File: test_dirichlet_bc.py

package info (click to toggle)
dolfin 2018.1.0.post1-16
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 28,764 kB
  • sloc: xml: 104,040; cpp: 98,856; python: 22,511; makefile: 204; sh: 182
file content (265 lines) | stat: -rw-r--r-- 7,929 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""Unit tests for Dirichlet boundary conditions"""

# Copyright (C) 2011-2017 Garth N. Wells
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Kent-Andre Mardal 2011
# Modified by Anders Logg 2011
# Modified by Martin Alnaes 2012

import os

import pytest
import numpy

from dolfin import *
from dolfin_utils.test import skip_in_parallel, datadir


def test_instantiation():
    """ A rudimentary test for instantiation"""
    # FIXME: Needs to be expanded
    mesh = UnitCubeMesh(8, 8, 8)
    V = FunctionSpace(mesh, "CG", 1)

    bc0 = DirichletBC(V, 1, "x[0]<0")
    bc1 = DirichletBC(bc0)
    assert bc0.function_space() == bc1.function_space()


def test_director_lifetime():
    """Test for any problems with objects with directors going out
    of scope"""

    class Boundary(SubDomain):
        def inside(self, x, on_boundary): return on_boundary

    class BoundaryFunction(UserExpression):
        def eval(self, values, x): values[0] = 1.0

    mesh = UnitSquareMesh(8, 8)
    V = FunctionSpace(mesh, "Lagrange", 1)
    v, u = TestFunction(V), TrialFunction(V)

    A0 = assemble(v*u*dx)
    bc0 = DirichletBC(V, BoundaryFunction(degree=1), Boundary())
    bc0.apply(A0)

    bc1 = DirichletBC(V, Expression("1.0", degree=0), CompiledSubDomain("on_boundary"))
    A1 = assemble(v*u*dx)
    bc1.apply(A1)

    assert round(A1.norm("frobenius") - A0.norm("frobenius"), 7) == 0


def test_get_values():
    mesh = UnitSquareMesh(8, 8)
    dofs = numpy.zeros(3, dtype="I")

    def upper(x, on_boundary):
        return x[1] > 0.5 + DOLFIN_EPS

    V = FunctionSpace(mesh, "CG", 1)
    bc = DirichletBC(V, 0.0, upper)
    bc_values = bc.get_boundary_values()


def test_user_meshfunction_domains():
    mesh0 = UnitSquareMesh(12, 12)
    mesh1 = UnitSquareMesh(12, 12)
    V = FunctionSpace(mesh0, "CG", 1)

    DirichletBC(V, Constant(0.0), MeshFunction("size_t", mesh0, 1), 0)
    DirichletBC(V, Constant(0.0), MeshFunction("size_t", mesh0, mesh0.topology().dim()-1), 0)
    with pytest.raises(RuntimeError):
        DirichletBC(V, 0.0, MeshFunction("size_t", mesh0, mesh0.topology().dim()), 0)
        DirichletBC(V, 0.0, MeshFunction("size_t", mesh0, 0), 0)
        DirichletBC(V, 0.0, MeshFunction("size_t", mesh1, mesh1.topology().dim()-1), 0)


@skip_in_parallel
@pytest.mark.parametrize("degree", [1, 2])
@pytest.mark.parametrize("element_type",
                         ["RT", "DRT", "BDM", "N1curl", "N2curl"])
def test_bc_for_piola_on_manifolds(element_type, degree):
    """Testing DirichletBC for piolas over standard domains vs manifolds.

    """
    n = 4
    side = CompiledSubDomain("near(x[2], 0.0)")
    mesh = SubMesh(BoundaryMesh(UnitCubeMesh(n, n, n), "exterior"), side)
    mesh.init_cell_orientations(Expression(("0.0", "0.0", "1.0"), degree=0))
    square = UnitSquareMesh(n, n)

    V = FunctionSpace(mesh, element_type, degree)
    bc = DirichletBC(V, (1.0, 0.0, 0.0), "on_boundary")
    u = Function(V)
    bc.apply(u.vector())
    b0 = assemble(inner(u, u)*dx)

    V = FunctionSpace(square, element_type, degree)
    bc = DirichletBC(V, (1.0, 0.0), "on_boundary")
    u = Function(V)
    bc.apply(u.vector())
    b1 = assemble(inner(u, u)*dx)
    assert round(b0 - b1, 7) == 0


def test_zero():
    mesh = UnitSquareMesh(4, 4)
    V = FunctionSpace(mesh, "CG", 1)
    u1 = interpolate(Constant(1.0), V)

    bc = DirichletBC(V, 0, "on_boundary")

