1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
"""Unit tests for the solve function on manifolds
embedded in higher dimensional spaces."""
# Copyright (C) 2012 Imperial College London and others.
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by David Ham 2012
# MER: The solving test should be moved into test/regression/..., the
# evaluatebasis part should be moved into test/unit/FiniteElement.py
import pytest
from dolfin import *
import os
import numpy
from dolfin_utils.test import *
# Subdomain to extract bottom boundary.
class BottomEdge(SubDomain):
def inside(self, x, on_boundary):
return near(x[2], 0.0)
class Rotation:
"""Class implementing rotations of the unit plane through an angle
of phi about the x axis followed by theta about the z axis."""
def __init__(self, phi, theta):
self.theta = theta
self.mat = numpy.dot(self._zmat(theta), self._xmat(phi))
self.invmat = numpy.dot(self._xmat(-phi), self._zmat(-theta))
def _zmat(self, theta):
return numpy.array([[numpy.cos(theta), -numpy.sin(theta), 0.0],
[numpy.sin(theta), numpy.cos(theta), 0.0],
[0.0, 0.0, 1.0]])
def _xmat(self, phi):
return numpy.array([[1.0, 0.0, 0.0],
[0.0, numpy.cos(phi), -numpy.sin(phi)],
[0.0, numpy.sin(phi), numpy.cos(phi)]])
def to_plane(self, x):
"""Map the point x back to the horizontal plane."""
return numpy.dot(self.invmat, x)
def x(self, i):
"""Produce a C expression for the ith component
of the image of x mapped back to the horizontal plane."""
return "("+" + ".join(["%.17f * x[%d]" % (a, j)
for (j, a) in enumerate(self.invmat[i, :])])+")"
def rotate(self, mesh):
"""Rotate mesh through phi then theta."""
mesh.coordinates()[:, :] = \
numpy.dot(mesh.coordinates()[:, :], self.mat.T)
def rotate_point(self, point):
"""Rotate point through phi then theta."""
return numpy.dot(point, self.mat.T)
def poisson_2d():
# Create mesh and define function space
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "Lagrange", 1)
# Define Dirichlet boundary (x = 0 or x = 1)
def boundary(x):
return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS
# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, boundary)
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)", degree=2)
g = Expression("sin(5*x[0])", degree=2)
a = inner(grad(u), grad(v))*dx
L = f*v*dx + g*v*ds
# Compute solution
u = Function(V)
solve(a == L, u, bc)
return u
def poisson_manifold():
# Create mesh
cubemesh = UnitCubeMesh(32, 32, 2)
boundarymesh = BoundaryMesh(cubemesh, "exterior")
mesh = SubMesh(boundarymesh, BottomEdge())
rotation = Rotation(numpy.pi/4, numpy.pi/4)
rotation.rotate(mesh)
# Define function space
V = FunctionSpace(mesh, "Lagrange", 1)
# Define Dirichlet boundary (x = 0 or x = 1)
def boundary(x):
return rotation.to_plane(x)[0] < DOLFIN_EPS or \
rotation.to_plane(x)[0] > 1.0 - DOLFIN_EPS
# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, boundary)
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression(("10*exp(-(pow(x[0] - %.17f, 2)" +
" + pow(x[1] - %.17f, 2)" +
" + pow(x[2] - %.17f, 2)) / 0.02)")
% tuple(rotation.rotate_point([0.5, 0.5, 0])), degree=2)
g = Expression("sin(5*%s)" % rotation.x(0), degree=2)
a = inner(grad(u), grad(v))*dx
L = f*v*dx + g*v*ds
# Compute solution
u = Function(V)
solve(a == L, u, bc)
return u
def rotate_2d_mesh(theta):
"""Unit square mesh in 2D rotated through theta about the x and z
axes."""
cubemesh = UnitCubeMesh(1, 1, 1)
boundarymesh = BoundaryMesh(cubemesh, "exterior")
mesh = SubMesh(boundarymesh, BottomEdge())
mesh.init_cell_orientations(Expression(("0.", "0.", "1."), degree=0))
rotation = Rotation(theta, theta)
rotation.rotate(mesh)
return mesh
@skip_in_parallel
def test_poisson2D_in_3D():
"""This test solves Poisson's equation on a unit square in 2D, and
then on a unit square embedded in 3D and rotated pi/4 radians
about each of the z and x axes.
