1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
"""Unit tests for the fem interface"""
# Copyright (C) 2009-2014 Garth N. Wells
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
import pytest
import numpy as np
import sys
from dolfin import *
from dolfin_utils.test import *
xfail = pytest.mark.xfail(strict=True)
@fixture
def mesh():
return UnitSquareMesh(4, 4)
reorder_dofs = set_parameters_fixture("reorder_dofs_serial", [True, False])
@pytest.mark.parametrize('mesh_factory', [(UnitIntervalMesh, (8,)),
(UnitSquareMesh, (4, 4)),
(UnitCubeMesh, (2, 2, 2)),
# cell.contains(Point) does not work correctly
# for quad/hex cells once it is fixed, this test will pass
pytest.param(((UnitSquareMesh.create, (4, 4, CellType.Type.quadrilateral))), marks=xfail),
pytest.param(((UnitCubeMesh.create, (2, 2, 2, CellType.Type.hexahedron))), marks=xfail)])
def test_tabulate_all_coordinates(mesh_factory):
func, args = mesh_factory
mesh = func(*args)
V = FunctionSpace(mesh, "Lagrange", 1)
W0 = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
W1 = VectorElement("Lagrange", mesh.ufl_cell(), 1)
W = FunctionSpace(mesh, W0*W1)
D = mesh.geometry().dim()
V_dofmap = V.dofmap()
W_dofmap = W.dofmap()
all_coords_V = V.tabulate_dof_coordinates()
all_coords_W = W.tabulate_dof_coordinates()
local_size_V = V_dofmap.ownership_range()[1]-V_dofmap.ownership_range()[0]
local_size_W = W_dofmap.ownership_range()[1]-W_dofmap.ownership_range()[0]
all_coords_V = all_coords_V.reshape(local_size_V, D)
all_coords_W = all_coords_W.reshape(local_size_W, D)
checked_V = [False]*local_size_V
checked_W = [False]*local_size_W
# Check that all coordinates are within the cell it should be
for cell in cells(mesh):
dofs_V = V_dofmap.cell_dofs(cell.index())
for di in dofs_V:
if di >= local_size_V:
continue
assert cell.contains(Point(all_coords_V[di]))
checked_V[di] = True
dofs_W = W_dofmap.cell_dofs(cell.index())
for di in dofs_W:
if di >= local_size_W:
continue
assert cell.contains(Point(all_coords_W[di]))
checked_W[di] = True
# Assert that all dofs have been checked by the above
assert all(checked_V)
assert all(checked_W)
@pytest.mark.parametrize('mesh_factory', [(UnitSquareMesh, (4, 4)), (UnitSquareMesh.create, (4, 4, CellType.Type.quadrilateral))])
def test_tabulate_dofs(mesh_factory):
func, args = mesh_factory
mesh = func(*args)
W0 = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
W1 = VectorElement("Lagrange", mesh.ufl_cell(), 1)
W = FunctionSpace(mesh, W0*W1)
L0 = W.sub(0)
L1 = W.sub(1)
L01 = L1.sub(0)
L11 = L1.sub(1)
for i, cell in enumerate(cells(mesh)):
dofs0 = L0.dofmap().cell_dofs(cell.index())
dofs1 = L01.dofmap().cell_dofs(cell.index())
dofs2 = L11.dofmap().cell_dofs(cell.index())
dofs3 = L1.dofmap().cell_dofs(cell.index())
assert np.array_equal(dofs0, L0.dofmap().cell_dofs(i))
assert np.array_equal(dofs1, L01.dofmap().cell_dofs(i))
assert np.array_equal(dofs2, L11.dofmap().cell_dofs(i))
assert np.array_equal(dofs3, L1.dofmap().cell_dofs(i))
assert len(np.intersect1d(dofs0, dofs1)) == 0
assert len(np.intersect1d(dofs0, dofs2)) == 0
assert len(np.intersect1d(dofs1, dofs2)) == 0
assert np.array_equal(np.append(dofs1, dofs2), dofs3)
@pytest.mark.parametrize('mesh_factory', [(UnitSquareMesh, (4, 4)), (UnitSquareMesh.create, (4, 4, CellType.Type.quadrilateral))])
def test_tabulate_coord_periodic(mesh_factory):
class PeriodicBoundary2(SubDomain):
def inside(self, x, on_boundary):
return x[0] < DOLFIN_EPS
def map(self, x, y):
y[0] = x[0] - 1.0
y[1] = x[1]
# Create periodic boundary condition
periodic_boundary = PeriodicBoundary2()
func, args = mesh_factory
mesh = func(*args)
V = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
Q = VectorElement("Lagrange", mesh.ufl_cell(), 1)