    # Create arbitrary matrix of size V.dim()
    #
    # Note: Identity matrix would suffice, but there doesn't seem
    # an easy way to construct it in dolfin

    v, u = TestFunction(V), TrialFunction(V)
    A0 = assemble(u*v*dx)

    # Zero rows at boundary dofs
    bc.zero(A0)

    u1_zero = Function(V)
    u1_zero.vector()[:] = A0 * u1.vector()

    boundaryIntegral = assemble(u1_zero * ds)
    assert near(boundaryIntegral, 0.0)


@skip_in_parallel
def test_zero_columns_offdiag():
    """Test zero_columns applied to offdiagonal block"""
    mesh = UnitSquareMesh(20, 20)
    V = VectorFunctionSpace(mesh, "P", 2)
    Q = FunctionSpace(mesh, "P", 1)
    u = TrialFunction(V)
    q = TestFunction(Q)
    a = inner(div(u), q)*dx
    L = inner(Constant(0), q)*dx
    A = assemble(a)
    b = assemble(L)

    bc = DirichletBC(V, Constant((-32.23333, 43243.1)), 'on_boundary')

    # Compute residual with x satisfying bc before zero_columns
    u = Function(V)
    x = u.vector()
    bc.apply(x)
    r0 = A*x - b

    bc.zero_columns(A, b)

    # Test that A gets zero columns
    bc_dict = bc.get_boundary_values()
    for i in range(*A.local_range(0)):
        cols, vals = A.getrow(i)
        for j, v in zip(cols, vals):
            if j in bc_dict:
                assert v == 0.0

    # Compute residual with x satisfying bc after zero_columns
    # and check that it is preserved
    r1 = A*x - b
    assert numpy.isclose((r1-r0).norm('linf'), 0.0)


@skip_in_parallel
def test_zero_columns_square():
    """Test zero_columns applied to square matrix"""
    mesh = UnitSquareMesh(20, 20)
    V = FunctionSpace(mesh, "P", 1)
    u, v = TrialFunction(V), TestFunction(V)
    a = inner(grad(u), grad(v))*dx
    L = Constant(0)*v*dx
    A = assemble(a)
    b = assemble(L)
    u = Function(V)
    x = u.vector()

    bc = DirichletBC(V, 666.0, 'on_boundary')
    bc.zero_columns(A, b, 42.0)

    # Check that A gets zeros in bc rows and bc columns and 42 on
    # diagonal
    bc_dict = bc.get_boundary_values()
    for i in range(*A.local_range(0)):
        cols, vals = A.getrow(i)
        for j, v in zip(cols, vals):
            if i in bc_dict or j in bc_dict:
                if i == j:
                    assert numpy.isclose(v, 42.0)
                else:
                    assert v == 0.0

    # Check that solution of linear system works
    solve(A, x, b)
    assert numpy.isclose((b-A*x).norm('linf'), 0.0)
    x1 = x.copy()
    bc.apply(x1)
    x1 -= x
    assert numpy.isclose(x1.norm('linf'), 0.0)


def test_homogenize_consistency():
    mesh = UnitIntervalMesh(10)
    V = FunctionSpace(mesh, "CG", 1)

    for method in ['topological', 'geometric', 'pointwise']:
        bc = DirichletBC(V, Constant(0), "on_boundary", method=method)
        bc_new = DirichletBC(bc)
        bc_new.homogenize()
        assert bc_new.method() == bc.method()


def test_nocaching_values():
    """There might be caching of dof indices in DirichletBC.
    But caching of values is _not_ allowed."""
    mesh = UnitSquareMesh(4, 4)
    V = FunctionSpace(mesh, "P", 1)
    u = Function(V)
    x = u.vector()

    for method in ["topological", "geometric", "pointwise"]:
        bc = DirichletBC(V, 0.0, lambda x, b: True, method=method)

        x.zero()
        bc.set_value(Constant(1.0))
        bc.apply(x)
        assert numpy.allclose(x.get_local(), 1.0)

        x.zero()
        bc.set_value(Constant(2.0))
        bc.apply(x)
        assert numpy.allclose(x.get_local(), 2.0)


def test_get_value():
    mesh = UnitSquareMesh(4, 4)

    vspace_dim = 4
    V = VectorFunctionSpace(mesh, "CG", 1, dim=vspace_dim)

    boundary_constant = Constant((0.0, 1.0, 2.0, 3.0))
    bc = DirichletBC(V, boundary_constant, "on_boundary")

    assert bc.value() == boundary_constant.cpp_object()
    for j in range(vspace_dim):
        assert bc.value().values()[j] == boundary_constant.values()[j]