"""
u_2D = poisson_2d()
u_manifold = poisson_manifold()
assert round(u_2D.vector().norm("l2") - u_manifold.vector().norm("l2"),
10) == 0
assert round(u_2D.vector().max() - u_manifold.vector().max(), 10) == 0
assert round(u_2D.vector().min() - u_manifold.vector().min(), 10) == 0
# TODO: Use pytest parameterization
@skip_in_parallel
def test_basis_evaluation_2D_in_3D():
"""This test checks that basis functions and their derivatives are
unaffected by rotations."""
basemesh = rotate_2d_mesh(0.0)
rotmesh = rotate_2d_mesh(numpy.pi/4)
rotation = Rotation(numpy.pi/4, numpy.pi/4)
for i in range(4):
basis_test("CG", i + 1, basemesh, rotmesh, rotation)
for i in range(5):
basis_test("DG", i, basemesh, rotmesh, rotation)
for i in range(4):
basis_test("RT", i + 1, basemesh, rotmesh, rotation, piola=True,)
for i in range(4):
basis_test("DRT", i + 1, basemesh, rotmesh, rotation, piola=True)
for i in range(4):
basis_test("BDM", i + 1, basemesh, rotmesh, rotation, piola=True)
for i in range(4):
basis_test("N1curl", i + 1, basemesh, rotmesh, rotation, piola=True)
basis_test("BDFM", 2, basemesh, rotmesh, rotation, piola=True)
def basis_test(family, degree, basemesh, rotmesh, rotation, piola=False):
ffc_option = "no-evaluate_basis_derivatives"
basis_derivatives = parameters["form_compiler"][ffc_option]
parameters["form_compiler"]["no-evaluate_basis_derivatives"] = False
f_base = FunctionSpace(basemesh, family, degree)
f_rot = FunctionSpace(rotmesh, family, degree)
points = numpy.array([[1.0, 1.0, 0.0],
[0.5, 0.5, 0.0],
[0.3, 0.7, 0.0],
[0.4, 0.0, 0.0]])
for cell_base, cell_rot in zip(cells(basemesh), cells(rotmesh)):
values_base = numpy.zeros(f_base.element().value_dimension(0))
derivs_base = numpy.zeros(f_base.element().value_dimension(0)*3)
values_rot = numpy.zeros(f_rot.element().value_dimension(0))
derivs_rot = numpy.zeros(f_rot.element().value_dimension(0)*3)
# Get cell vertices
vertex_coordinates_base = cell_base.get_vertex_coordinates()
vertex_coordinates_rot = cell_rot.get_vertex_coordinates()
for i in range(f_base.element().space_dimension()):
for point in points:
values_base = f_base.element().evaluate_basis(i,
point, vertex_coordinates_base,
cell_base.orientation())
derivs_base = f_base.element().evaluate_basis_derivatives(i, 1,
point, vertex_coordinates_base,
cell_base.orientation())
values_rot = f_rot.element().evaluate_basis(i,
rotation.rotate_point(point),
vertex_coordinates_rot,
cell_rot.orientation())
derivs_rot = f_base.element().evaluate_basis_derivatives(i, 1,
rotation.rotate_point(point),
vertex_coordinates_rot,
cell_rot.orientation())
if piola:
values_cmp = rotation.rotate_point(values_base)
derivs_rot2 = derivs_rot.reshape(f_rot.element().value_dimension(0),3)
derivs_base2 = derivs_base.reshape(f_base.element().value_dimension(0),3)