W = V*Q
V = FunctionSpace(mesh, V, constrained_domain=periodic_boundary)
W = FunctionSpace(mesh, W, constrained_domain=periodic_boundary)
L0 = W.sub(0)
L1 = W.sub(1)
L01 = L1.sub(0)
L11 = L1.sub(1)
sdim = V.element().space_dimension()
coord0 = np.zeros((sdim, 2), dtype="d")
coord1 = np.zeros((sdim, 2), dtype="d")
coord2 = np.zeros((sdim, 2), dtype="d")
coord3 = np.zeros((sdim, 2), dtype="d")
for cell in cells(mesh):
coord0 = V.element().tabulate_dof_coordinates(cell)
coord1 = L0.element().tabulate_dof_coordinates(cell)
coord2 = L01.element().tabulate_dof_coordinates(cell)
coord3 = L11.element().tabulate_dof_coordinates(cell)
coord4 = L1.element().tabulate_dof_coordinates(cell)
assert (coord0 == coord1).all()
assert (coord0 == coord2).all()
assert (coord0 == coord3).all()
assert (coord4[:sdim] == coord0).all()
assert (coord4[sdim:] == coord0).all()
@pytest.mark.parametrize('mesh_factory', [(UnitSquareMesh, (5, 5)), (UnitSquareMesh.create, (5, 5, CellType.Type.quadrilateral))])
def test_tabulate_dofs_periodic(mesh_factory):
class PeriodicBoundary2(SubDomain):
def inside(self, x, on_boundary):
return x[0] < DOLFIN_EPS
def map(self, x, y):
y[0] = x[0] - 1.0
y[1] = x[1]
func, args = mesh_factory
mesh = func(*args)
# Create periodic boundary
periodic_boundary = PeriodicBoundary2()
V = FiniteElement("Lagrange", mesh.ufl_cell(), 2)
Q = VectorElement("Lagrange", mesh.ufl_cell(), 2)
W = V*Q
V = FunctionSpace(mesh, V, constrained_domain=periodic_boundary)
Q = FunctionSpace(mesh, Q, constrained_domain=periodic_boundary)
W = FunctionSpace(mesh, W, constrained_domain=periodic_boundary)
L0 = W.sub(0)
L1 = W.sub(1)
L01 = L1.sub(0)
L11 = L1.sub(1)
# Check dimensions
assert V.dim() == 110
assert Q.dim() == 220
assert L0.dim() == V.dim()
assert L1.dim() == Q.dim()
assert L01.dim() == V.dim()
assert L11.dim() == V.dim()
for i, cell in enumerate(cells(mesh)):
dofs0 = L0.dofmap().cell_dofs(cell.index())
dofs1 = L01.dofmap().cell_dofs(cell.index())
dofs2 = L11.dofmap().cell_dofs(cell.index())
dofs3 = L1.dofmap().cell_dofs(cell.index())
assert np.array_equal(dofs0, L0.dofmap().cell_dofs(i))
assert np.array_equal(dofs1, L01.dofmap().cell_dofs(i))
assert np.array_equal(dofs2, L11.dofmap().cell_dofs(i))
assert np.array_equal(dofs3, L1.dofmap().cell_dofs(i))
assert len(np.intersect1d(dofs0, dofs1)) == 0
assert len(np.intersect1d(dofs0, dofs2)) == 0
assert len(np.intersect1d(dofs1, dofs2)) == 0
assert np.array_equal(np.append(dofs1, dofs2), dofs3)
@pytest.mark.parametrize('mesh_factory', [(UnitSquareMesh, (3, 3)), (UnitSquareMesh.create, (3, 3, CellType.Type.quadrilateral))])
def test_global_dof_builder(mesh_factory):
func, args = mesh_factory
mesh = func(*args)
V = VectorElement("CG", mesh.ufl_cell(), 1)
Q = FiniteElement("CG", mesh.ufl_cell(), 1)
R = FiniteElement("R", mesh.ufl_cell(), 0)
W = FunctionSpace(mesh, MixedElement([Q, Q, Q, R]))
W = FunctionSpace(mesh, MixedElement([Q, Q, R, Q]))
W = FunctionSpace(mesh, V*R)
W = FunctionSpace(mesh, R*V)
@pytest.mark.parametrize('mesh_factory', [(UnitSquareMesh, (3, 3)), (UnitSquareMesh.create, (3, 3, CellType.Type.quadrilateral))])
def test_dof_to_vertex_map(mesh_factory, reorder_dofs):
func, args = mesh_factory
mesh = func(*args)
def _test_maps_consistency(space):
v2d = vertex_to_dof_map(space)
d2v = dof_to_vertex_map(space)
assert len(v2d) == len(d2v)
assert np.all(v2d[d2v] == np.arange(len(v2d)))
assert np.all(d2v[v2d] == np.arange(len(d2v)))
# Check for both reordered and UFC ordered dofs
v = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
q = VectorElement("Lagrange", mesh.ufl_cell(), 1)
w = v*q
V = FunctionSpace(mesh, v)
Q = FunctionSpace(mesh, q)
W = FunctionSpace(mesh, w)
_test_maps_consistency(V)
_test_maps_consistency(Q)
