File: test_local_solver.py

package info (click to toggle)
dolfin 2018.1.0.post1-16
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 28,764 kB
  • sloc: xml: 104,040; cpp: 98,856; python: 22,511; makefile: 204; sh: 182
file content (207 lines) | stat: -rw-r--r-- 6,630 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""Unit tests for LocalSolver"""

# Copyright (C) 2013 Garth N. Wells
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Steven Vandekerckhove, 2014
# Modified by Tormod Landet, 2015

import pytest
import numpy
from dolfin import *
from dolfin_utils.test import skip_in_parallel
from dolfin_utils.test import set_parameters_fixture
ghost_mode = set_parameters_fixture("ghost_mode", ["shared_facet"])


def test_solve_global_rhs():
    mesh = UnitCubeMesh(2, 3, 3)
    V = FunctionSpace(mesh, "Discontinuous Lagrange", 2)
    W = FunctionSpace(mesh, "Lagrange", 2)

    u, v = TrialFunction(V), TestFunction(V)
    f = Expression("x[0]*x[0] + x[0]*x[1] + x[1]*x[1]", element=W.ufl_element())

    # Forms for projection
    a, L = inner(v, u)*dx, inner(v, f)*dx

    solvers = [LocalSolver.SolverType.LU, LocalSolver.SolverType.Cholesky]
    for solver_type in solvers:

        # First solve
        u = Function(V)
        local_solver = LocalSolver(a, L, solver_type)
        local_solver.solve_global_rhs(u)
        error = assemble((u - f)*(u - f)*dx)
        assert round(error, 10) == 0

        # Test cached factorization
        u.vector().zero()
        local_solver.factorize()
        local_solver.solve_global_rhs(u)
        error = assemble((u - f)*(u - f)*dx)
        assert round(error, 10) == 0

        # Clear cache and re-compute
        u.vector().zero()
        local_solver.clear_factorization()
        local_solver.solve_global_rhs(u)
        error = assemble((u - f)*(u - f)*dx)
        assert round(error, 10) == 0


def test_solve_local_rhs(ghost_mode):
    mesh = UnitCubeMesh(1, 5, 1)
    V = FunctionSpace(mesh, "Lagrange", 2)
    W = FunctionSpace(mesh, "Lagrange", 2)

    u, v = TrialFunction(V), TestFunction(V)
    f = Constant(10.0)

    # Forms for projection
    a, L = inner(v, u)*dx, inner(v, f)*dx

    solvers = [LocalSolver.SolverType.LU, LocalSolver.SolverType.Cholesky]
    for solver_type in solvers:

        # First solve
        u = Function(V)
        local_solver = LocalSolver(a, L, solver_type)
        local_solver.solve_local_rhs(u)
        x = u.vector().copy()
        x[:] = 10.0
        assert round((u.vector() - x).norm("l2") - 0.0, 10) == 0

        u.vector().zero()
        local_solver.factorize()
        local_solver.solve_local_rhs(u)
        assert round((u.vector() - x).norm("l2") - 0.0, 10) == 0

        u.vector().zero()
        local_solver.clear_factorization()
        local_solver.solve_local_rhs(u)
        assert round((u.vector() - x).norm("l2") - 0.0, 10) == 0


def test_solve_local_rhs_facet_integrals(ghost_mode):
    mesh = UnitSquareMesh(4, 4)

    # Facet function is used here to verify that the proper domains
    # of the rhs are used unlike before where the rhs domains were
    # taken to be the same as the lhs domains
    marker = MeshFunction("size_t", mesh, mesh.topology().dim()-1, 0)
    ds0 = Measure("ds", domain=mesh, subdomain_data=marker, subdomain_id=0)

    Vu = VectorFunctionSpace(mesh, 'DG', 1)
    Vv = FunctionSpace(mesh, 'DGT', 1)
    u = TrialFunction(Vu)
    v = TestFunction(Vv)

    n = FacetNormal(mesh)
    w = Constant([1, 1])

    a = dot(u, n)*v*ds
    L = dot(w, n)*v*ds0

    for R in '+-':
        a += dot(u(R), n(R))*v(R)*dS
        L += dot(w(R), n(R))*v(R)*dS

    u = Function(Vu)
    local_solver = LocalSolver(a, L)
    local_solver.solve_local_rhs(u)

    x = u.vector().copy()
    x[:] = 1
    assert round((u.vector() - x).norm('l2'), 10) == 0


def test_local_solver_dg(ghost_mode):
    mesh = UnitIntervalMesh(50)
    U = FunctionSpace(mesh, "DG", 2)

    # Set initial values
    u0 = interpolate(Expression("cos(pi*x[0])", degree=2), U)

    # Define test and trial functions
    v, u = TestFunction(U), TrialFunction(U)

    # Set time step size
    dt = Constant(2.0e-4)

    # Define fluxes on interior and exterior facets
    u_hat = avg(u0) + 0.25*jump(u0)
    u_hatbnd = -u0 + 0.25*(u0 - 1.0)

    # Define variational formulation
    a = u*v*dx
    L = (u0*v + dt*u0*v.dx(0))*dx - dt*u_hat*jump(v)*dS - dt*u_hatbnd*v*ds

    # Compute reference solution with global LU solver
    u_lu = Function(U)
    solve(a == L, u_lu, solver_parameters = {"linear_solver" : "lu"})

    # Compute solution with local solver and compare
    local_solver = LocalSolver(a, L)
    u_ls = Function(U)
    local_solver.solve_global_rhs(u_ls)
    assert round((u_lu.vector() - u_ls.vector()).norm("l2"), 12) == 0

    # Compute solution with local solver (Cholesky) and compare
    local_solver = LocalSolver(a, L, LocalSolver.SolverType.Cholesky)
    u_ls = Function(U)
    local_solver.solve_global_rhs(u_ls)
    assert round((u_lu.vector() - u_ls.vector()).norm("l2"), 12) == 0


def test_solve_local(ghost_mode):
    mesh = UnitIntervalMesh(50)
    U = FunctionSpace(mesh, "DG", 2)

    # Set initial values
    u0 = interpolate(Expression("cos(pi*x[0])", degree=2), U)

    # Define test and trial functions
    v, u = TestFunction(U), TrialFunction(U)

    # Set time step size
    dt = Constant(2.0e-4)

    # Define fluxes on interior and exterior facets
    u_hat = avg(u0) + 0.25*jump(u0)
    u_hatbnd = -u0 + 0.25*(u0 - 1.0)

    # Define variational formulation
    a = u*v*dx
    L = (u0*v + dt*u0*v.dx(0))*dx - dt*u_hat*jump(v)*dS - dt*u_hatbnd*v*ds
    b = assemble(L)

    # Compute reference solution with global LU solver
    u_lu = Function(U)
    solve(a == L, u_lu, solver_parameters = {"linear_solver" : "lu"})

    # Compute solution with local solver and compare
    local_solver = LocalSolver(a)
    u_ls = Function(U)
    local_solver.solve_local(u_ls.vector(), b, U.dofmap())
    assert round((u_lu.vector() - u_ls.vector()).norm("l2"), 12) == 0

    # Compute solution with local solver (Cholesky) and compare
    local_solver = LocalSolver(a, solver_type=LocalSolver.SolverType.Cholesky)
    u_ls = Function(U)
    local_solver.solve_local(u_ls.vector(), b, U.dofmap())
    assert round((u_lu.vector() - u_ls.vector()).norm("l2"), 12) == 0