# If D is the unrotated derivative tensor, then
# RDR^T is the rotated version.
derivs_cmp = numpy.dot(rotation.mat,
rotation.rotate_point(derivs_base2))
else:
values_cmp = values_base
# Rotate the derivative for comparison.
derivs_cmp = rotation.rotate_point(derivs_base)
derivs_rot2 = derivs_rot
assert round(abs(derivs_rot2-derivs_cmp).max() - 0.0, 10) == 0
assert round(abs(values_cmp-values_rot).max() - 0.0, 10) == 0
parameters["form_compiler"]["no-evaluate_basis_derivatives"] = basis_derivatives
def test_elliptic_eqn_on_intersecting_surface(datadir):
"""Solves -grad^2 u + u = f on domain of two intersecting square
surfaces embedded in 3D with natural bcs. Test passes if at end
\int u dx = \int f dx over whole domain
"""
# This needs to be odd
#num_vertices_side = 31
#mesh = make_mesh(num_vertices_side)
#file = File("intersecting_surfaces.xml.gz", "compressed")
#file << mesh
filename = os.path.join(datadir, "intersecting_surfaces.xml")
mesh = Mesh(filename)
# function space, etc
V = FunctionSpace(mesh, "CG", 2)
u = TrialFunction(V)
v = TestFunction(V)
class Source(UserExpression):
def eval(self, value, x):
# r0 should be less than 0.5 * sqrt(2) in order for source to be
# exactly zero on vertical part of domain
r0 = 0.7
r = sqrt(x[0] * x[0] + x[1] * x[1])
if r < r0:
value[0] = 20.0 * pow((r0 - r), 2)
else:
value[0] = 0.0
f = Function(V)
f.interpolate(Source(degree=2))
a = inner(grad(u), grad(v))*dx + u*v*dx
L = f*v*dx
u = Function(V)
solve(a == L, u)
f_tot = assemble(f*dx)
u_tot = assemble(u*dx)
# test passes if f_tot = u_tot
assert abs(f_tot - u_tot) < 1e-7
def make_mesh(num_vertices_side):
# each square has unit side length
domain_size = 1.0
center_index = (num_vertices_side - 1) / 2
mesh = Mesh()
editor = MeshEditor()
editor.open(mesh, 2, 3)
num_vertices = 2 * num_vertices_side * num_vertices_side - center_index - 1
num_cells = 4 * (num_vertices_side - 1) * (num_vertices_side - 1)
editor.init_vertices(num_vertices)
editor.init_cells(num_cells)
spacing = domain_size / (num_vertices_side - 1.0)
# array of vertex indices
v = [[0]*num_vertices_side for i in range(num_vertices_side)]
# horizontal part of domain vertices
vertex_count = 0
for i in range(num_vertices_side):
y = i * spacing
for j in range(num_vertices_side):
x = j * spacing
p = Point(x, y, 0.0)
editor.add_vertex(vertex_count, p)
v[i][j] = vertex_count
vertex_count += 1
# cells
cell_count = 0
for i in range(num_vertices_side - 1):
for j in range(num_vertices_side - 1):
editor.add_cell(cell_count, v[i][j], v[i][j+1], v[i+1][j])
cell_count += 1
editor.add_cell(cell_count, v[i][j+1], v[i+1][j], v[i+1][j+1])
cell_count += 1
# vertical part of domain
# vertices
for i in range(num_vertices_side):
z = i * spacing - 0.5
for j in range(num_vertices_side):
x = j * spacing + 0.5
if not (i == center_index and j <= center_index):
p = Point(x, 0.5, z)
editor.add_vertex(vertex_count, p)
v[i][j] = vertex_count
vertex_count += 1
else:
v[i][j] += center_index
# cells
for i in range(num_vertices_side - 1):
for j in range(num_vertices_side - 1):
editor.add_cell(cell_count, v[i][j], v[i][j+1], v[i+1][j])
cell_count += 1
editor.add_cell(cell_count, v[i][j+1], v[i+1][j], v[i+1][j+1])
cell_count += 1
editor.close()
return mesh
|