_test_maps_consistency(W)
u = Function(V)
e = Expression("x[0] + x[1]", degree=1)
u.interpolate(e)
vert_values = mesh.coordinates().sum(1)
func_values = u.vector().get_local(vertex_to_dof_map(V))
assert round(max(abs(func_values - vert_values)), 7) == 0
c0 = Constant((1, 2))
u0 = Function(Q)
u0.interpolate(c0)
vert_values = np.zeros(mesh.num_vertices()*2)
u1 = Function(Q)
vert_values[::2] = 1
vert_values[1::2] = 2
dim = Q.dofmap().index_map().size(IndexMap.MapSize.OWNED)
u1.vector().set_local(vert_values[dof_to_vertex_map(Q)[:dim]].copy())
assert round((u0.vector()-u1.vector()).sum() - 0.0, 7) == 0
W = FunctionSpace(mesh, "DG", 0)
with pytest.raises(RuntimeError):
dof_to_vertex_map(W)
W = FunctionSpace(mesh, q*FiniteElement("R", mesh.ufl_cell(), 0))
with pytest.raises(RuntimeError):
dof_to_vertex_map(W)
W = FunctionSpace(mesh, "CG", 2)
with pytest.raises(RuntimeError):
dof_to_vertex_map(W)
W = VectorFunctionSpace(mesh, "CG", 1)
with pytest.raises(RuntimeError):
dof_to_vertex_map(W.sub(0))
def test_entity_dofs(mesh):
# Test that num entity dofs is correctly wrapped to
# dolfin::DofMap
V = FunctionSpace(mesh, "CG", 1)
assert V.dofmap().num_entity_dofs(0) == 1
assert V.dofmap().num_entity_dofs(1) == 0
assert V.dofmap().num_entity_dofs(2) == 0
V = VectorFunctionSpace(mesh, "CG", 1)
assert V.dofmap().num_entity_dofs(0) == 2
assert V.dofmap().num_entity_dofs(1) == 0
assert V.dofmap().num_entity_dofs(2) == 0
V = FunctionSpace(mesh, "CG", 2)
assert V.dofmap().num_entity_dofs(0) == 1
assert V.dofmap().num_entity_dofs(1) == 1
assert V.dofmap().num_entity_dofs(2) == 0
V = FunctionSpace(mesh, "CG", 3)
assert V.dofmap().num_entity_dofs(0) == 1
assert V.dofmap().num_entity_dofs(1) == 2
assert V.dofmap().num_entity_dofs(2) == 1
V = FunctionSpace(mesh, "DG", 0)
assert V.dofmap().num_entity_dofs(0) == 0
assert V.dofmap().num_entity_dofs(1) == 0
assert V.dofmap().num_entity_dofs(2) == 1
V = FunctionSpace(mesh, "DG", 1)
assert V.dofmap().num_entity_dofs(0) == 0
assert V.dofmap().num_entity_dofs(1) == 0
assert V.dofmap().num_entity_dofs(2) == 3
V = VectorFunctionSpace(mesh, "CG", 1)
# Note this numbering is dependent on FFC and can change This test
# is here just to check that we get correct numbers mapped from
# ufc generated code to dolfin
for i, cdofs in enumerate([[0, 3], [1, 4], [2, 5]]):
dofs = V.dofmap().tabulate_entity_dofs(0, i)
assert all(d == cd for d, cd in zip(dofs, cdofs))
@skip_in_parallel
@pytest.mark.parametrize('mesh_factory', [(UnitSquareMesh, (2, 2)), (UnitSquareMesh.create, (2, 2, CellType.Type.quadrilateral))])
def test_entity_closure_dofs(mesh_factory):
func, args = mesh_factory
mesh = func(*args)
tdim = mesh.topology().dim()
for degree in (1, 2, 3):
V = FunctionSpace(mesh, "CG", degree)
for d in range(tdim + 1):
covered = set()
covered2 = set()
all_entities = np.array([entity for entity in range(mesh.num_entities(d))], dtype=np.uintp)
for entity in all_entities:
entities = np.array([entity], dtype=np.uintp)
dofs_on_this_entity = V.dofmap().entity_dofs(mesh, d, entities)
closure_dofs = V.dofmap().entity_closure_dofs(mesh, d, entities)
assert len(dofs_on_this_entity) == V.dofmap().num_entity_dofs(d)
assert len(dofs_on_this_entity) <= len(closure_dofs)
covered.update(dofs_on_this_entity)
covered2.update(closure_dofs)
dofs_on_all_entities = V.dofmap().entity_dofs(mesh, d, all_entities)
closure_dofs_on_all_entities = V.dofmap().entity_closure_dofs(mesh, d, all_entities)
assert len(dofs_on_all_entities) == V.dofmap().num_entity_dofs(d) * mesh.num_entities(d)
assert covered == set(dofs_on_all_entities)
assert covered2 == set(closure_dofs_on_all_entities)
d = tdim
all_cells = np.array([entity for entity in range(mesh.num_entities(d))], dtype=np.uintp)
