesh, mesh.topology().dim()-1)
boundaries.set_all(0)
right = RightBoundary()
right.mark(boundaries, 1)
V = FunctionSpace(mesh, "CG", 2)
f = Expression("x[0] + 2", degree=1)
g = Expression("x[1] + 1", degree=1)
f = interpolate(f, V)
g = interpolate(g, V)
mesh1 = subdomains.mesh()
mesh2 = boundaries.mesh()
assert mesh1.id() == mesh2.id()
assert mesh1.ufl_domain().ufl_id() == mesh2.ufl_domain().ufl_id()
dxs = dx(subdomain_data=subdomains)
dss = ds(subdomain_data=boundaries)
assert dxs.ufl_domain() == None
assert dss.ufl_domain() == None
assert dxs.subdomain_data() == subdomains
assert dss.subdomain_data() == boundaries
M = f*f*dxs(0) + g*f*dxs(1) + f*f*dss(1)
assert M.ufl_domains() == (mesh.ufl_domain(),)
sd = M.subdomain_data()[mesh.ufl_domain()]
assert sd["cell"] == subdomains
assert sd["exterior_facet"] == boundaries
# Check that subdomains are respected
reference = 15.0
assert round(assemble(M) - reference, 10) == 0
# Check that the form itself assembles as before
assert round(assemble(M) - reference, 10) == 0
# Take action of derivative of M on f
df = TestFunction(V)
L = derivative(M, f, df)
dg = TrialFunction(V)
F = derivative(L, g, dg)
b = action(F, f)
# Check that domain data carries across transformations:
reference = 0.136477465659
assert round(assemble(b).norm("l2") - reference, 8) == 0
def test_subdomain_assembly_form_2():
"Test assembly over subdomains with markers stored as part of form"
# Define mesh
mesh = UnitSquareMesh(8, 8)
# Define domain for lower left corner
class MyDomain(SubDomain):
def inside(self, x, on_boundary):
return x[0] < 0.5 + DOLFIN_EPS and x[1] < 0.5 + DOLFIN_EPS
my_domain = MyDomain()
# Define boundary for lower left corner
class MyBoundary(SubDomain):
def inside(self, x, on_boundary):
return (x[0] < 0.5 + DOLFIN_EPS and x[1] < DOLFIN_EPS) or \
(x[1] < 0.5 + DOLFIN_EPS and x[0] < DOLFIN_EPS)
my_boundary = MyBoundary()
# Mark mesh functions
D = mesh.topology().dim()
cell_domains = MeshFunction("size_t", mesh, D)
exterior_facet_domains = MeshFunction("size_t", mesh, D - 1)
cell_domains.set_all(1)
exterior_facet_domains.set_all(1)
my_domain.mark(cell_domains, 0)
my_boundary.mark(exterior_facet_domains, 0)
# Define forms
c = Constant(1.0)
a0 = c*dx(0, domain=mesh, subdomain_data=cell_domains)
a1 = c*ds(0, domain=mesh, subdomain_data=exterior_facet_domains)
assert round(assemble(a0) - 0.25, 7) == 0
assert round(assemble(a1) - 1.0, 7) == 0
def test_nonsquare_assembly():
"""Test assembly of a rectangular matrix"""
mesh = UnitSquareMesh(16, 16)
V = VectorElement("Lagrange", mesh.ufl_cell(), 2)
Q = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
W = V*Q
V = FunctionSpace(mesh, V)
Q = FunctionSpace(mesh, Q)
W = FunctionSpace(mesh, W)
(v, q) = TestFunctions(W)
(u, p) = TrialFunctions(W)
a = div(v)*p*dx
A_frobenius_norm = 9.6420303878382718e-01
assert round(assemble(a).norm("frobenius") - A_frobenius_norm, 10) == 0
v = TestFunction(V)
p = TrialFunction(Q)
a = inner(grad(p), v)*dx
A_frobenius_norm = 0.935414346693
assert round(assemble(a).norm("frobenius") - A_frobenius_norm, 10) == 0
@skip_in_parallel
def test_reference_assembly(filedir, pushpop_parameters):
"Test assembly against a reference solution"
# NOTE: This test is not robust as it relies on specific
# DOF order, which cannot be guaranteed
parameters["reorder_dofs_serial"] = False