assert set(V.dofmap().entity_closure_dofs(mesh, d, all_cells)) == set(range(V.dim()))
def test_clear_sub_map_data_scalar(mesh):
V = FunctionSpace(mesh, "CG", 2)
with pytest.raises(ValueError):
V.sub(1)
V = VectorFunctionSpace(mesh, "CG", 2)
V1 = V.sub(1)
# Clean sub-map data
V.dofmap().clear_sub_map_data()
# Can still get previously computed map
V1 = V.sub(1)
# New sub-map should throw an error
with pytest.raises(RuntimeError):
V.sub(0)
def test_clear_sub_map_data_vector(mesh):
mesh = UnitSquareMesh(8, 8)
P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
W = FunctionSpace(mesh, P1*P1)
# Check block size
assert W.dofmap().block_size() == 2
W.dofmap().clear_sub_map_data()
with pytest.raises(RuntimeError):
W0 = W.sub(0)
with pytest.raises(RuntimeError):
W1 = W.sub(1)
def test_block_size(mesh):
meshes = [UnitSquareMesh(8, 8), UnitCubeMesh(4, 4, 4),
UnitSquareMesh.create(8, 8, CellType.Type.quadrilateral),
UnitCubeMesh.create(4, 4, 4, CellType.Type.hexahedron)]
for mesh in meshes:
P2 = FiniteElement("Lagrange", mesh.ufl_cell(), 2)
V = FunctionSpace(mesh, P2)
assert V.dofmap().block_size() == 1
V = FunctionSpace(mesh, P2*P2)
assert V.dofmap().block_size() == 2
for i in range(1, 6):
W = FunctionSpace(mesh, MixedElement(i*[P2]))
assert W.dofmap().block_size() == i
V = VectorFunctionSpace(mesh, "Lagrange", 2)
assert V.dofmap().block_size() == mesh.geometry().dim()
def test_block_size_real(mesh):
mesh = UnitIntervalMesh(12)
V = FiniteElement('DG', mesh.ufl_cell(), 0)
R = FiniteElement('R', mesh.ufl_cell(), 0)
X = FunctionSpace(mesh, V*R)
assert X.dofmap().block_size() == 1
@skip_in_serial
@pytest.mark.parametrize('mesh_factory', [(UnitIntervalMesh, (8,)),
(UnitSquareMesh, (4, 4)),
(UnitCubeMesh, (2, 2, 2)),
(UnitSquareMesh.create, (4, 4, CellType.Type.quadrilateral)),
(UnitCubeMesh.create, (2, 2, 2, CellType.Type.hexahedron))])
def test_mpi_dofmap_stats(mesh_factory):
func, args = mesh_factory
mesh = func(*args)
V = FunctionSpace(mesh, "CG", 1)
assert len(V.dofmap().shared_nodes()) > 0
neighbours = V.dofmap().neighbours()
for processes in V.dofmap().shared_nodes().values():
for process in processes:
assert process in neighbours
for owner in V.dofmap().off_process_owner():
assert owner in neighbours
@pytest.mark.parametrize('mesh_factory', [(UnitSquareMesh, (4, 4)), (UnitSquareMesh.create, (4, 4, CellType.Type.quadrilateral))])
def test_local_dimension(mesh_factory):
func, args = mesh_factory
mesh = func(*args)
v = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
q = VectorElement("Lagrange", mesh.ufl_cell(), 1)
w = v*q
V = FunctionSpace(mesh, v)
Q = FunctionSpace(mesh, q)
W = FunctionSpace(mesh, w)
for space in [V, Q, W]:
dofmap = space.dofmap()
local_to_global_map = dofmap.tabulate_local_to_global_dofs()
ownership_range = dofmap.ownership_range()
dim1 = dofmap.index_map().size(IndexMap.MapSize.OWNED)
dim2 = dofmap.index_map().size(IndexMap.MapSize.UNOWNED)
dim3 = dofmap.index_map().size(IndexMap.MapSize.ALL)
assert dim1 == ownership_range[1] - ownership_range[0]
assert dim3 == local_to_global_map.size
assert dim1 + dim2 == dim3
# with pytest.raises(RuntimeError):
# dofmap.index_map().size('foo')
# Failures in FFC on quads/hexes
xfail_ffc = pytest.mark.xfail(raises=Exception, strict=True)
@skip_in_parallel
@pytest.mark.parametrize('space', [
"FunctionSpace(UnitIntervalMesh.create(10), 'P', 1)",
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.triangle), 'P', 1)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.tetrahedron), 'P', 1)",
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.quadrilateral), 'Q', 1)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.hexahedron), 'Q', 1)",
"FunctionSpace(UnitIntervalMesh.create(10), 'P', 2)",
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.triangle), 'P', 2)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.tetrahedron), 'P', 2)",
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.quadrilateral), 'Q', 2)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.hexahedron), 'Q', 2)",
"FunctionSpace(UnitIntervalMesh.create(10), 'P', 3)",
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.triangle), 'P', 3)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.tetrahedron), 'P', 3)",
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.quadrilateral), 'Q', 3)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.hexahedron), 'Q', 3)",
"FunctionSpace(UnitIntervalMesh.create(10), 'DP', 1)",
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.triangle), 'DP', 1)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.tetrahedron), 'DP', 1)",
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.quadrilateral), 'DQ', 1)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.hexahedron), 'DQ', 1)",
"FunctionSpace(UnitIntervalMesh.create(10), 'DP', 2)",
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.triangle), 'DP', 2)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.tetrahedron), 'DP', 2)",
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.quadrilateral), 'DQ', 2)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.hexahedron), 'DQ', 2)",
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.triangle), 'N1curl', 1)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.tetrahedron), 'N1curl', 1)",
pytest.param(("FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.quadrilateral), 'N1curl', 1)"), marks=xfail_ffc),
pytest.param(("FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.hexahedron), 'N1curl', 1)"), marks=xfail_ffc),
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.triangle), 'N1curl', 2)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.tetrahedron), 'N1curl', 2)",
pytest.param(("FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.quadrilateral), 'N1curl', 2)"), marks=xfail_ffc),
pytest.param(("FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.hexahedron), 'N1curl', 2)"), marks=xfail_ffc),
"FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.triangle), 'RT', 1)",
"FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.tetrahedron), 'RT', 1)",
pytest.param(("FunctionSpace(UnitSquareMesh.create(6, 6, CellType.Type.quadrilateral), 'RT', 1)"), marks=xfail_ffc),
pytest.param(("FunctionSpace(UnitCubeMesh.create(2, 2, 2, CellType.Type.hexahedron), 'RT', 1)"), marks=xfail_ffc),
])
def test_dofs_dim(space):
"""Test function GenericDofMap::dofs(mesh, dim)"""
V = eval(space)
dofmap = V.dofmap()
mesh = V.mesh()
for dim in range(0, mesh.topology().dim()):
edofs = dofmap.dofs(mesh, dim)
num_mesh_entities = mesh.num_entities(dim)
dofs_per_entity = dofmap.num_entity_dofs(dim)
assert len(edofs) == dofs_per_entity*num_mesh_entities
def test_readonly_view_local_to_global_unwoned(mesh):
"""Test that local_to_global_unwoned() returns readonly
view into the data; in particular test lifetime of data
owner"""
V = FunctionSpace(mesh, "P", 1)
dofmap = V.dofmap()
index_map = dofmap.index_map()
rc = sys.getrefcount(dofmap)
l2gu = dofmap.local_to_global_unowned()
assert sys.getrefcount(dofmap) == rc + 1 if l2gu.size else rc
assert not l2gu.flags.writeable
assert all(l2gu < V.dofmap().global_dimension())
del l2gu
assert sys.getrefcount(dofmap) == rc
rc = sys.getrefcount(index_map)
l2gu = index_map.local_to_global_unowned()
assert sys.getrefcount(index_map) == rc + 1 if l2gu.size else rc
assert not l2gu.flags.writeable
assert all(l2gu < V.dofmap().global_dimension())
del l2gu
assert sys.getrefcount(index_map) == rc
|