# Load reference mesh (just a simple tetrahedron)
mesh = Mesh(os.path.join(filedir, "tetrahedron.xml"))
# Assemble stiffness and mass matrices
V = FunctionSpace(mesh, "Lagrange", 1)
u, v = TrialFunction(V), TestFunction(V)
A, M = EigenMatrix(), EigenMatrix()
assemble(dot(grad(v), grad(u))*dx, tensor=A)
assemble(v*u*dx, tensor=M)
# Run test (requires SciPy)
try:
import scipy
A = A.sparray().todense()
M = M.sparray().todense()
# Create reference matrices and set entries
A0 = numpy.array([[1.0/2.0, -1.0/6.0, -1.0/6.0, -1.0/6.0],
[-1.0/6.0, 1.0/6.0, 0.0, 0.0],
[-1.0/6.0, 0.0, 1.0/6.0, 0.0],
[-1.0/6.0, 0.0, 0.0, 1.0/6.0]])
M0 = numpy.array([[1.0/60.0, 1.0/120.0, 1.0/120.0, 1.0/120.0],
[1.0/120.0, 1.0/60.0, 1.0/120.0, 1.0/120.0],
[1.0/120.0, 1.0/120.0, 1.0/60.0, 1.0/120.0],
[1.0/120.0, 1.0/120.0, 1.0/120.0, 1.0/60.0]])
C = A - A0
assert round(numpy.linalg.norm(C, 'fro') - 0.0, 7) == 0
D = M - M0
assert round(numpy.linalg.norm(D, 'fro') - 0.0, 7) == 0
except:
print("Cannot run this test without SciPy")
def test_ways_to_pass_mesh_to_assembler():
mesh = UnitSquareMesh(16, 16)
# Geometry with mesh (ufl.Domain with mesh in domain data)
x = SpatialCoordinate(mesh)
n = FacetNormal(mesh)
# Geometry with just cell (no reference to mesh, for backwards
# compatibility)
x2 = SpatialCoordinate(mesh)
n2 = FacetNormal(mesh)
# A function equal to x[0] for comparison
V = FunctionSpace(mesh, "CG", 1)
f = Function(V)
f.interpolate(Expression("x[0]", degree=1))
# An expression equal to x[0], with different geometry info:
e = Expression("x[0]", degree=1) # nothing
e2 = Expression("x[0]", cell=mesh.ufl_cell(), degree=1) # cell
e3 = Expression("x[0]", element=V.ufl_element()) # ufl element
e4 = Expression("x[0]", domain=mesh, degree=1) # mesh
# Provide mesh in measure:
dx2 = Measure("dx", domain=mesh)
assert round(1.0 - assemble(1*dx(mesh)), 7) == 0
assert round(1.0 - assemble(Constant(1.0)*dx(mesh)), 7) == 0
assert round(1.0 - assemble(Constant(1.0)*dx2), 7) == 0
# Try with cell argument to Constant as well:
assert round(1.0 - assemble(Constant(1.0,
cell=mesh.ufl_cell())*dx(mesh))) == 0
assert round(1.0 - assemble(Constant(1.0, cell=mesh.ufl_cell())*dx2)) == 0
assert round(1.0 - assemble(Constant(1.0,
cell=mesh.ufl_cell())*dx(mesh))) == 0
assert round(1.0 - assemble(Constant(1.0, cell=mesh.ufl_cell())*dx2)) == 0
# Geometric quantities with mesh in domain:
assert round(0.5 - assemble(x[0]*dx), 7) == 0
assert round(0.5 - assemble(x[0]*dx(mesh)), 7) == 0
# Geometric quantities without mesh in domain:
assert round(0.5 - assemble(x2[0]*dx(mesh)), 7) == 0
# Functions with mesh in domain:
assert round(0.5 - assemble(f*dx), 7) == 0
assert round(0.5 - assemble(f*dx(mesh)), 7) == 0
# Expressions with and without mesh in domain:
assert round(0.5 - assemble(e*dx(mesh)), 7) == 0
assert round(0.5 - assemble(e2*dx(mesh)), 7) == 0
assert round(0.5 - assemble(e3*dx(mesh)), 7) == 0
assert round(0.5 - assemble(e4*dx), 7) == 0 # e4 has a domain with mesh reference
assert round(0.5 - assemble(e4*dx(mesh)), 7) == 0
# Geometric quantities with mesh in domain:
assert round(0.0 - assemble(n[0]*ds), 7) == 0
assert round(0.0 - assemble(n[0]*ds(mesh)), 7) == 0
# Geometric quantities without mesh in domain:
assert round(0.0 - assemble(n2[0]*ds(mesh)), 7) == 0
|